
 

 

 

 

 

 

 

  



 

 

AMERICAN UNIVERSITY OF BEIRUT 

 

 

 

PIEZOELECTRIC WAFERS PLACEMENT ON COMPLEX AND 

LARGE STRUCTURES BASED ON GENETIC ALGORITHM 

 

 

 

by 

 

ZAINAB MOHAMMAD ISMAIL 

 

 

A thesis 

submitted in partial fulfillment of the requirements 

for the degree of Master of Engineering 

to the Department of Mechanical Engineering 

of the Faculty of Engineering and Architecture 

at the American University of Beirut 

 

 

 

Beirut, Lebanon 

April 2019 

  



 

 

  



 

 



v 

 

ACKNOWLEDGMENT 
 

 

To the light, my God, who guided me through the way and led me to accomplish this 

fine work, goes my greatest and faithful thanks. 

 

Special thanks are for my thesis advisor Dr. Samir Mustapha who provided me with all 

his support and care. The door to Prof. Mustapha was always open whenever I ran into a 

trouble spot or had a question about my research and writing.  

 

I would like also to thank Dr. Hussein Tarhini for his academic support and advice. He 

was always happy to help, guide, and encourage me. 

 

Many thanks and appreciation are for all those who provided any technical and research 

support as: 

 

- Mr. Mohammad Ali Fakih who had his own contribution in the research work 

done. 

- Mr. Mohammad Mahdi Alloush for his help in providing some Matlab codes. 

- MEA for providing the Airbus A330 cargo door. 

 

The most special thanks and love are for those who are always there for me, those who 

have borne and will always bear all the difficulties to stand by my side, those whom no 

matter how much I thank, I will never pay them back, for my supporting friends, for my 

tender family, for my precious parents, for my adorable husband, and for my lovely son.  

 

To every person who gave me something to light my pathway, I thank him for believing 

in me.  



vi 

 

AN ABSTRACT OF THE THESIS OF 

 

 

 

Zainab Mohammad Ismail       for   Master of Engineering 

      Major: Mechanical Engineering 

 

 

Title: Piezoelectric Wafers Placement on Complex and Large Structures Based on 

Genetic Algorithm 

Abstract 
 

This study presents an effective solution for the optimization of piezoelectric 

(PZT) wafers placement in a network on convex and non-convex structures, towards the 

application in the field of structural health monitoring. The proposed objective function 

is to maximize the coverage of the monitored area, discretized by a set of control points 

while minimizing the number of PZT wafers. In the optimum solution, each control 

point should be covered by a user-defined number of sensing paths, defined as the 

coverage level. The PZT locations were treated as continuous variables. Thus, during 

the optimization process, any location on the plate is considered as a potential position 

for a PZT wafer.  

The algorithm provides the flexibility of changing a wide range of parameters 

including the number of PZT wafers, the distance covered around the sensing path, the 

required coverage level and the number of control points, in addition to identifying the 

most sensitive PZT wafer within the network. The tractability of the model proposed 

was improved by feeding the solver an initial solution. The model calculates the 

importance of each PZT wafer within the network, which allows for further reduction of 

the number of active PZT elements. The suggested model was solved using a genetic 

algorithm.  

Multiple sensor network configurations on composite and metallic structures 

were selected, including a large cargo door of an A330 airplane, and validated 

experimentally. The experimental validation was to evaluate the accuracy in damage 

localization within the optimized sensor networks. The results demonstrated the 

proficiency of the model developed in distributing the PZT wafers on non-convex 

structures and large metallic structures.  
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CHAPTER I 

INTRODUCTION 
 

The development of continuous structural monitoring systems in aerospace, 

mechanical and civil structures would form a major establishment in the field of damage 

detection, assessment, and failure prediction. Knowing the integrity of in-service 

structures, on a continuous real-time basis, is crucial for manufacturers, end-users and 

maintenance teams. Structural health monitoring (SHM) is an area of growing interest 

and worthy of new and innovative approaches. Continuous monitoring requires the 

constant collection of data from sensors that are embedded within the structure. The 

data can then be analyzed to detect the presence of any possible flaws. The number of 

sensors needed to cover a structure and their placement is associated with many 

challenges, i.e., they depend on the type of data collected (vibration, strain, etc.) and the 

approach adopted for data analysis. 

The technological developments of piezoelectric (PZT) transducers, gives the 

possibility to develop effective and robust SHM systems for damage detection in 

composite and metallic components without affecting the performance of the structure 

[1, 2]. An important feature of PZT transducers is their electro-mechanical coupling 

which makes them particularly suitable as sensors and actuators in both passive [3] and 

active sensing [4, 5]. Lamb-waves have been extensively studied for damage detection 

in recent years due to their sensitivity to different types of damage and their ability to 

propagate for long distances [6, 7].  
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PZT wafer placement in a network, in an optimal configuration, is vital to 

ensure full coverage of the area under-study while minimizing the number of elements 

used within the network. Various metaheuristic optimization algorithms exist in the 

literature, for sensor placement, with many common foundations [8, 9]. They implement 

a form of stochastic optimization so that the solution found is dependent on the set 

of random variables generated [10]. In combinatorial optimization, by searching over a 

large set of feasible solutions, metaheuristics can often find good solutions with less 

computational effort than iterative methods or simple heuristics [10]. As such, they are 

useful approaches for optimization problems. Padula and Kincaid [9] have discussed 

some sample applications from NASA Langley Research Center, and tested different 

optimization methods on them. The algorithms for optimal placement of actuators and 

sensors appear to be very similar regardless of the application. All can be posed as 

selecting a subset of locations from a large set of candidate locations. Padula et al. 

described several combinatorial optimization methods like Tabu Search, Simulated 

Annealing, and Genetic algorithms that are effective in solving these problems. 

Previous research findings on the performance comparison between Tabo 

Search TS and Simulated Annealing SA suggest that TS performs better than SA. Battiti 

and Tecchiolli [11] reported that TS performed better than SA in terms of CPU time 

needed to reach a solution quality which is 1% from the best known solutions. Another 

direct comparison between SA and TS was done by Chiang and Chiang [12] where they 

have compared the performance of SA, TS, Probabilistic TS, and Hybrid TS for solving 

the facility layout problem, formulated as a Quadratic Assignment Problem QAP. Their 

results show that their basic TS approach performs better than SA. Sinclair [13] and 
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Arostegui [14] gave a similar result. In contrast to these results, in an early study Paulli 

[15] has reported that SA outperforms TS when the same computation time is spent by 

both algorithms. 

Hussin et al. [16] have compared two versions of SA and two versions of TS 

algorithms. Their experimental design was targeted towards examining the relative 

performance of these algorithms in dependence of instance size. The strongest 

dependencies have been observed for instances that were generated to resemble the 

structure of real-life instances. On the contrary, for other instance classes, such as 

unstructured instances, TS algorithms were dominating the SA algorithms independent 

of instance size. 

An effective method based on genetic algorithm (GA) has been presented by 

Jin et al. [17] to minimize the total distance between the sensors, of a wireless sensor 

network, and the sink (data collector), that allows for an energy efficient and a longer 

living sensor network. Optimization was achieved by dividing the sensor network into 

clusters, each having a cluster-head responsible for collecting the data from all the 

nodes within the cluster. Later on, cluster-heads will transmit the compressed data to the 

sink. The authors have used the GA-based approach to determine both the number and 

locations of the cluster-heads, to minimize the communication distance within the 

sensor network. They have used binary representation in which an individual consists of 

a number of bits; each bit corresponds to one sensor or node. A “1” means that the 

corresponding sensor is a cluster-head; otherwise, it is a regular node. Crossover and 

mutation in individuals give birth to other individuals in the next generation. The 

candidate individuals in the next generation are selected depending on their fitness that 
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is a factor increasing with the decrease of distances and number of cluster-heads. When 

fitness values are close to each other, there is a risk of stagnation; thus the fitness value 

of each individual is scaled by subtracting the minimum fitness value in each 

generation. Then, Jin et al. have proposed an improved GA, in which a two-gene-bit 

crossover and a two-gene-bit mutation are applied on the parent strings. Heinzelman 

[18], Tillett [19], and Ostrovsky [20] have also worked earlier on minimizing the 

communication distance for a predetermined number of cluster-heads. Bhondekar et al. 

[21] have also worked on optimization using GA by clustering the network. They’ve 

classified the sensors to three categories X, Y, and Z with high, moderate and low 

transmission range (and energy consumption) respectively. The algorithm maximizes 

the coverage field, and number of sensors in a cluster; and on the other hand minimizes 

the number of sensors out of range, overlaps between clusters, and the network energy 

giving for each parameter the suitable weight in the fitness function according to the 

application. For an L×L sensor plate, the length of the bit string is 2L2 as two bits are 

required to encode four types of sensing nodes i.e. X, Y, Z and inactive nodes. In this 

bit string the sequence of two bits decides the type of node: 00 being inactive, 01 being 

X mode, 10 being Y mode and 11 represents Z mode. As the algorithm progresses, it 

converges to the string giving the minimum fitness. The algorithm was tried on 

MATLAB, and the best results were recorded. It was noticed the evolution of the field 

coverage over generations, and the deterioration of the network energy.  

Another use of the genetic algorithm was by Chih-Chung Lai et al [22], who 

have suggested -for the purpose of prolonging the life span of the sensor network- the 

division of the deployed sensors into maximum number of disjoint subsets of sensors, or 
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sensor covers, such that each sensor cover can cover all targets and work by turns. This 

problem can be solved by transformation to a combinatorial optimization problem, 

disjoint set covers (DSC) that uses integer representation to encode the grouping 

combination of sensors where each integer corresponds to the number of the sensor 

cover that the sensor belongs to. 

Ting-Hua Yi et al. [23] have used the generalized genetic algorithm in which 

dual-structure coding method instead of binary coding method is proposed to code the 

solution. Each chromosome consists of two rows, the upper one holding indices from 1 

to n, and the lower having 0 and 1 only; 1 at the jth position means there is a sensor at 

this position and 0 means that there are no sensors. Only the upper row is changed, and 

the lower row is kept fixed so that we can keep the number of sensors constant. In 

generalized genetic algorithm GGA, another advantage over simple genetic algorithm 

SGA is that the two parents can also compete with their offspring to avoid premature 

convergence. Guo et al. [24] presented an improved GA for optimal sensors placement 

of a metallic truss structure in which two-gene-bit crossover and two-gene-bit mutation 

are applied on the parent strings. Each string consists of n bits in which q of them 

should be 1 (1 means a sensor exists in this position, we need to allocate q sensors). 

Mallardo et al. [25] have presented a passive sensing algorithm based on GA 

and Artificial Neural Network (ANN) techniques, to optimize sensor-positions for 

impact detection on composite structures. The optimization process took into 

consideration the uncertainty due to environmental conditions and the possibility of 

malfunctioning of one or more sensors. Flynn and Todd [26] proposed an approach for 

an optimal actuator and sensor placement for active sensing-based SHM. Using a 
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detection theory framework, they established the optimum configuration as the one that 

minimizes Bayes risk. The detector incorporates a statistical model of the active sensing 

process that accounts for both reflection and attenuation features and implements pulse-

echo and pitch-catch actuation schemes and takes into account the line-of-sight. The 

optimization space was searched using GA with a time-varying mutation rate. For 

verification, they instrumented a concave-shaped plate and applied artificial, reversible 

damage to a large number of randomly generated locations, acquiring active sensing 

data for each location. Then, they used the algorithm to predict the optimal subsets of 

the dense array. The predicted optimal arrangements proved to be among the top 

performers when compared to large sets of randomly generated arrangements. 

Schoefs et al. [27] proposed a methodology to optimize the spatial distribution 

of embedded sensors used for spatial variability assessment of stationary random fields. 

The optimization criterion relies on the width of the confidence interval of statistics for 

the characteristics to identify.  

Worden and Burrows [28] compared different optimization approaches for 

fault detection in a rectangular plate. The objective function used in the optimization 

was selected for a fault detection procedure based on ANN. A similar approach based 

on GA was proposed for passive sensing [29]. The proposed optimization algorithms for 

passive sensing maximize a fitness function which is based on the probability of 

detection (POD) of the proposed impact detection method [30]. In a study by Croxford 

et al. [31], the effect of the pattern of sensor layout (i.e., triangle, rectangle, trapezoid) 

was investigated, and it was found that a square or hexagon configuration provided a 

close to optimum performance. Yi et al. [32] proposed a novel optimal triaxial sensor 
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placement approach and a novel distributed wolf algorithm to improve the optimization 

performance in identifying the best sensor locations. Thiene et al. [33] proposed a 

sensor placement optimization approach for guided wave fault detection and 

localization techniques based on maximum area coverage (MAC) within a sensor 

network. The advantage of this approach is that it is independent of the details of the 

damage detection algorithm and does not require any determination of a POD function 

for a vast number of damage scenarios. Moreover, it can be applied to geometrically 

complex structures with pitch-catch sensor configuration and any active sensing 

procedure based on time of flight (ToF) of damage reflected waves. Experimental 

verifications on a flat composite panel, in which BVID was introduced, were conducted. 

A full probabilistic method based on the Bayesian inverse problem was proposed by 

Cantero-Chinchilla el al. [34] to rigorously provide a robust estimate of the time of 

flight for each sensor independently. Then, the prediction was introduced as an input to 

the Bayesian inverse problem of damage localization. Manohar et al. [35] explored 

optimized sensor placement for signal reconstruction based on a tailored library of 

features extracted from training data. Moreover, Zhang et al. [36] explored the 

fundamental limits of a sensor network lifetime. 

In this study, we aimed at designing a framework for sensor network 

optimization to capture the mathematical model based on the pitch-catch configuration. 

Several aspects were explored including the modeling of the geometry (represented by a 

set of control points) and the definition of the PZT locations that were treated as 

continuous variables. A novel model for PZT-wafer-placement optimization was 

developed. The objective function of the algorithm was to maximize the coverage of the 
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monitored area to a predefined level of coverage. During the optimization process, any 

location on the plate is considered as a potential position for a PZT wafer. The model 

takes into account several practical constraints such as the attenuation and the coverage 

of the excited wave. Since GA was proven to be effective in sensor optimization 

problems, it was adopted in this study and further validated on non-convex surfaces 

with different shapes and a large metallic structure. A sensitivity study was done to 

determine how much important each PZT wafer is, and thus indicate sensitive PZTs that 

should be frequently checked or supported by additional neighboring PZTs. 
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CHAPTER II 

METHODOLOGY 
 

A. Introduction 

The proposed optimization algorithm aims to maximize the coverage of a 

predefined finite set of control points. The coverage level (𝑛), which is a parameter 

chosen according to the user’s requirements, is defined as the number of sensing paths 

required to cover a control point in order to be considered as covered. Huang and Tseng 

[37] stated that an accurate damage localization requires the coverage of three sensing 

paths (𝑛 = 3), according to triangulation protocols. A sensing path (defined by any pair 

of PZTs) covers a control point if it lies within a given distance from the centerline of 

the path. This distance is referred to as the path coverage (𝑧) and was set to 30 or 40 

mm (depending on the material) based on literature [38-40]. Other constraints included 

the plate’s geometry, the number of available PZT wafers (𝑁), the minimum distance 

between each two PZTs (𝑑𝑚𝑖𝑛 = 𝑧) to avoid having multiple PZTs at the same location, 

and the minimum angle between two sensing paths (𝛼𝑚𝑖𝑛 = 10°) to ensure that the 

sensing paths are not collinear. Further, a maximum spacing between the actuator-

sensor pair was defined to account for the attenuation in the wave signal, it was set to be 

less than 𝑑𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 600 mm in this case. The geometry of the plate was defined as a 

polygon having a certain number of vertices. The sensor locations were assumed to be 

continuous variables, as opposed to Thiene et al. [33] in which finite possible locations, 
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for the PZT wafers, were predefined. For clarity, a sketch illustrating the model 

constraints and terminology is presented in Figure 1. 

 

 

Figure 1. A sketch illustrating the optimization model constraints and terminology 

 

The fitness function, to be maximized, was defined as the percentage of 

covered control points. Since the problem is a non-convex problem with binary 

variables, it is impossible to check whether the solution is a local or a global optimum. 

Thus, to reduce the probability of being stuck on a bad local maximum, a code that 

generates a preliminary solution and feeds it into the optimization algorithm was 

developed. The preliminary solution is either a uniform distribution of the available 

number of sensors along the edges of the plate geometry or evenly distributed through 

the plate geometry. The algorithm runs automatically for multiple times, through which 

it changes the number of sensors and calculates the corresponding coverage (Figure 2) 
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until it reaches the predefined desired coverage (in this study it was set to 95% of the 

control points) with the least possible number of sensors. 

 

 

Figure 2. A flowchart showing the model process  

 

Nmin = N Nmax = N 

Geometry discretization to control points 

Geometry definition 

Creation of preliminary configuration with N 

PZTs 

Optimization with N PZTs 

Coverage > desired coverage Coverage < desired coverage 

Defining the wave propagation characteristics – 

coverage and propagation distance 

Nmin = Nmax 

Start 

Stop 
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B. Optimization: Genetic Algorithm 

Genetic Algorithm GA, a metaheuristic inspired by the process of natural 

selection that belongs to the larger class of evolutionary algorithms, was used to solve 

the proposed model. A typical GA requires a genetic representation of the solution 

domain, and a fitness function to evaluate it. Each candidate solution is a chromosome 

of a number of genes equal to double the number of used PZTs; where each gene is a x 

or y coordinate value of a PZT element. Besides, the fitness function, to be maximized, 

is defined as the percentage of covered control points. Once these two elements (the 

genetic representation and the fitness function) are defined, a GA proceeds to initialize a 

population of solutions and then improve it through repetitive application of the 

mutation, crossover, inversion and selection operators (Figure 3). The built-in 

MATLAB GA function was used with the heuristic crossover function and Gaussian 

mutation. A population size of 200 was used in each generation to reduce the chance of 

getting a local optimum. “Rank” scaling function was used to give a scaled fitness value 

for every single individual in the population. The scaled fitness value of an individual is 

what defines its probability to be selected as a parent, using the “Stochastic uniform” 

selection function. The selected parents are used to form a second-generation population 

of solutions, through a combination of genetic operators including 

crossover and mutation. Five percent of the population, with the best fitness values, are 

chosen to pass to the next generation without undergoing crossover and mutation 

operations (the elite count is 5% of the population size). In the next generation, the 

average fitness should have increased, since the best organisms from the first generation 

were mostly selected for breeding, along with a small proportion of less fit solutions. 

https://en.wikipedia.org/wiki/Genetic_representation
https://en.wikipedia.org/wiki/Fitness_function
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Less fit solutions could be also produced due to random mutation and crossover 

between good individuals. However, these solutions ensure genetic diversity within the 

genetic pool of the parents and therefore ensure the genetic diversity of the subsequent 

generation of children. The algorithm terminates when a maximum number of 

generations has been produced, a satisfactory fitness level has been reached for the 

population, or the highest-ranking solution's fitness has reached a plateau such that 

successive iterations no longer produce better results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A flowchart showing the GA process 

 

The mutation rate, crossover rate, and population size parameters should be 

tuned to find reasonable settings for the problem under study. A very small mutation 

rate may lead to genetic drift (which is non-ergodic in nature), and a very high rate may 

Fitness evaluation 

General initial population 

Input parameters 

Start 

Is stopping criteria satisfied? 

Yes 

Selection 

Crossover 

Mutation 

No  

End 
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lead to the loss of good individuals from the population. When the crossover rate is too 

high, a premature convergence of the GA may result. A typical crossover rate of 0.8 

was taken in this study. 

It is worth noting that the optimal solution may change with the selected 

parameters (including mutation and crossover) and the initial population. 

In case the same solution is required to be reproduced, the ‘seed’ which can 

generate the same pseudo-random number sequence used by GA to create the searching 

stream, can be used. 

 

C. Problem formulation 

The geometry was defined as a polygon having a certain number of vertices. 

 

1. Parameter notation 

𝐾     : Set of control points 

(𝑥𝑘, 𝑦𝑘)   : Coordinates of control point 𝑘 

𝑁     : Number of PZT wafers to be placed 

𝑛     : Coverage level 

𝑑𝑚𝑖𝑛     : Minimum distance between each two PZTs 

𝑑𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒: Maximum spacing between the actuator-sensor pair 

𝛼𝑚𝑖𝑛     : Minimum angle between two sensing paths 

𝑧     : Path coverage 

𝑋     : Set of points lying inside the geometry of the plate 
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2. Decision variables 

The definitions and equations of the current and the following sections are 

valid ∀: 

𝑘 ∈ 𝐾;    𝑖, 𝑗, 𝑖1, 𝑗1, 𝑖2, 𝑗2 ∈ 𝑁;    𝑖 < 𝑗;    𝑖1 < 𝑗1;    𝑖2 < 𝑗2. 

(𝑥𝑖, 𝑦𝑖): Optimized coordinates of PZT wafer 𝑖 

𝐶𝑘    = {
1 if control point k is  covered
0 otherwise                                  

    

𝐶𝑖𝑗𝑘 = {
1 if control point k is covered by PZT wafer line (𝑖, 𝑗)

0 otherwise                                                                              
   

𝑑𝑖𝑗   = Distance between PZT wafer 𝑖 and PZT wafer 𝑗 

𝑑𝑖𝑗𝑘  = Distance between PZT wafer line (𝑖, 𝑗) and control point 𝑘 

𝑑𝑖𝑘   = Distance between PZT wafer 𝑖 and control point 𝑘 

 

3. Models 

The whole problem is summarized in equations 1 through 12. 

𝑚𝑎𝑥 ∑ 𝐶𝑘

𝑘∈𝐾

 (1) 

𝑑𝑖𝑗
2 = (𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2
 (2) 

𝑑𝑖𝑘
2 = (𝑥𝑖 − 𝑥𝑘)2 + (𝑦𝑖 − 𝑦𝑘)2 (3) 

𝑑𝑖𝑗𝑘 =
|(𝑦𝑗 − 𝑦𝑖) × 𝑥𝑘 − (𝑥𝑗 − 𝑥𝑖) × 𝑦𝑘 + 𝑥𝑗 × 𝑦𝑖 − 𝑦𝑗 × 𝑥𝑖|

√(𝑦𝑗 − 𝑦𝑖)
2

+ (𝑥𝑗 − 𝑥𝑖)
2

 
(4) 

𝐶𝑖𝑗𝑘 = 0  𝑖𝑓 𝑑𝑖𝑗𝑘 > 𝑧 (5) 

𝐶𝑖𝑗𝑘 = 0  𝑖𝑓  𝑑𝑖𝑘 > 𝑑𝑖𝑗  (6) 

𝐶𝑖𝑗𝑘 = 0  𝑖𝑓  𝑑𝑗𝑘 > 𝑑𝑖𝑗  (7) 
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𝐶𝑖𝑗𝑘 = 0  𝑖𝑓 𝑑𝑖𝑗 > 𝑑𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 (8) 

𝐶𝑘 = 0 𝑖𝑓 ∑ ∑ 𝐶𝑖𝑗𝑘 < 𝑛

𝑗∈𝑁𝑖∈𝑁

 (9) 

𝐶𝑖1𝑗1𝑘 + 𝐶𝑖2𝑗2𝑘 , ≤ 1 if   ||
(𝑥𝑗1

− 𝑥𝑖1
) × (𝑥𝑗2

− 𝑥𝑖2
) + (𝑦𝑗1

− 𝑦𝑖1
) × (𝑦𝑗2

− 𝑦𝑖2
)

√((𝑥𝑗1
− 𝑥𝑖1

)
2

+ (𝑦𝑗1
− 𝑦𝑖1

)
2

) × ((𝑥𝑗2
− 𝑥𝑖2

)
2

+ (𝑦𝑗2
− 𝑦𝑖2

)
2

)

|| > cos 𝛼𝑚𝑖𝑛 (10) 

𝑑𝑖𝑗 ≥ 𝑑𝑚𝑖𝑛 (11) 

(𝑥𝑖 , 𝑦𝑖) ∈ 𝑋 (12) 

 

The objective function is to maximize the number of covered control points as 

shown in equation (1) where 𝐶𝑘 for control point k is 1 if it is covered by the desired 

coverage level. Equations (2) and (3) calculate the distance between two PZT wafers 

and the distance between a PZT wafer and a control point k respectively using the 

simple formula of the distance between two points. Equation (4) calculates the distance 

between the sensing path (𝑖, 𝑗) and the control point 𝑘 using the simple formula of the 

distance between a point and a straight line. In equation (5), for a specific control point 

k to be covered by a path (𝑖, 𝑗) , 𝑑𝑖𝑗𝑘 must be less than the path coverage distance z. 

Equations (6) and (7) represent the triangular inequality equations between an actuator-

sensor pair and a control point. These equations ensure that the control points covered 

must fall within the range of the sensing path. This is illustrated in  

Figure 4 below, where control point k is not covered by path (i,j) although 𝑑𝑖𝑗𝑘  

< z  because 𝑑𝑗𝑘  > 𝑑𝑖𝑗. Equation (8) disregards all paths longer than 𝑑𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 because 

of wave attenuation at long distances. Equation (9) describes the required coverage level 

for all control points, which is the minimum number of covering sensing paths.  



17 

 

Equation (10) summarizes the minimum angle constraint (𝛼𝑚𝑖𝑛) which is the angle 

between each pair of paths to ensure that the sensing paths are not collinear. Equation 

(11) makes sure that the PZT wafers are separated by a distance ≥ 𝑑𝑚𝑖𝑛 to avoid having 

multiple PZTs at the same location. We usually take 𝑑𝑚𝑖𝑛 = z. Equation (12) defines 

the plates’ geometry, where X is the set of all points lying inside the geometry, and a 

PZT element can be any point of this set. 

 

 

Figure 4. An illustration explaining the triangular inequality equations 
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CHAPTER III 

SIMULATED CASES: RESULTS AND DISCUSSION 
 

The performance of the model developed was demonstrated on various shapes 

including a square-shaped panel, a T-section and a large metallic structure (the cargo 

door of an A330 aircraft). The main objective of the presented cases is to demonstrate 

the robustness of the method in PZT wafer placement. The parameter 𝑛 is a user defined 

attribute that can be controlled to achieve any level of coverage. Level 3 (𝑛 = 3) 

optimization was chosen, in this case, for a demonstration on non-convex plates. 

 

A. Composite sandwich structure 

The first plate considered in this study was a composite sandwich structure. 

For this type of structures, the wave was assumed to propagate for 600 mm and to have 

a coverage of 40 mm, based on previous experimental studies [38]. Both geometries 

were selected to be non-convex including a square panel with two circular holes and a 

T-section. The geometries selected for the sensor networks are shown in Figure 5 (a) 

and Figure 6 (a) showing the control points randomly distributed to cover the plates, the 

preliminary solution of the PZT wafers, and the covered control points. During the 

optimization process, it was assumed that the selected number of sensors is the 

minimum 𝑁 giving a coverage of at least 95%. 
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Starting with the square panel, the optimization algorithm led to a minimum 

number of 𝑁 = 14 sensors required to achieve a coverage of 96% of 820 control points. 

However, the coverage of the preliminary solution was below 80% for the same number 

of sensors. For the T-shaped panel, the preliminary coverage was 84% of 480 control 

points, while it was found to be 96.5% for the optimized solution, with 12 PZT 

elements. The covered and uncovered zones for the optimized solutions are shown in 

Figure 5 (b) and Figure 6 (b). In some cases, several uncovered control points exist in a 

zone crowded with PZT wafers, due to the fact that the number of sensing paths lying in 

the neighborhood of a point is not the only indicator of its coverage. However, the angle 

between each pair of paths and the path length play a main role while calculating the 

coverage of each point. Referring to Figure 5 (b), three PZT wafers moved towards the 

region near the holes in the optimized solution, which may be due to the discontinuities. 

This can also be observed when dealing with large structures, given the limited 

propagation distance of the wave. Otherwise, placing sensors on the outer boundaries 

will result in better coverage, which is observed in Figure 6 (b).  

Figure 7 (a-b) shows the coverage percentage versus the number of sensors, 

tried during the optimization process, for the square panel and the T-shaped panel, 

respectively. The optimized percentage of coverage is increasing with the number of 

sensors for both plates. It was demonstrated that once a decent coverage is achieved 

(about 95%), additional sensors may not contribute to a significant improvement in the 

coverage. Noteworthy coverage improvement was achieved between the initial 

preliminary solutions and the optimized ones. This indicates the high efficiency of the 

proposed optimization approach. 
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Figure 5. Square panel sensor network: (a) preliminary configuration, and (b) optimized 

solution 

 

(a) 

 

(b) 
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Figure 6. T-shaped panel sensor network: (a) preliminary configuration, and (b) optimized 

solution 

 

 

(a) 

 

(b) 
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(a) 

 

(b) 
Figure 7. The variation of the coverage versus the number of sensors tried during the 

optimization process: (a) square panel and (b) T-shaped panel 
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Furthermore, to check the repeatability of the results, based on the proposed 

optimization process, a fixed set of 𝑁 (number of PZT wafers), known to give an 

optimized coverage percentage above 80%, was chosen for the two different test panels. 

The optimized sensor network of each value of 𝑁 (from the chosen set) was computed 

10 times, separately. Figure 8 shows the mean coverage percentage, of the two panels, 

with error bars showing the variation among the 10 trials. A high stability in the 

percentage coverage was noticed, with a maximum standard deviation of 2.3%. The 

same procedure is repeated on the square plate; however, the plate was discretized into 

100 uniformly distributed control points. The resulting coverage reached 95%, and 

therefore it was noticed that the number of control points did not significantly affect the 

coverage. In the meantime, the results of the optimized solution were not repeatable, 

unlike the cases when a high number of control points is used. 

 

  

                                       (a)                                       (b) 

Figure 8. Histograms of the mean coverage percentage with error bars (of the 10 trials) for 

different numbers of sensors: (a) square panel and (b) T-shaped panel 
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In addition, sensitivity analysis was performed to determine the importance of 

each sensor. For each sensor, the drop in coverage level is measured if that sensor is 

dropped while maintaining the positions of the other sensors, and calculating the 

corresponding coverage. The process is repeated for all the sensors. The most important 

sensor is identified as the sensor that caused the maximum drop in coverage. 

For the square sensor network (820 control points), the coverage results are 

presented in Figure 9 (a). The normalized importance of each sensor was calculated, and 

the results are shown in Figure 9 (b). Sensor 5 was identified as the most important 

sensor, where the coverage percentage dropped by 15% after its removal.  

 

Figure 9. (a) Coverage after removing each sensor, (b) the normalized importance of the 

sensors 

 

 

It is worth noting that sensors 12 and 13 although highly improved the 

coverage when migrated to the area between the holes, however, they appeared to have 

                                       (a)                                       (b) 
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relatively low importance values. This is only true when one sensor is removed at a 

time. In other words, together, sensors 12 and 13, provide a significant improvement in 

the coverage, and if one of them is removed (for instance sensor 12), the other (sensor 

13) will assure adequate coverage, and in this case, it should become an important 

sensor. 

To validate this, sensor 12 was removed from the sensor network, and the 

sensitivity study was repeated on the rest of the sensors. As expected, sensor 13 became 

the most important sensor. In addition, the importance of sensors 1, 2, and 14, has 

increased after the removal of sensor 12 due to their presence in the same region with 

sensor 12 (as shown in Figure 10 (a-b)). 

 

                                       (a)                                       (b) 
Figure 10. After removing sensor 12 (a) Coverage after removing each sensor, (b) the 

normalized importance of the sensors 

 

The selected sensor network, on the square plate, that will be experimentally 

validated is shown in Figure 11. 
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Figure 11. The selected sensor network on the square plate 

 

 

Moreover, to verify the robustness of the results, a location sensitivity study is 

done on the square sandwich plate where we moved one sensor by a random distance 

and direction (between -0.5 cm and 0.5 cm in the x-direction and between -0.5 cm and 

0.5 cm in the y-direction) and kept the other PZTs in their positions. This was repeated 

for 20 times and the coverage was calculated every time the sensor was moved. We then 

calculated the mean and standard deviation of the coverages obtained. 

This procedure is done for all the sensors. Figure 12 shows the plot of the STD 

for each sensor. Indeed, all the standard deviations are very low. Thus, an error of 1 cm 

while installing sensors will have a minor effect on the coverage of the sensor network. 

This is expected in our cases where the coverage of the path is 30-40 mm on either side. 
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Figure 12. Standard deviation of the coverage when moving each sensor 

 

B. Airbus A330 cargo door 

The model was also validated on a large metallic structure, the cargo 

compartment door of an Airbus A330, shown in Figure 13. The cargo door is about 

2740 mm by 2385mm and has a height of 501 mm and a total weight of 182.2 kg. Based 

on experimental analysis, it was demonstrated that the guided waves in this particular 

structure, excited at a relatively high frequency between 150 kHz and 300 kHz, have the 

ability to propagate with a minimum distance of 1-1.5 m and has a coverage of 30 mm, 

in this type of structures, based on an experimental investigation. 

The optimization of the sensor network will be calculated on two bases (1) 

sub-structures and (2) the whole structure. Both methods will be elaborated on in the 

later sections. 
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Figure 13. Airbus A330-200 cargo door position and dimensions [41] 

 

1. Sub-structure optimization 

The first method is based on subdividing the structure (the cargo door) into 

sub-structures. The optimization is then completed on each of the sub-structures before 

combining all the results in one network. For the structure understudy, the cargo door 

was divided into 12 partitions (5 different geometries), as shown in Figure 14, where 

optimization was completed on each geometry alone. 
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Figure 14. Cargo door partitions 

 

The preliminary (PZT elements were uniformly distributed around the 

circumference) and optimized sensor networks of the partitions are shown in Figure 15 

and Figure 16 respectively.  

A total of 165 PZT wafers were needed, and they were able to provide a 

99.825% coverage of the whole surface of the structure. The 165 PZTs were reduced 

further to 100 PZTs by replacing every 2 PZTs, separated by a distance less than 100 

mm, by a PZT in between, resulting in a coverage of 99.3% (Figure 17 (a)). After that, a 

sensitivity study was completed to check the importance of each sensor. Each PZT 

wafer was assigned an importance value based on the coverage of the whole network in 

the case of its absence or failure, as described earlier. Each time, the least important 

sensor was removed, and the sensitivity study was repeated on the rest of the PZT 
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elements until only 70 sensors remained in the network resulting in a coverage of 90.5% 

(Figure 17 (b)). 

The 70 sensors remaining in the network were taken as a preliminary solution 

for the whole structure, and then the optimization was performed. This has led to a 

significant improvement in the coverage reaching 94.5% (Figure 18 (a)). 

 

  

                                      (a)                                      (b) 
  

                                     (c)                                     (d) 
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                                     (e)  
Figure 15. Preliminary sensor networks of: (a) partition A, (b) partition B, (c) partition C, 

(d) partition D, and (e) partition E 

 

  

                                      (a)                                    (b) 
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                                      (c)                                     (d) 

  

                                       (e)  
Figure 16. Optimized sensor networks of: (a) partition A, (b) partition B, (c) partition C, 

(d) partition D, and (e) partition E 
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                                                                    (a) 

 
 

                                                                    (b) 

Figure 17. Combined sensor networks after reducing the PZTs from 165 to: (a) 100 

sensors then (b) 70 sensors 



34 

 

The same work was repeated while keeping all parameters the same, however 

the propagation distance 𝑑𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 was increased to 1.5 meters. The 94% coverage 

obtained using 70 PZTs, using a one-meter propagation distance, was achieved by 46 

PZTs when increasing the propagation distance. This clearly shows the major effect of 

the propagation distance on the number of PZTs within the network. The two networks 

are displayed in Figure 18 (a) and Figure 18 (b). 

 

 

                                                                          (a) 
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                                                                          (b) 

Figure 18. First approach’s optimized sensor network, achieving 94% coverage, with a 

propagation distance and number of sensors of (a) 1 meter- 70 sensors and (b) 1.5 meters- 

46 sensors 

 

2. Optimization over the whole structure 

This method completes the optimization over the entire surface rather than 

dividing it into partitions. Starting with the 70 sensors (based on the results of the 

previous method), the PZTs were uniformly distributed on the surface of the cargo door. 

The preliminary coverage was calculated to be 81%, as shown in Figure 19 (a). After 

performing the optimization (Figure 19 (b)), the results of the coverage improved by 

about 10% (optimized coverage = 90.35%). It can be concluded that the approach using 

the optimization over the substructure, may result in a slight improvement in the 

coverage. Feeding the optimizer by a good initial solution will ensure that the optimizer 

will not get stuck on a local optimum with poor coverage. 
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(a) 

 

(b) 

Figure 19. Second approach’s 70-sensor networks: (a) preliminary and (b) optimized 

solutions 
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CHAPTER IV 

EXPERIMENTAL VALIDATION 
 

The experimental validation was carried on the composite sandwich square 

plate with the circular geometrical discontinuity, in addition to a section of the cargo 

door (section D). The main objective of the experimental work is to check the 

effectiveness of the optimized networks in damage localization. For this purpose, 

simulated damage was placed in several locations within the network, and the precision 

in damage localization was assessed.    

 

A. Experiment set-up 

1. Composite sandwich structure 

A composite sandwich panel, measuring 600×600 mm2
, was manufactured 

using a surface Carbon Fiber Epoxy (CF/EP) laminate which was made out of four 

woven plies in a quasi-isotropic configuration [±45, 0/90]s with a nominal thickness of 

0.88 mm, and high-performance foam core Dyvinicell HP100. The CF/EP laminate and 

the core were bonded together with FM 1515-3 film adhesive using secondary bonding 

in an autoclave. Two circular holes, 100 mm in diameter, were introduced into the plate 

to add the non-convex effect, as shown in Figure 20. The properties of the sandwich 

panels can be found in Mustapha et al. [40]. This sensor network was presented in 

Figure 5 (b). 
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Figure 20. A photo of the tested composite sandwich plate  

 

 

 

 

 

 

 

 

 

 

 

Figure 21. A schematic diagram of the experimental setup 
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The PZT wafers corresponding to the considered network configuration were 

mounted on the composite sandwich structure. Piezoelectric wafers, or PZTs, with 

wrapped electrodes (PI Ceramics, Lederhose, Germany), 10 mm in diameter and 1 mm 

in thickness were used. 5-cycle Hanning-windowed tone bursts were generated using an 

arbitrary wave generator (NI PXI-5422) at an excitation frequency of 200 and 250 kHz 

(at which the fundamental S0 mode was dominant), sampled at a rate of 20 MSa/s. The 

generated signals were then amplified to 120 volts peak-to-peak voltage using an 

amplifier (EPA-104 Linear Amplifier, Piezo Systems Inc.), before being fed into the 

actuator PZT. While one PZT element functioned as the actuator to activate wave 

signals, the others functioned as sensors to capture the wave signals. The role of the 

actuator alternated until all the PZT elements had functioned as an actuator. The signals 

were captured using the NI PXIe-2593 multiplexer and the NI PXIe-5122 digitizer. All 

the modules were mounted on a PXIe-1082 chassis. Figure 21 shows a schematic 

diagram of the experimental setup.  

Later, artificial damage was introduced by bonding a 200 grams steel block at 

three locations within the sensor networks. The same procedure explained above was 

repeated for each damage case, and the precision in damage localization was evaluated. 

Table 1 shows the coordinates of the 14 optimized locations of the PZT wafers. 
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Table 1. Optimized locations of the PZT wafers on the square panel 

 

PZT number X-coordinate Y-coordinate 

1 0 0 

2 101 0 

3 500 4 

4 500 115 

5 500 320 

6 423 500 

7 331 452 

8 269 500 

9 0 462 

10 0 412 

11 1 350 

12 116 197 

13 154 175 

14 0 150 

 

2. Airbus A330 cargo door 

 A section of the cargo (Partition D) was used to demonstrate the efficiency of 

the algorithm on metallic structures and is shown in Figure 22. The sensor network that 

will be used was presented in Figure 16 (d). Partition D will be tested because of its 

non-convex geometry. Fifteen PZT wafers were mounted on the structure, and artificial 

damage was introduced by bonding the 200 grams steel block at three locations within 

the sensor networks. The same experiment was done on the composite sandwich square 

plate (described earlier) was repeated on the cargo door but using an excitation 

frequency of 300 kHz. Table 2 shows the coordinates of the 15 optimized locations of 

the PZT wafers.  
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(a) 

 

(b) 

Figure 22. (a) Cargo door and (b) Section D sensor network 
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Table 2. Optimized locations of the PZT wafers on the cargo door 

 

PZT number X-coordinate Y-coordinate 

1 857 345 

2 897 280 

3 897 92 

4 804 0 

5 740 0 

6 431 0 

7 266 0 

8 17 0 

9 0 129 

10 1 316 

11 55 345 

12 1 502 

13 167 502 

14 373 502 

15 487 430 

 

B. Experimental results 

1. Data fusion 

For each sensing path j, an anomaly value Aj (between 0 and 1) is assigned, 

reflecting the extent to which the path is affected by the damage. It is calculated via a 

direct comparison between the signals in the benchmark and damaged conditions based 

on the following: 

Aj = 1 - 
max(Ac)

max(A𝑖)
 (13) 

where max(Ac) is the maximum amplitude of the current signal, and max(Ai) is the 

maximum amplitude of the healthy signal. 
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From the network of 𝑁 PZT elements in the panel, 𝑁 × (𝑁 − 1) sensing paths 

are available. Due to the dual function of the PZT elements, the number of paths can be 

reduced by half (e.g., instead of using both paths 1-6 and 6-1, only 1-6 can be 

considered). This value can be easily found by computing the number of possible 

combinations of 2 elements from a set of 𝑁 distinct elements. After neglecting the 

collinear paths and those lying outside the geometry, the paths are further reduced to J 

relevant paths. The anomaly measures obtained for these J paths are employed to 

construct a damage image (using a data fusion technique). The damage location is 

expected to be located on the intersection of the most damaged paths, i.e., the paths 

having the highest anomaly measures. 

After calculation of the anomaly measures of all J available paths, construction 

of the image damage is accomplished by dividing the monitored zone into a uniform 

grid of 1 mm2, where the existence of damage in each cell is evaluated by merging the 

perceptions of the anomaly measures from all the sensing paths. The DI or the 

probability of damage at a cell (x, y) in the observed zone is given by: 

DI(x, y)  =  ∑ 𝑃𝑗(𝑥, 𝑦)

𝐽

𝑗=1

= ∑ 𝐴𝑗𝑓𝑗(𝑧)

𝐽

𝑗=1

 

 

(14) 

where 𝑃𝑗(𝑥, 𝑦) is the probability of damage at cell (x, y) obtained from the anomaly 

measure of the jth path; 𝐴𝑗 is the anomaly measure for the jth path; 𝑓𝑗(𝑧 ) is the normal 

distribution function for the jth path (defined below). 

To account for the possible existence of damage near the paths, the influence 

of the anomaly measure is considered in the shape of a normal distribution function 



44 

 

having a maximum effect on the path and decreasing away from it. This normal 

distribution function is defined by: 

𝑓(𝑧) =
1

𝜎√2𝜋
𝑒

−(𝑧−µ)²

2𝜎²   for  -∞ < z < +∞ 
(15) 

where µ is the mean of the normal distribution model and σ is its standard deviation.  

Since the effect of a damage at a point located along the sensing path is stronger than a 

damage located at a certain distance from the sensing path, µ was set to be equal to zero. 

On the other hand, the experimental investigation performed to determine the 

proper value of σ for the tested cargo door (aluminum structure), has found that the 

effect of a damage located at a point further than 30 mm from the sensing path is 

negligible. For this reason, σ was fixed at 30 mm. However, it was fixed at 40 mm for 

the sandwich structures based on literature [38]. Further, z was determined by assigning 

the same effect of damage for all the grid points that were equidistant from the path. 

This was conducted by considering a rectangular affected zone for each sensing path 

during the fusion process, where z was defined as the normal distance separating the 

grid point from the jth sensing path.  

To visualize the coverage of the used network for the grid, all the sensing 

paths were given similar weights instead of the anomaly values, and data fusion was 

applied for image reconstruction as explained earlier.  

Due to the existence of strongly covered regions, with many sensing paths, the 

damage may be located within these regions because of the high damage indices of their 
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corresponding grid points. Therefore, the DI values at every grid element were 

normalized by the coverage of the same grid: 

DI(x, y) =  
∑ 𝑃𝑗(𝑥, 𝑦)𝐽

𝑗=1

∑ 𝑓𝑗(𝑧)𝐽
𝑗=1

 =  
∑ 𝐴𝑗𝑓𝑗(𝑧)𝐽

𝑗=1

∑ 𝑓𝑗(𝑧)𝐽
𝑗=1

 
 

(16) 

 

2. Damage localization- composite sandwich structure 

Damage images were constructed for the three damage locations. The actual 

and the predicted locations of the damage for the 200 kHz and 250 kHz are summarized 

in Figure 23 to Figure 25. It is clear that the precision, in damage localization, is high 

reaching a center distance of 10 mm between the actual and predicted damage. The 

accuracy in the prediction depends on the excitation frequency as well as the location of 

the damage within the sensor network. The maximum center distance obtained, between 

the actual and predicted damage, did not exceed 23 mm (case of damage 2, at 250 kHz), 

as indicated in Table 3.  

It is evident that despite where the steel block was placed within the network, 

a reasonable prediction was achieved based on the data fusion and the optimized sensor 

network. Placing the simulated damage in a region that is uncovered as shown in Figure 

26 (a), in the absence of PZTs 1, 12 and 13, was also investigated. The removal of the 

sensors resulted in an uncovered region in the left bottom corner. Damage is placed in 

the uncovered region (same position as damage 3) and the experimental validation was 

carried. After the data fusion, the simulated damage was not accurately predicted, as 

shown in Figure 26 (b). This further demonstrates the efficiency of GA in improving 

damage detection and localization. 
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(a) 
 

(b) 
Figure 23. Damage localization of damage 1 on the square panel with the two circular 

holes at (a) 200 kHz and (b) 250 kHz 
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(a) 
 

(b) 
Figure 24. Damage localization of damage 2 on the square panel with the two circular 

holes at (a) 200 kHz and (b) 250 kHz 
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(a) 
 

(b) 
Figure 25. Damage localization of damage 3 on the square panel with the two circular 

holes at (a) 200 kHz and (b) 250 kHz 
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(a) 
 

(b) 
Figure 26. After removing some sensors: (a) the covered and covered regions, and (b) 

damage 3 prediction at 200 kHz 
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Table 3. Damage scenarios and predicted locations using an excitation frequency of 200 

and 250 

Sensor network Square with 2 circular holes 

Excitation Frequency (kHz) 200 250 

Actual Damage Location 1 (375,140) (375,140) 

Predicted Damage Location 1 (375,156) (374,150) 

Distance Variation (mm) 16 10 

Actual Damage Location 2 (340,415) (340,415) 

Predicted Damage Location 2 (337,393) (337,392) 

Distance Variation (mm) 22 23 

Actual Damage Location 3 (80,420) (80,420) 

Predicted Damage Location 3 (95,420) (94,425) 

Distance Variation (mm) 15 14.8 

 

3. Damage localization- Airbus A330 cargo door 

Similarly, the damage images were constructed for the tested cargo door 

partition. The actual and predicted locations of the damage, using an excitation 

frequency of 300 kHz, are summarized in Figure 27 to  Figure 29. In a plate of 

maximum distance exceeding 1000 mm, the precision, in damage localization, is high 

giving a center distance values ranging from 11 to 40 mm between the actual and 

predicted damage (Table 4). 
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Figure 27. Damage localization, using an excitation frequency of 300 kHz on section D of 

damage 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Damage localization, using an excitation frequency of 300 kHz on section D of 

damage 2 

1 
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 Figure 29. Damage localization, using an excitation frequency of 300 kHz on section D of 

damage 3 

 

As proved, any surface can be tested in spite of its size, complexity, and non-

convexity. For the same material properties, large and more complex geometries would 

require more sensors to provide adequate coverage. The addition of more sensors and 

control points is usually associated with an increase in computational time. 
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Table 4. Damage scenarios and predicted locations using an excitation frequency of 300 

kHz 

 

Sensor network Cargo door 

Excitation Frequency (kHz) 300 

Actual Damage Location 1 (206,166) 

Predicted Damage Location 1 (196,160) 

Distance Variation (mm) 11.7 

Actual Damage Location 2 (744,270) 

Predicted Damage Location 2 (775,297) 

Distance Variation (mm) 40 

Actual Damage Location 3 (470,377) 

Predicted Damage Location 3 (486,356) 

Distance Variation (mm) 26 
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CHAPTER V 

GRAPHICAL USER INTERFACE 
 

A graphical user interface (GUI) was built for the developed model to 

facilitate its use and is made available for the user. Figure 37 shows a screenshot of the 

GUI which consists of 7 separated panels; 4 of them for the parameters and input, and 3 

for optimization and results. 

 

A. Geometry 

The geometry panel is displayed in Figure 30. In this panel the user has the 

choice to enter the coordinates of the vertices of the polygon shape either directly or 

imported from an excel file. Using the drop down menu, the user can choose one of the 

two available options. In addition, the user specifies the number of control points in the 

assigned box. The more control points he puts; the more accuracy he gets. He should 

make a trade-off between accuracy and computational time. Then, the user can push the 

“Plot” button to generate the geometry, and the plot appears in the “Results and plots” 

panel. He can reset the geometry by clicking on “Reset geometry” button in case he 

wants to try another geometry. 
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Figure 30. GUI- Geometry panel 

 

B. Wave properties 

In this panel (Figure 31), the user enters the wave properties in the material he 

is using. Those properties can be estimated for some popular materials or concluded 

from experiments. The panel is associated with a scheme that explains the mechanical 

meaning of each parameter. 

 

 

 

 

 

 

 

 

Figure 31. GUI- Wave properties panel 
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C. Preliminary configuration  

The minimum and maximum number of PZT wafers should specified by the 

user in this panel. Then, the preliminary configuration method can be chosen by 

clicking on one of two available radio buttons (Figure 32): 

 Uniformly distributed inside the geometry 

 Uniformly distributed on the outer boundaries. 

 

 

 

 

 

 

Figure 32. GUI- Preliminary configuration panel 

 

D. Aimed coverage 

To specify the level of coverage (minimum number of paths to cover a point), 

the user should choose one of the options from the drop down menu. Then, the percentage 

of covered points required by the user should be specified in the empty box (See Figure 

33). 
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Figure 33. GUI- Aimed coverage panel 
 

E. Optimization  

The optimization panel consists of 3 push buttons as shown in Figure 34: 

 “Optimize” to start the optimization 

 “Pause” to stop the optimization 

 “Resume” to continue the optimization 

A wait bar is also included in this section to indicate that the application is working 

properly, and visualize the progression. 

 

 

 

 

 

Figure 34. GUI- Optimization panel 
 

F. Export results 

This section has the following form (Figure 35): 
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Figure 35. GUI- Export results panel 
 

The user can export the optimized solution (PZTs coordinates) to an excel or 

text file by choosing from the drop down menu. The file name should be inserted in the 

empty box. The directory (file location) is chosen by clicking “Browse” push button; 

otherwise the file will be saved in the folder containing the application. 

 

G. Results and plots 

In this window (Figure 36), the minimum possible number of PZTs, the 

corresponding preliminary coverage, and the optimized coverage are displayed. In 

addition, 4 figures are plotted when clicking on “Plot solution” button: the geometry 

and control points figure, the preliminary configuration figure, the optimized solution 

figure, and another optimized solution figure with PZT importance indications where 

the PZTs colors range from the most important PZT (green) to the least important (red). 

The results and plots are erased when the user clicks on “Reset plots” button. 

This section indicates if the solution is an optimal solution by glowing the 

“optimal solution” radio button. A solution is not optimal if the maximum number of 

PZTs can’t give the aimed coverage, or when the minimum number of PZTs is still 

giving coverage more than the required value. 
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Figure 36. GUI- Results and plots panel 
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Figure 37. A screenshot of the GUI 
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CHAPTER VI 

CONCLUSIONS 

 

A novel approach for PZT-wafer-network placement, solved using GA, has been 

presented in this study. The proposed objective function was to maximize the coverage of 

the monitored area, represented by a set of control points while using the least possible 

number of sensors. Simulation results were presented for three cases, a square panel with 

geometrical discontinuity, a T-shaped panel, and a cargo door of an Airbus A330. The 

results showed a major improvement in the coverage level between the preliminary and 

optimized solutions. An optimized coverage of above 94% was achieved for the tested 

panels based on the minimized number of sensors while having the preliminary solution 

coverage less than 85% in all of the cases for the same minimized number of sensors. The 

repeatability of the results was demonstrated, and the variations in the solutions were 

minimal in most cases. In addition, experimental validation on the square panel and a part 

of the cargo door was performed using ultrasonic excitations at different frequencies. 

Artificial damages were detected and localized with an error not exceeding 4% of the 

maximal distance in the geometry.  

Future work will include working on the interaction between sensor networks, i.e. 

transmitting data between distinct independent networks to cover large surfaces that a 

single network can’t cover. Sensitivity study will be expanded, where real applications will 

be made to support high sensitivity sensors, by implementing several sensors in their 
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neighborhood. In addition, future work will include dealing with curved structures (tubular 

structures) and more complex three-dimensional structures taking into consideration the 

major difference in wave behavior between such structures and planar structures. 
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