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AN ABSTRACT OF THE THESIS OF 

 
 
 
Jad Fares Zalzal     for Master of Engineering 
  Major: Environmental and Water Resources Engineering 
 
 
 
Title: Determining the main drivers of PM and CO concentration surfaces in the Greater 
Beirut Area using a Landuse regression approach 
 
 
 
The Eastern Mediterranean city of Beirut, Lebanon, suffers from poor air quality as 
compared to many European and North American cities. In this study, high resolution 
PM2.5 (fine particulate matter), PM10 (coarse particulate matter), CO (carbon monoxide) 
and PM2.5/PM10 annual and seasonal pollution maps are generated for the Greater Beirut 
Area (GBA) using Land Use Regression models (LUR). The LURs were calibrated and 
validated on monthly data collected from 58 predefined monitoring locations within the 
GBA between March 2017 and March 2018. The annual mean concentrations of PM2.5, 
PM10 and CO across the monitoring stations were 68.1 ± 15.7 µg/m3, 83.5 ± 19.5 µg/m3 and 
2.48 ± 1.12 ppm respectively. The observed spatio-temporal variability in the recorded PM 
concentrations was found to be larger than those typically reported in European cities. The 
performance of the developed LUR models was good, with R2 ranging from 0.59 to 0.67 
for the PM2.5 models, 0.49 to 0.63 for the PM10 models, 0.50 to 0.60 for the CO models, 
and 0.32 to 0.51 for the PM2.5/PM10 ratio models. Overall, the predicted pollution surfaces 
were able to conserve the inter-pollution correlations that were determined from the field 
monitoring campaign, with the exception of the cold season. Although the model structure 
of the generated LUR models differed, building area, distance to main roads, and industrial 
area were all found to be common predictors across the majority of the annual and seasonal 
models. The predicted PM surfaces suggested that the entire population of the GBA was 
exposed to annually-averaged concentrations that exceeded the 24-hour WHO (World 
Health Organization) air quality standards set for PM2.5 and PM10. Finally from a 
methodological point of view, the results of this study show that LURs generated using low 
cost purpose-designed monitoring campaigns can successfully generate air pollution 
surfaces for use in planning and epidemiological studies in developing countries lacking a 
dense fixed monitoring network.  
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CHAPTER 1 

INTRODUCTION 

The main source of air pollution in urban settings is attributed to the combustion of 

fossil fuels, which produces greenhouse gases and other toxic pollutants. Urban air 

pollution is a major cause of health problems in cities and has been attributed to the 

premature deaths of millions and the loss of billions of dollars in terms of medical costs and 

lost productivity (United Nations Environment Programme, 2014). Several studies have 

shown direct causal relationships between air pollution levels and the incidence of 

cardiovascular (Dehbi et al., 2017; Delfino et al., 2010; Franchini & Mannucci, 2012; Gan, 

Davies, Koehoorn, & Brauer, 2012; Vanos, Hebbern, & Cakmak, 2014) and respiratory 

diseases (Beelen et al., 2008; Finkelstein, Jerrett, & Sears, 2004; Iii et al., 2002; Vanos et 

al., 2014). According to Krzyżanowski, Kuna-Dibbert, and Schneider (2005), air pollution 

from the transportation sector in cities is the leading contributor towards adverse health and 

negative environmental impacts. As daily commutes become longer, traffic congestions 

become worse, and as more people reside in the vicinity of major roads with high traffic 

densities, traffic related air pollution is expected to increase the hazard and risk of human 

exposure to air pollutants.  

Traffic is often the major source of air pollutants in urban areas. Traffic related 

emissions include Carbon Monoxide (CO), Nitrogen oxides (NOx), sulfur dioxide (SO2), 

particulate matter (PM), black carbon, and volatile organic compounds (VOCs). This study 

focused on assessing the concentrations of (CO) as well as particulate matter, both fine 

(PM2.5) and coarse (PM10) in the Greater Beirut Area (GBA), a densely urban area along the 
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eastern Mediterranean coastline. CO is an odorless, tasteless, colorless and toxic gas. It is 

formed by photochemical reactions in the atmosphere and by incomplete combustion of 

carbon containing fuels. CO has a relatively long atmospheric lifetime, ranging from 10 

days in the summer to over a year in very cold regions (EPA, 2010). However, despite its 

long lifespan, CO ambient concentrations are found to be source specific, with background 

levels being unaffected by nearby sources (Jaffe, 1968). CO levels tend to have a seasonal 

pattern, with elevated CO concentrations in winter as compared to the summer (Jaffe, 

1968). This is due to higher reactivity at elevated temperatures as well as higher emissions 

during the winter season. While elevated CO concentrations are a major concern in indoor 

environments, the occurrence of outdoor CO poisoning may take place near heavily 

congested major roads (Centers for Disease & Prevention, 1997). In urban areas, it has been 

estimated that as much as 75% of the CO emissions are caused by on-road vehicle exhausts 

(EPA, 2010). As such, CO is often highly correlated with other traffic related air pollutants 

such as NOx, SO2, and PM. This makes CO a good air pollution indicator. Other than 

traffic-related emissions, fossil fuel power generating plants are also considered a major 

anthropogenic source of CO in urban areas (EPA, 2010).  

PM are composed of a set of physically and chemically diverse particles that are found 

in different sizes. Fine PM usually constitutes the majority of suspended particles; 

moreover, it deposits slowly, which leads to an atmospheric lifetime of around 5 to 10 days. 

Coarse PM on the other hand, deposit more rapidly and have an atmospheric lifetime of less 

than 2 days (Brook, Brook, & Rajagopalan, 2003; Rai, 2016a). As a result, PM10 tends to be 

less homogeneously distributed and reflects more closely local pollution sources. PM 

usually originates from man-made stationary or mobile sources as well as from natural 
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sources such as fires and dust storms. The main sources of the coarse PM include the wear 

of tires, sea spray, erosion and dust from roads, agriculture, and construction and 

demolition activities (EPA, 2009). The main sources of PM2.5 on the other hand are fossil 

fuel combustion, mobile sources exhausts, dust, and wildfires. PM levels often show a 

seasonal pattern, with higher concentrations during the winter season. This is due to the 

cold-start conditions in gasoline engines, which are the main source of PM in most cities 

(EPA, 2009). Elevated PM levels are known to have adverse health impacts as they can 

penetrate deep into the lungs causing respiratory and cardiovascular diseases (Peng, Chang, 

Bell, & et al., 2008; Riediker et al., 2004). PM10 and PM2.5 are the most common size 

fractions considered in epidemiologic studies. PM10, also called “thoracic particles”, can 

penetrate into the lower respiratory system, whereas PM2.5, or “respirable particles”, can 

penetrate deeper into the gas exchange regions of the lung (Wilson, Kingham, Pearce, & 

Sturman, 2005). PM10 exposure is associated with increased ischemic heart disease among 

the elderly population and with higher risk of myocardial infraction. Elevated 

concentrations of PM have also been correlated with acute respiratory disorders such as 

sinusitis, bronchitis, asthma and allergy, and damage to the defensive functions of alveolar 

macrophages leading to an increase in respiratory infections (Rai, 2016b). 

Given the gravity of exposure to elevated air pollution levels in urban centers, 

establishing city-wide ambient air quality fixed-station monitoring programs has been 

widely supported. Yet, establishing and maintaining such monitoring networks is expensive 

and can be prohibitive for developing countries. Moreover, these programs often lack the 

needed spatial coverage to capture the variability of air pollution levels within a city and/or 

tend to be clustered in pollution hot spots (Kanaroglou et al., 2005). Miller et al. (2007) has 
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shown that the spatio-temporal variability of air pollution in some cities can exceed the 

variability observed between cities. As such, the limited spatial coverage of fixed station 

monitoring networks presents a challenge towards quantifying exposure across cities given 

the high intra-urban spatial variability in the air pollution levels (Briggs et al., 1997). 

Several studies have shown that many fixed monitoring networks were unable to accurately 

capture variations in pollutant concentrations within transport microenvironments and 

failed to predict levels beyond 1 Km (J. Gulliver & Briggs, 2004; Kim, Harrad, & Harrison, 

2002; Violante et al., 2006; Wright, Jewczyk, Onrot, Tomlinson, & Shephard, 1975). Given 

the prohibitive costs and the low spatial coverage associated with fixed air pollution 

monitoring programs, alternative model-based methods have been developed. These urban 

air pollution assessment modeling methods are often divided into four groups, namely: 1) 

proximity-based assessments, 2) geospatial interpolation methods, 3) dispersion models 

(DM), and 4) Land-Use Regression (LUR) models (Michael Jerrett et al., 2005). Proximity 

models are the most basic among the previously mentioned models, as they assess exposure 

to air pollutants based solely on the distance separating a location from a major emission 

source. Geostatistical interpolation models provide estimates of the pollutant concentrations 

as a function of the modeled spatial autocorrelations. Their skill is thus a function of the 

strength of the spatial behavior of the phenomena under study. DMs are mathematical 

simulations of pollutant dispersion in the atmosphere; they are based on emissions, 

meteorological conditions, and topography. DMs have the advantage of incorporating both 

the spatial and temporal variations in the concentrations of air pollutants; yet their adoption 

is often limited by the lack of needed input data, such as hourly traffic counts, hourly 

meteorological changes, hourly changes in emissions, and a detailed representation of the 
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city. Such data are seldom available at the city level or are very difficult to collect (Michael 

Jerrett et al., 2005), especially in developing countries. LUR models on the other hand are 

based on multiple linear regressions that are built to relate measured concentrations at 

sampling locations with a series of relevant urban predictors such as land use, building 

heights, weather conditions, topography, traffic counts, fleet composition, road type, point 

emission sources, and road density. Given the increased availability of spatial data in many 

cities, the use of LUR models in air pollution mapping has grown in importance. 

The application of LUR models was first introduced in the SAVIAH (Small Area 

Variations In Air quality and Health) study to assess exposure of children to elevated NO2 

concentrations in Amsterdam, Huddersfield and Prague (Briggs et al., 1997). LURs were 

later successfully applied in modelling the concentrations of several pollutants including 

nitrogen dioxide (NO2), PM2.5, PM10, volatile organic compounds (VOCs) (Hoek et al., 

2008), Ozone (O3) (Kerckhoffs et al., 2015), and Ultrafine Particles (UFP) (Abernethy, 

Allen, McKendry, & Brauer, 2013; Weichenthal, Van Ryswyk, Goldstein, Shekarrizfard, & 

Hatzopoulou, 2016) across different cities. The performance of LUR models has been well 

established in the literature to be robust for modeling air pollution resulting from traffic-

related pollution levels. 

Several studies have compared LUR to commonly used air pollution modeling 

methods such as geo-statistics and dispersion models. In the SAVIAH study, LUR models 

outperformed geo-statistical models in predicting NO2 concentrations across three 

European cities (Briggs et al., 2000). Moreover, the European Study of Cohorts for Air 

Pollution Effects (ESCAPE) project developed and compared the skill of calibrated DM 

and LUR models to predict NO2, PM2.5, and PM10 levels across 36 European cities. The 
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project concluded that the performance of the LUR models was comparable to DMs for 

NO2; yet the LUR models outperformed the DM models when it came to predicting PM2.5 

and PM10 levels (de Hoogh et al., 2014). John Gulliver, de Hoogh, Fecht, Vienneau, and 

Briggs (2011) found that the developed LUR models outperformed the proximity analysis, 

kriging, and dispersion models in predicting PM10 concentrations in London. In Munich, 

the developed LURs slightly outperformed DM in predicting NO2 concentrations, but had 

similar performance in predicting PM2.5 concentrations (Cyrys et al., 2005).  

In this study, LUR models are developed to predict annual and seasonal ambient 

particulate matter (PM10 and PM2.5) and CO concentrations, as well as the PM2.5/PM10 ratio 

across the Greater Beirut Area (GBA), Lebanon. The developed models are then used to 

generate pollution surfaces to map potential exposures, identify pollution hotspots, 

determine the strength of the spatial correlation between the pollutants, and quantify the 

intra-urban variations of air pollution in the study area. The models are then used to assess 

the compliance of the predicted air quality with relevant national and international 

standards across different regions of the GBA and to assess the exposure to air pollution at 

vulnerable locations, i.e. schools and hospitals. Finally, the study aims to identify the main 

air pollution drivers within the GBA and to contrast them with those that have been 

identified in other cities. To our knowledge this is the first attempt that such an endeavor 

has been initiated at the level of the Eastern Mediterranean. Additionally, this study is one 

of the first studies to look at assessing the skill of LURs in predicting air pollution surfaces 

in a highly heterogeneous city with large contrasts in land use land cover and elevation.  
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CHAPTER 2 

METHODOLOGY 

2.1    Study area and sampling sites 

The study area covers the Greater Beirut Area (GBA), a mixed-use urban area that 

includes the capital city of Beirut along with its suburbs. The GBA is highly heterogeneous 

in its landuse and landcover due to poor urban planning and fast urbanization. While the 

city of Beirut itself is urban, highly dense, and congested, many of its suburbs are 

transitioning at an alarming rate from forested areas or rural low-density areas into medium 

to high density urban areas (Figure 1). Urban regions were found to have doubled in area in 

Lebanon between 1994 and 2005 (Faour, 2015). The urban growth rate was found to be 

equal to 3.18% per year (in terms of area) between 2010 and 2015, with a population 

growth rate of 0.86% in 2015 (UNHabitat, 2015). Geographically, the GBA stretches from 

the Mediterranean coastline up to an elevation of 800 m above mean sea level. It covers an 

area of 233 Km2 of which 8 km2 are occupied by the Rafic Hariri international airport.  

The deterioration of air quality in the GBA is a growing environmental concern. 

While urban air quality in some industrialized countries has improved in recent decades, the 

problem in the GBA persists and has become a major source of concern to public health. 

Air pollution in Lebanon currently affects millions of people living in the mostly urban and 

peri-urban areas within the GBA, where smog, small particles, and toxic pollutants pose 

serious health concerns. Similarly to other urban areas, the air pollution problems in the 

GBA are mostly attributed to the transportation sector, as it accounts for 24% of carbon 

dioxide (CO2), 59% of nitrogen dioxide (NO2), 79% of non-methane volatile organic 
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compounds (NMVOC), and 22% of SO2 national emissions (Ministry of Environment, 

2011). Despite these problems, the GBA still lacks a dense air pollution monitoring 

network able to assess intra-urban variability. Several studies have been conducted to 

quantify the concentrations of PM and CO in the GBA. Shaka’ and Saliba (2004) reported 

that the average concentrations of PM2.5 and PM10 were found to be 40 µg/m3 and 76 µg/m3 

respectively. Moreover, Saliba, El Jam, El Tayar, Obeid, and Roumie (2010) reported that 

PM2.5 and PM10 concentrations measured at 5 urban locations in the GBA varied between 

55.1 and 103.8 µg/m3 for PM10 and between 27.6 and 41 µg/m3 for PM2.5. CO levels 

measured at three busy streets in the GBA were found to vary between 1213 µg/m3 and 

2709 µg/m3, with a clear seasonal pattern in the observed concentrations (Saliba, Moussa, 

Salame, & El-Fadel, 2006). Nevertheless, little work has been done to assess the spatial 

variability of these pollutants in the GBA. 
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Figure 1. The landuse landcover of the GBA for the year 2005 (NCRS, 2005) 

 

While there is no unified methodology to determine the required number of 

monitoring locations needed for a given area of interest, Hoek et al. (2008) found that on 

average, air quality-based landuse regression studies use between 20 and 100 monitoring 

locations. In addition, Madsen et al. (2007) reported that increasing the number of sites in 

Oslo, Norway from 40 to 80 didn’t result in an improved model performance. M. Jerrett et 

al. (2007) also found that generating LUR models using a network of 94 monitoring 

locations instead of 65 didn’t improve their model results. Given the areal extent of the 

GBA, this study adopted a monitoring program based on 60 monitoring sites. Note that the 

adopted monitoring network program is considered dense with around 0.25sites/Km2. The 
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spatial distribution of the adopted monitoring network was developed so as to provide the 

adequate spatial coverage needed to capture the variability in the land use types and the 

different road densities within the study area. Ryan and LeMasters (2007) showed the 

importance of refraining from adopting monitoring sites with a uniform land use. While 

most LUR studies use informal methods to select their monitoring site locations (Hoek et 

al., 2008), recent studies have started to move towards the adoption of a systematic site 

selection method. The most commonly used selection method was proposed by Kanaroglou 

et al. (2005). Their method allocates stations based on the anticipated spatial variation in air 

pollution and population densities. Another method identified monitoring locations based 

on the following criteria: population density, distance to the city center, residential or 

commercial type, density of the road network, and green spaces, and allocates sites in order 

to capture the maximum variations in these variables (Brauer et al., 2003; Saraswat et al., 

2013). In the GBA, the absence of a dense air quality monitoring network and the large 

uncertainties in block-level population data limits the adoption of such approaches. 

Therefore, sites were chosen based on their LULC as well as their associated road densities. 

Land use can be viewed to be a surrogate of population as it identifies the intensity of 

urbanization, while road density can be viewed as a surrogate for air pollution, given that 

traffic accounts for a large portion of urban pollution in the GBA (ECODIT, 2010). As 

such, sites were divided into high, medium, and low density urban areas. Moreover, the 

road density in the GBA was divided into two categories, namely high and low road 

density. Finally, the 60 monitoring sites were divided equally among the 6 urban-road 

density categories. The adopted sampling strategy is similar to a study conducted in New 

York City (Matte et al., 2013). The final site selections were generated using stratified 
10 

 



random sampling through the use of the Spatial Analysist and the Sampling Tool Design 

toolboxes in ArcGIS 10.5.1 (ESRI, 2016). The locations of the air quality monitoring sites 

are shown in Figure 2.  

 

Figure 2. Adopted monitoring sites within the GBA 

 

2.2     Air pollutants sampling 

In this study, CO concentrations were monitored using the Langan CO analyzers 

(model L76n) (Langan Products, 2006) with a data logging interval of 1 min. The analyzers 

have a measurement range between 0 and 200 ppm, a resolution of 0.1 ppm, and a response 
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time (t90%) of 40 seconds (Table 1). Previous studies have successfully used the Langan 

L76n to measure both indoor and outdoor ambient CO concentrations (Abi Esber, El-Fadel, 

Nuwayhid, & Saliba, 2007; Alameddine, Abi Esber, Bou Zeid, Hatzopoulou, & El-Fadel, 

2016).  

PM2.5 and PM10 were monitored using the TSI Dustrak II Model 8532 (TSI, 2014). 

The analyzers rely on the optical backscatter technology with a measurement range of 

0.001–150 mg/m3 and an accuracy of ± 0.1% of reading or 0.001 mg/m3, whichever is 

greater (Table 1). The Dustrak has been successfully tested and used in multiple studies to 

measure PM concentrations from several sources such as coal power generators (Lehocky 

& Williams, 1996), natural dust sources (X. Wang et al., 2015), and several traffic and 

stationary sources (Alameddine et al., 2016; X. Wang, Watson, Chow, Gronstal, & Kohl, 

2012).  
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Table 1. Monitors description 

Monitor Manufacturer Parameter 
Detection 

Method 
Specifications 

TSI Dustrak II 

Model 8532 

 

Model 8532, TSI 

Corporation, 

Shoreview, USA 

PM2.5 & PM10 90° light 

backscattering 

PM10 & PM2.5 

impactors 

Range: 0.001 to 150 mg/m3 

Resolution: ±0.1% of 

reading or 0.001 mg/m3 

Langan L76x 

 

 

2660 California 

Street, San 

Francisco, CA 

94115 USA 

CO & CO2 Electrochemical 

3-electrode 

(CO) 

 

 

 

Range: 0-200 ppm 

Resolution: 50 ppb 

Response time t90: < 30 s 

at 20°C  

Repeatability: 1% of 

signal  

 

Air quality data was collected through an intensive monitoring campaign, using the 

hand-held particulate matter (TSI DustrakII, Model 8532) and CO (Langan L76x) monitors. 

The monitoring campaign extended from March 2017 until March 2018, and covered a total 

of 64 working days (Monday to Saturday). 58 of the 60 predefined monitoring locations 

(Figure 2) were visited on average between 8 and 12 times throughout the year. Note that 2 

of the initially proposed 60 monitoring locations were later dropped due to security reasons. 

The remaining 58 locations were divided into 8 routes, each encompassing between 7 to 8 

sites each. On each sampling day, a route was selected and the sites within it were visited in 
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a random order in order to avoid any biases that might occur due to the timing of sample 

collection. In total 525, 30 minutes measurements were collected. Air pollution monitoring 

took place between 8 am and 6 pm on each sampling day. At every location, the three 

monitors were placed next to each other on a 1.5 m high tripod (average breathing height) 

for 30 minutes (Figure 3). The PM filters were cleaned, and the equipment were run in 

parallel before each sampling day to correct for any errors in the readings. The CO 

equipment were tested against a standard CO gas of 50 ppm concentration once per month. 

Additionally, the PM equipment were zeroed at every location before taking the 

measurements, and were then tested against a zero concentration after every measurement 

to check for any drift in the readings. All readings that showed a drift in the measurements 

due to equipment malfunction were discarded. Traffic counts were also recorded over the 

30 minutes sampling period. Moreover, the vehicle types were also recorded. Vehicles were 

classified as cars, SUVs, light trucks, heavy trucks, buses, and motorcycles. Temperature 

and relative humidity were also measured and recorded with the Langan L76x monitors. 

Daily weather data (temperature, precipitation, wind speed and wind direction) were also 

collected from the Rafik Hariri International Airport weather station, which represented the 

closest meteorological station within the study area. 
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Figure 3. Monitoring Setup (a) Site 7, (b) Site 12 

 

2.3     Analysis of measured CO, PM2.5, and PM10 levels 

The correlations between the measured concentrations of the 3 pollutants were 

assessed using Pearson’s r. These correlations were later compared to those observed 

between the different model predictions to check whether the models were able to conserve 

the observed correlations between pollutants. Cluster analysis was also conducted on the 

observed concentrations in order to group the 60 sites based on the measured air pollutant 

concentrations. Cluster analysis was done using the k-means partitioning method, which 

aims to partition the monitoring sites into K clusters, with each observation belonging to 

the cluster with the nearest mean, which serves as a prototype of the cluster. The adopted 

number of clusters was selected by plotting the within group sums of squares versus the 
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number of clusters. All analysis was conducted using the stats package in the software R  

(R Core Team, 2015). 

Measured concentrations were also compared to the national and international air 

quality standards (Table 2) and percent exceedances were also reported. 

 

Table 2. Relevant ambient air quality standards 

Pollutant Averaging time Lebanese NAAQS1 EPA2 WHO3 

CO 
1 hour 30 mg/m3 35 ppm 

(primary*) 30 mg/m3 

8 hours 10 mg/m3 9 ppm (primary) 10 mg/m3 

PM2.5 

24 hours NA 35 µg/m3 
(primary) 25 µg/m3 

1 year NA 

12 µg/m3 
(primary) 
15 µg/m3 

(secondary*) 

10 µg/m3 

PM10 
24 hours 80 µg/m3 

150 µg/m3 

(primary and 
secondary) 

50 µg/m3 

1 year NA NA 20 µg/m3 
*: EPA identifies 2 types of ambient air quality standards: Primary and Secondary. Primary standards provide 
public health protection, whereas secondary standards provide public welfare protection (EPA, 2009, 2010) 

1:(MOE, 2005)  
2:(EPA, 2009, 2010) 
3:(WHO, 2005) 

 

Finally, average within site variability (i.e. the average of the standard deviations of 

the observed readings at each of the 60 sites) was compared to the between site variability 

(i.e. the standard deviation of the average observed readings at each of the 60 sites) for each 

pollutant. This allows for assessing the spatial variability of the measured air pollutants (i.e. 

variability between sites) in relation to their temporal variability (i.e. variability within each 
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site).  Pollutants that show low between site variability tend to be more homogenous in 

space, while those with large within site variability are expected to have a temporal 

variance. All statistical analysis was conducted using the R software (R Core Team, 2015). 

 

2.4 Landuse regressions 
 

2.4.1 Potential predictors for PM2.5, PM10 and CO levels 

Potential predictors for the Particulate Matter and CO LUR models were identified 

based on previous LUR studies. Nevertheless, since only two LUR studies have been 

conducted on Carbon Monoxide (Hassanpour Matikolaei, Jamshidi, & Samimi, 2017; Son 

et al., 2018), the selection of predictors was based on previous PM2.5 and PM10 studies 

(Table 3 and Table 4).  Previous studies have reported a strong correlation between land use 

predictors and particulate matter concentrations (Table 3). 

 In addition, both road density and distance to pollution sources (industrial and airports) 

have been found to be strong predictors of ambient particulate matter concentrations (Table 

3 and Table 4). Most LUR studies focused on 2 types of predictors, namely 1) time variant 

predictors, which are mainly responsible for the temporal variability of air pollutant 

concentrations, such as meteorological and traffic variables, and 2) time constant 

predictors, which are mainly responsible for the spatial variability of air pollutant 

concentrations. In this study, five categories of predictors were generated for the study 

region. 
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a.  Meteorological predictors: These included wind speed (m/sec), wind direction, 

temperature (oC), relative humidity (%) and precipitation (mm/day). Temperature 

and relative humidity were measured simultaneously with air pollution monitoring 

using the Langan L76x. The remaining variables were collected for each sampling 

day from the Rafic Hariri International Airport weather station. The square of the 

wind speed was also included as a potential predictor in an attempt to account for 

the non-linear effect that wind might have on pollution levels. 

b.  Land Use predictors: These included total building area (Km2), high density 

urban area (Km2), medium density urban area (Km2), low density urban area (Km2), 

industrial area (Km2), park area (Km2), waterbody area (Km2), agricultural area 

(Km2) and forest area (Km2). All land-use variables were reported in terms of their 

occurrence within a predefined buffer. Buffers were generated for each of the 

predefined monitoring locations using ArcGIS 10.5.1 (ESRI, 2017). The radii of the 

generated buffers ranged from 50 meters up to 3000 meters. In an attempt to remove 

potential problems caused by autocorrelation, the correlations between all buffers of 

the same predictor were assessed using Pearson correlation. Given the potential for 

high correlations between several of the different buffer distances, only the buffered 

predictor that had the highest correlation with the measured pollutant concentrations 

was kept along with all buffers that showed low levels of correlation. The most 

recent landuse data for the GBA were generated for the year 2005 and were 

obtained from the Lebanese National Center for Remote Sensing (NCRS, 2005).  

c. Traffic predictors: These included distance to major roads and highways (Km), 

length of roads within a certain buffer (Km), and length of major roads within a 
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certain buffer (Km). The buffers used to calculate the length of roads were also 

generated using ArcGIS 10.5.1 (ESRI, 2017). In addition, traffic predictors included 

the 30 min traffic counts that were recorded simultaneously with air pollution 

measurements on the nearest road to each of the sampled sites. These predictors 

include the total number of vehicles, the number of passenger cars, the number of 

SUVs, the number of buses, the number of light trucks, the number of heavy trucks, 

and the number of motorcycles. Note that due to the lack of traffic data in the GBA, 

traffic counts were not included in the final LUR models in order to ensure that the 

generated models can be used for predicting pollution surfaces over the entire GBA. 

d. Predictors specific to the GBA: These included distance to the Rafik Hariri 

International Airport (Km) which is located in the middle of the study area and 

distance to the Zouk power plant (Km) which is located 2 Km north of the GBA, 

and considered to be one of the largest air pollution sources along the Lebanese 

coastline.  

e. Other predictors: These included variables such as elevation from sea level (m) 

and the Aerosol Optical depth (AOD). Elevation can play a role with regards to 

modulating the concentrations of air pollutants in the GBA given that changes in 

elevation can affect pollution dispersion. Unlike many other urban areas that tend to 

be flat, elevation in the study region varies between 0 and 800 m. Elevation was 

found to be a good predictor of particulate matter in several previous studies (Tables 

3 and 4). It had a negative effect in all of these studies since most of the air 

pollution sources (i.e. traffic and population density) were located at lower 

elevations. However, particulate matter and carbon monoxide emissions from 
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combustion engines are expected to increase with altitude, since the efficiency of 

these engines decreases with elevation due to lower available oxygen (EPA, 2009, 

2010). Moreover, AOD has been successfully used in previous LUR studies as a 

predictor of particulate matter concentrations (Y. Liu, Paciorek, & Koutrakis, 2009; 

Zhang et al., 2018). Daily AOD readings were downloaded from the MODIS aqua 

satellite, using the 550 nm dark target aerosol product (MYD08_D3 v6) at a 

temporal resolution of 1 day, and a spatial resolution of 10km (Rob Levy, 2015). 

 

Table 3. Predictors used in previous PM2.5 LUR models 

Source Location Meteorological 
predictors 

Land-use predictors Traffic predictors Other predictors 

(Henderson, 
Beckerman, 
Jerrett, & 
Brauer, 2007) 

Vancouver, 
Canada 

- Commercial area, 
Residential area, 
Industrial area 

Traffic density Elevation 

(Sanchez et al., 
2018) 

Hyderabad, 
India 

- Number of trees, 
NDVI, Household 
density 

- Night-time light 
intensity, 
elevation, 
longitude 

(Ross, Jerrett, 
Ito, Tempalski, 
& Thurston, 
2007) 

New York, 
USA 

- Industrial area, 
Vegetative area 

Traffic density Population 

(Saraswat et al., 
2013) 

New Delhi, 
India 

- - Distance to major 
road, Length of roads 

Population 

(Shi, Lau, & Ng, 
2016) 

Hong Kong - - Public transport 
vehicles density, road 
density 

Frontal area index 

(Hankey & 
Marshall, 2015) 

Minneapolis, 
USA 

- Industrial area, Retail 
area, Open area 

Railway length, Nus 
route length, Traffic 
intensity, Length of 
major roads, 
Intersections 

Population 
density, House 
density, 
household income 

(Eeftens et al., 
2012) 

20 European 
study areas 

- Industrial area, Green 
area, Natural area, 
Residential area, Port 

Road length, Traffic 
density, Distance to 
major road, Length 

Population, 
Elevation 
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Source Location Meteorological 
predictors 

Land-use predictors Traffic predictors Other predictors 

area of major roads 

(Y. Liu et al., 
2009) 

Massachusetts, 
USA  

Temperature, 
Relative 
humidity 

- - Population, AOD, 
Day of the year, 
Planetary 
boundary layer 
hieght 

(Ho et al., 2015) Taipei, Taiwan - Industrial area Road length, Major 
road length 

- 

(Yang, Wu, 
Chen, Lin, & Lu, 
2018) 

Zhejiang, 
China 

Relative 
humidity 

Residential area, 
Water area 

- Latitude 

(Clougherty, 
Wright, Baxter, 
& Levy, 2008) 

Boston, USA - - Road length Population 

(de Hoogh et al., 
2016) 

19 countries in 
Europe 

- Urban green area, 
Natural area, 
Residential area, 
Industrial/Commercial 
area 

Major roads length, 
Road length 

Y coordinate, 
Elevation 

(Wolf et al., 
2017) 

Augsburg, 
Germany 

- Semi natural area, 
number of buildings, 
Industrial area 

- Elevation 

(Dirgawati et al., 
2016) 

Perth, 
Australia 

- Open area, Water area Traffic intensity Distance to coast, 
Population 
density 

(Li, Ma, Xu, & 
Song, 2018) 

Beijing, China - NDVI - Terrain slope, 
Distance to 
Beijing south 
boundary, 
Population 

(C. Liu, 
Henderson, 
Wang, Yang, & 
Peng, 2016) 

Shanghai, 
China 

- Water area, Industrial 
area 

Length of highways Longitude, 
Distance to coast 

(Zhang et al., 
2018) 

China Temperature, 
Relative 
humidity, Wind 
speed 

Artificial land area, 
Forest area, Grass and 
arable area  

Distance to road Latitude and 
Longitude, 
Population 
density, 
Elevation, 
Distance to power 
plants, Year and 
month, AOD 

(Merbitz, Fritz, 
& Schneider, 

Aachen, 
Germany 

- Building area, Green 
area 

- - 
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Source Location Meteorological 
predictors 

Land-use predictors Traffic predictors Other predictors 

2012) 

(Huang, Zhang, 
& Bi, 2017) 

Nanjing, China Wind index Residential area Road length - 

(Brauer et al., 
2003) 

3 European 
cities 

- Address density Traffic intensity, 
Length of roads 

Population 

(Hochadel et al., 
2006) 

North Rhine-
Westphalia, 
Germany 

- Building density Traffic, Distance to 
major road 

- 

(Moore, Jerrett, 
Mack, & Künzli, 
2007) 

Los Angeles, 
USA 

- Industrial area, 
Governmental area 

Traffic density - 

(Saucy et al., 
2018) 

Western Cape 
Province, 
South Africa 

- Construction sites Length of railway,  Distance to grill, 
Number of grills, 
Population, 
Distance to 
nearest refuse 
transfer station, 
Waste burning 
sites 

(Morgenstern et 
al., 2007) 

Munich, 
Germany 

- Land cover factor Length of rural roads, 
Distance to 
motorway 

Population 
density 

 

  

22 
 



Table 4. Predictors used in previous PM10 LUR models 

Source Location Meteorological 
predictors 

Land-use predictors Traffic predictors Other predictors 

(Shi et al., 2016) Hong Kong - Governmental area Public transport 
vehicles density, road 
density 

Frontal area index 

(Eeftens et al., 
2012) 

20 European 
study areas 

- Industrial area, Green 
area, Natural area, 
Residential area, Port 
area 

Road length, Traffic 
density, Distance to 
major road, Length of 
major roads 

Population, 
Elevation 

(Vienneau et al., 
2010) 

UK and 
Netherlands 

- Urban influence, 
Residential area, 
Industrial area 

Major road length Elevation, Y 
coordinate 

(Chen, Baili, et 
al., 2010) 

Tianjin, China Wind speed Residential area Length of major 
roads 

Population 
density 

(Wolf et al., 
2017) 

Augsburg, 
Germany 

- Industrial area, Urban 
green area, building 
area 

Road length, traffic 
density 

- 

(Dirgawati et al., 
2016) 

Perth, 
Australia 

- Open area, Building 
area 

Heavy traffic - 

(Zhang et al., 
2018) 

China Temperature, 
Relative 
humidity, Wind 
speed 

Artificial land area, 
Forest area, Grass 
and arable area  

Distance to road Latitude and 
Longitude, 
Population 
density, 
Elevation, Year 
and month, AOD 

(Amini et al., 
2014) 

Tehran, Iran - Other land use area Road distance, 
Distance to major 
road 

Distance to 
airport, Distance 
to bus terminal, 
Distance to 
military base 

(Merbitz et al., 
2012) 

Aachen, 
Germany 

- Building area, Green 
area 

- - 
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2.4.2 Model development 

2.4.2.1 Annual models 

Four annual multiple linear regression models were developed to predict PM2.5, 

PM10 and CO concentrations, as well as the PM2.5/PM10 ratios. The multiple linear 

regression models can be presented by equation 1. 

𝑌𝑌 = 𝑋𝑋(𝑘𝑘+1,𝑛𝑛)𝐵𝐵 + 𝜀𝜀      (Equation 1) 

           Where Y represents a vector of n observations of the response variable; X is a model 

matrix with columns for k + 1 predictors with an initial column of 1 to allow for model 

intercepts; B is a vector of regression coefficients, with one column for each response 

variable; and finally ε is a vector of the model errors (Fox & Weisberg, 2011). The multiple 

linear regression models were generated using a supervised forward selection procedure. 

The final models were selected based on their Akaike’s Information Criteria (AIC) 

(Akaike, 1974). At each step, the predictor resulting in the model with the lowest AIC value 

(i.e. the most parsimonious model) was added. Each selected predictor was plotted alone 

against the concentration of each pollutant to ensure that the sign of the model variable 

coefficient matched the univariate relationship. A change in the sign of the relationship 

could be an indication of multi-collinearity issues. Any predictor that resulted in a change 

in the sign of a previously added predictor once included in the model was discarded to 

avoid overfitting or the introduction of significant interactions between the predictors. 

Finally, predictors that resulted in other predictors becoming insignificant (with p-value > 

0.1) were also excluded. Some predictors with p-values slightly larger than 0.1 were kept in 

the model if their removal resulted in a large drop in the model performance and if the sign 
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of their coefficient was plausible. Problems associated with collinearity were continuously 

assessed through tracking the variance inflation factors (VIF). Predictors with VIF values 

greater than 5 were removed from the final model, except for predictors with quadratic 

terms (i.e. Wind speed). Final residual diagnostic tests were applied to check for linearity, 

influential observations (Cook’s D), heteroskedasticity, and non-normality. Additionally, 

the spatial autocorrelation of the residuals was assessed using Moran’s I. Moran’s I values 

vary between -1 and 1, with a value of 0 signifying no spatial autocorrelation, values close 

to -1 signifying dispersion in the residuals, and values close to 1 signifying clustering in the 

residuals. The percent bias (PBIAS) was also calculated as a measure of the tendency of the 

models to overpredict or underpredict. All statistical analyses were performed using the R 

software (R Core Team, 2015). A 10-fold (k-fold) cross-validation was also performed on 

the developed models, using the DAAG package (Maindonald & Braun, 2014) in the 

software R (R Core Team, 2015). Cross validation assesses the predictive power and 

internal robustness of the generated models. Model performance was evaluated using the 

R2, the adjusted R2, the cross validation R2 and the root mean squared errors (RMSE).  

 

2.4.2.2 Seasonal models 

Additionally, seasonal LUR models were generated for each of the 3 pollutants 

using the same approach adopted for the generation of the annual models. The structure of 

these models was compared to that of the annual models in order to better understand if the 

impact of some predictors varied seasonally and to assess the temporal variation of 

pollutant concentrations. The monitoring campaign was divided into two seasons (the warm 
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and the cold) based on the temperatures and precipitation values observed during the 

sampling campaign. The warm season extended from April to October; it is also mostly 

dry. The cold season extended between November and March and is relatively a very wet 

period given the Mediterranean climate of the GBA.  

 

2.4.2.3 PM2.5/PM10 ratio models 

Little has been done on modeling the PM2.5/PM10 ratio through an LUR. Similarly to 

the other 3 pollutants, 1 annual and 2 seasonal models were generated for the ratio of 

PM2.5/PM10. This method is one way of modeling fine and coarse particulate matter 

together. This method is expected to generate better results as compared to generating 

PM2.5/PM10 ratio surfaces by dividing the predictions of the PM2.5 models by the predictions 

of the PM10 models, as it accounts for the correlations between the two pollutants. 

Prediction surfaces were generated for all 3 ratio models and those were compared to the 

surfaces generated by dividing the PM2.5 surfaces by the PM10 surfaces. Correlations as 

well as percent differences between these surfaces were calculated to assess any 

disagreement. 

 

2.4.2.4 LUR surfaces 

LUR prediction surfaces were generated for both the annual and seasonal models for 

each pollutant using the ArcGIS 10.5.1 (ESRI, 2017). The GBA was divided into a grid of 

100x100m cells. All relevant predictions were calculated for each cell. Correlations 
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between the different pollutant generated surfaces were then quantified and checked against 

the sampling-based inter-pollutant correlations. Note that the production of all prediction 

surfaces assumed mean values for the windspeed, relative humidity, and AOD for each site 

across the monitoring campaign. The generated surfaces were then used to assess exposures 

at vulnerable locations (i.e. schools and hospitals) to the modeled PM2.5, PM10 and CO 

ambient levels. 
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CHAPTER 3 

RESULTS 

The measured ambient concentrations of PM2.5, PM10 and CO ranged from 8 µg/m3 

(Site 12) to 192 µg/m3 (Site 32) for PM2.5, 9 µg/m3 (Site 12) to 313 µg/m3 for PM10 (Site 

32), and 0.91 ppm (Site 59) to 12.4 ppm (Site 24) for CO (Table 5).  

Table 5. Variability of PM2.5, PM10 and CO levels across the sampling domain 

Pollutant Number of 
readings 

Min Max Mean median Sd IQR 

PM2.5 (µg/m3) 525 8 µg/m3 192 µg/m3 68.1 µg/m3 62 µg/m3 35.9 µg/m3 49 µg/m3 
Annual averaged 
PM2.5 (µg/m3)  

58 28.5 µg/m3 104.7 µg/m3 66.8 µg/m3 67.4 µg/m3 15.7 µg/m3 19.3 µg/m3 

PM10 (µg/m3)  520 9 µg/m3 313 µg/m3 83.5 µg/m3 76.5 µg/m3 42.9 µg/m3 57.2 µg/m3 
Annual averaged 
PM10 (µg/m3)   

58 35.5 µg/m3 129.8 µg/m3 82.1 µg/m3 81 µg/m3 19.5 µg/m3 23.1 µg/m3 

PM2.5/ PM10 (%) 520 32.4 % 99 % 80.9 % 81.7 % 9.67 % 10.06 % 
Annual averaged 
PM2.5/ PM10 (%)  

58 55.7 % 87.7 % 81.3 % 81.9 % 4.89 % 3.82 % 

CO (ppm) 466 0.91 ppm 12.4 ppm 2.48 ppm 2.06 ppm 1.42 ppm 1.24 ppm 
Annual averaged 
CO (ppm) 

58 1.08 ppm 5.61 ppm 2.45 ppm 2.06 ppm 1.12 ppm 1.2 ppm 

 

With respect to PM2.5, the measured concentrations were found to show a large 

variability both in space and time, with a standard deviation of 35.9 µg/m3. This is expected 

given the long span of the monitoring campaign (1 year) and the adopted monitoring 

program. When the readings were averaged annually by site, the standard deviation 

between sites dropped to 15.7 µg/m3. It should be noted that the within site variability 

(standard deviation=32.15 µg/m3) was larger than the between site variability. This 

indicates that the temporal variability of PM2.5 was more pronounced than its spatial 

variability. As expected, the collected data across all sites and over the entire sampling 
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campaign was found to follow a lognormal distribution, whereas the site averaged annual 

data followed a normal distribution (Figure 4). With regards to the measured ambient PM2.5 

levels, 82% of the samples were found to exceed the 24-hour standard set by EPA, whereas 

the 1-year standard was exceeded 99.5% of the time. Annual site averaged data were found 

to exceed the 24-hour EPA standards at 57 of the 58 sites, and the 1-year standard was 

exceeded across all sites.  

The 3 sites that had the largest annually averaged PM2.5 levels were sites 41 (104.67 

µg/m3), 34 (99.92 µg/m3) and 42 (95.67 µg/m3). Site 41 is located on the Beirut-Damascus 

highway, which is one of the busiest highways in Lebanon; it connects the capital Beirut to 

the Bekaa Governorate and Syria. The highway serves as the main route for thousands of 

trucks and busses every day. During the monitoring campaign, Site 41 was found to have 

one of the highest numbers of heavy trucks and busses recorded in half an hour (on average 

50 heavy trucks, 26 busses and 1553 total vehicles in 30 minutes). Site 34 is located on a 

very busy main road in the Mkalles region of Beirut, next to a major intersection 

surrounded by high rise buildings. This region is densely populated and was found to have 

an average of 2,046 vehicles per half hour (4th highest following the 3 sites located on the 

main Beirut-Jounieh highway). Site 42 is located next to the Kfarchima industrial and 

military areas. The site is along a major road that is used by heavy trucks and busses as well 

as diesel operated military vehicles. On the other hand, the 3 sites with the lowest annual 

averages were sites 55 (43.5 µg/m3), 20 (45 µg/m3) and 52 (45.5 µg/m3). Sites 55 and 52 

are located in the southern, less densely populated part of the GBA, with an average 

observed traffic of 15 and 188 vehicles per half hour respectively. Site 20 however, is 
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located on a local road in Beirut that is surrounded by several major roads (with an average 

traffic of 891 vehicles per 30 minutes). The low annually averaged concentration at that site 

might be due to it being located close to the coast and surrounded by open areas that 

promote dispersion.  

 

Figure 4. PM2.5 histograms showing the distribution of (a) the measured PM2.5 concentrations across all sites 
and over the entire sampling campaign, and (b) the annually averaged PM2.5 concentrations by site. The solid 

vertical lines represent the mean concentrations, while the dashed lines represent the medians 

 

The measured PM10 concentrations showed a large variability with a standard 

deviation of 42.9 µg/m3. When the readings were averaged over the entire year for each 

site, the standard deviation dropped to 19.5 µg/m3. Similar to PM2.5 the within site 

variability (standard deviation=38.02 µg/m3) was found to be larger than the variation 

observed between sites. This indicates that the temporal variability of PM10 is more 
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pronounced than the observed spatial variation. The measured PM10 concentrations were 

found to follow a lognormal distribution, whereas the annually averaged concentrations 

followed a normal distribution (Figure 5). The PM10 Lebanese standard was exceeded more 

than 45 % of the time, whereas the USEPA standard was exceeded less than 10 % of the 

time. Site averaged PM10 concentrations were found to exceed the national standards at 25 

of the 58 monitoring locations, however all sites were within the USEPA standard. The 3 

sites that had the worst annual averages of PM10 concentrations were the same as those that 

had the highest PM2.5 annual averages. The annually averaged concentrations were found to 

be 129.8 µg/m3 at Site 42, 121 µg/m3 at Site 41, and 119.2 µg/m3 at Site 34. Similarly, the 

sites with the lowest PM10 were found to be collocated with those with the lowest annually 

averaged PM2.5 levels. Annually averaged fraction of fine particulate matter (PM2.5) to 

coarse particulate matter (PM10) was found to vary between 55.7 % and 87.7 % between 

the 60 sites, with an overall average of 80.1% (Figure 6); this indicates that the majority of 

the particulate matter across the study area is fine by mass.  
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Figure 5. PM10 histograms showing the distribution of (a) the measured PM10 concentrations across all sites 
and over the entire sampling campaign, and (b) the annually averaged PM10 concentrations by site. The solid 

vertical lines represent the mean concentrations, while the dashed lines represent the medians 
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Figure 6. PM2.5/PM10 ratio histograms showing the distribution of (a) the actual PM2.5/PM10 ratios across all 
sites and over the entire sampling campaign, and (b) the annually averaged PM2.5/PM10 ratio by site. The solid 

vertical lines represent the mean ratio, while the dashed lines represent the medians 

 

The CO concentrations measured across all sites over the entire sampling period 

showed a large variability, with a standard deviation of 1.42 ppm. The annually averaged 

CO concentrations by site showed slightly less variability with a standard deviation of 1.12 

ppm. The within site variability of CO (standard deviation=0.7ppm) was found to be 

smaller than the variability seen between sites. This indicates that, contrary to particulate 

matter, CO concentrations seem to be more stable temporally and more affected by the 

spatial heterogeneity of the study region. Both the measured as well as the site averaged 

annual CO data were found to be lognormally distributed (Figure 7). The annual averaged 

CO concentration across all sites was found to be 2.5 ppm, which didn’t exceed the 1 hour 

or the 8 hour NAAQS and EPA standards (35 ppm and 9 ppm respectively). The 8 hour 
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standard was only exceeded 3 times out of the 466 readings, whereas the 1 hour standard 

was never exceeded. Moreover, none of the annually averaged CO concentrations at the 

sampling sites exceeded the 1 and 8 hour standards. 

The highest annually averaged concentrations of CO were observed at sites 10 (5.38 

ppm), 24 (5.08 ppm) and 19 (5.02 ppm). Site 10 is located in the Dora region on the Beirut-

Jounieh highway, which is the busiest and most congested highway in the country. Sites 24 

(Achrafieh) and 19 (Algeria Street) are both located inside the city of Beirut in busy urban 

canyons. On the other hand, the lowest annually averaged concentrations of CO were 

observed at sites 59 (1.08 ppm), 58 (1.09 ppm) and 52 (1.28 ppm). All 3 sites are located in 

the southern less densely populated area of the GBA, with sites 58 and 52 located in 

mountainous villages at an elevation of around 700 m above sea level (Aramoun and 

Sarhmoul respectively). Site 59 on the other hand is located on the Damour highway which 

has significantly less traffic than the previously mentioned highways and is surrounded by 

agricultural and open areas from all sides. This result is interesting given that several other 

sites with significantly less traffic than site 59 and located in more remote areas of the GBA 

had higher concentrations of CO. 
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Figure 7. CO histograms showing the distribution of (a) the measured CO concentrations across all sites and 
over the entire sampling campaign, and (b) the annually averaged CO concentrations by site. The solid 

vertical lines represent the mean concentrations, while the dashed lines represent the medians 

 

3.1     Temporal variability 

In total, 230 measurements were taken during the cold season versus 295 

measurements during the warm season. Table 6 summarizes the observed variability in 

measured pollutant concentrations across the two seasons. As can be seen in Table 6, the 

cold season was associated with higher concentrations for the 3 pollutants whereas its 

PM2.5/PM10 ratio was smaller as compared to the warm season. The cold season was also 

associated with slightly higher within-site variability for all three pollutants. Statistically, 

there was no difference between the means and standard deviations of PM10 (F-value = 

1.22; t-value = -1.56) and PM2.5 (F-value = 1.26; t-value = -0.88) across the two seasons (p-
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values > 0.1). On the other hand, the means of both CO (t-value = -2.95; p-value = 0.005) 

and the PM2.5/PM10 ratio (t-value = 3.84; p-value = 0.0003)  were found to be statistically 

different across the 2 seasons (p-values<0.1), with higher concentrations of CO and lower 

ratios in the cold-wet season (Figure 8). With regards to the variability of the measured 

concentrations by season, only CO was found to have statistically different variance in the 

concentrations between the two seasons (F-value = 0.61; p-value = 0.07) (Figure 8). On the 

other hand, it should be noted that there were no statistically significant differences in the 

measured PM2.5, PM10 and CO levels in samples collected before noon (from 8 am till 

noon) versus those collected in the afternoon (1 pm until 6 pm) on a given day (Figure 9). 

This ensures that no biases might have been introduced due to differences in the sampling 

times.  
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Table 6. Seasonal variability in the concentrations of PM2.5, PM10 and CO 

Pollutant Season Number of readings 
(sampled sites) 

Mean (site averaged mean) SD1 (site averaged sd) 

PM2.5 Warm 295 (58) 66.42 µg/m3 (66.21 µg/m3) 31.49 µg/m3 (19.46 µg/m3) 

Cold 230 (56) 70.31 µg/m3 (69.64 µg/m3) 40.77 µg/m3 (17.46 µg/m3) 

PM10 Warm 294 (58) 80.33 µg/m3 (80.18 µg/m3) 36.80 µg/m3 (22.92 µg/m3) 

Cold 226 (56) 87.76 µg/m3 (86.94 µg/m3) 49.68 µg/m3 (22.02 µg/m3) 

CO Warm 260 (58) 2.29 ppm (2.28 ppm) 1.08 ppm (0.91 ppm) 

Cold 206 (56) 2.71 ppm (2.67 ppm) 1.75 ppm (1.49 ppm) 

PM2.5/PM10 Warm 294 (58) 82.5 % (82.4 %) 9.8 % (5.9 %) 

Cold 226 (56) 78.7 % (78.7 %) 9.1 % (5.7 %) 

1: SD = standard deviation 
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Figure 8. Seasonal variability of (a) PM2.5, (b) PM10, (c) PM2.5/PM10 ratio and (d) CO across all monitoring 
sites 
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Figure 9. Concentrations of (a) PM2.5, (b) PM10, (c) PM2.5/PM10 and (d) CO as a function of time of sampling.  
am = before noon; pm = afternoon 

 

3.2    Spatial variability 

While pollutants concentrations showed large variabilities between the 58 sites (Figure 

10, 11, 12, and 13), the variability of the pollutants across the six predefined classes of 

different urbanization rates and road densities was found to be low, with the exception of 

CO. A two-way ANOVA was conducted to test for any statistical difference between 

averaged pollutant concentrations across these categories, while accounting for a potential 
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interaction between level of urbanization and road densities. The results showed no 

statistical difference in PM2.5 and PM10 concentrations across the 6 categories and the 

interaction between the two factors was also not statistically significant. However, there 

was a statistical difference between these groupings with regards to the measured CO 

concentrations. The High urban/Low road category was found to have statistically higher 

concentrations of CO (mean = 2.98 ppm) as compared to the remaining categories, whereas 

the Low urban/High road category had statistically lower concentrations than the remaining 

categories (mean = 1.59 ppm) (Figure 14). The High Urban/Low road category mainly 

comprises locations near industrial areas with a lot of heavy truck traffic, whereas the Low 

urban/High road category mainly comprises sites located in villages with high road 

densities with low traffic or nearby highways. However, having high road densities doesn’t 

signify having high traffic density, since several sites within the high road density 

categories are located next to minor roads with low traffic. Similarly, sites within the low 

road density category can be located next to highly congested highways. 

The variance in the measured pollutant concentrations across the adopted 6 groupings 

was also found be statistically not significant, except for CO (Fligner-Killen test). For CO, 

the High urban/High road category had the largest variability (standard deviation= 1.53 

ppm), whereas the Low urban/High road category had the smallest variability between its 

sites (0.41 ppm). The large variability in the High urban/High road category is due to some 

of the sites being located in busy urban canyons within Beirut, leading for CO to be trapped 

at the street level, whereas the remaining sites were located close to the sea where 

dispersion was favorable. The Low urban/High road category however, had the smallest 
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variability due to the similarities between its sites, and due to the sites having similar CO 

sources, thus leading to almost similar CO concentrations. 

Overall, the lack of clear variability across the 6 adopted LULC-road density 

groupings indicates that using such broad-scale groupings fails to capture an accurate 

picture of the different sources and sinks associated with each site. This is evident by the 

large inter-site variability observed across the adopted 6 broad spatial clusters (Figure 

10,Figure 11,Figure 12 andFigure 13), which was significantly larger than the between 

group variability (Table 7). This reinforces the need to develop LURs in order to better 

capture the spatial variabilities of air pollutant concentrations in an urban area. 

Table 7. Comparison between within category and between category variability 

Pollutant/Parameter Average within 
category standard 
deviation 

Between category standard 
deviation 

PM2.5 15.56 µg/m3 4.33 µg/m3 

PM10 19.49 µg/m3 4.27 µg/m3 

PM2.5/ PM10 4.46 % 1.2 % 

CO 0.99 ppm 0.50 ppm 
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Figure 10. Variability of PM2.5 concentrations across sites. The blue horizontal line represents the overall mean concentration of PM2.5 across all sites 
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Figure 11. Variability of PM10 concentrations across sites. The blue horizontal line represents the overall mean concentration of PM10 across all sites 
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Figure 12. Variability of PM2.5/PM10 ratio across all sites. The blue horizontal line represents the overall mean PM2.5/PM10 ratio across all sites 
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Figure 13. Variability of CO concentrations across all sites. The blue horizontal line represents the overall mean CO across all sites. 
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Figure 14. Boxplots showing the variability of (a) PM2.5, (b) PM10, (c) PM2.5/PM10 ratio and (d) CO annual averages across different road and landuse densities 
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The cluster analysis, using the K-means partitioning method, was conducted on the 3 

measured pollutant concentrations concurrently at each of the 60 sites. The adequate 

number of clusters was found to be 3 after plotting the within groups sum of squares versus 

the number of clusters extracted. Clustering based on the 3 pollutants simultaneously 

generated sort of an air pollution index, whereby sites were segregated into 3 air pollution 

categories: high, medium and low pollution (Table 8). The results of the cluster analysis 

showed different grouping of stations as compared to the initially defined landuse and road 

density categories. This further reinforces that the original predefined categories weren’t 

adequate to explain the air pollution levels observed in the study area. Highly polluted sites 

were mainly clustered near the Beirut-Damascus highway, near industrial areas and within 

urban canyons within the limits of Beirut proper. Sites categorized with medium air 

pollution levels were mainly clustered in the Northern part of the GBA, whereas the sites 

with low air pollution were clustered in the Southern less populated sections of the GBA as 

expected (Figure 15). In addition, the Moran’s I was calculated for the three pollutants to 

assess for any spatial clustering or dispersion of pollution levels as a function of Euclidean 

distance. As shown in Table 9, significant spatial autocorrelation between the sites was 

only observed for CO, where weak clustering was found. These findings are also reflected 

in the site averaged pollutant concentration mapping shown in Figure 16.  
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Table 8. Cluster analysis categories and the thresholds identified for each group 

Category PM2.5 average PM10 average CO average 

1 (High pollution levels) 93.3 µg/m3 116.3 µg/m3 3.54 ppm 

2 (Medium pollution levels) 68.7 µg/m3 84.0 µg/m3 2.49 ppm 
3 (Low pollution levels) 49.2 µg/m3 60.3 µg/m3 1.80 ppm 

  

 

Figure 15. Air pollution cluster categories 
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Table 9. Spatial auto-correlation of the pollutants as determined through Moran's I values 

Pollutant Moran’s I p-value 

PM2.5 0.11 0.129 (>0.05) 

PM10 0.015 0.7 (>0.05) 

PM2.5/ PM10 -0.03 0.82 (>0.05) 

CO 0.15 0.05 
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Figure 16. Spatial distribution of (a)PM2.5, (b) PM10, (c)PM2.5/PM10 and (d) CO concentrations. All values are 

site averaged concentrations  
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3.3   Landuse regression models 

3.3.1 PM2.5 models 

The landuse regression model developed for predicting annual PM2.5 levels within the 

study area was able to explain 66.8% of the observed variability. The significant predictors 

included building area within a 3000 m buffer, wind speed, wind speed squared, elevation, 

relative humidity and inverse distance to the Zouk power plant (Table 10). The building 

area within a 3000 m buffer had a positive effect on the predicted concentrations of PM2.5, 

whereby a 1 Km2 increase in building area resulted in a 1.75 percent increase in PM2.5 

concentrations on average. Wind speed was found to have a quadratic relationship with the 

measured PM2.5 concentrations; concentrations tended to drop with increased annually 

averaged site-specific wind speeds up to a threshold of (30 m/s), all averaged windspeeds 

across sites had windspeeds below that threshold. This is probably due to the dual role that 

wind speed has with respect to the concentration of particulate matter, whereby at low wind 

speeds pollution dispersion is favored, whereas at higher wind speeds particle resuspension 

dominates (Nicholson, 1993). In the case of the GBA, the role of wind speed as a promoter 

of dispersion was more dominant as compared to promoting resuspension since most wind 

speed values at the 58 sites were below the model defined threshold. In addition, increases 

in the relative humidity levels, elevation, and the inverse of the distance to the Zouk power 

plant were all found to increase the PM2.5 concentrations. A 10-fold cross-validation was 

conducted to check the internal stability and robustness of the model; the results showed a 

minor drop in the cross-validated R2 (0.55). Moreover, the model didn’t show any 

significant biases with a PBIAS value of 0 (Figure 17); yet the model residuals showed 

minor spatial clustering with a Moran’s I value of 0.22 and a p-value<0.05. 
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The warm season PM2.5 model performed as well as the annual model and explained 

around 66% of the variability in the observed PM2.5 concentrations. On the other hand, the 

cold season model was only able to explain 59% of the observed variability. Percentage of 

open areas within a 2000 m buffer, distance to Zouk, relative humidity, water area within a 

750 m buffer, industrial area within a 100 m buffer and wind speed were all significant 

predictors for the warm season, whereas AOD, distance to airport, water area within a 750 

m buffer, industrial area within a 1500 m area, distance to major roads and agricultural area 

within a 500 m buffer were significant predictors for the cold season. As shown in Table 

10, the annual model had 3 predictors in common with the warm season model (relative 

humidity, wind speed and distance to Zouk), whereas it didn’t share any predictor with the 

cold season model. The seasonal models only had 1 predictor in common (water area 

within a 750 m buffer). The cross-validation R2 for both models were acceptable but lower 

than that achieved for the annual-based model, the values were 0.47 and 0.44 for the warm 

and cold season respectively. Both seasonal models didn’t show any significant bias 

(PBIAS = 0). Moreover, the residuals of the warm season model did show slightly more 

pronounced spatial clustering as compared to the annual model, with a Moran’s I value of 

0.36 and a p-value <0.05, whereas the cold season model didn’t show any spatial 

autocorrelation (p-value = 0.11).  

PM2.5 prediction surfaces (100 m × 100 m) were generated for the GBA for each of 

the 3 PM2.5 models (annual and seasonal) (Figure 18). Note that the production of the 

prediction surfaces assumed mean values for wind speed, relative humidity and AOD as 

observed during the monitoring campaign. The generated PM2.5 prediction results showed 
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that the annual model resulted in the smoothest pollution surface; it also predicted the 

lowest GBA averaged concentration among the 3 models (mean for the GBA = 52.27 

µg/m3). It also shows the smallest spatial variability in the predicted concentrations among 

the 3 models, with a standard deviation of 5.14 µg/m3. Warm and cold season model 

predictions on the other hand showed larger spatial variabilities (standard deviation of 14.3 

µg/m3 and 10.7 µg/m3 respectively). The highest GBA-wide spatially-averaged predicted 

PM2.5 concentration was predicted by the cold season model, where the predicted mean 

value was 67.9 µg/m3. The predictions from the annual and warm season models were 

highly correlated, with a Pearson’s r of 0.73; however, they were weakly correlated with 

the cold season model predictions, with a Pearson’s r of -0.02 and -0.35 respectively. 

Interestingly, the effects of traffic-related sources were not apparent in both the 

annual and summer models due to the lack of any of the traffic predictors in both models. 

However, in the case of the annual model, the length of roads within a 2000 m buffer was 

found to be highly correlated with the building area within a 3000 m buffer and as such its 

inclusion in the model instead of the building area would have resulted in a slight drop in 

the model’s R2. On the other hand, the winter model had a strong traffic related predictor, 

which was the distance to major roads. As a matter of fact, for every increase of 1 km in the 

distance between a site and the closest major road, the winter PM2.5 concentrations were 

expected to drop by 15% on average. This is probably due to increased congestion during 

the morning and afternoon rush hours in the winter season as compared to the summer 

season and to increased vehicular emissions due to lower ambient temperatures. In the 

winter, the model identified pollution hotspots in the vicinity of major roads and in the 
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southern parts of the GBA, which are adjacent to the airport. Note that the airport in the 

winter season was a significant source of PM2.5. In the annual model, major hotspots were 

observed in the center of Beirut, which is the most densely populated region of the GBA, 

and in the Northern parts of the GBA which are affected by the emissions of the Zouk 

power plant. In addition, predicted concentrations tended to increase with elevation, which 

is positively correlated with distance to the sea. This is explained by the fact that areas 

close to the sea tend to have better dispersion potential in addition to the dominant westerly 

winds that carry the pollutants from their initial sources (i.e. the densely populated coastal 

areas) to the less densely populated mountainous regions of the GBA, where pollutants get 

trapped due to the valley effect created by the mountains. This effect is apparent in both the 

annual and winter models surfaces. The effect of the Zouk power plant was very prominent 

in the summer model, as we can see an apparent decrease in predicted concentrations as we 

move away from the Zouk power plant.  

All predictors in the three models behaved as expected with respect to the 

modulating the PM2.5 concentrations, except for the coverage of industrial areas within a 

1500 m buffer in the winter model, which had a negative coefficient. This might be 

explained by the fact that all the industrial areas in the GBA, excluding the ones 

surrounding the port and airport, are small and are surrounded by forested regions, which 

tends to decrease the measured PM2.5 concentrations. Moreover, removing this predictor 

from the model resulted in a significant decrease in the performance of the model, therefore 

it was kept. 
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Table 10. LUR models for predicting annual and seasonal log-transformed PM2.5 concentrations 

Model Model equation (a Variable key given below) R2 Adj R2 CV R2 RMSE 

Annual PM2.5 4.954 + 0.0175×BUILD.3000 – 0.18×WS + 0.004×WS2 + 
0.0004×ELEV + 0.009×RH + 0.672×INVZ 

0.67 0.63 0.55 0.149 

Warm season PM2.5 3.982 + 0.12×OPEN.2000 – 0.027×DISTZ + 0.018×RH – 
0.42×WAT.750 + 13.3×IND.100 – 0.027×WS 

0.66 0.62 0.47 0.194 

Cold season PM2.5 3.877 + 3.36×AOD – 0.025×DISTA – 0.3×WAT.750 – 
0.24×IND.1500 – 0.16×DISTMJR + 0.47×AGRI.500 

0.59 0.54 0.44 0.179 

a Left-hand side of period denotes variable type and right-hand side denotes buffer size so that BUILD.3000 = building area within 
3000 m buffer (in Km2). Variable types are: WS = wind speed (m/s); WS2 = wind speed squared; ELEV = elevation (m); RH = 
relative humidity (%); INVZ = inverse distance to Zouk power plant (1/km); OPEN = open area (Km2); DISTZ = distance to Zouk 
power plant (Km); WAT = water area (Km2); IND = industrial area (Km2); AOD = aerosol optical depth; DISTA = distance to 
airport (Km); DISTMJR = distance to major road (Km); AGRI = agricultural area (Km2) 
bCross-validated R2 
cRoot Mean Square Error 
 

 

 

Figure 17. Predicted vs observed plots (a) Annual log-transformed PM2.5 LUR Model (b) Warm season log-transformed 
PM2.5 LUR model (c) Cold season log-transformed PM2.5 LUR model. Diagonal line represents the 1:1 line 
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Figure 18. PM2.5 surfaces (a) Annual average PM2.5 LUR (b) Warm-season PM2.5 LUR (c) Cold-season PM2.5 LUR 
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3.3.2 PM10 models 

The annual PM10 model performed equally well as the PM2.5 annual model and was 

able to explain 63% of the PM10 variability in the GBA. Significant predictors included 

relative humidity, industrial area within a 100 m buffer, water area within a 1500 m buffer, 

wind speed, wind speed squared, building area within a 3000 m buffer and the medium 

urban area within a 3000 m buffer. Similarly to the PM2.5 model, wind speed had a 

quadratic effect on the concentrations of PM10. In addition, increases in relative humidity, 

industrial area within a 100 m buffer, building area within a 3000 m buffer, and medium 

urban area within a 3000 m buffer all resulted in increased predictions of the PM10 

concentrations. Only the water area within a 750 m buffer of a site acted as a PM10 sink. 

The only present waterbody in or near the GBA is the Mediterranean Sea, which enhances 

the dispersion of air pollutants, leading to lower concentrations along the coastline. The 

cross validation R2 was 0.51; the model also didn’t show any significant biases with a 

PBIAS value of 0 (Figure 19). In addition, the model didn’t show any spatial 

autocorrelation in the residuals with a Moran’s I value of 0.07 and a p-value of 0.29.  

The performance of PM10 seasonal models was lower than the PM10 annual model, 

with the warm season model explaining 57% of the observed seasonal PM10 variability and 

the cold season model explaining only 49% of the variability in PM10. Relative humidity, 

water area within a 1500 m buffer, wind speed, industrial area within a 100 m buffer, 

building area within a 3000 m buffer, and medium urban area within a 3000 m buffer were 

all significant predictors in the warm season model. On the other hand, AOD, distance to 

airport, medium urban area within a 1000 m buffer, open area within a 1000 m buffer and 

57 
 



water area within a 750 m buffer were significant predictors for the cold season model. The 

structure of the warm season model was very similar to that of the annual model, as it had 5 

predictors in common, namely, water area, wind speed, industrial area, building area and 

medium urban area. On the other hand, the cold season model only had 2 predictors in 

common with the annual model (water area and medium urban area) but with different 

buffer sizes. The cold season model had a cross validation R2 of 0.31, whereas the warm 

season model fared better with a cross validation R2 of 0.48. Both models didn’t show any 

significant bias (PBIAS=0). In addition, the residuals of the warm season model showed 

some clustering, with a Moran’s I value of 0.30 and a p-value <0.05, whereas the cold 

season model didn’t show any spatial autocorrelation (p-value = 0.91). The structural form 

of all 3 PM10 models are summarized in Table 11. 

PM10 prediction surfaces (100 m × 100 m) were generated for the GBA for each of 

the 3 PM10 models (annual and seasonal) (Figure 20). Similarly to the PM2.5 surfaces, the 

production of the PM10 prediction surfaces assumed mean values for wind speed, relative 

humidity and AOD as observed during the monitoring campaign. The annual PM10 model 

generated the smoothest surface; yet it predicted the lowest study-area averaged 

concentrations among the 3 models (mean = 67.9 µg/m3). It also had a significantly lower 

spatial variability (standard deviation of 5.93 µg/m) as compared to the seasonal surfaces 

with standard deviation of 12.3 µg/m3 and 12.1 µg/m3 for the warm and cold season models 

respectively. The largest GBA-wide predicted concentration was predicted by the cold 

season model, with a study-area averaged concentration of 87.9 µg/m3. 

58 
 



The direct effect of traffic was not apparent for the 3 PM10 models, yet it was 

represented in the 3 models through the building area and the coverage of medium urban 

areas, which witness high traffic densities. PM10 concentrations were found to be directly 

affected by industrial point sources, as is clearly represented by hotspots next to industrial 

areas in the annual and warm season models. The Northern part of the GBA was found to 

have high PM10 concentrations in the annual and warm season models. whereas hotspots 

were observed in the southern, less populated, region of the GBA in the vicinity of the 

airport for the cold season model. The annual and warm season model surfaces were highly 

correlated with a Pearson’s r of 0.86, whereas the cold season model was poorly correlated 

with the other PM10 models with Pearson’s r values of -0.11 and 0.01 for the annual and 

warm season models respectively.  

Table 11. LUR models for predicting annual and seasonal log-transformed PM10 concentrations 

Model Model equation (a Variable key given below) R2 Adj R2 bCV R2 cRMSE 

Annual PM10 4.801 + 0.016×RH + 7.72×IND.100 – 0.051×WAT.1500 – 
0.16×WS + 0.003×WS2 + 0.009×BUIILD.3000 + 
0.02×MED.3000 

0.63 0.58 0.51 0.158 

Warm season PM10 3.688 + 0.024×RH – 0.084×WAT.1500 – 0.048×WS + 
17.6×IND.100 + 0.024×BUILD.3000 + 0.021×MED.3000 

0.57 0.52 0.48 0.211 

Cold season PM10 4.02 + 3.11×AOD – 0.031×DISTA + 0.12×MED.1000 + 
0.23×OPEN.1000 – 0.22×WAT.750 

0.49 0.43 0.31 0.198 

a Left-hand side of period denotes variable type and right-hand side denotes buffer size so that BUILD.3000 = building area within 
3000 m buffer (in Km2). Variable types are: WS = wind speed (m/s); WS2 = wind speed squared; RH = relative humidity (%);  
OPEN = open area (Km2);  WAT = water area (Km2); IND = industrial area (Km2); AOD = aerosol optical depth; DISTA = 
distance to airport (Km); MED = Urban area of medium building density (Km2)  
bCross-validated R2 
cRoot Mean Square Error  
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Figure 19. Predicted vs observed plots (a) Annual log-transformed PM10 LUR Model (b) Warm season log-
transformed PM10 LUR model (c) Cold season log-transformed PM10 LUR model. Diagonal line represents 

the 1:1 line
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Figure 20. PM10 surfaces (a) Annual average PM10 LUR (b) Warm-season PM10 LUR (c) Cold-season PM10 LUR 
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3.3.3 CO models 

The annual CO model was able to explain 60% of the CO variability observed in the 

GBA. Significant predictors included building area within a 3000 m buffer, forest area 

within a 100 m buffer, industrial area within a 500 m buffer, distance to major road, water 

area within a 1000 m buffer and wind speed. Building area and industrial area were found 

to have a significant positive effect on the observed CO concentrations, whereas distance to 

major roads, water area, and wind speed were found to have a negative effect on the 

concentrations. Increases in the coverage of forested areas were also found to have a 

positive effect on the concentrations of CO. We believe that this counterintuitive result was 

due to the fact that many of the monitoring sites on major highways leading out of Beirut 

were located in non-urbanized areas with a high vegetative cover. The latent effect of forest 

cover on CO concentrations was partially resolved by allowing for interactions between 

forest area and other predictors. Only the interaction between forest area and industrial area 

proved to be negative and significant. The cross validation R2 was found to be 0.44; the 

model also didn’t have any significant biases (PBIAS=0) (Figure 21). There was also no 

sign of spatial autocorrelation of the residuals, with a p-value of 0.09.  

The performance of the CO seasonal models was comparable to that of the annual 

model, with the warm season model explaining 58% of the CO variability; on the other 

hand the cold season model explaining only 50% of the variability. Road length within a 

1500 m buffer, forest area within a 100 m buffer, industrial area within a 200 m buffer, 

distance to major road and AOD were significant predictors in the warm season, whereas, 

road length within a 2000 m buffer, wind speed, water area within a 1000 m buffer, 
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industrial area within a 500 m buffer and distance to major roads were significant predictors 

in the cold season model. The 3 generated CO models had very similar model structures. 

The annual model had 3 predictors in common with each of the seasonal models although 

they had different buffer sizes. Both seasonal models also had 3 predictors in common. The 

seasonal models had a cross-validation R2 of 0.46 and 0.38 for the warm and cold seasons 

respectively, while their predictions did not show any significant biases (PBIAS=0). In 

addition, the warm season model didn’t show any spatial autocorrelation (p-value = 0.8), 

whereas the cold season model showed some spatial clustering in its residuals, with a 

Moran’s I of 0.26 and a p-value < 0.05. All 3 CO models are summarized in Table 12. 

 CO prediction surfaces (100 m × 100 m) were generated for the GBA for each of the 

3 CO models (annual and seasonal) (Figure 22). Similar to the PM2.5 and PM10 surfaces, the 

prediction of the CO surfaces assumed mean values for wind speed, relative humidity and 

AOD as observed during the monitoring campaign. The 3 generated CO prediction surfaces 

showed large variabilities, with standard deviations of 0.68 ppm, 0.61 ppm and 0.75 ppm 

for the annual, warm season and cold season models respectively. The highest predicted 

CO surface for the GBA was associated with the annual model, with a predicted mean 

GBA-wide CO concentration of 2.41 ppm, whereas the lowest predicted surface was 

associated with the warm season model, which predicted a GBA-wide mean concentration 

of 2.1 ppm. The 3 prediction surfaces were highly correlated with Pearson’s r correlations 

ranging from 0.78 (annual model and warm season model) to 0.82 (warm season model and 

cold season model).   

63 
 



The effect of traffic on CO concentrations was very strongly apparent in all 3 models 

that included distance to major road as a predictor. As such, hotspots were observed near 

roads and the CO concentrations decays rapidly as the distance to roads increased. In 

addition, the positive relationship between industrial areas and CO levels was found to be 

very strong and was captured by all 3 models. As a matter of fact, the highest predicted 

concentrations were observed in the vicinity of the industrial areas, especially next to the 

Beirut port and airport. Overall, the high CO concentrations were observed within the limits 

of Beirut proper, with lower concentrations observed in the Northern and Southern suburbs 

of Beirut.  

Table 12. LUR models for predicting annual and seasonal log-transformed CO concentrations 

Model Model equation (a Variable key given below) R2 Adj R2 bCV R2 cRMSE 

Annual CO 0.7397 + 0.055×BUILD.3000 + 18.85×FOREST.100 + 
1.79×IND.500 – 0.53×DISTMJR – 0.22×WAT.1000 – 
0.031×WS – 425.6×FOREST.100×IND.500 

0.60 0.54 0.44 0.275 

Warm season CO 0.066 + 0.004×RD.1500 + 9.32×FOREST.100 + 
7.72×IND.200 – 0.41×DISTMJR + 1.524×AOD 

0.58 0.53 0.46 0.250 

Cold season CO 0.945 + 0.003×RD.2000 – 0.03×WS – 0.4×WAT.1000 + 
1.28×IND.500 - 0.33×DISTMJR 

0.50 0.45 0.38 0.345 

a Left-hand side of period denotes variable type and right-hand side denotes buffer size so that BUILD.3000 = building area within 
3000 m buffer (in Km2). Variable types are: WS = wind speed (m/s); WAT = water area (Km2); IND = industrial area (Km2); AOD 
= aerosol optical depth; DISTMJR = distance to major road (Km); FOREST = forest area (Km2); RD = length of roads (Km) 
bCross-validated R2 
cRoot Mean Square Error 
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Figure 21. Predicted vs observed plots (a) Annual log-transformed CO LUR Model (b) Warm season log-
transformed CO LUR model (c) Cold season log-transformed CO LUR model. Diagonal lines represents the 

1:1 lines
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Figure 22. Predicted CO surfaces (a) Annual average CO LUR (b) Warm-season CO LUR (c) Cold-season CO LUR 
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3.3.4 PM2.5/PM10 ratio models 

The annual PM2.5/PM10 ratio model was able to explain 51% of the observed annual 

variability in the PM ratio. Significant predictors included industrial area within a 3000 m 

buffer, industrial area within a 100 m buffer, length of major roads within a 300 m buffer, 

open area within a 200 m buffer, low density urban areas within a 300 m buffer, relative 

humidity, and forest area within a 100 m area. Only the length of major roads within a 300 

m buffer and forest areas within a 100 m buffer had a positive effect on the ratio, this 

reinforces that traffic on major roads contribute a higher percentage of PM2.5 as compared 

to PM10 while forest areas tend to reduce more the airborne coarse particles as compared to 

the finer PM2.5. On the other hand, an increase in the rest of the predictors caused a drop in 

the percentage of fine particles by mass. The model had a cross validation R2 of 0.3 and it 

didn’t show any significant biases or any spatial autocorrelation.  

The warm season model was able to explain only 32% of the observed seasonal 

variability in the PM2.5/PM10 ratio. The strongest promoter of a high PM2.5/ PM10 ratio was 

the percent coverage of high urban areas within a 50 m buffer. The cold season model was 

largely similar to the annual model; it also was able to explain 45% of the observed ratio 

variability. The seasonal ratio models had a cross validation R2 of 0.18 and 0.28 for the 

warm and cold seasons respectively. Both models didn’t show any biases (PBIAS = 0) 

(Figure 23 and Figure 24) or any residual spatial autocorrelations. The three PM2.5/PM10 

ratio models are summarized in Table 13. 

Prediction surfaces were generated for the 3 models similarly to the other pollutants. 

Both the annual and warm season models showed low spatial variability in the median 
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predicted PM ratio, with standard deviations of 3.65 % and 4.57 % respectively, whereas 

the cold season model showed larger variabilities with a standard deviation of 28.5 %. No 

clear spatial patterns in the PM2.5/ PM10 ratio were observed in both the cold season and the 

annual prediction surfaces. However, cold spots were observed next to the airport and port, 

signifying that PM emissions in these areas were largely coarse. The warm season model 

on the other hand, showed very high ratios across the study area, with ratios rarely dropping 

below 85 %. The highest ratios were observed inside the limits of Beirut proper, where the 

dense urban fabric appears to retard the settling out of the fine particulate matter.  

Table 13. LUR models for predicting annual and seasonal log-transformed PM2.5/PM10 ratios 

Model Model equation (aVariable key given below) R2 Adj R2 bCV R2 cRMSE 

Annual ratio 4.515 – 0.017×IND.3000 – 2.42×IND.100 + 0.018×RD2.300 – 
0.79×OPEN.200 – 1.68×LOW.300 – 0.003×RH + 
1.64×FOREST.100 

0.51 0.44 0.30 0.035 

Warm season ratio 4.424 – 0.017×OPEN.200 – 0.002×RD2.300 + 18.3×HIGH.50 
– 0.79×LOW.300 

0.32 0.27 0.18 0.044 

Cold season ratio 4.677 – 0.45×IND.500 – 0.008×RH – 14.7×OPEN.50 + 
0.02×RD2.300 + 0.58×FOREST.200 

0.45 0.4 0.28 0.056 

aLeft-hand side of period denotes variable type and right-hand side denotes buffer size so that LOW.300 = low density urban area 
within 300 m buffer (in Km2). Variable types are: RH = relative humidity (%); HIGH = high density urban area (Km2); IND = 
industrial area (Km2); OPEN = open area (Km2); FOREST = forest area (Km2); RD2 = length of major roads (Km) 
bCross-validated R2 
cRoot Mean Square Error 
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Figure 23. Predicted vs observed plots (a) Annual log-transformed ratio LUR Model (b) Warm season log-transformed ratio 
LUR model (c) Cold season log-transformed ratio LUR model. Diagonal lines represents the 1:1 lines
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Figure 24. ratio surfaces (a) Annual average ratio LUR (b) Warm-season ratio LUR (c) Cold-season ratio LUR 
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CHAPTER 4 

DISCUSSION 

4.1   Pollutant variability 

The current study is the first detailed assessment of the spatio-temporal variability in 

PM2.5, PM10 and CO levels at the level of the GBA. While previous studies have attempted 

to assess PM and CO variability in the study area, they were either limited by the number of 

monitored sites (all studies had less than 10 sampling sites) and/or by the short period over 

which the sampling campaign was implemented (Daher et al., 2013; Kouyoumdjian & 

Saliba, 2006; Massoud et al., 2011; Saliba, Atallah, & Al-Kadamany, 2009; Saliba et al., 

2010; Saliba et al., 2006; Shaka’ & Saliba, 2004). The annually averaged PM2.5 and PM10 

levels across the study area (68.1 µg/m3 and 83.5 µg/m3 respectively) were found to be 

slightly higher than those reported in previous studies (ranging from 27.6 to 41 µg/m3 for 

PM2.5, and from 55.1 and 103.8 µg/m3 for PM10) conducted in Beirut city proper. This 

could indicate a worsening in the pollution levels within the GBA and/or could be due to 

differences between the sampling campaigns (e.g. sampling times, averaging period, and 

sampling locations).  

Seasonally, the measured cold season PM pollution levels were found to be higher 

than those of the warm season concurring with what was previously reported by Saliba et 

al. (2006). However, this seasonal effect contrasts with the findings of several other studies 

that reported that PM and CO concentrations were lower during the cold season due to the 

scrubbing effect of rain (Kouyoumdjian & Saliba, 2006; Saliba et al., 2009; Saliba et al., 

2010). The observed range over which the PM2.5/PM10 ratio varied over was between 0.56 
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and 0.88, which is significantly higher than what has been previously reported in other 

studies within the GBA (between 0.32 and 0.57) (Kouyoumdjian & Saliba, 2006; Saliba et 

al., 2009; Saliba et al., 2010). Moreover, the ratio showed a seasonal pattern, with the hot 

season having a higher ratio (mean of 82.43 %) as compared to the cold season (mean of 

78.68 %). Data from other urban regions have reported ratios between 0.45 and 0.85, with 

near road locations having lower ratios as compared to urban background locations 

(Chaloulakou, Kassomenos, Spyrellis, Demokritou, & Koutrakis, 2003; Eeftens et al., 

2012; Gehrig & Buchmann, 2003; Hueglin et al., 2005; Marcazzan, Vaccaro, Valli, & 

Vecchi, 2001; Xavier Querol et al., 2001; X. Querol et al., 2004; Sahanavin, Prueksasit, & 

Tantrakarnapa, 2018).  

The observed correlations between CO and PM10 (r=0.46), and CO and PM2.5 (r=50) 

were similar to those previously reported in Lebanon by Saliba et al. (2006) and 

Alameddine et al. (2016) respectively. Lower correlations between PM2.5 and CO (r=0.20), 

and PM10 and CO (r=0.33) were observed in London (Kaur, Nieuwenhuijsen, & Colvile, 

2005) and Australia (Morawska, Thomas, Bofinger, Wainwright, & Neale, 1998) 

respectively, whereas similar correlations between PM10 and CO (r=0.42-0.51) were 

observed in Hong Kong (Tian et al., 2013). In addition, the strength of these correlations 

was found to be seasonal, with stronger associations in the warm season (r=0.48 and 0.46 

for PM2.5 and PM10 respectively) as compared to the cold season (0.28 and 0.25 for PM2.5 

and PM10 respectively). 
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4.2 LUR models 

This study developed, calibrated, and validated annual and seasonal LUR models for 

PM2.5, PM10 and CO using data collected from 58 predefined sites through a monitoring 

campaign that extended over a year. This work is the first attempt at generating high 

resolution air pollution maps in Lebanon that are based on calibrated pollution-based land 

use regression models. The developed models were used to generate air pollution maps for 

the entire GBA, which allowed us to assess the intra-city variations of air pollutant 

concentrations. Overall, the PM model results highlight the potential for significant public 

health concerns in the GBA. This study showed that the entire population of the GBA is 

exposed to annually-averaged concentrations that exceeded the 24-hour WHO Air Quality 

Standards set for PM2.5 and PM10 during the sampling period (2017-2018).  

With respect to model performance, the annual models outperformed their seasonal 

counterparts for all 3 pollutants as well as for the PM2.5/PM10 ratio, with an R2 ranging 

between 0.67 for the annual PM2.5 model and 0.51 for the annual PM2.5/PM10 ratio model. 

The performance of the GBA annual models was found to compare favorably with other 

LULC models developed for predicting PM2.5 levels in several European and North 

American cities (R2 between 0.17-0.73) (Hoek et al., 2008), PM10 levels in  Tehran, Iran; 

Perth, Australia; 20 European cities; Hong Kong; Augsburg, Germany and China (Amini et 

al., 2014; Dirgawati et al., 2016; Eeftens et al., 2012; Shi et al., 2016; Wolf et al., 2017; 

Zhang et al., 2018) (R2 between 0.25-0.72), and CO concentrations in Tehran, Iran and 

Mexico city, Mexico (Hassanpour Matikolaei et al., 2017; Son et al., 2018) (R2 between 

0.38-0.53).  
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The seasonal PM2.5 models for the GBA were found to outperform their seasonal 

counterparts in other cities. The R2 values for the hot season model was 0.66, while that for 

the cold season was 0.59. In comparison, seasonal models developed for Hyderabad, India 

and the Western Cape province, South Africa (Sanchez et al., 2018; Saucy et al., 2018) had 

R2 values ranging between 0.34 and 0.58. For the seasonal PM10 models, the GBA models 

(R2 values of 0.57 and 0.49 for the hot and cold season respectively) performed as well as 

the seasonal PM10 models that were developed for Tehran, Iran and Tianjin, China (Amini 

et al., 2014; Chen, Bai, et al., 2010) (R2 ranging between 0.49 and 0.72). With respect to 

CO, no seasonal models have been previously generated. 

The model structure of the developed LUR models were found to vary by season, 

especially for PM2.5 and PM10. For both PM models, the cold and warm seasonal models 

only shared 3 predictors in total. This was reflected in the poor correlation between the 

generated warm and cold season pollution surfaces (r = -0.35 for PM2.5 and r= 0.01 for 

PM10). This indicates that important sources and sinks of PM in the GBA are seasonal in 

nature. As a matter of fact, our results show that the impact of traffic related emissions are 

much more pronounced in the cold season when it comes to PM2.5 pollution levels. These 

results were consistent with the findings of Chen, Bai, et al. (2010) and Sanchez et al. 

(2018) who also reported that their seasonal PM10 and PM2.5 models, developed for Tianjin, 

China and Hyderabad, India respectively, had very different model structures. Nevertheless, 

Amini et al. (2014) and Saucy et al. (2018) reported stable model structures for their PM10 

and PM2.5 models that were developed for Tehran, Iran and Western Cape province, South 

Africa respectively, irrespective of season. Additionally, we found that in the case of the 
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GBA the warm season models for both PM2.5 and PM10 were closer in structure to the 

annual models and their generated surfaces were also found to be highly correlated (r 

values of 0.73 and 0.86 for PM2.5 and PM10 respectively).  

As for CO, we found that the model structures for the annual as well as the seasonal 

models were to a large extent similar. Additionally, the 3 generated prediction surfaces had 

a high correlation (r values of 0.78, 0.80 and 0.82 for the warm-cold season, annual-cold, 

and annual-warm respectively). These findings point to the absence of significant seasonal 

differences in the CO sources and sinks within the GBA. As compared to the PM predicted 

surfaces, the generated CO surfaces showed higher spatial variabilities across the study 

domain with clear peaks next to major roads and industrial areas. This is expected given 

that CO is mainly emitted from anthropogenic sources and is rarely affected by natural 

events (EPA, 2010). Despite its long atmospheric life, CO is known to be source specific 

and as such background sites tend to have much lower concentrations as compared to sites 

near sources; these characteristics lead to large spatial variability in CO concentrations 

(Jaffe, 1968). 

The main common predictor across the LURs developed for the 3 pollutants was the 

building area within a 3000 m buffer. This predictor was found to be highly correlated with 

the lengths of roads and the length of major roads within the same buffer. As such, the 

parameter acts as a surrogate for traffic-related emissions in dense urban areas. Moreover, it 

indirectly accounts for the emissions from private diesel generators operating in the study 

area, as their numbers are expected to be directly proportional to the building density. 

Explicit traffic predictors were only featured in the CO models, whereby distance to main 
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roads was found to be a significant predictor alongside building area. This further 

reinforces the tight relationship between traffic and CO concentrations as compared to a 

weaker link with PM levels. It should be noted that the inclusion of traffic counts as model 

predictors resulted in better models for both the annual and seasonal models of PM2.5 and 

CO. As a matter of fact, the R2 of the annual PM2.5 model improved from 0.67 to 0.75, 

while the annual CO model improved from 0.60 to 0.64. Nevertheless, traffic counts were 

excluded from the final models due to absence of spatially explicit traffic information for 

the GBA that are needed to generate reliable pollution prediction surfaces. Another major 

pollution source that was consistently significant across all 3 pollutants was the presence of 

industrial areas; their negative effects on air quality were very apparent in most of the 

generated prediction surfaces. On the other hand, the role that the heavy-fuel burning Zouk 

power plant, which is the main point source emitter in the GBA, has on the pollution levels 

in the GBA was very evident when it came to the PM2.5 and PM10 models but was absent in 

the CO models. Fuel burning power plants have been known for emitting pollutants such as 

NOx, SOx, CO2, CO, PM, organic gases and polycyclic aromatic hydrocarbons. They were 

found to account for 24% of PM10 emissions nationwide in Mexico (Conzelmann et al., 

2006) and 11% of PM10 emissions in Beijing, China (He, Yu, Lu, Hao, & Fu, 2003). In 

addition, fossil fueled power plants were found to increase the ambient PM2.5 

concentrations in Illinois, USA by 0.04 µg/m3 (Levy, Spengler, Hlinka, Sullivan, & Moon, 

2002). 

Interestingly, the developed LUR models were able to capture some of local 

geospatial characteristic of the GBA, which play a role in transporting and dispersing air 
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pollution. The impact of the sea, captured by the area covered by water, was found to have 

a major effect in attenuating concentrations across all the models, with the exception for the 

CO warm season model. The sea-breeze is known to disperse pollutants and as such the 

coastal areas were predicted to have lower concentrations as compared to similar regions 

further inland. Additionally, the GBA LUR models captured the effect of elevation on the 

concentrations of particulate matter. Contrary to previous studies (de Hoogh et al., 2016; 

Henderson et al., 2007; Vienneau et al., 2010; Wolf et al., 2017), increases in elevation 

were found to increase the levels of PM2.5 and PM10. This is probably due to the transport 

of pollutants generated from the city and the highly urban coastal zone by the sea-breeze to 

locations further inland. The fact that these inland areas are elevated and overlook the city 

causes them to suffer from thermal inversion events that trap and concentrate pollutants. 

Our results mirror what has been observed in Los Angeles, USA, where sea breeze, strong 

thermal inversion, and the presence of a mountain range result in elevated pollution levels 

in the mountainous regions overlooking the densely populated coastal regions of the city 

(Lu & Turco, 1994). In Freiburg, Germany, the mountain-valley breeze was also found to 

transport air pollutants to the neighboring mountain range during thermal inversion events 

(Baumbach & Vogt, 1999). Similar observations were also reported for the Santiago valley 

in Chile with regards to PM2.5 and Black Carbon (Gramsch et al., 2014). 

Spatially, all the generated surfaces, except for the warm season PM2.5 surface, 

showed high pollution concentrations within the limits of Beirut city proper, which is the 

most densely populated and congested region of the GBA.  Moreover, concentrations were 

found to decrease near the coast. The Northern part of the GBA was found to have high 
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levels of PM2.5 and PM10 due to the emissions from the Zouk power plant and the 

predominant southwesterly winds that appear to transport PM generated in the highly 

congested regions of Beirut towards its northern suburbs. On the other hand, the southern 

parts of the GBA were found to have the lowest concentrations across all models with the 

exception of the PM levels in the cold season. These low concentrations are due to the fact 

that the southern parts of the GBA are less populated and not as congested as the rest of 

GBA. As for the CO prediction surfaces, the Northern and Southern parts of the GBA were 

found to have lower concentrations as compared to Beirut proper. Elevated CO levels were 

also predicted to occur next to traffic sources. 

In addition to the PM2.5, PM10, and CO LUR models that were generated for the 

GBA, this work also developed annual and seasonal LUR models for predicting the 

PM2.5/PM10 ratios across the GBA. This is the first study to our knowledge that has looked 

at generating an LUR model that predicts the covariance of the two PM pollutants 

concurrently in the same model. The performance of the annual ratio model (R2=0.51) was 

found to be comparable to that of the PM2.5, PM10 and CO models and to previous LUR 

models in general. However, the seasonal ratio models performed poorly as compared to 

the other seasonal models with R2 of 0.32 and 0.45 for the warm and cold season models 

respectively. The poor performance of these models could be due to constraining the model 

predictors to concurrently and proportionately affect the PM2.5 and PM10 levels.  
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4.3     Correlations between measured and predicted concentrations 

The measured concentrations of PM2.5 and PM10 had large within site variability as 

compared to the between site variability, whereas CO concentrations had large between site 

variability. This indicates that the temporal variability in CO concentrations at a given site 

was relatively low, whereas PM concentrations had large temporal variability in each of the 

sites. These patterns were also captured in the LUR results, where the annual and seasonal 

CO models had similar structures and resulted in highly correlated prediction surfaces, 

whereas the annual and seasonal PM2.5 and PM10 models had different model structures and 

resulted in poorly correlated prediction surfaces that tended to be more spatially 

homogeneous by comparison to the CO generated surfaces. The large temporal variability 

associated with the PM2.5 and PM10 concentrations is partially due to the effect of large-

scale natural PM emission sources in arid and semi-arid regions, such as the Eastern 

Mediterranean basin (Kattenberg et al., 1996; Xavier Querol et al., 2001). PM2.5 and PM10 

concentrations in Mediterranean cities have been known to show large temporal variability 

as a result of the long range transport of dust from North Africa and the Arabian Desert 

(Bergametti, Dutot, Buat-MéNard, Losno, & Remoudaki, 1989; Chester et al., 1993; 

Kubilay & Saydam, 1995; Xavier Querol et al., 1998; Rodrıguez, Querol, Alastuey, Kallos, 

& Kakaliagou, 2001; Saliba et al., 2010). Overall, the generated prediction surfaces for the 

annually averaged and warm season models were found to be able to conserve the inter-

pollutant correlations seen with the field-measured PM2.5, PM10 and CO levels (Table 14). 

However, inter-pollutant correlations differed between the field-measured and the modeled 

surfaces in the cold season. 
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Table 14. Table showing the correlations between the measured concentrations and between the generated prediction surfaces 

Pollutant CO PM2.5 PM10 PM2.5/PM10 ratio 
Annual Warm Cold Annual Warm Cold Annual Warm Cold Annual Warm Cold 

CO 

Annual a1.00 
(b1.00) 

  0.50* 
(0.43*) 

  0.46* 
(0.42*) 

  0.13 
(0.03*) 

  

Warm  
- 

1.00 
(1.00) 

  0.48* 
(0.42*) 

  0.46* 
(0.62*) 

  0.16 
(0.29*) 

 

Cold 
- - 

1.00 
(1.00) 

  0.28* 
(0.11*) 

  0.25* 
(0.15*) 

  0.09       
(-0.04*) 

PM2.5 

Annual 
- - - 

1.00 
(1.00) 

  0.96* 
(0.73*) 

  0.03 
(0.18*) 

  

Warm  
- - - - 

1.00 
(1.00) 

  0.96* 
(0.71*) 

  0.19       
(-0.007) 

 

Cold 
- - - - - 

1.00 
(1.00) 

  0.94* 
(0.57*) 

  0.29* 
(0.02*) 

PM10 

Annual 
- - - - - - 

1.00 
(1.00) 

  -0.14     
(-0.06*) 

  

Warm  
- - - - - - - 

1.00 
(1.00) 

  0.04 
(0.14*) 

 

Cold 
- - - - - - - - 

1.00 
(1.00) 

  0.025      
(-0.07*) 

PM2.5/PM10 
ratio 

Annual 
- - - - - - - - - 

1.00 
(1.00) 

  

Warm  
- - - - - - - - - - 

1.00 
(1.00) 

 

Cold 
- - - - - - - - - - - 

1.00 
(1.00) 

a Correlation between observed measurements 
b Correlation between prediction surfaces 
* Significant correlation 
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4.4     Exposure at schools and hospitals 

Schools and hospitals within the GBA were superimposed on the generated annual 

prediction air pollution surfaces (Figure 25). The results show that 100% of the schools and 

hospitals in the GBA are exposed to annual average PM2.5 concentrations that exceed the 

WHO standards (25 µg/m3 for 24hr standard and 10 µg/m3 for 1-year standard). Moreover, 

we found that 50% of the schools were located in regions where the concentrations 

exceeded the 55 µg/m3, while 50% of hospitals were in loctions with concentrations greater 

than 50 µg/m3. With regards to the PM10 concentrations, all schools and hospitals were 

found to be located in regions with levels exceeding the WHO standards (50 µg/m3 for 24hr 

standard and 20 µg/m3 for 1-year standard); yet lower than the current Lebanese standard 

(80 µg/m3 for the 24hr standard). More than 50% of the hospitals were found to be located 

in regions where the PM10 concentrations exceeded 64 µg/m3, while 50% of the schools 

were found in areas where the predicted concentrations exceeded 68 µg/m3. As for CO, all 

the predicted concentrations were found to be lower than both the WHO and Lebanese 

standards (8.73 ppm for 24hr standard and 26.19 ppm for 1-year standard).  

 These results show that children and hospital patients in the GBA are exposed to 

elevated concentrations of PM2.5 and PM10, which may lead to adverse health effects. These 

preliminary results highlight the importance of using the generated air pollution surfaces for 

the GBA to further investigate the health and economic impacts that air pollution has on the 

residing population. Nevertheless, this assessment has been limited to assessing exposure 

only as a function of ambient outdoor concentrations. Future efforts should look more 
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closely at the correlations between outdoor concentrations and indoor concentrations, 

especially at vulnerable receptors such as schools and hospitals. 

 

Figure 25. Plots showing the empirical cumulative density function (ECDF) of (a) PM2.5, (b) PM10 and (c) CO 
concentrations observed at schools (black dots) and hospitals (red dots), with the straight blue line showing 

the WHO standards and the dashed blue line showing the Lebanese standards 

 

4.5    Limitations 

 Despite the good performance of the generated LUR models, the current study faced 

several limitations. One major limitation was the lack of reference or background sites that 

can be used to standardize the daily readings. Standardization could have reduced the large 

variabilities observed at each site, especially during the cold season where rain plays an 

important role in precipitating out the PM from the atmosphere. Another limitation of this 

study was the lack of data on several potentially important predictors, such as traffic data, 
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industrial emissions, and data on the location, capacities, types, and operational schedule of 

private power generators. Another limitation of this study was the relatively short sampling 

time adopted in the monitoring campaign (average of 30 min readings). Short sampling 

periods may impede the capture of the true temporal variability of the measured air 

pollutant (Hoek et al., 2008). 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

The LUR approach was first developed in Europe (Briggs et al., 1997) and has since 

been applied across several European and North American cities (Hoek et al., 2008). More 

recently, LURs have been successfully tested in several developing countries in Asia 

(Amini et al., 2014; Chen, Baili, et al., 2010; Sanchez et al., 2018; Saraswat et al., 2013; M. 

Wang et al., 2014; Zhang et al., 2018; Zou et al., 2015), South America (Habermann & 

Gouveia, 2012; Sangrador et al., 2008) and Africa (Saucy et al., 2018). The current study 

further reinforces the strength of LURs, as a modeling technique, in providing informative 

pollution exposure maps in data-scarce regions that show high heterogeneity in both their 

landuse/landcover fabric and their geospatial settings. In addition, the results of the current 

study suggest that the existing monitoring network established by the Ministry of the 

Environment and that consists of 5 monitoring stations will not be able to accurately reflect 

the variability of air pollution levels across the whole GBA region despite the relatively 

small area of the study region (233 Km2). We hope that the results of this study can guide 

future monitoring initiatives in the GBA as well as drive policies that aim to improve its air 

quality, particularly with regards to urban planning, school and healthcare siting, traffic 

management, environmental monitoring, and public awareness. Moreover, the results of 

this work has great potential to be used by epidemiologists to better quantify the direct and 

indirect effects of air pollution on health, a topic that has only recently been studied in 

Lebanon (Nakhlé et al., 2015; Nasser et al., 2015). 
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In addition, future studies should make use of the generated air pollution 

concentration maps to quantify the socio-economic impacts associated with exposure to the 

the predicted PM2.5, PM10 and CO levels. This is typically achieved by overlaying the 

pollution maps on geo-referenced health data to assign exposure to individuals at their 

place of residence, work or some combination of both. These prediction surfaces can also 

be cross-validated against personal exposure measurements that target individuals with 

specific health conditions in order to ensure the validity of these predictions for use in 

epidemiological studies. Additionally, these surfaces can be used to assess the economic 

impacts of the measured air pollutants in the GBA. This can be done by looking at the cost 

and the number of hospital visits that might be attributed to air pollution related conditions, 

in addition to the loss in labor income resulting from these conditions. Finally, it is hoped 

that these these prediction surfaces can reduce the current uncertainties in exposure levels 

resulting from the lack of spatially explicit air pollution data so as to promote policy 

intervention that aim towards protecting public health and reducing air pollution related 

costs. 

Despite the good performance of the generated models, much research remains to be 

done in assessing exposure to air pollution in the GBA. Thus, future studies should expand 

on this study to better assess the variability in the pollution levels of finer PM, i.e. Ultrafine 

particles (UFPs) and Black Carbon (BC). The effects of these pollutants on human health 

are a growing concern and are thought to have worse effects than PM2.5 and PM10 (EPA, 

2009). Unfortunately, very little work has been done to measure these pollutants in 

Lebanon.  
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Another area for future research, would be to generate LUR models using mobile 

monitoring campaigns. Several LUR studies have highlighted the usefulness of mobile 

monitoring given the large spatial coverage associated with these campaigns as compared 

to stationary monitoring. Additionally, the current study was limited to curbside 

measurements. However, for a better use of these results in epidemiological studies, future 

studies will have to look at the correlations between the predicted outdoor ambient 

concentrations and indoor concentrations. Finally, several recent LUR studies have 

successfully incorporated remote sensing data into their models. This was attempted in this 

study by including AOD data from the MODIS sensor, however, the resolution of the 

product was low compared to the resolution of the generated surfaces. Future LUR studies 

in the GBA should try to incorporate several aerosol and meteorological satellite data with 

finer spatial resolution.
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