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Title: Energy-Optimal Path-Planning For Quadrotors In Forests 
 
 
 
 

 

Motivated by the threat to the Lebanese forests brought upon by the Pine Processionary 

Moths, a system-level algorithm is proposed to have aerial drones navigate forest 

environments and visit each tree in an energy-optimal manner. In fact, the developed path-

planning algorithm can be generalized for use to visit and inspect various cylindrically-

shaped objects (e.g. power poles, concrete structures, and similar) in an energy-optimal 

manner. Given a map of the domain, an energy-optimal path is established between all pairs 

of objects (trees in this case) using optimal control theory to arrive at a hybrid solver of 

different transcription methods including Legendre-Gauss-Radau (LGR) and Hermite-

Simpson (H-S) collocation methods. For cases with very large number of trees, a third-

order polynomial estimation is established to map the position coordinates to energy 

consumption, which results in a significant reduction of computation time.  

After populating an adjacency matrix from the optimal control solver or polynomial 

estimation, the problem is defined as a travelling salesman problem (TSP), where the drone 

is to visit all objects only once, which requires the use of graph theory; Integer Linear 

Programming (ILP) along with Sub-Tour Elimination Constraints (SEC) are used to 

develop the general optimal tour.  

The algorithm is tailored to the needs of the intended application where prior information 

from previous scans are leveraged to generate a new set of trees, which includes infected 

trees in addition to ones with a relatively high probability to be infected based on a 

proposed probability distribution. The tour is further modified as a second tour is going on 

where a change of status from infected to non-infected, or vice-versa, results in a change in 

the probability of infection of each tree, which in turn changes the pool of trees required to 

visit. This abrupt change in tree sets requires a new path that is satisfied by a Fixed-Start-

Fixed-End travelling salesman problem, which is solved using a genetic algorithm that 

assigns the tree where the drone is located as the initial point, while the base is considered 

the final point.  
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    CHAPTER I 

INTRODUCTION 
 

 

A. Problem 
 

Unmanned Aerial Vehicles (UAVs) have become the center of attention lately 

especially with their various uses that arise every day. UAVs have been used in delivering 

packages, medical kits, and even pizzas. With this potential, quadrotors are opted to gain more 

attention and have their uses expanded into many fields including agriculture and forestry. Due 

to the vast areas of forests, it is important to maintain energy optimality in quadrotor motion and 

trajectory planning. 

With the country of Lebanon having vast forests of Lebanese Cedars (Cedrus Libanos), 

Stone Pines (Pinus Pinea), and Turkish Pines (Pinus Brutia), these tree species have been severely 

impacted by the rise of Pine Processionary Moths (Thaumetopoea Pityocampa) [1]. The adult 

moths typically lay their eggs at the south-facing top edges of trees, for maximum sunlight and 

heat exposure [2]. After hatching, the larva starts feeding on the pine needles, causing the infected 

branches to lose nutrients and gradually affecting the entire tree’s health. The density of these 

moths has reached severely high levels in Lebanon and around the Middle East and North Africa 

(MENA) region [2]. This is prompting local researchers (entomologists and engineers) to deal 

with this issue swiftly, to curb their spread and contain the grave threat that they pose to one of 

the greatest symbols of Lebanon, cedar trees [1]. 
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Figure 1 Lebanese Stone Pine Forest [2] 

 

Figure 2 Lebanese Turkish Pine Forest [2] 
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Figure 3 Lebanese Cedars [2] 

A challenge with this type of moths is that the caterpillars can only be detected during 

a very narrow time slot of two weeks once a year [3]. Detection is achieved through the 

prevalence of their nests, which occurs during the weakest phase of the moths’ life cycle. 

 

Figure 4 Pine Processionary Moth Life Cycle [4] 

 

  Since it is impractical to detect and exterminate them via primitive manual methods, 

and given that spraying pesticides in bulk over the entire forest via helicopters is banned [2], 

quadrotor UAVs are being proposed to aid with this task given their ability to deliver precise 

and small amounts of pesticides to infected areas only. In this scheme, quadrotors are released 

into a forest where they must autonomously navigate through it, visit each tree, and try to 
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detect the developed nests for later actions to be taken. The aim of this research is to generate 

an energy-efficient path for the quadrotors to effectively and efficiently scan all the trees and 

be able to detect the nests. The detection (via computer vision) and the termination 

mechanism (via precise pesticide delivery) are not under the scope of this thesis, and they are 

being explored by other researchers. 

 

Figure 5 Pine Processionary Moth [4] 

 

 

Figure 6 Pine Processionary Moth Caterpillar [2] 
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Figure 7 Pine Processionary Moth Nest [2] 

  The general problem can be divided into three main parts. The first part entails 

modeling the domain in which the drones operate, where the proposed tree models lend 

themselves well for integration into the optimal control problem as constraints. The second 

part is the optimal trajectory and path-planning between each pair of trees, which solves for 

an optimal solution by minimizing energy consumption while considering obstacle-

avoidance constraints. Finally, the third part generates the sequence for visiting the trees by 

employing the traveling salesman problem (TSP), where a single salesman (drone) needs to 

visit all the cities (trees) with a minimum total cost (energy). 

 

B. Literature Review 

 

1. Node-to-Node 

 

Moving from one way-point to another in a three-dimensional environment has 

been extensively studied, and an array of algorithms exist and could be categorized into five 

main groups. 

The first category is sampling-based algorithms [4], which are based on a priori 

knowledge of the domain, and they aim at generating a path that avoids obstacles in its course 

[4]. Available sampling-based algorithms include Rapidly Exploring Random Tree (RRT) [5], 
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Probabilistic Roadmap [6], Voronoi diagrams [7], and Potential Fields [8]. The main downside 

of these algorithms is that they do not ensure optimality in any form and might be 

computationally expensive since they deal with a discretized interpretation of the entire domain 

[4]. 

 

Figure 8 Sampling Based Algorithms [5] 

Table 1 Sampling Base Algorithm Comparison 

Method Advantages Disadvantages 

RRT Fast Searching Ability Single path 

Non-optimal 

Static analysis 

PRM Good for complex 

environments 

Expensive 

Static analysis 

Non-optimal 

Voronoi Collision-free and easy Non-convergence  

Static analysis 

Incomplete representation 

Potential Fields Fast convergence Local minima 
 

 

The second category includes node-based optimal algorithms such as Dijkstra [9], 

A-star [10], D-star [9], and many others. Such algorithms require a pre-discretized and known 

domain, they associate each step with a cost that can be incorporated as a generalized cost-
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function [4], but they are computationally expensive and might not always lead to global 

optimality [4]. 

 

Figure 9 Node Base Path Planning Algorithms 

Table 2 Node Based Method Comparison [5] 

Method Advantages Disadvantages 

Dijkstra Easy to implement High time complexity 

Static Analysis 

A-star Fast search Non-smoothness 

Static Analysis 

D-star Fast Search 

Dynamic Environment 

Unrealistic distance 

 

The third category includes mathematical model-based algorithms, which 

formulate the entire domain and cost function into a set of mathematical equations, in 

addition to several constraints such as initial and final conditions as well as inequalities and 

differential equations [4]. If the problem can be linearized, it is solved via linear 

programming [4]; otherwise optimal control theory [11] is used, which tends to be 

computationally expensive, may not be able to ensure obstacle avoidance, but has the 

advantage of reaching global optimality.  
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Figure 10 Mathematical Path-planning Algorithms [5] 

The fourth category includes bio-inspired algorithms [4], which leverage the bio-

mimicry theory of applied mathematics and rely on stochastic approaches. Bio-inspired 

algorithms include genetic algorithm [12], ant colony optimization [13], neural networks 

[14], and others. These algorithms can achieve obstacle avoidance, but do not ensure global 

optimality. They are computationally expensive especially since they are solving an NP-Hard 

problem [4]. 

 

Figure 11 Bio-inspired Path-planning Algorithms [5] 
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Table 3 Bio-inspired Algorithm Comparison 

Method Advantages Disadvantages 

Genetic Algorithm Can deal with multi-

object problems 

Premature convergence 

Ant Colony Continuous planning and 

multiple objects 

High time complexity 

Neural Network Stable again sudden 

changes 

Relies on set rules ad 

organisms 

 

The fifth category includes mixed algorithms [4], which integrate other categories 

such as RRT, A-star, and others, with the aim of reaping the benefits of the different 

categories and overcoming their disadvantages [15]. 

 

2. Travelling Salesman Problem 

 

For visiting a series of waypoints, node-to-node planners do not suffice, but rather 

a global planner is required, which is where graph theory comes at hand [16]. The primary 

aspect of graph theory is the combination of nodes and edge, where a node represents a 

destination that the salesman (or quadrotor) must reach. An edge represents the connection 

between two different nodes and includes an associated weight [17]. The traveling salesman 

problem (TSP) can be formulated using graph theory to produce a global plan for visiting all 

waypoints. It is important to note that the generalized case of a traveling salesman problem is 

the asymmetric traveling salesman problem (ATSP), which arises when a pair of nodes do 

not have the same cost for the edge between them when directed in opposite directions, 

which results in an asymmetric adjacency matrix [17]. The problem of having an aerial drone 

visit each tree in a forest lends itself to an asymmetric cost due to obstacles, and especially 

when it comes to the difference in altitudes that affect energy consumption of quadrotors. 

There are several forms of solving the ATSP, which include symmetrizing the 

adjacency matrix of the ATSP  [18] and then using Christofide’s algorithm [19] to find a 
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solution. This starts with a minimum spanning tree algorithm [20], but since this creates a 

single route with branches, a tour cannot be made. Taking recourse to graph theory, the 

handshake-lemma can be utilized to create a full tour [19]. However, this leads to a 

requirement that each node should have an even number of edges connected to it. To mitigate 

this issue, all nodes with the odd number of edges are grouped and the minimum-matching 

algorithm is used to pair them whilst having a minimum total cost [19]. After having even 

edges for all nodes, a Eulerian tour could be established, which dictates that all edges should 

be visited only once. This, however, leads to a problem where nodes are visited several times, 

which requires it to undergo a cut-off phase where any repeated node is deleted from the 

sequence thus creating a final Hamiltonian tour [19]. 

 

Figure 12 Christofide’s algorithm sequence for asymmetric TSP [20] 

Another method of solving the ATSP is the Genetic Algorithm, which is based on 

a cycle approach [21] that starts with a random set of strings representing a series of numbers, 

which represent a suggested order of node visits. This pool of suggested random items 

undergoes a fitness test where the ones that pass go on to the next stage [22]. The next stage 

is composed of mutations and crossovers where a combination of strands that are deemed 

“fit” is produced. This creates a new “generation” that is added to a new set of randomly 
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generated suggestions to undergo the same cycle. The algorithm ends if the pre-set number of 

cycles is reached, or if the minimized strand is repeated several times [21]. 

 

Figure 13 Genetic Algorithm Cycle 

Another method is Integer Linear Programming (ILP) with the addition of Sub-

tour Elimination Constraints (SEC) [23], which can generally be solved using branching and 

bounding. These methods vary in computational time and accuracy, with ILP having higher 

computational cost but guaranteeing global optimality [23]. 

 

3. Transcription and Discretization 
 

When using optimal control theory to solve the path-planning or trajectory 

tracking problems, it is important to maintain convergence [24]. Optimal control solvers 

might not always result in an answer, but when they do, the obtained solutions are surely 

optimal. This results in an added burden to properly select the method of solving the problem 

at hand. 

Transcription is transforming the set of minimizing equations, constraints, 

differential equations, and path constraints into a set of nonlinear equations with inequality 

and equality constraints [25]. This could be done in two different ways that are known as 

Encoding

Evaluation

CrossoverMutation

De-coding
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direct and indirect methods. Direct methods are a set of methods where discretization occurs 

first and then minimization of the object function is sought after [26]. On the other hand, an 

indirect method includes transcription at first but continues to find the location where the 

derivative of the objective function is zero. 

Table 4 OCP Solver Methods 

Indirect Direct  

“Optimize then Discretize” “Discretize Then Optimize” 

More Accurate Less Accurate 

Harder to pose and solve Easier to pose and solve 

 

After deciding on the general transcription approach, it is important to choose the 

transcription method itself [27]. There are two general transcription methods: collocation and 

shooting. The shooting method is similar to a target shooting, where explicit discretization 

schemes are developed in simulation [27]. This can also be further elaborated upon by using 

multiple shootings where the domain is split into smaller parts and trial simulations with error 

estimations are used to find a solution. On the other hand, collocation methods are based on 

function approximation using implicit forms of integration discretization such as Runge-

Kutta. [27] 

Table 5 OCP Transcription Methods 

Shooting Methods Collocation Methods 

Based on simulation Based on function approximation 

Problems with simple control Problems with complicated control 

No path constraints Path constraints 

 

After choosing the transcription method, a discretization method is needed. There 

are several methods for discretizing the domain, which are mainly separated into two main 
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categories that include the h-methods and the p-methods, and their combinations [28]. The h-

method generally works on the concept that any domain, if segmented into smaller and 

smaller parts, will lead to a better and more optimal solution. It has a lower order for 

estimation in each trajectory and the whole domain is stitched back together to yield the final 

solution [28]. One of the most significant methods of the h-type is the Hermite Simpson 

method where the states are represented using a cubic-Hermite spline (third-degree 

polynomial interpolation), while the dynamics are satisfied using Simpson Quadrature (a 

numeric approximation of integrals) [29]. The Simpson Quadrature rule is used to estimate 

the integrated function with the following generalized formula [29]: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
=

ℎ

3
(𝑓(𝑎) + (𝑓(𝑏) +

2ℎ

3
∑ 𝑓(𝑥2𝑘)

𝑛−1
𝑘=1 +

4ℎ

3
∑ 𝑓(𝑥2𝑘−1))

𝑛
𝑘=1 ,        (1)  

𝑠. 𝑡. ℎ =
𝑏−𝑎

2𝑛
. 

This is also obtained where n is the number of proposed segments and h is the 

time segments where as a and b are the initial and final times respectively. Moreover, it is 

accompanied by a Hermite spline polynomial fit for the states that are described as follows 

[29]: 

𝑥(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3,      (2) 

�̇�(𝑡) = 𝑎1 + 2𝑎2𝑡 + 3𝑎3𝑡
2.           (3) 

In this assumption, t represents time that is between 0 and m, which is considered 

the final time. However, in order to determine the coefficients, the following Hermite rule is 

used: 

[

𝑎0

𝑎1

𝑎2

𝑎3

] =

[
 
 
 
 

1 0 0 0
0 1 0 0

−
3

ℎ2 −
2

ℎ

3

ℎ2 −
1

ℎ
2

ℎ3

1

ℎ1 −
2

ℎ3

1

ℎ2 ]
 
 
 
 

[

𝑥(0)
�̇�(0)
𝑥(𝑚)
�̇�(𝑚)

].     (4) 

In the H-S collocation scheme, the collocation point is determined midway within 

the time domain. The derivative of the state at this point should be equal to the right side of 
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the ordinary differential equations (ODEs) of the OCP. The collocation derivative is 

expressed as follows: 

�̇�𝑐 = �̇� (
𝑚

2
) = −

3

2𝑚
(𝑥𝑚 − 𝑥𝑚+1) −

1

4
[𝑓(𝑥𝑘, 𝑢𝑘) + 𝑓(𝑥𝑘+1, 𝑢𝑘+1)],  (5) 

𝑢𝑐 =
𝑢𝑘+𝑢𝑘+1

2
,         (6) 

where f(x) is the equation at the right-hand side of the ODE and u is the input. The 

equality equation results in the following [29]: 

�̇�𝑐 − 𝑓(𝑥𝑐, 𝑢𝑐) ≈ 0,        (8) 

𝑥𝑘 − 𝑥𝑘+1 +
𝑚

6
[𝑓(𝑥𝑘, 𝑢𝑘) + 4𝑓(𝑥𝑐 , 𝑢𝑐) + 𝑓(𝑥𝑘+1, 𝑢𝐾+)] ≈ 0.  (9) 

These result in a set of nonlinear equations and finalize as a nonlinear problem 

(NLP) with the following formulation: 

𝑚𝑖𝑛.𝛷(𝑿,𝑼)

𝒔. 𝒕. �̇� − 𝑭(𝑿,𝑼) = 𝟎
𝑿𝟎 = 𝒙𝟎

𝑿𝒇 = 𝒙𝒇

        (10) 

where Φ is the transcribed cost function and �̇� − 𝐅(𝐗,𝐔) is taken via the 

equations (8) and (9). X0 and Xf are the initial and final values of the said equations 

On the other hand, p-methods consider the domain as a single entity and approximate it using 

higher and higher orders of polynomials for estimation. This creates smoother transitions, but it 

does not respect actuator or input saturation [28].  

Table 6 OCP Collocation Discretization Methods 

h-methods p-methods 

A higher number of segments Single-segment 

Low-order estimation Higher order estimation 

Converges by increasing segments Converges by increasing method order 
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In general, hybrid methods of p-/hp-methods are used to ensure higher rates of 

convergence. One of the most significant methods of transcription is the pseudospectral 

method, which uses a high order estimation for highly nonlinear and coupled dynamics and 

problems, which also segments the domain into very small sub-parts to be able to solve the 

whole domain in a discretized manner while taking a global solver into consideration. One of 

the most significant forms of pseudospectral methods is the Legendre-Gauss-Radau (LGR) 

method, which is an extension of the Legendre-Gauss (LG) collocation [30]. 

The LGR method is generally obtained by primarily starting with Legendre 

polynomials that are used to estimate the entire domain. The Gaussian quadrature is used to 

discretize the domain, where time is discretized into several segments that might be separated 

in equal or adequately unequal distances [30]. It is important to note that the general LG 

method does not include solving for the end and starting states, which leaves the domain as 

an open interval, while adding the Radau factor results in a half-open domain where the 

initial states and time is determined using Radau collocation. This enables an open-ended 

approach to the problem, especially when dealing with free-end-time as an infinite horizon 

approach.  

Primarily, the LGR transcription method starts with the Gauss Quadrature, which 

estimates the cost function as a sum series of equations, and it is optimal in the standard 

domain of [-1 1]. To transform the time domain from [0 tf] to [-1 1], the following equation is 

used [30]: 

𝑡 =
𝑡𝑓−𝑡0

2
𝜏 +

𝑡𝑓+𝑡0

2
,    𝑠. 𝑡.   𝜏𝜖[−1,+1],      (11) 

This helps discretize the time domain and thus sets the map straight to start 

discretizing the rest. After discretizing the domain, the Gaussian quadrature is based on 

discretizing the integral function into such a format: 

∫ 𝑓(𝑥) 𝑑𝑥
1

−1
≈ ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛
𝑖=1 ,          (12) 
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where the f(x) is a polynomial of a degree 2n-1 or less where n is the number of 

segments, while w is the weight associated with each function. Under LGR, the Gaussian 

quadrature function can be assumed as follows [30]: 

𝑓(𝑥) = (1 − 𝑥)𝛼(1 + 𝑥)𝛽𝑔(𝑥)   𝑠. 𝑡.  𝛼, 𝛽 > −1,       (13) 

where g(x) is a low order degree approximation. However, in order to get accurate 

weights, Legendre polynomials are added using the following equation: 

𝑤𝑖 =
2

(1−𝑥𝑖
2)[𝑃𝑛(𝑥𝑖)]

2,           (14) 

𝑃𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛.          (15) 

This reflects when dealing with the states and their ODE’s. The states and inputs 

could be estimated using the following [30]: 

𝑥𝑁(𝜏) = ∑ 𝑥𝑖𝐿𝑖(𝜏)
𝑁
𝑖=0 ,         (16) 

𝐿𝑖(𝜏) = ∏
𝜏−𝜏𝑗

𝜏𝑖−𝜏𝑗

𝑁
𝑖=0
𝑗≠𝑖

,          (17) 

where the degree of the polynomial is at most N. Moreover, to estimate their 

derivatives the following equation is used: 

�̇�𝑁(𝜏) = ∑ 𝐷𝑖𝑥𝑖
𝑁
𝑖=0 ,          (18) 

where is D called the Gauss Pseudoscpetral Differential equation where it is also 

considered the derivative of L at τ. This results in the following matrix when integrating the 

derivatives [30]: 

∫ �̇�𝑁(𝜏)𝑑𝜏
1

−1
= ∑ 𝑤𝑖�̇�

𝑁(𝜏)𝑁
𝑖=1 ,        (19) 

However, a small change to the Gaussian Quadrature is required to be able to 

determine the start and endpoint values. This is where the Radau quadrature comes in, which 

is formulated as follows: 

∫ 𝑓(𝑥) 𝑑𝑥
1

−1
= 𝑤1𝑓(−1) + ∑ 𝑤𝑖𝑓(𝑥𝑖)

𝑛
𝑖=2 ,          (20) 
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𝑠. 𝑡. 𝑤1 =
2

𝑛2  𝑎𝑛𝑑 𝑤𝑖 =
1

(1−𝑥𝑖)[𝑃𝑛−1(𝑥𝑖)]
2.        (21) 

This results in the following formulation of the NLP: 

𝑚𝑖𝑛.𝜱(𝑿𝑵)

𝑠. 𝑡. 𝑫𝑿 = 𝑭(𝑿𝑳𝑮𝑹, 𝑼𝑳𝑮𝑹)
𝑿𝟎 = 𝒙𝟎

       (22) 

where Φ is the transcribed cost function, D is the Gaussian Pseudospectral 

Differential Equation Matrix, F is the matrix of discretized and nonlinear equations, and X0 is 

the initial states matrix. This, however, cannot be solved using conventional methods and 

requires nonlinear solvers [30]. 

 

4. Solvers 
 

After transcribing and discretizing the domain, states, equations, ODEs, and 

constraints into a set of nonlinear equations that must be solved. This may vary between 

linearizing the equations or creating Hessian or Jacobin Matrices to solve the nonlinear 

problem (NLP). One of the more significant forms of solving NLPs is using sequential 

quadratic programing (SQP), which is generally used to solve lower order problems with a 

small set of differential equations [31]. SQP linearizes the system and solves using sequential 

iterations, which may have a high rate of failure when it comes to constraints of high orders 

including equation, inequality, and state constraints [31]. 

However, it is important to note that SQP could be used to solve NLP in a more 

accurate manner, if it is used within a sparse nonlinear optimizer (SNOPT) [32]. This 

optimization method starts with solving a quadratic model based on an initial guess and starts 

to iteratively update the solution. It undergoes inexpensive iterations and works without 

violating constraints. It is important to note that using SNOPT requires more and more 

constraints since iterations to eliminate sporadic solutions. SNOPT is efficient with highly 
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constrained problems, it can greatly exploit initial guesses, and it needs less evaluations for 

solving functions and detects infeasibility [32]. 

On the other hand, another solution method is known as the interior point method 

(IPM) or interior point optimizer (IPOPT) [33]. IPOPT uses a Newtonian iteration method 

with a Karush–Kuhn–Tucker (KKT) system to relax the solution. It works in an iterative 

manner by updating the solution and estimating a relaxation parameter. It generally performs 

fewer expensive iterations, it heavily relies on linear algebra, it is highly efficient for coupled 

and nonlinear programs, and it includes simpler interfaces. This type of solvers is generally 

efficient with higher orders of derivatives, especially second order, which is prevalent in the 

case under consideration in this work.  

One of the most important parts of IPM is eliminating nonlinear inequalities, 

which is achieved by using a dummy variable instead [34]: 

𝑔(𝑥) > 𝑏 ⇒  {
𝑔(𝑥) − 𝑏 − 𝑠 = 0

𝑠 > 0
       (23) 

This leads to additional equality constraints. The second step is to get rid of the 

dummy state, which is done using a Natural Logarithm barrier term as an additional 

constraint to the system, which causes the minimized function to increase in value if 

approaching the infeasible region based on the inequality constraints [34]: 

min𝑓(𝑥)
𝑥 > 0

⇒ min𝑓 (𝑥) − 𝜇 ∑ ln (𝑥𝑖)
𝑛
𝑖=1 ,       (24) 

where µ is a varying parameter that is iteratively chosen in order find the optimal 

solution. However, rather than constantly changing µ, the simplest way is to check where this 

condition reaches minimum by determining where its derivative is equal to zero. This is 

where the KKT condition is used, which is stated as follows [33]: 

min𝑓 (𝑥) − 𝜇 ∑ ln (𝑥𝑖)
𝑛
𝑖=1

𝑐(𝑥) = 0
⇒

∇𝑓(𝑥) + ∇𝑐(𝑥)𝜆 − 𝜇 ∑
1

𝑥𝑖

𝑛
𝑖=1 = 0

𝑐(𝑥) = 0
  (25) 
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where λ is known as a KKT multiplier. Moreover, it is safe to assume a variable as 

𝑧𝑖 =
𝜇

𝑥𝑖
 that results in the following KKT finalized condition: 

∇𝑓(𝑥) + ∇𝑐(𝑥)𝜆 − 𝑧 = 0

𝑐(𝑥) = 0
𝑋𝑍𝑒 − 𝜇𝑒 = 0

       (26) 

where e is an array of ones while X and Z are the matrices of x’s and z’s. This 

results in the generalized KKT solution with Newton-Raphson [34]: 

[
𝑊𝑘 + Σ𝑘 ∇𝑐(𝑥𝑘)

∇𝑐(𝑥𝑘)
𝑇 0

] (
𝑑𝑘

𝑥

𝑑𝑘
𝜆) = −(

∇𝑓(𝑥𝑘) + ∇𝑐(𝑥𝑘)𝜆𝑘

𝑐(𝑥𝑘)
),    (27) 

𝑠. 𝑡. Σ𝑘 = 𝑋𝑘
−1𝑍𝑘,         (28) 

𝑍𝑘 = [
𝑧1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑧𝑛

],         (29) 

𝑋𝑘 = [
𝑥1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑥𝑛

],         (30) 

𝑊𝑘 = ∇𝑥𝑥
2 (𝑓(𝑥𝑘) + 𝑐(𝑥𝑘)

𝑇𝜆𝑘 − 𝑧𝑘),       (31) 

𝑑𝑘
𝑧 = 𝜇𝑘𝑋𝑘

−1𝑒 − 𝑧𝑘 − Σ𝑘𝑑𝑘
𝑥.        (32) 

This results in a coefficient matrix form of Ax=b where Wk is the second gradient 

of the Lagrangian, d’s are directions that are used in the iterations, and n is the number of 

variables present. However, the whole d for x, z, and λ is not used within the progression as 

iterations are made, but rather there is a step size, α, which is used for iterations and are the 

values iterated as follows: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘
𝑥,         (33) 

𝑧𝑘+1 = 𝑧𝑘 + 𝛼𝑘𝑑𝑘
𝑧 ,         (34) 

𝜆𝑘+1 = 𝜆𝑘 + 𝛼𝑘𝑑𝑘
𝜆.         (35) 

This is iterated several times until the number of iterations is reached or the 

following KKT error tolerance level is reached [34]: 
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𝑚𝑎𝑥|∇𝑓(𝑥) + ∇𝑐(𝑥)𝜆 − 𝑧| ≤ 𝜖𝑒𝑟𝑟𝑜𝑟

𝑚𝑎𝑥|𝑐(𝑥)| ≤ 𝜖𝑒𝑟𝑟𝑜𝑟

𝑚𝑎𝑥|𝑋𝑍𝑒 − 𝜇𝑒| ≤ 𝜖𝑒𝑟𝑟𝑜𝑟

 .      (36) 

 

C. Thesis Objectives: 
 

For the quadrotor UAV to be able to roam around the whole forest in an energy-

optimal manner, the problem must undergo several steps that inlcude: 

1. Identifying an appropriate optimal control solver that includes a suitable 

transcription method along with a capable nonlinear solver. 

2. Ensuring solution convergence and adequate object avoidance when solving 

the optimal control problem, whilst respecting downwash restrictions and 

quadrotor dynamics, along with time and energy optimality. 

3. Establishing an optimal tour by solving the TSP using ILP in addition to 

SECs. 

4. Computing a probability of infection for each tree based on prior scans and 

identification of previously infected trees. 

5. Generating a time-varying path, as the quadrotor scans new trees and updates 

the probability online, by solving the fixed-start fixed-end TSP. 
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CHAPTER II 

PROBLEM FORMULATION 
 

 

Mapping the environment is a key aspect of the path-planning problem, especially 

when working offline. For forests considered in this work, the map is considered constant 

since the environment is not dynamic in the sense that sudden changes are not expected to 

occur, even at a span of a decade. For mapping a forest, we start by modelling the trees and 

drones, and establishing zones of operation. 

 

A. Trees 

 

Due to the relatively small change in trunk radius of trees with respect to their height, 

it is safe to consider a tree trunk as a tall cylinder. However, it is important to note that the 

radius and the height of a tree trunk is generally governed by a slenderness equation, which 

is specific to each tree.  For Turkish Pines, the following slenderness equation is used [35]: 

𝐻 = 2.4 + 0.45(𝐷𝐵𝐻) − 0.0045(𝐷𝐵𝐻)2,        (37) 

For Lebanese Cedars, the following slenderness equation is used [36]: 

𝐻 = 1.35(𝐷𝐵𝐻)0.72,          (38) 

For the Stone Pines, the following slenderness equation is used [37]: 

𝐻 = 25 × 𝐷𝐵𝐻.         (39) 

Since the trees at hand are usually tall and have barren trunks, it is safe to presume 

their trunks as cylinders. Moreover, since trees such as Stone Pines, Turkish Pines, and 

even Lebanese cedars do not allow peripheral plantations to grow under or around them, it 

is safe also to presume that the forest at hand is a group of the same trees, which need to be 

scanned with no objects between them but other trees of the same kind. 
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B. Quadrotor Downwash Effect 

 

Quadrotors function using aerodynamic thrust forces generated by their propellers. 

When objects are in the vicinity of a quadrotor, they tend to interfere with the free flow of 

air through its rotors and surrounding its frame. Quadrotors should thus remain at a certain 

distance from nearby objects to avoid aerodynamic interference. Due to this aerodynamic 

nature of quadrotors, they can be generally identified with their downwash ellipsoid, as 

shown in Figure 14, which tends to simplify the graphical representation of quadrotors [38]. 

 

Figure 14 Quadrotor Downwash Inflation 

The ellipsoid’s radii are equivalent to the quadrotor’s chassis dimensions 

including the radius of the rotor fan, and the downwash radius, which is placed on the 

vertical body-fixed axis, is calculated using aerodynamic analysis that is specific to the 

quadrotor under consideration. 

 

C. Zoning 

 

To find out how a quadrotor should be located in order to accurately scan the tree, 

but yet still satisfy the downwash condition, a zoning scheme is devised. On one hand, the 

downwash effect requires quadrotors to stay away from nearby objects within a specified 

distance, on the other hand the intended usage of quadrotors to scan trees via on-board 
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cameras requires them to be within a specified depth based on their resolution. Thus, a 

zoning of permissible locations, which the quadrotor should operate in, must be established.  

 

Figure 15 Layers of Cylindrical Zoning 

1. Red Zone 

 

To accommodate the aerodynamic constraints related to downwash, a no-go zone 

(red zone) is established around each objective and obstacle. This results in an offset or 

inflation of cylindrical zone around each object by a distance equal to the quadrotor downwash 

radius, which could be considered equivalent to the chassis of the quadrotor in addition to the 

propeller radius in the horizontal plain, and another equal to the downwash radius in the vertical 

direction, as shown in Figure 15 [38]. 

 

2. Blue Zone 

 

Since the quadrotors will be equipped with digital cameras for scanning and 

computer vision purposes, a maximum distance is specified to guarantee accurate scanning of 

the trees with adequate resolution. This criterion results in a cylinder that is concentric with the 

tree trunk having a radius equal to the maximum distance allowed for the camera to accurately 

scan and detect the moths [39]. 

Tree Bulk

Red 
Zone(Downwash)

Blue Zone 
(Camera)
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D. Problem Statement 
 

The main aim of this paper is to create an energy-optimal path to visit every tree and 

come back to the base. This can be mainly separated into two main parts. The first one is 

concerned with determining the energy-optimal trajectory and path to travel from one point 

to another between trees. The second part is determining an energy optimal tour to visit all 

trees. In this formulation, the trees are always visited from the west where the quadrotor is 

looking towards the east as shown in the Figure16. This should be done while taking into 

consideration collision avoidance, in addition to respecting downwash and camera 

restrictions. 

 

Figure 16 Tree Scanning in Goldilocks Zone and Path-Planning Scheme 
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CHAPTER III 
 

TREE-TO-TREE PATH PLANNING 
 

 

A. Transformation Axes 

 

To determine the energy-optimal trajectory and path for quadrotors, the equations 

of motion that govern their dynamics must be first formulated. 

 

Figure 17 Quadrotor Transformation and rotor direction 

Based on the Euler transformation from the global XYZ axes to the local 

quadrotor’s XYZ axes, the following transformation is used and expressed as follows [40]: 

𝑅 = [

𝑐𝜙𝑐𝜓 − 𝑐𝜃𝑠𝜙𝑠𝜓 −𝑐𝜓𝑠𝜙 − 𝑐𝜙𝑐𝜃𝑠𝜓 𝑠𝜃𝑠𝜓

𝑐𝜃𝑐𝜓𝑠𝜙 + 𝑐𝜙𝑠𝜓 𝑐𝜙𝑐𝜃𝑐𝜓 − 𝑠𝜙𝑠𝜓 −𝑐𝜓𝑠𝜃

𝑠𝜙𝑠𝜃 𝑐𝜙𝑠𝜃 𝑐𝜃

]     (40) 

The generalized equation is based on the roll, pitch, and yaw motions that are 

represented by ϕ, θ, and ψ respectively. 

 

B. Motors 

 

The motors used in  quadrotors are usually brushless DC motors, which generally 

represent a circuit like that of an RL circuit. 
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Figure 18 Circuit Representation of a DC- Brushless Motor 

The current and potential difference across the motor is expressed as follows [11]: 

   𝑖 =
1

𝐾𝑇
[𝑇𝑓 + 𝑇𝐿𝜔 + 𝐷𝑓𝜔 + 𝐽�̇�],        (41)  

𝑒 = 𝑅𝑚𝑖 + 𝐾𝐸𝜔 + 𝐿
𝑑𝑖

𝑑𝑡
,                  (42) 

where 𝜔 is the angular velocity of the motor, KT is the torque constant, Tf  is the 

motor friction torque, TL is the speed-dependent friction torque, Df is the viscous damping 

coefficient, J is the total inertia of the motor, Rm is the motor resistance, KE is the back 

electromotive force constant, and L is the inductance of the motor [41]. 

 

E. Forces 

 

To control the altitude and attitude of the quadrotor, generalized forces are present 

to govern these actions. These forces are either induced using the rotors of the quadrotor or 

present due to other factors such as gravity, wind, or other external disturbances [42]. 

The rotors on the quadrotor rotate in pairs where one pair of opposing rotors rotate 

counterclockwise and the other pair rotates clockwise. Variations and combinations of the 

speed of each rotor govern the direction in which the quadrotor moves [43]. 
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Figure 19 Motor rotation quadrotor combination and motion control 

The generalized forces that act on the quadrotor are mostly thrust, gravity, and 

extraneous forces. To determine the value of the thrust, the thrust of each rotor should be 

investigated using energy equations. After simplifying the equation of power: 

P=IV,           (43) 

and after substituting each with its associated equations, it is safe to conclude that 

the new equation for power from the motor is given by [44]: 

𝑃 = 𝐾𝜏𝜔,          (44) 

where K is a coefficient that can be determined by the internal circuitry of the 

motor. On the other hand, using the conservation of energy principle, power can be 

expressed using the following equation [42]: 

𝑃 = 𝑇𝑣ℎ,          (45) 

where T is the thrust and vh is the air velocity. However, due to momentum, 

velocity and thrust have a separate relation, which results in the following equation [44]: 

𝑣ℎ = √
𝑇

2𝜌𝐴
,         (46) 
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where A is the swept area of the rotor and 𝜌 is the air density. After substituting the 

equations (43) to (46), the resultant thrust force of each motor can be estimated as follows 

[40]: 

𝑇 = 𝑘𝜔2,         (47) 

where k is an appropriately dimensioned constant, leading the whole thrust force 

acting on the quadrotor to be the sum of all individual thrusts from each rotor: 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑘 [
0
0

∑ 𝜔𝑖
24

𝑖=1

].        (48) 

 

F. Torques 

 

As there is a thrust force acting parallel to the rotor shaft, there is a perpendicular 

force acting as well. This is expressed as the drag force: 

𝐹𝐷 =
1

2
𝜌𝐶𝐷𝐴(𝜔𝑟)2        (49) 

where CD is the drag coefficient and r is the length of each propeller. This leads to 

the associated torque as follows: 

𝜏𝐵 = [

𝑙𝑘(𝜔1
2 − 𝜔3

2)

𝑙𝑘(𝜔2
2 − 𝜔4

2)

𝑏𝑡(𝜔1
2 − 𝜔2

2 + 𝜔3
2 − 𝜔4

2)

],      (50) 

where bt is an appropriately dimensioned constant and l is the distance from the 

center of the quadrotor to any rotor [44]. 

 

G. Equations of motion 

 

After compiling the equations (43) through (50), it is safe to say that the governing 

inputs, which induce the quadrotor motion, are as follows [11]: 
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[
 
 
 
 
𝑢1

𝑢2
𝑢3
𝑢4

𝑢5]
 
 
 
 

=

[
 
 
 
 
 
𝑘(𝜔1

2 + 𝜔2
2 + 𝜔3

2 + 𝜔4
2)

𝑘(𝜔2
2 − 𝜔4

2)

𝑘(𝜔3
2 − 𝜔1

2)

𝑏𝑡(𝜔1
2 − 𝜔2

2 + 𝜔3
2 − 𝜔4

2)
𝜔1 − 𝜔2 + 𝜔3 − 𝜔4 ]

 
 
 
 
 

.      (51) 

The generalized equations of motion rely on the following basic Newton’s 

equations. [41] 

∑𝐹 = 𝑚𝑎,         (52) 

∑𝑀 = 𝐼�̈�.         (53) 

These result in the following set of equations of motion for the quadrotor: 

𝑚�̈� = (sin𝜙 sin𝜓 + cos𝜙 cos𝜓 sin 𝜃)𝑢1,     (54) 

𝑚�̈� = (cos𝜙 sin 𝜃 sin𝜓 − cos𝜓 sin𝜙)𝑢1,     (55) 

𝑚�̈� = (cos 𝜃 cos𝜙)𝑢1 − 𝑚𝑔,       (56) 

𝐼𝑥�̈� = (𝐼𝑦 − 𝐼𝑧)�̇��̇� + 𝑙𝑢2 − 𝐽�̇�𝑢5,      (57) 

𝐼𝑦�̈� = (𝐼𝑧 − 𝐼𝑥)�̇��̇� + 𝑙𝑢3 + 𝐽�̇�𝑢5,      (58) 

𝐼𝑧�̈� = (𝐼𝑥 − 𝐼𝑦)�̇��̇� + 𝑢4.       (59) 

 

H. Energy Consumption 

 

Since the optimization in this work is based on energy optimality, it is of great 

importance to determine the proper cost function to guide the path planning process. 

Energy consumption is one of the most important factors when it comes to planning an 

efficient quadrotor path. This is calculated using the following generalized equation [11]. 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑃𝑡𝑜𝑡𝑎𝑙𝑑𝑡
𝑡𝑓
𝑡𝑜

= ∫ ∑ 𝑒𝑖(𝑡)𝑖𝑖(𝑡)
4
𝑖=1 𝑑𝑡

𝑡𝑓
𝑡𝑜

.    (60) 

After combining the two equations of current and voltage in equations (41) and 

(42), we obtain the following equation after expanding and reducing: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ ∑ [𝑐1 + 𝑐2𝜔𝑗 + 𝑐3𝜔𝑗
2 + 𝑐4𝜔𝑗

3 + 𝑐5𝜔𝑗
4 + 𝑐7�̇�𝑗

2]4
𝑗=1 𝑑𝑡

𝑡𝑓

𝑡𝑜
. (61) 
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It is safe to assume that the final state of the rotor speed is the same as the original speed. This is 

logical since the quadrotor is in hovering mode in both cases as it leaves the previously scanned 

area and reaches the next scanning area, where each constant is defined as follows [11]: 

𝑐2 =
𝑇𝑓

𝐾𝑇
(

2𝑅𝑚𝐷𝑓

𝐾𝑇
+ 𝐾𝐸),  𝑐3 =

𝐷𝑓

𝐾𝑇
(

𝑅𝑚𝐷𝑓

𝐾𝑇
+ 𝐾𝐸) +

2𝑅𝑚𝑇𝑓𝑏𝑡

𝐾𝑇
2 , 𝑐4 =

𝑏𝑡

𝐾𝑇
(

2𝑅𝑚𝐷𝑓

𝐾𝑇
+ 𝐾𝐸) , 𝑐1 =

𝑅𝑚𝑇𝑓
2

𝐾𝑇
2 , 𝑐5 =

𝑅𝑚𝑏𝑡
2

𝐾𝑇
2 , 𝑐7 =

𝑅𝑚𝐽2

𝐾𝑇
2 .  

 

I. Optimal Control Problem (OCP) 

 

To determine the energy-optimal trajectory of the quadrotor, referring to the 

formulation in, a set of ordinary differential equations is established to link the equations of 

motion to the motor speeds by defining the following states [41]: 

𝑥1 = 𝑥, 𝑥2 = �̇�, 𝑥3 = 𝑦, 𝑥4 = �̇�, 𝑥5 = 𝑧, 𝑥6 = �̇�, 𝑥7 = 𝜙, 𝑥8 = �̇�, 𝑥9 = 𝜃, 𝑥10 = 𝜃,̇  𝑥11 = 𝜓, 

𝑥12 = �̇�, 𝑥13 = 𝜔1, 𝑥14 = 𝜔2, 𝑥15 = 𝜔3, 𝑥16 = 𝜔4. 

This results in the following set of ordinary differential equations [41]: 

�̇�1 = 𝑥2,            (62) 

�̇�2 =
𝑘

𝑚𝑞𝑢𝑎𝑑
(sin 𝑥7 sin 𝑥11 + cos 𝑥7 cos 𝑥11 sin 𝑥9)∑ 𝑥𝑘

216
𝑘=13 ,     (63) 

�̇�3 = 𝑥4,            (64) 

�̇�4 =
𝑘

𝑚𝑞𝑢𝑎𝑑
(cos 𝑥7 sin 𝑥9 sin 𝑥11 − cos 𝑥11 sin 𝑥7)∑ 𝑥𝑘

216
𝑘=13 ,     (65) 

�̇�5 = 𝑥6,            (66) 

�̇�6 =
𝑘

𝑚𝑞𝑢𝑎𝑑
(cos 𝑥9 cos 𝑥7)∑ 𝑥𝑘

2 − 𝑔16
𝑘=13 ,        (67) 

�̇�7 = 𝑥8,            (68) 

�̇�8 = (
𝐼𝑦−𝐼𝑧

𝐼𝑥
) 𝑥10𝑥12 +

𝑙𝑘

𝐼𝑥
(𝑥14

2 − 𝑥16
2 ) −

𝐽

𝐼𝑥
𝑥10(𝑥13 − 𝑥14 + 𝑥15 − 𝑥16),    (69) 

�̇�9 = 𝑥10,            (70) 

�̇�10 = (
𝐼𝑧−𝐼𝑥

𝐼𝑦
) 𝑥8𝑥12 +

𝑙𝑘

𝐼𝑦
(𝑥15

2 − 𝑥13
2 ) +

𝐽

𝐼𝑦
𝑥8(𝑥13 − 𝑥14 + 𝑥15 − 𝑥16),    (71) 
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�̇�11 = 𝑥12,            (72) 

�̇�12 = (
𝐼𝑥−𝐼𝑦

𝐼𝑧
) 𝑥8𝑥10 +

𝑏𝑡

𝐼𝑧
(𝑥13

2 − 𝑥14
2 + 𝑥15

2 − 𝑥16
2 ),       (73) 

�̇�13 = 𝛼1,            (74) 

�̇�14 = 𝛼2,            (75) 

�̇�15 = 𝛼3,            (76) 

�̇�16 = 𝛼4,            (77) 

where 𝛼1 through 𝛼4 are the rotor accelerations that are considered as the control 

inputs to solve the optimal control problem. The Lagrangian energy term to be minimized 

is the energy equation, while the Meyer term is the final time to be minimized which is 

considered an addition non-integral minimization factor. This is especially important since 

this is a free-end-time OCP.  

There are certain constraints that need to be added based on the physical properties 

of the quadrotor itself relative to maximum pitch and roll angles and rotor speeds, which 

are formulated as follows [11]: 

|𝑥7| ≤
𝜋

2
,              (78) 

|𝑥9| ≤
𝜋

2
,         (79) 

0 ≤ 𝜔 ≤ 𝜔𝑚𝑎𝑥 . 

However, in the case under consideration, it is important to note that constraints 

are not only restricted to states, but also extend to surrounding constraints that include the 

downwash and object avoidance restrictions of tree trunks. Due to the relatively small size 

of the quadrotor, it is safe to presume the tree as an infinite cylinder. This assumption 

results in the following formulation: 

√(𝑥1 − 𝑥0,𝑡𝑟𝑒𝑒)
2
+ (𝑥3 − 𝑦0,𝑡𝑟𝑒𝑒)

2
> 𝑟𝑡𝑟𝑒𝑒 + 𝑟𝑑𝑜𝑤𝑛𝑤𝑎𝑠ℎ.   (80) 
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Figure 20 Pine Tree Forest from Below 

J. Optimal Control Solver 
 

There are several important aspects to be prioritized when selecting the appropriate 

solver for the optimal control problem under consideration. The primary aspect is that the 

solver must possess a high percentage of convergence, since the TSP requires the 

adjacency matrix to be filled by the OCP solver to generate an optimal tour. A secondary 

aspect of the solver is minimal violation of the defined constraints. 

In order to satisfy the priorities, a pool of different types of transcriptions is 

required, with a hybrid system being the target choice given its discussed advantages. The 

optimal control solver that is adopted in this work is known as the Imperial College London 

Optimal Control Solver (ICLOCS) [45], which uses three main transcription methods: h-

method based on the Hermite-Simpson direct collocation, p-/hp-method based on the 

pseudospectral LGR direct collocation, and an auto-direct collocation method that 

automatically uses a hybrid of both settings and uses appropriate methods at each iteration. 

The transcribed and discretized domain is then solved using an IPOPT solver [45]. 

After feeding the dynamics, states, constraints, stage cost (Lagrangian cost), and 

boundary cost (Mayer cost), each individual combination in the adjacency matrix is solved. 

This results in the OCP being solved between each pair twice, once in each direction. This 
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results in a total number of n2-n times to be solved. However, as mentioned before, in order 

to ensure that convergence, optimality, and constraint violation are respected, each item is 

solved three times (using three transcription methods) in order to choose the best option.  

The choice of the solution is made by checking primarily for convergence, 

followed by a constraint violation check where the violation should not exceed the inflation 

placed on the path constraints, and finally the choice is placed upon the one attaining the 

lowest energy consumption. However, if all three results do not satisfy the first two 

conditions, the resulting value of the pair is placed as zero, which results in a total amount 

of solutions to 3(n2-n) times. 

 

K. Estimation of energy consumption 
 

When solving for a large-scale forest, the computational cost increases by 

approximately 2n-2 times to resolve the OCP for all trees. With each tree requiring around 

30 seconds or more as a computational time to calculate optimal tours, this might result in 

an impractical solution from a time-consumption viewpoint. Even though the simulation is 

only executed once per forest environment, it might still require days/weeks of computation 

for large-scale applications. To solve the scalability issue, an estimate of the energy 

consumption with respect to the initial and final positions is developed in this section. In 

order to determine the order of the required polynomial fit, it is important to note the 

relationship between the coordinates and the energy consumption.  

Primarily we can start with equations (62) to (77). Since the degree of ω in the 

second derivative equation is of degree two, it reaches four when integrating twice. 

However, since double integration results in a second order of the states related to forth 

order of ω, it leads to a second order relationship of ω with respect to the position 

coordinates (x, y, and z). On the other hand, taking into consideration that the energy 



 

34 
 

equation (61) is of fifth order of ω, the correlation and estimate of the relationship between 

energy and the coordinates results in a 2.5th order of the coordinates. Thus, it is safe to 

presume a third order polynomial fit.  

Using this type of fit, the computation time is greatly decreased from 30 seconds to 

less than a second, however, there are errors associated with this assumption especially 

since it does not account for object avoidance and its associated cost. Moreover, there are 

peripheral energy consumption that cannot be prevalent in only coordinate representation. 

Thus, a polynomial fit that overestimates the value is recommended to account for 

additional energy consumptions and peripheral consuming factors.  
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CHAPTER IV 

COMPLETE TOUR SOLUTION 
 

 

After computing the route costs between all paired tree combinations, the values are 

fed into an adjacency matrix where each element represents the cost placed on a directed 

edge. The ATSP is formulated as an ILP problem using the following set of equations [23]: 

𝐴𝑇𝑆𝑃:𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗∈𝑁,𝑖≠𝑗𝑖∈𝑁 (𝑗 ∈ 𝑁, 𝑗 ≠ 𝑖),        (81) 

∑ 𝑥𝑗𝑖𝑗∈𝑁,𝑗≠𝑖 = 1          ∀𝑖 ∈ 𝑁,          (82) 

∑ 𝑥𝑖𝑗𝑗∈𝑁,𝑗≠𝑖 = 1          ∀𝑖 ∈ 𝑁,          (83) 

𝑥𝑖𝑗 ∈ {0, 1}    ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗,          (84) 

where cij is the cost of the edge going from i to j, xij is a binary variable that 

represents the sequence of visiting the trees, and i and j belong to a set of integers N. If i 

directly precedes j in the optimal solution, then xij = 1; otherwise xij = 0 [23]. 

Nevertheless, the above solution might result in sub-tours where groups of nodes 

that do not include the origin relate to each other in a separate sequence, which causes 

disconnections between the tours and a split within smaller groups. To eliminate sub-tours, 

additional constraints are applied such as the Miller, Tucker, Zemlin Sub-Tour Elimination 

Constraints (MTZ-SEC) given by [46]: 

𝑢𝑖 − 𝑢𝑗 + (|𝑁| − 1)𝑥𝑖𝑗 ≤ (|𝑁| − 2)          𝑖, 𝑗 ∈ 𝑁 − {1}, 𝑖 ≠ 𝑗,   (85) 

1 ≤ 𝑢𝑖 ≤ |𝑁| − 1            ∀𝑖 ∈ 𝑁 − {1}.      (86) 

For any given sub-tour, the number of edges should not equal the number of 

nodes, thus SEC forces sub-tours that lack the original node to have one less edge than the 

number of nodes. This, however, is not applicable to the sub-tour that contains the first 

original node, since this tour expands to engulf other sub-tours, as some sub-tours get 

iteratively eliminated.  

One of the most prominent methods of solving ILP problems are Heuristic 

methods. These methods include two approaches: one that adds relaxation constraints 
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based on SEC, while the other is known as branching and bounding (B&B). B&B is 

basically subdivided into two main steps: branching and then bounding. The branching part 

splits the problem into several sub-problems that branch along several possibilities and try 

to find individual optima in each case to compare. This may be similar to brute force, but in 

order to prevent the large computational problems, the bounding aspect is added to prevent 

it from reaching brute-force status. It is thus important to prune the search space in order to 

minimize the search, which is done as follows [47]: 

• If there is no solution for the function, set it to infinity. 

• Initialize a set of possible optimal solutions that contains none of the 

variables of the problem. 

• Each element is taken and compared to the optimal solution so far: 

o If the value of B which is the element value is less than the current 

optimum, the chosen element replaces it.  

o If the value of B is not less than the current optimum, a new branch 

Bi is chosen to replace the optimal value. 

o Compare the value of Bi to that of the optimal solution to check if 

its value is still higher, thus the lower bound in the said node is 

greater than the upper bound of the problem at hand, which results 

in the elimination of node B. 

The result of the algorithm is a single optimal tour that includes the original first 

node, and its number of nodes equals to the number of edges. 

 

After taking all the factors of the first part of the energy-optimal tour, it can be 

summarized using the following flowchart (this involves OCP solution along the TSP 

solution):
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Figure 21 Energy-Optimal Tour Flowchart 
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CHAPTER V 

NEW TOUR WITH PROBABILITY 
 

 

Since the current situation of the moth-infected trees is alarming, it is important to 

note that the number of moths has reached the same number of pine trees present in 

Lebanese forests [48]. However, due to the vastness of the forests and the large number of 

trees, it is important to prioritize tree visits, which cannot be done using traditional TSP.  

In order to maintain energy optimality while receiving the information needed, it 

is important to prioritize the said trees, which have a higher probability than the rest. Thus, 

it is safe to say that trees with lower chances of getting infected could be excluded from the 

set of nodes (trees) that need to be visited after an initial scan. However, in order to 

presume such a statement an adequate probability of infection (PoI) should be established. 

 

A. Probability distribution 
 

Since there is no possible data to determine the probability density of the presence 

of moths caused by an infected tree, a rough estimate based on intuitive assumptions is 

proposed in this work, which serves as a placeholder once the spread of moths is accurately 

modelled by entomologists. 

Since Pine Processionary Moths tend to travel and move to the closest tree possible 

with a flying distance of a maximum radius of 15km (the most ever recorded), and on an 

average of 100m radius during their life cycle, the travel distance is an important factor to 

consider [49]. Another factor to consider is exposure to the sun. The moth itself always 

tends to the Southern or South-Western orientation when travelling especially since warm 

winds blow from the south indicating a warmer weather, which is suitable for the moth’s 

reproduction [49]. Moreover, this Southern or South-Western track is most significant since 
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it leads to the maximum sun exposure for the moths especially in the Mount Lebanon 

region [2]. 

After considering the above aspects, it is reasonable to assume that the probability 

could be estimated using a three-dimensional (3D) probability distribution centered around 

an infected tree. The distance between the trees is identified as a Euclidean distance 

especially since Pine Processionary moths travel above tree crowns, so there is no object 

avoidance required. Moreover, it is important to note that since the travel direction of a 

moth is at a higher rate towards the south, the probability density function differs with 

direction. 

To solve this issue, a 3D probability distribution is proposed, where it is a 

combination of a lognormal distribution along the vertical axis (North-South) but tending 

towards the south, and a normal distribution along the horizontal axis (East-West). It is 

centered at the infected tree and has a maximum magnitude at the infected tree of 1. 

𝑓𝑙𝑜𝑔𝑛𝑜𝑟𝑚(𝑥|µ, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒

−(log𝑥−𝜇)2

2𝜎2 ,          (87) 

𝑓𝑛𝑜𝑟𝑚𝑎𝑙(𝑥|µ, 𝜎) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2 ,         (88) 

𝑃𝑟𝑜𝑏 = 𝑓𝑙𝑜𝑔𝑛𝑜𝑟𝑚(𝑦|µ𝑙𝑜𝑔𝑛𝑜𝑟𝑚, 𝜎𝑙𝑜𝑔𝑛𝑜𝑟𝑚) × 𝑓𝑛𝑜𝑟𝑚𝑎𝑙(𝑥|µ𝑛𝑜𝑟𝑚𝑎𝑙, 𝜎𝑛𝑜𝑟𝑚𝑎𝑙).      (89) 
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Figure 22 Complementary Travel Angles for relative probability determination 

This results in an adjacency matrix of probability where the rows represent the 

“from” and the columns represent the “to”. For example, if tree 3 is infected, the 

probability of tree 4 being infected (based on tree 3) is located in row 3 column 4. These 

probability matrix cells are used such that every time an infected tree is discovered, the row 

in the matrix linked to that tree is added to the PoI of all trees. 

 

B. Offline solution 
 

After determining the PoI of each tree, it is important to prioritize those that have a 

higher probability based on a cut-off margin, which occurs due to the fact that a TSP is a 

priority-blind problem. Even with changing the adjacency matrix, this would not ensure the 

creation of attracting and repelling points to prioritize the visit of one tree to another, given 

that TSP is simply a global optimizer based on cost. Thus, it is important to remove any 

unnecessary trees that do not surpass the cut-off margin of the PoI. This results in a smaller 
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adjacency matrix that is fed into the TSP solver using ILP along with SEC’s in order to 

create a new energy-optimal tour with the smaller subset of nodes. 

 

C. Online solution 
 

Since most of the work is done in a pre-planned offline manner, an additional 

planner should be added for online or time-varying approaches. This can be associated with 

the probability distribution and the cut-off scheme. As the drone roams around to scan the 

trees, the PoI of each tree changes based on the new scan results. Each tree is assessed as a 

binary output; if the status of the tree, whether it is “infected” or “not-infected”, remains 

the same, there is no change to the PoI of any tree. If a tree was found to be “infected” in 

the previous scan, but now it is not, the PoI contributed by that tree to all the trees is 

removed. If the tree was found to be “not-infected” in the previous scan, but now it is, the 

row associated with that tree in the adjacency matrix is added to the PoI’s of the trees. 

As the PoI of each tree changes, the set of trees that need to be visited changes 

along since trees are being added to (or removed from) the subset.  However, a simple 

ATSP cannot solve this issue, especially since the new set is created when the quadrotor 

has reached a location that is not the base, where it needs to return to, or even has already 

passed certain trees.  In order to solve this problem, a fixed-start fixed-end TSP (FSFE-

TSP) is needed.  

The quadrotor remains on the tour and path selected by the offline map until a 

status change occurs, which is directly followed by a possible new set of points. Since a 

new tree set is created and the start of the new determined path has become the tree with 

the status change and the final destination is the base, a FSFE-TSP is used to create a path 

from that tree to the base passing through all trees excluding the ones already visited with 

an optimal energy approach. This is mainly solved using a genetic algorithm approach 
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where the strand is used as a chromosome with the first item as the start tree and the last 

item on the chromosome as the base, as per the following flow chart [21]: 

 

Figure 23 FSFE-TSP Genetic Algorithm Flowchart 

The combination of both proposed online and offline solutions is summarized 

using the following flowchart of Figure 24:
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Figure 24 Offline and Online route determination based Probability of Infection 
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CHAPTER VI 

SIMULATION RESULTS 
 

Since the proposed system-level solution is made up of different sections and parts, 

a separate proof should be presented for each section. This starts with the OCP followed by 

the full set TSP with ILP and SEC, which is then followed by FSFE-TSP using GA. 

 

A. Optimal Control Solver (ICLOCS vs. ACADO) 
 

To start any solution, it is important to determine the different parameters 

governing the equations of the OCP. The different parameters are specific to each 

quadrotor. Parameters of two quadrotors are solved for further insurance of confidence 

within the program. The parameters listed are for the DJI Phantom2 and the Crazyflie 2.0, 

respectively. 

Table 7 DJI Parameters [11] 

KV=920 rpm/V KE=9.5493/Kv Vs/rad Tf=4×10-2 Nm 

Df=2×10-4 Nms/rad Rm=0.2 𝛺 mquad=1.3 kg 

ωmax=1047.197 rad/s l=0.175 m J=4.19×10-5 kgm2 

k=3.8305×10-6 bt=2.2518×10-8 KT=KE 

Ix=0.081 kgm2 Iy=0.081 kgm2 Iz=0.142 kgm2 

 

Table 8 Crazyflie Parameters [50] [51] 

KV=14000 rpm/V KE=9.5493/Kv Vs/rad Tf=1.563383×10-5 Nm 

Df=3.5077×10-10 Nms/rad Rm=2 𝛺 mquad=30 g 

ωmax=2513.27 rad/s l=40 mm J=1.6833×10-7 kgm2 

k=2.4411×10-9 bt=1.9973×10-7 KT=KE 

Ix=1.395×10-5 kgm2 Iy=1.395×10-5 kgm2 Iz=2.173×10-5 kgm2 

 

It is important to know that ACADO [52], adopted by Fabio Morbidi in [11], is a 

solver that uses SQP using a MEX solver for MATLAB, and it requires a set time since it 

does not accept a free-end-time approach. Moreover, ICLOCS requires an initial and final 
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guess for all of its states including a guess time, which can be considered using the 

following equation: 

𝑡𝑖,𝑗
𝑓

= √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
,    (90) 

This presumes that the quadrotor is moving in a straight line at a speed of 1 m/s, 

which is a reasonable assumption to start with since the result will be close to an almost 

direct path as assumed. Moreover, it is noted that quadrotor would be hovering at both 

the start and end points. The hovering rotor speed for each rotor is 912 rad/s and 

1,989.675 rad/s for the DJI [11] and Crazyflie, respectively [50]. It is important to note 

that each quadrotor has a specific battery capacity, which is calculated using the equation 

of  

𝐸𝑛𝑜𝑚𝑖𝑛𝑎𝑙 × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 3.6.          (91) 

This results in an energy capacity of 3.1968 kJ for the Crazyflie2.0 [53] and 

207.792 kJ for the DJI Phantom2 [54].  

 

1. Without object avoidance 
 

In order to determine which solver is suitable and more capable, it is crucial to 

compare solvers under the same conditions. The initial position coordinates are (0,0,0) and 

final coordinates are (4,5,6). For the ACADO solver, the smallest possible time input is 

determined by trial and error, and free-end-time is not an option when parametrizing time as 

a variable to be iteratively minimized, which leads to non-convergence. As a result, 5 

seconds is the least possible time that does not result in non-convergence. The ACADO 

solver results in 6.63591 kJ energy consumption, whereas ICLOCS results in 4.2808 kJ with 

a total time of 2.9776 seconds. 
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Figure 25 Comparison between ACADO and ICLOCS Trajectory 

 

 

 

Figure 26 Battery energy drainage versus time 

It is noted that both solvers converge at the same endpoint (4,5,6), with ICLOCS 

resulting in faster battery drainage at its initial stages, whilst ACADO has a constant rate of 

increase and exceeds the energy consumption of ICLOCS by 55%.  
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2. With object avoidance 
 

One of the most significant factors and advantages of the ICLOCS solver is the 

ability to converge when object avoidance is present. This is evident even for simple object 

avoidance, which is placed as a cylinder in the middle of the path. ACADO never converges 

especially since SQP cannot handle nonlinear path constraints resulting in a failure. On the 

other hand, ICLOCS converges with extremely low constraint violation. The initial points are 

(0,0,0) and a final point of (8,8,8) with a Cylinder of center at x=2 and y=2 and a height of 6 

with a radius of 1. This results in a final time of 3.5977 seconds and an optimal energy 

consumption of 5.3301 kJ. It results in the following trajectory: 

 

Figure 27 Object Avoidance ICLOCS Trajectory (side view) 
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Figure 28 Object Avoidance ICLOCS Trajectory (Top View) 

 

 
Figure 29 Battery Drainage vs. time (with object avoidance) 

 

B. Travelling salesman solver (ILP/SEC vs. Brute Force) 
 

To test the validity of the ILP solution, it is important to compare it with an 

adequate solver that has the highest level of confidence. A brute force method compares all 

possible solution and chooses the lowest one. This requires a large pool of trials, especially 

with large amounts of permutations (n-1!), from which the option with the least cost is 

chosen. Since MATLAB only has the capability of generating permutations for up to 9 
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values before it crashes or freezes, the check for 10 elements is used for validation 

purposes. This results in 10 nodes but with 9! permutations resulting in 362,880 different 

results with a computational time of 60 seconds. A randomly generated cost matrix is 

established along with randomly generated locations for points. It results in the following 

adjacency matrix: 

𝐴𝑑𝑗 =

(

 
 
 
 
 
 
 

0 70.605 3.1833 27.692 4.6171 9.7132 82.346 69.483 31.71 95.022
3.446 0 43.874 38.156 76.552 79.52 18.687 48.976 44.559 64.631
70.936 75.469 0 27.603 67.97 65.51 16.261 11.9 49.836 95.974
34.039 58.527 22.381 0 75.127 25.51 50.596 69.908 89.09 95.929
54.722 13.862 14.929 25.751 0 84.072 25.428 81.428 24.652 92.926
34.998 19.66 25.108 61.604 47.329 0 35.166 83.083 58.526 54.972
91.719 28.584 75.72 75.373 38.045 56.782 0 7.5854 5.395 53.08
77.917 93.401 12.991 56.882 46.939 1.1902 33.712 0 16.218 79.428
31.122 52.853 16.565 60.198 26.297 65.408 68.921 74.815 0 45.054
8.3821 22.898 91.334 15.238 82.582 53.834 99.613 7.8176 44.268 0 )

 
 
 
 
 
 
 

 

Both Brute Force and the ILP/SEC solver yielded the following result as a 

sequence of trees to be visited in order: 1→5→4→3→7→9→10→8→6→2→1 with a total 

tour cost of 151.5715. The point locations are generated randomly and are as follows: 

Table 9 TSP trial coordinates 

Node Number X Y Z 

1 
81.472 90.579 12.699 

2 
91.338 63.236 9.754 

3 
27.85 54.688 95.751 

4 
96.489 15.761 97.059 

5 
95.717 48.538 80.028 

6 
14.189 42.176 91.574 

7 
79.221 95.949 65.574 

8 
3.5712 84.913 93.399 

9 
67.874 75.774 74.313 

10 
39.223 65.548 17.119 
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Both solutions resulted in the following graph: 

 

Figure 30 Brute Force Solution 

 

Figure 31 ILP/SEC TSP Solution 

C. Fixed-Start Fixed-End TSP (GA vs. Brute Force) 
 

Similar to the validation for the ILP/SEC, it is important to validate the solution 

using Genetic algorithms. This suggested solution is also compared to the brute force 
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method. GA reduces calculation time since it does not consider the entire pool of options as 

brute force does, but rather uses different methods of evolution in order to find the optimal 

result. As mentioned before, the maximum number of permutations allowed by MATLAB 

is 9. As such, a randomly generated cost matrix is made with randomly generated point 

locations. It is important to note that the GA solution starts with 1 and ends with 10, whilst 

the optimization is done with the order of the nodes that go in between the initial and final 

node. This results in n-2! solutions, which equals to 8! or 40,320. 

𝐴𝑑𝑗 =

(

 
 
 
 
 
 
 

0 10.676 65.376 49.417 77.905 71.504 90.372 89.092 33.416 69.875
19.781 0 3.0541 74.407 50.002 47.992 90.472 60.987 61.767 85.944
80.549 57.672 0 18.292 23.993 88.651 2.8674 48.99 16.793 97.868
71.269 50.047 47.109 0 5.9619 68.197 4.2431 7.1445 52.165 9.673
81.815 81.755 72.244 14.987 0 65.961 51.859 97.297 64.899 80.033
45.38 43.239 82.531 8.347 13.317 0 17.339 39.094 83.138 80.336
6.0471 39.926 52.688 41.68 65.686 62.797 0 29.198 43.165 1.5487
98.406 16.717 10.622 37.241 19.812 48.969 33.949 0 95.163 92.033
5.2677 73.786 26.912 42.284 54.787 94.274 41.774 98.305 0 30.145
70.11 66.634 53.913 69.811 66.653 17.812 12.801 99.908 17.112 0 )

 
 
 
 
 
 
 

 

Both Brute Force and GA solvers gave the following result: 

1→2→6→5→4→8→3→9→7→10, which sums up to a total cost of 164.8541. The 

locations of the points are randomly selected, and they were generated as follows: 
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Table 10 FSFE TSP solver trial Coordinates 

Node Number X Y Z 

1 
8.5516 26.248 80.101 

2 
2.922 92.885 73.033 

3 
48.861 57.853 23.728 

4 
45.885 96.309 54.681 

5 
52.114 23.159 48.89 

6 
62.406 67.914 39.552 

7 
36.744 98.798 3.7739 

8 
88.517 91.329 79.618 

9 
9.8712 26.187 33.536 

10 
67.973 13.655 72.123 

 

Both solutions result in the same graph shown as follows: 

 

Figure 32 Brute Force Solver Sequence 
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Figure 33 Genetic Algorithm Solver Sequence 

D. Full set energy-optimal tour 
 

In order to combine the different aspects of the developed system, a small garden 

of cylindrically-shaped trees along with their downwash inflation factor is considered. The 

first trial is using the DJI parameters to navigate a 5-tree forest with the following set of 

radii and locations: 

Table 11 DJI Energy-Optimal Tour Coordinates and Tree Locations 

Site Xtree(m) Ytree(m) rtree(m) x(m) y(m) z(m) 

Base 0 0 0 0 0 0 

Tree 1 10 10 0.2 9.4 10 3 

Tree 2 8 4 0.35 7.25 4 3 

Tree 3 2 8 0.4 1.1 8 5 

Tree 4 9 1 0.15 8.45 1 4 

Tree 5 2 2 0.1 1.5 2 2 
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The {Xtree,Ytree, rtree} are identifying the tree location and radius while {x,y,z} is 

the location of the scanning point. The x value is determined by adding an inflation radius 

of 30cm to the tree radius and add another 10 cm for spacing. This inflation is taken as a 

sum of the arm length and propeller radius. This is solved using the -p/hp-solver, which 

uses an LGR transcription method. The highest order for p is 10 degrees and the h- 

sectioning is 5. This results in a full set of optimal control solutions, with a small issue 

related to constraint violation where the maximum violation reached is 8cm within the 

extra 30cm inflation rate, which might cause problems with the downwash effect. This 

might come due to the optimization using IPOPT or transcription especially when it comes 

to high nonlinear and coupled formulations such as the one at hand. The following 

adjacency matrix is produced: 

𝐴𝑑𝑗 =

(

 
 
 

0 5.17 4.3 4.37 4.38 2.88
5.24 0 3.84 4.45 4.36 6.26
4.35 3.84 0 4.09 3.06 3.95
4.49 4.59 4.21 0 4.58 3.93
4.46 4.36 3.11 4.56 0 4.29
3.01 4.75 3.89 3.86 4.14 0 )

 
 
 

× 103 𝐽 

As seen, the cost results in an asymmetric adjacency matrix, which proves that this 

problem is an ATSP given the variable height that the quadrotors must attain to scan the 

required areas in the z-direction. Using ILP/SEC results in the following sequence: 

1→6→4→2→3→5→1 with a total of 22.68 KJ and a total tour time for 15.8s. The energy-

optimal tour and path are depicted in Figure 34. This result comes exactly like [55]. 
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Figure 34 DJI Energy-Optimal Path and Tour 

  As this has proven to be efficient, it is then important to extrapolate it to a larger 

number of trees and even to other types of drones. As such the Crazyflie2.0 quadrotor is 

used which means using the parameters of Table 8. A forest of 10 trees is used, with the 

following components: 

Table 12 Crazyflie2.0 path Coordinates and Tree location and dimensions 

Site Xtree(m) Ytree(m) rtree(m) x(m) y(m) z(m) 

Base 0 0 0 0 0 0 

Tree 1 10 10 0.2 9.4 10 3 

Tree 2 8 4 0.35 7.25 4 3 

Tree 3 2 8 0.4 1.1 8 5 

Tree 4 9 1 0.15 8.45 1 4 

Tree 5 2 2 0.1 1.5 2 2 

Tree 6 5 12 0.1 4.5 12 3 

Tree 7 15 3 0.2 14.4 3 4 

Tree 8 4 6 0.15 3.45 6 2 

Tree 9 6 15 0.1 5.5 15 3 

Tree 10 15 15 0.4 14.2 15 4 
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This is solved using an auto_direct solver, which results in the following adjacency 

matrix: 

𝐴𝑑𝑗 =

(

 
 
 
 
 
 
 
 

0 129.77 110.87 115.81 116.78 90.863 126.99 132.97 106.89 135.93 148.65
130 0 105.09 115.94 114.53 121.27 100.64 112.11 107.67 103.59 106.11

111.18 104.98 0 115.03 100.68 104.54 112.51 113.69 96.606 121.33 127.5
115.84 115.97 115.32 0 117.36 105.54 100.65 132.84 96.609 111.65 133.21
117.06 114.5 100.8 144.69 0 111.33 123.04 105.77 109.16 131.5 132.81
91.037 121.04 104.66 105.56 111.45 0 118.5 130.3 95.42 128.38 141.39
127.09 107.22 112.4 100.9 137.33 126.91 0 127.76 102.98 89.407 119.53
133.24 112.32 0 132.59 105.61 131.25 0 0 124.68 132.35 123.48
107.7 107.58 96.541 96.938 108.93 95.611 102.91 125.09 0 114.54 130.17

0 103.34 121.28 111.83 131.26 128.46 89.553 132.18 114.71 0 116.83
0 106.36 127.66 133.17 132.92 141.55 119.28 123.47 130.26 116.58 0 )

 
 
 
 
 
 
 
 

𝐽 

It is important to note that this used 40 sectioning segments for auto transcription. 

This resulted in almost negligible constraint violations as shown in the following table: 

Table 13 Crazyflie Constraint violation (m2) 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 
0 0.010458 0 0 0 0 0 0 0 0 0.018536 

2 
0.010507 0 0 0.0016915 0 0.00010954 0.0007774 0.00012816 6.5378e-05 0.000602 0.00018043 

3 
0 0 0 0.0040339 0 0.00092536 0 0.00046669 3.8345e-05 0 0 

4 
0 0.0012261 0.0038834 0 7.3451e-05 0 2.1427e-05 0.013013 7.0717e-05 0 0.0030541 

5 
0 0 0 0.0076085 0 0.00089086 0.0074373 0.00058828 0.00030661 1.4678e-05 0 

6 
0 0.0013487 0.00035905 0 0.00016822 0 0 0.0011533 0 0 0.0007107 

7 
0 0.00013747 0 4.8189e-05 0.010329 0.0077368 0 8.3431e-05 0 0 1.6367e-05 

8 
0 0.00015035 0 0.013146 0.00038457 0.0016839 0 0 0.010683 0 0 

9 
0 0.00037675 0.00015829 0.00047399 0.00029254 0 0 0.010688 0 0.00020532 0.001487 

10 
0 0.00064243 0 0 0.00093293 0 0 0 0 0 0.00063823 

11 
0 0.00011688 0 0.0039565 0 0.0029589 0.00091278 0 0.0019674 0.001146 0 

 

 This result also includes non-diagonal zero elements. These represent the non-

converging elements that are directly eliminated from the set. There are no solvers with 

100% convergence rate, especially with the given series of equations with high 

nonlinearities and couplings. Non-convergence and constraint violations occur even when 

adding a tolerance for the altitude (z-direction) location with a ±5cm and -10cm in the x-
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direction. This matrix is placed into the ILP/SEC solver and reaches the following optimal 

tour: 1→6→9→4→7→10→2→11→8→5→3→1 with a total energy consumption of 1.124 

kJ and a total travel time of 17.17 seconds. As such, this results in the following figure 

path: 

 

Figure 35 Crazyflie Energy-Optimal Path and Tour 

As seen, it is important to point out that the obtained result looks like a ‘rubber 

band’ solution where the optimal tour takes the quadrotor around the peripheries. 

Moreover, it is important to note that non-convergence occurs when avoidance of 

numerous obstacles is involved, which requires further segmentation, but this is not a 

pressing issue since the actual solution is almost never the internal option, i.e. visiting the 

trees from the inside of the contour. That said, it is preferable to have the entire matrix 

populated in order to ensure that all possibilities are available, and that the obtained tour is 

the absolute optimal (global) without any doubt. Thus, the hybrid option is used to enable 

constraint violation criteria to be implemented since comparison can be done between the 

three different solver options. 
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E. Closest-Neighbor Approach  
 

In order to determine the efficiency of energy optimality assessment, a closest-

neighbor approach, which is generally determined by the Euclidean distance between each 

pair of locations, is considered and results in the following table: 

Table 14 Euclidean Distance (m) 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 14.048 8.3404 9.4979 9.8693 3.2016 13.162 15.243 7.2043 16.256 21.039 

2 14.048 0 6.68 8.7687 9.2684 11.288 5.2924 8.6603 7.239 6.3411 7.0029 

3 8.3404 6.68 0 8.3 

56 

5.142 6.1695 8.6927 7.8181 4.4091 11.316 13.353 

4 9.4979 8.7687 8.356 0 10.15 6.7201 5.6178 14.244 4.3038 8.5065 14.887 

5 9.8693 9.2684 5.142 10.15 0 7.6356 11.858 6.3563 7.6811 14.447 15.168 

6 3.2016 11.288 6.1695 6.7201 7.6356 0 10.488 13.092 4.45 13.638 18.284 

7 13.162 5.2924 8.6927 5.6178 11.858 10.488 0 13.417 6.1727 3.1623 10.202 

8 15.243 8.6603 7.8181 14.244 6.3563 13.092 13.417 0 11.528 14.974 12.002 

9 7.2043 7.239 4.4091 4.3038 7.6811 4.45 6.1727 11.528 0 9.2845 14.162 

10 16.256 6.3411 11.316 8.5065 14.447 13.638 3.1623 14.974 9.2845 0 8.7573 

11 21.039 7.0029 13.353 14.887 15.168 18.284 10.202 12.002 14.162 8.7573 0 

 

This results in a sequence of 1→6→9→4→7→10→2→5→3→8→11→1. This is 

used along with the minimum energy approach using the Crazyflie 2.0 results in a total 

energy consumption of 1.1779 kJ and a total time of 18.896 seconds. It is important to note 

the increase in total time and energy consumption compared to the tour in the previous 

section which includes a 50 J increase and a 1 second increase compared to the auto-direct 

approach. The full path is shown in the following Figure 36 Close Neighbors Energy tour: 
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Figure 36 Close Neighbors Energy tour 

 
 

F. Hybrid solution for Full energy optimal tour 
 

All three solvers are used, and the following hybrid system is used as shown in 

Figure 21 along with the same map as shown in the Crazyflie solution. This is done for 

both Crazyflie and DJI. All three options are placed with 40 segments and the order of the 

Legendre polynomial is set to 10. It is important to note that since the DJI is a relatively 

heavy quadrotor that is harder to maneuver due to its slower dynamics, it has the advantage 

of being more stable (due to its larger damping) than the Crazyflie 2.0. This has a drawback 

that constraint violations are higher when simulating large numbers of path constraints, 

which require constant hard dynamic maneuvers, as such using all three solvers result in 

the following results, as shown in Table 15, Table 16, and Table 17. 

 

 

 

 

 

 



 

60 
 

Table 15 DJI Automatic Direct Collocation Constraint Violation (m2) 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0.0020183 0 0 0 0 0.015462 0 0 0.040486 0.026641 

2 0.018529 0 0 0.0051622 0 3.3049e-06 0.0016877 0 0.0017549 0.15921 0.062717 

3 0 0 0 0.010983 0 0.0020541 0 0.0010142 0.001371 0 0.0018483 

4 0 0 0.0088811 0 9.624e-05 0 0.019753 0.018838 0 0 0.0016067 

5 0 0.0027744 0 0.10474 0 0.0024747 0.0067891 0.00087219 0.0011782 0.017364 0 

6 0 0.00087667 0.00036786 0 0.00076495 0 0 0.0014358 0 0 3.1468e-05 

7 0 0.00038208 0 0.00079396 0 0 0 0.0015182 0 0 0.0011992 

8 0 0.00023876 0.0035551 0.028373 0.0021773 0.0041642 0 0 0.18137 0.0014925 0 

9 0 0.10833 0.00061565 7.0996e-05 0.00023713 0 0 0.010032 0 0 0.00073658 

10 0 0 0 0 0.014673 0.011698 0 0.0010762 0.0014592 0 0.0010713 

11 0 0.00047053 0.0012832 0.0046455 0 0.0025344 0.0031948 0 1.0501e-05 0.0040727 0 

 
 

Table 16 DJI Hermite-Simpson Collocation Constraint Violation (m2) 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0.0020183 0 0 0 0 0.015462 0 0 0.040486 0.026641 

2 0.018529 0 0 0.0051622 0 3.305e-06 0.0016877 0 0.0017548 0.15921 0.062717 

3 0 0 0 0.010983 0 0.0020541 0 0.0010142 0.001371 0 0.0018479 

4 0 0 0.0088811 0 9.6239e-05 0 0 0.018838 0 0 0.0016067 

5 0 0.0027744 0 0.10474 0 0.0024747 0.0067892 0.0008722 0.0011782 0.017365 0 

6 0 0.00087666 0.00036786 0 0.00076495 0 0 0.0014358 0 0 3.147e-05 

7 0 0.00038208 0 0.00079393 0 0 0 0.0015182 0 0 0.0011992 

8 0 0.00023879 0.0035551 0.028373 0.0021773 0.0041642 0 0 0.0029908 0.0014925 0 

9 0 0.10833 0.00061565 7.1007e-05 0.00023714 0 0 0.010032 0 0 0.00073658 

10 0 0 0 0 0.014673 0.011698 0 0.0010762 0.0014592 0 0.0010713 

11 0.026933 0.00047053 0.41206 0.0046457 0 0.0025344 0.0031948 0 1.048e-05 0.0040727 0 
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Table 17 DJI Legendre-Gauss-Radau Collocation Constraint Violation (m2) 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0.081662 0 0 0 0 0.074142 0 0 0.10526 0.089235 

2 0.058452 0 0 0.02954 0.010073 6.2304e-05 0.0049639 0.00023889 1.0603e-05 0 0.00090976 

3 0 0 0 0.038744 0 0.00691 0 0.030061 0.0078572 0 0.0070673 

4 0 0.025421 0.044654 0 0.00053025 0 0 0.093529 0 0 0.00016233 

5 0 0.052129 0 0.0040673 0 0.0080024 0 0.012437 0.0014113 0.010597 0 

6 0 0.010868 0.0063776 0 0.013007 0 0 0.15764 0 0 0.018666 

7 0.022699 0.0081995 0 0 0 0 0 0.0066104 0 0 0.0042268 

8 0 0.0052876 0.021025 0.12926 0.0073691 0.011472 0.0090577 0 0.0072079 0.093566 0 

9 0 0.00050828 0.00029359 0.0039119 0.00091062 0 0 0.0057769 0 0 0.016905 

10 0.002826 0 0 0 0.077973 0 0 0.0045784 0 0 0.0089237 

11 0.045938 0.00043196 0.0018372 0.016025 0 0.0014353 0.0067737 0 0.00012368 0.015875 0 

 

This also resulted in the following adjacency matrices for energy, where the 0’s 

identify the absence of the node due to either non-convergence or due to high constraint 

violations, which has a cutoff margin of 0.1 m that can be calculated by performing 

√𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 since they are in terms of m2 where as the cut-off criteria is in m. The 

following are the list of energy matrices: 
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Table 18 Auto-direct Collocation Energy Matrix (J) 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 5179 4180 4427.1 4426.3 0 0 5333.9 0 0 0 

2 0 0 3913.3 4509.3 4440.3 4790.5 3714.4 4267 4074.9 0 0 

3 4266.3 3886.2 0 0 3345.8 3914.5 4330.9 4349.9 3461 4800.1 5077.8 

4 4434.5 0 4508.9 0 4538.6 0 0 0 0 4233.8 5381 

5 12952 4432.6 3375.7 0 0 4231.9 4892.8 3931 4095.6 0 5373.3 

6 0 4735.3 3865.3 0 4204 0 4644.8 5343.7 0 5154.4 5783 

7 5091.8 3643.8 0 3635.3 4865.3 4666.2 0 5087.4 3830.6 3049.7 4682.7 

8 5399.7 4319.2 4351.2 0 3971.5 5231.6 0 0 0 5363.5 4919.7 

9 4015 0 3373.5 3213.2 4024.9 3418.3 3818.1 0 0 4436.4 5214.7 

10 5548.8 3788 0 0 0 0 3074.9 5321.1 4464.8 0 4568.4 

11 28257 3987.6 5116.3 5407 5399.4 5822.8 4693.8 4919.3 5253.2 4552.8 0 

 

Table 19 Legendre-Gauss-Radau Collocation Energy Matrix (J) 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0 4173.9 4385.1 4384.2 2791.5 0 5312.6 3951.6 0 0 

2 0 0 3866 0 0 4725.2 3591 4261.7 3975.6 3785.7 3905.4 

3 4173.9 3864.1 0 0 3276.9 3791.6 4287.8 0 3315 4775.2 5060.7 

4 4380.2 0 0 0 4534.5 3862.9 3543 0 0 4216.8 5332.2 

5 4378.7 0 3278.7 4534.6 0 4101.9 4849.9 0 3990.9 0 5366.6 

6 2792.3 0 3794.5 3863.6 0 0 4638.7 0 3376.7 5147.8 0 

7 0 3592.6 4289.6 3539.2 4853.1 4638.5 0 5072.1 3811.6 3048.3 4601.9 

8 5304.7 4261.7 0 0 3849.5 0 5071.5 0 4872.7 0 4914.4 

9 3953 3975.9 3322.3 3019.8 3988.6 3376.7 3811.2 4877.5 0 4430 0 

10 5507.6 3785.7 4771.6 4217.1 0 5147.3 0 5314.7 4430 0 4453.1 

11 0 3905.1 5054.7 0 5367 5765.1 4602.2 4914.4 5179.9 0 0 
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Table 20 Hermite-Simpson Collocation Energy Matrix (J) 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 5179 4180 4427.1 4426.3 0 0 5333.9 0 0 0 

2 0 0 3913.3 4509.3 4440.3 4790.5 3714.4 4267 4074.9 0 0 

3 4266.3 3886.2 0 0 3345.8 3914.5 4330.9 4349.9 3461 4800.1 5077.8 

4 4434.5 0 4508.9 0 4538.6 0 0 0 0 4233.8 5381 

5 13119 4432.6 3375.7 0 0 4231.9 4892.8 3931 4095.6 0 5373.3 

6 0 4735.3 3865.3 0 4204 0 4644.8 5343.7 0 5154.4 5783 

7 5091.8 3643.8 0 3635.3 4865.3 4666.2 0 5087.4 3830.6 3049.7 4682.7 

8 5399.7 4319.2 4351.2 0 3971.5 5231.6 0 0 4964.6 5363.5 4919.7 

9 4015 0 3373.5 3213.2 4024.9 3418.3 3818.1 0 0 4436.4 5214.7 

10 5548.8 3788 0 0 0 0 3074.9 5321.1 4464.8 0 4568.4 

11 0 3987.6 0 5407 5399.4 5822.8 4693.8 4919.3 5253.2 4552.8 0 

 

After removing all the items that have not converged, or which have not respected 

the constraint violation cut-off margin, the selection for minimum energy is made between 

all three. This results in the following adjacency matrix: 

𝐴𝑑𝑗𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =

(

 
 
 
 
 
 
 
 

0 5179 4173.9 4385.1 4384.2 2791.5 0 5312.6 3951.6 0 0
0 0 3866 4509.3 4440.3 4725.2 3591 4261.7 3975.6 3785.7 3905.4

4173.9 3864.1 0 0 3276.9 3791.6 4287.8 0 3315 4775.2 5060.7
4380.2 0 4508.9 0 4534.5 3862.9 3543 0 0 4216.8 5332.2
4378.7 4432.6 3278.7 4534.6 0 4101.9 4849.9 3931 3990.9 0 5366.6
2792.3 4735.3 3764.5 3863.6 4204 0 4638.7 5343.7 3376.7 5147.8 5783

0 3592.6 4289.6 3539.2 4853.1 4638.5 0 5072.1 3811.6 3048.3 4601.9
5304.7 4261.7 4351.2 0 3849.5 5231.6 5071.5 0 4872.7 5363.5 4914.4
3953 3975.9 3322.3 3019.8 3988.6 3376.7 3811.2 4877.5 0 4430 0

5507.6 3785.7 4771.6 4217.1 0 5147.3 3074.9 5314.7 4430 0 4453.1
28257 3905.1 5054.7 5407 5367 5765.1 4602.2 4914.4 5179.9 0 0 )

 
 
 
 
 
 
 
 

 

This results in the following constraint violation matrix: 
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Table 21 Hybrid Constraint Violation matrix (m2) 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0.0020183 0 0 0 0 0 0 0 0 0 

2 0 0 0 0.0051622 0 6.2304e-05 0.0049639 0.00023889 1.0603e-05 0 0.00090976 

3 0 0 0 0 0 0.00691 0 0 0.0078572 0 0.0070673 

4 0 0 0.0088811 0 0.00053025 0 0 0 0 0 0.00016233 

5 0 0.0027744 0 0.0040673 0 0.0080024 0 0.00087219 0.0014113 0 0 

6 0 0.00087667 0.0063776 0 0.00076495 0 0 0.0014358 0 0 3.1468e-05 

7 0 0.0081995 0 0 0 0 0 0.0066104 0 0 0.0042268 

8 0 0.0052876 0.0035551 0 0.0073691 0.0041642 0.0090577 0 0.0072079 0.0014925 0 

9 0 0.00050828 0.00029359 0.0039119 0.00091062 0 0 0.0057769 0 0 0 

10 0.002826 0 0 0 0 0 0 0.0045784 0 0 0.0089237 

11 0 0.00043196 0.0018372 0.0046455 0 0.0014353 0.0067737 0 0.00012368 0 0 

 

The results are taken from each solver as follows: 

Table 22 Solvers in Hybrid Solution for DJI 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 auto hp hp hp hp 0 hp hp 0 0 

2 0 0 hp auto auto hp hp hp hp hp hp 

3 hp hp 0 0 hp hp hp hp hp hp hp 

4 hp 0 auto 0 hp hp hp 0 0 hp hp 

5 hp auto hp hp 0 hp hp auto hp 0 hp 

6 hp auto hp hp auto 0 hp auto hp hp auto 

7 hp hp hp hp hp hp 0 hp hp hp hp 

8 hp hp auto 0 hp auto hp 0 hp auto hp 

9 hp hp hp hp hp hp hp hp 0 hp hp 

10 hp hp hp hp 0 hp auto hp hp 0 hp 

11 auto hp hp auto hp hp hp hp hp hp 0 

 

This results in the following optimal tour: 

1→6→9→4→7→10→2→11→8→5→3→1 with a total energy dissipation of 39.6869 kJ 
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and a total time of 27.27 seconds. It is important to note that since the DJI is a large 

quadrotor, a tolerance margin for x is given as an additional 20 cm farther from the tree and 

a 50 cm margin for altitude. This plot also shows a ‘rubber band’ like path, which is yet 

again prevalent in all solutions. 

 

Figure 37 Hybrid DJI Energy-optimal Trajectory and Tour 

 

The same procedure is performed on the Crazyflie 2.0 with the same criteria and 

inputs. And the following are the results. 
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Table 23 Crazyflie Auto-Direct Constraint Violation (m2) 

  

 

Table 24 Crazyflue Auto-direct Energy Matrix (J) 

 

 

 

 

 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0.010458 0 0 0 0 0 0 0 0 0.018536 

2 0.15235 0 0 0.0016915 0 0.00010955 0.0007774 0.00012816 6.5346e-05 0.000602 0.00018043 

3 0 0 0 0.0040339 0 0.00092536 0 0.00046669 3.8345e-05 0 0 

4 0 0.0012261 0.0038834 0 7.3451e-05 0 2.1427e-05 0.013013 7.0717e-05 0 0.0030541 

5 0 0 0 0.0076085 0 0.00089086 0.0074373 0.00058828 0.00030661 1.4678e-05 0 

6 0 0.0013487 0.00035905 0 0.00016822 0 0 0.0011533 0 0 0.0007107 

7 0 0.00013747 0 4.8189e-05 0.010329 0 0 8.3431e-05 0 0 1.6367e-05 

8 0 0.00015035 0.00088538 0.013146 0.00038457 0.0016839 0.0021746 0 0.010683 0 0 

9 0 0.00037675 0.00015829 0.00047399 0.00029254 0 0 0.010688 0 0.00020532 0.001487 

10 0 0.00064243 0 0 0.00093293 0 0 0 0 0 0.00063823 

11 0.018583 0.00011688 0 0.0039565 0 0.0029589 0.00091278 0 0.0019674 0.001146 0 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 129.77 110.87 115.81 116.78 90.863 126.99 132.97 0 135.93 148.65 

2 0 0 105.09 115.94 114.53 121.27 100.64 112.11 107.67 103.59 106.11 

3 111.18 104.98 0 115.03 100.68 104.54 112.51 113.69 96.606 121.33 127.5 

4 115.84 115.97 115.32 0 117.36 105.54 100.65 132.84 96.609 111.65 133.21 

5 117.06 114.5 100.8 144.69 0 111.33 123.04 105.77 109.16 131.5 132.81 

6 91.037 121.04 104.66 105.56 111.45 0 118.5 130.3 95.42 128.38 141.39 

7 127.09 107.22 112.4 100.9 137.33 118.59 0 127.76 102.98 89.407 119.53 

8 133.24 112.32 113.58 132.59 105.61 131.25 127.93 0 124.68 132.35 123.48 

9 107.07 107.58 96.541 96.938 108.93 95.611 102.91 125.09 0 114.54 130.17 

10 136.02 103.34 121.28 111.83 131.26 128.46 89.553 132.18 114.71 0 116.83 

11 148.83 106.36 127.66 133.17 132.92 141.55 119.28 123.47 130.26 116.58 0 
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Table 25 Crazyflie Energy Matrix using h-method (J) 

 

 

 

Table 26 h-method Crazyflie constraint violation (m2) 

 

 

 

 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 129.77 110.87 115.81 116.78 90.863 126.99 132.97 12171 135.93 0.018536 

2 130 0 105.09 115.94 114.53 121.27 100.64 112.11 107.67 103.59 0.00018043 

3 111.18 104.98 0 115.03 100.68 104.54 112.51 113.69 96.606 121.33 0 

4 115.84 115.97 115.32 0 117.36 105.54 100.65 132.84 96.609 111.65 0.0030541 

5 117.06 114.5 100.8 144.69 0 111.33 123.04 105.77 109.16 131.5 0 

6 91.037 121.04 104.66 105.56 111.45 0 118.5 130.3 95.42 128.38 0.0007107 

7 127.09 107.22 112.4 100.9 137.33 118.59 0 127.76 102.98 89.407 1.6367e-05 

8 133.24 112.32 113.58 132.59 105.61 131.25 127.93 0 124.68 132.35 0 

9 107.07 107.58 96.542 96.938 108.93 95.611 102.91 125.09 0 114.54 0.001487 

10 136.02 103.34 121.28 111.83 131.26 128.46 89.553 132.18 114.71 0 0.00063823 

11 148.83 106.36 127.66 133.17 132.92 141.55 119.28 123.47 130.26 116.58 0 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0.010458 0 0 0 0 0 0 0 0 0.018536 

2 0.010507 0 0 0.0016915 0 0.00010954 0.00077739 0.00012813 6.5378e-05 0.000602 0.00018043 

3 0 0 0 0.0040339 0 0.00092535 0 0.00046669 3.8367e-05 0 0 

4 0 0.0012261 0.0038834 0 7.3451e-05 0 2.1271e-05 0.013013 7.0654e-05 0 0.0030541 

5 0 0 0 0.0076085 0 0.00089086 0.0074373 0.00058828 0.00030657 1.4677e-05 0 

6 0 0.0013487 0.00035909 0 0.00016822 0 0 0.0011533 0 0 0.0007107 

7 0 0.00013747 0 4.8078e-05 0.010329 0 0 8.3431e-05 0 0 1.6367e-05 

8 0 0.00015035 0.00088538 0.013146 0.00038457 0.0016839 0.0021745 0 0.010683 0 0 

9 0 0.00037675 0.00015829 0.00047399 0.0002925 0 0 0.010688 0 0.00020532 0.001487 

10 0 0.00064243 0 0 0.00093328 0 0 0 0 0 0.00063823 

11 0.018583 0.00011684 0 0.0039565 0 0.0029589 0.00091278 0 0.0019674 0.001146 0 
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Table 27 Crazyflie p/hp-method Energy Matrix (J) 

 

 

Table 28 Crazyflie p/hp-method constraint violation (m2) 

 

  

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 122.2 106.79 110.63 111.42 89.468 120.01 126.44 103.3 127.29 151.03 

2 122.87 0 162.91 110.84 109.74 115.5 132.25 107.84 104.04 100.5 102.73 

3 107.03 101.65 0 110.07 98.277 101.06 107.97 108.55 94.158 130.43 120.43 

4 111.73 111.05 110.74 0 134.27 102.87 98.505 127.5 95.202 107.81 141.02 

5 112.53 125.76 98.95 112.35 0 107.42 117.2 102.16 105.67 123.9 154.77 

6 89.914 115.31 106.15 102.04 106.65 0 113.21 125.85 93.618 126.16 131.72 

7 120.63 132.12 108.46 97.929 129.24 113.43 0 120.79 118.06 88.268 128.92 

8 127.41 131.29 109.36 141.05 107.41 123.66 145.12 0 134.09 166.46 117.44 

9 103.81 103.75 94.397 94.572 134.15 93.618 117.82 117.92 0 109.87 122.58 

10 127.87 100.5 115.86 107.34 123.6 121.56 88.268 126.34 1073.4 0 111.12 

11 137.95 102.97 121.02 125.02 154.56 132.11 128.82 117.44 122.97 111.66 0 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0.055188 0 0 0 0 0 0.15973 0 0 0.22485 

2 0.0001465 0 0.054129 0.0017261 0 0.0013551 0.014005 0.0040756 0.0029904 0.0013222 3.5037e-05 

3 0 0 0 0.021015 0 0.009182 0 0.0041508 0.0012264 0.0024611 4.1054e-05 

4 0 0.011112 0.010097 0 0.04418 0 0 0.084034 0.0001873 0 0.0084949 

5 0 0.00047424 0 0.00084472 0 0.009472 0 0.0083875 0.0015307 0.060046 0.14961 

6 0 1.5037e-05 0.0033991 0 0.0032167 0 0 0.1127 0 0.054247 0.018848 

7 0 0.0079104 0 0.0018683 0.078855 0 0 0.0012242 0.010476 0 0.056907 

8 0.15249 0.022431 0.00758 0.097165 0.0041951 0.018846 0.035714 0 0.034301 0.042924 0 

9 0 0.0081003 0.0041052 0.0031892 0.017123 0 0.0087492 0.014168 0 0.04306 0.0031765 

10 0 0.0039376 0 0 0.015764 0 0 0.067669 0.043966 0 0.0096787 

11 0.10188 0.001545 0.00043466 0.020043 0.19181 0.013238 0.046996 0 0.00031485 0.010966 0 
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Table 29 Hybrid Solvers used for Crazyflie 

 

Table 30 Hybrid Constraint violation (m2) 

 
 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0 hp hp hp hp hp h hp hp 0 

2 hp 0 auto hp hp hp auto hp hp hp hp 

3 hp hp 0 0 hp hp hp hp hp hp hp 

4 hp auto auto 0 0 hp hp 0 hp hp auto 

5 hp hp hp hp 0 hp hp hp hp auto auto 

6 hp hp auto hp hp 0 hp h hp auto h 

7 hp auto hp hp 0 hp 0 hp auto hp 0 

8 auto auto hp 0 hp 0 auto 0 0 0 hp 

9 hp hp hp hp auto hp auto 0 0 0 hp 

10 hp hp hp hp auto hp hp auto 0 0 hp 

11 0 hp hp 0 auto 0 0 hp hp auto 0 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0 0 0 0 0 0 0 0 0 0 

2 0.0001465 0 0 0.0017261 0 0.0013551 0.0007774 0.0040756 0.0029904 0.0013222 3.5037e-05 

3 0 0 0 0 0 0.009182 0 0.0041508 0.0012264 0.0024611 4.1054e-05 

4 0 0.0012261 0.0038834 0 0 0 0 0 0.0001873 0 0.0030541 

5 0 0.00047424 0 0.00084472 0 0.009472 0 0.0083875 0.0015307 1.4678e-05 0 

6 0 1.5037e-05 0.00035905 0 0.0032167 0 0 0.0011533 0 0 0.0007107 

7 0 0.00013747 0 0.0018683 0 0 0 0.0012242 0 0 0 

8 0 0.00015035 0.00758 0 0.0041951 0 0.0021746 0 0 0 0 

9 0 0.0081003 0.0041052 0.0031892 0.00029254 0 0 0 0 0 0.0031765 

10 0 0.0039376 0 0 0.00093293 0 0 0 0 0 0.0096787 

11 0 0.001545 0.00043466 0 0 0 0 0 0.00031485 0.001146 0 
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𝐴𝑑𝑗𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =

(

 
 
 
 
 
 
 
 

0 0 106.79 110.63 111.42 89.468 120.01 132.97 103.3 127.29 0
122.87 0 105.09 110.84 109.75 115.5 100.64 107.84 104.04 100.5 102.73
107.03 101.65 0 0 98.277 101.06 107.97 108.55 94.158 130.43 120.43
111.73 115.97 115.32 0 0 102.87 98.505 0 95.202 107.81 133.21
112.53 125.76 98.95 112.35 0 107.42 117.2 102.16 105.67 131.5 132.81
89.914 115.31 104.66 102.04 106.65 0 113.21 130.3 93.618 128.38 141.39
120.63 107.22 108.46 97.929 0 113.43 0 120.79 102.98 88.268 0
133.24 112.32 109.36 0 107.41 0 127.93 0 0 0 117.44
103.81 103.75 94.397 94.572 108.93 93.618 102.91 0 0 0 122.58
127.87 100.5 107.34 107.34 131.26 121.56 88.268 132.18 0 0 111.12

0 102.97 0 0 132.92 0 0 117.44 122.97 116.58 0 )

 
 
 
 
 
 
 
 

 

This results in an optimal tour with the following optimal sequence 

1→3→5→8→11→2→10→4→9→6→1 with a maximum tour of 1.093 kJ and a total time 

of 17.86s. It is significant to see that the sequence of the trees is the same, but exactly 

flipped. This comes from the fact that altitude energy dissipation in ascent and descent are 

almost the same since the Crazyflie has a very small mass. This can also be true when 

dealing with planar horizontal motion where, if ignoring rotational motion energy 

dissipation, the energy is the same and is directly related to the distance. Moreover, this 

results in the Figure 38 Crazyflie Hybrid Energy-Optimal Tour tour.  

 

Figure 38 Crazyflie Hybrid Energy-Optimal Tour 

One of the most important aspects is to note where the system fails in the cases 

mentioned above. This can be deduced that the DJI Phantom2 suffers a larger constraint 

violation due to its slower dynamics whereas Crazyflie2.0 is a more agile and light-weight 
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platform, which can perform more aggressive dynamic maneuvers that in turn results in 

less constraint violations. Moreover, convergence is affected by how dense the forest is, i.e. 

how close the trees are to each other in addition to their radii. It is important to note that 

this greatly effects the rate of convergence as very close and very large trees might result in 

a no solution, even without a minimization effect, which is due to the fact that this might 

result in a collision. This is evident when dealing with small-diameter trees and less dense 

regions, which result in very low or no constraint violation with very high convergence 

rate. Finally, non-convergence might also result from a close proximity between the start 

and end points, which is impractical in real-life.  

It is important to note the advantages that this hybrid method brings which is an 

acceptable constraint violation and a higher overall convergence rate which aids in the best 

possible result relative to results should in the previous section. 

  

G. Full energy optimal tour with polynomial fit estimation 
 

One of the most disadvantageous parts of using optimal control theory to 

determine the optimal travelling distance is the time needed to find a solution. This 

increases with the number of segments, path constraints, and order of the polynomial fit. 

Taking an accurate representation each solution requires around 30 seconds, but this time 

may vary based on the path and object avoidance.  Moreover, the hybrid method proposed 

before took three hours for the DJI and five hours for the Crazyflie. As mentioned in 

Chapter III, it is safe to assume a third order polynomial where energy is a function of 

{Δx,Δy,Δz} and Δ represents the difference between initial and final point. Each drone is 

represented by two equations and they are composed of the descent and ascent ones. After 

sampling a large number of points in 3-dimensional space, an accurate representation for the 

Crazylie equation is obtained: 
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𝐸𝑛𝑒𝑟𝑔𝑦 = 3.16018 𝑧 − 0.0163302 𝑧2 + 2.14292 𝑦 − 0.0332852 𝑦 𝑧 + 0.000109225 𝑦 𝑧2 + 0.00245168 𝑦2

+ 6.85036 × 10−5 𝑦2 𝑧 + 2.32395 𝑥 − 0.0333332 𝑥 𝑧 + 0.000100367 𝑥 𝑧2 − 0.0283166 𝑥 𝑦

+ 0.000212874 𝑥 𝑦 𝑧 − 9.90361 × 10−6𝑥 𝑦2 − 0.000802606 𝑥2 + 7.55852 × 10−5𝑥2 𝑧

+ 3.93758 × 10−5 𝑥2 𝑦 + 85.5608 − 2.25231 × 10−5 𝑥3 − 3.59313 × 10−5𝑦3

+ 4.46233 × 10−5 𝑧3 

𝑤ℎ𝑒𝑟𝑒 𝑧 = ∆𝑧 > 0 , 𝑥 = |∆𝑥|, 𝑦 = |∆𝑦|.       (92) 

This fit has a R2 value of 98.45% with a mean absolute error of 0.117 and a mean 

standard deviation of absolute error of 0.6723. On the other hand, for the descent the 

equation is shown as follows: 

  

𝐸𝑛𝑒𝑟𝑔𝑦 = −4.64959𝑧 − 0.0374038 𝑧2 + 4.46176 𝑦 + 0.0887795 𝑦 𝑧 + 0.00119135 𝑦 𝑧2 − 0.0354293 𝑦2

− 0.001546 𝑦2 𝑧 + 4.48275 𝑥 + 0.0913392 𝑥 𝑧 + 0.00113585 𝑥 𝑧2 − 0.181196 𝑥 𝑦

+ 0.0141618 𝑥 𝑦 𝑧 + 0.00152685 𝑥 𝑦2 − 0.0357207 𝑥2 − 0.0016975 𝑥2 𝑧 + 0.00131784 𝑥2 𝑦

+ 67.0816 + 0.000120273 𝑥3 + 0.000119289 𝑦3 − 0.000124581 𝑧3 

𝑤ℎ𝑒𝑟𝑒 𝑧 = ∆𝑧 < 0 , 𝑥 = |∆𝑥|, 𝑦 = |∆𝑦|.       (93) 

This fit has a R2 value of 97.8% with a mean absolute error of 0.1786 and a mean 

standard deviation of absolute error of 0.7538. The map used for the Crazyflie is used again 

to find the accuracy of this estimation. This results in the following estimated adjacency 

matrix: 

𝐴𝑑𝑗𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =

(

 
 
 
 
 
 
 
 

0 133.83 112.93 119.09 120.92 99.281 128.25 134.23 111.57 135.97 153.81
138.42 0 107.39 114.2 112.6 126.3 95.304 114.04 109.3 102.18 109.62
113.55 108.85 0 118.82 106.53 105.76 114.17 112.62 101.41 118.34 130.98
122.41 115.01 120 0 119.411 106.02 104.44 134.1 97.712 117.09 137.32
123.8 114.7 101.29 119.41 0 111.27 128.02 103.07 116.08 135.08 137.38
90.453 122 102.34 108.07 112.18 0 116.04 122.51 91.63 124.17 143.15
134.55 95.304 115.87 107.45 122.62 119.76 0 127.98 100.16 84.072 116.38
141.86 115.59 112 127.76 106.2 128.43 133.65 0 125.97 138.34 116.23
111.25 110.12 95.091 104.09 115. .6 91.63 103.67 121.78 0 112.04 132.19
143.6 102.18 123.43 115.53 126.8 131.28 84.072 131.66 113.97 0 108.56
152.24 108.69 136.16 130.88 129.52 147.94 118.85 116.23 137.42 107.41 0 )

 
 
 
 
 
 
 
 

 

To validate whether these estimations are accurate, this matrix is compared to that 

of the “auto” result given in the first adjacency matrix of the Crazyflie. This results in the 

following percent error matrix: 
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Table 31 Crazyflie Energy Estimation Error Matrix (%) 

 

After placing the adjacency matrix in the TSP solver, the result is the following 

tour: 1→3→5→8→11→2→10→4→9→6→1, which is the same as the solution obtained by 

the hybrid solver. This results in a total estimated cost of 1.195 kJ, which is similar to that of 

“auto” solution with an error of 0.3% in the total cost estimation. 

The same estimation is done for the DJI quadrotor and results in the following 

equation for ascent: 

𝐸𝑛𝑒𝑟𝑔𝑦 = +95.439324 𝑧 − 0.078971371 𝑧2 + 87.245361 𝑦 − 0.70305548 𝑦 𝑧 + 0.0014528529 𝑦 𝑧2

+ 0.0064903477 𝑦2 + 0.00075131172 𝑦2𝑧 + 87.245361 𝑥 − 0.70305548 𝑥 𝑧

+ 0.0014528529 𝑥 𝑧2 − 0.81620358 𝑥 𝑦 + 0.0032182792 𝑥 𝑦 𝑧 + 0.0012956933 𝑥 𝑦2

+ 0.0064903477 𝑥2 + 0.00075131172 𝑥2𝑧 + 0.0012956933 𝑥2𝑦 + 3159.1738

− 0.00039275357 𝑥3 − 0.00039275357 𝑦3 − 0.00032578517 𝑧3 

𝑤ℎ𝑒𝑟𝑒 𝑧 = ∆𝑧 > 0 , 𝑥 = |∆𝑥|, 𝑦 = |∆𝑦|.       (94) 

This fit has an R2 value of 99.89% with a mean absolute error of 0.013 and a mean 

absolute of standard deviation error of 0.279. While for the descent, the following equation 

is used: 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 N/A -3.1314 -1.8623 -2.8308 -3.5449 -9.2648 -0.99327 -0.95132 -4.3755 -0.029861 -3.471 

2 -6.4801 N/A -2.185 1.4982 1.6886 -4.1479 5.3022 -1.7193 -1.5093 1.3593 -3.305 

3 -2.1302 -3.6899 N/A -3.2929 -5.8128 -1.1636 -1.4737 0.94439 -4.9773 2.4665 -2.7277 

4 -5.6709 0.83117 -4.0567 N/A -1.7474 -0.45513 -3.7651 -0.94852 -1.1414 -4.8729 -3.0828 

5 -5.7541 -0.17259 -0.48985 17.471 N/A 0.04945 -4.0437 2.5536 -6.3399 -2.7205 -3.4396 

6 0.64169 -0.79662 2.2182 -2.3788 -0.65417 N/A 2.0754 5.9789 3.9717 3.2807 -1.2454 

7 -5.8698 11.114 -3.0873 -6.4937 10.709 5.6361 N/A -0.17069 2.7429 5.9665 2.6361 

8 -6.4708 -2.9096 N/A 3.6432 -0.55996 2.1459 N/A N/A -1.0351 -4.5256 5.8699 

9 -3.8997 -2.358 1.5017 -7.3771 -6.12 4.1636 -0.7418 2.6462 N/A 2.1788 -1.553 

10 N/A 1.1207 -1.7694 -3.3101 3.397 -2.1914 6.1198 0.39369 0.64888 N/A 7.0752 

11 N/A -2.1932 -6.6616 1.7189 2.5546 -4.5112 0.35941 5.8622 -5.4952 7.8632 N/A 
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𝐸𝑛𝑒𝑟𝑔𝑦 = −80.528041 𝑧 − 0.0039481647 𝑧2 + 94.624272  𝑦 + 0.57838575  𝑦 𝑧 + 0.0010467519  𝑦 𝑧2

− 0.14898889  𝑦2 − 0.00079747153  𝑦2𝑧 + 94.624272 𝑥 + 0.57838575 𝑥 𝑧

+ 0.0010467519 𝑥 𝑧2 − 0.75202339 𝑥  𝑦 − 0.0021665595 𝑥  𝑦 𝑧 + 0.0012972654 𝑥  𝑦2

− 0.14898889 𝑥2 − 0.00079747153 𝑥2𝑧 + 0.0012972654 𝑥2 𝑦 + 3223.9805 

+ 0.00012321658 𝑥3 + 0.00012321658  𝑦3 + 0.00040678188 𝑧3 

𝑤ℎ𝑒𝑟𝑒 𝑧 = ∆𝑧 < 0 , 𝑥 = |∆𝑥|, 𝑦 = |∆𝑦|.       (95) 

This equation has an R2 value of 99.94% with a mean absolute error of 0.0079 and 

a mean absolute standard deviation error of 0.0118. This resulted in the following adjacency 

matrix: 

𝐴𝑑𝑗𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =

(

 
 
 
 
 
 
 
 

0 5024 4205.3 4309.2 4419.8 3647.8 4808.1 4976.3 4144.7 5126.8 5844.3
517206 0 4134.3 4221.1 4197.4 4735.2 3865.4 4265.5 4215.1 4045.7 4083.7
4331.1 4039.3 0 4377.8 3891.6 3916.2 4255.4 4133.4 3750.5 4429.5 4914.1
4445.7 4324.9 4457.4 0 4528.8 4053 4062.6 4947.7 3864.8 4418 5096.1
4477 4296.8 3929.6 4528.8 0 4191.8 4730.8 4037.6 4368.9 4909.6 5070
3709 4581 4019.4 3988 4116.5 0 4356.1 4533.3 3778.2 4685.1 5428.7

4935.4 3865.4 4363.2 3974.3 4599.3 4489.1 0 4820.6 3957.4 3598.8 4330.8
5090.2 4396.5 4209.8 4786.3 3933.2 4650.5 4991 0 4646.1 5160.1 4355.4
4246.1 4096.9 3841.6 3811.5 4276.8 3778.2 3859.8 4521.8 0 4196.4 4970.1
5273.6 4045.7 4544.6 4304.3 4772.8 4838.3 3598.8 4980 4317.6 0 4007.8
6030.3 4201.4 5053.2 4922.5 4900.9 5621.1 4462.4 4355.4 5132.5 4111.6 0 )

 
 
 
 
 
 
 
 

 

This adjacency matrix is compared with the hybrid method developed in the earlier 

section, and it results in the following error table: 

Table 32 DJI Energy Estimation Error Matrix (%) 

 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 N/A 2.9901 -0.75275 -0.11537 -0.81189 -30.676 -Inf 6.3297 -4.8877 N/A N/A 

2 N/A N/A -6.8635 6.3918 5.4693 -0.21066 -7.6427 -0.089183 -6.0255 -6.8687 -4.5658 

3 -3.7664 -4.534 N/A N/A -18.758 -3.2863 0.7551 N/A -13.136 7.2404 2.8959 

4 -1.4945 N/A 1.1432 N/A 0.12467 -4.9218 -14.666 N/A N/A -4.7714 4.4278 

5 -2.2451 3.0637 -19.852 0.12687 N/A -2.1908 2.4555 -2.7109 -9.4713 N/A 5.5259 

6 -32.83 3.258 -5.9268 -3.2209 2.082 N/A 6.0921 15.166 -11.892 8.9883 6.1261 

7 N/A -7.5947 -1.7161 -12.293 5.2292 3.2209 N/A 4.9588 -3.8251 -18.058 5.8902 

8 4.0438 -3.1621 3.2499 N/A -2.1744 11.108 1.5864 N/A 4.6495 3.792 11.375 

9 -7.4139 -3.0425 -15.631 -26.216 -7.2247 -11.892 -1.2748 7.2933 N/A 5.2724 N/A 

10 4.2479 -6.8687 4.7576 -2.0668 N/A 6.0028 -17.036 6.2972 2.5369 N/A 10.001 

11 78.659 -7.5871 0.02932 8.961 8.6847 2.4971 3.0377 11.375 0.91519 N/A N/A 
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After placing the adjacency matrix in the TSP, the result is the following tour: 

1→6→9→4→7→10→11→2→8→5→3→1 with a maximum of 43.5475 kJ and a total 

estimation of total cost error of 9.7% compared to the hybrid approach. It is important to 

note that the tour is the same as the result for the hybrid one, but there is a small switch 

between trees 2 and 11, which still maintains the ‘rubber band’ like path that is normally 

attained. 

As it is evident this method is recommended if total accuracy is not required, but 

rather a need for a quick and near optima result is needed. It gives a primary guess for the 

total and specific energy consumption, but does not determine the tree-to-tree route which 

needs to be done only for the route specified by the tour significantly decreasing 

computational time.  

 

H. Using time as a minimizing factor 
 

In order to determine the efficiency of the proposed system, it is beneficial to 

change the minimization objective of the “system of systems” approach. In this section, a 

minimization of final time is done for the DJI Phantom2 across the same map using “auto-

direct” transcription. This also correlates to a minimization of final time on both stages of 

the system, which includes optimal control solution and the travelling salesman problem. 

This results in the following tour: 1→6→4→7→10→11→2→8→5→3→9→1. This results 

in a minimum time of 27.363 seconds with maximum energy consumption of 103.6139 kJ. 

𝐴𝑑𝑗𝑡𝑖𝑚𝑒 =

(

 
 
 
 
 
 
 
 

0 3.3894 2.8167 3.0409 3.04 0 3.368 3.5442 0 3.6384 3.9669
3.4201 0 2.6775 3.0366 3.0018 3.1389 2.5483 2.8569 2.7494 0 2.6378
2.8709 2.6669 0 3.0157 2.3872 2.6738 0 2.9527 2.3931 3.2114 3.3513
3.042 0 3.1205 0 0 0 0 3.6133 2.1824 2.8519 3.5314
3.0847 2.9981 2.402 0 0 2.8754 3.2562 2.6946 0 3.5176 3.5325

0 3.111 2.6551 2.6942 208624 0 3.1107 3.5874 2.3495 3.4107 3.7375
3.766 2.5083 0 2.4806 3.2431 3.12 0 3.3184 2.6309 2.1519 3.1327
3.5804 0 2.9391 3.5204 2.7089 4.0776 0 0 11.528 3.4906 12.001
7.2043 0 0 2.2676 2.7247 0 2.626 3.3468 0 2.9905 3.4036
3.6457 2.5717 0 2.8715 3.4931 3.4203 0 0 3.0043 0 3.0758
3.9867 2.6733 3.3691 3.5383 3.5443 3.7548 3.1318 3.2799 3.4268 3.0508 0 )
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It is evident that the energy consumption is extremely high, especially since the 

solver requires the quadrotor to operate at maximum allowable power limits to reach the 

desired waypoints in minimal time, which results in a disregard of energy consumption and 

a large emphasis on the inputs which is gravely non-optimal when seeking energy 

optimality. This results in the following path:  

 

Figure 39 Time optimal path 

Table 33 Energy Consumption with minimization of time (J) 

 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 73621 0 89713 4.4235e+06 45470 71901 46514 0 44341 2.6329e+05 

2 29465 0 59397 47671 58176 1.8193e+05 78694 87752 0 56147 1.0717e+05 

3 97156 2.6465e+05 0 2.8281e+05 4.4259e+05 4.0147e+05 2.0603e+05 4.6483e+05 90833 14901 26034 

4 2.1784e+05 39284 0 0 18451 36845 90708 1.2363e+05 2.0012e+05 58672 80915 

5 0 1.864e+05 18846 0 0 1.3908e+05 28883 48109 1.104e+05 89563 51793 

6 1.7599e+05 27262 3.2009e+05 68184 51077 0 3.6806e+05 3.1253e+05 0 29483 0 

7 0 1.8808e+05 57716 1.1813e+05 93359 25982 0 31796 1.5019e+05 38375 0 

8 24549 92152 0 1.6531e+05 86463 1.5907e+05 2.6389e+05 0 0 49278 30231 

9 1.839e+05 48612 85008 92301 50011 1.3825e+05 47445 0 0 1.2935e+05 0 

10 44466 2.8073e+05 23751 3.1706e+05 78468 80222 2.6334e+05 25038 54477 0 2.3774e+05 

11 0 87868 73388 0 1.2155e+05 0 2.0609e+05 0 1.8678e+05 1.4504e+05 0 
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Table 34 Final Time Optimization Constraint Violation (m2) 

 

I. New tour with probability distribution 
 

To start with, it was important to create a 3D probability distribution with a 

lognormal and a normal distribution with a max value 1 centered at 0. The following are 

the constants that govern the probability distribution: 

𝜇𝑙𝑜𝑔 = 3 

𝜇𝑛𝑜𝑟𝑚𝑎𝑙 = 0 

𝜎𝑙𝑜𝑔 = 1 

𝜎𝑛𝑜𝑟𝑚𝑎𝑙 = 3 

This results in the Figure 40 Probability distribution (top view) curved probability 

distribution: 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0.0057638 0 0 0 0 0 0 0 0 0.0014239 

2 0.00020031 0 0 0.0044426 0 0.0015211 0.00021535 0.00051877 0.00013696 3.4437e-05 0.00098192 

3 0 0 0 0.0013652 0 0.0017622 0 0.00099642 0.0011456 0 0.00024594 

4 0 0.00224 0.010834 0 0.00041788 0 0 0.0052602 8.1077e-05 0 0.0032966 

5 0 0.005498 0 0.00068024 0 0.0018896 0.017276 0.00077768 0.00030626 0.022062 0 

6 0 1.3448e-05 0.00073247 0 0.00071222 0 0 0.026481 0 0 0.038723 

7 0 0.00014755 0 0.00036862 0 0 0 1.4221e-05 0 0 0.014605 

8 0 0.0015438 0.0034616 0.012211 0.0018794 0.0039366 0.001174 0 0.0045888 7.5016e-05 0 

9 0 6.3177e-06 0.00059632 0.0012671 0.0007047 0 0 0.0027481 0 0 0.0014603 

10 0 0 0.012671 0 0.012741 0 0 0.0014309 0.0020583 0 0.00082248 

11 0.02572 0.0014523 0.0013114 1.7764e-05 0 0.057902 0.0026485 0.00098217 0.0021125 0.0034027 0 
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Figure 40 Probability distribution (top view) 

 

Figure 41 Probability distribution (side view) 

In order to plot the location of each point with respect to the other, the Euclidean 

distance for the distance and the angle between the horizontally projected vector and the 

(1,0) vector. This results in 2-dimensional cylindrical coordinates and a relative coordinate 

system centered around the tree at hand. For example, the relative location of all the points 

with respect to tree 2 is shown as follows: 
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Figure 42 Relative position of all points with respect to node 2 

This results in the following generalized probability distribution matrix where each 

item is the probability of infection of the column item such that the row item is infected. 

Table 35 Probability of Infection Matrix 

 

Notice that the rows and columns associated with 1 are all zeros since it is the 

base. This results in the following consecutive changes within, whereas the first sequence is 

From\To 1 2 3 4 5 6 7 8 9 10 11 

1 0 0 0 0 0 0 0 0 0 0 0 

2 0 1 0.12327 0.016735 0 0 0.25599 0.0021953 0.098506 0.37584 0.23636 

3 0 0.62393 1 0.058351 0.47627 0.14403 0.48513 0.035328 0.41652 0.54879 0.038537 

4 0 0.017123 0.041376 1 0.00065703 0.058416 0.43176 2.7025e-05 0.49213 0.25411 5.5453e-05 

5 0 0.68352 0.72119 0.03982 1 0.041471 0.26826 0.12924 0.16683 0.34487 0.089704 

6 0 0.02316 0.14723 0.8028 0.041338 1 0.41765 7.6812e-05 0.73721 0.244 6.8537e-05 

7 0 0.25066 0 0.32956 0 0 1 0 0.21019 0.89258 0.0048127 

8 0 0.19554 0.03544 4.4948e-05 0.12644 7.6615e-05 0.0030458 1 0.00098038 0.0075441 0.6265 

9 0 0.12244 0.40711 0.52304 0.08043 0.59762 0.78412 0.00090365 1 0.57343 0.0010358 

10 0 0.22719 0 0.00037992 0 0 0.82605 0 0 1 0.014114 

11 0 0.13965 0 8.0977e-07 0 0 0.0044484 0 0 0.014114 1 
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the offline one and the online version is when each item is visited, it shows how the 

probability distribution and the set is changing when the cut-off PoI is 0.7. 

Table 36 Probability based Offline and Time Varying (Online) Status, PoI, and Sequence 

1 →3→7→10→11→8→5→1 

1 2 3 4 5 6 7 8 9 10 11 

0 0 0 0 1 0 1 1 0 0 1 

inf 0.6835 0.7212 0.3296 1 0.0415 1 1 0.2102 0.8926 1 

1 →3→7→10→11→8→5→1 

1 2 3 4 5 6 7 8 9 10 11 

0 0 0 0 1 0 1 1 0 0 1 

inf 0.6835 0.7212 0.3296 1 0.0415 1 1 0.2102 0.8926 1 

1 →3→7→10→11→8→5→1 

1 2 3 4 5 6 7 8 9 10 11 

0 0 0 0 1 0 0 1 0 0 1 

inf 0.6835 0.7212 0.3296 1 0.0415 0.2683 1 0.1668 0.3449 1 

1 →3→7→11→8→5→1 

1 2 3 4 5 6 7 8 9 10 11 

0 0 0 0 1 0 0 1 0 0 0 

inf 0.6835 0.7212 0.0398 1 0.0415 0.2683 1 0.1668 0.3449 0.6265 

1 →3→7→11→8→5→1 

1 2 3 4 5 6 7 8 9 10 11 

0 0 0 0 1 0 0 0 0 0 1 

inf 0.6835 0.7212 0.0398 1 0.0415 0.2683 0.1292 0.1668 0.3449 0.0897 

1 →3→7→11→8→5→1 

1 2 3 4 5 6 7 8 9 10 11 

0 0 0 0 1 0 0 0 0 0 1 

inf 0.6835 0.7212 0.0398 1 0.0415 0.2683 0.1292 0.1668 0.3449 0.0897 

1 →3→7→11→8→5→1 

 

It is important to indicate that the PoI of 1 is artificially always placed as infinity 

(inf) in order to ensure that is always in the set since it is the base. It is also important to 

note where tree number 10 is dropped out of the set, especially when it was not yet visited 

while its PoI dropped below the cut-off margin.  These consecutive tests of the online 

version resulted in the Figure 43 Final tour probability after time varying path changes final tour 

and energy dissipation of 26.206 kJ and a total time of 17.6785 seconds. While, the original 

offline path yields a 19.7418 seconds total time and a 29.106 kJ for total energy 

consumption. 
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Figure 43 Final tour probability after time varying path changes 
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CHAPTER VII 

CONCLUSION 
 

As a generalized solution, the proposed solver generates energy-optimal tours to 

visit and scan cylindrical objects. This thesis suggests a system of systems that starts with 

determining individual energy consumption and optimal tour planning between each pair of 

trees in both directions. This includes a hybrid system of LGR, H-S, and Auto-Direct 

collocation and transcription methods that result in a minimum energy consumption path 

and minimal constraint violation. However, as this method or individual solvers may have 

high computational cost when dealing with large number of trees, energy consumption 

based on a polynomial fit estimation is provided as an alternative solution with adequate 

accuracy. 

After determining the energy consumption of each route, a travelling salesman 

problem using ILP/SEC is used to generate an energy optimal tour. Moreover, a probability 

distribution is used in order to determine a prioritization of objects based on their 

respective probability of infection, which results in a subset of trees that are required to be 

visited. However, as the quadrotor visits each object or tree, the probability changes as new 

events are found, which results in a constantly changing pool of tree subsets. 

One of the most important parts in this work is to note that energy consumption is 

proportional to the energy capacity for each quadrotor’s battery. It is evident that when the 

energy capacity of the battery surpasses that of the entire tour, such an analysis opens the 

door towards increasing the total number of trees that one drone can visit. It would also 

yield a higher rate of scanning and can result in using a smaller number of drone when 

dealing with swarms to scan large forests. 

In summary, it is important to point out that the proposed method in this thesis has 

proven to be effective in determining the optimal sequence and tour for quadrotors to scan 
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cylindrical objects, especially with the contributions it made on the following fronts: 

collision avoidance, solving with free-end-time, convergence rate, energy consumption 

estimation based on coordinate inputs, and transforming an offline solution to an online 

option with real-time implementation prospects. 

Given the proposed system-level approach, it is significant to note the 

contributions that this thesis brings. Primarily, the optimal control solution includes several 

aspects of new contributions that includes a free-end-time approach in addition to object 

avoidance, which also results in a converged optimal solution. Obtaining a higher 

convergence rate using a hybrid method for path planning is of great significance, 

especially when dealing with a field that places a lot of emphasis on cost inputs. Moreover, 

establishing a system-of-systems approach results in a varying input and requirements 

where each level can be optimized based on a certain cost function, such as energy or time 

or distance travelled, which results in a variation of inputs. In addition, adding a factor of 

probability with a varying updated route based on newly available information results in a 

new approach that gives new perspectives while maintaining the most optimal local 

solution. 

As an outlook, future work may involve the development of the proposed 

algorithm to deal with additional obstacles (such as the terrain in the case of forests and 

trees) or other obstacles in various applications. Further effort can be exerted to reduce the 

computation time of the individual components of the algorithm, in addition to increasing 

the convergence rate and decreasing constraint violation. Last but not least, the results can 

be further refined via closed-loop parallel programing with mesh refinement. 
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