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Most developing countries suffer from elevated ambient traffic-related air 

pollution. In the Greater Beirut Area (GBA), the absence of a functioning fixed-station air 

quality monitoring network with an adequate spatial coverage has curtailed the assessment 

of personal exposure to air pollutants. The development of Land Use Regression (LUR) 

models that can predict the intra-urban variability in ambient pollution surfaces as a 

function of traffic, meteorological and GIS-based explanatory variables have proven 

effective and efficient. The models have been successfully used and applied across cities in 

North America, Europe and Asia. In this study, nitrogen oxides (NOx), nitrogen dioxides 

(NO2) and ozone (O3) concentrations were monitored across the GBA over a year using 

passive air quality samplers. The annual average concentrations of NOx and NO2 in the 

study area were 89.7 and 36.0 ppb respectively. These concentrations are higher than levels 

reported across most European and many Asian cities. On the other hand, O3 concentrations 

were largely low (GBA wide mean was 26.9 ppb), particularly in the dense and congested 

urban areas of the GBA. Based on these measurements, annual and seasonal LUR models 

were developed for the study area. Traffic related predictors were found to have a strong 

predictive role across all LUR models. Moreover, the role that local point sources had on 

the ambient levels was also evident in the final model structures. Overall, the performance 

generated models was good with low biases, a high model robustness, and acceptable R2 

that ranged between 0.66 and 0.73 for NO2, 0.56 and 0.60 for NOx, and 0.54 and 0.65 for 

O3. The developed LUR models were then used to develop the first ambient pollution 

concentration maps for the study area for NO2, NOx and O3. 
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CHAPTER 1 

1 THEORETICAL BACKGROUND 

1.1 Introduction 

The World Health Organization (WHO) estimates that exposure to urban air 

pollution – or ambient air pollution – was responsible for the death of 4.2 million people 

per year (WHO, 2018). The WHO also estimates that 91% of the world’s population 

inhales air that exceeds its set health standards (WHO, 2018). As a result, urban air 

pollution has been linked to the loss of billions of dollars associated with medical costs and 

loss of productivity (UNEP, 2014). Research conducted by the WHO have shown that nine 

out of ten people breathe polluted air, which causes the premature death of around 7 million 

per year. One third of these deaths are caused by strokes, lung cancer and heart diseases 

(WHO, 2019). Several studies have also shown a direct association between traffic-related 

air pollution and lung development in children (Bravo, Son, de Freitas, Gouveia, & Bell, 

2016; Goldizen, Sly, & Knibbs, 2016).  

Combustion reactions contribute significantly to the emissions of different air 

pollutants. Typical transportation related air pollutants include sulfur dioxide (SO2), 

nitrogen oxides (NO and NO2 as NOx), carbon monoxide (CO), volatile organic 

compounds (VOCs), and particulate matter (PM). Air pollutants are often divided into 

primary and secondary pollutants. Primary pollutants are directly emitted into the 

atmosphere, while secondary pollutants are formed in the atmosphere as a result of 

chemical reactions with other pollutants. While most of the emitted air pollutant are 

considered as primary (NO, SO2, CO, VOCs, PM), ozone (O3) and nitrogen dioxide (NO2) 
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are considered both primary and secondary pollutants (Holman, 1999). It is important to 

note that nitrogen dioxide and ozone are inter-related, whereby NO2 is considered the 

primary source of the oxygen atoms used for ozone formation. Moreover, the formed ozone 

can easily react with nitric oxide to reproduce nitrogen dioxide and oxygen. As such, there 

is often a negative correlation between the nitrogen dioxide and ozone concentrations 

present in the atmosphere (NASA, 2003).  

NO2 is part of a highly reactive group of gases known as nitrogen oxides (NOx). 

NO2 is mainly emitted during combustion reactions that take place in cars, buses, trucks, 

power plants and any off-road equipment. Prevalent meteorological conditions play an 

important role in determining the concentration of NO2 in the atmosphere. High levels of 

NO2 are often associated with conditions that are conducive to accumulation and 

stagnation. As such, NO2 levels often peak in the winter season due to limited mixing in the 

lower air boundary and a drop in the photochemical activity (Hargreaves, Leidi, Grubb, 

Howe, & Mugglestone, 2000). Additionally, higher NO2 levels tend to occur in the winter 

due to increased usage of heating and cars. In terms of spatial variability, high 

concentrations of NO2 are expected in industrial areas and in the vicinity of major roads 

and highways (Atari, Luginaah, Xu, & Fung, 2008).  

High levels of NO2 in the ambient air irritate the human respiratory system. In fact, 

short-term exposure to NO2 polluted air can worsen respiratory problems, especially asthma 

(EPA, 2016). On the other hand, long-term exposure to elevated levels of NO2 can promote 

the development of asthma and increase proneness to respiratory infections (EPA, 2016). 

Extended exposure to high levels of PM and NO2 was also found to induce structural 

changes in the heart, namely hypertrophy of the left and right ventricle (Cascio, 2016). In 
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Copenhagen, a 20% reduction in traffic-related NO2 was found to have increased the life 

expectancy on average by 0.3 – 0.5 years due to a decrease in ischemic heart diseases, 

chronic obstructive pulmonary disease (COPD), and asthma (Brønnum-Hansen et al., 

2018).  

Ozone can be found both at the stratospheric level and at tropospheric level. While 

the ozone that is naturally present in the stratosphere acts as a protective layer that shields 

the earth from the dangerous ultraviolet rays, ozone in the troposphere that is formed by 

chemical reactions between nitrogen oxides and volatile organic compounds (VOCs) is an 

anthropogenic pollutant. Meteorological parameters directly affect the behavior of O3. 

Studies have shown that O3 tends to stagnate and accumulate in the troposphere when 

temperatures are high. In fact, high temperatures and sunlight catalyze ozone formation. 

Ozone accumulation in the atmosphere is also linked to slow-moving high-pressure weather 

systems. Ozone is known for its oxidation potential. It can irritate the respiratory system 

and is linked to many respiratory symptoms such as dyspnea, upper airway irritation, chest 

tightness and coughing (Chen, Kuschner, Gokhale, & Shofer, 2007). Jerrett, Burnett, et al. 

(2009) showed that increased concentrations of ground-level ozone were significantly 

related to higher death risks from cardiopulmonary diseases. A systematic review 

conducted by Zhao, Markevych, Romanos, Nowak, and Heinrich (2018) found 

inconclusive evidence that associated high levels of ozone with increases in autism 

spectrum disorders, damage of cognitive functions and dementia, depression and suicide. 

Nonetheless, chronic health effects of exposure to ozone are not as conclusive as acute ones 

when it comes to lung function decrements, inflammation, permeability and mild 

bronchoconstriction. This is mainly due to the confounding effects of different pollutants 
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present in the atmosphere and the various meteorological parameters (Nuvolone, Petri, & 

Voller, 2018).  

While air pollution monitoring is critical towards assessing exposure and 

identifying pollution hotspots, there is increased evidence that fixed monitoring network 

lack the needed spatial coverage to capture the variability of air pollution levels within a 

city (Kanaroglou et al., 2005). Gulliver and Briggs (2004) have highlighted the potential 

mismatch between predicted air pollution levels generated from fixed-site monitoring 

stations and measured levels in the transport microenvironments. Similar conclusions have 

been reached by K. Miller et al. (2007) who found that the variability of air pollution within 

cities can often be larger than the variability observed between cities. Given these 

shortcomings of fixed-monitoring, there has been much work that aimed towards the 

development of models that can generate accurate pollution surfaces in urban areas. These 

spatially explicit surfaces can then be used to assess exposure levels and identify key 

pollution sources. Different types of modeling frameworks have been developed over the 

years. These include 1) proximity-based assessments, 2) statistical interpolation, 3) land use 

regression models, and 4) line dispersion models (DM) (Kanaroglou et al., 2005). 

Proximity-based models are the coarsest as they link air pollution from the nearest 

monitoring site directly to receptor. On the other hand, interpolation models estimate the 

concentration surfaces of the target pollutant using geospatial auto-correlations. Land use 

regression (LUR) models are based on multiple linear regression models that establish 

relationships between air pollution concentration on one hand and land use, meteorology, 

transportation, and population on the other (Parenteau, 2012). Dispersion models are 

mechanistic mathematical tools that predict pollutant concentrations by accounting for 
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emission, dispersion, and decay (Hassan, 2013). While dispersion models can provide a 

high spatio-temporal resolution for the predicted air pollutant concentrations, they often 

tend to be limited by data availability and over-parametrization. In a review that evaluated 

the four different modeling techniques used for intra-urban air pollution exposure 

Kanaroglou et al. (2005) showed that LUR models provides consistent estimations of 

traffic-related air pollution, specifically if enough land-use, transportation and pollution 

monitoring data were available. The previous methods are not the only ones used in air 

pollution studies. The latter include the use of spatial interpolation approaches, inverse 

distance weighting, Kriging, data driven spatial prediction (Xie et al., 2017).  

LUR models have been successfully used as an exposure assessment tool to 

estimate concentration at unmonitored locations in several air pollution monitoring and 

exposure studies. They have also been used to examine the relationship between observed 

air pollution concentrations and predictor variables, like land use, meteorology, and traffic 

parameters. It is important to note that LUR models can make use of data collected at 

different spatial and temporal scales. The skill of LUR models to predict the spatial 

variability of NO2, NOx and O3 concentrations in an urban environment is high. The 

reported R2 for NO2 vary between 55% and 92% (Beelen, Hoek, Vienneau, Eeftens, 

Dimakopoulou, Pedeli, Tsai, Künzli, Schikowski, Marcon, Eriksen, et al., 2013; Kashima, 

Yorifuji, Sawada, Nakaya, & Eboshida, 2018; Lee et al., 2014; Rahman, Yeganeh, Clifford, 

Knibbs, & Morawska, 2017; Wolf et al., 2017), between 49 and 92% for NOx (Beelen, 

Hoek, Vienneau, Eeftens, Dimakopoulou, Pedeli, Tsai, Künzli, Schikowski, Marcon, 

Eriksen, et al., 2013; Lee et al., 2014; Rahman et al., 2017), and between 65 and 92% for 
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O3 (Berman, Breysse, White, Waugh, & Curriero, 2015; Huang, Zhang, & Bi, 2017; Jerrett, 

Burnett, et al., 2009; Wolf et al., 2017). 

Given the low cost and ability of LUR models to predict the spatial variability of 

the 3 concerned pollutants, LUR models will be developed for the GBA. Separate multiple 

linear regression based LUR models are therefore developed for each air pollutant as 

typically done in the literature (e.g. Beelen, Hoek, Vienneau, Eeftens, Dimakopoulou, 

Pedeli, Tsai, Künzli, Schikowski, Marcon, & others, 2013; Dirgawati et al., 2016; Gilbert, 

Goldberg, Beckerman, Brook, & Jerrett, 2005; Sider et al., 2013; Weichenthal et al., 2016). 

The generated pollution surfaces are also compared to assess the spatial autocorrelation 

between the thre pollutants. The relative importance of different landuses, weather 

parameters, and traffic related predictors are then quantified so as to identify the major 

factors controlling ambient air pollution levels within the study area for each of the three 

monitored pollutants. The final LUR models are then used to generate continuous surfaces 

of air pollution levels for the GBA that are used to identify pollution hotspots. The 

development of these models will help us cover the lack of monitoring coverage, and let us 

assess the spatio-temporal variability of the concerned pollutants. 
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CHAPTER 2 

2 METHODOLOGY 

2.1 Study Area 

The Greater Beirut Area (GBA) is the most populated region in Lebanon, 

extending over an area of 233 Km2. It encompasses the capital city of Beirut along with its 

surrounding suburbs. The GBA extends across an elevation gradient, starting at the coast 

and reaches up to 800 m above mean sea level. While Beirut and its immediate suburbs are 

densely populated and highly urbanized, areas further away from the city tend to be less 

urbanized, especially towards higher elevations. The predominate landuse/lancover across 

these highland regions tends to be pine forests. Nevertheless, many of these regions are 

being urbanized at an alarming rate given socio-economic drivers and the lack of an overall 

master plan to regulate urbanization across the GBA. Note that the Rafic Hariri 

International Airport (8 km2) is located within the GBA and it was excluded from the study.  

In Lebanon, most urban areas suffer from poor air quality. The Lebanese Ministry 

of Environment has reported that the transportation sector was responsible for a significant 

percentage of the national emissions (Ministry of Environment, 2011). Several studies have 

monitored and analyzed the urban air pollution levels (Table 1); yet the characterization of 

their spatio-temporal variability remains poorly understood. Farah et al. (2014) collected 

and analyzed a time series of daily urban air pollutant levels (including NO, NO2, and O3) 

in Beirut. They reported a mean concentration of 30.83 μg/m3 for NO, 35.24 μg/m3 for NO2, 

and 36.34 μg/m3 for O3
 (Farah et al., 2014). Badaro-Saliba et al. (2014) reported that the 

NO2 levels in Beirut varied between 35 and 67 μg/m3
, with a mean of 53 μg/m3. Abdallah, 
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Sartelet, and Afif (2016) explored the influence of boundary conditions and anthropogenic 

emission inventories over the Lebanese territory. They reported a mean hourly ozone 

concentration of 48.8 μg/m3 (Abdallah et al., 2016). Additionally, Saliba, Moussa, Salame, 

and El-Fadel (2006) outlined a monthly average concentrations of ozone, varying between 

23 and 34 μg/m3. 

 
Table 1 Findings of different studies showing the measurements of several pollutants 

Pollutant Range Mean Reference 

CO (mg/m3) 
2.28 – 63.43 12.57 (Farah et al., 2014) 

1.21 – 2.709 -  (Saliba et al., 2006) 

NO (μg/m3) 0.12 – 391.66 36.34 (Farah et al., 2014) 

NO2(μg/m3) 

0.19 – 137.34 40.37 (Farah et al., 2014) 

35 – 64  53 
(Badaro-Saliba et al., 

2014) 

O3 (μg/m3) 

2.16 – 74.40 30.83 (Farah et al., 2014) 

- 48.8 (Abdallah et al., 2016) 

23 – 34  -  (Saliba et al., 2006) 

PM10 (μg/m3) 
4.30 – 334.10 35.24 (Farah et al., 2014) 

44 – 60  (Saliba et al., 2006) 

SO2 (μg/m3) 
0.26 – 70.41 11.11 (Farah et al., 2014) 

13 – 25   (Saliba et al., 2006) 

PM2.5 (μg/m3)  20.7 (Abdallah et al., 2016) 

 

Effective monitoring of air quality in the GBA is still poor. The Ministry of 

Environment launched the Air Quality Monitoring Network in 2013, with the installation of 

5 stations. This network will be augmented with the addition of 13 real-time monitoring 

stations across Lebanon (El Khoury, 2016). While this initiative is a step forward towards 

assessing air pollution levels in the GBA, it is important to note that maintaining such a 

monitoring network is expensive and challenging in the Lebanese context. 
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As such, an air quality sampling campaign was designed to cover 60 pre-defined 

sites. The selected sites were spatially distributed across the study region to reflect the 

variability in land use types and road densities within the GBA (Figure 1). Sites were first 

divided into high, medium and low urban areas based on their landuse/landcover. Sites 

were then classified in terms of their road densities into high and low road density sites, 

while ensuring that major roads that have higher traffic counts were given a higher weight 

as compared to local roads. Selection of the sites in each of the 6 categories was conducted 

through random stratified sampling using the Spatial Analyst toolbox and the Sampling 

Tool Design in the ArcGIS 10.6.1 (ESRI 2018). The adopted site selection approach is 

similar to that conducted in New York City by Matte et al. (2013). The locations of the 

sampling sites are shown in Figure 1. It should be noted that monitoring at five sites had to 

be aborted due to security issues and/or recurrent vandalism of equipment. 
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Figure 1. GBA land use for year 2005 (NCRS, 2005)
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2.2 Air Quality Sampling Campaign 

Ambient concentrations of O3, NO2 and NOx were monitored on a monthly basis 

starting on August 2017 and ending by July 2018, inclusively. Samples were collected 

through the use of ambient air passive sampler devices (PSD) manufactured by OGAWA. 

The passive samplers were chosen as a monitoring tool given their low cost, easy-handling 

and high precision and accuracy when compared to active methods. OGAWA samplers 

have been approved by the USEPA after being tested in Houston and El Paso, Texas 

against the Federal Reference Method (FRM) monitors and photolytic converter (M. E. 

Sather et al., 2006). A typical OGAWA passive sampler is shown in Figure 2. The 

OGAWA NO2 collection filters are made of cellulose fibre, coated with triethanolamine 

(TEA). While the filters used to measure NOx are coated with an oxidizing substance: 2-

phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) (Annika Hagenbjork-

Gustafsson, Andreas Tornevi, Bertil Forsberg, & Kare Eriksson, 2010). The filters used to 

capture ozone are coated with a nitrite-based solution, thus allowing the oxidizing the 

nitrite to nitrate. The lowest and highest detectable ranges of the OGAWAs for NO2, NOx 

and O3 are summarized in Table 2.  
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Figure 2. OGAWA ambient passive sampler, 1) solid pad, 2) pad retaining ring, 3) stainless screen, 4) coated 

collection filet, 5) stainless screen, and 6) diffuser end cap 

 

Table 2. Detectable ranges for concerned pollutants 

Pollutant Lowest detectable range 

(ppb) 

Highest detectable range 

(ppm) 

NO2 24 hr 

2.3 

168 hr 

0.32 

24 hr 

25 

168 hr 

3.6 

NOx 24 hr 

2.3 

168 hr 

0.37 

24 hr 

5 

168 hr 

3.6 

O3 24 hr 

2.7 

168 hr 

0.39 

24 hr 

0.8 

168 hr 

0.11 

 

OGAWA passive samplers have been tested against other methods of monitoring. 

When compared with concentrations determined through chemiluminescence instruments, 

the ratio between the OGAWA concentrations and the chemiluminescence was found to be 

1.02 for NO2 and 1.00 for NOx. In terms of precision, the mean coefficient of variation of 

NO2 measurements has been reported to be 6.4% and that of NOx was 3.7% (A. 

Hagenbjork-Gustafsson, A. Tornevi, B. Forsberg, & K. Eriksson, 2010). When conducting 

an inter-comparison between the passive samplers and active analyzers, the correlation 

turned out to be as high as a 0.95 R2 for NO2, 0.8 for O3 and 0.9 for SO2 (Adon et al., 

2010). Given its high performance and accuracy, many studies have based their monitoring 
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campaigns on the use of passive samplers for measuring NO2 (Durant et al., 2014; Jerrett, 

Finkelstein, et al., 2009; Moodley, Singh, & Govender, 2011; Mark E. Sather, Slonecker, 

Mathew, Daughtrey, & Williams, 2007; Stuart & Zeager, 2011) or O3 levels (Bytnerowicz 

et al., 2019; Hagenbjörk, Malmqvist, Mattisson, Sommar, & Modig, 2017; Kerckhoffs et 

al., 2015; Malmqvist et al., 2014; M. E. Sather et al.; Wolf et al., 2017). 

The OGAWA passive samplers were deployed on a monthly basis at each of the 

60 defined sampling location. The order by which the identified sites were sampled was 

randomized for each visit. This aims to reduce biases that may be caused by unaccounted 

variabilities in traffic and/or weather. The samplers were placed at a height of 1.5 – 2 meter 

above ground and were placed in an opaque enclosure to protect them from sun, wind, and 

rain. Moreover, all samplers were located far from local sources of nitrogen oxides like 

trucks, buses or any combusiton engines and far from walls and other surfaces that might 

decrease the ozone concentration in the vicinity of the sampler (20 cm from vertical 

surfaces and 1.5 – 2m above ground) (Ogawa, 2001). The samplers were left in the field for 

1 week before collection. Once the PSDs were collected, they were transported and 

analyzed at the Kamal A. Shair Central Research Science Laboratory at the American 

University of Beirut. Analysis was done within 14-21 days post collection. The analysis 

consisted of extracting the NOx, NO2 and O3 filters with 8mL of Milli-Q water. The extract 

of O3 was analyzed using the Metrohm model 850 professional ion chromatography (IC) 

with conductivity detector: anion flow of 0.7 mL/min; regenerant pressure 10 psi; nitrogen 

99.9% pure at 100 psi; eluant pressure 11 MPa; detector range of 10 µS. The columns used 

were Metrosep A Supp 7 – 250/4.0 (6.1006.630) with guard column Metrosep RP 2 guard / 

3.6 (6.1011.030) and a suppressor MSM rotor (6.2832.000). The retention time of ozone 
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was at 21±1 minute. The calculation of the time averaged concentration was based on the 

following equation: 

O3(ppm) =
TN

t
× (

1

SR
×

1 µmol NO3

62 µg NO3

×
1 µmol O3

1 µmol NO3

×
24.45 µL O3

1 µmol O3

×
10−6m3O3

1000 µL O3

×
106mL O3

m3O3

×
106µL

L
) 

=  
TN

t
× 18.09 µL/L 

where V is the sample extraction volume in mL, TN is the total nitrate in µg, t is 

the time in minutes, and SR is the PSD sampling rate for ozone which is equal to 

21.8mL/min.  

For NOx and NO2, the UV-VIS spectrophotometry Agilent 8453 was used for analysis at a 

wavelength of 540 nm (OGAWA, 2006). In order to calculate time-averaged concentrations 

of NO2 and NOx, a standard calibration curve was computed in order to get the slope G. 

The absorbance of the blank sample was measured (Ab) and then that of the sample (Ab). 

The actual sample’s absorbance is therefore determined as A = As – Ab. The concentration 

of the solution is therefore Cs = A/G. Once the concentration of the solution is calculated, 

the collected weight of either NO2 or NOx can be found in ng, using ms = Cs × V × 1000. 

Finally, the actual time-averaged concentration of either NO2 or NOx was calculated using 

the concentration conversion coefficient () that is provided by OGAWA to account for the 

temperature and relative humidity during the time of field deployment (t) (Equation 1).  

[NO2 or NOx] (ppb) = NO2 or NOx × ms × t  (Equation 1) 

Five percent of the PDSs were used as duplicates as part of the QA/QC. Field 

blanks constituted 10% of the total passive samplers. Both the field blanks and duplicates 
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were randomly deployed at different sites during each monthly sampling campaign so as to 

decrease bias (L. Miller et al., 2010). 

 

2.3 Data analysis and LUR model development 

Annual-averaged concentrations and seasonally-averaged concentrations were 

determined. Seasonality was defined in terms of mean monthly ambient temperatures, with 

measurements taken during the months where average temperatures exceeded 25oC were 

classified as “hot” season samples, while those below 25oC were categorized as “cold” 

season samples. The hot season included the months of April, May, June, July and August, 

while October, November, December, January, February and March constituted the cold 

season. Statistical differences in the mean and/or median pollution levels between the sites 

as well as the statistical differences in the variability observed across sites were assessed 

using the ANOVA and Fligner-Killeen tests respectively. This was also done to assess for 

the statistical differences between the cold and hot season. In addition, correlation matrices 

were generated in order to assess the strength of associtaion between the three pollutants. 

Measured concentrations were also compared to relevant local and international standards 

(Table 3) to examine the percent exceedances.  

Table 3. Ambient Air Quality Standards 

Pollutant 
Averaging 

time 

MoE NAAQS 

maximum levels 

USEPA NAAQS 

Standards 
WHO 

Nitrogen 

dioxide (NO2) 

1 year 

24 hours 

1 hour 

100 µg/m3 

150 µg/m3 

200 µg/m3 

100 µg/m3  

 

188 µg/m3 

40 µg/m3 

 

200 µg/m3 

Ground-level 

Ozone (O3) 

1 hour 

8 hours 

150 µg/m3 

100 µg/m3 

 

75 µg/m3 

 

100 µg/m3 
Source: (Ministry of Environment, 2011), (WHO, 2005), (EPA, 2010) 
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Moran’s I was used to assess the global spatial auto-correlation in the collected 

data and to identify potential spatial clustering in the measured air pollution data. The 

results were computed using the Moran’s I tool in ArcGIS 10.3 (ESRI, 2018a). Moran’s I is 

calculated based on Equation 2 (Ripley, John, & Sons, 2004). Values of Moran’s I vary 

between -1 and 1, whereby values close to -1 indicate clustering of dissimilar values and 

values close to +1 suggest clustering of similar values. A value of 0 imply randomness or 

lack of clustering. The statistical significance of the I score was assessed by comparing its 

z-score against a p-value of 0.05. 

𝐼 =  
𝑛 ∑ ∑ 𝑤𝑖,𝑗 𝑧𝑖

𝑛
𝑗=1 𝑧𝑗

𝑛
𝑖=1

𝑆0    ∑ 𝑧𝑖
2𝑛

𝑖=1

   (Equation 2) 

Where zi is the deviation of an attribute for feature i from its mean; wi,j is the 

spatial weight between feature i and j, n is equal to the number of features, and S0 is the 

aggregate of all the spatial weights, as per Equation 3:  

𝑆0 =  ∑ ∑ 𝑤𝑖,𝑗
𝑛
𝑗=1

𝑛
𝑖=1  (Equation 3) 

 

Moreover, Getis-Ord G-statistic was used to identify statistically signficant hotspots and 

coldspots, given its ability to identify spatial concentrations. The G statistic (z-score) is given 

by Equation 3 (Getis & Ord, 1992):  

𝐺𝑖
∗ =  

∑ 𝑤𝑖,𝑗𝑥𝑗
𝑛
𝑗=1 − �̅� ∑ 𝑤𝑖,𝑗

𝑛
𝑗=1

𝑆 √
[𝑛 ∑ 𝑤𝑖,𝑗

2𝑛
𝑗=1 − (∑ 𝑤𝑖,𝑗) 𝑛

𝑗=1
2

]

𝑛−1

 (Equation 4) 

where xj is the attribute value for feature j; wi,j is the spatial weight between 

feature i and j; n is equal to the total number of features; �̅� =  
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
, and  

𝑆 =  √
∑ 𝑥𝑗

2𝑛
𝑗=1

𝑛
− (�̅�)2.  
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The statistical significance of Getis-Ord G was assessed in terms of its z-score. A 

statistically significant and positive z-score indicated intense clustering of high 

concentrations in a region that is defined as a hot spot. Statistically significant but negative 

z-scores suggest intense clustering of low concentration values, which is defined as a 

potential cold spot.  

 

2.4 LUR model development 

Annual and seasonally averaged O3, NO2, and NOx concentrations from the 

implemented monitoring campaign were used for developing pollutant-specific land-use 

regression models. The LUR model development followed the methodology outlined in the 

ESCAPE (European Study of Cohorts for Air Pollution Effects) project, which 

recommended the use of a supervised stepwise selection procedure (Beelen, Hoek, 

Vienneau, Eeftens, Dimakopoulou, Pedeli, Tsai, Künzli, Schikowski, Marcon, Eriksen, et 

al., 2013). As such, each of the pollutant-specific LUR models was fitted using a step-wise 

multiple linear regression approach, using the “lm” and “step” functions in the R software 

(RCoreTeam, 2013). 

Y(n) = X(n,k+1)B(k+1) + ε(n)    (Equation 5) 

Where Y represents a vector of n observations; X is a model matrix with k + 1 

columns for the predictors, with an initial column of 1 to allow for model intercepts; B is a 

vector of regression coefficients; and finally e is a vector of model errors (Fox & Weisberg, 

2011).  

In order to develop the different LUR regression models, potential predictors were 

chosen based on the findings of previous studies ( 
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Table 4). Predictors were divided into temporally static variables; these included 

variables such as length of the road within a certain buffer of the sampling site, level of 

urbanization, forest cover, etc. Several variables were allowed to vary over time such as the 

predominant meteorological conditions and traffic data. Table 5 summarizes the potential 

predictors that were considered in the LUR model development. Note that these predictors 

have been used in previous NO2, NOx, and O3 LUR models and were available in the study 

area. The buffer distances considered with the collected GIS data were based on the A 

Distance Decay Regression Selection Strategy (ADDRESS) method proposed by Su, 

Jerrett, and Beckerman (2009).  

Each of the identified predictors was then fitted against the three different 

pollutants of interest to assess its univariate fit, which was assessed in terms of the 

generated R2. The predictor that resulted in the highest R2 was chosen as the first predictor 

to enter the model. Others predictors were then added in a forward step-wise fashion, 

whereby the variable that resulted in the best improvement in the AIC score of the model 

was chosen. In addition, the sign of the coefficient associated with each predictor was 

assessed so as to ensure that the relationship had a scientific justification and was not an 

artifact of overfitting or multicollinearity. Moreover, the addition of any new predictor was 

assessed in terms of ensuring that it did not change the sign of the slope of any of the 

previously selected predicts. Predictors that did not follow any of the aforementioned 

criteria were disregarded. Statistical significance for the inclusion of any predictor was set 

at the 90% confidence level (p-value ≤ 0.1). 
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Table 4. Previous LUR models for NOx, NO2 and O3 

Study area Pollutant Model Reference 

Variables with a positive coefficient Variables with a negative coefficient 

Nanjing, China NO2 Residential in 5km buffer Population in 3km buffer (Huang et al., 2017) 

 O3 Slope Longitude 

Japan NO2 No. of heavy traffic road in 100 m 

No. of trucks and large trucks (%) in 200m 

Average of buses route rate 

Other in 50m  

Number of population in 1km 

Farmland area in 1km 

Water in 50m 

Average slope in 1km 

 

(Kashima et al., 2018) 

Brisbane, Austria NO2 Population Density 

Major road 

Industrial area 

Distance to major road 

Open area 

Residential area 
(Rahman et al., 2017) 

NOx Open area 

Industrial area 

Residential area 

Distance to major road 

 

Auckland, NZ NO2 
No. bus stops in 100m buffer 

Awnings 

Street Width  

Distance to major road (Weissert, Salmond, 

Miskell, Alavi-Shoshtari, 

& Williams, 2018) 

Shangai, China NO2 Major road in a 2 km 

Count of industrial sources in 10 km buffer 

Population counts 

Agricultural land area in 5km (Meng et al., 2015) 
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Study area Pollutant Model Reference 

Variables with a positive coefficient Variables with a negative coefficient 

Western Europe NO2 Major road in 100 m 

All roads in 100 m  

Ports in 800 m 

Residential in 200m 

Natural land in 50 m 

 
(de Hoogh et al., 2018) 

O3– annual  Major road in 200m  

Altitude  

North South trend 

 

Ports in 4 km 

Residential area in 500m 

Residential area in 2 km 

East West trend 

Netherlands O3 – annual 

& summer  North 

Urban green space 500m buffer 

Traffic intensity in 50m buffer 

Low density residential land in 5km 

buffer 

Major road length 50m buffer 

(Kerckhoffs et al., 2015) 

Augsburg, Germany O3 
Square root of elevation 

Number of buildings in 500m 

 

Traffic load in 100m 

X coordinate  

Area of buildings 

Population in 300m 

(Wolf et al., 2017) 

Montreal, Canada O3 
Temperature squared 

Building area 300m  

Distance to shore 

Number of bus stops in 100m 

Length of highway in 100m  

NOx emissions in 750m 

Temperature 

Distance to port 

Commercial area in 750m 

Distance to highway 

Park area in 1km buffer 

Wind Speed 

Distance to major road 

(Deville Cavellin et al., 

2016) 
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Table 5. Predictors used for the traffic-related air pollution LURs 

Predictor 

Category 
Predictors 

Buffer distances in meters Source 

Traffic 

Distance to nearest 

highway 

- 

NCSR (2005) 

Distance to nearest major 

road 

- 

Total length of roads 
50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Total length of major 

roads 

50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Total length of highways 
50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Land Use 

Percent coverage by 

residential area (low, 

medium and high) 

50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

NCSR (2005) 

Percent coverage by 

industrial area 

50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Percent coverage by 

agricultural area 

50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Percent coverage by 

forest area 

50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Percent coverage by open 

spaces 

50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Percent coverage by 

water bodies 

50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Percent coverage by 

high, medium and low 

urban areas 

50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Distance to sea - 

Building Density 
50, 100, 200, 300, 500, 700, 1000, 1500, 

2000, 3000 

Meteorology 

Weekly Temperature - 

Rafic Hariri International 

Airport 

Weekly average wind 

speed 

- 

Weekly average wind 

direction 

- 

Weekly relative humidity  - 

Other 

Distance to airport - 

NCSR (2005) 
Distance to power plants - 

Distance to sea - 

Elevation - 
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The generated LUR models were checked against issues of multicollinearity using 

the variance inflation factor (VIF). Models were deemed appropriate, if their VIF did not 

exceed 3. Heteroscedasticity, non-normality and influential observations (Cook’s D) were 

assessed for all generated models. The performance of the generated LUR models was 

assessed in terms of their R2, adjusted R2 and the root mean squared errors (RMSE). 

Additionally, a 4-fold (k-fold) cross-validation assessment was conducted using the “DAAG” 

package (Maindonald & Braun, 2015) in R to assess the robustness of the final models. The k-

fold cross-validation assesses the performance of the model on different subsets of the data 

and then computes an average of the prediction error rate. The lower the prediction error rate 

the better the model is. Moreover, the residuals’ spatial autocorrelation was evaluated using 

Moran’s I. Finally, the percent bias (PBIAS) for each model was computed and used to check 

the tendency of the models’ to over or under-predict. The final models for each of the three 

pollutants were then used to generate pollution surfaces for the entire GBA using the R-

ArcGIS bridge in ArcGIS and the “arcgisbinding” R package (ESRI, 2018b). All surfaces had 

a spatial resolution of 100 x 100 m. 
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CHAPTER 3 

3 RESULTS 

3.1 Field measurements 

3.1.1 Nitrogen dioxide 

Measured NO2 concentrations in the study area were found to statistically differ 

across the sampling sites (ANOVA, p-value < 0.05) (Figure 3). Measured concentrations 

varied between 14.7 ppb at Site 13 and 67.9 ppb at Site 28. Site 13 is located in a low density 

urban area and is close to the Metn Express Highway (Table 6). On the other hand, Site 28 is 

located on a secondary road in an area with a high urban density. The temporal variability in 

NO2 levels between sites was also significant; Site 2 had the highest variability (standard 

deviation = 11.16 ppb), while Site 51 showed the lowest variability across time (standard 

deviation = 2.84 ppb). Seasonally averaged concentrations were found to be largely similar, 

with no major differences between the cold and hot season levels across sites (Figure 4). The 

results of the Wilcoxon paired test showed that there was no statistical difference in the 

median concentrations between the two seasons (p-value > 0.05). Annually averaged NO2 

concentrations were found to range between 22.9 (Site 55) and 53.0 ppb (Site 28). With these 

concentrations, it is apparent that all monitored sites in the GBA were below the USEPA and 

the MoE annual standards set for NO2 (53 ppb). Nevertheless, all sites exceeded the WHO set 

annual target of 21.3 ppb. The Getis-Ord Gi hot-spot analysis conducted on the annually 

averaged concentrations, showed that Sites 55 (p-value < 0.01) and 52 (p-value < 0.01) 

represented statistically significant cold spots, while Sites 10 and 28 were found to be 

significant hotspot areas (p-value < 0.05) (Figure 5). Seasonally, the hot spot analysis for the 
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cold season matched the results for the annual analysis, while the results for the hot season 

differed. In the hot season, Sites 45, 51, 52 and 57 were identified as statistically significant 

cold spots, while sites 28 and 40 were identified as statistically significant hotspots.
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Figure 3. NO2 variation by site. The blue line represents the USEPA and MoE’s annual set standard for NO2, the green line represents the WHO annual 

standard, the red line shows the median concentration across all sites. 
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Figure 4. Spatial distribution of NO2 concentration a) annual-averaged levels, b) hot-season averaged levels, and c) cold-season averaged levels 
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Figure 5. NO2 cold and hotspots a) annual, b) hot season, c) cold season based on the Getis-Ord Gi* hotspot analysis. Cold-spots (low concentrations) are 

shown in shades of blue and the hot-spots (high concentrations) in shades of red
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3.1.2 Nitrogen oxides 

Measured NOx concentrations were found to statistically differ across the 

sampling sites (ANOVA, p-value < 0.05) (Figure 6). The measured concentrations varied 

between 25.59 and 270.02 ppb. The lowest recorded NOx concentration was measured at 

Site 51, which is located in a medium density urban density with a low road density, while 

the highest concentration was observed at Site 46, which is located in a low density urban 

area but with a high road density, most of which are major roads with high traffic volumes. 

The variability in the measured NOx levels at each site was not similar; Site 41 had the 

highest variability (sd =49.4 ppb), while Site 11 showed the lowest variability across time. 

Similar to NO2, the seasonally averaged concentrations at each sampling site (Figure 7) 

were not statistically different from each other in the cold and hot seasons (Wilcoxon 

paired test, p-value > 0.05). Averaged hot season concentrations ranged between 34.9 (Site 

54) to 216.21 ppb (Site 40), while cold averaged concentrations ranged between 30.69 (Site 

51) and 195.54 ppb (Site 46). Meanwhile, averaged annual concentrations varied between 

33.36 for Site 51 and 166.13 ppb for Site 46 (Table 6). Similar to the patterns observed 

with NO2, the high NOx concentrations tended to be positively correlated with road density 

and traffic, while low concentrations tended to be collocated in regions with both low 

urban densities and low road density. In fact, the NO2 and NOx concentrations were found 

to be highly correlated. Based on the annually-averaged measurements by site, they had a 

correlation factor of 0.7 (Table 7). For the cold season, the correlation was slightly lower 

(0.67), while it was stronger during the hot season with a value of 0.8. The Getis-Ord Gi 

hot-spot analysis revealed that Sites 10, 40, 41, and 46 were flagged as hotspot regions 

based on the annually averaged seasonal concentrations (Figure 8). Sites 10, 40 and 41 
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were identified as hotspots at the 95% confidence interval (p-value < 0.05), while Site 46 

was significant at the 99% confidence interval (p-value < 0.01). During the cold and hot 

seasons, Sites 40 and 41 were found to be hotspots at the 99% confidence interval (p-value 

< 0.01), while Site 46 was significant at the 95% confidence interval (p-value < 0.05). Site 

31 was also found to be a statistically significant hotspot in both seasons (p-value < 0.1). 

Unlike NO2, no statistically significant cold spots were identified. 
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Figure 6. NOx variation by sampling sites. The red line shows the median concentration across the entire sampling campaign. 
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Figure 7. Spatial distribution of NOx concentration a) annual-averaged levels, b) hot-season averaged levels, and c) cold-season averaged levels 

 

 

 

 



 

 

 

 

32 

   
 
Figure 8. NOx cold and hotspots a) annual, b) hot season, c) cold season based on the Getis-Ord Gi* hotspot analysis. Cold-spots (low concentrations) are shown 

in shades of blue and the hot-spots (high concentrations) are shown in shades of red
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3.1.3 Ozone 

Measured ground-level O3 concentrations varied significantly between sites (p-

value < 0.05); levels ranged between 15.8 and 49.1 ppb at Sites 10 and 51, respectively 

(Figure 9). The variability of O3 at each site was also found to be large and statistically 

varied from site to site. Site 43 was associated with the highest variability (sd =8.56 ppb), 

while Site 28 recorded the lowest variability across time with a standard deviation of 1.88 

ppb. Similar to the NO2 and NOx levels, the seasonally averaged O3 concentrations at each 

site were not found to be statistically different (Wilcoxon paired test, p-value > 0.05). Site 

averaged O3 concentrations in the hot season ranged between 34.9 (Site 54) and 216.21 ppb 

(Site 40), while cold season averaged concentrations ranged between 30.69 (Site 51) and 

195.54 ppb (Site 46) (Figure 10). The annual-averaged concentrations of O3 ranged 

between 22.03 (Site 37) and 38.95 ppb (Site 51) (Table 6). Unlike NO2 and NOx, the 

highest concentrations of O3 were located in low density urban areas with low road 

densities, while the lowest concentrations were at sites with high urban and road densities 

with a predominance of major roads. This indicates that the O3 scavenging pathways 

dominate over the ground-level O3 generation pathways. As a matter of fact, O3 levels were 

found to be negatively correlated with both NO2 and NOx. The correlation coefficient 

between NO2 and O3 was -0.7 for both the annual averaged and cold season concentrations, 

while the hot season correlation was significantly weaker (-0.21). The same trend was 

observed between O3 and NOx (Table 7).  

Measured ground-level ozone concentrations were all below the ambient USEPA 

(70 ppb), WHO (51 ppb) and MoE (76 ppb) eight-hour standards. The Getis-Ord Gi 

hotspot analysis conducted on the annually-averaged O3 concentrations identified that three 
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sites were statistically identified as hotspots (confidence level > 95%); these sites were Site 

51, Site 57 and Site 58. No statistically significant cold spots were identified. A similar 

pattern was observed for the cold season; yet one statistically significant cold spot was 

identified, namely Site 32 (90% confidence interval). The site is located in a highly dense 

urban area with a high road density, most of which are congested. The hot-spot analysis for 

the hot season showed a larger number of statistically significant cold spots as compared to 

the identified hot spots (Figure 11). Site 9 was categorized as a hotspot with a 95% 

confidence interval, while sites 40, 43 and 45 were classified as cold spots with a 95% 

confidence interval and site 49 with a 90% confidence interval (Figure 11).   
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Figure 9. O3 variation by Site. The red line shows the median concentration of the entire sampling campaign, the green line is the 8-hr WHO standard, the blue 

line is the USEPA standard and the yellow line is the MoE set standard 
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Figure 10. Spatial Distribution of O3 concentration a) annual-averaged levels, b) hot-season averaged levels, and c) cold-season averaged levels 
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Figure 11. O3 cold and hotspots a) annual, b) hot season, c) cold season based on the Getis-Ord Gi* hotspot analysis. Cold-spots (low concentrations) are shown 

in shades of blue, while hot-spots (high concentrations) are presented in shades of red.
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Table 6. Summary statistics of the monitored air pollutants 

 
 

Minimum 

(ppb) 

Maximum 

(ppb) 

Average 

(ppb) 

Median 

(ppb) 

Standard Deviation 

(ppb) 
O

b
se

rv
ed

 NO2 14.67 67.91 36.87 36.53 9.44 

NOx 25.59 270.02 89.70 82.36 41.49 

O3 15.76 49.10 26.90 26.33 5.28 

A
n

n
u

al
 NO2 22.87 52.99 36.89 37.63 7.20 

NOx 33.36 166.13 81.30 74.98 29.42 

O3 22.03 38.95 27.04 26.90 3.20 

C
o

ld
 

NO2 21.99 54.52 36.75 36.73 7.18 

NOx 30.69 195.54 89.23 78.77 40.02 

O3 20.47 41.42 27.77 27.31 4.26 

H
o

t 

NO2 21.34 56.14 37.05 38.11 8.06 

NOx 34.90 216.21 90.50 82.23 40.86 

O3 22.03 38.95 27.04 26.90 3.20 

 

Table 7. Correlation matrix for the three monitored pollutants 

 NO2 NOx O3 

A
n

n
u

al
 NO2 1.00 0.70*** -0.70*** 

NOx 0.70*** 1.00 -0.52*** 

O3 -0.70*** -0.52*** 1.00 

C
o

ld
 

NO2 1.00 0.67*** -0.70*** 

NOx 0.67*** 1.00 -0.60*** 

O3 -0.70*** -0.60*** 1.00 

H
o

t 

NO2 1.00 0.80*** -0.21*** 

NOx 0.80*** 1.00 -0.11*** 

O3 -0.21*** -0.11*** 1.00 

*** p-value < 0.05 
 

 

 

 

 

 



 

 

 

 

39 

3.2 Land-use regression models 

3.2.1 NO2 land-use regression models 

The LUR models developed to estimate the annual averaged NO2 concentrations 

as well as the seasonal concentrations are summarized in Table 8. The seasonal and annual 

models were found to share two predictors namely, the distance to the Zouk power plant 

and the percent coverage of low urban area within a 300 meter buffer from a site. Both of 

which were found to be negatively associated with the measured NO2 concentrations. All 

three models also included a traffic-related predictor that was found to positively contribute 

to the NO2 concentrations. In addition, all three models had prevalent meteorological 

predictors that helped modulate the NO2 levels. 

Table 8. LUR models of NO2 

 Predictors Coefficients t-value p-value 
R2

; 

Adjusted R2 
RMSE 

Annual model: 

log(NO2) 

(Intercept) 

Building_3000 (%) 

Distance_Zouk (km) 

LUrban_300 (%) 

Relative_Humidity (%) 

Major_50 (km) 

4.267 

4.299  10-3 

-9.313  10-3 

-1.553  10-2 

-1.161  10-2 

4.458  10-1 

11.85 

2.887 

-3.443 

-2.669 

-2.147 

2.179 

5.33 x 10-16 

0.00578 

0.00119 

0.01028 

0.03678 

0.03420 

0.68; 

0.65 

0.11 

Hot season model: 

log(NO2 hot) 

(Intercept) 

Building_3000 (%) 

Distance_Zouk (km) 

Relative_Humidity (%) 

Lurban_300 (%) 

Distance_Major (km) 

Open_3000 (%) 

5.099 

3.312  10-3 

-8.340  10-3 

-2.087  10-2 

-1.676  10-2 

-1.612  10-1 

-1.294  10-2 

12.179 

1.943 

-1.968 

-3.522 

-2.378 

-1.860 

-1.794 

2.73  10-16 

0.057934 

0.054834 

0.000952 

0.021418 

0.069028 

0.079136 

0.66; 

0.62 

0.13 

Cold season model: 

log(NO2 cold) 

(Intercept) 

Distance_Zouk (km) 

Temperature (oC) 

LUrban_300 (%) 

Highway_50 (km) 

Wind_Speed (kph) 

2.849 

-1.221  10-2 

5.141  10-2 

-1.482  10-2 

6.524  10-1 

-8.385  10-3 

17.383 

-5.668 

5.943 

-2.762 

2.992 

-3.590 

< 2  10-16 

7.55  10-7 

2.87  10-7 

0.008063 

0.004326 

0.000776 

0.73; 

0.70 

0.10 

LUrban_300: Percent low urban areas in 300 meters buffer 

Distance_Major: Distance to major roads in Km 

Major_50: Total length of major roads within a 50 meter buffer (Km) 

Building_3000: Percent of area within a 3000 m buffer that is covered by buildings 

Open_3000: Percent of area within a 3000 m buffer that is occupied by open areas 

Highway_50: Total length of highways within a 50 m buffer (Km) 

Distance_Zouk: Distance to the Zouk power plant (Km) 
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3.2.1.1 NO2 annual model 

The annual NO2 LUR model incorporated both the effects of the point sources as 

well as the traffic related emissions in the GBA. The distance to the Zouk power plant, the 

largest point source emitter in the study areas, was found to correlate negatively with the 

annual concentrations. This highlight the role that the power plant plays in increasing the 

NO2 levels in its immediate surroundings. On the other hand, the percent area occupied by 

buildings within a 3 km buffer and the length of major roads within a 50-m buffer from a 

site were found to be positively correlated with NO2 levels. Both predictors are surrogates 

of increased urbanization and traffic. The total length of major roads within a 50-m buffer 

appears to play the dominant role in terms of increasing ambient concentrations; in fact, for 

every 0.5 Km increase in the length of major roads, the annually averaged NO2 levels was 

expected to increase by around 25%. On the other hand, for every 10% increase in the 

building area coverage within a 3 Km buffer the median NO2 levels were expected to 

increase by 4%. As expected, areas experiencing higher relative humidity levels tended to 

have lower NO2 concentrations as compared to similar sites with lower humidity levels. 

Previous work has shown that higher relative humidity levels increase the deposition 

velocity of NO2, which results in the increased removal of NO2 from the atmosphere 

(Valuntaitė, Šerevičienė, Girgždienė, & Paliulis, 2012). Sites with a higher percentage of 

low urban density developments within their 300 meter buffer were predicted to have lower 

NO2 levels on average as compared to similar sites that are more densely urbanized. A 

decrease of 10% in low density urban coverage resulted on average in a 17% increase in 

NO2 levels. Assessing the LUR-based map clearly shows that that the highest NO2 

concentrations can be found in the immediate vicinity of major roads as seen in Region A 
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in Figure 12. Concentrations tend to decrease moving away from these roads. Moreover, 

the region around the Zouk power plant (Region C) also shows medium to high 

concentrations, even though the distribution of major roads in that part of the GBA is 

relatively low. As can be seen, the highest concentrations appear to be located within the 

geographic boundaries of Beirut city, which is the highest urbanized area within the GBA. 

The lowest concentrations appear to occur in the southern part of the GBA (Region B in 

Figure 12) and the few remaining villages in the GBA that are associated with low urban 

densities; the latter appear as blue cold spots in the prediction map. Overall, the model was 

able to explain 68% of the variability observed in the annually averaged NO2 

concentrations (R2 = 0.68) (Figure 13). The model showed a minor tendency to over-

predict pollution levels, with a PBIAS of 4%. The root mean square error of the model was 

also low (0.1). Finally, in terms of the spatial auto-correlation of the model residuals, the 

Moran’s I index was found to be -0.031 with a z-score of -0.55. This indicated the absence 

of any clustering and/or spatial auto-correlation in the model residuals. The robustness of 

the model was assessed through a 4-fold cross-validation; the overall mean squared of the 

prediction errors (MSPE) was found to be 0.0421, indicating that the model structure was 

robust in its ability to predict the annual averaged NO2 concentrations.  
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Figure 12. NO2 annual LUR-based map 

 

 
Figure 13. Observed vs predicted annual NO2 concentrations 
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3.2.1.2 NO2 hot-season model 

The hot-season NO2 LUR model was found to be similar to the annual model with 

respect to its significant predictors (Table 8). 

The concentrations of NO2 during the hot season were found to be positively 

correlated with building footprint within a 3-km buffer and negatively correlated with the 

other model predictors that included distance to major roads, distance to the Zouk power 

plant, relative humidity, low urban area in 300-m buffer, and open areas within a 3-km 

buffer (Table 8). 

Based on the model results, one can conclude that the distance to major roads 

played a key role in modulating the levels of NO2 in the hot season. On average, as the 

distance between a site and its nearest major road increased by 1-km, the NO2 levels were 

expected to drop by 16 % on average. The predictive LUR surface map for NO2 showed 

patterns similar to the annual averaged NO2 map; yet the hot-season averaged NO2 

concentrations in the immediate vicinity of major roads were found to be higher than their 

counterparts in the annual model and the concentrations appear to be more spatially 

dispersed as can be seen in Figure 14 (Region A). Moreover, the area in the vicinity of the 

Zouk power plant appears to show higher levels of NO2 concentrations as compared to the 

annual map. Overall, the model explained 66% of the variability observed in the hot-season 

NO2 concentrations (R2 = 0.66; adjusted R2 = 0.62). The model showed a minor tendency 

to over-prediction with a PBIAS value of 4%. The RMSE of the model was found to be 

0.13. When computing the Moran’s I spatial auto-correlation index for the model residuals, 

the results showed that the model’s residuals were generally randomly distributed with no 
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spatial auto-correlation (Moran’s I = 0.0298 and the z-score = -0.55). The 4-fold cross 

validation results show that the model is robust with a MSPE of 0.0449. 

 
Figure 14. Hot season NO2 LUR map 

 

 

Figure 15. Observed vs predicted NO2 concentration in the hot season 
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3.2.1.3 NO2 cold season model 

 

During the cold season, meteorological parameters were found to play an 

important role in modulating the measured NO2 levels across sites. Both wind speed and 

ambient temperatures were found to be significant predictors of NO2 concentrations in the 

cold season. Sites that experienced higher wind speeds were found to have lower NO2 

levels, which highlights that role that wind plays in dispersing emissions. However, sites 

with higher temperatures were found to have on average higher NO2 levels. This is due to 

increased formation of NO2 levels at higher temperatures. Given that NO2 is a traffic 

related pollutant, the increase in the length of highways within a 50 meters radius of the 

sampling sites was found to positively correlate with the measured NO2 levels. As a matter 

of fact, for every 100 m increase in the length of highways within a 50 m buffer of a 

sampling site, the concentration of NO2 increased on average by around 7%. The effect of 

the emissions of the Zouk power plant on the NO2 levels was also very apparent. As can be 

seen from the model, the measured NO2 levels were found to drop with distance away from 

the plant; the model results indicate that the concentrations tended to drop on average by 

around 11 percent for every 10 km increase in distance. Similar to the annual and the hot 

season models, areas with a higher percentage of low urban density developments showed 

on average lower NO2 levels as compared to similar sites with more dense urbanization. As 

can be seen in the generated prediction surface, the highest concentrations were expected to 

be found in the vicinity of highways and major roads as well as in the vicinity of the Zouk 

power plant (region C). The lowest concentrations were expected in the southern part of the 

GBA (Region B in Figure 16). In summary, the model explains 73% of the observed 
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variability in the data and had a low RMSE (0.10) (Figure 17). The model showed a slight 

tendency to over-predict NO2 concentrations given that the PBIAS was 4%. In terms of the 

spatial auto-correlation of the model residuals, Moran’s I was found to be equal to 0.007 

with a z-score of 0.43, indicating a random spatial distribution of the errors with no 

clustering in the model residuals. The robustness of the model was also tested using the 4-

fold cross-validation. The MSPE value was 0.0442, indicating a strong ability for the 

model to predict NO2 concentrations in the cold season. 

 
Figure 16. Cold season NO2 LUR map 
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Figure 17. Observed vs predicted NO2 cold concentrations 

 
 

3.2.2 NOx land-use regression models 

The LUR models for predicting the annually-averaged NOx concentrations as well 

as the seasonal concentrations are summarized in Table 9. The three models were found to 

share three common predictors namely, the distance to major roads, percent of low urban 

areas, and the total length of highways within a 50-m buffer. As can be seen in Table 9, 

most of the significant predictors associated with the NO2 models were also found to be 

equally significant for predicting NOx levels. Similar to the NO2 models, the traffic-related 

predictor were found to be positively correlated with the NOx concentrations, which further 

highlights the importance of the transport sector in aggravating air pollution within the 

GBA.  
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Table 9. LUR models of NOx 

 Predictors Coefficients t-value p-value 
R2 

Adjusted R2 
RMSE 

Annual model: 

log(NOx) 

(Intercept) 

highway_50 (km) 

LUrban_300 (%) 

MUrban_3000 (%) 

Building_3000 (%) 

Distance_major (km) 

3.8893 

1.5695 

-3.1530  10-2 

1.42093  10-2 

1.19485 10-2 

-6.169  10-1 

26.606 

2.392 

-2.142 

3.200 

3.849 

-3.086 

< 210-16 

0.020629 

0.037199 

0.002409 

0.000344 

0.003332 

0.5724; 

0.5288 

0.29 

Hot season model: 

log(NOx hot) 

(Intercept) 

Building_3000 (%) 

Distance_Major (km) 

LUrban_300 (%) 

Distance_Zouk (km) 

Highway_50 (km) 

Wind_speed (kph) 

4.4860 

1.032  10-2 

-5.350  10-4 

-2.771  10-2 

-1.335  10-5 

1.4930 

-3.885  10-2 

23.516 

2.734 

-2.809 

-1.933 

-1.990 

2.377 

-1.917 

< 210-16 

0.00873 

0.00716 

0.05908 

0.05231 

0.02149 

0.06115 

0.5973; 

0.547 

0.28 

Cold season model: 

log(NOx cold) 

(Intercept) 

Distance_Zouk (km) 

Highway_50 (km) 

LUrban_300 (%) 

Distance_Major (km) 

Water_1000 (%) 

4.8780 

-2.642  10-2 

1.9070 

-3.202  10-2 

-6.092  10-1 

-1.120  10-2 

45.858 

-4.295 

2.708 

-2.123 

-3.028 

-2.219 

< 2  10-16 

8.25  10-5 

0.00930 

0.03879 

0.00392 

0.03112 

0.5633; 

0.5188 

0.30 

MUrban_300: Percent area occupied by medium urban areas within a 300m buffer  

Water_1000: Percent coverage of waterbodies within a 1 km buffer 

 

 

 

 

3.2.2.1 NOx annual model 

Similar to the NO2 annual model, the model for the annual NOx levels had a strong 

correlation to the traffic related emission predictors, namely distance to highways as well 

as the length of highways within a 50-meter buffer of a site. Yet unlike the NO2 model, 

there was no statistically significant correlation with the Zouk Power plant, the major point 

source emitter in the GBA. The total length of highways within a 50-m buffer was found to 

positively correlate with the measured annual NOx concentrations. As a matter of fact for 

every 100 m increase in the length of highways within the buffer area, the NOx levels were 

expected to increase on average by 17%. On the other hand as the distance separating a site 
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from the nearest major road increased, the pollution levels were expected to drop. The drop 

on average was by more than 27% for every 500 m increase in the separation distance. The 

impact of urbanization was also very clear, sites with a higher percentage of medium urban 

density tended to have higher NOx ambient concentrations as compared to areas with a low 

urban density. Furthermore, the total buildings footprint around a site was found to be 

positively correlated with the measured NOx levels. As the percentage of the area covered 

by buildings within a 3000 m buffer from a site increased by 1 %, the NOx levels were 

expected to increase by 1.2% on average. Examining the generated LUR predictive map for 

the annual NOx levels in the GBA shows clearly that the highest concentrations tend to 

occur in the immediate vicinity of the major roads and highways (e.g. Region A in Figure 

18). Similarly to NO2, the highest concentrations tend to be more pronounced within Beirut 

city, while the lowest concentrations tend to occur in the southern part of the GBA (Region 

B in Figure 18). Overall, the annual NOx model was able to explain 57% of the variability 

observed in the annually averaged NOx concentrations (R2 = 0.57), with an adjusted R2 of 

0.53. The model displayed a minor tendency to over-predict, with a PBIAS of 3.5%; yet its 

root mean square error was low (0.29). The Moran’s I index based on the model residuals 

was found to be -0.043 with a z-score of -0.101. This indicates the absence of clustering in 

the model’s residuals. The 4-fold cross-validation had an MSPE of 0.118, showing that the 

model has a good ability to reproduce results close to the averaged measured NOx annual 

concentrations. 
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Figure 18. Annual NOx LUR map 

 

 
Figure 19. Observed vs Predicted NOx annual concentrations 

 
 
3.2.2.2 NOx hot season model 

Similar to the annual NOx model, NOx concentrations in the hot season were 

highly correlated with traffic related predictors. In fact, the NOx levels tended to increase 

on average by 16% for every additional 100 m of highways within a 50 meter buffer 
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around a site. Concentrations also tended to decrease as the distance to major roads 

increased; yet the rate of decrease was much less pronounced as compared to the annual 

model. This could indicate that NOx levels in the hot season tend to persist longer around 

major highways. Unlike the annual model, the effect of the Zouk power plant, the main 

point source air pollution emitter in the GBA, was found to be statistically significant; yet 

its magnitude was small and thus insignificant. This is apparent in the generated predictive 

maps that do not show a local hot-zone in the vicinity of the Zouk power plant. In addition, 

the NOx levels in the hot season were found to increase with the increasing footprint of the 

build-up areas within a 3-km buffer of the sampling sites. A 10 % increase in the build-up 

footprint tended to increase the NOx levels by around 11% on average in the hot season. 

Concentrations were also expected to be lower at sites with higher wind speeds. The 

generated predictive map clearly shows that the highest NOx concentrations tended to fall 

in the immediate vicinity of highways and close to the Zouk power plant as shown in 

Figure 20. In fact, at the northern extremity of area C lies. Given that the most prominent 

direction of wind is south western, pollutants tend to accumulate in that area, and show 

high concentrations since winds carry over the pollutant. On the other hand, the lowest 

concentrations occur in the southern section of the GBA (Region B). Overall, the predictive 

LUR-based pollution map for the hot season was found to be very similar to that generated 

for NO2 in the same season. This is expected given that the correlation factor between NOx 

and NO2 in the hot season was 0.87 (Table 11). Overall, the model was able to explain 59% 

of the observed variability in the NOx concentrations in the hot-season (R2 = 0.59; adjusted 

R2 of 0.55). The model was found to show a slight bias towards over-prediction with a 

PBIAS value of 5%. The root mean square error of the model was low with a value of 0.30. 
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Moreover, the model’s residuals did not show any statistically significant spatial auto-

correlation, whereby the Moran’s I index was found to be 0.0273 with a z-score of 0.413. 

The robustness of the model was assessed with a 4-fold cross-validation, the MSPE was 

found to have a value of 0.103, which indicates good predictive abilities and lack of over-

fitting.  

  
Figure 20. Hot season NOx LUR map 

 

 
Figure 21. Observed vs predicted NOx concentrations in the hot season 
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3.2.2.3 NOx cold season model 

The NOx model for the cold season was found to be largely similar in structure to 

both the annual and the hot season models; yet it included the percentage of waterbodies 

within a 1-km buffer as an additional predictor. The correlation between the cold-season 

NOx levels and the percentage of water bodies around a given site was found to be 

negative. On average for every 10 % increase in the percent water coverage a site had, its 

NOx levels were expected to decrease by around 11%. The contribution of the Zouk power 

plant to the cold-season NOx levels was much more apparent than in the hot season. The 

concentrations were expected to drop by around 3% per km moving away from the facility. 

Overall, the highest cold season NOx levels were expected to be found along highways. 

Lower values were predicted to be found towards the southern region of the GBA, as 

shown in Figure 22. Note that coastal regions tended to have lower concentrations as 

compared to their corresponding hot season concentrations due to the ameliorating effect of 

nearby water surfaces. Overall, the cold-season model was able to explain 56% of the 

variability observed in the NOx concentration (R2 = 0.56) during that season, with an 

adjusted R2 of 0.51. This model also had a minor tendency to over-predict concentrations, 

with a PBIAS value of 0.06. Moreover, the generated predictions were robust with a MSPE 

value of 0.109. The spatial autocorrelation of the residuals was assessed using the Moran’s 

I metric, which was found to be -0.0018, with a z-score of 0.039. This implies that the 

model residuals are not clustered but rather have a spatial distribution that can be supported 

by a completely random spatial process.  

 



 

 

 

 

54 

 
Figure 22. Cold season NOx LUR map 

 

 
Figure 23. Observed vs predicted NOx cold-season concentrations 
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3.2.3 O3 land-use regression models 

The LUR models developed to predict O3 levels at the annual as well as the 

seasonal levels are summarized in Table 10. All models were found to share one common 

predictor, namely the percent area occupied by industrial establishments within a 50-m 

buffer from a given site. Interestingly, this predictor did not feature in any of the NO2 and 

NOx models.  

 

Table 10. LUR models of O3 annual, hot and cold seasons 

 Predictors Coefficients t-value p-value 
R2; adjusted 

R2 
RMSE 

Annual model: 

log(O3) 

(Intercept) 

all_roads_3000 (km) 

Wind_speed (kph) 

Major_200 (km) 

Open_2000 (%) 

Ind_3000 – Ind_50 (%) 

Ind_50 (%) 

3.295 

-4.301  10-4 

1.700  10-2 

-6.624  10-2 

4.521  10-3 

-6.087  10-3 

-7.199  10-3 

86.393 

-5.574 

5.296 

-3.411 

2.355 

-2.247 

-2.664 

< 210-16 

1.12  10-6 

2.92  10-6 

0.00132 

0.02267 

0.02925 

0.01048 

0.6456; 

0.6013 

0.07 

Hot season model: 

log(O3 hot) 

(Intercept) 

Water_2000 (%) 

1/Distance_Airport (km-1) 

Open_50 (%) 

Ind_50 (%) 

Major_200 (km) 

Distance_highway (km) 

3.33 

3.539  10-3 

-6.446  10-1 

1.181  10-3 

1.236  10-3 

-6.993  10-2 

-3.355  10-2 

104.681 

4.483 

-4.662 

1.746 

2.181 

-3.150 

-2.142 

< 210-16 

4.57  10-5 

2.52  10-5 

0.04723 

0.03413 

0.00281 

0.03726 

0.5426; 

0.4854 

0.06 

Cold season model: 

log(O3 cold) 

(Intercept) 

Building_3000 (%) 

Distance_Zouk (km) 

All_roads_200 (km) 

Ind_50 (%) 

Wind_speed (kph) 

3.387 

-3.581  10-3 

5.384  10-3 

-4.427  10-2 

-2.369  10-3 

5.435  10-3 

54.181 

-2.877 

2.479 

-2.279 

-3.002 

2.847 

< 2  10-16 

0.00593 

0.01668 

0.02707 

0.00421 

0.000643 

0.6095; 

0.5697 

0.09 

All_roads_3000: all roads length in 3km buffer  Water_2000: waterbodies area in 2 km buffer 

Major_200: major roads length in 200m buffer  Open_50: Open areas in 50m buffer 

Open_2000: open areas in 2km buffer All_roads_200: all roads length in 200m 

buffer 

Ind_3000: industrial areas in 3 km buffer Ind_50: industrial areas in 50m buffer 
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3.2.3.1 O3 annual model 

The annual O3 model incorporated 4 variables that tended to attenuate O3 

concentrations, these included: the length of roads within a 3-km buffer, the length of 

major roads within a 200-m buffer, as well as industrial areas within a 50-m buffer and 

within a 3-km buffer. As can be seen, the aforementioned variables are considered as 

pollution sources that emit nitrogen oxides. As such, it is suspected that sites with high 

values of these predictors tend to have a low VOC/NOx ratio, which limit ozone 

production and accelerate its loss through the NOx titration process. Overall for every 1 km 

increase in the total length of major roads within a 200-m buffer, the ozone concentration 

on average decrease by 6.5%. For the same increase in the total road length within a 3 Km 

buffer, the expected decrease in ozone concentration was predicted to be marginal. An 

increase of 10 % in the industrial areas within a 50 m or a 3 Km buffer distance from a site 

caused the ozone levels to drop on average by 7% and 6% respectively. On the other hand, 

increases in wind speeds and the percentage of open areas within 2 km of a site tended to 

increase the predicted ozone levels. This could be due to the low NOx concentrations in 

open areas and the ability of the wind to disperse NOx. Unlike nitrogen oxides, the 

generated LUR-based map for the annual averaged O3 levels showed the lowest 

concentrations in the vicinity of major highways and roads, while the highest levels were 

expected to be found in the southern region of the GBA as shown in Figure 24. Overall, the 

annual ozone model was able to explain 64% of the variability observed in the annual O3 

concentrations (R2 = 0.64), with an adjusted R2 of 0.60. The model had a slight tendency to 

over-predict concentrations, with a PBIS value of 3%. The RMSE was 0.07, indicating a 

small deviation between the observed and predicted values. Moreover, there was no 
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statistically significant spatial autocorrelation in the model residuals (Moran’s I metric was 

-0.0176 with a z-score of -0.296 with a p-value = 0.22). This implies that the model 

residuals do not show any signs of clustering but rather they tend to have a spatial 

distribution that can be supported by a completely random spatial process.  

 

 
Figure 24. Annual concentrations O3 LUR map 
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Figure 25. Observed vs predicted O3 annual concentrations 

3.2.3.2 O3 hot season model 

Three significant predictors were found to positively correlate with the measured 

O3 levels in the hot season. These included the percentage of waterbodies within a 2-km 

buffer, open areas within a 50-m buffer, and industrial areas within a 50-m buffer. For 

every 10 percent increase in these three predictors, the O3 levels were expected to increase 

on average by 3.6%, 1.2%, and 1.2% respectively. The length of major roads within a 200-

m buffer, distance to highway, and the inverse distance to the airport were found to 

negatively correlate with the measured O3 concentrations. As a matter of fact for every 1 

km increase in the length of major roads within a 200-m buffer of a site, the ozone levels 

were expected to drop by around 7%. Ozone concentrations were expected to drop by 

around 3 % for every 1 km increase in the distance separating a site from the nearest 

highway. As for the distance to airport, O3 levels 1 km away from the airport were 

expected to be on average 27.6% lower than levels 2 km away from the airport. This 

highlight the potential dominance of low VOC/NOx environments near major roads and in 

the vicinity of the airport and thus one would expect that ozone levels decrease as a result 

of the elevated nitrogen oxides concentrations in these regions. As can be seen from the 
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predicted median hot-season O3 concentration map for the GBA, the O3 concentrations 

tended to be more spatially homogeneous and lower than the annual average concentrations 

throughout the whole area. The lowest concentrations appear to be collocated near the 

major roads, mainly due to the scavenging effect caused by the higher concentrations of 

nitrogen dioxide (Figure 26). Higher O3 concentrations in the hot season appear along parts 

of the shoreline, where the NOx concentrations were also predicted to be low. Overall, the 

hot seasonal model for O3 in the GBA was able to explain only 54% of the variability in the 

observed concentrations (R2 = 0.54) with an adjusted R2 of 0.48. Moreover, the RMSE 

value was found to be 0.06. The model had a slight tendency to over-predict 

concentrations, with a PBIAS value of 0.11%. No spatial auto-correlation was observed for 

the residuals (Moran’s I = -0.0473; z-score = -0.521, p-value = 0.23). The hot season model 

proved to be robust, with a MSPE value of 0.0639.  
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Figure 26. Hot concentrations O3 LUR map 

 

 
Figure 27. Observed vs predicted O3 hot-season concentrations 

 

3.2.3.3 O3 cold season model 

In the cold season, increases in the building footprints within a 3-km buffer of a 

site, the length of roads within a 200-m buffer, and the percent area that is industrial within 

a 50-m buffer of a site were all found to correlate negatively with the measured O3 

concentrations. Interestingly, these variables were positively associated with the NO2 and 

NOx concentrations in the cold season; this further emphasizes that in the more urban areas 

of the GBA the scavenging of ozone by NOx exceeds its generation rate thus hinting to the 

presence of a low VOC/NOx ratio in these zones. Ozone concentrations in the cold season 

tended to increase with increasing distance from the Zouk power plant and with increased 

wind speeds. Spatially, the cold-season LUR-based map was similar to the one generated 

for the annually averaged concentrations. As can be seen in Figure 28, the lowest 

concentrations are found next to roads. On the other hand, the highest levels were found in 

the low urban southern section of the GBA (region B in Figure 28). Overall, the cold 

season ozone model explained 60% of the variability observed in the measured 
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concentrations (R2 = 0.60), with an adjusted R2 of 0.56. The model had a slight tendency to 

over-predict with a PBIS value of 3%.  No spatial autocorrelation was observed in the 

model residuals (Moran’s I index = -0.0102; z-score = 0.32, p-value = 0.19). The MSPE 

value was 0.0327 indicating a robust model.  

 

 
Figure 28. Cold season O3 LUR map 
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Figure 29. Observed vs predicted cold-season O3 concentrations 

 

 

 

3.3 Correlation between the pollutants 

The correlations between the predicted NO2 and NOx concentrations for the 

annual, hot, and cold season were found to be higher than the correlations associated with 

the measured concentrations(annual r=0.86 vs 0.70; hot season r=0.87 vs 0.80; cold season 

r= 0.83 vs 0.67). This could be an artifact of the high similarity in model structure between 

the NO2 and NOx LUR models. The correlation between the predicted NO2 and O3 surfaces 

was found to be negative and high for the annual and cold season, reaching -0.78 and -0.73 

respectively. These correlations were largely similar to those associated with the 

correlation observed for the measured levels (-0.7 for both annual and cold season). During 

the hot season, the correlation between the two pollutants proved to be weak and not 

significant (correlation factor of -0.08). Field-based hot season correlation was also 

negative but was higher in magnitude (r = -0.21). Similar to the case of NO2, the 

correlation between NOx and O3 was also negative and high for the annual and winter 
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models (correlation = -0.70 and -0.71 respectively, p-value < 2.210-6). This relationship 

was also found to weaken in the hot season, where the correlation factor dropped to -0.12. 

Correlations based on the field-measurements were largely similar across seasons and for 

the annually averaged levels. 

 
Table 11. Correlation matrix between the generated pollutant prediction maps 

 NO2 NOx O3 

A
n

n
u

al
 NO2 1.00 0.86 -0.78 

NOx 0.86 1.00 -0.70 

O3 -0.78 -0.70 1.00 

C
o

ld
 

NO2 1.00 0.83 -0.73 

NOx 0.83 1.00 -0.71 

O3 -0.73 -0.71 1.00 

H
o

t 

NO2 1.00 0.87 -0.08 

NOx 0.87 1.00 -0.12 

O3 -0.08 -0.12 1.00 
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CHAPTER 4 

4 DISCUSSION & CONCLUSION 

4.1 Pollutant variability 

The adopted sampling campaign extended between August 2017 and July 2018, 

inclusive. The data collected in this campaign is the most extensive for the GBA to date 

given its spatial representativeness (around 0.25 sites per km2) and its extended sampling 

period. The measured levels of nitrogen dioxides across the monitoring sites varied 

between 14.7 and 67.9 ppb with a mean of 36.87 ppb. Previous monitoring studies 

conducted in Beirut city proper had reported that NO2 varied between 0.1 and 73 ppb 

(Farah et al., 2014), while Badaro-Saliba et al. (2014) reported that levels fluctuated 

between 18 and 34.04 ppb. When compared to other cities, specifically the 36 European 

cities in the ESCAPE project, the GBA measured concentrations exceeded all reported 

levels. Additionally, the annually averaged GBA levels were found to exceed levels 

reported in Taipei, Taiwan, Shizuoka, Japan, and Ulaanbaatar, Mongolia (Kashima et al, 

2019; Huang et al., 2013; Lee et al., 2014). Overall, the annually averaged concentrations 

in the GBA were all found to exceed the WHO annual standard set for NO2 but did not 

exceed the annual standards set by the USEPA nor the MoE. These levels can be 

considered as a potential public health concern and thus will necessitate the implementation 

of more stringent air quality emission controls in Lebanon. As it happens, epidemiological 

studies have shown that concentrations lower than the set standards by the WHO (lower 

than our measured concentrations too) have been linked to different respiratory diseases 

and death across several cities (Ackermann-Liebrich, Felber Dietrich, & Joss, 2019; 
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Casquero-Vera et al., 2019; Castro, Künzli, & Götschi, 2017; Chaloulakou, Mavroidis, & 

Gavriil, 2008; Keuken, Roemer, Zandveld, Verbeek, & Velders, 2012).  

Seasonal patterns in our study have shown higher concentrations during the cold 

season when compared to the hot season’s concentrations, as is the case in many other 

studies (Bozkurt, Üzmez, Döğeroğlu, Artun, & Gaga, 2018; Gibson et al., 2013; 

Hargreaves et al., 2000; Kasparoglu, Incecik, & Topcu, 2018; Mahajan et al., 2015). Cold 

season averaged concentrations in the GBA were found to vary between 21.99 and 54.54 

ppb with an average of 36.75 ppb. These levels are higher than those reported in a study 

conducted in nearby Marmara, Turkey, where winter mean concentrations recorded at 7 

urban sites varied between 14 and 28.8 ppb (Kasparoglu et al., 2018). Interestingly, the 

winter NO2 levels in Beirut were also found to be higher than those reported in the much 

larger and industrialized city of Chengdu, China (winter mean level = 31.38 ppb) (Zhu et 

al., 2019). In the summer, GBA averaged NO2 levels were found to exceed even more the 

mean concentrations reported in Chengdu (22.8 ppb) and in Marmara (5.26 to 18.3 ppb).  

Concentrations of NOx followed closely NO2 levels as expected given the high 

correlation observed between the two pollutants. The NOx levels in the GBA ranged 

between 25.6 and 270.0 ppb, with a mean of 89.70 ppb. These values were found to be 

higher than those reported across the 36 European cities in the ESCAPE project, where 

NOx concentrations were found to vary between 0.3 ppb and 148.9 ppb. Moreover, the 

mean GBA NOx levels were found to significantly excee levels recorded in Augsburg – 

Germany, where NOx was found to vary between a minimum of 7.6 and a maximum of 23 

ppb (Wolf et al., 2017), and in Taipei-Taiwan, where the average NOx level was found to 

be 34.4 ppb. In Metropolitan Perth, Western Australia, Dirgawati et al. (2015) reported 
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even lower NOx concentrations with summer averaged concentrations of 2.82 ppb and 

winter averaged levels of 6.43 ppb. Seasonally, NO2 and NOx levels were generally higher 

during the cold season as reported is other studies (Gibson et al., 2013; Hargreaves et al., 

2000; Mahajan et al., 2015). Yet the seasonal differences in their concentrations was 

relatively low.  

With respect to the ozone levels, the GBA measured concentrations were found to 

vary between 15.76 and 49.10 pbb, with a mean of 26.9 ppb. These values are largely 

higher that what has been previously reported across Lebanon (O3 varied between 1.1 and 

37.9 ppb, with a mean level of 24.9 ppb) (Abdallah et al., 2016; Farah et al., 2014; Saliba et 

al., 2006). In comparison to levels reported in some European cities, the GBA O3 levels 

were significantly lower (Beelen, Hoek, Vienneau, Eeftens, Dimakopoulou, Pedeli, Tsai, 

Künzli, Schikowski, Marcon, Eriksen, et al., 2013; Kerckhoffs et al., 2015). When 

comparing seasonal concentrations, our measured ozone levels showed a strong seasonal 

signal. Interestingly, ozone concentrations were found to be higher in the cold season as 

compared to the hot season, especially in the southern low urban areas of the GBA. This 

seasonal variability in ozone was unexpected given that ozone is a well-known summer 

pollutant (Bhardwaj et al., 2018; Mahata et al., 2018; Wang et al., 2018). Yet, the winter of 

2017-2018 was exceptionally mild with average monthly temperatures ranging between 17 

and 25 oC. The annually averaged concentrations were found to be below the set 

environmental standards. Nonetheless, ozone standards are only defined in terms of an 8 

hour exposure period. 
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4.2 LUR models 

Annual and seasonal LUR models were developed to predict the spatial variability 

of NO2, NOx, and O3 levels within the GBA. The calibrated models were then employed to 

generate pollution surfaces for the GBA. In summary, the model predictions showed 

similar patterns of behavior for both NO2 and NOx. The O3 pollution surface was found to 

be negatively correlated with the surface of the two other pollutants. In addition, most point 

sources and traffic related predictors tended to have small buffers when compared to 

urbanization and landuse predictors. This highlights the effect of the plume dispersion from 

point sources and vehicular movement allowing for the pollutants to spread, reaching 

urbanized areas. Urbanized areas and other landuse covers tend to cluster the pollutants and 

receive the plumes of point sources, thus having a higher buffer enclosing the different 

effect of pollution. 

Nitrogen oxides (including nitrogen dioxide) are known traffic-related pollutants 

and as such their levels were expected to peak next to major roads. In our models, traffic-

related predictors were found to be highly significant across all the annual and seasonal 

NO2 and NOx models. These variables included distance to major roads within 50m buffer, 

distance to major roads, and distance to highways within 50 m buffer. Both road length and 

distance away from roads have been found to be common predictors across many NO2 and 

NOx models (Beelen, Hoek, Vienneau, Eeftens, Dimakopoulou, Pedeli, Tsai, Künzli, 

Schikowski, Marcon, Eriksen, et al., 2013; Cordioli et al., 2017; de Hoogh et al., 2018; 

Huang et al., 2017; Lee et al., 2014; Rahman et al., 2017). Moreover, the building area 

within a 3000 m buffer also proved to be a common predictor across the NO2 and NOx 

LUR models. The building area was found to be highly correlated with the total length of 
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roads and the length of major roads within the same buffer; thus it also acts as a surrogate 

for traffic-related emissions in dense urban areas. Moreover, this predictor is a proxy of 

emissions resulting from the use of private diesel generators, whose numbers are expected 

to be directly proportional to building density. The R2 of the annual GBA LUR models for 

NO2 and NOx were 0.68 and 0.57, respectively. Thus the performance of the GBA models 

were largely within the range reported in the ESCAPE project, where the R2 for the NO2 

LUR models developed for 36 European cities ranged between 55% and 92%, with a 

median of 82%, while the performance of the NOx LUR models was slightly lower and 

ranged between 49 and 91% (Beelen, Hoek, Vienneau, Eeftens, Dimakopoulou, Pedeli, 

Tsai, Künzli, Schikowski, Marcon, & others, 2013). Moreover, model performance of the 

GBA models was similar or slightly better than those reported for several other Asian cities 

such as Shizuoja-Japan, Taipei-Taiwan, Tianhin-China, and Ulaanbaatar-Mongolia (Lee et 

al., 2014; Huang et al., 2013; Chen et al., 2010; Kashima et al., 2009). It should be stated 

that including the total number of vehicles as an additional predictor was able to increase 

the predictive power of all six NO2 and NOx models, with some models showing an 

increase in the R2 up to 81%. Note that traffic counts have been often used for predicting 

NO2 and NOx levels in several LUR modeling studies (Beelen, Hoek, Vienneau, Eeftens, 

Dimakopoulou, Pedeli, Tsai, Künzli, Schikowski, Marcon, & others, 2013; Cyrys et al., 

2012; Dirgawati et al., 2015; Liu et al., 2015; Rahman et al., 2017). The decision to 

exclude traffic counts from the final GBA models was due to the lack of accurate traffic 

data at the level of the GBA.  

In addition to the traffic related predictors, all six NO2 and NOx models shared a 

set of common predictors, which highlighting the strong association between the two 
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pollutants. The common predictors included the area of buildings within a 3-km buffer, the 

low urban areas within 300-m buffer, and the distance to Zouk power plant. These findings 

highlight the important role that the Zouk power plant has on pollution levels in the GBA. 

The polluting effect of the power plant on its surrounding area is well known and has been 

described by several studies (Azar, 2018; Nassar, 2016; Salloum et al., 2018; Weatherbee, 

2015). Nevertheless, since the power plant is located at the far northern edge of the study 

area it is difficult to distinguish between the direct effect of the plant versus its location 

acting as a latent variable for the transport of air pollution northwards due to the prevailing 

southwesterly dominant winds. Meteorological factors were also found to play an 

important role in modulating the spatial distribution of the NO2 and NOx surfaces. The 

results show that for the hot and annual models, increases in the relative humidity 

negatively correlated with the predicated NO2 levels. This was largely attributed to the 

enhanced removal of NO2 from the atmosphere under such conditions (Valuntaitė et al., 

2012). On the other hand, it was found that increases in wind speed and temperature, 

especially in the cold model, resulted in a decrease in the predicted NO2 and NOx levels. 

Increases in wind speeds permit for the better dispersion of pollutant emissions. The 

similarity in model structure between the annual and the seasonal models as well as the 

high correlations between their respective predictive surfaces further reinforces the absence 

of significant seasonal differences in their sources and sinks at the GBA level.  

With regards to the O3 LURs, large differences were found between the annual 

and seasonal model both in terms of model structure and the generated prediction surfaces. 

We think that this is a due to the competing pathways of ozone generation and destruction 

as well as to the natural fluctuations in the ambient environmental, which control the 
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generation and removal of the pollutant near the surface. The levels of O3 are well known 

to vary as a function of the meteorological conditions, atmospheric chemistry, as well as 

the VOC to NOx ratio. This ratio and its impact on ambient O3 levels has been studied since 

the 1990s (Sillman, 1999). O3 concentrations have been shown to decrease with increases 

in the NOx levels, when the VOC/NOx ratio is low; these conditions are described as a 

VOC sensitive regime. On other hand, under a NOx sensitive regime (high VOC/NOx) O3 

levels are expected to increase with increases in NOx. These relationships between VOC, 

NOx and O3 have been used to describe ozone’s diurnal behavior (Yang et al., 2018). In our 

results, overall the correlation between O3 and NOx was strongly negative pointing towards 

a dominance of a low VOC/NOx ratio regime within the GBA. Yet, in the hot summer 

months this negative correlation weakens and becomes insignificant. This could point to an 

increase of VOC levels in the GBA or to the changing meteorological conditions that 

promote the formation of ozone. With respect to the LUR predictors, all ozone models 

included the percent industrial area within a 50-m buffer as a predictor. Increases in the 

industrial area coverage resulted in a drop in the predicted ozone levels for the annual and 

cold model; yet it was associated with an increase in ozone concentrations in the hot model. 

Usually, industrial areas within the GBA rely heavily on private diesel generators as a 

result of daily network electricity shortages and thus they are expected to emit high levels 

of NO2 and NOx. As such, a VOC sensitive regimen is expected to be found in the 

immediate vicinity of these areas and hence the negative correlation with ozone. During the 

hot season, the presence of sunlight and UV rays appears to favor the net generation of 

ozone in these areas given the positive coefficient in the hot season. Another important 

predictor of O3 was the presence of open area that was found to be a significant predictor in 
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the annual and hot season models of ozone. Open areas and sites with high wind speeds 

were found to positively correlate with ozone levels, largely due to the low scavenging of 

ozone levels by NOx due to enhanced dispersion. Interestingly, the impact of the Beirut 

International Airport was only significant in the hot season, with sites close to it associated 

with lower ozone levels. This is to be expected since airports are major sources of NOx. 

With regards to model performance, the R2 for the annual LUR model was 0.65, while the 

performance of the cold and hot LUR models ranged between 0.61 and 0.54 respectively. 

The performance of O3 LUR models in several European studies were generally higher 

with Wolf et al. (2017) reporting an R2 of 0.91 for Augsburg-Germany, Kerckhoffs et al. 

(2015) reporting an R2 of 0.77 for the Netherlands, and de Hoogh et al. (2018) reported an 

R2 of 0.677 for a cold season model developed for Western Europe. 

 

4.3 Correlation between pollutants from field measurements and prediction maps 

As seen in Table 7 and Table 11 in the results, the correlation factors between the 

three pollutants prediction surfaces were very similar to those calculated between the 

measurements. This indicates that the developed LUR were able to preserve the inter-

pollutant correlations measured in the field. Overall, the NO2 and NOx levels were found to 

be highly positively correlated, while both showed a negative correlation with O3. In a 

study conducted by Kerckhoffs et al. (2015), they reported that the correlation between 

NO2 and O3 was -0.87, which is close to the values observed in the GBA- with the 

exception of the cold season when the strength of the correlation dropped. This hints at the 

potential of seasonal decoupling between NOx and ozone in the GBA. In another study, 

Wolf et al. (2017) reported low correlations between NO2 and NOx on one hand and O3 on 
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the other for the cold season. Their correlations were -0.32 and -0.28 for NO2 and O3 and 

NOx and O3 respectively. The correlations they reported between NO2 and NOx (r = 0.88) 

were also high and similar to the ones observed in the GBA. 

 

4.4 Limitations 

When comparing our models with other studies, the most important and common 

predictor that wasn’t included in our study was traffic count. Since the pollutants are 

traffic-related, collecting accurate traffic counts across Beirut appears to be imperative. In 

addition, generating and including detailed street-level data such as population, building 

heights, and economic activity in the LUR models is expected to improve model 

performance. Unfortunately, such information is lacking for the GBA. Another limitation 

of this study is the inability of the contemporaneous deployment of the OGAWAs 

measurements across all sites due to the lack of available units. Yet, this impact is expected 

to be minor given that the deployment was over an entire week. With regards to O3, the 

concurrent measurement of VOC levels would have allowed us to better understand and 

quantify the relationship between O3 and VOC/NOx. Other limitations emerge from the 

laboratory, in terms of the different lab equipment and instruments used.  

 

4.5 Conclusion 

Given the low budget allocated for the Ministry of Environment, our study 

allowed us to cover the sampling gap in the Greater Beirut Area, resolving the spatial 

coverage issue and tackling the spatio-temporal variability of the different pollutants. LUR 

annual and seasonal models were developed for NO2, NOx and O3. The models’ 
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development was based on the ESCAPE method and encompassed different types of 

predictors, but the most important ones were traffic related sources. This study has 

demonstrated that LUR models can in fact be used as tools to predict or estimate traffic-

related air pollutants in the GBA. They can be used as a tool to predict the population’s 

exposure to bad air quality, allowing for the implementation of policies that enhance the 

public health’s welfare. Performance of the models were actually close to the range of 

already published papers. However, this is the first study that tackles air pollution in 

Lebanon with an extensive network for monitoring. These models are the first step in 

assessing exposures in the study area and can be further improved when complementing 

them with personal exposures to air pollution.  

In order to develop a control strategy for air pollution, we still have a long way to 

go. However, further studies should be conducted in Lebanon to determine the priority 

pollutants and thus relating them to specific activities. Once this is done, one can identify 

the measures that need to be taken to control these sources and thus developing a control 

strategy based on the aforementioned. The control strategy should be enforced and should 

comply with the different standards set locally and internationally (USEPA, 2018). In fact, 

this is the major problem in Lebanon. The lack of monitoring and enforcement of the law 

has allowed different industries and several activities to take place and disturb our air 

quality. Other management strategies done in polluted countries like Beijin, China, have 

relied on a hybrid population-production-pollution nexus model to be used for air pollution 

management and air quality planning (Zeng et al., 2017) which can also be applied later on 

in Lebanon.  
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