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An Abstract of the Thesis of

Mohamad Ballout for Master of Engineering
Major: Mechanical Engineering

Title: The benefits of synthetic data for action categorization

In this thesis, we will show the importance of video analysis using deep net-
work. We are going to introduce some deep learning methods to detect and
recognize faces in a video stream as well as emotion recognition. The three pre-
ceding networks are based on image analysis systems. Another way of analyzing
videos is to do action recognition system, where the order of the frames become
important. We propose a new 3DCNN+LSTM system for action recognition.
However, the proposed system did not outperform the state of the art systems
on UCF-101 dataset. In fact, it scored around 80% on UCF-101 while the state
of the art system scores above 90%. In addition, we studied the value of using
synthetically produced videos as training data for neural networks used for action
categorization. Motivated by the fact that texture and background of a video play
little to no significant roles in optical flow, we generated simplified texture-less
and background-less videos and utilized the synthetic data to train a Temporal
Segment Network (TSN). The results demonstrated that augmenting TSN with
simplified synthetic data improved the original network accuracy (68.5%), achiev-
ing 71.8% on HMDB-51 when adding 4,000 videos and 72.4% when adding 8,000
videos. Also, training using simplified synthetic videos alone on 25 classes of
UCF-101 achieved 30.71% when trained on 2500 videos and 52.7% when trained
on 5000 videos. Finally, results showed that when reducing the number of real
videos of UCF-25 to 10% and combining them with synthetic videos, the accu-
racy drops to only 85.41% from 96.60%, compared to a drop to 77.4% when no
synthetic data is added.
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Chapter 1

Introduction

In the drive towards a pervasive Internet-of-Things (IoT) society, machines will
have to interact much more with humans, and to do so, they will have to un-
derstand human actions and activities. Action categorization is the process of
classifying a trimmed video that contains a single action. For example, a four
second video of a person biking should be classified as ‘biking’. On the other
hand, the process of detecting the time interval of each action in a video and
labeling them is called temporal action detection. In this thesis, we are dealing
with the problem of action categorization.

The state-of-the-art action categorization systems are mostly built on deep
network architectures. The major challenge for these networks is the collection
and annotation of a sufficient number of videos for training. The deeper the
networks are, the more data is required. To give some perspective to the problem,
training the 3D ResNet [2] on the UCF-101 dataset failed, despite the fact that
UCF-101 contains more than thirteen thousand videos of 101 classes. In fact, to
successfully train 3D ResNet, a much larger dataset (Kinetics [3]) was required,
which includes more than 300,000 videos. Manually annotating all these videos is
a daunting task, and thus the need for a method that generates annotated videos
in a simpler manner (Fig. 1.1).

One approach to overcome the requirement for large amounts of data is to do
unsupervised action localization, which does not require any annotated videos,
and aims to automatically group videos of a similar action into one class. Such
systems rely on local features that can detect similar actions. Unfortunately, the
results of these systems to date [4][5] are not comparable to supervised systems,
with accuracy values as low as 60% on UCF-101.

Another approach to mitigate the problem of video collection and annota-
tion, is to rely on simulated data instead of videos of real recorded actions. Such
approaches have been attempted on still images generated through graphics simu-
lators. For example, synthetic data was used in object detection [6][7]; it was also
used in segmentation [8], and also in the evaluation of optical flow solutions [9].
Creating simulated realistic full scenes with complete background information is
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Figure 1.1: Synthetic data can be used to train a network from scratch or augment
a pre-trained network to improve its performance.

difficult, and not many people have attempted it [10]; however, what is interest-
ing to note is that the difficult part is mostly in the creation of the background.
In fact, if one could disregard the background completely, creating actions in
simulation would be relatively simple to do.

The contributions of this thesis include the following:

e First, we are going to explain multiple applications of CNN including face
detection, recognition , and emotion recognition.

e Second, we propose a new 3DCNN + LSTM system that scores around 80%
on UCF-101 dataset.

e Third, we prove the efficiency of using simplified synthetic data for action
recognition, in which only optical flow data is considered. Domain random-
ization is applied by shaking the camera in a random fashion, as well as
changing the lighting conditions in the recorded videos.

e Fourth, augmenting the vanilla TSN [11] by including as input an addi-
tional stream of synthetic data on top of the real videos. Our proposed
augmentation outperforms the vanilla TSN by a significant margin.



e Fifth, training the TSN with only the generated synthetic dataset resulted
in 52.7% accuracy when tested on the sub-dataset of UCF-101.

e Finally, we release a dataset of synthetic data with all the actions chosen
from classes of benchmark datasets, including HMDB-51 and UCF-101. We
name the datasets S-HMDB-38 and S-UCF-25, and make them publicly
available for testing. !

Thttps:/ /www.dropbox.com/s/isz6vsw6fzibbwk /datasets.zip?dl=0
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Chapter 2

Convolutional Neural Network

Deep learning is rather an old concept that was introduced in the 80’s. It is a sub-
set of machine learning algorithms that consists of multi-layer neurons designed
based on the humans’ brains. However, it faced an issue back-then due to its need
to a huge computational power. With the advance of computational technology
and the discovery of GPUs, the deep network has raised again and dominated
the machine learning competitions since 2012. 2012 was a remarkable year in the
deep learning history when Alex net [12] achieved an error of 15.3% on Imagenet
competition more than 10.8 percentage points lower than that of the runner up.
This result was a huge turn in the machine learning field and since then deep
learning methods dominated and were used in most of the Al applications. In
this section, we are going to explain Convolutional Neural Network (CNN) and
in the next section, we will go through multiple applications that were done using
it. First, we are going to apply face detection using a typical machine learning
method called cascade and compare it with a deep learning method on videos.
Second, two face recognition methods are applied and compared. Finally, a CNN
network is used to detect the emotion of a person from a webcam.

Convolutional Neural Network have been successful in image competitions due
to its explicit assumption that the inputs are images. Unlike the regular neural
network, which takes an input of a single vector figure 2.3 [13](left), CNN takes
an input of 3 dimensional neurons as shown in figure 2.3(right). The 3 dimensions
are usually width,height ;and depth where the depth is equal to three when the
image is RGB and to one when it is gray scale. Also, an additional feature to
convolutional neural network is that neurons in a hidden layer are connected to a
small region of the precedent layer instead of being fully connected. This feature
gives the CNN a great advantage over regular nets as it reduces the number of
parameters calculated.

The convolution operation is done by multiplying a sliding window, which
is also called a kernel or a filter, over an image. The result of the element-
wise product and sum of the original image with the filter is the output of the
convolution, which is also called feature maps. The mathematical equation of the

4
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Figure 2.1: Regular neural network(left) takes 1-d input while convolutional neu-
ral network(right) takes 3-D input

convolution could be written as:

O(i,j) = (I« K)(i,§) =Y > I(i+m,j+n)K(m,n) (2.1)

where O is the output feature map, I is the input image ,and K is the kernel.
m,n are the width and height of the kernel, and i,j are the pixel at which the
convolution is happening. As shown in figure 2.2 [14], the 3x3 filter is slided
over the original 6x6 image to give a feature map of 4x4. The size could be
kept as 6x6 by using padding. Padding is adding pixels of zero to the border of
the image in order maintain the original size. Convolution neural network is the
combination of the steps mentioned above over multiple layers as shown in figure
2.3 [15]. At each layer multiple filters of altered values are applied in order to
detect different type of features. In addition, a common practice in convolutional
network is to do Max pooling after each layer. Max pooling is used to reduce the
spatial size of the feature maps in order to decrease the amount of parameters
in the convolutional network. It is therefore one way to control overfitting in
the system. Max pooling is a function that is applied on a part of the image
(2x2 for example) where the maximum pixel is kept and the remaining values
are discarded. Another function is used in order to introduce non-linearity in
the network is the activation function. Rectified Linear Unit knows as RELU is
an activation function that is widely used in order to apply element-wise non-
linearity. RELU could be mathematically defined as:

f(z) = max(0,x) (2.2)

At the end of the network, the last two layers are usually fully connected layers
where number of neurons of the last layer is equal to the number of classes that
we are trying to classify. For example, in binary classification network, it could
be designed to have a final layer of two neurons. Each neuron represents the
probability of the input image of being class a or b. Finally, The convolutional
neural network could be summarized as follow (Fig.2.3)
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Figure 2.2: The result of a convolution over an image is the element-wise product
and sum of the filter matrix and the original image.

e The input that is a raw pixel values of an image having three dimensions
of height, width, and depth(RGB channels).

e Convolutional layer that gives the element-wise product and sum of the
original image with the filter.

e Pooling layer serves as a downsampling function in order to reduce the
number of parameters in the system.

e Activation function such as RELU to introduce non-lineartity to the net-
work.

A 1-D Fully connected layer used to compute the final scores of each class.
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Figure 2.3: Convolution network includes an convolutional layers, pooling layers,
activation functions, and fully connected layers.



Chapter 3

Convolutional Neural Network to
Analyze videos

Convolutional neural networks are currently the state of the art when it comes
to understanding images and videos. CNN are superior to any other methods in
image classification, object detection etc. In this section, we present applications
such as face detection, face recognition, and emotion recognition that use CNN.
The input of all of the network presented below are videos from our webcam.
The videos are usually decomposed into multiple frames and fed to the networks
as images. Thus, dealing with videos is similar to dealing with images when
applying face recognition or emotion recognition because the system is classifying
each frame as a single image. In the next chapter, when trying to recognize an
action going on in a video, the relation between frames will become important.

3.1 Face detection

In this section, we are going to compare a well know machine learning method
to detect faces to a convolutional network in order to show the superiority of the
CNNs.The two methods were tested to detect faces; one is Haar cascade method
and the other is the well know object detection system YOLO (You Only Look
Once). Haar cascade is a machine learning classifier that is trained to detect
objects using positive and negative images. It is well known for being able to
detect faces. Haar-kernel moves across the image in order to detect edges, lines,
and centers as shown in figure 3.1[16]. Initially, the algorithm needs a lot of
positive images (images of faces) and negative images (images without faces) to
train the classifier. In our case, I used the implemented Haar cascade method in
Open-CV, which is pre-trained on the FERET dataset [17]. The dataset contains
a total of 14,126 images that includes 1199 individuals and 365 duplicate sets of
images. A duplicate set is a second set of images of a person already in the
database and was usually taken on a different day. In the training process,



Figure 3.1: Haar-kernel moves across the image in order to detect edges

features are extracted from the images. They are just like our convolutional
kernel. Each feature is a single value obtained by subtracting sum of pixels under
the white rectangle from sum of pixels under the black rectangle.

Another robust way of detecting faces is using the famous deep learning-based
method YOLO. YOLO is a famous, robust, and fast object detection method
done by Redmond et. al [18]. It is based on a deep convolutional neural network
that has 24 convolutional layers followed by 2 fully connected layers. The system
used is pre-trained on the ImageNet data (224 224 input image) and then the
resolution is doubled for detection. I used a finetuned YOLO on a dataset called
Wider Face [19]. Wider Face dataset is a face detection that contains 32,203
images and label 393,703 faces with a high degree of variability in scale, pose and
occlusion. We tested both networks on the same images and the results were as
expected. YOLO, which is a convolutional network,showed a better performance
where it was able to detect occluded faces as well as faces that are not looking
directly to the camera as shown in figure 3.2. The left pictures in figure 3.2
are the output of the YOLO network whereas the right column shows pictures
detected using HAAR Cascade method. For example, in the top picture, YOLO
detected only the three faces without any false positives whereas the machine
learning method detected 7 faces, 4 of them are not present. In addition, in the
bottom picture, YOLO was able to detect the face of the first lady to the right
even though it is not complete whereas HAAS Cascade was not able to detect it.

9



Figure 3.2: Results showing YOLO face detection to the left Haar Cascade face
detection to the right

3.2 Face Recognition

Another important application in understanding videos is the ability to not only
to detect faces, but recognize it as well. It could be used for security, educational,
and managerial purposes. For example, a webcam could be installed at the en-
trance of an office, and the attendance of each employee could be detected using
face recognition system. State of the art systems done by Google and Facebook
in face recognition are now at the brink of human level accuracy. DeepFace[20]
(Facebook) and FaceNet[21] (Google) have accuracies of 97.35% and 99.63% re-
spectively on Labeled Faces in the Wild (LFW) dataset [22]. The dataset contains
more than 13,000 images of faces collected from the web. Each face has been la-
beled with the name of the person pictured. 1680 of the people pictured have
two or more distinct photos in the data set.

DeepFace is a recognition method that applies the conventional pipeline in
face recognition Detect - Align - Represent - Classify Their addition was in the
alignment and the representation of the figures. They created a new way of
aligning faces using 3D alignment. They employed an explicit 3D face modeling
in order to apply a piecewise affine transformation and derive a face representation
from a nine-layer deep neural network. The other contribution done by DeepFace
is the network used. They used a 9 layers deep learning network that has around
120 million parameters. The first 3 layers are regular convolutional layers whereas

10
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Figure 3.3: Triplet loss function optimizes the embedding directly.

L4, Lb L6 are like convolutional layers but every location in the feature map
learns different set of filters. Finally, DeepFace could be done using an end-to-
end metric learning approach, known as Siamese network once learned, the face
recognition network (layer F8) is replicated twice (one for each input image) and
the features are used to directly predict whether the two input images belong to
the same person. This is done by learning a function that differentiates between
the vector feature of each image.

On the other hand, FaceNet uses a method where deep convolutional network
trained to directly optimize the embedding itself, rather than an intermediate
layer as in DeepFace. The training is done using a triplet loss function. Triplets
consist of two matching face thumbnails and a non-matching face thumbnail and
the loss aims to separate the positive pair from the negative by a distance mar-
gin. For example, to learn the parameters of the network, the system looks at
pair of pictures at the same time. The embeddings of Obamas pictures should be
similar, while the embedding of Obamas and Macrons images should be different.
Therefore, the Triplet Loss minimizes the distance between an anchor and a pos-
itive, both of which have the same identity, and maximizes the distance between

11



Ballout

Figure 3.4: Friends faces recognized using live webcam stream.

the anchor and a negative of a different identity as shown in figure 3.3.

I ran a demo of FaceNet on my webcam and the results are shown in figure
3.4. T used a pre-trained model of FaceNet and fine-tuned it on one picture of
each person recognized in the figure below. The system only requires one picture
of the person in order to be able to recognize it.

3.3 Emotion Recognition

Finally, convolutional neural network could also be used in emotion recognition
of faces in videos. Emotion recognition is usually done by analyzing the facial
expression of the person at the first place. The voice of the person could also
be analyzed to detect emotion. However, in our case, we are only considering
facial expression as they are usually enough to detect the emotion of a person.
Thus, information on the facial expressions are often used in automatic systems
of emotion recognition. The system I used is taken from [23]. They used a mini-
Xception model in order to be applied in real time. The accuracy is 66% on
FER-2013 [24] while the state of the art is around 71%. The FER-2013 dataset
contains 35886 gray scale images that have 7 emotions: Happy, Sad , Surprise,
Disgust, Fear, Calm, Anger. Figure 3.5 shows snapshot a real-time webcam
capture.

12



Figure 3.5: Friends faces recognized using live webcam stream.
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Chapter 4

Action Recognition Literature
Review

In this section, we are going to go through a literature review over the action
recognition methods as well as the use of synthetic data in deep learning.

4.1 Action Recognition Methods

Action detection or categorization is a current active area of research due to its
importance and its several real-world applications. It could be used in industrial
applications such as inspecting the employees behavior and effort. Also, it could
be used for security purposes to detect suspicious actions. First it is important
to differentiate between action detection and categorization. Action detection is
usually used in long videos to detect and classify several actions. For example,
one of the widely datasets used is the MPII Cooking Dataset. The videos show
actions taken in the kitchen where the person do variety of movements such
as pealing, cutting, washing etc. The process of detecting each action in the
video and labeling them is called action detection. On the other hand, action
categorization is the process of recognizing and labeling a single action to be
selected out of N number of actions in a trimmed video. Usually, the temporal
component is more important in action detection than in action recognition since
the detection process involves longer duration videos. Usually, the term fine-
grained action detection is used to indicate how delicate and subtle the differences
between the identified classes are. For example, in order to grasp the difficulty
of the task, consider the difference between pealing, cutting, and grating. Hence,
the action detection is usually considered to be a more difficult subject than
action categorization. There are several approaches to solve an action detection
problem. Usually, the difficulty lies in the temporal localization of actions in
long videos. The standard approach in action detection is to split the videos
into multiple frames. Since they have showed superiority in detecting features

14



of images, Convolutional Neural Networks are used for detecting spatial features
of each frame. A fully connected layer is used from the CNN structure located
before the activation layer represented in a vector form. Usually, this is the
common part of any action detection structure. Next, in combining the spatial
and detecting temporal features, different approaches are considered. One poor
approach is to simply pool each frame features extracted from CNN to detect
the actions. This method discards the importance of the temporal order of the
frames and does not give efficient results. Cherian et al. [25] invented a novel
pooling method that preserved the temporal order of the frame. Even though
it showed promising results, it did not match the current state of art results in
action recognition. A better approach that matches the state of art results is to
use Recurrent Neural Network after extracting the spatial features using CNN.
RNN can handle different input and output lengths as opposed to CNN which is
restricted to a fixed size input. The idea behind the RNN is to make use of the
sequential information. It allows understanding the video in a sequential form
such that the previous frame information is passed to the current input in addition
to the new frame. Thus, RNN memorizes what computations it has done to a
certain extent. However, RNN is still considered to have a short memory meaning
that the last layers might forget the initial information. RNN has an updated
version called LSTM referring to Long Short-Term Memory which extends its
memory. LSTM do not have a different structure than the RNN, but they differ in
their ability to be trained to forget the inadequate information and remembering
the important one. Thus, a good architecture for action detection is to use the
output of a CNN (fully connected layer) as an input to LSTM [26]. Another
approach would be an updated version of a CNN. It is called a 3D convolutional
neural network [27]. The third additional dimension is time. However, this way
only covers a short range of the sequence before it starts forgetting the initial
frames features. Singh et al. [28] proposes a method where the CNN is updated
to become a multi stream CNN. The additional stream includes information about
the motion in order to capture more details for the temporal features. In more
details, they applied CNN to optical flow representations. The last two methods
we mention in this literature are the convolutional two-stream network [29] and
the Temporal Segment Network [11]. The two stream flow applies CNN to both
streams, which one of them represents spatial features of the frames and its input
is a regular RGB frames. The other flow is to detect the motion between the
frames and has an input of optical flow pictures. TSN is an upgraded version of
the two stream network as it uses a deeper network, and it benefits from a 2D-
CNN model trained on ImageNet. Another advantage of TSN versus a classic two
stream convolution network, is its ability to model long-range temporal structures
by extracting sparse snippets of the video, instead of using consecutive frames
that are highly redundant.
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4.2 The Use of Synthetic Data

Training deep network models using synthetic data has shown promising results in
multiple computer vision applications, such as object detection [6][30][7][31], seg-
mentation [32][8][33], optical flow estimation [9][34], action recognition [10][35][36][37],
and pose estimation [38][39]. Some of these contributions are in the methods used
for generating synthetic data. For instance, Dwibedi [7] suggested an easy yet
effective way to generate synthetic images using what they call ‘cut and paste’.
Cropped pictures where placed inside any background picture to create realistic
training images. The most important point in their contribution is that images
are generated quickly, and their system outperforms the existing synthesis detec-
tion approaches by 21% when combined with real data.

Another important aspect, referred to as cross-domain generalization, is the
ability of synthetic data to generalize to real world data. It would not be useful
to train a system on synthetic data, and then have the trained network produce
worse detection and classification on real world data. To address this problem,
Tobin [40] used domain randomization [34] for object detection; the concept is
based on introducing random variations in the simulator in such a manner that
the world, after randomization, appears different to the to Al system. In the
simulator of Tobin [40], the parameters for lighting, pose, and textures were set in
a random and non-realistic manner. Their idea was to provide enough variability
when training in a way that the system would then be able to generalize to the
real world during testing. By training only on synthetic data, their proposed
network produced compelling results on a benchmark object detection dataset.

The method we are proposing is similar in spirit to that of De Souza [10];
however, three main differences exist. First, the network we use is an augmented
TSN, which includes an additional stream or two for synthetic data compared to
their cool-TSN, which feeds the synthetic and the real data together using mini-
batches. Second, we propose using a reduced form of synthetic data (hereafter
referred to as simplified synthetic data), which leads to a better accuracy than
that of [10]. Third, the synthetic dataset we created and used for training is con-
siderably smaller than that of [10] (8529 versus 39,982), and yet the improvement
we achieve is higher than what they achieve (3.9% versus 1% on HMDB-51). Our
experiments are more comprehensive, in which we test our augmented TSN on
different inputs, sometimes using synthetic data alone, and others using a mixture
of real and synthetic data.

To the best of our knowledge, along with [37], only a few papers assess the
effect of training a network on synthetic videos alone, and test it on a dataset
such UCF-101. Our results revealed that the more synthetic data is used to train
a network, the higher the accuracy becomes.

In this thesis, we propose to evaluate the advantage of using simplified syn-
thetic data for training neural networks for action categorization. We test our
approach on the Temporal Segment Network (TSN) [11], which learns both spa-
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tial and temporal streams separately; the temporal stream is fed with optical
flow fields, and is not affected by background. For instance, if the action to be
modeled is ‘diving from a cliff’, whether the surrounding environment is simu-
lated in the scene or not, the optical flow frames are not affected as long as the
background is static. Thus, our videos generated using a physics engine, such as
Unity, are background-free and no complex scene design was required.
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Chapter 5

Failure Case: a 3DCNN + LSTM
Network

In this section we are going to combine 3D-CNN with LSTM in a novel way. But
first, we are going to take a closer look on what 3DCNN and LSTM are

5.1 3D-CNN

As its name indicates,3D-CNN is the three dimensional version of CNN. As men-
tioned in the previous sections, and since CNN is the state of the art in image
classification, [27] tried to extend this superiority to action recognition where we
are dealing with videos. Since videos are bunch of assembled images, 3D-CNN
includes as an additional dimension that is considered as time(Fig.5.1).The fil-
ters used to convolve over the images are now 3D filters in order to conserve the
temporal relation between the frames over time. Also, as shown in the bottom
of figure 5.1, and similar to the regular CNN,3D-CNN has multiple convolutional
layers as well max-pooling and fully connected layers. In [27], they applied de-
convolution on convbb feature maps in order to visualize what the 3D-CNN is
learning. They discovered that the 3D-CNN starts by focusing on appearance in
the first few frames and then tracks the motion in the subsequent frames, which
proved the ability of 3D-CNN to learn both motion and appearance. Also, simi-
lar to the regular CNN, 3D-CNN is could be pre-trained on large video datasets
Sports-1M, which contains more than million sport videos. In fact, 3D-CNN has
to be pre-trained on large datasets in order to avoid overfitting when trained on
small datasets.

5.2 LSTM

Recurrent Neural Network (RNN) is a special kind of neural networks that han-
dles sequential data such as voices, texts, videos etc. Similar to other deep
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Figure 5.1: 3D-CNN includes an additional dimension that helps the network to
conserve the temporal relationships between the frames

learning algorithms, RNN’s are relatively old and were invented in the 1980’s.
Unlike CNN who accepts a fixed size input such as an array of an image, RNN’s
have a more flexible structure where it can take a sequential input or a sequential
output. It is also capable of having both sequential input and output. In addi-
tion to this flexibillty, RNN’s are designed to have internal memory as they are
in fact the only networks to have one. The memory, which enables the network
to persist information, is done by creating loops inside the network that allow
information to be passed from a hidden layer to another as shown in figure 5.2.
The equations of RNN could be represented such as :

he = g(Wan % 2 + Win % hyy =+ by) (5.1)
2y = g(Wh, * hy + by) (5.2)

where g is a non-linearity function such as sigmoid, xt is the input, ht is the
hidden layers, N is the hidden state with N hidden units, and zt is the output at
time t. W is the weight between two layers, and b is the bias term. However,
there are two problems with the regular RNN’s called ”exploding gradients”
and ”vanishing gradients”. Exploding gradients means that the system gives
a huge number for the weights without a logical reason. This problem could be
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Figure 5.2: RNN’s have loops that enables them to hold information of previous
layers

solved by normalizing the weights. However, the second problem, which is the
vanishing gradients, which means the gradients of the system become too small
and eventually vanish. This problem was solved by creating an updated version of
RNN’s called ”Long Short Term Memory”.LSTM networks,proposed by [41], are
special type of recurrent neural network RNN that has the ability to memorize
long-term variables and solves the vanishing gradients problem. LSTM'’s have
the ability to maintain the information for long time because of they are able to

delete useless information and keep the useful one. The mathematical equations
of LSTM could be shown as follow :

ip = g(Wai x xp + Whix by + b;) (5.3)
fe = gWayp x 2t + Wiy * hy1 + by) (5.4)
0t = §(Wao * 2y + Wi % hy_q + b,) (5.5)
gy = tanh(Wye x xy + Whe % hy_1 + b.) (5.6)
¢ = fi*xep_q + 1; % xb,) (5.7)

hy = oy * xtanh(ct) (5.8)

where ** denotes element-wise product between the vectors, and i is input gate
I is forget gate ,0 is output gate,g is input modulation gate , and ¢ is memory
cell unit. More details about LSTM could be found in [41] and [26] where the
above equations and figures 5.2 and 5.3 are taken from.
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LSTM Unit

Figure 5.3: LSTM have the ability to maintain information for long time dues to
its ability to learn to drop the useless features and keep the useful ones.

5.3 3DCNN + ConvLSTM

Our model for 3DCNN+LSTM was inspired by a gesture detection algorithm
made by [1] and shown in figure 5.4. However, our system differs from their
system by discarding the 2DCNN layers at the top of the model and using one
directional ConvLSTM. These two simplifications are made to decrease the num-
ber of parameters in the system. ConvLSTM designed by [42] differs from the
LSTM explained in the previous section by its ability to take an image as an
input. The Vanilla LSTM takes vectorized features as an input, which results in
the loss of the spatial information of an image. Thus, ConvLSTM is an ugraded
version of LSTM that is identical to LSTM except for its hidden layers that are
convolutional layers.Another main difference between our proposed system and
system made by [1] is the way that the 3DCNNs’ outputs are fed to the Con-
vLSTM. Instead of feeding the last fully connected layer, we fed each cell of the
LSTM by convolutional hidden layer as shown in figure 5.5. The idea behind this
adjustment was to explicitly help the ConvLSTM to have a longer memory since
it was stated by [27] that the first few layers of the SDCNN are responsible of the
spatial information while the subsequent layers are responsible of the temporal
ones.

21



Figure 5.4: Model create by [1] combined 3DCNN with ConvLSTM and 2DCNN
to do gesture recognition

5.4 Results

We used a compact 3DCNN that has only 4 hidden layers and fed them to the
ConvLSTM network. The 3DCNN was first trained on Sports-1M and then
trained on UCF-101. We tried different set of parameter shown in table 5.1. The
parameters changed were kernel size, dropout, batch size, optimization method,
number of filters, input image size and epochs. The last combination in table 5.1
was the best one, where we achieved an accuracy of 80.1% on UCF-101 dataset.
More detailts about the dataset is given in section 7. The results achieved which
is 80.1% is way below the state of the art systems, which achieve above 90%
accuracy on this dataset as shown later in table 7.3. Thus, we tried a different
way to improve the accuracy of another deep learning system called TSN using
synthetic dataset.
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Figure 5.5: Our proposed model to do action recognition combining 3DCNN with
ConvLSTM.
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Chapter 6

Methodology

This section presents the proposed methodology, including an analysis on the
value of appearance data versus optical flow in action categorization, as well as
the assessment of what part of synthetic data is most relevant for the sake of
action categorization.

6.1 The Value of Appearance Data in Action
Categorization

In action recognition networks, it is common to include both spatial and temporal
ConvNet streams. In TSN [11], for example, the spatial stream takes RGB frames
as input, and the temporal stream processes optical flow. Each stream is trained
separately and then their scores are fused at the output layer. When tested on
the UCF-101 dataset, after training on the spatial stream alone, TSN scored an
accuracy of 84.5%, and when trained on the temporal stream alone, it scored
an accuracy of 87.2%. Fusing both streams resulted in an improved accuracy
of 92.0%. Looking closer at these results, the relatively moderate improvement
attained when adding appearance data questioned its value in action categoriza-
tion. This result motivated us to use only temporal information in our synthetic
data; an idea that agrees with the results presented in [43]. Moreover, using only
temporal information introduces substantial simplifications to the synthesis of
videos, as will be seen below.

Optical flow is the pattern of motion in the visual scene reflecting the relative
motion between the object and the camera. For the sake of reproducing the
action, a question arises regarding the background of the scene and its impact
on the optical flow. Under ideal conditions, where the camera is fixed, and
the lighting condition is consistent among all the videos within the dataset, the
background does not have a significant contribution to the optical flow pattern.
However, in the absence of ideal conditions, relative motion can be detected from
the pixels in the background of the scene. This happens, for instance, when a
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camera is held by a person who is moving or walking. This random movement
or ‘shake’ in a camera can distort the ideal conditions that are replicated in a
gaming engine.

One approach to tackle this problem is domain randomization [6] [34], which
is used in object recognition. In domain randomization, an object in a scene
is placed out of context in order to train the network to deal with the possible
variability in the scene appearance when detecting that object. In our thesis, we
borrow the idea of randomization from the field object recognition, and apply it
to actions by adding random changes in light intensity in the scene, and random
camera movements. The variations are applied either within the vicinity of its
original position to introduce the shaking effect into the camera, or by tracking the
action of interest. Therefore, the synthetic videos we use constitute a combination
of scenes under ideal and non-ideal conditions, either by introducing distortion
in light intensity, camera position, or a combination of both.

6.2 Synthetic Data

Creating realistic backgrounds is one of the main challenges one faces when gen-
erating synthetic data. In an outdoor environment, this challenge is even more
difficult, requiring graphics experts capable of reproducing computer models of
natural objects, such as trees and rocks. It would seem that in the case where
background information is critical, the required computer effort could be better
spent collecting videos of real scenes. On the other hand, if one could completely
disregard the background and create simple videos of foreground alone, synthetic
data creation becomes considerably simpler (see Fig. 6.1).

We investigate the significance of appearance on network performance for
videos of human actions on simulated data we created, as well as on the bench-
mark datasets HMDB-51 and UCF-101. The synthetic actions were downloaded
from Mixamo.com, or from the Unity asset store. To test for the effect of back-
ground, various backgrounds and scenes were downloaded from the Unity asset
store. For the HMDB-51 classes, 38 were reconstructed; whereas for the 101 UCF,
25 classes were reconstructed. Table 6.1 shows the number of videos and classes
for actions corresponding to those found in the benchmark datasets. It is worth
noting that we only synthesized videos for 38 out of the 51 HMDB classes, and
25 our of the 101 UCF classes, since other classes were not available to download.

In each dataset, different characters are used to do the same action; and for
each action, there are multiple animations that differ from each other in the way
of doing the action. For example, if the action is ‘riding a bike’, there are several
ways of riding it: it could be ridden at a quick or slow speed, it could be ridden
standing up or sitting down (see Fig. 6.2). Also, for further generalization, some
of the actions were done under different lighting conditions such as under dark,

26



- \\

7
/ change

—r—
I camera

/ -
impor generate \

to lfmty Simplification made [FRFY i Include \

|

| . .

: Crgate g:’\ln:jatlon > No need to setup 4 camera ]
| (i.e., Blender) 3D scene \_ shake
| )} Mo -

\ -~

- ~<

7 N -~
7/ include [N

' random
\_ lightining ,
7
~ -

~——

Figure 6.1: The simplified data were generated using Unity without setting up a
3D scene

shadow, or bright lighting conditions. When removing appearance and relying
on optical flow alone, none of these nuances are relevant any longer. Optical flow
is not affected by the lighting, nor by the color and texture of the garment of a
character. This fact allowed us to use the same character for most of the videos
where appearance is disregarded.

As a result, in this thesis we suggest using only the optical flow of synthetic
data (which is simple to obtain), and disregard the background scene information
(which can be difficult to obtain). For example, in producing the ‘climb stair’
action, it is enough to only reproduce the action of climbing the stairs without the
need to place the stairs in the scene. For the ‘pitching’ action, it is sufficient to
simulate the act of pitching a ball without having to simulate a ball in the scene,
as its contribution to the optical flow is negligible. In other words, the only factor

Table 6.1: Number of videos created of objects corresponding to those found in
benchmark datasets: background videos stands for the videos that were made
using a 3D setup.

Dataset Classes | Background | Background-less
(#) Videos (#) Videos (#)
HMDB-51 38 3817 8528
UCF-101 25 - 5514
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Figure 6.2: Examples of videos created with background (left column) and sim-
plified videos (right column)

contributing in the synthesis of the scene is the action of the character itself.

Each action includes between 200-250 videos, requiring between 60-75 minutes
in total to generate. Similar to real videos, the generated videos are between
two to six seconds. Camera acquisition is set to thirty frames per second in all
of the generated videos. The aspect ratios of the videos are close to those of
the UCF-101 videos (320x240 pixels). To complete the dataset, each action is
reproduced from different camera viewpoints and environment conditions (light
source intensity and camera position). Note however, that not all the actions
are one-person synthetic. Some actions such as ‘salsa spin’ or ‘boxing’, require
including the second person in order to correctly interpret the overall meaning of
the action (two-people synthetic).

The results of this comparison were quite surprising: training using optical
flow alone on both the real and synthetic datasets produced classifications results
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superior to those in which appearance data was also included. As a result, it
was decided that in simulations, we would only vary the camera viewpoint while
performing the various actions. Also, purposely shaking the camera in simulations
resulted in conditions that are close to what is experienced in the real world.
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Chapter 7

Results

Several experiments were performed to assess the effectiveness of using synthetic
data in training of action recognition networks. In what follows, we first present
the datasets we used for the experiments, then discuss the proposed networks,
and finally discuss the results of our experiments.

7.1 Datasets

Five different datasets were used for the proposed experiments, two of which
comprise videos of real actions, including UCF-101 and HMDB-51, and three
that are synthetic, which we simulated:

e UCF-101: a dataset of human actions from videos in the wild, containing
13320 videos distributed in 101 action categories. Some captures of the
videos are shown in Figures 7.1

=i R

/VIA(iwéking

‘Swing-Side

Figure 7.1: UCF-101 dataset includes 101 classes such as diving, walking, riding
horse etc.
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e HMDB-51: a video database for human actions, mostly extracted from
movies and web videos. It consists of 6766 videos from 51 different action
categories. Some captures of the videos are shown in Figure 7.2

Bench press

t  bavwiae |-

Shake hands Brush hair Clap hands

Figure 7.2: HMDB-51 dataset includes 51 classes such as haircut, rafting, shaving
beard etc.

e Synthetic-appearance (HMDB-38): approximately 4000 synthetic videos
were created including background, chosen from 38 classes of real HMDB-
51. Example is shown in Fig. 7.3. Note that the videos are made of low
resolution in order to simulate the videos from the real dataset.

e Synthetic-simplified (HMDB-38): approximately 8000 synthetic videos were
created using no-background, chosen from 38 classes of real HMDB-51.
Example of the video is shown in Fig. 7.4

e Synthetic-simplified (UCF-25): approximately 5000 synthetic videos were
created using no-background, from 25 classes of the real UCF-101.Example
of the video is shown in Fig. 7.4
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Figure 7.3: Sample of the created synthetic dataset with background

Figure 7.4: Sample of the created synthetic dataset with background without
background
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7.2 Networks tested

To investigate the potential of using simplified synthetic data for training, we
tested four different networks (Fig. 7.6), including TSN, Augmented TSN (Network-
1 and Network-2), and one-flow TSN (Network-3).

TSN Temporal Segment Networks [11] are an upgraded version of the two
stream convolutional network [29]. TSN uses a deeper network than the two
stream network, and it benefits from a 2D-CNN model trained on ImageNet [44].
The 2D-CNN could be Inception, 2D-ResNet, or Batch-Normalized-Inception.
Another advantage of TSN versus a classic two stream convolution network, is
its ability to model long-range temporal structures by extracting sparse snippets
of the video, instead of using consecutive frames that are highly redundant.

Video Video Snippets Temporal Segment Networks
r S g o= m—mm—— - == — = ——— ——— =~ — === ————— = 1
I I I
: =) t '

i Optical Flow CNN ?\ -
B :___- s T » - N
r = il
: 1 I : Action
|- g [N
|L |I'= [: Segment |
1 | ? Consensus |
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| : I
= - |
Lo-——- o (g ————— .

Segment Snippet Feature Extraction Obtaining Supervision
Splitting Sampling Snippet-wise Prediction Consensus Backprop

Figure 7.5: TSN is designed to have a longer memory by choosing snippets of the
videos

Augmented-TSN (Network-1). This network is based on TSN, with two
additional streams. The first addition is the spatial stream that takes as input
synthesized + real appearance data. The second additional stream is the temporal
one, which takes as input the optical flow of both the synthetic and the real
datasets. Fusing the score was done by giving the real+synthetic flow a weight
of 2.0, real flow 1.0, real RGB 1.0, and synthetict+real RGB 0.5.

S-TSN (Network-2). Synthetic-Simplified TSN is based also based on the
TSN model, with an addition stream that trains extracted optical flow for both
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real and simplified synthetic data. Fusing the score was done by giving all of the
streams the same weights.

One-flow-TSN (Network-3). This model uses only the temporal stream of
TSN. It takes as an input the extracted optical flow of the Synthetic-UCF-25
dataset and it is tested on real videos from UCF-25. The intent of this experiment
is to prove that synthetic data alone is sufficient to train a network that is later
tested on real data.

3D-ResNet-18 (Network-4). Residual Networks in general, 2D or 3D, were
created to train very deep networks for action recognition. In order to overcome
overfitting, these networks typically require huge amounts of data. For exam-
ple, 3D Res-Net-101 [2] (the number 101 refers to number of deep layers in the
network) was trained on the Kinetic dataset [3], which contains 300k videos. 3D-
ResNet uses the same terminology as 3D-CNN, where a 3D convolution filter is
applied to RGB frames, with time as the third dimension. However, it uses a
more efficient way in learning, called skip connections, or short cuts between lay-
ers, which allow resolving the vanishing gradient problem, and enable modeling
very deep networks.

In our tests, we are using 3D-ResNet-18 and not 101 because we did not
generate 300 k synthetic videos. However, it would seem intuitive that if our small
number of synthetic videos is able to reduce overfitting in ResNet-18, a larger
number of synthetic videos will surely be able to train ResNet-101. Therefore,
the intention of this test is to verify whether synthetic data can help reduce
overfitting in a pre-trained network. In this experiment, all our synthetic videos
were added to the real training data.

7.3 Analysis of the Results

All of the network parameters were tuned to those of the original TSN [11],
except for the drop-out ratio, which gave a better accuracy when set to 0.8 for the
temporal stream. The network weights were initialized with pre-trained models
from ImageNet using BN-Inception [45] as the ConvNet architecture. Also, mini-
batch stochastic gradient descent was used with a batch-size set to 128 with a
momentum of 0.9. The number of iterations was adopted from the TSN for
both spatial and temporal streams. The optical flow frames were extracted using
the code provided in the TSN framework. Finally, we followed the traditional
evaluation on the three training/testing splits for all of the experiments.
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7.3.1 The Effect of Background Removal

In this experiment we tested the effect of using quality versus quantity videos.
For Network-1, we added 4000 synthetic videos with an appropriate background
setup. For Network-2, we added 4000 simplified videos and in another instance,
we added 8000 simplified videos. What we observed ( Table 7.1) was that adding
8000 videos to Network-2 produced slightly better results than Network-1. Even
though Network-1 includes an additional stream compared to Network-2, the
latter preformed better. We concluded from this experiment that a large number
of simplified videos can outperform videos with background included.

Table 7.1: Network 2 versus Network 1: note that domain randomization is
effective in simulating real outdoor data

Method HMDB-51
Network-1 with 4000
background synthetic videos 72.3 %
Network-2 with 4000
simplified synthetic videos 71.8 %
Network-2 with 8000
simplified synthetic videos 72.4 %

7.3.2 Effect of Adding Synthetic Data to Training

This experiment was divided into two parts: the first one performed on a sub-
dataset of HMDB-51 and UCF-101. As mentioned in Section 7.1, we recon-
structed (synthetically) 38 classes of the HMDB-51 and 25 classes of the UCF-
101. Thus, the training and the testing in this part is performed on 38 classes of
HMDB-51 and 25 classes UCF-101. The purpose of this experiment is to study
the effect of adding synthetic data to all of the dataset classes. First, we re-
produced the TSN results for those sub-datasets using the original real videos.
Next, we added half of the generated synthetic videos (2500 for UCF-25, and
4000 for HMDB-38) to a third stream using Network-2. Finally, we added all
of the generated videos (5000 for UCF-25 and 8000 for HMDB-38) to the third
stream in Network-2. Table 7.2 clearly shows that adding simplified synthetic
videos improved the performance of TSN. It also shows that the more synthetic
videos are added the better the network performs.

The second part of the experiment is done on the entire dataset, even though
some of the classes are not augmented with synthetic data. In this part, we
compared the performance of Network-2 versus state-of-the-art methods, on both
the HMDB-51 and UCF-101.
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Table 7.2: The effect of combining real and simplified synthetic videos on sub-
datasets.

Dataset HMDB-38 | UCF-25
Real only 71.8 96.66
Half Synthetic
Videos+Real 73.66 97.5
All Synthetic
Videos+Real 74.62 97.8

HMDB-51 Dataset. First, we compare our Network-2 to Cool-TSN [10].
Cool-TSN includes 39,982 appearance videos for 35 action classes, where 21 of
them are common with HMDB-51. In our Network-2, we generate only 8000
videos, with actions similar to the 38 classes of HMDB-51. In the third stream,
the synthetic videos were added to the real videos in the 38 classes, while the
remaining 13 classes had only real videos. Results show that Network-2 outper-
formed Cool-TSN by 2.9 %. As can be seen in Table 7.3, the Network-2 also
outperformed all of the state of the art systems, except I3D and OFF. However,
we must note that I3D [46] had to be pre-trained on 300,000 videos from the
Kinetics dataset. On the other hand, although OFF uses 5 streams while
Network-2 uses 3 streams, it outperforms our proposed system by only 1.8 %.

UCF-101 dataset. Similar to HMDB-51, we created a sub-UCF-101 synthetic,
including approximately 5000 videos, representing 25 classes of the actions. Using
the same procedure as that performed on the HMDB-51, we added the 2500 videos
first and then added 5000 videos to 25 classes of UCF-101. Since we reconstructed
only 25% (25 out of 101) of the UCF-101 classes compared to 75% ( 38 of 51)
of the HMDB-51, here the improvement was lower. Network-2 improved 0.6%
above the vanilla TSN when 5000 videos were added to get a final score of 94.6
%.

7.3.3 The Effect of Decreasing the Number of Real Videos

In this section, we investigate the ability of simplified synthetic videos to replace
real videos. Three tests were performed: (1) reducing the amount of videos by
half, (2) keeping only 10 % of the real videos, and (3) having no real videos at
all in the training sets.

In the first experiment, half of the real videos were randomly removed from
the training splits, and the performance of the network was evaluated with and
without synthetic data. In the second experiment, only 10 % of the real data
was kept and the same evaluation was repeated. Finally, in the third experiment,
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Table 7.3: Benchmarking Network-2 versus state-of-the-art networks

UCF-101 | HMDB-51
Method (%) (%)
iDT+FV [47] 84.8 57.2
Tow-stream [29] 88.0 59.4
Two-stream LSTM [48] 88.6 -
L2STM [49] 93.6 66.2
TSN-2M [11] 04.0 68.5
TSN-3M [11] 04.2 69.5
Cool-TSN [10] 01.2 695
3D-ResNet-101 [2] 94.5 70.2
Two-stream MiCT [50] 94.7 70.5
CoViar [51] 94.9 70.2
OFF [52] 96.0 742
Two-stream 13D [46] 98.0 80.7
Network-2

half of the generated

videos (Ours) 94.4 71.8
Network-2

all of the generated

videos(Ours) 94.6 72.4
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training was performed on only synthetic data, and testing on real data. The
first two experiments were done using Network-2 while the last experiment was
done using Network-3. Network-3 in Fig. 7.6 includes only the optical flow
stream. Since there were some actions from the real datasets that could not be
synthesized, during testing we limited the actions from UCF-101 to those that
were produced synthetically. For UCF-101, 25 out of 101 classes were used. Table
7.4 shows that the accuracy of the network did not drop by much when half of
the real videos were removed. However, when only 10% of the videos were kept,
the accuracy dropped to 77.14 % with real videos, while it stayed relatively high
85.41% with the additional 5000 synthetic videos.

Table 7.4: The effect of decreasing the number of real videos on the accuracy of
UCF-25 while adding 2500 and 5000 synthetic videos

UCF-25 | Real | Real + 2500 | Real + 5000
100% Real | 96.6 97.5 97.8
50%Real | 96.3 97.0 97.7
10%Real | 774 81.6 85.4
0% Real - 30.7 52.7

Finally, when training with 5000 synthetic videos, the accuracy dropped to
52.7% while training on around 2500 synthetic videos scored 30.71%. These
results are comparable to those by [37], who got 52.1% when trained only on their
generated synthetic data. The results we put forward demonstrate the potential of
training action recognition networks using simplified videos, especially that some
of the trained classes, such as ‘CleanAndJerk’ achieved an accuracy above 90%, as
shown in Figure 7.3.3. On the other hand, other classes (such as ‘BaseBallPitch’
and ‘Skateboarding’) scored as low as 5%, suggesting the inability of the simulator
in accurately re-creating those classes.
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7.3.4 Robustness Test

This final experiment was performed to test for robustness. Here, a network was
trained on one dataset, and then tested on a second, using only actions classes
that are common between the two. More specifically, 5 common classes between
UCF-101 and HMDB-51 were identified (shoot-bow, biking, horse-riding, push-
up, and golf-swing). TSN was trained on the regular HMDB-51, but when tested,
the common classes stated above are replaced by videos from UCF-101. This
process is tested using a TSN and augmented TSN and the results shows that
with TSN the average accuracy of these five classes dropped from 91.4% to 70.3%,
while with augmented TSN it dropped to 80.5% yielding to 10 % improvement.

7.3.5 Reduce Overfitting

In this experiment, we investigate the potential of synthetic data in reducing
over-fitting of 3D-ResNet-18 [2]. Because 3D-ResNets are very deep network,
they require a large amount of data to successfully train. 3D-ResNet-18 got a
validation accuracy of 16.2% when trained and tested directly on HMDB-51. 3D-
ReseNet-18 was subsequently pre-trained on Kinetic (300k videos) in order to
improve its accuracy to 56.4% on HMDB-51.

In our experiment, no pre-training was done, but we added both optical flow
and appearance synthetic videos to the real HMDB dataset (12,119 in total), and
used it to train 3D-ResNet-18. Although the 2% improvement is not very large, it
demonstrates that synthetic data can help reduce over-fitting in networks trained
on real data.
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Chapter 8

Conclusion

In this thesis, we explained the importance of video analysis using deep network.
We introduced three important methods which are face detection and recongition
as well as emotion recognition. Next, we proposed an innovative action recogni-
tion system that is based on 3SDCNN+LSTM. However, this system scored below
the state of the art action recognition systems. The most important par in this
thesis was introduction of new a way of generating simplified synthetic data to
improve the network accuracy.We analyzed the effectiveness of simplified syn-
thetic data in the training of deep networks for the sake of action categorization.
We validated that optical flow information was sufficient to train a network, and
that appearance information could be disregarded. The caveat here is that the
proposed actions do not require background interaction to differentiate between
two different actions (, swimming vs flying). We also tested using synthesized
data for training under two different scenarios: the first using synthesized data to
augment TSN with an additional stream, and the second using only synthesized
data to train the network from scratch. Both scenarios revealed good results,
where in all cases we obtained notable improvements for TSN on both UCF-101
and HMDB-51. We are currently working on creating a large synthetic dataset
that includes over 200 k videos in order to compare its effectiveness to that of a
dataset of real actions of comparable size, such as Kinetics.

41



Bibliography

1]

L. Zhang, G. Zhu, P. Shen, J. Song, S. Afaq Shah, and M. Bennamoun,
“Learning spatiotemporal features using 3dcnn and convolutional Istm for
gesture recognition,” in Proceedings of the IEEE International Conference
on Computer Vision, pp. 3120-3128, 2017.

K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace
the history of 2d cnns and imagenet,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 18-22, 2018.

W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al., “The kinetics
human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

S. Jones and L. Shao, “Unsupervised spectral dual assignment clustering
of human actions in context,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 604—611, 2014.

K. Soomro and M. Shah, “Unsupervised action discovery and localization
in videos,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 696-705, 2017.

J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To,
E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep networks with
synthetic data: Bridging the reality gap by domain randomization,” arXiv
preprint arXiw:1804.06516, 2018.

D. Dwibedi, 1. Misra, and M. Hebert, “Cut, paste and learn: Surprisingly
easy synthesis for instance detection,” in The IEEFE international conference
on computer vision (ICCV), 2017.

G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The
synthia dataset: A large collection of synthetic images for semantic segmen-
tation of urban scenes,” in Proceedings of the IEEE conference on computer
viston and pattern recognition, pp. 3234-3243, 2016.

42



[9]

[10]

[13]
[14]
[15]
[16]

[17]

[20]

[21]

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van
Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with
convolutional networks,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 2758-2766, 2015.

C. R. De Souza, A. Gaidon, Y. Cabon, and A. M. L. Pena, “Procedural
generation of videos to train deep action recognition networks.,” in IEEFE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2594—
2604, 2017.

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action recog-
nition,” in Furopean Conference on Computer Vision, pp. 20-36, Springer,
2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, pp. 1097-1105, 2012.

S. Y. Fei-Fei Li, Justin Johnson, “Knuth: Computers and typesetting.”
M. Cavaioni, “Deeplearning series: Convolutional neural networks.”
S. Tejani, “Artistic style transfer with deep neural networks.”

B. Holczer, “Computer vision - haar-features.”

P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “The feret database
and evaluation procedure for face-recognition algorithms,” Image and vision
computing, vol. 16, no. 5, pp. 295-306, 1998.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 779-788, 2016.

S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection
benchmark,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5525-5533, 2016.

O. M. Parkhi, A. Vedaldi, A. Zisserman, et al., “Deep face recognition.,” in
bmuc, vol. 1, p. 6, 2015.

F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 815-823, 2015.

43



[22]

[25]

[20]

[29]

[30]

[31]

G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database forstudying face recognition in unconstrained envi-
ronments,” in Workshop on faces in’Real-Life Images: detection, alignment,
and recognition, 2008.

O. Arriaga, M. Valdenegro-Toro, and P. Ploger, “Real-time convolutional
neural networks for emotion and gender classification,” arXiv preprint
arXiw:1710.07557, 2017.

I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza, B. Ham-
ner, W. Cukierski, Y. Tang, D. Thaler, D.-H. Lee, et al., “Challenges in
representation learning: A report on three machine learning contests,” in
International Conference on Neural Information Processing, pp. 117-124,
Springer, 2013.

A. Cherian, B. Fernando, M. Harandi, and S. Gould, “Generalized rank
pooling for activity recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3222-3231, 2017.

J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the IEEFE
conference on computer vision and pattern recognition, pp. 2625-2634, 2015.

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proceedings of
the IEEE international conference on computer vision, pp. 44894497, 2015.

B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao, “A multi-stream
bi-directional recurrent neural network for fine-grained action detection,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1961-1970, 2016.

K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Advances in neural information processing
systems, pp. 568-576, 2014.

X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object detectors
from 3d models,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 1278-1286, 2015.

J. Wu, 1. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum, “Galileo: Per-
ceiving physical object properties by integrating a physics engine with deep
learning,” in Advances in neural information processing systems, pp. 127—
135, 2015.

44



[32]

[33]

[34]

[35]

[37]

[38]

[41]

[42]

S. Sankaranarayanan, Y. Balaji, A. Jain, S. N. Lim, and R. Chellappa,
“Learning from synthetic data: Addressing domain shift for semantic seg-
mentation,” in The IEFEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and R. Cipolla,
“Understanding real world indoor scenes with synthetic data,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 40774085, 2016.

D. J. Butler, J. Wulft, G. B. Stanley, and M. J. Black, “A naturalistic open
source movie for optical flow evaluation,” in Furopean Conference on Com-
puter Vision, pp. 611-625, 2012.

H. Rahmani and A. Mian, “3d action recognition from novel viewpoints,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1506-1515, 2016.

H. Rahmani and A. Mian, “Learning a non-linear knowledge transfer model
for cross-view action recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2458-2466, 2015.

C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene
dynamics,” in Advances In Neural Information Processing Systems, pp. 613—
621, 2016.

H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model views,”
in Proceedings of the IEEE International Conference on Computer Vision,
pp. 26862694, 2015.

G. Rogez and C. Schmid, “Mocap-guided data augmentation for 3d pose esti-
mation in the wild,” in Advances in Neural Information Processing Systems,
pp. 3108-3116, 2016.

J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Do-
main randomization for transferring deep neural networks from simulation to
the real world,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RS.J
International Conference on, pp. 23-30, IEEE, 2017.

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual
prediction with lstm,” 1999.

S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo,
“Convolutional Istm network: A machine learning approach for precipitation

nowcasting,” in Advances in neural information processing systems, pp. 802—
810, 2015.

45



[43]

[44]

[49]

[50]

[51]

[52]

H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black, “Towards un-
derstanding action recognition,” in Proceedings of the IEEE international
conference on computer vision, pp. 3192-3199, 2013.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248-255, leee,
2009.

S. loffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiw preprint
arXiv:1502.03167, 2015.

J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model
and the kinetics dataset,” in Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on, pp. 4724-4733, IEEE, 2017.

H. Wang and C. Schmid, “Action recognition with improved trajectories,”

in Proceedings of the IEEFE international conference on computer vision,
pp- 3551-3558, 2013.

J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici, “Beyond short snippets: Deep networks for video classifica-

tion,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4694-4702, 2015.

L. Sun, K. Jia, K. Chen, D.-Y. Yeung, B. E. Shi, and S. Savarese, “Lattice
long short-term memory for human action recognition.,” in ICCV, pp. 2166—
2175, 2017.

Y. Zhou, X. Sun, Z.-J. Zha, and W. Zeng, “Mict: Mixed 3d/2d convolutional
tube for human action recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 449458, 2018.

C.-Y. Wu, M. Zaheer, H. Hu, R. Manmatha, A. J. Smola, and P. Krahenbiihl,
“Compressed video action recognition,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 6026-6035, 2018.

S. Sun, Z. Kuang, L. Sheng, W. Ouyang, and W. Zhang, “Optical flow
guided feature: a fast and robust motion representation for video action
recognition,” in The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

46






	Blank Page
	Blank Page

