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Hussein Aljlailaty     for Master of Engineering 
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Title: Model Reference Adaptive Control for a Two-Wheeled Robot 
 
 
 
 
 In this thesis, a model reference adaptive controller (MRAC) is developed for a 
two-wheeled mobile robot (TWMR). The inverted pendulum by nature is an unstable 
system and may be subjected to severe disturbances either in environment, (flat, tilted or 
bumped surfaces), or in load characteristics. The objective of the controller is to keep the 
TWMR in the upright position and prevent it from tipping over when subjected to either 
unexpected impulses or shifted weights along its interior body (IB). The non-linear 
mathematical model for the robot is formulated in an appropriate way to prove applicability 
of the proposed MRAC. Knowing that this a non-linear single-input multi-output (SIMO) 
platform, the proposed adaptive controller should handle the non-linearities with no attempt 
for linearization and inherently deal with SIMO systems. Experimental results validate the 
effectiveness of the proposed method. 
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CHAPTER I 

INTRODUCTION 

 

A. Survey 

Two wheeled self-balancing vehicle based on the concept of an inverted pendulum 

is built by  researchers  at  the industrial electronics laboratory. SEGWAY PT is such a one 

machine developed by Dean Kamen, now commercially obtainable as a battery-powered 

electric vehicle in the market.  Researchers and engineers are working to develop 

techniques to  make  a  dynamically  stable  system  and  to  guarantee  desired performance  

and  robust  solution. Many methods are applied and tested on this system platform. Dual-

PID and LQR control techniques are designed and tested in Simulink and analyzed for 

vertical balance  and  position  control  .  There are many past studies about  the 

stabilization  and  optimization  of  two-wheeled  inverted  pendulum  robots. They are state 

feedback control with  pole placement method,  Proportional-Integral-Derivative  (PID)  

and  Proportional-Derivative(PD)  controllers,  LQR,  Model  Predictive Control  (MPC) . 

Kalman filtering and PID algorithm is used for  a  two  wheeled  car.  PI control  is  not  

satisfactory for  a  two  wheeled  self-balancing  robot  to  act  in  a  real  time  application.  

Different new research works has found on inverted pendulum techniques in the 

implementation of bipedal locomotion. 

This dissertation is on the design of a two balancing wheel robot.  A two wheeled 

robot is simply a robot that operates on two wheels.  This is a topic that has attracted so 

much attention in the field of control engineering because of its nature as a natural unstably 
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The JOE in [3], simplified the controller design by decoupling the vehicle 

dynamics into two subsystems, yaw motion and pitch motion. Then a simple state feedback 

algorithm by pole placement was implemented for each of the subsystems.  Deng et al. in 

[4] designed a feedback controller to study the behavior of the two-wheeled mobile robot in 

different dynamic environments. The proposed controller was based on a Lyapunov 

function candidate, where stability can be guaranteed. The candidate function that was used 

depends on the Euclidean distance and the magnitude of the relative velocity between the 

robot and the target. No investigation was done on the effect of changing the direction of 

applied disturbances for safe operations during such cases. In fact, this has not caused any 

failure in our self-tuned controller design due to online parameter estimation of the plant. 

Goher et al. in [5] investigated controlling a TWMR with a payload placed at variable 

positions on the vehicle body. A fuzzy logic controller was designed and implemented 

using two scenarios; The first is when the payload is at variable positions on the body; and 

the second is when the payload is in continuous sliding motion along the body. An external 

disturbance is applied to the robot to test the robustness of the developed controllers. Since 

this controller isn’t adaptive it should be tuned each time the scenario changed.  Nguyen et 

al in [6], propose to balance the two-wheeled mobile robot by designing an H_∞ robust 

controller (full order controller).  

The results showed that the quality of the controller is guaranteed, even after 

reduction of the robust controller from sixth order to third order. Improvements in their 

controller should be done to cope with various working environments. Xu el al in [7] 

present the mathematical model of a two-wheeled inverted pendulum mobile robot in an 

attempt to design and analyze the control system. The controller implemented was a linear 
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C. Thesis Objectives 

To cope with this problem of uncertainty, a novel controller for the robot Figure 3 

is designed using a model reference adaptive controller. The main contributions this 

proposal presents are as follows.  

• First, no linearization of the dynamic model was attempted aiming at 

keeping all unmodeled dynamics observable. 

• Second, the anticipated adaptive controller was proven to be asymptotically 

stable using the Lyapunov stability theory. 

• Third, the proposed controller has been proficiently implemented and tested 

using a low-cost off-the-shelf microcontroller.  
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CHAPTER II 

HARDWARE DESIGN 

 

This chapter discusses the robot hardware which includes the robot chassis, the 

drive system, actuators, sensors and the controller. 

 

A. The Robot Chassis 

The robot chassis is built of wood plates. There are two side steel threaded rods 

where three more plates between the other two side rods are held. The three middle plates 

made from plywood form three platforms which have the duty of holding the circuitry of 

the robot and actuators. The height of the platforms can be adjusted by moving the plates 

up and down the threaded rods. This is down to adjust the height of the center of mass of 

the robot and workout height for smoother control of the robot. A third small wheel was 

initially put in the robot to hold the robot up before the final control was implemented. The 

body of the robot has got a rectangular shape of mass 1.114Kg. The spacing between the 

plywood is adjustable and the platforms can be reduced or increased as required. The height 

of the robot is fixed to the length of the two steel rods. The height can only be increased by 

replacing the side rods with longer ones. Below is a table of the robot specifications: 
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Notation Description value 

𝑴𝑴𝒑𝒑 Mass of pendulum 1.1140 kg 

𝒍𝒍 Length from center of wheel to 

center of pendulum 

63.68 mm 

𝑰𝑰𝒑𝒑 Inertia of Pendulum 0.0032968 kg-𝑚𝑚2 

𝒓𝒓 Radius of Wheel 49 mm 

𝑴𝑴𝒘𝒘 Mass of Wheel 0.1011 kg 

𝑰𝑰𝒘𝒘 Inertia of Wheel 0.00013956 kg-𝑚𝑚2 

𝑲𝑲𝒎𝒎 Motor Torque Constant 0.0104 N.m/A 

𝑲𝑲𝒆𝒆 Back EMF Constant 0.0104 V/rad-sec 

𝑹𝑹 Internal Resistance of Motor 3.2 𝛺𝛺 

 

Table 1 – Robot Properties 

 
 
 
B. Controller Board 

1. Microcontroller 

The main board of the robot consists of an Atmel 8-bit ATmega1284P AVR 

microcontroller running at 10MHz and with 128KB flash, 16KB RAM and 4KB EEProm. 

The board also contains an FTDI USB to Serial converter chip, the FT230X. This chip can 

be used for programming as well as Serial debugging.  

The onboard 6-axis IMU is an MPU-6050, which is connected to the 

microcontroller using the I2C bus. This digital IMU contains a 3-axis accelerometer and a 

3-axis gyroscope, and when combined with a Kalman filter it gives you very stable angle 

readings.  
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The fabrication of most accelerometers and gyroscopes today, use micro-

electromechanical technology (MEMS). Mechanical functions and silicon wafers are placed 

on the same micrometer silicon substrate. 

3. Sensor Data Fusion 

Merging data from both accelerometers and gyroscopes serves to gain the best 

from both sensors. The strategy to accomplish this is called sensor fusion technology. 

Sensor fusion is usually accomplished by either Kalman or complementary filters. Both 

filters aim at reducing the uncertainty found in each sensor alone and increase the accuracy 

of the data from combining both. 

The Kalman filter Figure 6, keeps track of the estimated state of the system and the 

variance or uncertainty of the estimated states. The states are updated using a state 

transition model and measurements.  𝑥𝑥�𝑘𝑘/𝑘𝑘−1 denotes the estimate of the state at time step 𝑘𝑘 

before the 𝑘𝑘𝑘𝑘ℎ measurement 𝑦𝑦𝑘𝑘 has been considered, where  𝑃𝑃�𝑘𝑘/𝑘𝑘−1 is the corresponding 

uncertainty. 
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Figure 6 Kalman Filter (Image Source: Wikipedia) 

 

The algorithm works in a two-step process. In the prediction step, the Kalman 

filter produces estimates of the current state variables, along with their uncertainties. Once 

the outcome of the next measurement (necessarily corrupted with some amount of error, 

including random noise) is observed, these estimates are updated using a weighted average, 

with more weight being given to estimates with higher certainty. The algorithm is 

recursive. It can run in real-time, using only the present input measurements and the 

previously calculated state and its uncertainty matrix; no additional past information is 

required. 

 

4. Experimental Setup 

The only input to the system is the analog voltage applied to the two DC motors 

used to drive the wheels, while the output of concern is the vertical angle of deflection of 

the TWMR. In order to test the controller in real-time, Simulink Desktop Real-Time 

Windows target by Simulink, which provides a real-time kernel for executing Simulink 
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models was used. The key features of the Real-Time Windows target from Simulink 

include: 

• Real-Time closed-loop execution of Simulink models. 

• Signal Visualization and parameter tuning while model is running. 

• Real-time performance approaching 20 KHz sample rate in Simulink 

external mode. 

A duplex connection using the RS-232 interface protocol between the robot and 

the Real-time Simulink model is established. Data sent to the robot consists of: 

• Forward, backward and left and right steering commands from the joystick 

after being conditioned (a discrete second-order low pass filter to the outputs of the joystick 

are applied to filter the high rate changing commands from the joystick) in the Simulink 

model. 

• Motor voltages, which are sent as PWM (pulse-width modulation) could be 

used directly by the onboard DC motor driver on the robot. 

• Leading and trailing data sent with the output stream to enable reliable data 

interconnection (a header and checksum were added to the beginning and trailing edge of 

the sentence to be sent respectively) between the robot and the Simulink model. 
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CHAPTER III 

CONTROLLER DESIGN 

 

A. Adaptive Controller 

Intuitively, an adaptive controller is a controller that can modify its behavior in 

response to changes in the dynamics of the process and the character of the disturbances. 

Therefore, an adaptive controller is one with adjustable parameters and with a mechanism 

to adjust those parameters. An adaptive controller can be thought of as having two loops. 
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One loop is a normal feedback with a process and a controller. The other loop is the 

parameter adjustment loop. Figure 7 shows a block diagram of an adaptive system. 

 

 

Figure 7 Block Diagram of Adaptive Controller 

 

The model-reference adaptive system is an important adaptive controller. It may 

be regarded as an adaptive system in which the desired performance is expressed in terms 

of  a reference model system, which gives the desired response with respect to a reference 

command. The system has a feedback loop that changes the parameters of the controller. 

The parameters are changed on the  basis of the feedback from the error, which is the 

difference between the output of the system and the output of the reference model. The 

ordinary feedback loop is called the inner loop and the parameter adjustment loop is called 

the outer loop. The mechanism for adjusting the parameters is achieved by two ways. By 

using the gradient method or by using the stability theory. 
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The stability method used in this thesis is the Lyapunov stability theory. We first 

derive a differential equation for the error, = 𝑦𝑦 − 𝑦𝑦𝑚𝑚 . The differential equation contains 

the adjustable parameters. We then attempt to find a Lyapunov function and an adaptation 

mechanism such that the error will go to zero. 

When using the Lyapunov theory we usually find that 𝑑𝑑𝑑𝑑/𝑑𝑑𝑘𝑘 is usually negative 

semi-definite. The procedure is to determine the error equation and the Lyapunov function 

with a bounded second derivative. Stability theory is then used to show boundedness and 

that the error goes to zero. 

 

B. Mathematical Formulation 

1. Dynamic Model of the TWMR 

The robot is modelled as two rigid bodies, with no-slip rolling contact and a 

simple motor model. A polynomial style approximation of the dynamics is used to capture 

some of the nonlinearities, while keeping the controller design tractable. Using Newtons 

second law of motion, the sum of forces on the left wheel in the horizontal x-direction 

Figure 8 is 𝐹𝐹𝑥𝑥  =  𝑀𝑀𝑤𝑤�̈�𝑥  =  𝐻𝐻𝑓𝑓𝑓𝑓 – 𝐻𝐻𝑓𝑓,  where  HfL is  the  horizontal friction force, HL is the 

horizontal force applied on the center of the left wheel, and Mw is the mass of the wheel. 
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Figure 8 Left Hand Wheel 

 

The sum of moments around the center of the wheel yields 𝑀𝑀𝑤𝑤   =   𝐼𝐼𝑤𝑤�̈�𝜃𝑤𝑤   =

  𝐶𝐶𝑓𝑓  −   𝐻𝐻𝑓𝑓𝑓𝑓𝑟𝑟 , where  CL  is the  moment applied by the motor on the left wheel, and r and 

Iw are the radius and moment of inertia of the wheel, respectively. Applying Newtons law 

of motion, the sum of forces in the horizontal direction on the chassis of the robot (Fig. 3) 

yields: 

𝑀𝑀𝑝𝑝�̈�𝑥 =  (𝐻𝐻𝑓𝑓  + 𝐻𝐻𝑅𝑅)  −𝑀𝑀𝑝𝑝𝑙𝑙𝜃𝜃�̈�𝑝𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)𝑝𝑝 +𝑀𝑀𝑝𝑝𝑙𝑙𝜃𝜃2̇𝑐𝑐𝑠𝑠𝑛𝑛(𝜃𝜃𝑝𝑝) 

where HL + HR is the total horizontal force applied on the chassis, θp represents the vertical 

angle of deflection of the robot, and Mp and l represent the mass and length of    the 

pendulum, respectively. The sum of moments around the center of mass of the pendulum is   

𝑀𝑀 =  𝐼𝐼𝑝𝑝�̈�𝜃𝑝𝑝   resulting in: 
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Figure 9 Free-Body Diagram of the Chassis 

 

𝐼𝐼𝑝𝑝�̈�𝜃  =  (𝐻𝐻𝑓𝑓  + 𝐻𝐻𝑅𝑅)𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑝𝑝)  −  (𝑃𝑃𝑓𝑓  + 𝑃𝑃𝑅𝑅)𝑙𝑙𝑐𝑐𝑠𝑠𝑛𝑛(𝜃𝜃𝑝𝑝) − (𝐶𝐶𝑓𝑓  +  𝐶𝐶𝑅𝑅) 

where 𝑃𝑃𝑓𝑓  + 𝑃𝑃𝑅𝑅 represent the total vertical force applied on the chassis, and Ip the moment 

of inertia of the pendulum.  

1. Overview 

For a two-wheeled mobile robot we have the two equations, (1) and (2) that 

govern the dynamics of motion. As can be easily seen, they are both second order coupled 

non-linear equations. 

 

 
(𝑰𝑰𝒑𝒑 + 𝑴𝑴𝒑𝒑𝒍𝒍𝟐𝟐)�̈�𝜽𝒑𝒑 −

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹

𝒙𝒙
𝒓𝒓
̇
+
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹

𝑽𝑽𝒂𝒂 + 𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍𝒈𝒈𝒈𝒈𝒈𝒈𝜽𝜽𝒑𝒑 = −𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝒙𝒄𝒄𝒄𝒄𝒈𝒈𝜽𝜽𝒑𝒑 
1) 

 𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓

𝑽𝑽𝒂𝒂 = �𝟐𝟐𝑴𝑴𝒘𝒘 +
𝟐𝟐𝑰𝑰𝒘𝒘
𝒓𝒓𝟐𝟐

+ 𝑴𝑴𝒑𝒑� �̈�𝒙 +
𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐

�̇�𝒙 + 𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝜽𝒑𝒑𝒄𝒄𝒄𝒄𝒈𝒈𝜽𝜽𝒑𝒑 −𝑴𝑴𝒑𝒑𝒍𝒍�̇�𝜽𝒑𝒑
𝟐𝟐𝒈𝒈𝒈𝒈𝒈𝒈𝜽𝜽𝒑𝒑 

2) 
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The approach I took earlier was to linearize these dynamic equations around an 

equilibrium point which allows us to apply the Indirect Self Tuning Regulator adaptive 

controller capable of preventing the robot from tipping over when subjected to uncertain or 

unexpected disturbances. The main drawback of the ISTR regulator I used earlier is that it 

is solely used for linear single-input single-output (SISO) types of dynamic systems. 

Knowing that my experimental platform is a non-linear multi-input multi output (MIMO) 

type, I had to linearize my system as mentioned above, and augment my controller with an 

additional integrator to deal with the MIMO problem encountered to achieve the desired 

motion. This issue promoted me to search for an adaptive controller that could handle both 

gaps: First, handle the non-linearity in my system with no attempt for linearization. Second, 

use an adaptive controller that inherently deals with MIMO type systems. 

Of course, the aim of this research is to improve the quality of my adaptive 

controller by forcing the output tracking error to become asymptotically smaller, and more 

robust to system uncertainties and environmental disturbances. For this task I propose to 

use a model reference adaptive controller (MRAC) Figure 10 that will extend the 

applicability of the controller to multi-input multi-output type nonlinear systems having the 

following structure: 

 
�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵Λ(𝑢𝑢 + 𝑓𝑓(𝑥𝑥)) 

3) 

 

where 𝑥𝑥 ∈  𝑅𝑅𝑛𝑛 is the system state, 𝑢𝑢 ∈  𝑅𝑅𝑚𝑚 is the control input, and 𝐵𝐵 ∈  𝑅𝑅𝑛𝑛∗𝑚𝑚 is 

the known control matrix, while 𝐴𝐴 ∈  𝑅𝑅𝑛𝑛∗𝑛𝑛 and Λ ∈  𝑅𝑅𝑚𝑚∗𝑚𝑚 are unknown constant matrices. 
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In addition, it is assumed that Λ is diagonal, its elements 𝜆𝜆𝑖𝑖 are strictly positive, and the pair 

(𝐴𝐴,𝐵𝐵Λ) is controllable. The uncertainty in Λ is introduced to model control failures or 

modeling errors, in the sense that there may exist uncertain control gains, or the designer 

may have incorrectly estimated the system control effectiveness. 

 

 

Figure 10  Adaptive Controller Block Diagram 

 

The unknown possibly nonlinear vector-function 𝑓𝑓(𝑥𝑥):𝑅𝑅𝑛𝑛 ⟶ 𝑅𝑅𝑚𝑚  represents the 

system matched uncertainty. It is assumed that each individual component 𝑓𝑓𝑖𝑖(𝑥𝑥) of 𝑓𝑓(𝑥𝑥) 

can be written as a linear combination of 𝑁𝑁 locally Lipchitz-continuous basis functions 

𝜑𝜑𝑖𝑖(𝑥𝑥) , with unknown constant coefficients. So, we write: 

 

 
𝑓𝑓(𝑥𝑥) = Θ𝑇𝑇Φ(𝑥𝑥) 

4) 
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where Θ ∈ 𝑅𝑅𝑁𝑁∗𝑚𝑚is a constant matrix of unknown coefficients and 

Φ(𝑥𝑥) = (𝜑𝜑1(𝑥𝑥) …  𝜑𝜑𝑁𝑁(𝑥𝑥)  )𝑇𝑇 ∈  𝑅𝑅𝑛𝑛 is the known regressor vector. We are interested in the 

design of a MIMO adaptive control law such that the system state 𝑥𝑥 asymptotically tracks 

the state 𝑥𝑥𝑟𝑟𝑟𝑟𝑓𝑓 ∈  𝑅𝑅𝑛𝑛 of the reference model (5): 

 

 
�̇�𝐱𝐫𝐫𝐫𝐫𝐫𝐫 = 𝐀𝐀𝐫𝐫𝐫𝐫𝐫𝐫𝐱𝐱𝐫𝐫𝐫𝐫𝐫𝐫 + 𝐁𝐁𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫(𝐭𝐭) 

5) 

 

where 𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓 ∈ 𝑅𝑅𝑛𝑛∗𝑛𝑛 is Hurwitz, 𝐵𝐵𝑟𝑟𝑟𝑟𝑓𝑓 ∈ 𝑅𝑅𝑛𝑛∗𝑚𝑚 , and 𝑟𝑟(𝑘𝑘) is the external command 

vector. Given any bounded command 𝑟𝑟(𝑘𝑘) the control input needs to be chosen such that 

the state tracking error: 

 
𝐫𝐫(𝐭𝐭) = 𝐱𝐱(𝐭𝐭) −  𝐱𝐱𝐫𝐫𝐫𝐫𝐫𝐫(𝐭𝐭) 

6) 

 

globally uniformly asymptotically tends to zero, that is: 

 

 
𝐥𝐥𝐥𝐥𝐥𝐥
𝒕𝒕→∞

�𝒙𝒙(𝒕𝒕) −  𝒙𝒙𝒓𝒓𝒆𝒆𝒓𝒓(𝒕𝒕)� = 𝟎𝟎 
7) 

 

We consider the following control law: 

 

 
𝒖𝒖 = 𝑲𝑲�𝒙𝒙𝑻𝑻𝒙𝒙 + 𝑲𝑲�𝒓𝒓𝑻𝑻𝒓𝒓 − 𝚯𝚯�𝑻𝑻𝚽𝚽(𝒙𝒙) 

8) 
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where  𝐾𝐾�𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛∗𝑚𝑚,  𝐾𝐾�𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚∗𝑚𝑚 , Θ� ∈ 𝑅𝑅𝑁𝑁∗𝑛𝑛 are the estimates of the ideal unknown 

matrices 𝐾𝐾𝑥𝑥,  𝐾𝐾𝑟𝑟, and Θ  respectively. These estimated parameters will be generated online 

through the inverse Lyapunov analysis. Substituting into the closed-loop dynamics, system 

dynamics can be written as: 

 

 
�̇�𝒙 = �𝑨𝑨 + 𝑩𝑩𝚲𝚲𝑲𝑲�𝒙𝒙𝑻𝑻�𝒙𝒙 + 𝑩𝑩𝚲𝚲(𝑲𝑲�𝒓𝒓𝑻𝑻𝒓𝒓 −  �𝚯𝚯� − 𝚯𝚯�

𝑻𝑻
𝚽𝚽(𝒙𝒙)) 

9) 

 

We compute the closed-loop dynamics of the n-dimensional tracking error vector 

𝑒𝑒(𝑘𝑘) = 𝑥𝑥(𝑘𝑘) −  𝑥𝑥𝑟𝑟𝑟𝑟𝑓𝑓(𝑘𝑘) and: 

 

 
�̇�𝒆 = �𝑨𝑨 + 𝑩𝑩𝚲𝚲𝑲𝑲�𝒙𝒙𝑻𝑻�𝒙𝒙 + 𝑩𝑩𝚲𝚲�𝑲𝑲�𝒓𝒓𝑻𝑻𝒓𝒓 −  �𝚯𝚯� − 𝚯𝚯�

𝑻𝑻
𝚽𝚽(𝒙𝒙)� − 𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓𝒙𝒙𝒓𝒓𝒆𝒆𝒓𝒓 − 𝑩𝑩𝒓𝒓𝒆𝒆𝒓𝒓𝒓𝒓(𝒕𝒕) 

10) 

 

We further get: 

 

 �̇�𝒆 = �𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓 + 𝑩𝑩𝚲𝚲(𝑲𝑲�𝒙𝒙𝑻𝑻 − 𝑲𝑲𝒙𝒙)�𝒙𝒙 − 𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓𝒙𝒙𝒓𝒓𝒆𝒆𝒓𝒓

+ 𝑩𝑩𝚲𝚲�(𝑲𝑲�𝒓𝒓 − 𝑲𝑲𝒓𝒓)𝒓𝒓 −  �𝚯𝚯� − 𝚯𝚯�
𝑻𝑻
𝚽𝚽(𝒙𝒙)�

= 𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓𝒆𝒆

+ 𝑩𝑩𝚲𝚲�(𝑲𝑲�𝒙𝒙 − 𝑲𝑲𝒙𝒙)𝑻𝑻𝒙𝒙 +  (𝑲𝑲�𝒓𝒓 − 𝑲𝑲𝒓𝒓)𝑻𝑻𝒓𝒓 −  �𝚯𝚯� − 𝚯𝚯�
𝑻𝑻
𝚽𝚽(𝒙𝒙)� 

11) 

 

Let ∆𝐾𝐾𝑥𝑥 = 𝐾𝐾�𝑥𝑥 − 𝐾𝐾𝑥𝑥, ∆𝐾𝐾𝑟𝑟 = 𝐾𝐾�𝑟𝑟 − 𝐾𝐾𝑟𝑟, and ∆Θ = Θ� − Θ represent the parameter 

estimation errors. The tracking error dynamics becomes: 
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�̇�𝒆 = 𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓𝒆𝒆 + 𝑩𝑩𝚲𝚲(∆𝑲𝑲𝒙𝒙

𝑻𝑻𝒙𝒙 + ∆𝑲𝑲𝒓𝒓
𝑻𝑻𝒓𝒓 − ∆𝚯𝚯𝑻𝑻𝚽𝚽(𝒙𝒙)) 

12) 

 

 

We introduce rates of adaptation: Γ𝑥𝑥 = Γ𝑥𝑥𝑇𝑇 > 0 ,  Γ𝑟𝑟 = Γ𝑟𝑟𝑇𝑇 > 0 , ΓΘ = ΓΘ𝑇𝑇 > 0 . Let us 

consider a quadratic Lyapunov function candidate in the form: 

 

 𝑽𝑽(𝒆𝒆,∆𝑲𝑲𝒙𝒙,∆𝑲𝑲𝒓𝒓,∆𝚯𝚯)

= 𝒆𝒆𝑻𝑻𝑷𝑷𝒆𝒆 + 𝒕𝒕𝒓𝒓([∆𝑲𝑲𝒙𝒙
𝑻𝑻𝚪𝚪𝒙𝒙−𝟏𝟏∆𝑲𝑲𝒙𝒙 + ∆𝑲𝑲𝒓𝒓

𝑻𝑻𝚪𝚪𝒓𝒓−𝟏𝟏∆𝑲𝑲𝒓𝒓 + ∆𝚯𝚯𝑻𝑻𝚪𝚪𝚯𝚯−𝟏𝟏∆𝚯𝚯]𝚲𝚲) 13) 

 

where 𝑃𝑃 = 𝑃𝑃𝑇𝑇 > 0  satisfies the algebraic Lyapunov equation: 

 

 
𝑷𝑷𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓 + 𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓𝑻𝑻 𝑷𝑷 = −𝑸𝑸 

14) 

 

for some 𝑄𝑄 = 𝑄𝑄𝑇𝑇 > 0. Then the time derivative of 𝑑𝑑 evaluated along the error trajectories 

can be calculated as: 
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 �̇�𝑽 = �̇�𝒆𝑻𝑻𝑷𝑷𝒆𝒆 + 𝒆𝒆𝑻𝑻𝑷𝑷�̇�𝒆 + 𝟐𝟐𝒕𝒕𝒓𝒓 ��∆𝑲𝑲𝒙𝒙
𝑻𝑻𝚪𝚪𝒙𝒙−𝟏𝟏𝑲𝑲�̇𝒙𝒙 + ∆𝑲𝑲𝒓𝒓

𝑻𝑻𝚪𝚪𝒓𝒓−𝟏𝟏𝑲𝑲�̇𝒓𝒓 + ∆𝚯𝚯𝑻𝑻𝚪𝚪𝚯𝚯−𝟏𝟏𝚯𝚯�̇� 𝚲𝚲�

= (𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓𝒆𝒆 + 𝑩𝑩𝚲𝚲�∆𝑲𝑲𝒙𝒙
𝑻𝑻𝒙𝒙 + ∆𝑲𝑲𝒓𝒓

𝑻𝑻𝒓𝒓 − ∆𝚯𝚯𝑻𝑻𝚽𝚽(𝒙𝒙)�)𝑻𝑻𝑷𝑷𝒆𝒆 + 𝒆𝒆𝑻𝑻𝑷𝑷(𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓𝒆𝒆

+ 𝑩𝑩𝚲𝚲�∆𝑲𝑲𝒙𝒙
𝑻𝑻𝒙𝒙 + ∆𝑲𝑲𝒓𝒓

𝑻𝑻𝒓𝒓 − ∆𝚯𝚯𝑻𝑻𝚽𝚽(𝒙𝒙)�

+ 𝟐𝟐𝒕𝒕𝒓𝒓 ��∆𝑲𝑲𝒙𝒙
𝑻𝑻𝚪𝚪𝒙𝒙−𝟏𝟏𝑲𝑲�̇𝒙𝒙 + ∆𝑲𝑲𝒓𝒓

𝑻𝑻𝚪𝚪𝒓𝒓−𝟏𝟏𝑲𝑲�̇𝒓𝒓 + ∆𝚯𝚯𝑻𝑻𝚪𝚪𝚯𝚯−𝟏𝟏𝚯𝚯�̇� 𝚲𝚲�

= 𝒆𝒆𝑻𝑻�𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓𝑷𝑷 + 𝑷𝑷𝑨𝑨𝒓𝒓𝒆𝒆𝒓𝒓�𝒆𝒆

+ 𝟐𝟐𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲�∆𝑲𝑲𝒙𝒙
𝑻𝑻𝒙𝒙 + ∆𝑲𝑲𝒓𝒓

𝑻𝑻𝒓𝒓 − ∆𝚯𝚯𝑻𝑻𝚽𝚽(𝒙𝒙)�

+ 𝟐𝟐𝒕𝒕𝒓𝒓 ��∆𝑲𝑲𝒙𝒙
𝑻𝑻𝚪𝚪𝒙𝒙−𝟏𝟏𝑲𝑲�̇𝒙𝒙 + ∆𝑲𝑲𝒓𝒓

𝑻𝑻𝚪𝚪𝒓𝒓−𝟏𝟏𝑲𝑲�̇𝒓𝒓 + ∆𝚯𝚯𝑻𝑻𝚪𝚪𝚯𝚯−𝟏𝟏𝚯𝚯�̇� 𝚲𝚲� 

 

15) 

which yields using the Lyapunov algebraic equation: 

 

 �̇�𝑽 = −𝒆𝒆𝑻𝑻𝑸𝑸𝒆𝒆 + [𝟐𝟐𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲∆𝑲𝑲𝒙𝒙
𝑻𝑻𝒙𝒙 + 𝟐𝟐𝒕𝒕𝒓𝒓(∆𝑲𝑲𝒙𝒙

𝑻𝑻𝚪𝚪𝒙𝒙−𝟏𝟏𝑲𝑲�̇𝒙𝒙𝚲𝚲)] + [𝟐𝟐𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲∆𝑲𝑲𝒓𝒓
𝑻𝑻𝒓𝒓

+ 𝟐𝟐𝒕𝒕𝒓𝒓(∆𝑲𝑲𝒓𝒓
𝑻𝑻𝚪𝚪𝒓𝒓−𝟏𝟏𝑲𝑲�̇𝒓𝒓𝚲𝚲)] + [−𝟐𝟐𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲∆𝚯𝚯𝑻𝑻𝚽𝚽(𝒙𝒙)

+ 𝟐𝟐𝒕𝒕𝒓𝒓(∆𝚯𝚯𝑻𝑻𝚪𝚪𝚯𝚯−𝟏𝟏𝚯𝚯�̇𝚲𝚲)] 

(1

6) 

 

and using the vector trace identity: 

 

 
𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲∆𝑲𝑲𝒙𝒙

𝑻𝑻𝒙𝒙 = 𝒕𝒕𝒓𝒓(∆𝑲𝑲𝒙𝒙
𝑻𝑻𝒙𝒙𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲) 

17) 

 
𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲∆𝑲𝑲𝒓𝒓

𝑻𝑻𝒓𝒓 = 𝒕𝒕𝒓𝒓(∆𝑲𝑲𝒓𝒓
𝑻𝑻𝒓𝒓𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲) 

18) 

 
𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲∆𝚯𝚯𝑻𝑻𝚽𝚽(𝒙𝒙) = 𝒕𝒕𝒓𝒓(∆𝚯𝚯𝑻𝑻𝚽𝚽(𝒙𝒙)𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩𝚲𝚲) 

19) 
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we obtain the following equation for the time derivative of 𝑽𝑽 : 

 

 �̇�𝑽 = −𝒆𝒆𝑻𝑻𝑸𝑸𝒆𝒆 + 𝟐𝟐𝒕𝒕𝒓𝒓(∆𝑲𝑲𝒙𝒙
𝑻𝑻[𝚪𝚪𝒙𝒙−𝟏𝟏𝑲𝑲�̇𝒙𝒙 + 𝒙𝒙𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩]𝚲𝚲) + 𝟐𝟐𝒕𝒕𝒓𝒓(∆𝑲𝑲𝒓𝒓

𝑻𝑻[𝚪𝚪𝒓𝒓−𝟏𝟏𝑲𝑲�̇𝒙𝒙

+ 𝟐𝟐𝒕𝒕𝒓𝒓(∆𝚯𝚯𝑻𝑻[𝚪𝚪𝚯𝚯−𝟏𝟏𝚯𝚯�̇ −𝚽𝚽(𝒙𝒙)𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩]𝚲𝚲) 20) 

 

If the adaptive law is selected as: 

 
𝑲𝑲�̇𝒙𝒙 = −𝚪𝚪𝒙𝒙𝒙𝒙𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩 

21) 

 
𝑲𝑲�̇𝒓𝒓 = −𝚪𝚪𝒓𝒓𝒓𝒓𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩 

22) 

 
𝜣𝜣�̇ =  𝜞𝜞𝜣𝜣𝜱𝜱(𝒙𝒙)𝒆𝒆𝑻𝑻𝑷𝑷𝑩𝑩 

23) 

 

then the time derivative becomes: 

 

 
�̇�𝑽 = −𝒆𝒆𝑻𝑻𝑸𝑸𝒆𝒆 < 𝟎𝟎 

24) 

 

Therefore, the closed loop error dynamics are uniformly stable, and since  

 

 
�̇�𝑽 = −𝒆𝒆𝑻𝑻𝑸𝑸𝒆𝒆 < 𝟎𝟎 

25) 
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is bounded, and so �̇�𝑑 is uniformly continuous. By Barbalat’s lemma we have proven that 

the tracking error 𝑒𝑒(𝑘𝑘) tends to the origin asymptotically and  

 

 
𝐥𝐥𝐥𝐥𝐥𝐥
𝒕𝒕→∞

�𝒙𝒙(𝒕𝒕)−  𝒙𝒙𝒓𝒓𝒆𝒆𝒓𝒓(𝒕𝒕)� = 𝟎𝟎 
26) 

 

2. Non-linear Model derivation 

 

Repeating equations (1) and (2) here: 

 

 
(𝑰𝑰𝒑𝒑 + 𝑴𝑴𝒑𝒑𝒍𝒍𝟐𝟐)�̈�𝜽𝒑𝒑 −

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹

𝒙𝒙
𝒓𝒓
̇
+
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹

𝑽𝑽𝒂𝒂 + 𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍𝒈𝒈𝒈𝒈𝒈𝒈𝜽𝜽𝒑𝒑 = −𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝒙𝒄𝒄𝒄𝒄𝒈𝒈𝜽𝜽𝒑𝒑 
27) 

 𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓

𝑽𝑽𝒂𝒂 = �𝟐𝟐𝑴𝑴𝒘𝒘 +
𝟐𝟐𝑰𝑰𝒘𝒘
𝒓𝒓𝟐𝟐

+ 𝑴𝑴𝒑𝒑� �̈�𝒙 +
𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐

�̇�𝒙 + 𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝜽𝒑𝒑𝒄𝒄𝒄𝒄𝒈𝒈𝜽𝜽𝒑𝒑 −𝑴𝑴𝒑𝒑𝒍𝒍�̇�𝜽𝒑𝒑
𝟐𝟐𝒈𝒈𝒈𝒈𝒈𝒈𝜽𝜽𝒑𝒑 

28) 

 

Let 𝜷𝜷 = 𝑰𝑰𝒑𝒑 + 𝑴𝑴𝒑𝒑𝒍𝒍𝟐𝟐,  𝜸𝜸 = 𝟐𝟐𝑴𝑴𝒘𝒘 + 𝟐𝟐𝑰𝑰𝒘𝒘
𝒓𝒓𝟐𝟐

+ 𝑴𝑴𝒑𝒑 and 𝒖𝒖 = 𝑽𝑽𝒂𝒂. Since 𝒄𝒄𝒄𝒄𝒈𝒈𝜽𝜽𝒑𝒑 = 𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
+ ⋯ and 𝒈𝒈𝜽𝜽𝒑𝒑 = 𝜽𝜽𝒑𝒑 −

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
+ ⋯ ; then substituting in (27) and (28) gives: 

 

 
𝜷𝜷�̈�𝜽𝒑𝒑 −

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓

�̇�𝒙 +
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹

𝒖𝒖 +𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍(𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
) = −𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝒙(𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
) 29) 

 𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓

𝒖𝒖 = 𝜸𝜸�̈�𝒙 +
𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐

�̇�𝒙 + 𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝜽𝒑𝒑(𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 ) −𝑴𝑴𝒑𝒑𝒍𝒍�̇�𝜽𝒑𝒑

𝟐𝟐(𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
) 30) 

 

Leaving �̈�𝜽𝒑𝒑 and �̈�𝒙 on one side gives (31) and (32): 
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�̈�𝜽𝒑𝒑 =

𝟏𝟏
𝜷𝜷�

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓

�̇�𝒙 −
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹

𝒖𝒖 −𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍�𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 � −𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝒙(𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
)� 

31) 

 
�̈�𝒙 =

𝟏𝟏
𝜸𝜸�

−
𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐

�̇�𝒙 +
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓

𝒖𝒖 −𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝜽𝒑𝒑 �𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 �+ 𝑴𝑴𝒑𝒑𝒍𝒍�̇�𝜽𝒑𝒑

𝟐𝟐(𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
)� 

32) 

 

Then working on the angular acceleration equation gives: 

 

 
�̈�𝜽𝒑𝒑 =

𝟏𝟏
𝜷𝜷�

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓

�̇�𝒙 −
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹

𝒖𝒖 −𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍�𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 �

−𝑴𝑴𝒑𝒑𝒍𝒍
𝟏𝟏
𝜸𝜸�

−
𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐

�̇�𝒙 +
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓

𝒖𝒖 −𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝜽𝒑𝒑 �𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 �+ 𝑴𝑴𝒑𝒑𝒍𝒍�̇�𝜽𝒑𝒑

𝟐𝟐(𝜽𝜽𝒑𝒑

−
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
)� (𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
)� 

33) 

which implies: 

 
�̈�𝜽𝒑𝒑 −

𝑴𝑴𝒑𝒑
𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷 �𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 �
𝟐𝟐

�̈�𝜽𝒑𝒑

=
𝟏𝟏
𝜷𝜷�

�
𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓

+
𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 �� �̇�𝒙 − (
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹

+
𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸

𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 �)𝒖𝒖 −𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍 �𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 �

−
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸
�̇�𝜽𝒑𝒑

𝟐𝟐(𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
)(𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
)� 

(34) 

and finally: 
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�̈�𝜽𝒑𝒑 =

𝟏𝟏
𝜷𝜷 (𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆𝑹𝑹𝒓𝒓 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 �)

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 �̇�𝒙 −

𝟏𝟏
𝜷𝜷 (𝟐𝟐𝟐𝟐𝒎𝒎𝑹𝑹 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸

𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 �)

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐  𝒖𝒖

−

𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍
𝜷𝜷 �𝜽𝜽𝒑𝒑 −

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 �

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 −

𝑴𝑴𝒑𝒑
𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷 �̇�𝜽𝒑𝒑
𝟐𝟐(𝜽𝜽𝒑𝒑 −

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 )(𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 )

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐  

35) 

Doing the same manipulation for �̈�𝒙: 

 

 
�̈�𝒙 =

𝟏𝟏
𝜸𝜸�

−
𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐

�̇�𝒙 +
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓

𝒖𝒖 −𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝜽𝒑𝒑 �𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 �+ 𝑴𝑴𝒑𝒑𝒍𝒍�̇�𝜽𝒑𝒑

𝟐𝟐(𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
)� 

36) 

which implies: 

 
�̈�𝒙 =

𝟏𝟏
𝜸𝜸�

−
𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐

�̇�𝒙 +
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓

𝒖𝒖

−
𝑴𝑴𝒑𝒑𝒍𝒍
𝜷𝜷 �

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓

�̇�𝒙 −
𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹

𝒖𝒖 −𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍 �𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 � −𝑴𝑴𝒑𝒑𝒍𝒍�̈�𝒙(𝟏𝟏

−
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
)��𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 �+ 𝑴𝑴𝒑𝒑𝒍𝒍�̇�𝜽𝒑𝒑

𝟐𝟐(𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
)� 

(37) 

and finally: 
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�̈�𝒙 =

−𝟏𝟏𝜸𝜸�
𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓𝟐𝟐 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜷𝜷

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝑹𝑹𝒓𝒓 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  ��

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 �̇�𝒙

+

𝟏𝟏
𝜸𝜸�

𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹𝒓𝒓 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜷𝜷

𝟐𝟐𝟐𝟐𝒎𝒎
𝑹𝑹 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  ��

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 𝒖𝒖

+

𝟏𝟏
𝜸𝜸
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝒈𝒈
𝜷𝜷 �𝜽𝜽𝒑𝒑 −

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 ��𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 +

𝟏𝟏
𝜸𝜸𝑴𝑴𝒑𝒑𝒍𝒍�̇�𝜽𝒑𝒑

𝟐𝟐 �𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 �

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 

38) 

The proposed multi-input multi-output type nonlinear system has the following 

structure: 

 
�̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑩𝑩𝚲𝚲(𝒖𝒖+ 𝒓𝒓(𝒙𝒙)) 

39) 

where 𝑥𝑥 ∈  𝑅𝑅𝑛𝑛 is the system state, 𝑢𝑢 ∈  𝑅𝑅𝑚𝑚 is the control input, and 𝐵𝐵 ∈  𝑅𝑅𝑛𝑛∗𝑚𝑚 is the 

known control matrix, while 𝐴𝐴 ∈  𝑅𝑅𝑛𝑛∗𝑛𝑛 and Λ ∈  𝑅𝑅𝑚𝑚∗𝑚𝑚 are unknown constant matrices, 

also: 

 𝒓𝒓(𝒙𝒙) = 𝚯𝚯𝑻𝑻𝚽𝚽(𝒙𝒙) (40) 

 

where Θ ∈ 𝑅𝑅𝑛𝑛∗𝑚𝑚is a constant matrix of unknown coefficients and 

Φ(𝑥𝑥) = (𝜑𝜑1(𝑥𝑥) …  𝜑𝜑𝑁𝑁(𝑥𝑥)  )𝑇𝑇 ∈  𝑅𝑅𝑛𝑛 is the known regressor vector. We will now expand the 

fraction terms in the dynamic equations (35) and (38) in a Taylor series form around the 

equilibrium point; let: 
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�𝟏𝟏𝒓𝒓 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  ��

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 = �𝒂𝒂𝟎𝟎 + 𝒂𝒂𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒂𝒂𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 � (41) 

 

 Expanding and solving equation (41) for the series terms:  

 

 𝟏𝟏
𝒓𝒓

+
𝑴𝑴𝒑𝒑𝒍𝒍
𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 � = �𝒂𝒂𝟎𝟎 + 𝒂𝒂𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒂𝒂𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 ��𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷 �𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 �
𝟐𝟐

� (42) 

  

𝟏𝟏
𝒓𝒓

+
𝑴𝑴𝒑𝒑𝒍𝒍
𝜷𝜷

−
𝑴𝑴𝒑𝒑𝒍𝒍𝜽𝜽𝒑𝒑

𝟐𝟐

𝟐𝟐𝜷𝜷

= �𝒂𝒂𝟎𝟎 + 𝒂𝒂𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒂𝒂𝟐𝟐
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 ��𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷
+
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟐𝟐

𝜸𝜸𝜷𝜷

−
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟒𝟒

𝟒𝟒𝜸𝜸𝜷𝜷
� 

(43) 

 𝟏𝟏
𝒓𝒓

+
𝑴𝑴𝒑𝒑𝒍𝒍
𝜷𝜷

−
𝑴𝑴𝒑𝒑𝒍𝒍𝜽𝜽𝒑𝒑

𝟐𝟐

𝟐𝟐𝜷𝜷

= 𝒂𝒂𝟎𝟎 −
𝒂𝒂𝟎𝟎𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷
+
𝒂𝒂𝟎𝟎𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟐𝟐

𝜸𝜸𝜷𝜷
−
𝒂𝒂𝟎𝟎𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟒𝟒

𝟒𝟒𝜸𝜸𝜷𝜷
+ 𝒂𝒂𝟏𝟏𝜽𝜽𝒑𝒑

−
𝒂𝒂𝟏𝟏𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝜸𝜸𝜷𝜷

+
𝒂𝒂𝟏𝟏𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟑𝟑

𝜸𝜸𝜷𝜷
−
𝒂𝒂𝟏𝟏𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟓𝟓

𝟒𝟒𝜸𝜸𝜷𝜷
+
𝒂𝒂𝟐𝟐𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐

−
𝒂𝒂𝟐𝟐𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐𝜸𝜸𝜷𝜷
+
𝒂𝒂𝟐𝟐𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟒𝟒

𝟐𝟐𝜸𝜸𝜷𝜷
−
𝒂𝒂𝟐𝟐𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟔𝟔

𝟖𝟖𝜸𝜸𝜷𝜷
 

(44) 

 

Comparing left and right-hand sides gives: 
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𝒂𝒂𝟎𝟎 =

𝟏𝟏
𝒓𝒓 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜷𝜷

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷

 
45) 

 
 

𝒂𝒂𝟏𝟏 = 𝟎𝟎 

 

46) 

 

𝒂𝒂𝟐𝟐 =
−
𝒂𝒂𝟎𝟎𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 −

𝑴𝑴𝒑𝒑𝒍𝒍
𝟐𝟐𝜷𝜷

𝟏𝟏
𝟐𝟐 −

𝑴𝑴𝒑𝒑
𝟐𝟐𝒍𝒍𝟐𝟐

𝟐𝟐𝜸𝜸𝜷𝜷

 
47) 

 

also let: 

 

 
�𝜽𝜽𝒑𝒑 −

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 ��𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 = 𝒃𝒃𝟎𝟎 + 𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒃𝒃𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
+ 𝒃𝒃𝟑𝟑

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
 

48) 

Then: 

 

 
�𝜽𝜽𝒑𝒑 −

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 ��𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 �

= �𝒃𝒃𝟎𝟎 + 𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒃𝒃𝟐𝟐
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
+ 𝒃𝒃𝟑𝟑

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 ��𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷 �𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 �
𝟐𝟐

� 
49) 

 

Letting  𝝁𝝁 = 𝑴𝑴𝒑𝒑
𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷
  gives: 
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𝜽𝜽𝒑𝒑 −

𝟐𝟐𝜽𝜽𝒑𝒑𝟑𝟑

𝟑𝟑
+
𝜽𝜽𝒑𝒑𝟓𝟓

𝟏𝟏𝟐𝟐

= 𝒃𝒃𝟎𝟎 − 𝝁𝝁𝒃𝒃𝟎𝟎 + 𝝁𝝁𝒃𝒃𝟎𝟎𝜽𝜽𝒑𝒑𝟐𝟐 −
𝝁𝝁𝒃𝒃𝟎𝟎𝜽𝜽𝒑𝒑

𝟒𝟒

𝟒𝟒
+ 𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑 − 𝝁𝝁𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑 + 𝝁𝝁𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑𝟑𝟑

−
𝝁𝝁𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑

𝟓𝟓

𝟒𝟒
+ 𝒃𝒃𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
−𝝁𝝁𝒃𝒃𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
+ 𝝁𝝁𝒃𝒃𝟐𝟐

𝜽𝜽𝒑𝒑𝟒𝟒

𝟐𝟐
−𝝁𝝁𝒃𝒃𝟐𝟐

𝜽𝜽𝒑𝒑𝟔𝟔

𝟖𝟖

+ (𝒃𝒃𝟑𝟑 − 𝝁𝝁𝒃𝒃𝟑𝟑)
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
+ 𝝁𝝁𝒃𝒃𝟑𝟑

𝜽𝜽𝒑𝒑𝟓𝟓

𝟔𝟔
−
𝝁𝝁𝒃𝒃𝟑𝟑𝜽𝜽𝒑𝒑

𝟕𝟕

𝟐𝟐𝟒𝟒
 

50) 

 

Comparing the left and right-hand sides we get: 

 

 
𝒃𝒃𝟎𝟎 = 𝟎𝟎 

51) 

  

𝒃𝒃𝟏𝟏 =
𝟏𝟏

𝟏𝟏 − 𝝁𝝁
 

 

52) 

 
 

𝒃𝒃𝟐𝟐 = 𝟎𝟎 

 

53) 

  

𝒃𝒃𝟑𝟑 =
−𝟐𝟐𝟑𝟑 −

𝝁𝝁
𝟏𝟏 − 𝝁𝝁

𝟏𝟏 − 𝝁𝝁
 

 

54) 

Assuming that: 
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(𝜽𝜽𝒑𝒑 −

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 )

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 = 𝒄𝒄𝟎𝟎 + 𝒄𝒄𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒄𝒄𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
+ 𝒄𝒄𝟑𝟑

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
 

55) 

 

We get: 

 

 
𝜽𝜽𝒑𝒑 −

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
= 𝒄𝒄𝟎𝟎 − 𝝁𝝁𝒄𝒄𝟎𝟎 + 𝝁𝝁𝒄𝒄𝟎𝟎𝜽𝜽𝒑𝒑𝟐𝟐 −

𝝁𝝁𝒄𝒄𝟎𝟎𝜽𝜽𝒑𝒑𝟒𝟒

𝟒𝟒
+ 𝒄𝒄𝟏𝟏𝜽𝜽𝒑𝒑 − 𝝁𝝁𝒄𝒄𝟏𝟏𝜽𝜽𝒑𝒑 + 𝝁𝝁𝒄𝒄𝟏𝟏𝜽𝜽𝒑𝒑𝟑𝟑 −

𝝁𝝁𝒄𝒄𝟏𝟏𝜽𝜽𝒑𝒑𝟓𝟓

𝟒𝟒

+ 𝒄𝒄𝟐𝟐
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
−𝝁𝝁𝒄𝒄𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
+ 𝝁𝝁𝒄𝒄𝟐𝟐

𝜽𝜽𝒑𝒑𝟒𝟒

𝟐𝟐
−𝝁𝝁𝒄𝒄𝟐𝟐

𝜽𝜽𝒑𝒑𝟔𝟔

𝟖𝟖
+ (𝒄𝒄𝟑𝟑 − 𝝁𝝁𝒄𝒄𝟑𝟑)

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
+ 𝝁𝝁𝒄𝒄𝟑𝟑

𝜽𝜽𝒑𝒑𝟓𝟓

𝟔𝟔

−
𝝁𝝁𝒄𝒄𝟑𝟑𝜽𝜽𝒑𝒑𝟕𝟕

𝟐𝟐𝟒𝟒
 

56) 

 

Which by comparing both sides yield: 

 

 
𝒄𝒄𝟎𝟎 = 𝟎𝟎 

57) 

  

𝒄𝒄𝟏𝟏 =
𝟏𝟏

𝟏𝟏 − 𝝁𝝁
 

 

  

𝒄𝒄𝟐𝟐 = 𝟎𝟎 58) 

  

𝒄𝒄𝟑𝟑 =
−𝟏𝟏𝟔𝟔 −

𝝁𝝁
𝟏𝟏 − 𝝁𝝁

𝟏𝟏 − 𝝁𝝁
 

 

59) 
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The final form of the linear acceleration equation is: 

 

 
�̈�𝒙 = −

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝜸𝜸𝑹𝑹𝒓𝒓 �𝒂𝒂𝟎𝟎 + 𝒂𝒂𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 � �̇�𝒙 +
𝟐𝟐𝟐𝟐𝒎𝒎
𝜸𝜸𝑹𝑹 �𝒂𝒂𝟎𝟎 + 𝒂𝒂𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 �𝒖𝒖 +
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝒈𝒈
𝜸𝜸𝜷𝜷 �𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒃𝒃𝟑𝟑

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 �

+
𝟏𝟏
𝜸𝜸
𝑴𝑴𝒑𝒑𝒍𝒍�̇�𝜽𝒑𝒑

𝟐𝟐 �𝒄𝒄𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒄𝒄𝟑𝟑
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 � 
60) 

 

 
�̈�𝒙 = −

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆𝒂𝒂𝟎𝟎
𝜸𝜸𝑹𝑹𝒓𝒓

�̇�𝒙 −
𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆𝒂𝒂𝟐𝟐
𝜸𝜸𝑹𝑹𝒓𝒓

�̇�𝒙𝜽𝜽𝒑𝒑𝟐𝟐 +
𝟐𝟐𝟐𝟐𝒎𝒎𝒂𝒂𝟎𝟎
𝜸𝜸𝑹𝑹

𝒖𝒖 +
𝟐𝟐𝒎𝒎𝒂𝒂𝟐𝟐
𝜸𝜸𝑹𝑹

𝒖𝒖𝜽𝜽𝒑𝒑𝟐𝟐 + 𝒈𝒈𝒃𝒃𝟏𝟏𝝁𝝁𝜽𝜽𝒑𝒑

+
𝟏𝟏
𝟔𝟔
𝒃𝒃𝟑𝟑𝝁𝝁𝒈𝒈𝜽𝜽𝒑𝒑𝟑𝟑 +

𝟏𝟏
𝜸𝜸
𝑴𝑴𝒑𝒑𝒍𝒍𝒄𝒄𝟏𝟏𝜽𝜽𝒑𝒑�̇�𝜽𝒑𝒑

𝟐𝟐 +
𝟏𝟏
𝟔𝟔𝜸𝜸

𝑴𝑴𝒑𝒑𝒍𝒍𝒄𝒄𝟑𝟑𝜽𝜽𝒑𝒑𝟑𝟑�̇�𝜽𝒑𝒑
𝟐𝟐 

61) 

 

Now considering the angular acceleration equation: 

 

 

�̈�𝜽𝒑𝒑 =

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝜷𝜷𝑹𝑹𝒓𝒓 �𝟏𝟏 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸𝒓𝒓 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 ��

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 �̇�𝒙 −

𝟐𝟐𝟐𝟐𝒎𝒎
𝜷𝜷𝑹𝑹 �𝟏𝟏+

𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸𝒓𝒓 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 ��

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐  𝒖𝒖

−
𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍�𝜽𝜽𝒑𝒑 −

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 �

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 −

𝑴𝑴𝒑𝒑
𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸 �̇�𝜽𝒑𝒑

𝟐𝟐 �𝜽𝜽𝒑𝒑 −
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔 ��𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 �

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐  

62) 

let: 
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�𝟏𝟏 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸𝒓𝒓 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 ��

𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝜸𝜸𝜷𝜷 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐  �
𝟐𝟐 = �𝒅𝒅𝟎𝟎 + 𝒅𝒅𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒅𝒅𝟐𝟐

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 � 63) 

 

Then: 

 

 
𝟏𝟏 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸𝒓𝒓 �𝟏𝟏 −

𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 � = �𝒅𝒅𝟎𝟎 + 𝒅𝒅𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒅𝒅𝟐𝟐
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐 ��𝟏𝟏 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷 �𝟏𝟏 −
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
 �
𝟐𝟐

� 
64) 

 

 𝟏𝟏 +
𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸𝒓𝒓

−
𝑴𝑴𝒑𝒑𝒍𝒍
𝟐𝟐𝜸𝜸𝒓𝒓

𝜽𝜽𝒑𝒑𝟐𝟐

= 𝒅𝒅𝟎𝟎 −
𝒅𝒅𝟎𝟎𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷
+
𝒅𝒅𝟎𝟎𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟐𝟐

𝜸𝜸𝜷𝜷
−
𝒅𝒅𝟎𝟎𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟒𝟒

𝟒𝟒𝜸𝜸𝜷𝜷
+ 𝒅𝒅𝟏𝟏𝜽𝜽𝒑𝒑

−
𝒅𝒅𝟏𝟏𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝜸𝜸𝜷𝜷

+
𝒅𝒅𝟏𝟏𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟑𝟑

𝜸𝜸𝜷𝜷
−
𝒅𝒅𝟏𝟏𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟓𝟓

𝟒𝟒𝜸𝜸𝜷𝜷
+
𝒅𝒅𝟐𝟐𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐

−
𝒅𝒅𝟐𝟐𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐𝜸𝜸𝜷𝜷
+
𝒅𝒅𝟐𝟐𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟒𝟒

𝟐𝟐𝜸𝜸𝜷𝜷
−
𝒅𝒅𝟐𝟐𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐𝜽𝜽𝒑𝒑
𝟔𝟔

𝟖𝟖𝜸𝜸𝜷𝜷
 

65) 

 

After some tedious mathematical calculations below, we obtain: 

 

 

𝒅𝒅𝟎𝟎 =
𝟏𝟏 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸𝒓𝒓

𝟏𝟏 − 𝝁𝝁
 66) 

 

 
𝒅𝒅𝟏𝟏 = 𝟎𝟎 

67) 
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𝒅𝒅𝟐𝟐 =
−
𝑴𝑴𝒑𝒑𝒍𝒍
𝟐𝟐𝜸𝜸𝒓𝒓 −

𝑴𝑴𝒑𝒑
𝟐𝟐𝒍𝒍𝟐𝟐 �𝟏𝟏 +

𝑴𝑴𝒑𝒑𝒍𝒍
𝜸𝜸𝒓𝒓 �

(𝟏𝟏 − 𝝁𝝁)𝜸𝜸𝜷𝜷

�𝟏𝟏𝟐𝟐 −
𝑴𝑴𝒑𝒑

𝟐𝟐𝒍𝒍𝟐𝟐
𝟐𝟐𝜸𝜸𝜷𝜷 �

 68) 

 

Also, taking  
�𝜽𝜽𝒑𝒑−

𝜽𝜽𝒑𝒑
𝟑𝟑

𝟔𝟔 �

𝟏𝟏−
𝑴𝑴𝒑𝒑𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷 �𝟏𝟏−
𝜽𝜽𝒑𝒑

𝟐𝟐

𝟐𝟐  �
𝟐𝟐 = 𝒄𝒄𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒄𝒄𝟑𝟑

𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
   and  

�𝜽𝜽𝒑𝒑−
𝜽𝜽𝒑𝒑

𝟑𝟑

𝟔𝟔 ��𝟏𝟏−
𝜽𝜽𝒑𝒑

𝟐𝟐

𝟐𝟐 �

𝟏𝟏−
𝑴𝑴𝒑𝒑𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷 �𝟏𝟏−
𝜽𝜽𝒑𝒑

𝟐𝟐

𝟐𝟐  �
𝟐𝟐 = 𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑 +

𝒃𝒃𝟑𝟑
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
  we get: 

 

 
�̈�𝜽𝒑𝒑 =

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆
𝜷𝜷𝑹𝑹𝒓𝒓

�𝒅𝒅𝟎𝟎 + 𝒅𝒅𝟐𝟐
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
� �̇�𝒙 −

𝟐𝟐𝟐𝟐𝒎𝒎
𝜷𝜷𝑹𝑹

�𝒅𝒅𝟎𝟎 + 𝒅𝒅𝟐𝟐
𝜽𝜽𝒑𝒑𝟐𝟐

𝟐𝟐
�𝒖𝒖

−
𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍
𝜷𝜷

�𝒄𝒄𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒄𝒄𝟑𝟑
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
� −

𝑴𝑴𝒑𝒑
𝟐𝟐𝒍𝒍𝟐𝟐

𝜸𝜸𝜷𝜷
�̇�𝜽𝒑𝒑

𝟐𝟐 �𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑 + 𝒃𝒃𝟑𝟑
𝜽𝜽𝒑𝒑𝟑𝟑

𝟔𝟔
� 

69) 

and finally: 

 

 
�̈�𝜽𝒑𝒑 =

𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆𝒅𝒅𝟎𝟎
𝜷𝜷𝑹𝑹𝒓𝒓

�̇�𝒙 +
𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆𝒅𝒅𝟐𝟐
𝜷𝜷𝑹𝑹𝒓𝒓

�̇�𝒙𝜽𝜽𝒑𝒑𝟐𝟐 −
𝟐𝟐𝟐𝟐𝒎𝒎𝒅𝒅𝟎𝟎
𝜷𝜷𝑹𝑹

𝒖𝒖 −
𝟐𝟐𝒎𝒎𝒅𝒅𝟐𝟐
𝜷𝜷𝑹𝑹

𝒖𝒖𝜽𝜽𝒑𝒑𝟐𝟐 −
𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍𝒄𝒄𝟏𝟏

𝜷𝜷
𝜽𝜽𝒑𝒑

−
𝟏𝟏
𝟔𝟔𝜷𝜷

𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍𝒄𝒄𝟑𝟑𝜽𝜽𝒑𝒑𝟑𝟑 − 𝝁𝝁𝒃𝒃𝟏𝟏𝜽𝜽𝒑𝒑�̇�𝜽𝒑𝒑
𝟐𝟐 −

𝝁𝝁
𝟔𝟔
𝒃𝒃𝟑𝟑 �̇�𝜽𝒑𝒑

𝟐𝟐𝜽𝜽𝒑𝒑𝟑𝟑 
70) 

 

Letting  𝒙𝒙 =

⎣
⎢
⎢
⎡
𝒙𝒙
�̇�𝒙
𝜽𝜽𝒑𝒑
�̇�𝜽𝒑𝒑⎦
⎥
⎥
⎤
  be the state vector then we can write our non-linear equation in 

this form: 
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�̇�𝒙 = 𝑨𝑨𝒙𝒙 + 𝑩𝑩𝚲𝚲(𝑼𝑼 + 𝒓𝒓(𝒙𝒙)) 

71) 

 

where =

⎝

⎜
⎛

𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 −𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆𝒂𝒂𝟎𝟎

𝜸𝜸𝑹𝑹𝒓𝒓
𝒈𝒈𝒃𝒃𝟏𝟏𝝁𝝁 𝟎𝟎

𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟏𝟏
𝟎𝟎 𝟐𝟐𝟐𝟐𝒎𝒎𝟐𝟐𝒆𝒆𝒅𝒅𝟎𝟎

𝜷𝜷𝑹𝑹𝒓𝒓
−𝑴𝑴𝒑𝒑𝒈𝒈𝒍𝒍𝒄𝒄𝟏𝟏

𝜷𝜷
𝟎𝟎⎠

⎟
⎞

 , 𝑩𝑩 =

⎝

⎜
⎛

𝟎𝟎 𝟎𝟎
𝟐𝟐𝟐𝟐𝒎𝒎𝒂𝒂𝟎𝟎
𝜸𝜸𝑹𝑹

𝟎𝟎
𝟎𝟎 𝟎𝟎
𝟎𝟎 −𝟐𝟐𝟐𝟐𝒎𝒎𝒅𝒅𝟎𝟎

𝜷𝜷𝑹𝑹 ⎠

⎟
⎞

 , 𝑼𝑼 = �𝒖𝒖𝒖𝒖�. 

Also,  𝒓𝒓(𝒙𝒙) = 𝚯𝚯𝑻𝑻𝚽𝚽(𝒙𝒙), 𝜹𝜹 = −𝟐𝟐𝟐𝟐𝒎𝒎𝒅𝒅𝟎𝟎
𝜷𝜷𝑹𝑹

, 𝝐𝝐 = 𝟐𝟐𝟐𝟐𝒎𝒎𝒂𝒂𝟎𝟎
𝜸𝜸𝑹𝑹

 where 𝚽𝚽(𝒙𝒙) =

⎝

⎜
⎜
⎜
⎛

�̇�𝒙𝜽𝜽𝒑𝒑𝟐𝟐

𝒖𝒖𝜽𝜽𝒑𝒑𝟐𝟐

𝜽𝜽𝒑𝒑𝟑𝟑

𝜽𝜽𝒑𝒑�̇�𝜽𝒑𝒑
𝟐𝟐

�̇�𝜽𝒑𝒑
𝟐𝟐𝜽𝜽𝒑𝒑𝟑𝟑⎠

⎟
⎟
⎟
⎞

 is the 

regression vector and the unknown parameters matrix. 

 

To prove the concept discussed above, the plan is to do some simulation and then 

validate the simulations by implementing the controller on our two-wheeled robot platform 

and compare the results wit Θ =

⎝

⎜
⎜
⎜
⎜
⎜
⎛
−𝑘𝑘𝑚𝑚𝑘𝑘𝑒𝑒𝑎𝑎2

𝛾𝛾𝑅𝑅𝑟𝑟𝛾𝛾
𝑘𝑘𝑚𝑚𝑘𝑘𝑒𝑒𝑑𝑑2
𝛽𝛽𝑅𝑅𝑟𝑟𝛽𝛽

𝑘𝑘𝑚𝑚𝑎𝑎2
𝛾𝛾𝑅𝑅𝛾𝛾

− 𝑘𝑘𝑚𝑚𝑑𝑑2
𝛽𝛽𝑅𝑅𝛽𝛽

1
6𝛾𝛾
𝑏𝑏3𝜇𝜇𝜇𝜇 − 1

6𝛽𝛽𝛽𝛽
𝑀𝑀𝑝𝑝𝜇𝜇𝑙𝑙𝑐𝑐3

1
𝛾𝛾𝛾𝛾
𝑀𝑀𝑝𝑝𝑙𝑙𝑐𝑐1 − 𝜇𝜇𝑏𝑏1

𝛽𝛽
1
6𝛾𝛾𝛾𝛾

𝑀𝑀𝑝𝑝𝑙𝑙𝑐𝑐3 − 𝜇𝜇𝑏𝑏3
6𝛽𝛽 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

h what has been previously 

done. 
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CHAPTER IV 

SIMULATION AND RESULTS 

 

Simulink Real-Time Windows Target was used as the main tool in simulating and 

verifying the results experimentally. The TWMR model was built and executed in real time 

while the controller was run from an ATMEL microcontroller equipped board.  
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 𝜃𝜃𝑝𝑝𝑟𝑟𝑟𝑟𝑓𝑓
𝜃𝜃𝑝𝑝𝑐𝑐𝑚𝑚𝑑𝑑

=
𝑤𝑤𝑛𝑛2

𝑐𝑐2 + 2𝜉𝜉𝑤𝑤𝑛𝑛 + 𝑤𝑤𝑛𝑛2
 

73) 

 

which represent the desired command-to-reference behavior. Here 𝑥𝑥𝑟𝑟𝑟𝑟𝑓𝑓 and 𝜃𝜃𝑟𝑟𝑟𝑟𝑓𝑓 

are the reference position and pitch angle of the TWMR. 𝑥𝑥𝑐𝑐𝑚𝑚𝑑𝑑 and 𝜃𝜃𝑐𝑐𝑚𝑚𝑑𝑑 the commanded 

position and pitch angle respectively, and (𝑤𝑤𝑛𝑛, 𝜉𝜉) = (10, 0.9) are the desired natural 

frequency, and the damping ratio. In state space form, the reference model dynamics of the 

TWMR can be easily written as: 

 

 
�̇�𝑥𝑟𝑟𝑟𝑟𝑓𝑓 = 𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓𝑥𝑥𝑟𝑟𝑟𝑟𝑓𝑓 + 𝐵𝐵𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟(𝑘𝑘) 

74) 

 

 

⎝

⎜
⎛
�̇�𝑥
�̈�𝑥
𝜃𝜃�̇�𝑝
𝜃𝜃�̈�𝑝⎠

⎟
⎞

= �

0 1 0 0
−𝑤𝑤𝑛𝑛2 −2𝜉𝜉𝑤𝑤𝑛𝑛 0 0

0 0 0 1
0 0 −𝑤𝑤𝑛𝑛2 −2𝜉𝜉𝑤𝑤𝑛𝑛

��

𝑥𝑥
�̇�𝑥
𝜃𝜃𝑝𝑝
�̇�𝜃𝑝𝑝

� + �

0 0
𝑤𝑤𝑛𝑛2 0
0 0
0 𝑤𝑤𝑛𝑛2

�𝑟𝑟𝑐𝑐𝑚𝑚𝑑𝑑(𝑘𝑘) (76) 

 

The MRAC design equations used in the simulation are: 

 

• Open-loop plant:    �̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵Λ(𝑢𝑢 + Θ𝑇𝑇Φ(𝑥𝑥)) 

• Reference model:    �̇�𝑥𝑟𝑟𝑟𝑟𝑓𝑓 = 𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓𝑥𝑥𝑟𝑟𝑟𝑟𝑓𝑓 + 𝐵𝐵𝑟𝑟𝑟𝑟𝑓𝑓𝑟𝑟(𝑘𝑘) 

• Model matching conditions:  𝐴𝐴 + 𝐵𝐵Λ𝐾𝐾𝑥𝑥𝑇𝑇 = 𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓, 𝐵𝐵Λ𝐾𝐾𝑥𝑥𝑇𝑇 = 𝐵𝐵𝑟𝑟𝑟𝑟𝑓𝑓 

• Tracking error:   𝑒𝑒 = 𝑥𝑥 − 𝑥𝑥𝑟𝑟𝑟𝑟𝑓𝑓 
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• Control input:     𝑢𝑢 = 𝐾𝐾�𝑥𝑥𝑇𝑇𝑥𝑥 + 𝐾𝐾�𝑟𝑟𝑇𝑇𝑟𝑟 − Θ�𝑇𝑇Φ(𝑥𝑥) 

• Algebraic Lyapunov equation:  𝑃𝑃𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓 + 𝐴𝐴𝑟𝑟𝑟𝑟𝑓𝑓𝑇𝑇 𝑃𝑃 = −𝑄𝑄  

• MIMO MRAC laws:   𝐾𝐾�̇𝑥𝑥 = −Γ𝑥𝑥𝑥𝑥𝑒𝑒𝑇𝑇𝑃𝑃𝐵𝐵,  

                                     𝐾𝐾�̇𝑟𝑟 = −Γ𝑟𝑟𝑟𝑟𝑒𝑒𝑇𝑇𝑃𝑃𝐵𝐵 

 Θ�̇ =  ΓΘΦ(𝑥𝑥)𝑒𝑒𝑇𝑇𝑃𝑃𝐵𝐵 

 

The design consists of symmetric positive-definite matrices 𝑄𝑄, Γ𝑥𝑥, Γ𝑟𝑟 and ΓΘ , with 

the last three quantities representing adaptation rates for the parameters 𝐾𝐾�𝑥𝑥, 𝐾𝐾�𝑟𝑟 and Θ�, 

respectively. After several iterations, we have selected the following data: 

 

𝑄𝑄 = �

10000 0 0 0
0 10000 0 0
0 0 10000 0
0 0 0 10000

� 

 

Γ𝑥𝑥 = �

100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100

� 

 

Γ𝑟𝑟 = �10 0
0 10� 

 

Γ𝜃𝜃 =

⎝

⎜
⎛

10 0 0 0 0
0 10 0 0 0
0 0 10 0 0
0 0 0 10 0
0 0 0 0 10⎠

⎟
⎞
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Figure 12 shows the tracking performance of the adaptive MRAC controller. It 

Shows the system closed loop response in tracking a series of step input commands. The 

percentage overshoot and the rise-time are within the limits originally designed for. 

 As can be seen in Figure 13 the required control input stays within achievable and 

reasonable limits. 

 

 

Figure 12 Tracking Performance 
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Figure 13 Control Input 

 

The tracking error quickly dissipates which can be seen by observing the 

difference between the actual and the commanded input signal in Figure 14. 

 

 

Figure 14 Tracking Norm 
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Figure 15  Evolution Time of Adaptive Gain 

 

Parameter convergence in adaptive control depends on the persistency of 

excitation conditions. Basically, the external commands need to “persistently excite” the 

closed-loop system dynamics. This rule no longer holds for nonlinear systems and the 

general PE conditions are hard to verify numerically. It is interesting to observe that some 

of the feedback and feedforward gains �𝐾𝐾�𝑥𝑥,𝐾𝐾�𝑟𝑟� converge to their true unknown values as 

shown in Figure 15 and Figure 16. 
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Figure 16 Evolution Time of Adaptive Gain 

 

However, the estimated parameters �𝜃𝜃�7, 𝜃𝜃�8,𝜃𝜃�9,𝜃𝜃�10, 𝜃𝜃�11,𝜃𝜃�12 ,𝜃𝜃�13,𝜃𝜃�14,𝜃𝜃�15,𝜃𝜃�16 �  

that correspond to the nonlinear regressor components have dissimilar tendencies. Some are 

quite different from their ideal counterparts, while the third one does converge to its ideal 

value as shown in the figures below. 
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Figure 17 Parameters corresponding to Nonlinear regressor Vector 

 

 

Figure 18 Parameters corresponding to Nonlinear regressor Vector 
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Figure 19 Parameters corresponding to Nonlinear regressor Vector 
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CHAPTER V 

CONCLUSION 

 

A Model Reference Adaptive Control (MRAC) system is designed to stabilize a 

two-wheeled mobile robot (TWMR), which is modelled as an inverted pendulum. The 

adaptive controller yields effective results in simulation, achieving bounded control signals 

and asymptotic output tracking. 

The controller was implemented in real-time on a prototype TWMR platform, and 

it succeeded in maintaining it in the upright position, and prevented it from tipping over 

even 

when an additional unbalanced load was introduced, which induced an unexpected 

disturbance to the robot. As in most adaptive controllers, the parameter estimates converge 

to values, which are not necessarily the true values due to the lack of persistently exciting 

input signals, but still guarantee asymptotic tracking, even when the system is disturbed 

with an unknown inertia variation. The obtained results in this work pave the way for 

investigating robust and adaptive nonlinear control techniques, and how they can be applied 

to other low-cost platforms that possess limited processing power. 
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APPENDIX 
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Figure 22 Open Loop Plant 

52 
 



REFERENCES 

 

[1]  K. J. Astrom and B. Wittenmark, "Adaptive Control," Dover, no. 

Second Edition, 2008.  

[2]  Baloh, Michael and Michael Parent, "Modeling and model verification 

of an intelligent self-balancing two-wheeled vehicle for an autonomous urban 

transportation system," The conference on computational intelligence, robotics, 

and autonomous systems, pp. 1-7, 2003.  

[3]  Blankespoor, Adam and Robert Roemer, "Experimental verification of 

the dynamic model for a quarter size self-balancing wheelchair," American 

Control Conference, pp. 488-492, 2004.  

[4]  Deng, M., Inoue, A., Sekiguchi, K., & Jiang and L., "Deng, M., et al. 

"Two-wheeled mobile robot motion control in dynamic environments," 

Robotics and Computer-Integrated Manufacturing, vol. 26, no. 3, pp. 268-272, 

2010.  

[5]  Goher, K. M., M. O., Tokhi and N. H. Siddique., "Dynamic modeling 

and control of a two wheeled robotic vehicle with a virtual payload," ARPN 

Journal of Engineering and Applied Sciences, vol. 6, no. 3, pp. 7-41, 2011.  

[6]  Nguyen, Cong Huu and Kien Ngoc Vu, "Applying order reduction 

model algorithm for balancing control problems of two-wheeled mobile robot," 

Industrial Electronics and Applications (ICIEA), 2013 8th IEEE Conference 

on. IEEE, pp. 1302-1307, 2013.  

[7]  Xu, Changkai, Ming Li and Fangyu Pan, "The system design and LQR 

control of a two-wheels self-balancing mobile robot," Electrical and Control 

Engineering (ICECE), 2011 International Conference on. IEEE, pp. 2786-

2789, 2011 .  

[8]  Jones, Daniel R. and Karl A. Stol, "Modelling and stability control of 

two-wheeled robots in low-traction environments," Australasian Conference 

55 
 



on Robotics and Automation, 2010.  

[9]  Tsai, Ching-Chih, H. Hsu-Chih and L. Shui-Chun, "Adaptive neural 

network control of a self-balancing two-wheeled scooter," IEEE transactions 

on industrial electronics, vol. 57, no. 4, pp. 1420-1428, 2010.  

[10]  Pathak, Kaustubh, Jaume Franch and Sunil KumarAgrawal, "Velocity 

and position control of a wheeled inverted pendulum by partial feedback 

linearization," IEEE Transactions on robotics , vol. 21, no. 3, pp. 505-513, 

2005.  

[11]  S. C. Lin and C. C. Tsai, "Development of a Self-Balancing Human 

Transportation Vehicle for the Teaching of Feedback Control," IEEE 

Transactions on Education, vol. 52, no. 1, pp. 157-168, 2009.  

[12]  Salerno, Alessio and Jorge Angeles, "The control of semi-autonomous 

two-wheeled robots undergoing large payload-variations," Robotics and 

Automation, 2004. Proceedings. ICRA'04, vol. 2, pp. 1740-1745, 2004.  

[13]  Salerno, Alessio and Jorge Angeles, "On the nonlinear controllability of 

a quasiholonomic mobile robot," Robotics and Automation, 2003. Proceedings. 

ICRA'03, vol. 3, pp. 3379-3384, 2003.  

[14]  E. Lavretsky and K. A. Wise, "Robust and Adaptive Control," 

Advanced Textbooks in Control and Signal Processing, vol. Book, 2013.  

 

 

 

 

56 
 


	ACKNOWLEDGMENTS
	AN ABSTRACT of the Thesis of
	ILLUSTRATIONS
	INTRODUCTION
	A. Survey
	B. Literature Review
	C. Thesis Objectives

	HARDWARE DESIGN
	A. The Robot Chassis
	B. Controller Board
	1. Microcontroller
	2. Onboard Sensors
	3. Sensor Data Fusion
	4. Experimental Setup


	CONTROLLER DESIGN
	A. Adaptive Controller
	B. Mathematical Formulation
	1. Dynamic Model of the TWMR
	1. Overview
	2. Non-linear Model derivation


	SIMULATION AND RESULTS
	A. Reference model

	CONCLUSION
	APPENDIX
	REFERENCES

