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Title: Model for Lattice Thermal Conductivity of Clamped and Free Surface
Cylindrical Nanowires

A model for the prediction of thermal conductivities of cylindrical nanowires
(NWs) is presented. The model is based on the solution of the Boltzmann equa-
tion within the relaxation time approximation. Silicon (Si) NWs with clamped
and free surface boundary conditions are considered, where the phonon group
velocities were obtained from elasticity theory. Surface roughness is also mod-
elled through the use of a specularity parameter. Calculations were carried out
on NWs of diameter 10 and 22 nm for both clamped and free surface bound-
ary conditions. The thermal conductivity of the NWs is found to be about two
orders of magnitude lower than that of bulk Si. The significant drop in the ther-
mal conductivity from its bulk value is ascribed to enhanced phonon boundary
scattering and to phonon spectrum modification. The accuracy of the developed
theory is demonstrated with reference to reported experimental measurements
on individual Si NWs. It is found that the thermal conductivity of a free surface
NW is larger than that of a clamped surface NW, and we predict an increase of
∼100% at 300 K for the 10 nm wire as the boundary conditions are changed from
clamped to free. We suggest using the observed surface effect for thermal current
modulation with piezoelectric cladding materials.
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Chapter 1

Introduction

Device engineers have been remarkably successful at maintaining Moore’s law,
which states that the individual device components get smaller every year. The
size of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) for ex-
ample, has been scaled down to a gate length of 20 nm, and an even smaller size
is projected in the near future. The recent developments in synthesis and pro-
cessing have allowed the routine production of such well-characterized materials
with dimensions that vary on the length scale of a few nanometers. As the size
of devices and structures shrinks down to the nanoscale, thermal management
and manipulation become an increasingly pressing issue even though the primary
goal of the device may not be thermal. For instance, in some devices, such as
computer processors or semiconductor lasers, one wants to get the heat away
as efficiently as possible, these systems require a high thermal conductivity. In
others, such as thermal barriers or thermoelectric materials used for solid-state
refrigeration, one wants the thermal conductivity to be as small as possible. Thus
it is apparent that this perpetual size decrease in devices and the increase in their
operating speeds and frequencies–which inevitably affect the thermal conditions
imposed upon them, require a refined understanding of thermal transport at the
nanoscale. This, in turn, warrants a deep investigation combining theoretical
modeling, computational simulation, and experimental studies.

The understanding of heat conduction in low dimensional systems is not only
significant for application and technological purposes, but it is also appealing
from a scientific point of view, as heat conduction is one of the most important
fundamental physical phenomena in nature. Traditionally, heat flux through a ho-
mogeneous material is believed to follow Fourier’s law of heat conduction, which
states that the heat flux is proportional to the temperature gradient along the
path of heat flow, as Q = −κ∇T , where κ is the thermal conductivity which is a
property of the material. The validity of Fourier’s law has been well established
for bulk materials, i.e three-dimensional macroscopic systems, however, it was
found that heat conduction in nanostructures deviates from Fourier’s law [5–7].
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This is attributed to the fact that the length scales associated with the energy
carriers (phonons, electrons, holes, etc.) become comparable to or larger than
the characteristic length of the nanostructure [8].

The presence of boundaries and surfaces in nanostructures results in phenom-
ena such as particle confinement, rarefaction, and surface reflection and trans-
mission that alter the heat conduction. Thus, the thermal conductivity of low
dimensional structures is no longer an intensive property of the material, which
is the case for their bulk counterparts, but is dependent on the size and geometry
of the structure and is usually diminished in comparison to the bulk thermal
conductivity. This has lead to the development of various analytical models to
describe heat transport in nanomatrials. In addition, approaches based on nu-
merical solutions of the Boltzmann transport equation (BTE) and atomic-level
simulations are used in the prediction of thermal conductivity. Various other
simulation approaches, such as molecular dynamics (MD), Monte Carlo meth-
ods (MC), lattice dynamics (LD), and non-equilibrium Green’s function methods
(NEGF), have been implemented in investigating nanoscale thermal transport
phenomena. Moreover, advances in micro- and nano-technology have enabled
more and more experimental measurements of thermal properties of nanomate-
rials to be reported.

In this introductory chapter we attempt to provide a brief but concise review
of the developments in the applied physics of nanoscale thermal transport that
have resulted from advances in experiment, theory, and simulation over the past
decade.

The current understanding of heat conduction in nanostructures is based on
two different approaches. The first is based on the use of molecular dynam-
ics (MD) simulations [9]. This method requires a model for the interatomic
potential, which may be obtained from a fit based on phonon dispersion rela-
tions. To account for phonon-phonon interactions the interatomic potential is
expanded up to at least third order. The most common way to employ MD
simulations to calculate heat flow is to connect each end of the nanostructure
to heat baths with different temperatures and then calculate the steady state
flow of heat from one bath to the other. MD simulations have been particularly
successful at modelling heat flow across interfaces and superlattices [10, 11]. In
these cases molecular dynamics simulations are advantageous, as it is simple to
model various aspects of the microscopic structure of an interface, such as the
roughness and mixing [12, 13]. MD simulations thus present a powerful tool to
model thermal transport in nanostructures. However, their atomistic approach–
though being a fundamental one, poses simulation difficulties. In some nanos-
trutures the number of atoms that need to be included in the simulation may be
rather large, and thus simulations of this kind may not be practical, at least with
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the present computational power. Another limitation of MD simulations is that
the calculations are purely classical. The average energy of each phonon mode
is therefore taken to be kBT , whereas the correct energy distribution should be
given by the Planck distribution. This makes it difficult to model heat transport
for frequencies where ~ω > kBT , and thus makes it almost impossible to appro-
priately account for quantum mechanical effects at low temperatures. This has
prompted several attempts to correct molecular dynamics for quantum effects,
most notably by applying quantum corrections to classical predictions of thermal
conductivity [14]. However, these corrections were implemented at high temper-
atures where quantum effects are unimportant.

The second approach is based on the phonon Boltzmann equation which gives
the total rate of change of the phonon distribution function Nks, where k is the
wave vector, and s is an index labeling the phonon polarization. The total rate of
change is split into two terms. The first term gives the rate at which the phonon
distribution changes due to scattering ∂Nks/∂t|scatt, and the second provides the
change due to diffusion. In the steady state regime the total rate of change of the
phonon distribution function is set to zero and the Boltzmann equation is solved
for Nks. The acquired distribution function may then be used to evaluate the
phonon energy distribution and various thermal properties of the structure, par-
ticularly the lattice thermal conductivity. To solve the Boltzmann equation one
needs to know the phonon dispersion relation, the group velocity, and the rate at
which scattering occurs. The phonon dispersion relations can be obtained exper-
imentally by neutron scattering, and inelastic X-ray scattering [15]. They may
also be found analytically by making use of continuum approximations. Once the
dispersion relations are attained, the group velocity is found by vks = ∂ω(ks)/∂k.
The scattering term on the other hand is much harder to evaluate and is usually
approximated by a relaxation time τ(ks) as ∂Nks/∂t|scatt = (Nks −Nks)/τ(ks),
where Nks is the Planck equilibrium distribution function.

In the relaxation time approximation various scattering mechanisms can be
individually studied and their scattering rates are calculated by considering the
anharmonic terms in the crystal Hamiltonian as perturbations and applying time
dependent perturbation theory. It is found that first order perturbation the-
ory performed on the third order terms in the crystal Hamiltonian results in
three phonon interactions in which a phonon may decay into two phonons or
two phonons may be annihilated and a third phonon is created. Likewise, sec-
ond order perturbation on the third order terms and second order perturbation
theory on the quartic terms in the Hamiltonian result in four phonon processes.
However these are extremely rare except at very high temperatures and are esti-
mated to be at least two or three orders of magnitude weaker than three phonon
processes [2]. Three phonon processes are of two types: Normal three phonon
processes (N -processes) and Umklapp three phonon processes (U -processes). N -
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Figure 1.1: Temperature dependence of the mean free path Λ = vgτ in a material,
reproduced from [1].

processes conserve phonon momentum, while U -processes do not, thus the latter
type of collisions directly reduces the heat flow, since they change the direction of
the resulting phonon (or phonons) after collision, creating a thermal resistance.
Other scattering mechanisms include point defect and isotope scattering, as well
as phonon boundary scattering. The latter is especially prevalent in nanostruc-
tures due to the presence of borders and surfaces. Approximate expressions of the
relaxation times for these scattering mechanisms in terms of phonon frequency
were first given by Klemens et al [16–18] and are summarized in books by Zi-
man [19] and Srivastava [2].

The dependence of these scattering mechanisms with respect to temperature
is as follows: at very low temperatures phonon boundary scattering dominates
the phonon lifetime. At these temperatures the amplitude of atomic vibrations
is minimal and thus phonons will travel in almost straight lines until they are
scattered by the boundary. As temperature increases defect and impurity scat-
tering become more efficient, which causes a decrease in the phonon mean free
path (the average distance a phonon travels between two consecutive collisions).
As temperatures increase further anharmonic phonon processes become predom-
inant, and the mean free path decreases drastically as atomic vibrations become
more and more rapid and the phonon suffers multiple internal collisions before
it is even scattered by the boundary. The dependence of the phonon mean free
path with respect to temperatures below and above the Debye temperature is
illustrated in Figure 1.1.

The simplification of the Boltzmann equation by the relaxation time approx-
imation allows the distribution function Nks to be readily obtained, and thus the
heat current is found from: Q = 1

V

∑
ksNksvks~ω(ks), where V is the volume of
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the solid. For cubic crystals the thermal conductivity is then given by the sim-
ple expression κ =

∑
ksC(ks)v2ksτ(ks), where C(ks) is the contribution of the

phonon ks to the specific heat. There are several well known difficulties with the
use of this formula [19]. The major difficulty is that it is not clear whether every
type of scattering process should be included in the calculation of τ(ks). Anhar-
monic processes of the N-type do change the direction of the scattered phonon
but leave the total flux of energy in a given direction essentially unchanged. Thus,
one can argue that these processes do not contribute to the thermal resistance
and so should be ignored and only U -processes considered. But if we suppose that
there is a particular group of phonons which cannot be scattered in a U -process.
Then, if N -processes are ignored, the thermal conductivity would be infinite,
which is clearly impossible. To treat this situation correctly, it is necessary to go
beyond the relaxation time approximation and include the effects of both N and
U -processes in an appropriate way.

In order to account for the effect of N -processes, Callaway [20] proposed a
model in which a modified relaxation time approach was employed. The collision
term in the Boltzmann equation was split into two terms each having a different
relaxation time. The first term includes the contribution due to the resistive pro-
cesses that do not conserve momentum, such as U -processes. These tend to relax
the phonon distribution to equilibrium so that they are included in the relaxation
time approach as (N −Nks)/τU , where N is the Planck equilibrium distribution,
and τU is a relaxation time associated with the U -processes. On the other hand,
since N -processes only cause the phonons to be displaced they were considered to
relax the phonons to a displaced distribution function N(λ), i.e their contribution
to the rate of change of the distribution was written as (N(λ)−Nks)/τN , where
λ is a constant vector in the direction of the temperature gradient, and τN is a
relaxation time due to N -processes. Callaway assumed no distinction between
longitudinal and transverse phonons and used a Debye approximation in which
the phonon dispersion relation is linear. Through some assumptions, Callaway
presented an integral expression of two terms κ1 and κ2 for the lattice thermal
conductivity. The second term is considered an additional correction term to
explain errors due to treating the normal processes as resistive ones and is usu-
ally neglected. The Callaway model is very successful at predicting the lattice
thermal conductivity at low temperatures, and is widely used in various thermal
conductivity calculations. Later, Holland [21] presented an analysis of thermal
conductivity in which he considered the contribution of both longitudinal and
transverse phonons to heat conduction under the assumption κ2 = 0.

In the aforementioned models as well as in most calculations of thermal con-
ductivity multiple scattering mechanisms are included in the relaxation time ap-
proximation by making use of the so-called Matthiessen rule, which states that
the relaxation times for different scattering mechanisms are independent and thus
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the contributions from each process are added inversely to the total relaxation
time. The relaxation times used in [20, 21] are that of bulk materials, as the
assumption used in solving the Boltzmann equation was that the phonon dis-
tribution function was spatially independent. For nanostructures the results of
these models can be used provided some modifications are put into effect.

To calculate the heat flow in simple nanostructures, such as nanowires com-
posed of a single material, it is sufficient to use the same phonon lifetimes as for a
bulk material. This approach will break down only when the lateral dimensions
of the structure become comparable to the phonon wavelength. However, the
calculation of heat flow is much more difficult than for the bulk because now
the phonon distribution function Nks is spatially dependent. In a cylindrical
nanowire, for example, the phonon distribution varies with distance r from the
axis, and the solution for the phonon distribution function has to satisfy the
Boltzmann equation at each value of r. Calculations for a diamond nanowire
have recently been reported [22] by using an ab initio BTE calculation; it was
necessary to make some approximations in order to reduce the simulation time
that was needed. In a single-walled carbon nanotube (SWCNT), the situation
is simpler, since the phonons only exist at one value of r. Calculations of the
thermal conductivity in a SWCNT [23] and in graphene [24] have been performed
by Lindsay et al.

As boundary scattering is predominant in nano-structures, special attention
must be given to boundary scattering relaxation times. However, since three
phonon processes and defect scattering all transpire in the volume of the crys-
tal, while boundary scattering occurs at the surface, it remains unclear whether
boundary scattering can be added in the Matthiessen rule. Nevertheless, bound-
ary scattering is usually included in most calculations of lattice thermal conduc-
tivity by making use of the Casimir limit. Casimir [25] employed a radiation
analogue and the Debye approximation to analyze phonon transport in a rod
in the low temperature limit where internal scattering of phonons was negligi-
ble. The rod surface was treated as a blackbody that absorbed all the incident
phonons and re-emitted phonons diffusely according to the local equilibrium dis-
tribution. Under these assumptions, the average phonon boundary scattering
mean free path ΛB is the diameter d for a circular rod, and 1.12w for a rod with
a square cross section of width w. Thus in the Casimir limit the boundary re-
laxation time is always taken to be proportional to v/L, where v is the phonon
group velocity and L is a characteristic length of the material.

Building upon Casimir’s result and several others [26–28], Ziman [19] devel-
oped a solution of the phonon Boltzmann transport equation (BTE) in a rod
under the relaxation time approximation. For diffuse boundary condition at the
rod surface and absence of internal scattering, the boundary mean free path given
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by the BTE solution [19] is the same as Casimir’s result ΛB,C , and is essentially
an average over all orientations and positions of the distance traveled by phonon
quasi-particles originated from the cross section and intercepted by the rod sur-
face. For a partially specular and partially diffuse surface, a specular parameter
p is used to describe the probability for specular scattering at the surface. Under
the isotropic assumption, the phonon BTE can be solved to obtain the boundary
scattering mean free path as ΛB = ΛB,C(1 + p)/(1− p) [19].

With internal scattering due to phonon-phonon processes or impurities ac-
counted for, the BTE can be solved under the isotropic assumption to yield that
the total mean free path Λ differs only slightly from that given by the Matthiessen
rule, 1/Λ = 1/ΛB+1/Λi where Λi is the mean free path due to internal scattering
processes [19]. Wang and Mingo [29] recently presented BTE solutions of Λ for
nanowires of different cross sections and 2D nanoribbons with two diffuse edges,
and verified the accuracy of the Matthiessen rule for the nanowire case.

These particle transport theories have been used to analyze the thermal con-
ductivity data of nanostructures measured by a number of methods that have
been established over the past decade [30, 31]. In addition to the axial ther-
mal conductivity of different nanowire structures, the thermal conductivity of
thin films [32] and periodic nanoporous membrane structures [33, 34] along the
in-plane direction has been obtained with the use of suspended micro-devices
with built in resistance thermometers [35]. The theoretical framework of Casimir
and Ziman can explain quite well the suppressed thermal conductivity found
in InAs nanowires [36, 37], Bi2Te3 nanowires [38], SnO2 nanobelts [39], and Si
nanowires [4] grown by a vapor liquid solid (VLS) method with a diameter larger
than about 30 nm, as well as Bi nanowires [40], InSb nanowires [41], and SiGe
nanowires [42] when additional impurity and defect scattering were considered.
However, the boundary scattering is underestimated in these models, and the
decrease in the calculated thermal conductivity can be attributed to the added
defect and impurity scattering rather than the size effects, which are actually
responsible for the decrease.

Using Callaway-type models, Mathiessen’s rule, bulk phonon dispersion, and
diffuse phonon-surface scattering, Wang and Mingo [43] and Shi [44], calculated
the thermal conductivity for Si nanowires. Because the thermal conductivity of
bulk Si is dominated by phonons with mean free paths longer than 100 nm, the
size effect on the thermal conductivity can be readily observed in Si nanowires.
As the relative thermal conductivity contribution of low-frequency phonons with
long mean free paths is decreased by diffuse boundary scattering, the relative con-
tribution from the high-frequency or short-wavelength zone boundary phonons
increases in a nanowire. Consequently, the calculated thermal conductivity be-
comes more sensitive to the choice of the cutoff frequency in the Callaway-type
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model for nanowires than for bulk crystals, and thus it is more sensitive to the
dispersion relations used. The use of the same cutoff frequency as for bulk ma-
terials, combined with diffuse phonon-boundary scattering yields approximately
the experimental thermal conductivity values reported by VLS Si nanowires with
a diameter larger than 30 nm [4]. However the validity of this approximation be-
comes questionable when shorter nanowire diameters are considered. Moreover,
these models do not seem to yield a sufficiently suppressed thermal conductivity
for Silicon NWs of diameters less than or equal to 20 nm, such as the experimen-
tal measurements reported in [4].

Hence, in order to account for the measured reduction in the thermal con-
ductivity of nanowires with diameters less than 30 nm in analytical calculations,
it is critical to include surface roughness effects, various scattering mechanisms,
spatial dependence of the phonon distribution, as well as accurate dispersion rela-
tions for the acoustic phonon modes in the nanostructure considered. We propose
an analytical model based on the BTE and relaxation time approximation which
includes all the aforementioned phenomena for the calculation of the thermal con-
ductivity of cylindrical NWs. We use elasticity theory to obtain confined phonon
group velocities in the cylindrical geometry. In addition, a summation over the
modes along the lateral dimensions of the wire is effected. The model results
are in excellent agreement with the experimental measurements and yield values
for the thermal conductivity for Si NWs of 22 nm diameter that are extremely
close to those presented in [4]. Further, the model results show that the thermal
conductivity and thermal properties may be varied or tuned through the manip-
ulation of the surface conditions of the NWs.

The outline of the thesis is as follows: In chapter 2 we touch on elements of
phonon dispersion and present frequency spectra of confined phonons in clamped
and free surface cylindrical nanowires. In chapter 3 we discuss the Boltzmann
transport equation and give a solution to the equation in cylindrical coordinates
within the relaxation time approximation. In chapter 4 we present the theory of
lattice thermal conductivity based on the solutions to the Boltzmann equation,
and we give an expression for the calculation of the thermal conductivity of
cylindrical NWs. Our model results are then discussed in chapter 5 and compared
with experimental data. Finally, we conclude in chapter 6 and discuss future work
and investigation.
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Chapter 2

Lattice dynamics and phonon
dispersion

The conduction of heat in solids is mainly associated with elementary excitations
called phonons. The relative motion of atoms in a solid generates these quasi-
particles which carry thermal energy across it. Thus these phonons are directly
related to the lattice dynamics of a crystal. By studying the deformation of a
solid it is then possible to obtain a phonon spectrum or dispersion relation.

2.1 The harmonic approximation

The atoms in a solid may be visualized in terms of their ion cores and valence
electrons. The ion cores vibrate about their equilibrium positions, and the va-
lence electrons move about their ion cores. A first principles study of lattice
dynamics is made possible by two approximations: an adiabatic approximation
in which the ion cores are considered to be much heavier than the electrons so
that their motion may be treated separately, and a harmonic approximation in
which the crystal potential is only expanded up to harmonic terms.

Let us consider the total potential energy of a crystal in terms of interatomic
potentials. The multi-body interactions in crystals are well approximated by
pair or two-body interactions [2] represented by the potential V (R), where R is
the interatomic separation between a pair of atoms. We can expand V (R) in a
Taylor series in powers of small displacements x = R−R0 around a minimum R0

V (R) = V (R0) +
∂V

∂R

∣∣∣
R=R0

x+
1

2

∂2V

∂R2

∣∣∣
R=R0

x2 + ... (2.1.1)

The first term is a constant, which is unimportant in dynamical problems. The
second term vanishes in equilibrium, and thus we are left with the third term
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which is quadratic in the displacement x. The consideration of only this term in
the the potential is known as the harmonic approximation. In this approximation,
an atom in a crystal can be described as a three dimensional simple harmonic

oscillator, where the term
∂2V

∂R2

∣∣∣
R=R0

represents a force constant.

2.2 Phonons as crystal excitations

In the harmonic approximation the atoms of a crystal are visualized as joined
by harmonic springs, so that the crystal dynamics are given by the linear com-
bination of 3rN0 normal vibration modes (two transverse and one longitudinal
mode), where N0 is the number of unit cells and r is the number of atoms per
unit cell of the crystal. A normal mode is expressed as a traveling wave of the
form Ae[i(k.r−ωt)], where k is the wave vector, ω is the frequency, and A is the
amplitude of vibration. The energies of the normal modes in a crystal are given
by that of a quantum harmonic oscillator i.e ~ω(ks)

(
n+ 1

2

)
, where s is an index

labelling the polarization, and n = 0, 1, 2....

The quantum of energy ~ω(ks) is associated with an elementary excitation called
a phonon. Therefore, a phonon is a quantum of crystal vibrational energy. The
phonon does not have a well defined momentum as it originates from the relative
motion of atoms rather than the motion of their center of mass. However, for
practical purposes we assign to each phonon a pseudo-momentum ~k.

2.3 Phonon statistics

Phonons in crystals are considered as spin-less bosons in thermal equilibrium with
each other. However, their number is not conserved since the number of phonon
modes excited increases with temperature. Therefore the average number of
phonons in the kth mode, in thermal equilibrium at temperature T is given by
the Bose-Einstein distribution function with zero chemical potential

Nks =
1

e~ω(ks)/kBT − 1
(2.3.1)

It is seen from (2.3.1) that at low temperatures the number of phonon modes
tends to e−~ω(ks)/kBT , and thus decreases exponentially with decreasing temper-
ature until it reaches zero at absolute zero. At higher temperatures the number
of phonons tends to kBT/~ω(ks), and thus increases linearly with temperature.

In heat conduction problems a temperature gradient is applied along the crystal
which causes phonons to be displaced from their equilibrium distribution function.
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The phonon distribution function in this case will have the form

Nks =
[
exp(~ω(ks)/kBT − ψks)− 1

]−1
(2.3.2)

Where ψks is a measure of the deviation from equilibrium distribution for phonons
in the mode ks. If heat conduction occurs slowly in the crystal i.e the rate of
heat conduction is less than the period of atomic oscillations then the deviation
from equilibrium represented by ψks will be small.

In this case (2.3.2) can be expanded near ψks = 0, thus

Nks ≈ Nks + ψksNks(Nks + 1)

= Nks + Ñks (2.3.3)

where Ñk is the deviated phonon distribution function. It is the phonons that
are given by the deviated distribution function that actually contribute to the
heat conduction across the material.

2.4 Phonon dispersion relations in a linear chain

In order to find the normal modes of a crystal the calculation of the phonon
dispersion relations is required. The dispersion relations express the relationship
between the frequency ω and the wave vector k of a wave, or alternatively, be-
tween the energy ~ω and the momentum ~k of a particle. They thus characterize
the vibrational properties of a medium.

In the field of heat transfer, and more particularly, heat transport by conduction,
i.e., through vibrations in crystal structures, the dispersion relations of a material
are used to define the velocity of the heat carriers or phonons. Three velocities
are defined as a function of the frequency and polarization of the wave: the group
velocity vg, the phase speed vp, and the speed of sound vs. The speed of sound
can also be defined as the low frequency speed of acoustic modes, and the phase
speed and group velocity tend to this quantity when ω is small

vg =
dω

dk
, vp =

ω

k
, vs = lim

ω−→0

dω

dk
(2.4.1)

To illustrate the fundamental features of phonon dispersion we will first consider
the simple case of a one dimensional lattice chain.
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Figure 2.1: Monatomic linear chain showing displacements of the (n− 1)th, nth,
and (n+ 1)th atoms from equilibrium [2]

Consider a monatomic linear chain of an infinitely large number of atoms N sep-
arated by a distance d. We will assume periodic boundary conditions in which
the (N + 1)th atom is the first, and we consider that only nearest neighbor forces
are significant.

The displacement of the nth atom is given by Newton’s second law and Hooke’s
law

m
d2un
dt2

= Λ[(un+1 − un) + (un−1 − un)] (2.4.2)

where m is the mass of an atom and Λ is the force constant.

We consider a solution of the form

un = Ae[i(knd−ωt)] (2.4.3)

Inserting this in (2.4.2) we find

ω = 2

√
Λ

m

∣∣ sin kd/2∣∣ (2.4.4)

Equation (2.4.4) gives the dispersion relation of a monatomic linear chain and is
shown in Figure 2.2.

Figure 2.2: Phonon dispersion curve for the monatomic linear chain. The Bril-
louin zone is the region that extends from −π/d to π/d

12



From the periodic boundary condition the allowable wave vectors are given by

k =
2πn

Nd
, n = 0,±1,±2, ... (2.4.5)

Since k = 2π/λ it is seen that if n > N/2 then the wavelength λ will be less
than twice the interatomic spacing, i.e there are no atoms between one period.
However, atomic displacements in empty space, where there are no atoms, do
not exist. Thus the allowable values of n for lattice vibrations lie between −N/2
and N/2. Therefore, the allowable wavevectors are confined to the Brillouin zone.

The phonon group velocity is also seen to vary from its maximum value vg =

d

√
Λ

m
at the zone center, which is the speed of sound in this case, to zero at the

zone boundary so that the vibrational modes form standing waves at the edge of
the Brillouin zone.

Figure 2.3: Phonon dispersion curve for the diatomic linear chain

In the case of a diatomic linear chain the dispersion curve becomes more compli-
cated and the vibrational modes are split into two branches. As shown in Figure
2.3 these branches correspond to the acoustic and the optical phonon modes.

Lattice vibrations in the upper branch result from the two atoms in a unit cell
vibrating opposite to each other. If two atoms had opposite charges on them they
would result in the formation of a dipole, such a mode of vibration could thus
be excited by an electric field of the appropriate frequency. For this reason the
upper branch is called the optical branch. On the other hand, vibrations in the
lower branch are due to the two atoms vibrating in phase, this is a characteristic
of a sound wave, whence the lower branch is called the acoustic branch. It is
easily seen that the optical phonons have very low group velocity which tends to
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zero at both the zone center and boundary, as a result they do not conduct heat
and are usually neglected when dealing with heat transport problems. Acoustic
phonons on the other hand have large group velocity which only tends to zero
near the zone boundary which makes them the main heat carriers in solids. Thus
when finding dispersion relations of a real three dimensional medium it suffices
to consider the dispersion of the acoustic phonons only.

2.5 Elastic waves in crystals

If we consider that there is a vibrational excitation in a solid with which we can
associate an effective dimension λ and angular frequency ω, where λ may be a
wavelength or some other characteristic length of the material, then if λ � d,
where d is a mean interatomic spacing, the response of the medium to the exci-
tation is essentially that of a continuum since, within the length λ there exists
a large number of atoms. Thus in deriving the dispersion relations of acoustic
phonons in a solid medium, the body may be considered as an elastic continuum
in the long wavlength limit.

If the heat conduction in the solid occurs slowly, i.e the heat exchange during
times in the order of the period of oscillatory motions in the body is negligible,
then the deformations of the medium will be small and thus result in the for-
mation of elastic waves. In order to obtain the equations of motion of an elastic
medium we must equate the internal stress force ∂σik/∂xk to the product of the
acceleration üi and the mass per unit volume of the body i.e it density ρ, where
σik is the stress tensor and ui gives the displacement of any point in the solid:

ρüi =
∂σik
∂xk

(2.5.1)

In general the stress tensor can be related to the strain tensor by a rank four
tensor λiklm called the elastic modulus tensor, as

σik = λiklmulm (2.5.2)

where repeated indices are summed over, and uik is the symmetric rank two strain
tensor:

uik =
1

2

(
∂ui
∂xk

+
∂ui
∂xk

)
(2.5.3)

Substituting this in (2.5.1) we find
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ρüi = λiklm
∂ulm
∂xk

=
1

2
λiklm

∂2ul
∂xk∂xm

+
1

2
λiklm

∂2um
∂xk∂xl

(2.5.4)

Rearranging some dummy indices in (2.5.4) we obtain the general equations of
motion of a crystal:

ρüi = λiklm
∂2um
∂xk∂xl

(2.5.5)

We consider monochromatic elastic waves in the crystal of the form

ui = ui0e
i[k.r−iωt] (2.5.6)

where ui0 are constants defining the amplitude of vibration.

Substituting this solution into the general equation of motion gives

(ρω2δim − λiklmkkkl)um = 0 (2.5.7)

Here δim is the Kronecker delta. In order to obtain non-trivial solutions the
determinant of the coefficients must vanish, i.e

|ρω2δim − λiklmkkkl| = 0 (2.5.8)

This is a cubic equation in ω2 that gives the dispersion relations of a bulk crystal.
It has three solutions that are in general different. Obtaining the dispersion
relations from this equation is generally difficult since for different directions we
obtain different solutions depending on the values of the components of the tensor
λiklm which in turn depend on the symmetry of the crystal.

2.6 Elastic waves in an isotropic medium

If we consider an isotropic medium the equations of motion (2.5.1) are greatly
simplified, since the components of the elastic modulus tensor are the same in all
directions and the relation between the stress and strain tensor becomes

σik = Kullδik + 2µ

(
uik −

1

3
δikull

)
(2.6.1)

Here, K = λ + 2
3
µ is the modulus of compression and λ and µ are Lame’s con-

stants [45].
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Using this in (2.5.1) we obtain the general equation of motion for an isotropic
elastic medium [45]:

ρü = µ∇2u + (λ+ µ)∇(∇.u) (2.6.2)

We can rewrite this equation in the form

ü = c2t∇2u + (c2l − c2t )∇(∇.u) (2.6.3)

where

ct =

√
µ

ρ
, and cl =

√
λ+ 2µ

ρ
(2.6.4)

are the bulk transverse and longitudinal speeds respectively.

We consider a solution in the form

u = ul + ut (2.6.5)

with

∇× ul = 0 (2.6.6)

∇.ut = 0 (2.6.7)

Thus we find

ül + üt = c2t∇2(ul + ut) + (c2l − c2t )∇(∇.ul) (2.6.8)

If we take the divergence of the above equation, since ∇.ut = 0, we get

∇.(ül − c2l∇2ul) = 0 (2.6.9)

And by (2.6.6) the curl of this expression vanishes as well, thus since the di-
vergence and curl of this vector vanish, then the vector must vanish identically
i.e

ül − c2l∇2ul = 0 (2.6.10)

Similarly, taking the curl of (2.6.8) and using (2.6.6) and (2.6.7), we find

üt − c2t∇2ut = 0 (2.6.11)

If we consider monochromatic elastic waves with frequency ω we obtain wave
equations in ul and ut:
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∇2ul +
ω2

c2l
ul = 0, and ∇2ut +

ω2

c2t
ut = 0 (2.6.12)

For solutions of the form (2.5.6) we obtain the linear dispersion relations of a
bulk isotropic medium:

ω = clk, and ω = ctk (2.6.13)

The first is the dispersion relation of the longitudinal phonon modes, while the
second is the doubly degenerate dispersion relation for the two transverse modes.

2.7 Displacement vector of an isotropic solid cylin-

der

In order to describe the thermal conductivity κ(T ) of Si nanowires (NWs) we
should take into account the modification of the acoustic phonon dispersion due
to confinement induced by the boundary.

For small cross section NWs, typically below ∼ 8 nm, calculation of the size
dependent phonon spectrum can be carried out by using MD simulations. For
larger NW cross sections MD simulations become computationally prohibitive
and the only way for calculating the size dependent phonon dispersion spectrum
is the use of the elastic continuum approximation. Although the elastic contin-
uum approximation is valid only for phonons of wavelengths much larger than
the interatomic spacing, a number of experiments confirm its usefulness in de-
scribing qualitatively the effect of size on the Debye temperatures and phonon
velocities [46–48].

Thus in order to obtain the phonon dispersion spectrum for NWs of cross-section
ranging from 10 to 22nm in diameter we must solve the general equation of mo-
tion (2.6.3) in the cylindrical geometry.

We consider an isotropic elastic cylinder of radius a whose axis is directed along
the z-axis and is assumed to be infinite in that direction. Let u = (ur, uφ, uz) be
the components of the displacement of a point in the solid.

If we consider monochromatic waves with frequency ω, i.e a time dependence
given by e−iωt then the equations of motion assume the form

−ω2u = c2t∇2u + (c2l − c2t )∇(∇.u) (2.7.1)

In order to simplify the equations we look for solutions of the form
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u = ∇ψ +∇×H (2.7.2)

where ψ is some scalar and H is a vector potential defined up to a gauge trans-
formation, H −→ H +∇ϕ, where ϕ is an arbitrary scalar field.

Inserting this in (2.7.1) and using the identity ∇(∇.H) = ∇2H + ∇ × ∇ × H
along with the fact that the divergence of the curl and the curl of a gradient both
vanish, we obtain wave equations for both ψ and H i.e

∇2ψ + k2l ψ = 0, ∇2H + k2tH = 0 (2.7.3)

where

k2l =
ω2

c2l
, and k2t =

ω2

c2t
(2.7.4)

We assume the following solutions [49]

ψ = f(r) cos(nφ)eikz (2.7.5)

Hr = hr(r) sin(nφ)eikz (2.7.6)

Hφ = hφ(r) cos(nφ)eikz (2.7.7)

Hz = hr(r) sin(nφ)eikz (2.7.8)

Inserting these solutions in (2.7.3) we find

d2f

dr2
+

1

r

df

dr
− n2

r2
f − k2f + k2l f = 0 (2.7.9)

We define

α2 = k2l − k2 (2.7.10)

thus the equation for f(r) can be rewritten as

d2f

dr2
+

1

r

df

dr
+

(
α2 − n2

r2

)
f = 0 (2.7.11)

This is Bessel’s equation whose solution can be written as follows

f(r) = AJn(αr) (2.7.12)

where Jn(αr) are the ordinary Bessel functions of the first kind. Bessel functions
of the second kind are precluded from the solution since they become infinite at
r = 0.
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For hz(r) we obtain a similar equation

d2hz
dr2

+
1

r

dhz
dr

+

(
β2 − n2

r2

)
hz = 0 (2.7.13)

where,

β2 = k2t − k2 (2.7.14)

thus

hz(r) = B3Jn(βr) (2.7.15)

For hr and hφ we find two coupled equations

d2hr
dr2

+
1

r

dhr
dr

+
1

r2
(−n2hr + 2nhφ − hr)− k2hr + k2l hr = 0 (2.7.16)

d2hφ
dr2

+
1

r

dhφ
dr

+
1

r2
(−n2hφ + 2nhr − hφ)− k2hφ + k2l hφ = 0 (2.7.17)

Subtracting (2.7.17) from (2.7.16) we find[
d2

dr2
+

1

r

d

dr
+ β2 − (n+ 1)2

r2

]
(hr − hφ) = 0 (2.7.18)

The solution to this equation is

hr − hφ = 2B2Jn+1(βr) (2.7.19)

Adding (2.7.16) and (2.7.17) we obtain[
d2

dr2
+

1

r

d

dr
+ β2 − (n− 1)2

r2

]
(hr + hφ) = 0 (2.7.20)

the solution to this can be written as

hr + hφ = 2B1Jn−1(βr) (2.7.21)

Therefore,

hr = B1Jn−1(βr) +B2Jn+1(βr) (2.7.22)

hφ = B1Jn−1(βr)−B2Jn+1(βr) (2.7.23)

In order to find the displacement vector u we only require three constants. How-
ever, our formulation has yielded four constants namely: A, B1, B2, and B3. We
therefore utilize the property of gauge invariance which allows us to set any of
the Bi’s to zero without any loss of generality [49]. We set B1 = 0, then
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hr = −hφ (2.7.24)

Whence the displacement vector components are

ur =

[
f

′
+
n

r
hz − (ik)hφ

]
cos(nφ)eikz (2.7.25)

uφ =

[
− n

r
f + (ik)hr − h

′

z

]
sin(nφ)eikz (2.7.26)

uz =

[
(ik)f − (n+ 1)

r
hr − h

′

r

]
cos(nφ)eikz (2.7.27)

where ′ denotes differentiation with respect to r.

2.8 Dispersion relations of a clamped cylindri-

cal solid

The frequency equation for the modes of vibration for the cylinder can be ob-
tained by applying the boundary conditions at the surface of the cylinder. If
we consider a clamped cylinder at its surface (i.e the cylinder is surrounded by
rigid material) then no deformation will be allowed at the surface. Therefore, the
components of the displacement vector must vanish at the surface of the cylinder.

If we replace the explicit values of the functions in (2.7.25)-(2.7.27) at r = a and
set them to zero, we obtain three equations depending on the constants A, B2,
and B3. Since these constants are non zero, then the determinant formed by
their coefficients must vanish. The determinant set to zero defines the general
frequency equation:

∣∣∣∣∣∣∣∣
αJn−1(αa)− n

a
Jn(αa) ikJn+1(βa)

n

a
Jn(βa)

−n
a
Jn(αa) ikJn+1(βa) −βJn−1(βa) +

n

a
Jn(βa)

ikJn(αa) −βJn(βa) 0

∣∣∣∣∣∣∣∣ = 0 (2.8.1)

Equation (2.8.1) determines the modes of vibration of a clamped cylinder for all
n ≥ 0. For each n we will have two polarizations; a ”longitudinal” polarization
and a ”transverse” polarization, corresponding to the two terms in the solution
(2.7.2).

For n = 0 the frequency equation reduces to two factors; one gives the frequency
equation for the Torsional modes which are caused by the twisting of the cylinder
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about its axis, and the other gives that of the longitudinal modes of vibration
which result from extensions and compression of the cylinder along its axis. For
n = 1 we obtain the ordinary family of flexural modes, and for n ≥ 2 we obtain
the so called flexural modes of circumferential order n. These modes can be de-
scribed as follows:

1 - The family of torsional modes

The displacement vector for torsional modes in a solid cylinder are described by
a single component, namely uφ. This can be obtained from a single potential
function Hz given by

Hz = B3J0(βr)e
ikz (2.8.2)

From this we find that the only non-zero component of the displacement vector
is

uφ = βB3J1(βr)e
ikz (2.8.3)

setting this to zero at r = a we obtain the frequency equation for the torsional
modes

βJ1(βa) = 0 (2.8.4)

The solutions to this equation are

β = 0, or β =
z1l
a

(2.8.5)

where z1l is the lth zero of the Bessel functions with n = 1.

The first solution gives the bulk dispersion relation which is not physically plau-
sible and thus can be neglected. The second solution on the other hand, results
from the presence of the boundary at r = a, and hence gives the true disper-
sion relation of the cylinder. The same frequency equation can be obtained from
(2.8.1) by setting n = 0.

2 - The family of longitudinal modes

These type of vibration modes occur due to extension or compression of the
cylinder along its axis, therefore they result in displacements only along the r
and z-directions. The longitudinal modes of a cylinder can thus be described by
two components of the displacement vector, ur and uφ with no dependence on
the angular variable φ. Taking only ψ and Hφ with n = 0 yields the following
components of the displacement vector:
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Figure 2.4: Dispersion curves of the longitudinal and torsional vibration modes
of clamped NWs of radii 5 and 11 nm obtained by numerically solving (2.8.1)
with n = 0.

ur = −AJ1(αr) + (ik)B2J1(βr) (2.8.6)

uz = (ik)AJ0(αr)− βB2J0(βr) (2.8.7)

Evaluating these components at r = a and setting to zero we find

αβJ0(βa)J1(αa) + k2J0(αa)J1(βa) = 0 (2.8.8)

This is the dispersion relation for the family of longitudinal modes. Again, this
can also be found by setting n = 0 in (2.8.1).

By numerically solving (2.8.1) with (2.7.10) and (2.7.14) for n = 0 we obtain the
dispersion relations of the longitudinal and torsional modes for confined acoustic
phonons in single Si NWs. In all numerical calculations of the dispersion curves
we use the values: ρ = 2329Kg/m3, cl = 8.43× 103m/s, and ct = 5.84× 103m/s
which are appropriate for Si. At each k one can find many solutions for α and β,
thus the ω − k diagram will consist of several branches which we may label with
an index j, so that ωj(k) is the frequency of the jth branch at the mode k.

In Figure 2.4 we show the dispersion relations of the confined longitudinal and
torsional acoustic phonon branches in single Si NWs of radii 5nm and 11nm. As
can be noticed, the slopes of the confined acoustic phonon branches decrease with
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Figure 2.5: Averaged phonon group velocity of the lowest branch of confined
phonons in a 5 nm radius NW versus temperature along with the constant bulk
longitudinal group velocity.

decreasing wire cross section, which implies a decrease in the averaged phonon
group velocities.

The dispersion curves in Figure 2.4 can be used to calculate averaged phonon
phase and group velocities. The averaged velocities can be obtained by employing
a Boltzmann weights average [50]

vj =

∑
k

vj(k)e−~ωj(k)/kBT

∑
k

e−~ωj(k)/kBT
, and cj =

∑
k

cj(k)e−~ωj(k)/kBT

∑
k

e−~ωj(k)/kBT
(2.8.9)

where

vj(k) =
dωj(k)

dk
, and cj(k) =

ωj(k)

k
(2.8.10)

vj is an averaged phonon group velocity of the jth branch, while cj is an averaged
phase velocity that approximates the relation between ω and k.
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In Figure 2.5 the averaged group velocity of the lowest branch confined phonons
based on (2.8.9) is plotted with the bulk group velocity. As can be seen from
the figure the group velocity of phonons confined in a NW is much lower than
that of their bulk counterparts. In addition, the averaged phonon group velocity
found from (2.8.9) is temperature dependent and thus is better suited to describe
phonons, which result from atomic vibrations, than the use of a constant group
velocity. It is seen that the phonon group velocity in the NW is very small at low
temperatures due to the enhancement of the confinement effect in this limit. At
higher temperatures the velocity increases since the phonon wavelengths become
shorter and thus the boundary effect becomes less important.

3 - The family of flexural modes with n = 1
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Figure 2.6: Dispersion curves of the flexural modes (n = 1) of clamped NWs of
radii 5 and 11 nm.

The motion of flexural modes involves all three components of the displacement
vector. For n = 1 we obtain from (2.8.1) the dispersion relation for the lowest
order family of flexural modes:
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(
βJ0(βa)− 1

a
J1(βa)

)[
βJ1(βa)

(
αJ0(αa)− 1

a
J1(αa)

)
− k2J1(αa)J2(βa)

]

−1

a
J1(βa)

[
1

a
βJ1(αa)J1(βa) + k2J2(βa)J1(αa)

]
= 0

(2.8.11)

Using the identity

Jn−1(x) + Jn+1(x) =
2n

x
Jn(x) (2.8.12)

The frequency equation for the flexural modes with n = 1 can be rewritten as

αβJ0(αa)J1(βa)

[
(βa)J0(βa)− J1(βa)

]
+ J0(βa)

[
(βa)k2J1(αa)J0(βa)− (β2 + 2k2)J1(αa)J1(βa)

]
= 0

(2.8.13)

For n ≥ 2 we obtain higher order flexural modes that are referred to as flexural
modes of circumferential order n.

The dispersion curves of the lowest order flexural modes are shown in Figure 2.6
for NWs of radii equal to 5 and 11 nm.

2.9 Dispersion relations of a free surface cylin-

der

We now consider a cylinder with a free surface (i.e surrounded by vacuum). Since
the external stresses are zero the continuity of the stress tensor requires that the
stress components vanish at the surface, therefore, the boundary condition at the
surface can be written as

σiknk

∣∣∣
r=a

= 0 (2.9.1)

where n is a unit vector normal to the surface, and repeated indices are summed
over. Since only the r component of n is non-zero then the boundary condition
(2.9.1) reads

σrr = σrφ = σrz = 0, at r = a (2.9.2)
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The components of the stress tensor can be found from the strain components
using (2.6.1). From (2.5.3) it is easily seen that uii is just the divergence of the
displacement vector.

Whence, the stress components normal to the surface are

σrr = λ∇2ψ + 2µurr (2.9.3)

σrφ = 2µurφ (2.9.4)

σrz = 2µurz (2.9.5)

The first term in σrr only involves the potential function ψ since the divergence of
the second term in (2.7.2) vanishes, and using (2.7.3) we find ∇2ψ = −(α2+k2)ψ.

In cylindrical coordinates the strain tensor components are given by

urr =
∂ur
∂r

(2.9.6)

urφ =
1

2

[
∂uφ
∂r
− uφ

r
+

1

r

∂ur
∂φ

]
(2.9.7)

urz =
1

2

[
∂ur
∂z

+
∂uz
∂r

]
(2.9.8)

Inserting these expressions in (2.9.3)-(2.9.5) and making use of (2.7.11), (2.7.13),
and (2.7.16) along with some juggling we find

σrr =

[(
2µf

′′ − λ(α2 + k2)f

)
+ 2µ

n

r

(
h

′

z −
1

r
hz

)
+ 2µ(ik)h

′

r

]
cos(nφ)eikz

(2.9.9)

σrφ = µ

[
− 2n

r

(
f

′ − 1

r
f

)
+ ik

(
h

′

r −
(n+ 1)

r
hr

)
− (2h

′′

z + β2hz)

]
sin(nφ)eikz

(2.9.10)

σrz = µ

[
2ikf

′
+ ik

n

r
hz −

(
k2 − β2 +

n(n+ 1)

r2

)
hr −

n

r
h

′

r

]
cos(nφ)eikz

(2.9.11)

Evaluating these expressions at r = a and setting to zero gives the general fre-
quency equation for all possible modes of vibration of the free surface cylinder,
which is given on he following page:
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Therefore, for the free surface cylinder we have the following modes of vibration:

1 - The family of torsional modes

Considering only the potential function (2.8.2) we find the following frequency
equation for the torsional modes of vibration of a free surface cylinder

β

[
2J1(βa)− (βa)J0(βa)

]
= 0 (2.9.13)

This has two solutions

β = 0, or 2J1(βa) = (βa)J0(βa) (2.9.14)

Again we obtain the non-physical bulk solution along with the actual solution
given by the second equation in (2.9.14). As mentioned earlier this can also be
obtained from the general frequency equation (2.9.12) by setting n = 0.

2 - The family of longitudinal modes
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Figure 2.7: Dispersion curves of the longitudinal and torsional vibration modes
(n = 0) of free surface NWs of radii 5 an 11 nm.

The family of longitudinal modes is obtained from the potential functions ψ and
Hφ with n = 0. Using these to evaluate the expressions of the stress compo-
nents at r = a and setting equal to zero we find the frequency equation for the
longitudinal modes:
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2α

a
(β2 + k2)J1(βa)J1(αa)− J0(αa)J1(βa)

[
2(β2 − k2)

(
α2 +

λ

2µ
(α2 + k2)

)]
− 4k2αβJ1(αa)J0(βa) = 0 (2.9.15)

One can easily check that (2.9.12) with n = 0 yields the same dispersion relation
for the longitudinal modes.

3 - The family of flexural modes

Equation (2.9.12) with n ≥ 1 provides the dispersion relations of the flexural
modes of order n as discussed for the clamped cylinder.
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Figure 2.8: Dispersion curves of the flexural modes (n = 1) of free surface NWs
of radii 5 and 11 nm.

The dispersion curves of flexural vibration modes of a free surface cylinder are
shown in Figure 2.8.

2.10 Wavevecctor components in cylindrical co-

ordinates

In order to obtain the wavevector components for a cylinder the wave equation
∇2U + k2U must be solved in cylindrical coordinates (r, φ, z):
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1

r

∂

∂r

(
r
∂U

∂r

)
+

1

r2

2U

∂φ2
+
∂2U

∂z2
+ k2U = 0 (2.10.1)

We use the following separation of variable

U(r, φ, z) = R(r)Φ(φ)Z(z) (2.10.2)

Replacing this in (2.10.1) we obtain

1

rR(r)

d

dr

(
r
dR(r)

dr

)
+

1

r2Φ(φ)

d2Φ(φ)

dφ2
+
d2Z(z)

dz2
+ k2 = 0

⇒ 1

rR(r)

d

dr

(
r
dR(r)

dr

)
+

1

r2Φ(φ)

d2Φ(φ)

dφ2
+ k2 = − 1

Z(z)

d2Z(z)

dz2
= k2z (2.10.3)

where, kz is a constant.

The solution to the differential equation given by the last equality in (2.10.3) can
be written in the form

Z(z) = eikzz (2.10.4)

We can now rewrite (2.10.3) in the following way

r

R(r)

d

dr

(
r
dR(r)

dr

)
(k2 − k2z)r2 = − 1

Φ(φ)

d2Φ(φ)

dφ2
= n2 (2.10.5)

where, n is an integer.

We define the wavevector components kr such that

k2 = k2r + k2z (2.10.6)

thus (2.10.5) gives the following two differential equations

d2Φ(φ)

dφ2
+ n2Φ(φ) = 0 (2.10.7)

r2
d2R(r)

dr2
+ r

dR(r)

dr
+ (k2rr

2 − n2)R(r) = 0 (2.10.8)

The solution to the first is simply

Φ(φ) = e±inφ (2.10.9)

For the second we make the change of variable ρr = krr so that it can be written
as
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ρ2r
d2R(ρr)

dρ2r
+ ρr

dR(ρr)

dρr
+
(
ρ2r − n2

)
R(ρr) = 0 (2.10.10)

This is Bessel’s equation whose solutions are the Bessel functions Jn(krr). We
exclude Bessel functions of the second kind since they are not finite at r = 0.
Thus the most general solution of the wave equation is

Un(r, φ, z, t) =
∑
n

Jn(krr)e
ikzze±inφe−iωt (2.10.11)

By applying the boundary conditions at the surface of the rod we may obtain the
wavevector components. For a clamped surface we use the Dirichlet boundary
condition

U(r = a) = 0 (2.10.12)

This requires

Jn(kra) = 0 (2.10.13)

Hence,

kr =
zln
a

(2.10.14)

where zln is the lth zero of the Bessel function of order n.

For a free surface rod we utilize the Neumann boundary condtion i.e

∂U

∂r

∣∣∣
r=a

= 0 (2.10.15)

So that

J
′

n(kra) = 0 (2.10.16)

where
′

denotes the derivative with respect to the argument.

Therefore, in this case we have

kr =
z
′

ln

a
(2.10.17)

where z
′

ln are the zeros of the derivatives of the Bessel functions.
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Chapter 3

The Boltzmann transport
equation

The phonon distribution function is required for the calculation of thermal prop-
erties in solids. At equilibrium the phonon distribution function is given by the
Bose-Einstein distribution function which depends only on energy and temper-
ature. Transport phenomena, however, occur only when the system is out of
equilibrium. Therefore, the calculation of thermal currents and thermal conduc-
tivity, for instance, requires knowledge of a non-equilibrium distribution function.
In this chapter we introduce non-equilibrium distribution functions based on the
Liouville equation and the simpler Boltzmann equation, and we derive a solution
for the phonon Boltzmann equation in the cylindrical geometry.

3.1 The phase space and Liouville’s equation

Consider a system with N particles which are described by the generalized coor-
dinate r and the generalized momentum p. If we assume that there are m degrees
of freedom, i.e there are m generalized coordinates, and m generalized momenta,
the number of degrees of freedom of the entire system is 2n = 2m × N . These
2n variables form a 2n-dimensional space called a phase space. The system at
any instant can be described as one point in such a space. The time evolution of
the system traces one line in such a 2n-dimensional phase space, called a flow line.

Now we consider an ensemble of systems satisfying the same macroscopic con-
straints. From classical mechanics we know that for given initial conditions the
trajectory of the system is uniquely determined. Since the initial conditions for
each system differ from that of other systems in the ensemble, the traces of sys-
tems in such an ensemble do not intersect, i.e the flow lines in phase space do
not intersect.
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The number of systems in an ensemble is very large, much larger than the number
of particles in one system. As a result, we can treat the points of the ensemble,
each representing a microstate of the original macroscopic system, as forming
a continuum in the phase space. We can therefore, define a particle density
function f (N) such that the number of systems in the neighborhood of any point
(r(n),p(n)) in the phase space, where r(n) = (r1, r2, ..., rN) = (r1, r2, ..., rn) are
all the space coordinates of the N particles and similarly p(n) represents the
momenta coordinates, is given by

f (N)(t, r(n),p(n))∆r(n)∆p(n) (3.1.1)

in a small volume ∆r(n)∆p(n) = (∆r1∆r2...∆rN)(∆p1∆p2...∆pN) in the phase
space.

The particle density in the phase space f (N)(t, r(n),p(n)) is called the N -particle
distribution function, which represents the probability of finding a particular sys-
tem at a specific state defined by r(n) and p(n).

The time evolution of the N -particle distribution function is given by Liouville’s
equation. The rate of change of the distribution function is related to its Poisson
bracket with the system Hamiltonian H(N)(t, r(n),p(n))

∂f (N)

∂t
= −

{
f (N), H(N)

}
= −

[ n∑
i=1

∂f (N)

∂r(i)
∂H(N)

∂p(i)
−

n∑
i=1

∂f (N)

∂p(i)
∂H(N)

∂r(i)

]
(3.1.2)

Using Hamilton’s equations (3.1.2) can be written as

∂f (N)

∂t
= −

[ n∑
i=1

∂f (N)

∂r(i)
∂p(i)

∂t
+

n∑
i=1

∂f (N)

∂p(i)
∂r(i)

∂t

]
(3.1.3)

Equation (3.1.3) is the Liouville equation that governs the time evolution of the
N -particle distribution function f (N). Direct solution of (3.1.3) is impossible,
however, due to the large number of variables involved, which is on the order
of Avogadro’s number. In addition, solving the Liouville equation requires the
determination of the exact initial conditions of the ensemble. Therefore, a simpler
approach based on the Boltzmann equation must be adopted as in the next
section.
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3.2 The phonon Boltzmann equation

One way to simplify Liouville’s equation is to consider one particle in a sys-
tem. This is a representative particle having coordinate r1 and momentum p1;
each having m components. We introduce a one particle distribution function
f (1)(t, r1,p1) by averaging the N -particle distribution function over the rest of
the (N − 1) particles in the system

f (1)(t, r1,p1) =
N !

(N − 1)!

∫
f (N)(t, rn,pn)dr1dr2...drNdp1dp2...dpN (3.2.1)

where n = m × N and the factorials are normalization factors. For brevity the
subscript 1 will be dropped and henceforth we will use (r,p) as the coordinates
and momenta of the particle.

Since f (N)(t, r(n),p(n)) represents the number density of systems having general-
ized coordinates (r(n),p(n)) in the ensemble, the one particle distribution function
represents the number density of systems having (r,p), so that f(t, r,p)d3rd3p
gives the number of systems in d3rd3p.

The use of the one particle distribution function results in a significant reduction
of the number of variables. For one mole of a monatomic gas with 6 × 1023

atoms, for example, the number of variables in the phase space is 6 × 6 × 1023,
because we have three spatial coordinates and three momentum coordinates.
On the other hand, the one particle phase space for monatomic atoms has only
three spatial coordinates and three momentum coordinates. Carrying out the
averaging method to obtain the one particle distribution function on the the
Liouville equation (3.1.3) we find

∂f

∂t
+
dr

dt
.∇rf +

dp

dt
.∇pf =

∂f

∂t

∣∣∣
scatt

(3.2.2)

where ∇r and ∇p are the position and momentum gradients respectively.

Unlike the 2n-phase space for the Liouville equation, in which one point represents
a system and the flow lines of the points do not intersect, the particle represented
by f interacts with other particles in the system. The right-hand side of (3.2.2)
lumps the interaction of this one particle with the other particles in the system
and represents the non-conserving nature of the one particle distribution func-
tion. This scattering term represents the net rate of gaining particles at point
(r,p) and should not be thought of as a simple partial derivative. Further details
about the scattering term are presented in section 3.3. Equation (3.2.2) is called
the Boltzmann equation or the Boltzmann transport equation.
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It can be seen that the second term on the left-hand side of (3.2.2) gives the rate
of change of the distribution function due to diffusion, while the last term on the
left-hand side is a force term giving the rate of change of the distribution due
to external forces. Alternatively, the Boltzmann equation can be rewritten using
the velocity v = p/m or the wavevector k = p/~ of the particle

∂f

∂t
+ v.∇rf +

F

m
.∇vf =

∂f

∂t

∣∣∣
scatt

(3.2.3)

∂f

∂t
+ v.∇rf +

F

~
.∇kf =

∂f

∂t

∣∣∣
scatt

(3.2.4)

The use of ~ in (3.2.4) implies that the Boltzmann equation may be applied to
quantum particles as long as we do not consider the phase coherence of the par-
ticles.

For phonons the time evolution of the one particle phonon distribution function
denoted Nks, where s is the phonon polarization, is given by (3.2.4) with F = 0,
since phonons are not affected by external forces. Moreover, in the steady state
of heat flow (3.2.4) leads to the phonon Boltzmann equation

−vs.∇Nks +
∂Nks

∂t

∣∣∣
scatt

= 0 (3.2.5)

It should be understood that the velocity in (3.2.5) is the phonon group velocity.

The distribution function obtained from the Boltzmann equation may be used
for the calculation of averaged quantities, such as average energy and thermal
current. Once the distribution function is known we can calculate the volume
average of any microscopic quantity of the particle from

〈
X(r)

〉
=

1

V

∑
ks

X(r,ks)Nks =
1

(2π)3

∫
X(r,ks)Nksd

3k (3.2.6)

The summation over the wavevectors is changed into integration by noting that
the volume of one quantum state in k-space is V/(2π)3.

3.3 Scattering integral and the relaxation time

approximation

In order to find the scattering term in (3.2.5) we consider the collision process
between two particles. The collision will be a time dependent process, thus we
can treat the collision by considering the time dependent interaction between
the two particles as a perturbation H

′
(r, t) from the equilibrium steady state
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non interacting energy H0. Using the perturbation method we can calculate the
probability for the system to transition from one quantum state Ψi to another
Ψf , the transition rate is given by

P f
i =

2π

~

∣∣∣∣ ∫ Ψ∗fH
′
Ψid

3r

∣∣∣∣2δ(Ef − Ei)
=

2π

~
M2

ifδ(Ef − Ei) (3.3.1)

where,

Mif = (Ψi, H
′
Ψf ) =

∫
Ψ∗fH

′
Ψid

3r (3.3.2)

is the scattering matrix.

(3.3.1) is often referred to as Fermi’s golden rule which gives the transition rate
from one set of quantum states of the two particles into another set due to
scattering. The scattering term in the Boltzmann equation is the net gain of
particles in one quantum state. Then, for the two particle system if the initial
wave vector of one particle is k and it collides with another of wave vector k

′
,

with the momenta of the two particles after collision being k
′′

and k
′′′

, then the
scattering term for the particle at state k is expressed as

∂Nks

∂t

∣∣∣
scatt

=
∑
k′s′

∑
k′′s′′

∑
k′′′s′′′

[
P ks,k

′
s
′

k′′s′′ ,k′′′s′′′
− P k

′′
s
′′
,k

′′′
s
′′′

ks,k′s′

]
(3.3.3)

Using the conservation of energy and momentum

E(ks) + E(k
′
s
′
) = E(k

′′
s
′′
) + E(k

′′′
s
′′′

), k + k
′
= k

′′
+ k

′′′
(3.3.4)

the transition rates can be written as

P ks,k
′
s
′

k′′s′′ ,k′′′s′′′
= NksNk′s′ (Nk′′s′′ + 1)(Nk′′′s′′′ + 1)W (ks,k

′
s
′ −→ k

′′
s
′′
,k

′′′
s
′′′

)

(3.3.5)

P k
′′
s
′′
,k

′′′
s
′′′

ks,k′s′
= Nk′′s′′Nk′′′s′′′ (Nks + 1)(Nk′s′ + 1)W (k

′′
s
′′
,k

′′′
s
′′′ −→ ks,k

′
s
′
)

(3.3.6)

where W (ks,k
′
s
′ −→ k

′′
s
′′
,k

′′′
s
′′′

) is the intrinsic transition probability (which
is independent of phonon distribution) between the initial and final states.
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Using the principle of detailed balance, which states that the transition probabil-
ity is the same in the forward and backward direction we can write the scattering
term (3.3.3) as

∂Nk

∂t

∣∣∣
scatt

=
∑
k′s′

∑
k′′s′′

∑
k′′′s′′′

[
NksNk′s′ (Nk′′s′′ + 1)(Nk′′′ + 1)

−Nk′′s′′Nk′′′s′′′ (Nks + 1)(Nk′s′ + 1)
]
W (ks,k

′
s
′ −→ k

′′
s
′′
,k

′′′
s
′′′

)
(3.3.7)

We can change from summation over the wave vectors into integration using the
rule ∑

k

−→ V

(2π)3

∫
d3k (3.3.8)

where V is the volume of the crystal. Then we have

∂Nk

∂t

∣∣∣
scatt

=
V 3

(2π)9

∫ [
NksNk′s′ (Nk′′s′′ + 1)(Nk′′′s′′′ + 1)

−Nk′′s′′Nk′′′s′′′ (Nks + 1)(Nk′s′ + 1)
]
W (k,k

′ −→ k
′′
,k

′′′
)d3k

′
d3k

′′
d3k

′′′

(3.3.9)

Inserting this in (3.2.5) the Boltzmann equation assumes the form

vs(k).∇Nks =
V 3

(2π)9

∫ [
NksNk′s′ (Nk′′s′′ + 1)(Nk′′′s′′′ + 1)

−Nk′′s′′Nk′′′s′′′ (Nks + 1)(Nk′s′ + 1)
]
W (k,k

′ −→ k
′′
,k

′′′
)d3k

′
d3k

′′
d3k

′′′

(3.3.10)

The Boltzmann equation written in this form is a complicated integro-differential
equation which is excessively difficult to solve. In order to solve (3.3.10) we
approximate the scattering term by the relaxation time approximation

∂Nks

∂t

∣∣∣
scatt
≈ −N −N

τ(r,k)
(3.3.11)

where τ(r,k) is a relaxation time, which is the time needed to relax the non-
equilibrium system back to the equilibrium distribution.

The scattering of the carriers can be due to many processes that may coexist,
each having its own relaxation time. The total relaxation time can be obtained
from the individual relaxation times τi according to the Matthiessen rule
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1

τ
=
∑
i

1

τi
(3.3.12)

Therefore under the relaxation time approximation, the Boltzmann equation
takes the form

−vs(k).∇Nks +
N −N
τ(r,k)

= 0 (3.3.13)

3.4 Solution of the phonon Boltzmann equation

for bulk materials

We consider a bulk or infinite material with a temperature gradient applied across
it. The temperature gradient will cause the phonons in the material to be de-
viated from their equilibrium distribution so that they conduct heat along its
direction. If we assume that the temperature gradient is weak so that the devia-
tion from equilibrium is small then we can consider a solution to the Boltzmann
equation of the form (2.3.3).

Since the dimensions of the material extend to infinity the phonon distribution
function will not have any appreciable deviation due to spatial variation, however
it will have an implicit dependence on position through the spatially variable
temperature. As a result, we have

−v.∇N ≈ −v.∇T dN
dT

(3.4.1)

Where ∇T is the applied temperature gradient.

Under the relaxation time approximation the phonon deviation distribution func-
tion for bulk materials can then be immediately read off from the Boltzmann
equation (3.3.13)

Ñ = Rτ (3.4.2)

where we defined R = −v.∇T dN
dT

and τ is the total relaxation time obtained

from (3.3.12).

Thus, for bulk materials we have

Ñ = −v.∇T ~ω
kBT 2

e~ω/kBT

(e~ω/kBT − 1)2
τ (3.4.3)
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3.5 Solution of the the Boltzmann equation in

rectangular coordinates

A distribution function appropriate for thin films or rods with square cross-section
can be obtained by solving the phonon Boltzmann equation in rectangular coor-
dinates. We consider that a temperature gradient is applied along the z-direction
and the length of the film or rod is assumed to be very large along the direction
of the temperature gradient. Since the rod or film extends to infinity along the
direction of the temperature gradient the variation of the deviated distribution
function along that direction can be neglected . Thus if vx, vy, and vz are the
components of the phonon group velocity along the x, y, and z directions respec-
tively, the Boltzmann equation assumes the form

vx
∂Ñ

∂x
+ vy

∂Ñ

∂y
+ vz

∂T

∂z

dN

dT
+
Ñ

τ
= 0 (3.5.1)

This can be rewritten as

vx
∂Ñ

′

∂x
+ vy

∂Ñ
′

∂y
+
Ñ

′

τ
= 0 (3.5.2)

where Ñ = Ñ
′
+Rτ .

The subsidiary equations for solving (3.5.2) are

dx

vx
=
dy

vy
= −τ dÑ

′

Ñ ′
(3.5.3)

of which two independent solutions are

x

vx
− y

vy
= constant, and Ñ

′
ex/τvx = constant (3.5.4)

thus the general solution of (3.5.2) is

Ñ
′
= e−x/τvxφ

(
x

vx
− y

vy

)
= exp

{
− 1

τ

[
x

vx
+ ψ

(
x

vx
− y

vy

)]}
(3.5.5)

where φ and ψ are arbitrary functions of the velocities vx and vy.

3.6 Solution of the phonon Boltzmann equation

in cylindrical coordinates

Let us consider a cylinder of radius a directed along the z-axis. In order to
evaluate the phonon deviation in this geometry the Boltzmann equation must be
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solved in cylindrical coordinates (r, φ, z). Let v = (vr, vφ, vz) be the total phonon
group velocity, where vr, vφ, and vz are its components along the radial, Azimuthal
and z-directions respectively. The length of the cylinder is taken to be much larger
than its radius so that the cylinder can effectively be considered infinite in the
z-direction. A constant temperature gradient is applied along the axis of the
cylinder. The phonon distribution function can then be taken independent of the
angular variable φ due to the symmetry of the cylindrical rod, but will depend
on r and z due to the presence of the boundary and the applied temperature
gradient. Moreover, if we consider that the temperature gradient is too weak to
significantly displace the distribution function, the Boltzmann equation (3.3.13)
in cylindrical coordinates takes the form

∂Ñ
′

∂r
+
Ñ

′

τvr
= 0 (3.6.1)

where again Ñ = Ñ
′
+Rτ .

Whence, the phonon deviation can be written as

Ñ = Rτ

[
1 +G(vr)e

−r/τvr
]

(3.6.2)

In which G is an arbitrary function of the phonon radial velocity, to be deter-
mined by the boundary conditions.

Let G+ be the value of G for positive values of vr and G− for negative values.
A phonon approaching the axis of the cylinder will undergo a change of sign in
its radial velocity at r = 0. However, this change in sign in not physical but
rather a result of our convention for the sign of the velocity. Thus, we must have
G+ = G−. This can be satisfied if G is a function of the absolute value of vr i.e
G(|vr|).

A phonon reaching the boundary of the cylinder can either be reflected or diffuse
in a random direction depending on the surface roughness. A uniformly polished
(or smooth) surface will specularly reflect (elastically scatter) all phonons incident
upon it, whereas a completely rough surface will cause the phonons to diffuse
(inelastically scatter) in random directions. In the intermediate case i.e when the
boundary is partially elastic and partially inelastic, the effect of the boundary
can be studied with the help of a specularity parameter p which gives the fraction
of phonons that are specularly reflected by the boundary and is related to the
surface roughness.
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An approximate expression for the specularity parameter has been given by Zi-
man [19]

p = e−16πη
2/λ2 (3.6.3)

where η is the mean surface roughness and λ is the wavelength of the plane wave
normally incident to the surface.

Expression (3.6.3) was obtained by employing a treatment analogous to that of
the scattering of electromagnetic radiation by a rough surface.

Since an elastic scattering is just a reflection at the surface then if a phonon
approaches the boundary with velocity vr it will be reflected with velocity −vr at
the surface. On the other hand, inelastically scattered phonons will defuse in ran-
dom directions, which will cause them to lose their drift velocity and so that their
distribution function will be given by the equilibrium distribution function, and
therefore they will not contribute to the thermal current. Hence, the boundary
condition at r = a can be written as follows

N + Ñ(r = a,−vr) = p
[
N + Ñ(r = a, vr)

]
+ (1− p)N (3.6.4)

Inserting (3.6.2) in (3.6.4) we find

G(|vr|) = − 1− p
ea/τ |vr| − pe−a/τ |vr|

(3.6.5)

Therefore, the deviated distribution function for a cylinder is

Ñ = Rτ

[
1− 1− p

ea/τ |vr| − pe−a/τ |vr|
e−r/τvr

]
(3.6.6)

Note that in the limit a −→∞ we retrieve the bulk value for the deviation given
by Rτ .
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Chapter 4

Theory of lattice thermal
conductivity

Application of a temperature gradient in solids excites elementary excitations
such as free electrons and phonons, which conduct heat from the hotter to the
colder end of the material. In dielectrics and semi conductors almost all heat
is conducted by phonons. Heat conduction in solids is described by the lattice
thermal conductivity of the material. In this chapter we present the theory of
the lattice thermal conductivity based on the Boltzmann transport equation and
the relaxation time approximation. Moreover, we provide an expression for the
thermal conductivity of a cylindrical wire.

4.1 Thermal conductivity

When a finite temperature gradient is applied across a solid, we find that in the
steady state the rate of heat energy flow per unit area is given by the Fourier law

Q = −κ∇T (4.1.1)

where κ is the thermal conductivity. The heat currentQ can be found by summing
over contributions from all phonon modes as in (3.2.6)

Q =
1

V

∑
ks

~ω(ks)Nksvs(k)

=
1

V

∑
ks

~ω(ks)Ñksvs(k) (4.1.2)

where V is the volume of the solid, and the second equality in (4.1.2) is a result
of noting that only the deviation from the equilibrium distribution function con-
tributes to the thermal current.
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Combining (4.1.1) and (4.1.2) we find an expression for the thermal conductivity

κ = − 1

V |∇T |2
∑
ks

~ω(ks)Ñksvs.∇T (4.1.3)

Thus by using the appropriate expression for the deviated distribution function
Ñks the thermal conductivity can be evaluated for different geometries.

4.2 Scattering rates

In the harmonic approximation discussed in section 2.1 the lattice waves are de-
composed into normal modes which do not interact with each other. In this
approximation there will be no resistance to heat flow and therefore the thermal
conductivity will be infinite. However, real crystals do in fact have a finite thermal
conductivity as a result of phonon scattering. In dielectrics phonons primarily
scatter with themselves. Crystals may also contain defects and impurities which
result in phonon-impurity scattering. In addition, the finite size of small crystals
inevitably leads to boundary scattering. These phonon scattering mechanisms
result in a thermal resistance, and ultimately a finite thermal conductivity. Thus
the study of phonon scattering mechanisms is crucial in the theory of lattice ther-
mal conductivity.

If we consider the third order term of the potential (2.1.1) as a perturbation to the
original Hamiltonian i.e H

′ ∼ x3, and by using Fermi’s golden rule we find that
this term acts as a mechanism for two phonons to merge into a third or for one to
split into two. Such processes are called three-phonon processes and are often re-
ferred to as anharmonic processes as they result from the deviation of the crystal
Hamiltonian from the Harmonic approximation. Higher order terms in the crys-
tal Hamiltonian result in four phonon processes, but since the anharmonicity of
the Hamiltonian rises at higher temperatures, at relatively low temperatures it is
sufficient to consider the expansion of the crystal potential up to third order only.

For three-phonon processes energy conservation gives

hν + hν
′
= hν

′′
(4.2.1)

where two phonons of frequency ν and ν
′

merge to form a phonon of frequency
ν

′′
, or the phonon with frequency ν

′′
splits into the other two phonons.

Momentum conservation on the other hand takes the following form

k + k
′ − k

′′
= G (4.2.2)
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where G is a reciprocal lattice vector and k, k
′
, and k

′′
are the wave vectors of

the three phonons. If (k + k
′
) falls within the first Brillouin zone then G = 0,

otherwise G 6= 0. This is due to the fact that the allowable wave vector for a
lattice vibration is confined to the first Brillouin zone. For G = 0 the phonon
scattering process is called a Normal process (N -processes) and for G 6= 0 it is
called an Umklapp process (U -processes). If the U -processes are not considered
the thermal conductivity of an infinite crystal would still be infinite because N -
processes conserve both the energy and momentum, thus causing no resistance.
In U -processes on the other hand, the reciprocal lattice vector present changes
the net direction of phonon propagation which creates a thermal resistance to
the heat flow.

Approximate expressions for the scattering relaxation times in terms of frequency
have been found by [16]. For the three phonon U -processes a commonly used
expression is [3]

τ−1U = BUT
3ω2 (4.2.3)

where

BU =
~γ2

Mv2θD
e−θD/cT (4.2.4)

Here θD is the Debye temperature, v is the group velocity, M is the average mass
of an atom in the solid, and γ is the Grüneisen parameter, and c is a constant
relating to the material.

The Grüneisen parameter can be obtained from the heat capacity at constant

volume C(ks) and the single mode Grüneisen parameter γks = − V

ω(ks)

∂ω(ks)

∂V
using the definition

γ =

∑
ks

γks × C(ks)∑
ks

C(ks)
(4.2.5)

For N -processes a similar expression is used [3]

τ−1N = BNω
fT g (4.2.6)

with

BN =

(
kB
~

)f ~γ2V (f+g−2)/3
a

Mvf+g
(4.2.7)
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in which Va is the volume per atom, and the constants (f, g) may take the values
(1, 3) or (1, 4).

The relaxation time due to impurity and defect scattering is highly frequency
dependent and is usually written as (cf. A.1)

τ−1I = Aω4 (4.2.8)

where A is a temperature independent constant.

Boundary scattering is also usually included by making use of the so called
Casimir limit [25] which gives the boundary scattering relaxation time in the
following form

τ−1B = F
v

L
(4.2.9)

where v is the phonon group velocity, L is a characteristic length of the material,
and F is a fitting parameter.

The total relaxation time is thus obtained by combining these expressions as in
(3.3.12). We also mention that in addition to the boundary scattering relax-
ation time we include the effect of the boundary in finite structures within the
expression of the distribution function as we saw in the previous chapter.

4.3 Thermal conductivity in bulk materials

As we have seen in section 4.1 the evaluation of the lattice thermal conductivity
requires the knowledge of the deviated phonon distribution function Ñ .

Using expression (3.4.3) for the deviated distribution function in (4.1.3) and con-
verting the summation over the wavevectors into integration we obtain the ther-
mal conductivity of bulk materials

κbulk =
1

(2π)3

∑
s

∫
4πk2s

[∫
τv2s

~2ω2
s

kBT 2

e~ωs/kBT

(e~ωs/kBT − 1)2
cos2 θ

dΩ

4π

]
dks (4.3.1)

where θ is the angle between the thermal gradient and the phonon group velocity,
and dΩ = sin θdθdφ is the solid angle in the direction of the group velocity.

Thus, we have
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κbulk =
1

(2π)3

∑
s

∫
4πk2s

[∫ 2π

0

dφ

∫ π

0

τv2s
~2ω2

s

kBT 2

e~ωs/kBT

(e~ωs/kBT − 1)2
cos2 θ

sin θdθ

4π

]
dks

=
1

3

∑
s

1

2π2v3s

∫ ωD

0

[
τv2s

~2ω2
s

kBT 2

e~ωs/kBT

(e~ωs/kBT − 1)2

]
ω2
sdωs (4.3.2)

where ωD is the Debye frequency, and a linear dispersion relation was used.

Hence,

κbulk =
1

3

∑
s

∫
τv2sC(ωs)dωs (4.3.3)

where

C(ωs) = ~ωsD(ωs)
dN

dT
(4.3.4)

is the phonon specific heat, and D(ω) is the density of states.

If τ is frequency independent then we arrive at the kinetic theory expression of
thermal conductivity

κ =
1

3
CvΛ (4.3.5)

where Λ = τv is the phonon mean free path.

Defining x = ~ω/kBT , then (4.3.2) then takes the form

κBulk =
1

3

∑
s

kB
2π2vs

(
kBT

~

)3 ∫ θD/T

0

τ(x)
x4ex

(ex − 1)2
dx (4.3.6)

The total relaxation time in (4.3.6) includes the phonon-phonon, phonon-impurity,
and phonon boundary scattering.

At low temperatures the thermal conductivity is dominated by boundary scatter-
ing and follows the T 3 dependence of the specific heat. As temperatures increase
boundary scattering becomes less important and the thermal conductivity in-
creases until it reaches a maximum at intermediate temperatures, after which
it starts to decrease. The decrease is brought upon by the enhanced impurity
and phonon-phonon scattering. As temperatures increase further phonon-phonon
scattering becomes predominant, and the thermal conductivity is further reduced
and tends to a constant value at very high temperatures.
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4.4 Expression for the thermal conductivity of

a cylindrical wire

The thermal conductivity of cylindrical wires may be evaluated by using expres-
sion (3.6.6), which we derived for the cylindrical geometry, in (4.1.3) and aver-
aging over the wire cross-section. Since the area of an annulus is proportional to
rdr then the thermal conductivity of the wire is given by

κ(T ) =
2kB
V a2

∑
ks

{(
~ωs(k)

kBT

)2
e~ωs(k)/kBT

(e~ωs(k)/kBT − 1)2
τv2(ks)×

∫ a

0

[(
1 +G(|v|)e−r/τv

)]
rdr

}
(4.4.1)

Carrying out the integration in r and plugging in the value of G we get

κ(T ) =
kB
V

∑
ks

{(
~ωs(k)

kBT

)2
e~ωs(k)/kBT

(e~ωs(k)/kBT − 1)2
τv2(ks)×[

1− 2(1− p)

ξ2
(
eξ − pe−ξ

)(1−
(
1 + ξ

)
e−ξ
)]}

(4.4.2)

in which ξ = a/Λ is the non-dimensional wire thickness and Λ is the phonon
mean free path.

We note that the first term in the square brackets of (4.4.2) gives the bulk ther-
mal conductivity, while the second is due to the size effects in the wire. The
minus sign means that the thermal conductivity of the wire will be diminished
with respect to its bulk value. In the case of total specular reflection i.e p = 1
we retrieve the bulk expression for the thermal conductivity as expected, since in
this case the phonons change direction only in the r-direction. As a result the flux
in the z-direction remains unchanged. However, the phonon group velocities in
the NW are lower than that of their bulk counterparts and therefore, the conduc-
tance of a completely polished surface NW will still be lower than that of the bulk.

The magnitude of the wavevector in (4.4.2) is given by (2.10.6) and the summation
can be changed into a summation over the wavevector components kr while an
integration over kz is employed, since the wire may be considered infinite in the
z-direction so that the number of modes is large
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κ(T ) =
kB
V

∑
j

∑
kr

∫ π/d

−π/d
fj(ξ)

{(
~ωj
kBT

)2
e~ωj/kBT

(e~ωj/kBT − 1)2
Λjvj

dkz
(2π)

L

}
(4.4.3)

Here d is the interatomic spacing so that the integration is taken over the entire
Brillouin zone, L is the length of the wire, vj is the averaged phonon group
velocity of the jth branch, and

fj(ξ) =

[
1− 2(1− p)

ξ2
(
eξ − pe−ξ

)(1−
(
1 + ξ

)
e−ξ
)]

(4.4.4)

The allowed discretized values of the wavevector components kr are determined
by either (2.10.14) for the clamped boundary condition or (2.10.17) for the free
surface boundary condition.

The number of points in k-space may be estimated by the number of atoms along
the radial and azimuthal directions.

The atoms in the Azimuthal direction are considered to lie on a chain lattice of
length 2πa separated by the mean interatomic spacing d, so that the Azimuthal
number n may run from 0 up to 2πa/d. Similarly the atoms vibrating in the
radial direction can be visualized as being located on a linear chain of length 2a,
thus the number of zeros for each value of n is estimated to be 2a/d.

The integrand in (4.4.3) is an even function of kz so that the integration can be
taken as twice that from 0 to π/d, and using kdk = kzdkz we find

κ(T ) =
kB
π2a2

∑
j

∑
kr

∫ π/d

0

fj(ξ)

(
~ωj
kBT

)2

×

e~ωj/kBT

(e~ωj/kBT − 1)2
Λjvj

kdk√
k2 − k2r

(4.4.5)

Let x = ~kcj/kBT , where cj is an averaged phase velocity, then

κ(T ) =
kB
π2a2

∑
j

∑
kr

(
kBT

~cj

)∫ xmax

xmin

fj(ξ)×

x3ex

(ex − 1)2
Λjvj

dx√
x2 −

(
~cj
kBT

)2

k2r

(4.4.6)

48



and the limits of integration are given by

xmin =
~cj
kBT

kr, xmax =
~cj
kBT

√
(π/d)2 + k2r (4.4.7)

In order to evaluate (4.4.6) we must provide an expression for the total relaxation
time τ (or equivalently the mean free path Λ). This can be done by combining
the mass difference scattering relaxation time (A.1.22) and the U -processes re-
laxation time (4.2.3) along with a boundary scattering relaxation rate given by
(1− p)vj/2(1 + p)a using the Matthessien rule:

τ−1 = τ−1md + τ−1U + τ−1B

= Ex4 +Dx2 +
(1− p)vj
2(1 + p)a

(4.4.8)

where,

E =
ΓmdVu
4πv3j

(
kBT

~

)4

, and D = BUT
2

(
kBT

~

)2

(4.4.9)
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Chapter 5

Results and discussion

In this chapter we present calculations of thermal conductivity of Silicon (Si)
NWs based on the model discussed in the previous chapters. The results are
analyzed and compared to experimental measurements of thermal conductivity
of bulk and individual Si NWs found in the literature.

5.1 Thermal conductivity of clamped surface Si

nanowires

The thermal conductivity of a cylindrical NW can now be obtained by numer-
ically evaluating the integral in (4.4.6) for each phonon branch and summing
over the contributions of all the branches. It is found that the contribution to
the thermal conductivity decreases as we go higher in the dispersion branches
due to the flattening of their slopes, as can be seen in the dispersion curves of a
cylindrical solid presented in chapter 2. Hence, the summation over the phonon
branches in (4.4.6) converges and the main contribution comes from the first few
lowest frequency branches in each case. In addition, it is found that the main
contribution to the thermal conductivity is from the longitudinal and torsional
vibration modes as shown in Figure 5.1.

In numerical calculations the averaged interatomic spacing d in Silicon is taken
to be 5.431 Å and an averaged value of 355.3 K is given for the Debye temper-
ature based on experimental measurements reported by [3]. In addiction, the
Grüneisen parameter is not considered to deviate from its bulk value since it is a
material property and a mean value of 0.77 is used [3]. Normal phonon processes
are not included in the calculations since they do not create direct resistance
to the thermal current and are dominated by boundary scattering. The aver-
aged phonon velocities are found from the dispersion curves of an elastic cylinder
found in chapter 2. As we have seen from Figure 2.5 the group velocity of con-
fined phonons is much lower than that of the bulk. Consequently, the thermal
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Figure 5.1: Contributions of the longitudinal and torsional (n = 0) modes to the
thermal conductivity along with that of the flexural modes (n = 1) in a 5 nm
radius clamped NW with p = 0.5.

conductivity of the NWs is expected to be substantially reduced in comparison
to the bulk.

The specularity parameter is considered to be a constant which can take values
from 0 to 1. In Figure 5.2 the thermal conductivity curves of clamped surface
NWs for an intermediate value of 0.5 are presented. The size effect is apparent
form the figure and as expected the thermal conductivity of the NWs is sig-
nificantly low and decreases with decreasing wire radius. The decrease in the
thermal conductivity from the 11 nm NW to the 5 nm NW can be attributed to
the decrease in the number of vibration modes as the wire cross-section decreases.

The trend followed by the curves is as follows: at low temperatures starting
from 15 K the conductivity is very low due to low phonon group velocities and
enhanced boundary and confinement effects, as the temperature increases the
thermal conductivity increases and reaches a maximum of about 14 W/m.K at
around 540 K for the clamped 11 nm radius NW, while it reaches a maximum
of about 6 W/m.K at around 700 K for the 5 nm radius NW. This is in sharp
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Figure 5.2: Thermal conductivity curves for clamped surface Si NWs of radii 5
and 11 nm given by (4.4.6) with p = 0.5.

contrast to the peak of bulk Si that occurs at about 25 K. The peaks seem to
shift to higher temperatures as the wire diameter is decreased. This suggests that
the increase of phonon boundary scattering dominates over the phonon-phonon
umklapp scattering up to higher and higher temperatures as the wire diameter
is decreased. As the temperature increases further phonon-phonon and impurity
scattering become more efficient thus causing the decrease at high temperatures.

It is interesting to show the behavior of the thermal conductivity in bulk silicon
as compared to that in a clamped silicon NW. This is illustrated in Figure 5.3
where measurements on thermal conductivity of bulk silicon reported in [3] are
compared to the results obtained from the present calculation for a clamped Si
NW of diameter 22 nm based on (4.4.6) with specularity p = 0.2. It is seen from
Figure 5.3 that the thermal conductivity of bulk Si is much higher than that
of the NW over the entire temperature range indicated. In addition, the large
shift between the peaks of each curve is also clear from the figure. The results
illustrated in Figures 5.2 and 5.3 show a strong dependence of the thermal con-
ductivity on the NW diameter or cross-section. This is ascribed to the size effects
that arise in nanostructures which leads to increased phonon-boundary scatter-
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Figure 5.3: Thermal conductivity of a clamped 22 nm diameter Si NW based on
the present model calculations (with p=0.2) with and without U -processes, com-
pared with the thermal conductivity of bulk Si from experimental data reported
by Morelli et al [3].

ing. The decrease in the thermal conductivity in the NW as compared to the
bulk might also be a result of phonon spectrum modification which was modeled
by using confined phonon velocities and a spatially dpendent phonon distribu-
tion function, as detailed in sections 2.8, 2.10, and 3.6. At high temperatures the
NW thermal conductivity is expected to increase closer to that of the bulk due
to the reduction of phonon-boundary scattering, in addition to the increase of
the confined phonon group velocities in this temperature regime (cf. Figure 2.5).
Nevertheless, the thermal conductivity of the NW is still much lower than that
of the bulk at high temperatures. This is due to the anharmonic phonon-phonon
processes which lead to a reduction of the phonon mean free path at high temper-
atures (see the surve with U -processes in Figure 5.3). It is however emphasized
that the thermal conductivity of the NW remains lower than that of the bulk even
at very high temperatures simply because of the lower group velocities in the NW.

The effect of surface is investigated with the help of the specularity parameter p
introduced in section 3.6. Figure 5.4 shows several results which are summarized
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Figure 5.4: Variation of the thermal conductivity of clamped surface NWs of
radii 5 and 11 nm with respect to the specularity parameter p.

as follows: (i) As the surface roughness increases (i.e p decreases), the thermal
conductivity decreases, since a larger fraction of phonons undergoes diffuse scat-
tering at the wire surface, resulting in slow thermal transport. This is in contrast
to the case of a polished surface, where the incident phonons are simply reflected
creating no resistance to the thermal current, and thus enabling a higher thermal
conductivity. The effect of phonon diffuse scattering on the thermal conductiv-
ity is apparent from (4.4.2) since as the specularity parameter tends to zero the
second term in the square brackets becomes a large negative value resulting in
a decrease in κ(T ). (ii) The figure also shows that the peaks of the thermal
conductivity shift to lower temperatures with increasing p due to the decrease in
phonon-boundary scattering. For example, for a NW with radius 11 nm (Figure
5.4 right panel), the peaks occur at 650 K (p = 0), 620 K (p = 0.2), and 540 K
(p = 0.5). Similarly, the same shifting is observed in the left panel of Figure 5.4.
Therefore, we may conclude that as the surface roughness is reduced the peaks in
the thermal conductivity shift to lower temperatures closer to that of the bulk.

5.2 Comparison with experimental measurements

Measurements on thermal conductivity of individual Si NWs have been reported
by Li et al [4]. The Si NWs were synthesized by the vapor-liquid-solid method,
in which Au clusters were used as a solvent at high temperature. The Si and
Au formed a liquid alloy and when the alloy became supersaturated with Si, Si
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Figure 5.5: High-resolution TEM image of a 22 nm single crystal Si NW. The inset
is a selected area electron diffraction pattern of the NW. Reproduced from [4].

NWs grew by precipitation at the liquid-solid interface. Using a high-resolution
transmission electron microscopy (TEM) investigation the authors were able to
determine that the Si NWs were single crystalline (see Figure 5.5) and grew along
the (111) direction. The wire diameters fell in the range of 10-200 nm and the
lengths were several microns.

The synthesized NWs were then drop cast onto suspended heater devices so that
individual Si NWs thermally connected the two devices. The heater devices
consisted of two suspended microfabricated microstructures. The suspended mi-
crostructures consisted of two silicon nitride (SiNx) membranes. A thin Pt resis-
tance coil and a separate Pt electrode were patterned onto each membrane, each
serving as a heater to increase the temperature of the suspended island, as well
as a resistance thermometer to measure the temperature of each island.

By applying a bias voltage to one of the resistors the authors were able to in-
crease the temperature of one of the heaters above the thermal bath temperature
through Joule heating. Under steady state, part of the heat flowed through the
NWs to the other resistor, raising its temperature. By solving the heat transfer
equations of the system, the authors were able to relate the temperatures of the
resistors to the conductance of the wires and the suspending legs along with the
electrical power of the heating resistor and the total electrical lead resistance of
Pt lines that connects the heater coil. The thermal conductivity of the bridg-
ing NW was then estimated from the slope of the measured temperature versus
power after considering the diameter and length of the wires. All the measure-
ments were carried out at a high vacuum level of 2× 10−6 Torr and temperature
ranging up to 320 K.
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Figure 5.6: Comparison of the thermal conductivity of a clamped 22 nm diameter
Si NW based on the present model with experimental data on a Si NW of the
same diameter [4] along with bulk Silicon [3].

The authors presented thermal conductivity measurements for NWs of diameters
22, 37, 56, and 115 nm. The thermal conductivity was found to be more than two
orders of magnitude lower than the bulk value. In addition, the conductance was
shown to decrease with decreasing wire diameter. The authors attributed this
strong diameter dependence of the thermal conductivity in the NWs to increased
phonon-boundary scattering with decreasing wire diameter.

The results of the measurements clearly indicate that enhanced boundary scat-
tering has a strong effect on phonon transport in Si NWs which justifies the
reasoning behind the details of our model.

As can be seen from Figure 5.5 the synthesized Si NWs are enclosed by a thin
oxide layer which serves to clamp the wire. Therefore, these measurements may
be compared to the results of our model on clamped Si NWs. Such a comparison
between the model results on clamped 22 nm diameter Si NWs with experimental
measurements is shown in Figure 5.6. The agreement with the experimental data
is evident from the figure. It can be seen that at low temperatures the measured
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Figure 5.7: Comparison of thermal conductivity curves with and without N -
processes obtained from the present model for a clamped 22 nm diameter Si NW,
along with experimental measurements reported in [4].

thermal conductivity follows the trend of the p = 0.5 curve, while it follows the
trend of the p = 0 curve at high temperatures and the p = 0.2 curve at inter-
mediate temperatures. This is of course expected, since the surface roughness
depends on the phonon wavelength, which in turn is temperature dependent.
For long wavelengths the surface will look perfectly smooth, whereas for shorter
wavelengths the same surface will appear rough. Thus at low temperatures the
surface will appear to be perfectly polished, as a result the experimental curve
agrees with the p = 0.5 curve in this range. At higher temperatures the phonon
wavelengths become shorter which results in the agreement of the experimental
curve with the p = 0 curve.

It is worth noting that the measured thermal conductivity of the 22 nm diame-
ter NW did not exhibit a peak within the experimental temperature range. On
the other hand, the authors found that for the 37, 56, and 115 nm diameter
wires, thermal conductivities reached peak values at around 210, 160, and 130
K, respectively. The model calculations have shown that the thermal conductiv-
ity of the 22 nm diameter NW peaks in the temperature range 540-650 K and
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Figure 5.8: Comparison between model results on an 11 nm radii clamped NW
with p = 0.98 and the experimental data at low temperatures.

that of the 10 nm nanowire at around 700 with the U -processes included (cf.
section 5.1). Thus the model results are in agreement with the experimentally
observed behavior. On the other hand, excluding the U -processes in the model
calculations resulted in no peak in the thermal conductivity even up to 1000
K. As there was no peak observed in the experimental measurements on the 22
nm diameter NW, it might be that for NWs with diameters equal to or smaller
than 22 nm the thermal transport becomes ballistic. That is, the phonons no
longer exhibit phonon-phonon scattering and travel in almost straight lines un-
til they are scattered by the boundary. However, the lack of experimental data
at high temperatures means that the exact behavior cannot be accurately pre-
dicted. As discussed in section 5.1 the shift of the peak to higher temperatures
is due to phonon boundary scattering dominating phonon-phonon scattering in
the NW. This suggests that phonon-phonon scattering, and especially normal
phonon-phonon scattering, does not play an important role in governing thermal
transport in the wires, and thus N -processes may be neglected. To illustrate this
point, calculations were carried out with N -processes included using the relax-
ation time (4.2.6) with (f, g) = (1, 3). The results are shown in Figure 5.7. It
can be seen from the figure that with the N -processes included the conductivity
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peaks at a much lower temperature near 280 K. In addition, the trend of the mea-
sured thermal conductivity agrees better with the curve that excludes the normal
processes. It is also apparent from the figure that the model results lead to an
overestimation of phonon boundary scattering at very low temperatures since the
model curves are much lower than that of the measurements in this temperature
range. However, this discrepancy between the model calculations and the ex-
perimental measurements may be attributed to experimental errors. It should
be noted that the measured thermal conductivity includes the thermal conduc-
tance of the junction between the NW and the suspended islands in addition to
the intrinsic thermal conductance of the NW itself. Thus the measured thermal
conductivity at low temperatures may be much lower than reported. However,
the authors estimated the thermal conductance of the junctions with the carbon
deposition, and found that the junction contribution is less than 15% of the total
thermal transport barrier. Another source of measurement error might be due
to heat transfer between the two membranes via radiation and air conduction,
in addition to a 0.3 nm uncertainty in the measurement of the NW diameters,
which were measured using a tapping mode atomic force microscope [35]. Never-
theless, as can be seen from Figure 5.8, a better agreement with the experimental
measurements at low temperatures may be obtained by noting that at very low
temperatures the surface appears to be perfectly smooth so that a specularity
parameter closer to 1 must be used. A better fit with the experimental data
over the entire temperature range may be obtained by using the wavelength de-
pendent expression (3.6.3) for the specularity parameter. However, in this case
uncertainty will arise regarding the mean surface roughness since the actual value
cannot be accurately measured and thus will have to be estimated or fitted to the
experimental data. This in turn, will only serve to complicate the computation
without providing any further information.

5.3 Thermal conductivity of free surface NWs

and thermal current modulation

Making use of the dispersion relations of a free surface cylinder found in section
2.9 along with the velocity averaging method detailed in section 2.8 and summing
over the wavevector components given by (2.10.17), we may obtain the thermal
conductivity of a free surface NW by means of (4.4.6). The thermal conductivity
of a free surface NW exhibits the same characteristics as that of clamped cylin-
drical NWs with regards to curve trend. The curve peaks also seemed to shift to
lower temperatures as the specularity parameter was increased, as can be seen
from Figure 5.9, just like the clamped surface NWs (cf. section 5.1). The peaks
also shift to higher temperatures as the wire cross-section is decreased.
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Figure 5.9: Variation of the thermal conductivity of free surface NWs of radii 5
and 11 nm with respect to the specularity parameter p.

An outstanding difference between the free surface and clamped NWs is that the
thermal conductivity of a free surface NW was observed to be larger than that
of a clamped NW. This effect seems to be enhanced as the NW cross-section is
reduced which is evident in Figure 5.10. The thermal conductivity of the free
surface 11 nm radius NW is slightly higher than that of the clamped NW. On the
other hand, for the 5 nm radius NW the thermal conductivity for the free sur-
face boundary condition is significantly larger than that of the camped boundary
condition and almost doubles that of a clamped NW at 300 K, representing a
100% increase.

The difference between the thermal conductivities of the clamped and free surface
NWs may be ascribed to phonon spectrum modification due to the changing sur-
face conditions. It is found that the number of dispersion branches increases for
the free surface boundary condition. In addition, the branches of the free surface
NW shift to lower frequencies, thus giving a greater contribution to the thermal
conductivity. It can also be seen from the wavevector components (2.10.14) and
(2.10.17) that the phonon frequencies in the case of the free surface boundary
condition (Neumann) are lower than that of the clamped boundary condition
(Dirichlet), since with the exception of the case were the order of the Bessel
functions is 0 the zeros of the derivative of the Bessel functions are smaller than
that of the Bessel functions themselves. The fact that the phonon frequencies are
higher for the clamped boundary conditions results in the observed lowering in the
thermal conductivity. This can be seen from the expression of the thermal con-
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Figure 5.10: Comparison between the thermal conductivity of clamped and free
surface NWs of radii 5 and 11 nm.

ductivity, since the integrand in (4.4.6) is dominated by the term x3ex/(ex− 1)2,
and for low temperatures this term tends to x3e−x, thus the contribution of the
high frequency branches to the thermal conductivity decays exponentially. This
phenomenon is known as phonon softening, since as the phonons shift to lower
energies it becomes easier to excite atomic vibrations in the material resulting in
enhanced thermal conduction. On the other hand, the clamped surface bound-
ary condition leads to phonon hardening resulting in a decrease in the thermal
conductivity. A similar effect was observed for the specific heat of clamped and
free surace NWs at very low temperatures [51], however, the enhancment of the
thermal conductivity in a free surface NW occurs over the entire temperature
range which makes it more practical for application purposes. It can also be
seen from Figure 5.10 that this phenomenon is enhanced as the wire diameter is
decreased, as a result of the increase in the surface to volume ratio. We remark
that the variation between the thermal conductivities of clamped and free Si
NWs could potentially find innovative applications. Tuning the surface proper-
ties and boundary conditions of the NWs can be used for engineering the thermal
and electrical properties of such nanostructures. For instance, the NW boundary
conditions may be used to modulate the thermal current flowing in the NWs. As
the thermal current is proportional to the thermal conductivity, the significant
difference between the thermal conductivity of a small diameter free NW and that
of a clamped surface NW will cause a large difference in their thermal currents.
Therefore, by successively clamping and releasing a small diameter NW it may be
possible to modulate the thermal current, effectively creating an alternating heat
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Figure 5.11: Schematic representation of a practical implementation of free and
clamped nanowire boundary conditions using a Piezoelectric cladding material
controlled via an external electric field.

current through the wires. The suggested method for thermal current modulation
has the advantage that it is relatively simple to implement experimentally. For
example, a thin Si NW may be embedded in a nanotube made of a piezoelectric
material, such as quartz or aluminum nitride, so that when an external electric
field is applied the piezoelectric nanotube clenches creating a clamping effect on
the surface of the Si NW. An alternating external electric field thus allows for
alternating between a free and clamped boundary, leading to thermal current
modulation. Figure 5.11 shows a schematic representation of such a system. The
modulation frequency of the external electric field can also be easily controlled,
leading to a modulation of the thermal current with a controllable frequency.
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Chapter 6

Conclusion

In this thesis we presented an analytical model for the calculation of lattice ther-
mal conductivity of cylindrical nanowires (NWs). The model is based on the
solution of the Boltzmann equation under the relaxation time approximation in
cylindrical geometry. The objectives of our study were to interpret existing exper-
imental measurements on thermal conductivity of Silicon (Si) NWs, and to inves-
tigate the influence of various surface effects on the thermal conductivity in NWs.
Si NWs with clamped and free surface boundary conditions were considered. The
dispersion relations for the clamped and free surface cylinders of diameters 10 and
22 nm were found from elasticity theory, as detailed in chapter 2. It is found that
the dispersion relations consist of several branches corresponding to the various
solutions of the frequency equation governing the modes of vibration of the wire.
Confined phonon group velocities were obtained from the dispersion relations by
employing a Boltzmann weights averaging scheme as outlined in section 2.7. It
is found that the phonon group velocities are temperature dependent, and are
much lower than that of the bulk. The effect of the wire borders was included
in the expression of the deviated phonon distribution function. To account for
elastic and inelastic phonon scattering at the wire surface a specularity parameter
p was introduced in the expression of the deviated phonon distribution function
(cf. section 3.6) describing the NW surface roughness. Phonon-phonon Umklapp
scattering and phonon-impurity scattering along with boundary scattering were
included in the relaxation time approximation using the Mattheisen rule. The
radial wavevector components for free and clamped surface boundary conditions
were found by solving the wave equation in cylindrical coordinates as detailed in
section 2.10. The discrete radial wavevector components where summed over in
the expression of the NW thermal conductivity, while integration over the axial
wavevector components was employed (cf. section 4.4).

To assess the reliability of the developed model, we calculated the thermal con-
ductivity of a clamped Si NW of 22 nm diameter and compared the results to
reported experimental data on thermal conductivity of a 22 nm Si NW with
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an approximately 1 nm silicon oxide layer deposited on the surface (cf. Figure
5.5) which makes the surface clamped. It is found that the results of our model
are in excellent agreement with the experimental data (see Figure 5.6). At low
temperatures the experimentally measured thermal conductivity agrees with the
model results for specularity parameter p close to 1, while it agrees with that
of specularity p = 0 at high temperatures, and at intermediate temperatures it
agrees well with that of specularity equal to 0.2. This is attributed to the fact
that the surface roughness is dependent on the phonon wavelength which varies
with temperature (see section 5.2).

The calculated thermal conductivity of the NWs is found to be more than two
orders of magnitude lower than that of bulk silicon. The large drop in the ther-
mal conductivity from its bulk value is ascribed to enhanced phonon boundary
scattering and phonon spectrum modification in the NWs. Moreover, the thermal
conductivity of the NWs peaks at much higher temperatures than in the bulk
suggesting that phonon boundary scattering dominates other scattering mecha-
nisms to much higher temperatures in nanostructures. To illustrate this point
phonon-phonon processes were enhanced by adding normal phonon-phonon pro-
cesses. As expected the calculations with the N -processes included yielded a
peak at much lower temperatures near 280 K. However, the calculations show
that the inclusion of the N -processes does not yield the correct trend of the NW
thermal conductivity. This suggests that normal phonon-phonon processes do
not play an important role in governing thermal transport in nanostructures and
may be neglected. As a result, thermal transport in NWs tends to the ballistic
regime in which phonons move in almost straight lines before being scattered
by the boundary. The effect of surface roughness was also apparent from the
model results. The calculated thermal conductivities decreased with increasing
surface roughness as expected, since increased surface roughness serves to increase
phonon diffuse scattering at the surface. In addition, the thermal conductivity
peaks were observed to shift to lower temperatures as the surface roughness was
reduced. The measured thermal conductivity for the 22 nm diameter NW, did
not exhibit a peak within the experimental temperature range. The model re-
sults showed that the thermal conductivity of the 22 nm diameter NW peaks in
the temperature range between 540 and 650 K and the peak occurs at higher
temperatures for the 10 nm wire, which is in agreement with the experimentally
reported behavior.

A notable result of the model calculations is that the thermal conductance of a
free surface NW is larger than that of a clamped NW. Clamping of the surface
leads to phonon hardening (i.e the shifting of the dispersion branches to higher
frequencies) resulting in a lower contribution to the thermal conductivity. The
exact opposite occurs in the case of the free surface NWs. The thermal conduc-
tivity of a 22 nm diameter free surface NW was observed to be slightly higher
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than that of the clamped NW. On the other hand, the thermal conductivity of
the free surface 10 nm diameter NW was observed to almost double that of the
clamped surface NW. The effect was notably enhanced in 10 nm NWs due to the
increase in the surface to volume ratio.

The naturally low thermal conductivity of NWs could find applications in ther-
moelectric devices. The efficiency of thermoelectric devices depends on the ther-
moelectric figure of merit ZT = S2T/ρκ, where S is the Seebeck coefficient, ρ is
the electrical resistivity, and κ and T are the thermal conductivity and absolute
temperature. Hence, due to their low thermal conductivity it is expected that
NWs would make highly efficient thermoelectric devices. Moreover, the strong
dependence of the thermal conductivity in NWs on cross-section and its sensitiv-
ity to the surface roughness suggests that their thermal and electrical properties
may be tuned through clever engineering of the wire surface. Measurements on
thermal conductivity of electroless etched Si NWs [52] showed that the thermal
conductivity of these rough NWs was drastically reduced in comparison to that
of Si NWs that were synthesized by the VLS method. The authors showed that
it is possible to achieve ZT ≈ 0.6 at room temperature in etched Si NWs of 50
nm diameter, which is three orders of magnitude larger than that of bulk Si. The
authors argue that with optimized doping, diameter reduction, and roughness
control, the ZT is likely to rise even higher.

Further, the model results show that it might be possible to achieve thermal cur-
rent modulation through the manipulation of the surface boundary conditions.
The large difference between the thermal conductivities of a small diameter free
surface NW and that of a clamped surface may be exploited to cause variations
in the NW thermal current. The thermal current is proportional to the material
thermal conductivity, so that any changes in the thermal conductivity will result
in a variation of the thermal current. The bulk of energy in device components is
carried by electrical currents. But, in fact a large fraction of the carried energy is
always lost through Joule heating effects. Achieving control of the thermal cur-
rent thus could represent a huge leap in improving the efficiency of these devices,
and will be essential in creating thermal technological devices. Manipulation of
the surface boundary conditions of NWs could be a viable way to achieve this
task. The thermal current may be modulated and controlled by successively
clamping and unclamping the NW surface. In section 5.3 we proposed a practi-
cal system for the implementation of thermal current modulation in NWs using
a Piezoelectric cladding material (see Figure 5.11). According to the results of
our model it is expected that future experimental study of the effects of surface
conditions on the thermal conductivity of small diameter NWs (10 nm or less)
will be an important step in realizing thermal current modulation and developing
efficient thermal technological devices.
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As a continuation of this work, an important exercise would be to investigate
thermal transport in NWs by energy carriers other than pure phonon modes. A
promising candidate for such an investigation are surface phonon-polariton modes
which have been shown by Chen et al [53] to enhance the thermal conductance
in thin films. The increase of thermal conductivity due to these modes is largly
attributed to their long propagation lengths and mean free paths. Therefore, the
study of heat conduction due to these modes in NWs may provide valuable insight
into other forms of thermal current modulation and energy transfer enhancement.
The model here presented may be easily modified to include the contribution of
these modes.
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Appendix A

Appendix

A.1 Derivation of the relaxation time due to im-

purity scattering

In order to derive the scattering rate due to mass difference scattering from (3.3.1)
we must start by writing an expression for the crystal Hamiltonian. The harmonic
part of the Hamiltonian can be written in the following canonical form in terms
of creation and annihilation operators [2]:

Hharm =
∑
ks

~ω(ks)(a†ksaks + 1/2) (A.1.1)

the creation and annihilation operators a†ks and aks satisfy the relations

[
aks, a

†
k′s′

]
= δk,k′δs,s′ Î

a†ksΨNks
=
√
Nks + 1ΨNks+1

aksΨNks
=
√
NksΨNks−1

a†ksaksΨNks
= NksΨNks

(A.1.2)

where ΨNks
are eigenstates of the Hamiltonian (A.1.1). Thus in this formalism

the operator a†ksaks is just the phonon number operator.

One way to study impurity scattering is to consider that the impurities are sub-
stantial atoms of different mass than the atoms making up the solid. Hence the
solid Hamiltonian can be written in the following way

H = H0 +Hmd (A.1.3)

where
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H0 =
∑
n

1

2
Mu̇2n (A.1.4)

is the unperturbed part. And

Hmd =
∑
n

1

2
(Mn −M)u̇2n =

∑
n

1

2
∆Mnu̇

2
n (A.1.5)

is the perturbation due to mass difference.

Here

M =
∑
i

fiMi =
1

N0

∑
n

Mn (A.1.6)

is the average mass in the solid, with fi the fraction of the unit cells having mass
Mi, and N0 is the number of unit cells in the solid.

In the low temperature limit the phonon wavelength is long so that the crystal
can be considered as an elastic continuum. The displacement vector for an elastic
continuum can also be written in quantized form [2]:

u(r) = −i

√
~

2ρV

∑
ks

1√
ω(ks)

eks(a
†
ks − a−ks)e

i(k.r−ωt) (A.1.7)

in which eks are polarization vectors that satisfy the orthogonality relation∫
e∗ks(r).eks′ (r)d

3r = δss′ (A.1.8)

With this Hmd becomes

Hmd =
~

4ρV

∑
ks

∑
k′s′

√
ω(ks)ω(k′s′)e∗ks.ek′s′ (a

†
ks − a−ks)(a

†
k′s′
− a−k′s′ )Mkk′

(A.1.9)

=
∑
ks

∑
k′s′

Hmd(ks,k
′
s
′
) (A.1.10)

where,

Mkk′ =
∑
n

∆Mne
i(k−k′

).rn (A.1.11)

Using Fermi’s golden rule we can find the transition probability between an initial

state Ψ
N

k
′
s
′

Nks
and a final state Ψ

N
k
′
s
′+1

Nks−1 :
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P k
′
s
′

ks =
2π

~

∣∣∣∣(Ψ
N

k
′
s
′+1

Nks−1 , Hmd(ks,k
′
s
′
)Ψ

N
k
′
s
′

Nks

)∣∣∣∣2δ(ω(ks)− ω(k
′
s
′
)
)

(A.1.12)

using the relations (A.1.2), and (A.1.10) we find

P k
′
s
′

ks =
π

2(ρV )2
Nks(Nk′s′ + 1)ω(ks)ω(k

′
s
′
)(e∗ks.ek′s′ )

2|Mkk′ |2δ
(
ω(ks)− ω(k

′
s
′
)
)

(A.1.13)
If we assume that the isotopes or impurities are randomly distributed then we
have

|Mkk′ |2 =
∑
n

(∆Mn)2 +
∑
n6=n′

∆Mn∆Mn′ei(k−k
′
).(rn−r

n
′ )

=
∑
n

(∆Mn)2 = N0

∑
i

fi(∆Mn)2 (A.1.14)

The second term in the first line of (A.1.14) vanishes for a random distribution.
Then

P k
′
s
′

ks =
πΓmd
2N0

Nks(Nk′s′ + 1)ω(ks)ω(k
′
s
′
)(e∗ks.ek′s′ )

2δ
(
ω(ks)− ω(k

′
s
′
)
)

(A.1.15)

In which

Γmd =
∑
i

fi

(
∆Mi

M

)2

(A.1.16)

The transition probability in the backward direction P ks
k′s′

can be obtained from

(A.1.15) by the exchange ks←→ k
′
s
′
.

The scattering term due to mass difference scattering in this case is given by

Nks

∂t

∣∣∣
md

=
∑
k′s′

[P ks
k′s′
− P k

′
s
′

ks ]

=
πΓmd
2N0

∑
k′s′

[Nk′s′ (Nks + 1)−Nks(Nk′s′ + 1)]

× ω(ks)ω(k
′
s
′
)(e∗ks.ek′s′ )

2δ
(
ω(ks)− ω(k

′
s
′
)
)

=
πΓmd
2N0

∑
k′s′

[(Nk′s′ −Nk′s′ )− (Nks −Nks)]

× ω(ks)ω(k
′
s
′
)(e∗ks.ek′s′ )

2δ
(
ω(ks)− ω(k

′
s
′
)
)

(A.1.17)
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using (2.3.3) and the fact that Nks = Nk′s′ which is true for an elastic process
with ω(ks) = ω(k

′
s
′
), the scattering term (A.1.17) can be written as

Nks

∂t

∣∣∣
md

=
πΓmd
2N0

∑
k′s′

(ψk′s′ − ψks)Nks(Nk′s′ + 1)ω(ks)ω(k
′
s
′
)(e∗ks.ek′s′ )

2

× δ
(
ω(ks)− ω(k

′
s
′
)
)

(A.1.18)

The expression for the single mode relaxation time can be obtained by setting
ψk′s′ (k

′
s
′ 6= ks) = 0 in (A.1.18):

Nks

∂t

∣∣∣
md

= −πΓmd
2N0

∑
k′s′

ψksNks(Nk
′
s
′ + 1)ω(ks)ω(k

′
s
′
)(e∗ks.ek′s′ )

2

× δ
(
ω(ks)− ω(k

′
s
′
)
)

= −ψksNks(Nk′s′ + 1)

τmd(ks)
(A.1.19)

Whence the relaxation time due mass difference scattering is

τ−1md(ks) =
πΓmd
2N0

∑
k′s′

ω(ks)ω(k
′
s
′
)(e∗ks.ek′s′ )

2δ
(
ω(ks)− ω(k

′
s
′
)
)

(A.1.20)

Changing the summation into integration the relaxation time (A.1.20) reads

τ−1md =
πΓmdVu

4π2

∑
s′

∫
dk

′
k

′2ω(ks)ω(k
′
s
′
)(e∗ks.ek′s′ )

2δ
(
ω(ks)− ω(k

′
s
′
)
)

=
ΓmdVu

4π

∑
s′

1

v3
s′

∫
dω

′
ω

′2ω(ks)ω(k
′
s
′
)(e∗ks.ek′s′ )

2δ
(
ω(ks)− ω(k

′
s
′
)
)

=
ΓmdVu

4π

∑
s′

1

v3
s′
ω(ks)4(e∗ks.eks)

2 (A.1.21)

where Vu is the volume per unit cell, v is the phonon group velocity.

The factor (e∗ks.eks)
2 can be approximated to be 1/3 for an isotropic solid so that

the relaxation time due to mass difference scattering can be written as

τ−1md =
ΓmdVu
4πv3

ω4 (A.1.22)

where 3/v3 =
∑

s v
−3
s .
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Klemens [64] suggested the following expression for Γmd for the general case of
an impurity:

Γmd =
∑
i

fi[(∆Mi/M)2 + 2(∆gi/g − 6.4γ∆δi/δ)
2] (A.1.23)

where δi is the radius of the impurity atom in the host lattice, δ is the radius of an
atom in the virtual crystal, gi is an average stiffness constant of nearest-neighbor
bonds from the impurity to the host lattice, g is the average stiffness constant for
the host atoms, ∆gi = gi− g, ∆δi = δi− δ, and γ is an average anharmonicity of
the bonds.
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