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An Abstract of the Thesis of

Najwa Wajdi El Zini for Master of Science

Major: Mathematics

Title: On The Generalization of The Riemann Mapping Theorem in The Theory

of Several Complex Variables

One of the most important results in complex analysis is The Riemann Map-

ping Theorem which states that every non-empty simply connected domain in

the complex plane C which is not the entire C is biholomorphically equivalent to

the open unit disc. However, this theorem does not hold in higher dimensions.

For instance, the open unit ball and the open polydisc are not biholomorphic

in Cn for n > 1. Generalizations of the Riemann Mapping Theorem in the

theory of several complex variables rely on additional characterizations of the

complex structure of the domain. For instance, Stanton built his generalization

on specific conditions on the Carathéodory and Kobayashi metrics defined on a

complex manifold. Whereas Wong-Rosay theorem mainly relies on the group of

automorphisms of a domain. In this work, our basic aim is to study Stanton

and Wong-Rosay theorems and their proofs. We will also approach the proof of

Wong-Rosay theorem using the scaling method of Pinckuk.
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3.4 Proof of The Main Theorem . . . . . . . . . . . . . . . . . . . . . 39

4 Proof of Wong-Rosay Theorem By Pinchuk’s Scaling Method 44

5 Characterization of The Unit Ball by Stanton 54

5.1 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Proof of The Main Theorem . . . . . . . . . . . . . . . . . . . . . 55



Chapter 1

Introduction

We know from the Riemann Mapping Theorem that any non-empty simply con-

nected domain in the complex plane C which is not the entire C is biholomorphi-

cally equivalent to the open unit disc. In 1907, Poincaré proved that the open

unit ball and the open polydisc in Cn are not biholomorphic to each other, leaving

the door open to questions concerning the characterization of domains in Cn for

n > 1. Naturally, the geometry of domains in Cn for n > 1 is much more compli-

cated than in the complex plane and requires the introduction of new invariant

objects. This essential question has been addressed extensively since then by

many authors. A remarkable result due to B. Wong [11] gives a characterization

of domains with curvature in terms of their group of automorphisms. Later on

J.-P. Rosay [8] gave a local version of Wong’s result with a complete different

proof. Another important characterization, also due to B. Wong [12], relates the

geometry of the domain with the behaviour of the curvature of two important
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invariant metrics, both generalizations of the Poincaré metric. C.M. Stanton [10]

also obtained a result in that vein.

In this thesis we aim to deeply study these results and their proofs due to Rosay

in [8] and to Stanton in [10]. Finally, we will also follow [1] and [4] to present a

different and very geometric proof of Wong-Rosay theorem based on S. Pinchuk’s

scaling method .

In what follows, Chapter 2 will present a brief look at concepts and results that

will be used later in the work. In this chapter, we introduce strictly pseudoconvex

domains and describe them locally. We then define Kobayashi and Carathédory

metrics/volumes and prove some of their basic properties and we give a quick

tour on complex manifolds.

Chapter 3 will present the proof of Wong-Rosay theorem by J.-P. Rosay where

two main components of the proof will be highlighted: the characterization of

the unit ball by volumes and the localization of Kobayashi and Carathéodory

volumes near a point of strict pseudoconvexity.

Chapter 4 will then introduce Pinchuk’s scaling sequence that will be applied to

present a distinct proof of Wong-Rosay theorem.

Lastly, Chapter 5 will present Stanton’s characterization of the unit ball by its

metrics.
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Chapter 2

Preliminaries

2.1 Strict Pseudoconvexity and Local Change

of Coordinates

2.1.1 Strictly Pseudoconvex Domains

Definition 2.1.1. Let D be an open set in Cn and let u be a C2 function on D.

The Levi Form of u at z ∈ D is the complex Hessian Lz,u of u at z, i.e. the

Hermitian form:

Lz,u(ζ) =
n∑

i,j=1

∂2u

∂zi∂zj
(z)ζiζj

Definition 2.1.2. Let Ω be a domain in Cn with C2 boundary and let ρ be a

real-valued C2 function defined on a neighborhood U∂Ω of the boundary of Ω such

that U∂Ω ∩ Ω = {z ∈ U∂Ω : ρ(z) < 0} and ∇ρ(z) 6= 0 for every z ∈ ∂Ω. We say
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that Ω is strictly pseudoconvex if and only if

Lz,ρ(ω) > 0

for every z ∈ ∂Ω and ω ∈ Tz(∂Ω), where Lz,ρ(ω) is the Levi form of ρ at z and

Tz(∂Ω) = {ω ∈ Cn :
n∑
i=1

∂ρ
∂zi

(z)ωi = 0} is the complex tangent space at z.

Note that ρ is called a defining function of Ω.

2.1.2 Local Change of Coordinates

Proposition 2.1.1. Let Ω be a bounded domain of Cn with C2 boundary. Let

ζ0 ∈ ∂Ω be a point of strict pseudoconvexity. Then there exists a neighborhood of

ζ0 where - up to change of coordinates - Ω is defined by:

ρ(ω) = 2<ω1 + Lζ0,ρ(ω) + o(‖ω‖2)

with ω = (ω1, · · · , ωn).

Proof. Since Ω is bounded there exists a positive constant K such that Lζ0,ρ(ζ) ≥

K‖ζ‖2, for all ζ ∈ Cn. By rotation and translation of coordinates, we can assume

that ζ0 = 0 and n = (1, 0, · · · , 0) is the unit outward normal to ∂Ω at ζ0.
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Consider the following second-order Taylor expansion of ρ about ζ0 = 0:

ρ(ζ) = ρ(0) +
n∑
i=1

∂ρ

∂zj
(ζ0)ζi +

1

2

n∑
i,j=1

∂2ρ

∂zi∂zj
(ζ0)ζiζj

+
n∑
i=1

∂ρ

∂zj
(ζ0)ζ i +

1

2

n∑
i,j=1

∂2ρ

∂zi∂zj
(ζ0)ζ iζj

+
n∑

i,j=1

∂2ρ

∂zi∂zj
(ζ0)ζiζj + o(‖ζ‖2)

= 2<
{ n∑

i=1

∂ρ

∂zj
(ζ0)ζi +

1

2

n∑
i,j=1

∂2ρ

∂zi∂zj
(ζ0)ζiζj

}

+
n∑

i,j=1

∂2ρ

∂zi∂zj
(ζ0)ζiζj + o(‖ζ‖2)

= 2<
{
ζ1 +

1

2

n∑
i,j=1

∂2ρ

∂zi∂zj
(ζ0)ζiζj

}

+
n∑

i,j=1

∂2ρ

∂zi∂zj
(ζ0)ζiζj + o(‖ζ‖2)

Where ρ(0) = 0 since ζ0 = 0 is a boundary point and
n∑
i=1

∂ρ
∂zj

(ζ0) = (1, 0, · · · , 0)

by assumption.

We define next the map φ : ζ = (ζ1, · · · , ζn) 7→ ω = (ω1, · · · , ωn) as follows:

ω1 = φ1(ζ) = ζ1 +
1

2

n∑
i,j=1

∂2ρ

∂zi∂zj
(ζ0)ζiζj

ωk = φk(ζ) = ζk for 2 ≤ k ≤ n

By the Implicit Function Theorem, we see that φ is a well defined invertible holo-

morphic mapping on some neighborhood of ζ0 = 0. Then after a local change of
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coordinates ζ = (ζ1, · · · , ζn) 7→ ω = (ω1, · · · , ωn) the defining function becomes:

ρ(ω) = 2<ω1 + Lζ0,ρ(ω) + o(‖ω‖2)

2.2 Complex Manifolds

2.2.1 Complex Manifolds, Tangent Space and Tangent Bun-

dle

Definition 2.2.1. A topological space M is called an n-dimensional complex

manifold if there exist an open cover {Ui}i∈I of M and a family {φi}i∈I of

homeomorphisms of Ui onto an open set of Cn such that if Ui ∩ Uj 6= ∅, the

mapping φi ◦ φ−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj) is biholomorphic.

Example 2.2.1. Complex projective spaces CP n and complex Lie groups such as

GL(n,C) are examples of complex manifolds.

A complex valued function f defined on an open set U ⊂ M is said to be

holomorphic if for any i ∈ I the function f◦φ−1
i is holomorphic on φi(U∩Ui) ⊂ Cn.

For every point p ∈ Ui, the mapping φi is expressed as φi(p) = (z1(p), · · · , zn(p))

in terms of the coordinates in Cn where each zi is a holomorphic function on Ui.

We call (z1. · · · , zn) a holomorphic local coordinates system on Ui.
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Definition 2.2.2. Let M and N be two complex manifolds and let F : M → N

be a smooth map. The pull-back of a smooth function f ∈ C∞(N) is given by

F ∗(f) = f ◦ F ∈ C∞(M)

One can play a similar game for Hermitian forms. In particular the pull-back of

the Levi form i∂∂ is given by

F ∗(i∂∂f) = i∂∂(f ◦ F ).

Definition 2.2.3. Let M and N be two n-dimensional oriented manifolds and

let f : M → N be a smooth map. If M is compact and N is connected, and if

y ∈ N is any regular value of f then the degree of f is defined as follows

deg f = deg (f, y) =
∑

x∈f−1(y)

sign dxf

where sign df is equal to 1 if df preserves orientation and -1 if it reverses orien-

tation.

If f is a diffeomorphism then the deg f = 1 if f is an orientation preserving

map and deg f = −1 otherwise (see [6]).

We will introduce next the notion of a tangent space on a manifold.

Definition 2.2.4. Let M be a complex manifold and p ∈ M . A tangent vector
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vp to M at p is a derivation on C∞(M). The space of all such vectors is called

the tangent space of M at p and it is denoted by TpM . The disjoint union of

all tangent spaces of M is called the tangent bundle of M and it is denoted by

TM .

Note that the tangent bundle is seen as TM =
⋃
p∈M
{p} × TpM = {(p, vp) :

p ∈ M, vp ∈ TpM}. Thus one can naturally define the canonical projection

π : TM →M where π(p, vp) = p.

Definition 2.2.5. A vector field X : M → TM on a complex manifold M is a

section of the tangent bundle TM i.e. it is a right inverse of the projection map

π. The space of all vector fields on M is denoted by Γ(TM).

2.2.2 Affine Connections, Geodesics and The Exponential

Map

In this section we will generalize the notion of a directional derivative by in-

troducing affine connections and covariant derivatives on a manifold. We will

introduce the notion of geodesics (with initial point and initial velocity) as well

which played a pivotal role in differential geometry.

Definition 2.2.6. An affine connection on the tangent bundle TM of a man-

ifold M is a map

∇ : Γ(TM)× Γ(TM)→ Γ(TM)
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(X, Y ) 7→ ∇XY

such that for all X, Y ∈ Γ(TM),

1. ∇ is C∞(M)-linear in the first variable and C-linear in the second.

2. ∇ satisfies Leibniz rule in the second variable i.e. if f ∈ C∞(M) then,

∇X(fY ) = (df)(X)Y + f∇XY

Let M be a complex manifold and γ : [a, b] → M be a smooth parametrized

curve. Recall that a vector field along the curve γ is a map

V : [a, b]→
⊔
t∈[a,b]

Tγ(t)M

t 7→ vγ(t)

where
⊔

stands for the disjoint union. We denote the space of all such vector

fields by Γ(TM |γ(t)).

Definition 2.2.7. Let M be a complex manifold with an affine connection ∇ and

a smooth curve γ : [a, b] → M . The covariant derivative DV/dt (associated

to ∇) of the vector field V along the curve γ(t) in M is given by the map

D

dt
: Γ(TM |γ(t))→ Γ(TM |γ(t))
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such that for all V ∈ Γ(TM |γ(t)),

1. (C-linearity) DV/dt is C-linear in V .

2. (Leibniz Rule) for any f ∈ C∞[a, b]

D(fV )

dt
=
df

dt
V + f

DV

dt

3. (Compatibility with ∇) if V is induced from a vector field V ′ on M , in the

sense that V (t) = V ′γ(t), then

DV

dt
(t) = ∇γ′(t)V

′

Definition 2.2.8. Let M be a complex manifold with a connection ∇. A parametrized

curve γ : I ⊂ R → M is called a geodesic if the covariant derivative of its ve-

locity vector field γ′(t) is zero i.e. Dγ′

dt
(t) = 0. The geodesic is said to be maximal

if I can not be extended to a larger interval.

Remark 2.2.1. Given any p ∈ M and vp ∈ TpM there exists a unique maximal

geodesic denoted by γvp(t) such that γvp(0) = p and γ′vp(0) = vp. For simplicity

of the notation, we will omit p from γvp(t) and vp.

We are now in the position to make the following definition.

Definition 2.2.9. Let M be a complex manifold with an affine connection. Let

p ∈ M and v ∈ TpM , if γv(1) is defined, the exponential map is set to be the
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following

expp(v) = γv(1)

One can show that for each t in the domain of γv, expp(tv) = γv(t).

Proposition 2.2.1. The differential of the exponential map at the origin, d0(expp)

is the identity map on TpM .

Proof. Let v ∈ TpM . Note that the curve αv(t) = tv ⊂ TpM satisfies αv(0) = 0

and α′v(0) = v. We will use this curve to compute the differential as follows

d0(expp)(v) = d0(expp)

(
d

dt

∣∣∣∣
t=0

αv(t)

)
=

d

dt

∣∣∣∣
t=0

expp(αv(t))

=
d

dt

∣∣∣∣
t=0

expp(tv)

=
d

dt

∣∣∣∣
t=0

γv(t)

= γ′v(0)

= v

where γv is the unique geodesic for v through p.

It follows by the inverse function theorem that the exponential map is a local

diffeomorphism at the origin of TpM .
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2.2.3 Hermitian Metrics on Complex Tangent Bundles

Definition 2.2.10. Let M be a C∞ complex manifold. A Hermitian metric

on the tangent bundle of M assigns smoothly to each p ∈ M a complex inner

product 〈 , 〉p on TpM . A complex tangent bundle on which there is a Hermitian

metric is called a Hermitian bundle.

A connection on a Hermitian bundle is said to compatible with the Her-

mitian metric if for all X, Y, Z ∈ Γ(TM),

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

Remark 2.2.2. The notion of geodesics defined previously depends only on a

connection and does not require the manifold to be equipped with a metric. How-

ever, on a Hermitian bundle we will consider the connection that is compatible

with the Hermitian metric.

Proposition 2.2.2. Let γ(t) be a geodesic on a Hermitian manifold M . Then

‖γ′(t)‖ is constant, where ‖ .‖=
√
〈 . , . 〉 is the norm associated to the Hermitian

metric (if indicated, this norm might also be denoted by | . | in this work).

Proof. Let f(t) = 〈γ′(t), γ′(t)〉. We want to show that f(t) is constant. Note that

d

dt
f(t) =

d

dt
〈γ′(t), γ′(t)〉 = 〈D

dt
γ′(t), γ′(t)〉+ 〈γ′(t), D

dt
γ′(t)〉 = 0

where the second equality holds by Remark 2.2.2 and the last one holds since
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γ(t) is a geodesic. Hence, we conclude that f(t) is constant.

Proposition 2.2.3. Let M be a Hermitian manifold and let γ : [0, 1] → M be

the geodesic with γ(0) = p, γ(1) = q and γ′(0) = v. Then, the length of γ is

L(γ) = ‖v‖

Proof. By Proposition 2.2.2 we see that

L(γ) =

∫ 1

0

‖γ′(t)‖dt =‖γ′(t)‖=‖v‖

where the the last equality holds because γ′(0) = v.

Remark 2.2.3. Geometrically, expp(v) is the point on the geodesic γv passing

through p and tangent to v that is obtained by going out a distance equal to ‖v‖

along γv starting from p.

More generally, if r > 0 is such that γv(t) = expp(tv) is defined on [0, r] then the

length of the geodesic arc from p to expp(rv) is

L(γv|[0,r]) =

∫ r

0

‖γ′(t)‖dt = r‖γ′(t)‖= r‖v‖

In particular, if v is a unit vector, then L(γv|[0,r]) = r.
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2.3 Invariant Metrics

Historically, the first invariant metric under biholomorphic mappings was defined

by Poincaré on the unit disc D = {z ∈ C : |z| < 1} ⊂ C. In higher dimensions,

there are many generalizations of the Poincaré metric; the most classical such

metrics are due to Carathéodory in 1926, Bergman in 1950 and Kobayashi in

1967. These metrics turn out to be fundamental tools in the theory of several

complex variables, providing important information on the geometry of domains

and their boundaries.

2.3.1 Poincaré, Kobayashi and Carathéodory Metrics

For a vector v tangent to the open unit disc D at a point ζ, the Poincaré metric

is defined as

KD(ζ, v) =
|v|

1− |ζ|2

where |.| is the Euclidean norm.

We will introduce now the Kobayashi and Carathéodory metrics and prove that

they coincide with the Poincaré metric on D.

Definition 2.3.1. Let M be a complex manifold of dimension n and let p ∈M .

For every v ∈ TpM we define the Kobayashi and Carathéodory pseudomet-
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rics of v at p respectively as follows

KM(p, v) = inf

{
1

r
> 0 : f ∈ H(D,M), f(0) = p, d0f(∂/∂x) = rv

}
CM(p, v) = sup

{
|dpg(v)| : g ∈ H(M,D), g(p) = 0

}

where H(D,M) (H(M,D) resp.) is the space of holomorphic mappings from D

to M (from M to D resp.) and dpg is the differential of the function g at the

point p.

Note that these pseudometrics may be degenerate; for instance due to Liou-

ville theorem the Carathéodory pseudometric of C is identically equal to zero; the

Kobayashi pseudometric of C is also identically equal to zero since the complex

plane C contains discs of arbitrary large size. Naturally, in the case of the unit

disc C, on has:

Theorem 2.3.1. The Kobayashi, Carathéodory and Poincaré metrics coincide

on the open unit disc.

Proof. Note that in this proof we see D as a domain in C and we will use the

usual notion of derivatives in C. We will start by proving that the Kobayashi

metric is equal to the Poincaré metric on D. Let ζ ∈ D and v ∈ TζD. If v = 0

then the result is trivial. Otherwise, for v 6= 0, we consider a candidate mapping

f for the Kobayashi metric at ζ on D with f ′(0) = rv for some r > 0. Note that

15



the Mobius transformation

ϕζ(z) =
z − ζ
1− ζ̄z

is an automorphism of D satisfying ϕζ(ζ) = 0 and ϕ′ζ(ζ) =
1

1− |ζ|2
.

Clearly, ϕζ ◦ f ∈ H(D,D) and ϕζ ◦ f(0) = 0. Thus, by Schwarz lemma we get

|(ϕζ ◦ f)′(0)| ≤ 1

This implies that

r |v|
1− |ζ|2

≤ 1

Hence,

1

r
≥ |v|

1− |ζ|2

Now, consider the function f : D→ D defined by

f(z) =

v
|v|z + ζ

1 + v
|v| ζ̄z

We can see that f is a candidate mapping for the Kobayashi metric at ζ on D

with f ′(0) =
1− |ζ|2

|v|
v. Therefore,

KD(ζ, v) =
|v|

1− |ζ|2
.

We will show next that the Carathéodory metric coincides with the Poincaré

16



metric on D. Let ζ ∈ D and v ∈ TζD. Let g be a candidate mapping for the

Carathéodory metric at ζ on D. By Schwarz-Pick lemma we have

|g′(ζ)| ≤ 1

1− |ζ|2

Hence

|g′(ζ)v| ≤ |v|
1− |ζ|2

Since the Mobius transformation ϕζ(z) considered previously is clearly a candi-

date mapping for the Carathéodory metric at ζ on D with
∣∣ϕ′ζ(ζ)v

∣∣ =
|v|

1− |ζ|2

we conclude that

CD(ζ, v) =
|v|

1− |ζ|2
.

Given two points p and q in a complex manifold M , the integrated Kobayashi

pseudodistance dM is defined as follows

dM(p, q) = inf

{ 1∫
0

KM(γ(t), γ′(t))dt, γ : [0, 1]→M,γ(0) = p, γ(1) = q

}

Similarly, the integrated Carathéodory pseudodistance dM is given by

dM(p, q) = inf

{ 1∫
0

CM(γ(t), γ′(t))dt, γ : [0, 1]→M,γ(0) = p, γ(1) = q

}
.
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Definition 2.3.2. We say that a manifold M is Kobayashi hyperbolic if the

Kobayashi pseudodistance is a distance. We say that M is complete hyperbolic

if it is complete for the Kobayashi distance dM .

For instance, the unit disc D endowed with the Poincaré metric is complete

hyperbolic.

2.3.2 Properties

We will state and prove in this section some of the most important properties of

the Kobayashi and Carathéodory metrics.

Proposition 2.3.1 (Distance Decreasing Property). Let M and N be complex

manifolds, p, q ∈ M and v ∈ TpM . Suppose that ϕ : M → N is holomorphic,

then

KN(ϕ(p), dpϕ(v)) ≤ KM(p, v) and CN(ϕ(p), dpϕ(v)) ≤ CM(p, v)

Consequently, dN(ϕ(p), ϕ(q)) ≤ dM(p, q) where dM , dN are the Kobayashi or

Carathéodory pseudodistances.

Proof. We will start by the proof of the first inequality. Let f be a candidate

mapping for the Kobayashi metric at the point p on M i.e. f ∈ H(D,M), f(0) =

p and d0f(∂/∂x) = rv for some r > 0. Clearly, ϕ ◦ f is a candidate mapping for

the Kobayashi metric at ϕ(p) on N . Also, d0(ϕ ◦ f)(∂/∂x) = dpϕ(d0f(∂/∂x)) =
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dpϕ(rv) = rdpϕ(v). Thus

KN(ϕ(p), dpϕ(v)) ≤ 1

r

Now, taking the infimum over all the candidate mappings f we obtain

KN(ϕ(p), dpϕ(v)) ≤ KM(p, v)

We move now to the proof of the second inequality. Let g be a candidate map

for the Carathéodory metric at ϕ(p) on N i.e. g ∈ H(N,D) and g(ϕ(p)) = 0.

Then, g ◦ ϕ is a candidate map for the Carathéodory metric at p on M . Thus

CM(p, v) ≥ |dp(g ◦ ϕ)(v)| =
∣∣dϕ(p)g(dpϕ(v))

∣∣

Taking the supremum over all the candidate mappings g we get

CN(ϕ(p), dpϕ(v)) ≤ CM(p, v)

Finally, the proof of the last inequality follows from definition of the pseudodis-

tance and the previous inequalities.

Corollary 2.3.1 (Invariance Under Biholomorphism). Let ϕ : M → N be a
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biholomorphic map. Then, for all p ∈M , v ∈ TpM

KN(ϕ(p), dpϕ(v)) = KM(p, v) and CN(ϕ(p), dpϕ(v)) = CM(p, v)

Proof. Let p ∈M and let v ∈ TpM . By applying Propostion 2.3.1 twice we get

KN(ϕ(p), dpϕ(v)) ≤ KM(p, v) = KM(ϕ−1(ϕ(p)), dpϕ
−1(ϕ(p)) ≤ KN(ϕ(p), dpϕ(v))

Therefore, KN(ϕ(p), dpϕ(v)) = KM(p, v). The proof of CN(ϕ(p), dpϕ(v)) =

CM(p, v) follows by the same procedure.

2.4 Kobayashi and Carathéodory Volumes

Definition 2.4.1. Let D be a bounded domain in Cn and let z ∈ D, we define

the Kobayashi and Carathéodory volumes respectively as follows:

• KD(z) = inf

{
1

|det d0f | : f ∈ H(Bn, D), f(0) = z

}
• CD(z) = sup

{
|det dzg| : g ∈ H(D,Bn), g(z) = 0

}
where Bn is the Euclidean open unit ball in Cn.

Properties of the Kobayashi and Carathéodory Volumes

In what follows, we will state and prove some properties of the Kobayashi and

Carathéodory volumes.

Let D be a bounded domain in Cn and let z ∈ D, then:
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Property 1. CD(z) ≤ KD(z)

Property 2. CD′(z) ≤ CD(z) and KD′(z) ≤ KD(z), ∀D ⊆ D′

Property 3.
KT (D)(T (z))
KD(z)

=
CT (D)(T (z))
CD(z)

= |detdzT |−1, with T being an injective

holomorphic map.

Proof. Property 1. Let f and g be two candidate maps of the Kobayashi and

Carathéodory volumes respectively. Consider the map f ◦ g : D −→ D.

Clearly, this map is holomorphic and f ◦ g (z) = f(g(z)) = f(0) = z.

Hence, by Theorem 3.2.1 (see section 3.2), |det dz(f ◦ g)| ≤ 1.

Using the Chain rule we get:

|det dz(f ◦ g)| = |det (dg(z)f . dzg)|

= |det (d0f . dzg)|

= |det d0f |.|det dzg|

Hence, |det dzg| ≤ 1
|det d0f |

.

Using the following property:

(∀ a ∈ A, b ∈ B, a ≤ b) =⇒ supA ≤ inf B
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we conclude that CD(z) ≤ KD(z).

Property 2. Let D ⊂ D′. The following inclusions hold:

{
1

|det d0f |
: f ∈ H(Bn, D), f(0) = z

}
⊂
{

1

|det d0g|
: g ∈ H(Bn, D′), g(0) = z

}
{
|detdzf | : f ∈ H(D′,Bn), f(z) = 0

}
⊂
{
|detdzg| : g ∈ H(D,Bn), g(z) = 0

}

The first inclusion holds by composing f with the inclusion map i : D → D′

and the second one holds by restricting the domain of f to D.

Using properties of inf and sup of a set we reach the desired conclusion.

Property 3. First note that:

KT (D)(T (z)) = inf

{
1

|det d0f |
: f ∈ H(Bn, T (D)), f(0) = T (z)

}

CT (D)(T (z)) = sup

{
|det dT (z)f | : f ∈ H(T (D),Bn), f(T (z)) = 0

}

Now, we start by proving that
KT (D)(T (z))
KD(z)

= |det dzT |−1.

Let f : Bn → T (D) be a holomorphic map with f(0) = T (z). Since T is

injective then T : D → T (D) is a bijection. Hence, there exists a holomor-

phic map g : Bn → D such that g(z) = T−1(f(z)) and g(0) = T−1(f(0)) =

T−1(T (z)) = z. Consequently, for each map f defined as above corresponds
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a map g : Bn → D with f = T ◦ g and g(0) = z.

Hence, the following holds:

∣∣∣∣ 1

det d0f

∣∣∣∣ =

∣∣∣∣ 1

det d0(T ◦ g)

∣∣∣∣
=

∣∣∣∣ 1

det (dg(0)T . d0g)

∣∣∣∣
=

∣∣∣∣ 1

det (dzT . d0g)

∣∣∣∣
=

∣∣∣∣ 1

det dzT

∣∣∣∣ . ∣∣∣∣ 1

det d0g

∣∣∣∣

Therefore,
KT (D)(T (z))
KD(z)

= |det dzT |−1.

We next move to the proof of
CT (D)(T (z))
CD(z)

= |det dzT |−1.

Let f : T (D) → Bn be a holomorphic map with f(T (z)) = 0. Apply-

ing the same logic as above, there exists a map g : D → Bn such that

g = f ◦ T and g(z) = f ◦ T (z) = 0. Hence,

|det dzg| = |det dz(f ◦ T )|

=
∣∣det dT (z)f

∣∣ . |det dzT |
Therefore,

CT (D)(T (z))
CD(z)

= |det dzT |−1.
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2.5 Theory of Normal Families

Definition 2.5.1. A family F of analytic functions on a domain Ω ⊆ C is called

normal if every sequence of functions {fn} ⊆ F has a subsequence that converges

uniformly on compact subsets of Ω.

Theorem 2.5.1 (Montel’s Theorem). If F is a family of analytic functions on

a domain Ω ⊆ C, uniformly bounded on compact subsets of Ω, then F is normal.

Corollary 2.5.1. Let D be a domain in C. For p ∈ D and v ∈ Tp(D), the

supremum in the definition of the Carathéodory metric CD(p, v) (Carathéodory

volume CD(z) resp.) is assumed by some function f ∈ H(D,D) (f ∈ H(D,Bn)

resp.).

Proof. Let F be the family of holomorphic functions f : D → D such that

f(p) = 0. By property of the supremum, for all n ∈ N, there exists fn ∈ F such

that:

CD(p, v)− 1

n
< |dpfn(v)| ≤ CD(p, v) (2.1)

Let (fn)n∈N be the sequence of such functions. Since f(D) ⊂ D, F is uniformly

bounded on D. By Theorem 2.5.1 we see that - up to subsequence extraction -

(fn) converges uniformly on compact subsets of D to some function f . Clearly,

f ∈ F and |dpfn(v)| converges to |dpf(v)| as n→∞. Letting n→∞ in (2.1) we
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get the desired result: CD(p, v) = |dpf(v)|. Note that f is called an extremal

function for v. The same proof applies for the Carathéodory volume and can be

generalized to domains in Cn.

A complex manifoldM is said to be Montel if every sequence (fn) ⊂ H(D,M)

has a subsequence (fnk
) which either converges uniformly on compact subsets of

D or compactly diverges (i.e. for arbitrary compact subsets k, k′ of D and M

respectively there exits k0 such that fnk
(K) ∩ K ′ = ∅ for all k ≥ k0). An

important class of Montel manifolds is

Theorem 2.5.2. [3] Every complete hyperbolic manifold is Montel.

In that case, we obtain an important result regarding the the Kobayashi

metric.

Corollary 2.5.2. Let M be a complete hyperbolic manifold. Then the infimum

in the definition of the Kobayashi metric KM(p, v) is attained.

Proof. Let F be the family of candidate mappings f for the Kobayashi metric at

a point p on M such that d0f(∂/∂x) = rv for some r > 0. By property of the

infimum, for all n ∈ N, there exists fn ∈ F with d0fn(∂/∂x) = rnv such that:

KM(p, v) ≤ 1

rn
< KM(p, v) +

1

n
(2.2)

Let (fn)n∈N be the sequence of such functions. We aim to show that (fn) has a

uniformly convergent subsequence (fnk
) on compact subsets of D, then the result
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follows in the same way as in the proof of Corollary 2.5.1. Since M is complete

hyperbolic, by Theorem 2.5.2, excluding the case of compact divergence of the

subsequence (fnk
) will complete the proof. However, this can be easily done by

taking the following compact subsets

k = {0} ⊂ D, k′ = {p} ⊂M

and noting that fnk
(0) = p for all nk ∈ N.

We call the map that realizes this infimum an extremal for v or an extremal

disc for v; Lempert theory [5] provides an important account on the behaviour

of extremal discs for convex domains of Cn.
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Chapter 3

Characterization of The Unit

Ball by Rosay

The group of automorphisms of a given strictly pseudoconvex domain in Cn is an

important invariant object in complex analysis. It allows to understand dynamic

and geometric properties of the domain and its boundary. It is known that the

group of automorphisms of a bounded domain is a real Lie group. Moreover the

group of automorphisms of the unit ball in Cn, which can be described precisely

(see [9]), is non-compact. It seems natural to wonder whether or not the ball is

the only strictly pseudoconvex domain with a non-compact automorphism group.

In 1977, B. Wong proved in [11] that the ball is indeed the only such domain. In

this chapter, we will consider the approach of J.-P. Rosay [8] for B. Wong result.
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3.1 Main Theorem

Theorem 3.1.1 (Wong-Rosay Theorem). let Ω be a bounded domain of Cn and

let ζ0 ∈ ∂Ω be a point of strict pseudoconvexity. Assume that there exists a

compact subset K ⊂ Ω, a sequence (xk) of points in K and a sequence (Tk) of au-

tomorphisms of Ω such that Tk(xk) converges to ζ0. Then Ω is biholomorphically

equivalent to the open unit ball.

Remark 3.1.1. The existence of points of strict pseudoconvexity is guaranteed

in any bounded domain of Cn of class C2. For instance, points of the boundary

of maximal norm are an example of such points.

Note that Ω could also be taken to be a domain in a hyperbolic manifold and not

in Cn without changing the proof.

3.2 A First Characterization of The Unit Ball

by Volumes

In this section we will state a theorem due to H. Cartan [2], which generalizes

the classical Schwarz lemma, and prove a first result on the characterization of

the unit ball by volumes (Theorem 3.2.2) that will be useful in the proof of

Wong-Rosay Theorem.

Theorem 3.2.1 ([2]). let D be a domain of Cn and let z ∈ D. If f : D −→ D

is holomorphic such that f(z) = z then:
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1. |det dzf | ≤ 1 and if equality holds then f is an automorphism of D.

2. the eigenvalues of dzf are of norm ≤ 1 and if all of them have norm 1 then

f is the identity map.

Theorem 3.2.2. Let D be a bounded domain of Cn. If there exists z ∈ D such

that KD(z) = CD(z), then D is biholomorphically equivalent to the open unit ball

Bn.

Proof. Our aim in this proof is to construct a biholomorphic map from D to

Bn. By Corollary 2.5.1 there exists a holomorphic map g : D → Bn such that

g(z) = 0 and CD(z) = |det dzg|. However, the existence of such extremal map is

not guaranteed for the Kobayashi volume. Hence, let (fk)k∈N be a sequence of

holomorphic maps from Bn to D such that fk(0) = z and 1
|det d0(fk)| converges to

KD(z) when k →∞.

We start by proving that g is surjective. For this purpose, we construct the

sequence of holomorphic maps Hk = g ◦ fk : Bn → Bn. Note that Hk(0) =

g ◦ f(0) = g(fk(0)) = g(z) = 0 and |det d0Hk| =
∣∣det dfk(0)g

∣∣ × |det d0fk| =

|det dzg|×|det d0fk|. By Theorem 2.5.1, we can extract a subsequence of (Hk) that

converges uniformly on compact subsets of Bn to a map H. Clearly, H : Bn → Bn

is holomorphic and H(0) = 0. Moreover, |det d0H| = CD(z)
1

KD(z)
= 1. Where

the last equality holds by the given of the theorem.By Theorem 3.2.1, we conclude

that H is an automorphism of Bn.
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Remark 3.2.1. The fact that H is onto (being an automorphism) does not nec-

essarily imply that HK is onto for all K ≥ 0 and that g is surjective consequently.

For instance, consider the sequence of holomorphic maps φk : Bn → Bn such that

φk(z) = (1 − 1
k
)z. Clearly, φk is not onto Bn for k ≥ 0, however the sequence

converges uniformly to the identity map which is surjective.

To prove that g is surjective, we start by taking t ∈ Bn. For k large enough

there exists z ∈ Bn such that Hk(z) = t. If this was not the case, we will reach a

contradiction since H is onto. Hence, t = Hk(z) = g ◦ fk(z) = g(fk(z)) and g is

surjective.

Next, we show that g is injective. For this purpose, we define the sequence

(Fk)k∈N of holomorphic maps Fk = fk ◦g : D → D. Note that Fk(0) = fk(g(0)) =

fk(z) = 0.

The following claims will be useful for the proof of injectivity of g.

Claim 1: The modulus of the eigenvalues of dz(Fk) converges to 1 when k →∞.

Proof. Let λ1,k · · ·λn,k be the eigenvalues of dz(Fk). By Theorem 3.2.1:

|λj,k| ≤ 1 for 1 ≤ j ≤ n (3.1)
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By Schur decomposition, dz(Fk) is similar to a triangular matrix U having λ1,k · · ·λn,k

as diagonal entries. Hence, |det dz(Fk)| = |det U | = |λ1,k · · ·λn,k|.Thus,

lim
k→∞
|λ1,k · · ·λn,k| = lim

k→∞
|det dz(Fk)| = lim

k→∞
|det d0(fk)| . |det dzg| = 1 (3.2)

The desired result follows from (3.1) and (3.2).

Proposition 3.2.1. Let θ ∈ (0, 2π] be a fixed angle. There exists a sequence of

positive integers (µk)k∈N such that eiµkθ −→ 1 as k →∞.

Claim 2: There exists a subsequence (Fϕ(k)) of (Fk)k∈N and a sequence (µk)k∈N,

µk ∈ N∗, such that the eigenvalues of (dzF
µk
ϕ(k)) converge to 1 when k →∞.

Proof. Note that for k ≥ 0, dzF
µk
ϕ(k) = dz(Fϕ(k) ◦ Fϕ(k) · · · ◦ Fϕ(k)), where the

composition is applied µk times. Using the chain rule and the fact that Fϕ(k)(z) =

fϕ(k)(g(z)) = fϕ(k)(0) = z we get:

dzF
µk
ϕ(k) = dFϕ(k)(z)(F

µk−1

ϕ(k) )× dzFϕ(k)

= dz(F
µk−1

ϕ(k) )× dzFϕ(k)

= dFϕ(k)(z)(F
µk−2

ϕ(k) )× dzFϕ(k) × dzFϕ(k)

...

= (dzFϕ(k))
µk

Hence, the eigenvalues of (dzF
µk
ϕ(k)) are λµkj,k, 1 ≤ j ≤ n.
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First, let us write the eigenvalues of dz(Fk) as λj,k = rj,ke
i θj,k for 1 ≤ j ≤ n and

for some r ≥ 0 and θ ∈ (0, 2π]. Then, proceed as folloows:

Step 1: Consider the sequence (λ1,k)k∈N. Since |λ1,k| ≤ 1 for k ≥ 0, by Bolzano-

Weierstrass theorem, we can extract a subsequence (λ1,ϕ1(k)) of (λ1,k) such that:

λ1,ϕ1(k) = r1,ϕ1(k)e
i θ1,ϕ1(k) → λ1 as k →∞, for some λ1 = r1e

i θ1 ∈ C

Note that r1 = 1 by Claim 1. By Proposition 3.2.1, we can find a sequence of

positive integers (µ1,k) such that: λ
µ1,k
1 = eiµ1,kθ1 → 1 when k → ∞. Hence,

λ
µ1,k
1,ϕ1(k) → 1 when k →∞.

Step 2: We will now consider the subsequence (λ2,ϕ1(k)) of the sequence (λ2,k)k∈N

instead of the sequence itself. Clearly, |λ2,ϕ1(k)| ≤ 1 and consequently, |λµ1,k2,ϕ1(k)| ≤

1 for k ≥ 0.

Applying Bolzano-Weierstrass theorem and Proposition3.2.1 as in Step 1, we can

find a subsequence (λ2,ϕ2◦ϕ1(k)) of (λ2,ϕ1(k)) and a sequence of positive integers

(µ2,k) such that:

λ
(µ2,k . µ1,k)

2,ϕ2◦ϕ1(k) −→ 1 when k →∞

Note that (λ
(µ2,k . µ1,k)

1,ϕ2◦ϕ1(k) ) corresponds to a subsequence of (λ
µ1,k
1,ϕ1(k)) raised to the

power (µ2,k). Hence, it will also converge to 1 as k →∞.
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Proceeding in an inductive fashion, we reach:

Step n: We extract from the sequence (λn,ϕn−1◦ϕn−2···ϕ1(k)) the following subse-

quence (λn,ϕn◦ϕn−1◦ϕn−2···ϕ1(k)) and we find a sequence of positive integers (µn,k)

such that:

λ
(µn,k . µn−1,k ··· µ1,k)

n,ϕn◦ϕn−1◦ϕn−2···ϕ1(k) −→ 1 when k →∞

Note that this construction guarantees that λ
(µn,k . µn−1,k ··· µ1,k)

j,ϕn◦ϕn−1◦ϕn−2···ϕ1(k) converges to 1

as k →∞ for all 1 ≤ j ≤ n. Hence, taking ϕ(k) = ϕn ◦ϕn−1 ◦ϕn−2 · · ·ϕ1(k) and

µk = µn,k . µn−1,k · · · µ1,k finishes the proof of Claim 2.

We will next proceed by the proof of injectivity of g as follows: let ε > 0 such

that Dε, the set of points in D such that their Kobayashi distant to z is less than

ε, is relatively compact. By the distance decreasing property of the Kobayashi

metric, (Proposition 2.3.1) F µk
ϕ(k)(Dε) ⊂ Dε for k ≥ 0. Hence, up to subsequence

extraction, we can assume by Theorem 2.5.1 that the sequence (F µk
ϕ(k))k∈N con-

verges uniformly on compact subsets of Dε to a map F : Dε → Dε.

For k ≥ 0 we have that Fϕ(k)(z) = z, then F µk
ϕ(k)(z) = z and consequently

F (z) = z. By Claim 2, we see that the eigenvalues of dzF
µk
ϕ(k) are equal to 1.

Hence, we conclude by Theorem 3.2.1 that F is the identity map. It follows that

(F µk
ϕ(k))k∈N converges uniformly to the identity map on compact subsets of D.

Now, let z1, z2 ∈ D such that g(z1) = g(z2). Since each F µk
ϕ(k) is of the form hk ◦ g
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for some map hk : Bn → D we see that F µk
ϕ(k)(z1) = F µk

ϕ(k)(z2) for all k ≥ 0 and

consequently F (z1) = F (z2). Thus, z1 = z2 and g is injective.

Therefore g is a biholomorphic map from D to Bn.

3.3 Localization of The Kobayashi and Carathéodory

Volumes

Proposition 3.3.1. Let Ω and D be two bounded domains of Cn. Let y ∈ D

and ζ0 ∈ ∂Ω be a point of strict pseudoconvexity. Suppose that (ϕj) is a sequence

of holomorphic maps from D to Ω such that ϕj(y) → ζ0 when j → ∞, then ϕj

converges to ζ0 uniformly on compact subsets of D.

Proof. Since Ω is bounded then by Theorem 2.5.1 every subsequence of (ϕj)

has a uniformly convergent subsequence on compact subsets of D. Let ϕ be

an accumulation point of a subsequence (ϕjk) of (ϕj) in the topology of uniform

convergence on compact sets. We aim to show that (ϕjk) has only one such point.

For this purpose, we consider a holomorphic map P on Ω defined as:

P (ζ) = exp (pζ0(ζ))
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where:

pζ0(ζ) =
n∑
i=1

∂ρ(ζ0)

∂zi
(ζ − ζ0)i +

1

2

n∑
i,j=1

∂2ρ(ζ0)

∂zi∂zj
(ζ − ζ0)i(ζ − ζ0)j

with ρ being the defining function of Ω.

Clearly, P (ζ0) = 1 and |P (ζ)| = exp (<(pζ0(ζ))). By Proposition 2.1.1 the expan-

sion of ρ about the boundary point ζ0 is:

ρ(ζ) = 2<(pζ0(ζ)) + Lζ0,ρ(ζ − ζ0) + o(‖ζ − ζ0‖2)

Since Lζ0,ρ(ζ − ζ0) > 0 (because ζ0 is a point of strict pseudoconvexity) and

ρ(ζ) < 0 in Ω ∩ U , where U is a neighborhood of ∂Ω near ζ0, there exists a

neighborhood V of ζ0 such that <(pζ0(ζ)) < 0 in V ∩ Ω. Thus, |P (ζ)| < 1 for all

ζ ∈ V ∩ Ω.

Now, consider the holomorphic map P ◦ ϕ. Since ϕ is an accumulation point of

(ϕjk) we see that P ◦ ϕ(y) = P (ϕ(y)) = P (ζ0) = 1 and |P ◦ ϕ(x)| = |P (ϕ(x))| =

|P (ζ)| < 1 for all x ∈ D close enough to y. Hence, P ◦ ϕ has a local maximum

at y and therefore constant by the Maximum modulus Principle. Consequently,

pζ0(ϕ(ζ)) is constant and therefore so is ϕ(ζ) (precisely, ϕ(ζ) = ζ0 is the only

accumulation point). We conclude then that (ϕj) converges to ζ0 uniformly on
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compact subsets of D.

Theorem 3.3.1. Let Ω be a bounded domain of Cn and let ζ0 ∈ ∂Ω be a point

of strict pseudoconvexity. Let A > 0 and let B(ζ0, A) be the ball of center ζ0 and

radius A. If (zk)k∈N is a sequence of points in Ω converging to ζ0, then:

(i)
KΩ(zk)

KΩ∩B(ζ0,A)(zk)
→ 1

(ii) If there exists x ∈ Ω such that for all k ∈ N there exists Tk, an automor-

phism of Ω, satisfying Tk(x) = zk then:

CΩ(zk)

CΩ∩B(ζ0,A)(zk)
→ 1

Proof. We will start by the proof of (i).

Let (fk)k∈N be a sequence of holomorphic maps from Bn to Ω such that fk(0) = zk.

Clearly, fk(0) converges to ζ0 as k → ∞. Let A > 0, by Proposition 3.3.1 we

see that fk converges uniformly on compact subsets of Bn to ζ0. Hence, for all

η > 0 there exists k0 ≥ 0 such that for all k ≥ k0, ‖fk(t) − ζ0‖ < A, for all t

satisfying ‖t‖ < 1 − η (note that η here corresponds to the choice of compact

subsets of Bn). Next, we define on Bn the holomorphic map ψk(t) = fk((1− η)t).

Clearly, ‖(1 − η)t‖ ≤ 1 − η and consequently, ψk(Bn) ⊂ Ω ∩ B(ζ0, A). Also,

ψk(0) = fk((1− η)× 0) = fk(0) = zk. We conclude that:

KΩ∩B(ζ0,A)(zk) ≤
1

|det d0ψk|
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To compute |det d0ψk| we notice that ψk = fk ◦ g where g : Bn → Bn is given by

g(t) = (1− η)t. Therefore,

|det d0ψk| = |det d0(fk ◦ g)|

=
∣∣det (dg(0)fk × d0g)

∣∣
= |det (d0fk × d0g)|

= |det d0fk| × |det d0g|

Since g(t) = g(t1, t2, · · · , tn) = ((1 − η)t1, (1 − η)t2, · · · , (1 − η)tn) we can easily

see that d0g = (1−η)In, where In is the n×n identity matrix. Hence, |det d0g| =

(1− η)n and consequently,

KΩ∩B(ζ0,A)(zk) ≤
1

|det d0fk|
× 1

(1− η)n

(1− η)n ×KΩ∩B(ζ0,A)(zk) ≤
1

|det d0fk|

Thus,

(1− η)n ×KΩ∩B(ζ0,A)(zk) ≤ KΩ(zk) (3.3)

Since Ω ∩B(ζ0, A) ⊂ Ω we conclude by Property 2 (section 2.4) that:

kΩ(zk) ≤ KΩ∩B(ζ0,A)(zk) (3.4)
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Finally, by (3.3) and (3.4) we see that:

1 ≤ KΩ(zk)

KΩ∩B(ζ0,A)(zk)
≤ 1

(1− η)n
(3.5)

letting η −→ 0 in (3.5) we obtain the desired result.

Next, we will prove (ii).

Let x ∈ Ω with the property of the given and let η > 0. We claim that there

exists a domain Ω′ relatively compact in Ω containing x such that:

CΩ′(x) ≤ (1 + η)CΩ(x) (3.6)

Assume by contradiction that there exists η > 0 such that for all relatively

compact domains Ω′ in Ω containing x we have CΩ′(x) > (1 + η)CΩ(x). For

k > 0, take Ω′k to be B(x, k)∩Ω, where B(x, k) is the ball of center x and radius

k. Clearly, x ∈ Ω′k and Ω′k is relatively compact in Ω thus CΩ′k
(x) > (1+η)CΩ(x).

Note that by Corollary 2.5.1, CΩ′k
(x) = |det dxgk| for some holomorphic map

gk : Ω′k → Bn with gk(x) = 0. Construct then the sequence (gk) of such extremal

maps. For k large enough the sequence (gk) converges to the holomorphic map

g : Ω → Bn such that g(x) = 0 and CΩ(x) = |det dxg|. Hence, CΩ′k
(x) converges

to CΩ(x) as k → ∞. However, we previously showed that for some η > 0,

CΩ′k
(x) > (1 + η)CΩ(x) for all k > 0. Thus we reached a contradiction and the

38



claim is then proved.

Now, consider the following series of inequalities:

1 ≤
CΩ∩B(ζ0,A)(zk)

CΩ(zk)
≤
CTk(Ω′)(zk)

CΩ(zk)
=
CΩ′(x)

CΩ(x)
≤ 1 + η (3.7)

where the first inequality holds by Property 2 (section 2.4) and the fact that

Ω∩B(ζ0, A) ⊂ Ω, the second inequality also holds by the same property and the

fact that for k large enough, Tk(Ω
′) ⊂ Ω ∩B(ζ0, A) and the last inequality holds

by (3.6). To show the equality in (3.7), it is enough to see that by Property 3

(section 2.4) we have the following:

CTk(Ω′)(zk)

CΩ′(x)
=
CTk(Ω′)(Tk(x))

CΩ′(x)
= |det dxT |−1

and

CΩ(zk)

CΩ(x)
=
CTK(Ω)(Tk(x))

CΩ(x)
= |det dxT |−1

Therefore, by letting η → 0 in (3.7) we finish the proof of (ii).

3.4 Proof of The Main Theorem

In this section we will prove Theorem 3.1.1 stated in section 3.1. Hence we assume

that the assumptions of the theorem are satisfied throughout this section.

We start by proving the following modification of Proposition 3.3.1.

39



Proposition 3.4.1. let x ∈ Ω, then Tk(x) converges to ζ0 as k →∞.

Proof. Since K is compact, up to subsequence extraction, the sequence (xk) con-

verges in K. Let y be the limit of (xk) in K. We aim to show that Tk(y) converges

to ζ0.

We know that Tk(xk) → ζ0 as k → ∞ i.e. for all ε > 0 there exists k1 ≥ 0 such

that for all k ≥ k1, ‖Tk(xk)− ζ0‖ < ε
2
. Also, by continuity of each Tk at y, there

exists k2 ≥ 0 such that for all k ≥ k2, ‖Tl(xk)− Tl(y)‖ < ε
2

for all l ≥ 0.

Let ε > 0, take k′ = max{k1, k2} then for all k ≥ k′ the following holds:

‖Tk(y)− ζ0‖ ≤ ‖Tk(y)− Tk(xk)‖+‖Tk(xk)− ζ0‖<
ε

2
+
ε

2
= ε

Hence, Tk(y) converges to ζ0 as k →∞.

By Proposition 3.3.1, Tk converges to ζ0 uniformly on compact subsets of Ω. In

particular, fixing x ∈ Ω, Tk(x)→ ζ0 as k →∞.

Let zk = Tk(x). By Property 3 (section 2.4), for k ∈ N:

KΩ(x)

CΩ(x)
=
KTk(Ω)(Tk(x))

CTk(Ω)(Tk(x))
=
KΩ(zk)

CΩ(zk)

Remark 3.4.1. By showing that
KΩ(zk)

CΩ(zk)
converges to 1 and then applying The-

orem 3.2.2 we finish the proof of Theorem 3.1.1.

By Proposition 2.1.1 we see that after a change of coordinates in a neighbor-
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hood of ζ0, Ω is defined by a function ρ < 0 of the form:

ρ(ω) = 2<ω1 + Lζ0,ρ(ω) + o(‖ω‖2)

By the same machinery done in Section 2.1.2, we see that for all z ∈ Ω close

enough to ζ0, we can locally change the coordinates so that the new coordinates

of z are of the form (a, 0, · · · , 0) for some a < 0.

We introduce next the notion of ellipsoids that will be used in the proof as

local domains of comparison.

Definition 3.4.1. For every Hermitian positive definite form Q we associate the

ellipsoid defined as follows:

E = {ω ∈ Cn : ρ = 2<ω1 +Q(ω) < 0}

Let ε > 0. Let E+
ε (zk) and E−ε (zk) be the ellipsoids defined respectively by

the forms

Q+ = Lzk,ρ(ω)− ε‖ω‖2 and Q− = Lzk,ρ(ω) + ε‖ω‖2

Let A > 0 and let Ω1 be the image of Ω ∩ B(ζ0, A) in the ω-coordinates. For

r > 0 small enough the following holds:

E−ε (zk) ∩B(0, r) ⊂ Ω1 ⊂ E+
ε (zk) (3.8)
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We aim next to show that:

lim
k→∞

KΩ(zk)

CΩ(zk)
≤ lim

k→∞

KE−ε (zk)(ak, 0, · · · , 0)

CE+
ε (zk)(ak, 0, · · · , 0)

for some ak < 0.

By Proposition 3.4.1 and Theorem 3.3.1 we see that as k →∞

KΩ(zk)

KΩ∩B(ζ0,A)(zk)
→ 1 and

CΩ(zk)

CΩ∩B(ζ0,A)(zk)
→ 1.

Hence,

lim
k→∞

KΩ(zk)

CΩ(zk)
= lim

k→∞

KΩ∩B(ζ0,A)(zk)

CΩ∩B(ζ0,A)(zk)
(3.9)

Since the change of coordinates was done locally through a biholomorphic map-

ping we have the following equality:

lim
k→∞

KΩ∩B(ζ0,A)(zk)

CΩ∩B(ζ0,A)(zk)
= lim

k→∞

KΩ1(ak, 0, · · · , 0)

CΩ1(ak, 0, · · · , 0)
(3.10)

for some ak < 0. Now, by (3.8) and Property 2 (section 2.4) the following holds:

lim
k→∞

KΩ1(ak, 0, · · · , 0)

CΩ1(ak, 0, · · · , 0)
≤ lim

k→∞

KE−ε (zk)∩B(0,r)(ak, 0, · · · , 0)

CE+
ε (zk)(ak, 0, · · · , 0)

(3.11)

42



Finally, applying Theorem 3.3.1 again on E−ε (zk) for the sequence (ak, 0, · · · , 0)

converging to 0, we get that:

lim
k→∞

KE−ε (zk)∩B(0,r)(ak, 0, · · · , 0) = lim
k→∞

KE−ε (zk)(ak, 0, · · · , 0) (3.12)

Therefore, by (3.9), (3.10), (3.11) and (3.12) we get the desired result:

lim
k→∞

KΩ(zk)

CΩ(zk)
≤ lim

k→∞

KE−ε (zk)(ak, 0, · · · , 0)

CE+
ε (zk)(ak, 0, · · · , 0)

Clearly, 1 ≤ KΩ(zk)

CΩ(zk)
for k ≥ 0 (Property 1 in section 2.4). Since the ellipsoids

are biholomorphically equivalent to the open unit ball Bn and given the fact that

KBn(0) = CBn(0) = 1 we see that:

lim
k→∞

KE−ε (zk)(ak, 0, · · · , 0)

CE+
ε (zk)(ak, 0, · · · , 0)

= 1

Hence,

lim
k→∞

KΩ(zk)

CΩ(zk)
= 1

By Remark 3.4.1 the proof of Theorem 3.1.1 is now complete.
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Chapter 4

Proof of Wong-Rosay Theorem

By Pinchuk’s Scaling Method

In 1991, S. Pinchuk [7] introduced a powerful technique in complex analysis known

as the scaling method. The scaling method can be seen as a standard tool in differ-

ential geometry which consists in flattening and localizing a domain Ω near a given

boundary point. In case Ω = {<(z0) > |z1|2+· · ·+|zn|2+ higher order terms} the

main idea of this method is to make use of the group of automorphisms of the un-

bounded ball {<(z0) > |z1|2+· · ·+|zn|2}, and more precisely the set of anisotropic

dilatations (z0, z1, · · · , zn)→ (λz0,
√
λz1, · · · ,

√
λzn), where λ ∈ R+ \{0}. In this

chapter, we will present Pinchuk’s scaling method and, following K.-T. Kim and

S.G. Krantz [4] and F. Berteloot [1] we discuss a new proof of Wong-Rosay the-

orem.
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We will restate Wong-Rosay theorem as follows:

Theorem 4.0.1 (Wong-Rosay Theorem). let Ω be a bounded domain of Cn+1

with C2 boundary and let ζ0 ∈ ∂Ω be a point of strict pseudoconvexity. Assume

that there exist a point x ∈ Ω and a sequence (Tk) of automorphisms of Ω such

that Tk(x) converges to ζ0. Then Ω is biholomorphically equivalent to the open

unit ball.

proof by Pinchuk’s scaling method. Before proceeding by the scaling method we

shall get everything set for the implementation of the method. Hence, the proof

of the theorem is divided into four main steps: (1) preparation, (2) localization,

(3) dilatation and (4) synthesis.

Step 1. Preparation. Clearly, we may assume that ζ0 is in the origin of

Cn+1 and n = (−1, 0, · · · , 0) is the unit outward normal at ζ0. Thus, by the

proof of Proposition 2.1.1, the Taylor expansion of the defining function ρ about

ζ0 = 0 is

ρ(ζ) = 2<
{
− ζ0 +

1

2

n∑
i,j=0

∂2ρ

∂zi∂zj
(ζ0)ζiζj

}
+

n∑
i,j=0

∂2ρ

∂zi∂zj
(ζ0)ζiζj + o(‖ζ‖2)

Note that the matrix A =

(
∂2ρ

∂zi∂zj
(ζ0)

)
i,j

is the complex Hessian of ρ at ζ0.

Consequently A is positive definite. By Cholesky decomposition, we have that

A = LL
ᵀ

where L is a lower triangular matrix with strictly positive diagonal
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entries. Thus

n∑
i,j=0

∂2ρ

∂zi∂zj
(ζ0)ζiζj = ζAζ

ᵀ
= ζLL

ᵀ
ζ
ᵀ

=
(
ζL
)(
ζL
)ᵀ

Now, we perform the holomorphic coordinate change at the origin ζ = (ζ0, · · · , ζn) 7→

z = (z0, · · · , zn) given by

z0 = −1

2

{
− ζ0 +

1

2

n∑
i,j=0

∂2ρ

∂zi∂zj
(ζ0)ζiζj

}

zk =
(
ζL
)
k

for 1 ≤ k ≤ n

Hence, for some r > 0 we may assume that the set Ω∩B(0, 10r), where B(0, 10r)

is the open Euclidean ball of radius 10r centered at the origin, is defined by

ρ(z) < 0

where

ρ(z) = −<z0 + |z1|2 + · · ·+ |zn|2 +R(z)

with

R(z) = O
(
‖(z1, · · · , zn)‖3

)
+O

(
|=z0| ‖(z1, · · · , zn)‖

)
+O

(
|=z0|2

)

Note that for r > 0 small enough the boundary ∂Ω is strictly convex in B(0, 2r).
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For simplicity of the notation we will use the following coordinates z = (z0, zα)

in Cn+1 with

zα = (z1, · · · , zn).

Step 2. Localization. Under the assumptions of the previous step we see that

there exists a function P : B(0, 2r)→ C such that

P (0) = 1 and |P (z)| < 1 for every z ∈ Ω ∩B(0, 2r) \ {0}

Note that the existence of such a map is given in the proof of Proposition 3.3.1.

Now, since Ω is bounded, Theorem 2.5.1 guarantees that every subsequence

(Tkl) of (Tk) has a uniformly convergent subsequence on compact subsets of Ω. Let

T be a subsequential limit of (Tkl). Then T : Ω→ Ω is holomorphic and T (x) = 0.

Hence, there exists an open neighborhood U (relatively compact) of x such that

T (U) ⊂ B(0, 2r) ∩ Ω. By uniform convergence of (Tkl) - up to subsequence

extraction - to T on compact subsets we may assume that Tkl(U) ⊂ B(0, 2r)∩Ω

for kl sufficiently large. Consider now the holomorphic map P ◦ Tkl |U : U → D

where D is the open unit disc. Clearly, P ◦ T (x) = 1 and |P ◦ T (z)| < 1 for

all z ∈ U . Hence, by the Maximum Modulus Principle T (z) is constant for all

z ∈ U , more precisely T (z) = 0 on U . Since U contains a non-empty open set, the

Identity Theorem implies that T ≡ 0 on Ω. Therefore, Tk converges uniformly to

T ≡ 0 on compact subsets of Ω i.e. for every compact subset K of Ω there exists
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n ∈ N∗ such that

Tk(K) ⊂ B(0, r) ∩ Ω (4.1)

for every k ≥ n.

Step 3. Dilatation. Consider now the sequence Tk(x) in Ω and let Tk(x) = qk

for each k. Choose next the boundary point pk that is the nearest to qk in the

normal direction of ∂Ω i.e. pk = (pk0, p
k
α) ∈ ∂Ω such that

(i) qk0 − pk0 ∈ R+ \ {0}

(ii) pkα = qkα

for every k ≥ 1. We set λk0 = qk0−pk0 > 0 (for convenience we took =(pk0) = =(qk0)).

Pinchuk’s scaling method consists of two main procedures: centering and

dilatation processes. The centering process is given by the sequence of maps

Ak : Cn+1 → Cn+1 defined in local coordinates by Ak(z) = w with w = (w0, wα)

given by

w0 = (z0 − pk0)− ck(zα − pkα)

wα = zα − pkα

where the complex constant ck is chosen such that ck → 0 as k → ∞ and such
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that the domain Ωk = Ak(Ω) is represented in the neighborhood of the origin by

<w0 > Ψk(=(w0), wα) (4.2)

satisfying

Ψk(0, 0) = 0 (4.3)

and

∇Ψk|0 = (0, 0) (4.4)

We see that (Ak) is a sequence of translations and complex rotations mapping pk

to the origin and qk to the point (λk0, 0) for every k. Let us examine now how the

domain Ωk looks locally in the new coordinates. We aim then to compute the

new defining function ρk(w) = ρ(A−1
k (w)). Note that A−1

k is given by A−1
k (w) = z

with

z0 = w0 + ckwα + pk0

zα = wα + pkα
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Hence,

ρk(w) = ρ(A−1
k (w))

= −<
{
w0 + ckwα + pk0

}
+
∣∣wα + pkα

∣∣2 +R
(
A−1
k (w)

)
= −<(w0)−<(ckwα)−<(pk0) +

∣∣wα + pkα
∣∣2 +R

(
A−1
k (w)

)
= −<(w0)−<(ckwα)−<(pk0) + |wα|2 +

∣∣pkα∣∣2 + 2<(pkαwα) +R
(
A−1
k (w)

)

In order to determine ck we note that Ψk in (4.2) is given here by

Ψk(=(w0), wα) = −<(ckwα)−<(pk0) +
∣∣wα + pkα

∣∣2 +R
(
A−1
k (w)

)

Therefore

(4.3)⇒ <(pk0) =
∣∣pkα∣∣2 +R(pk)

and

(4.4)⇒ ck = 2pkα + rk

with rk → 0 as k → ∞. Substituting these results in the expression of ρk(w)

yields to the following result

ρk(w) = −<(w0) + |wα|2 +R(βkw)

where βk → 1 as k →∞.
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Next, we consider the dilatation sequence given by the linear maps Lk :

Cn+1 → Cn+1 defined by

Lk(w0, wα) = (w̃0, w̃α) =

(
w0

λk0
,
wα√
λk0

)

for all k ≥ 1.

Note that for each k, Lk stretches the coordinates and sends Ak(q
k) to the point

(1, 0). We may examine now Pinchuk’s dilatation sequence Λk = Lk ◦ Ak. For

some r > 0, the sequence of domains Λk(Ω ∩B(0, r)) is defined by

1

λk0
ρ̃k(w̃) =

1

λk0
ρ(A−1

k ◦ L
−1
k )(w̃)

=
1

λk0
ρk(L

−1
k (w̃))

=
1

λk0
ρk

(
(λk0w̃0,

√
λk0w̃α)

)
= −<(w̃0) + |w̃α|2 +R(βk

√
λk0w̃)

After dropping the ∼’s and substituting ρk = 1
λk0
ρ̃k we have the form

ρk(w) = −<(w0) + |wα|2 +R(βk
√
λk0w)

Clearly as k → ∞, λk0 → 0. Hence ρk converges uniformly on compact subsets

to ρ(w) = −<(w0) + |wα|2 as k → ∞. Consequently, the sequence of domains
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Λk(Ω ∩B(0, r)) converges to

E = {(z0, z1, · · · , zn) ∈ Cn + 1 : <(z0) ≥ |z1|2 + · · ·+ |zn|2}

Moreover, we may assume that for k large enough we have

Λk(Ω ∩B(0, r)) ⊂ Ẽ

with

Ẽ = {(z0, z1, · · · , zn) ∈ Cn + 1 : <(z0) ≥ 1

2
(|z1|2 + · · ·+ |zn|2)}.

Step 4. Synthesis. Consider a sequence of relatively compact subdomains Wk

of Ω such that

Wl ⊂ Wl+1 l ≥ 1

and
∞⋃
l=1

Wl = Ω

Let (σk) be the scaling sequence given by σk = Λk ◦Tk : Ω→ Λk(Ω). By (4.1) we

may assume that for k large enough

Tk(Wl) ⊂ Ω ∩B(0, r)
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for every l ≥ 1. Note that by the preceding step we see that for every l

σk(Wl) ⊂ Λk(Ω ∩B(0, r)) ⊂ Ẽ

as k → ∞. Hence for every l, (σk) forms a normal family for k large enough

and we may assume that σk converges uniformly on compact subsets of Ω to a

holomorphic mapping σ : Ω→ E.

It remains to show that σ is actually a biholomorphism between Ω and V .

Let ψk : Λk → Ω be the inverse of σk for each k. Since Ω is bounded, Theorem

2.5.1 implies that - up to subsequence extraction - ψk converges uniformly to the

holomorphic mapping ψ : E → Ω on compact subset. Consequently, ψ is the

inverse of σ and σ is a biholomorphism from Ω to V . Since E is biholomorphic

to the open unit ball, the theorem is now proved.
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Chapter 5

Characterization of The Unit

Ball by Stanton

In this part of the thesis we care about other important invariants of domains,

namely invariant metrics. Carathéodory and Kobayashi both introduced infinites-

imal invariant metrics in order to generalize the Poincaré metric of the unit disc

in higher dimensions. Although the Carathéodory and Kobayashi metrics coin-

cide on the unit ball, this is not the case in general. Hence, one might question

whether the unit ball is the only domain with such characterization. Using a

negative curvature argument, B. Wong [12] obtained a metric characterization

of the unit ball. In 1983, C.M. Stanton [10] improved significantly the previous

result. In this chapter we will present Stanton’s characterization of the unit ball.
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5.1 Main Theorem

Theorem 5.1.1 (Stanton Theorem). Let M be a connected complete hyperbolic

complex manifold of complex dimension n. Assume that there exists a point p

of M at which the Carathéodory and Kobayashi metrics are equal and that one

of these metrics is hermitian and of class C∞. Then M is biholomorphically

equivalent to the open unit ball in Cn.

5.2 Proof of The Main Theorem

Throughout this section we assume that the given of Theorem 5.1.1 holds and

we take the Kobayashi metric to be the Hermitian metric of class C∞ on M . We

proceed by proving some results that are useful for the proof of the theorem.

Proposition 5.2.1. Let M be a complete hyperbolic complex manifold such that

its Kobayashi and Carathéodory metrics coincide at some point p ∈ M . Let

v ∈ TpM and let f be an extremal disc for v (f exists by Corollary 2.5.2), then

f is a distance preserving isometry relative the Poincaré metric in D and the

Kobayashi/Carathéodory metric in M .

Proof. Assume that d0f(∂/∂x) = rv for some r > 0. Since f is an extremal disc

for v, KM(p, v) = 1
r
. Knowing that the Kobayashi and Carathéodory metrics

coincide at p we conclude that CM(p, v) = 1
r
. Next, we define g : M → D to be

an extremal function for v (g exists by Corollary 2.5.1). Thus CM(p, v) = |dpg(v)|
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and consequently 1
r

= |dpg(v)|. By the chain rule we get

1

r
= |dpg(v)| = |dpg(d0f((∂/r∂x))| =

∣∣df(0)g(d0f(∂/r∂x))
∣∣ =

1

r
|d0(g ◦ f)| (5.1)

Note that g ◦ f : D → D is a holomorphic map with (g ◦ f)(0) = 0, then

by Schwarz lemma |d0(g ◦ f)| ≤ 1 with equality holds if g ◦ f is an isometry.

By (5.1) we conclude that g ◦ f is a distance preserving isometry of the open

unit disc. However, the distance decreasing property of the Kobayashi and the

Carathéodory metrics (Proposition 2.3.1) tells us that f and g can not increase

distances. Therefore, f is a distance preserving isometry relative the Poincaré

metric in D and the Kobayashi/Carathéodory metric in M .

Remark 5.2.1. Since the kobayahsi metric defined on M in Theorem 5.1.1 is

assumed to be Hermitian, the tangent space TpM of M at p has the structure of

an n-dimensional complex inner product space. Moreover, for all v ∈ TpM the

Kobayashi metric is given by KM(p, v) = vᵀApv, where Ap is a Hermitian matrix.

Denoting by B = {v ∈ TpM : vᵀApv < 1} the open unit ball relative to

the Kobayashi metric in TpM , We will prove Theorem 5.1.1 for B instead of the

open unit ball Bn in Cn i.e. we aim to show that under the assumptions of the

theorem M is is biholomorphically equivalent to B. For this purpose we will prove

the following proposition.

Proposition 5.2.2. The open unit ball B in TpM is biholomorphically equivalent
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to the open unit ball Bn in Cn.

Proof. First recall that B and Bn are defined as follows

Bn = {v ∈ Cn : ‖v‖2 < 1} and B = {v ∈ TpM : vᵀApv < 1}

where ‖.‖ is the Euclidean norm. Since Ap is a Hermitian matrix it follows that

Ap = U−1DpU , where U is a unitary matrix and

Dp =


d1

. . .

dn


is a diagonal matrix with real diagonal entries. Furthermore di > 0 for all 1 ≤

i ≤ n. This can be seen by noting that the di’s are the eigenvalues of Ap, hence

for all 1 ≤ i ≤ n we have

Apv = div

vᵀApv = vᵀdiv

vᵀApv = di‖v‖2

KM(p, v) = di‖v‖2

Thus di > 0 (for v 6= 0).

Next, we define φ : TpM → Cn to be the holomorphic map v 7→ φ1 ◦ φ2(v)
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where

φ1 : Cn → Cn

φ1(v) =

(√
d1v1,

√
d2v2, · · · ,

√
dnvn

)ᵀ

with v =

(
v1, v2, · · · , vn

)ᵀ

, and

φ2 : TpM → Cn

φ2(v) = Uv

Let us show that φ maps bijectively B to Bn. For any v ∈ B the following holds

vᵀApv < 1

vᵀ (U−1D U) v < 1

vᵀ (U
ᵀ
D U) v < 1

(Uv)ᵀD (Uv) < 1

(φ2(v))ᵀD φ2(v) < 1

n∑
i=1

‖
√
di(φ2(v))i‖2 < 1

‖φ1 ◦ φ2(v)‖2 < 1

‖φ(v)‖2 < 1

Thus φ maps B to Bn. Clearly, φ1 and φ2 are invertible and consequently so is
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φ. Therefore φ is biholomorphic.

We start the proof of Theorem 5.1.1 by defining the following map Φ : B→M

Φ(v) = expp

[
tanh−1 |v|
|v|

v

]
, v ∈ B

where expp is the exponential map at p relative to the Kobayashi metric and

|.| = KM(p, .).

Note that

tanh−1 |v|
|v|

=
1

|v|

∞∑
n=1

|v|2n−1

2n− 1
=
∞∑
n=1

|v|2n−2

2n− 1
=
∞∑
k=0

|v|2k

2k + 1

Hence,
tanh−1 |v|
|v|

is an analytic function of |v|2 and consequently Φ is a C∞

mapping.

Clearly, showing that Φ is a biholomorphic map will finish the proof of The-

orem 5.1.1. We start by showing that it is holomorphic on B.

Lemma 5.2.1. Φ is holomorphic on each complex line through the origin of B.

Proof. Let u be a unit vector in TpM . We define the restriction of Φ to the

complex line through the origin of B determined by u to be the map G : D→M
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such that

G(ζ) = Φ(ζu) = expp

[
tanh−1 |ζ|
|ζ|

ζu

]
, ζ ∈ D

where D is the open unit disc in C. By Remark 2.2.3 and the fact that u is a unit

vector, we see that G(ζ) is the point on the geodesic arc through p tangent to ζu

such that the length of the geodesic arc from p to G(ζ) is equal to tanh−1 |ζ|. Let

H : D→M be an extremal disc for u such that H(0) = q. By Proposition 5.2.1

H is a distance preserving isometry from D into M . Thus, H maps geodesics in

D to geodesics in M and consequently H(ζ) lies on the geodesic arc through p

tangent to ζu. Since geodesics on M are (locally) shortest paths between points,

the length of this geodesic from p to H(ζ) is the same as the distance between

p and H(ζ) which is equal to tanh−1 |ζ| (since H is an isometry). Therefore,

G(ζ) = H(ζ) for all ζ ∈ D, and consequently G is holomorphic.

We will show now that Φ is holomorphic on the entire unit ball in TpM .

Lemma 5.2.2. Φ is holomorphic on B.

Proof. Let us define two maps that will be essential in the proof of the Lemma.

The first map ϕ : M → [0,+∞) is given by

ϕ(q) =
1

1− tanh2 dM(p, q)
, q ∈M

where dM is the Kobayashi distance, and the second map ψ : B → [0,+∞) is
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given by

ψ(v) =
1

1− |v|2
, v ∈ B.

Note that

ϕ ◦ Φ(v) =
1

1− tanh2 dM(q, φ(v))
=

1

1− tanh2
( tanh−1|v|

|v| |v|
) =

1

1− |v|2
= ψ(v)

where the second equality holds by Remark 2.2.3.

Claim 5.2.1. ψ is a strictly plurisubharmonic function in B.

Proof. We showed in Proposition 5.2.2 that B is biholomorphically equivalent to

Bn with φ : B → Bn being the biholomorphic mapping. Thus, by invariance of

the Levi form i∂∂ under biholomorphism, it is enough to show that ψ ◦ φ−1 :

Bn → [0,+∞) is strictly plurisubharmonic i.e. its complex Hessian is positive

definite. By reversing the computation done in the proof of Proposition 5.2.2 one

can easily see that for all v ∈ Bn we have

ψ ◦ φ−1(v) =
1

1− ‖v‖2
.

A simple computation shows that the complex Hessian of ψ ◦ φ−1 is given by

H =
1

(1− ‖v‖2)3

[
In + 2V

]

where V = vvᵀ is the n× n matrix (vivj)ij.
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Since 1
(1−‖v‖2)3

> 0 for all v ∈ Bn we will omit this factor from the next compu-

tation. For all wᵀ ∈ Cn the following holds

wH wᵀ = w

[
In + 2V

]
wᵀ

= wwᵀ + 2 w V wᵀ

= ‖w‖2 + 2 w vvᵀwᵀ

= ‖w‖2 + 2 (wv) (wv)ᵀ

= ‖w‖2 + 2 ‖w.v‖2

≥ 0

with the last equality is strict for all w 6= 0. Therefore H is positive definite and

the proof of the claim is now complete.

For each a > 0, let

Ba = {v ∈ B : ψ(v) < a}

It is easy to see that for all a1 < a2 < a3 < · · · we have Ba1 ⊂ Ba2 ⊂ Ba3 ⊂ · · · ⊂

B. Now, let

A = sup{a : Φ is holomorphic on Ba}.

Showing that A =∞ finishes the proof of the lemma.

We start by showing that A > 0. Let U ⊂ M be an open neighborhood of p
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with a holomorphic coordinate system (z1. · · · , zn) on U . Then, there exists a > 0

such that Φ(Ba) ⊂ U and consequently each of the functions zk ◦ Φ : Ba → C

is holomorphic on complex lines through the origin of Ba and of class C∞. The

following version of the classical Forelli’s theorem will allow us to conclude that

zk ◦ Φ is holomorphic on Ba and consequently A > 0.

Theorem 5.2.1. [9] Let Bn be the open unit ball in Cn, and suppose f : Bn → C

statisfies

1. f ∈ C∞({0})

2. all slice functions fz are holomorphic.

Thus f ∈ H(Bn).

Next, we aim to show that if Φ is holomorphic on Ba for some a > 0, then it

is holomorphic on Ba+ε for some ε > 0. Hence, assuming that Φ is holomorphic

on Ba (of class C∞) we have that

Φ∗(i∂∂ϕ) = i∂∂(ϕ ◦ Φ) = i∂∂(ψ)

By continuity, the above equality is true on cl(Ba), the closure of Ba. By Claim

5.2.1 and by invariance of the Levi form under pull-back we see that (i∂∂ϕ) is

positive definite on Φ(cl(Ba)). Again, by continuity we have that the previous
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statement is true in a neighborhood W of Φ(cl(Ba)). Note that

Ba = ψ−1(−∞, a) = (ϕ ◦ Φ)−1(−∞, a) = Φ−1 ◦ ϕ−1(−∞, a) = Φ−1(Ha)

where Ha = {q ∈ M : ϕ(q) < a}. Thus Φ maps Ba into the set {q ∈ M :

ϕ(q) < a}. Hence, by continuity, w = {q ∈ M : ϕ(q) < a + ε} for some ε > 0.

Since (i∂∂ϕ) is positive definite on W , we conclude that W is a Stein manifold

and consequently W is locally endowed with a holomorphic coordinate system

(z1, · · · , zn). Now, for some ε > 0, Φ(Ba+ε) ⊂ W . Repeating the same argument

done previously to show that A > 0, we conclude that zk ◦ Φ is holomorphic on

Ba+ε and consequently so is Φ.

The last step in the proof of the lemma is to show that A = ∞. Assume

by contradiction that A < ∞ i.e. Φ is holomorphic on BA and A is the largest

such number. However, we showed that if Φ is holomorphic on BA then it will

be holomorphic on BA+ε for some ε > 0. Thus A =∞ and Φ is holomorphic on

B.

Lemma 5.2.3. Φ is bijective.

Proof. For each a > 0 we define the level sets Sa = {v ∈ B : ψ(v) = a} ⊂ B

and Ma = {q ∈ M : ϕ(q) = a} ⊂ M . One can easily see that B =
⊔
a>0

Sa and

M =
⊔
a>0

Ma where
⊔

is the disjoint union.

Since ψ = ϕ ◦ Φ, Φ maps Sa into Ma. Hence, it is enough to show that the

restriction of Φ to Sa, Φ|Sa is bijective. We start by observing that Φ - given
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by the exponential map - is a diffeomorphism from a neighborhood of the origin

of B to a neighborhood of p in M . Hence, for all a close enough to 1, Φ|Sa

maps Sa diffeomorphically to Ma. By Proposition 2.2.1 we see that differential

of Φ|Sa preserves orientations in a neighborhood of the origin of B. Thus, Φ|Sa

is an orientation preserving diffeomorphism for a near 1 and consequently it has

degree 1 for a near 1. By connectedness, the degree of Φ|Sa is 1 for all a. Being

also an orientation preserving map, Φ|Sa is a diffeomorphism for all a. The proof

of Theorem 5.1.1 is now complete.
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