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An Abstract of the Thesis of
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to Local New Vectors

[Jacquet and Langlands, 1970] showed that every infinite dimensional, irreducible,
admissible representation of GL(2,Qp) has a unique Kirillov model, i.e. is isomor-
phic to a representation (π, K), where the space K consists of locally constant func-
tions on Q×

p on which π operates in some special way. The thesis will cover the proof
of the above result after constructing the convenient framework. For this purpose
I will start by introducing the notion of admissible representations of GL(2,Qp)
and do some topology on Qp. After that I will prove the existence of the Kirillov
model and prove some properties of the Bruhat-Schwartz space. Then I will prove
the uniqueness part, which requires the construction of commutative operators; this
part is the heart of the thesis. I shall then study a special example: the principal
series representation. The last part of the thesis is dedicated to an application to
the local new vectors of a representation.
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Chapter 1

Introduction

The Kirillov model, studied by Kirillov (1963), is a realization of a representation

of GL2 over a local field on a space of functions on the local field. Let F is a non-

Archimedean local field, χF a fixed nontrivial character of the additive group of F ,

and π an irreducible representation of GL(2, F ), then the Kirillov model for π is

a representation π′ on a space of locally constant functions f on F × with compact

support in F such that

π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y) = χF (by)f(ay) (∀a, y ∈ F ×, b ∈ F ).

[Jacquet and Langlands, 1970] showed that an infinite dimensional admissible

irreducible representation of GL(2, F ) has an essentially unique Kirillov model.

[Casselman, 1973] then extended the theory of newforms, which was known in the

sense of modular forms, to the representation theory of GL(2, F ).

In this thesis, we limit ourselves to F = Qp, the p-adic field. However, generaliza-

tions to any non-Archimedean local fields F follow easily in most of the theorems.
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The second chapter gives a quick tour on the p-adic Fourier analysis that we will be

using later. We define the p-adic field, and do some topology on Qp. We also define

the p-adic Schwartz space, and prove the Fourier inversion formula on Qp.

We define the notion of admissible irreducible representations in the third chap-

ter. We also define the Kirillov model of a representation. We present the proof of

the existence and uniqueness of such a model.

In the fourth chapter, we study the application of the Kirillov model on the

theory of new forms. We present the theory that allows us to define the local new

vectors and the conductor of a representation.

The fifth chapter presents explicitly the Kirillov model for a special kind of

representations, called the principal series representations. We prove admissibility

of such representations, and study the asymptotic behaviour of functions in the

Kirillov space associated to principal series representations.
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Chapter 2

Background Theory

In this chapter we establish the basic theoretical tools we will need to generate

representations of GL(2,Qp). We first outline the definition and properties of p-

adic fields, introduce some notions of topology on Qp, and give some background

on the Fourier transform over local fields. The material of this chapter is from

[Neukirch, 2013] chapter 2 and [Goldfeld and Hundley, 2011] chapter 1.

2.1 Basic Definitions

Definition 2.1.1. A (multiplicative) absolute value of a field K is a function

∣ ∣ ∶ K → R+

satisfying the following properties:

1. ∣x∣ ≥ 0, and ∣x∣ = 0 ⇐⇒ x = 0

2. ∣xy∣ = ∣x∣∣y∣
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3. ∣x + y∣ ≤ ∣x∣ + ∣y∣ (triangle inequality)

If the absolute value satisfies the strong triangle inequality

∣x + y∣ ≤max{ ∣x∣, ∣y∣ }

then it is called non-Archimedean, otherwise it is called Archimedean.

Let x be a an integer, and let p be a prime number. Then x = pmu, where m is

a non-negative integer and (p, u) = 1. The exponent m is denoted by vp(x).

Definition 2.1.2. The p-adic valuation of a non-zero integer x with respect to a

prime p, denoted by vp(x), is defined to be the value of the highest power of p which

divides x. For x = 0, vp(x) = ∞.

This definition is extended to the rational numbers by defining vp(xy ) = vp(x) −

vp(y).

Definition 2.1.3. For x ∈ Q, the p-adic absolute value of x is defined by:

∣x∣p =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p−vp(x) if x ≠ 0.

0 if x = 0.

It is easily checked that ∣ ∣p is a non-Archimedean absolute value over Q.

Definition 2.1.4. The ring of p-adic numbers, denoted by Qp, is the completion of

Q with respect to ∣ ∣p.

Definition 2.1.5. The ring of integers Zp is defined as Zp = {x ∈ Qp ∣ ∣x∣p ≤ 1}.

Elements of Zp are called the p-adic integers.

Proposition 2.1.1. We have the following properties:
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1. The set pZp = {x ∈ Zp ∣ ∣x∣p < 1} is the unique maximal ideal in Zp.

2. The set of units in Zp are: Z×
p = {x ∈ Zp ∣ ∣x∣p = 1}.

3. Zp = Z×
p ∪ pZp.

In order to understand the structure of Qp and Zp, much more properties can be

proven. Actually, every p-adic integer x can be represented as a formal power series:

x = a0 + a1p + a2p
2 +⋯

= ∑
n≥0

anp
n,

where 0 ≤ an ≤ p − 1, called the p-adic digit. This representation is unique, and it is

very similar to the decimal fraction representation:

a0 + a1(
1

10
) + a2(

1

10
)2 +⋯, 0 ≤ ai < 10.

Moreover, every p-adic number x ∈ Qp can be written as:

x = a−n0p
−n0 +⋯ + a1p + a2p

2 +⋯

= ∑
n≥−n0

anp
n,

with 0 ≤ an ≤ p − 1 and n0 = vp(x). This representation is unique as well (up to

adding terms with zero coefficients). It is conventionally written as

(⋯a0 ⋅ a−1⋯a−n0+1 a−n0)p.

In order to get a more satisfying definition of p-adic numbers, we will define Zp

using another approach. The material is taken from [Neukirch, 2013].

One can define addition and multiplication of p-adic numbers which turn Zp into
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a ring, and Qp into its field of fractions. However, the direct approach, defining sum

and product via the usual carry-over rules for digits, as one does it when dealing

with real numbers as decimal fractions, leads into complications. They disappear

once we use another representation of the p-adic numbers f = ∑∞
v=0 avp

v, viewing

them not as sequences of sums of integers

sn =
n−1

∑
v=0

avp
v ∈ Z,

but rather as sequences of residue classes.

sn = sn mod pn ∈ Z/pnZ.

The terms of such a sequence lie in different rings Z/pnZ, but these are related by

the canonical projections

Z/pZ λ1←Ð Z/p2Z λ2←Ð Z/p3Z λ3←Ð ⋯

and we find

λn(sn+1) = sn.

In the direct product

∞

∏
n=1

Z/pnZ = {(xn)n∈N ∣ xn ∈ Z/pnZ},

we now consider all elements (xn)n∈N with the property that

λn(xn+1) = xn for all n = 1,2, . . .

This set is called the projective limit of the rings Z/pnZ, and is usually denoted
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by lim←Ð
n

Z/pnZ. In other words, we have

lim←Ð
n

Z/pnZ = {(xn)n∈N ∈
∞

∏
n=1

Z/pnZ ∣ λn(xn+1) = xn, n = 1,2, . . .}.

Proposition 2.1.2. There is an isomorphism Zp
∼Ð→ lim←Ð

n

Z/pnZ.

Proof. See [Neukirch, 2013], chapter II proposition 2.5.

Addition and multiplication extend from Zp to Qp, and Qp becomes the field of

fractions of Zp.

Proposition 2.1.3. Zp is compact and Qp is locally compact.

Proof. See [Neukirch, 2013], chapter II proposition 5.1.

2.2 Some Topology on Qp

Every field with an absolute value defined on it forms a metric space. So it is

convenient to discuss the topology of Qp. The open balls in Qp are defined as:

B(a, r) = {x ∈ Qp ∣ ∣x − a∣p < r}.

Similarly, the closed balls are defined as :

B(a, r) = {x ∈ Qp ∣ ∣x − a∣p ≤ r}.

Let x, y ∈ Qp, then ∣x − y∣p = pk for some k ∈ Z; hence it is enough to consider balls

of the form B(a, pk), for k ∈ Z, a ∈ Qp.

Lemma 2.2.1. Let a, b ∈ Qp ∶
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1. If b ∈ B(a, pk), then B(a, pk) = B(b, pk).

2. Two balls in Qp have a non empty intersection if and only if one of them

contains the other, i.e.

B(a, pk) ∩B(b, pr) ≠ ∅ ⇐⇒ B(a, pk) ⊂ B(b, pr) or B(b, pr) ⊂ B(a, pk).

Proof. 1. If b ∈ B(a, pk), then ∣a − b∣p < pk. Let x ∈ B(a, pk), then ∣x − a∣p < pk.

Using triangle inequality and the non-Archimedean property of the p-adic

absolute value, we get

∣x − b∣p = ∣x − a + a − b∣p ≤max{∣x − a∣p, ∣a − b∣p} < pk,

so x ∈ B(b, pk); it follows that B(a, pk) ⊂ B(b, pk). For the other inclusion, let

x ∈ B(b, pk) so that ∣x − b∣p < pk. This implies that

∣x − a∣p = ∣x − b + b − a∣p ≤max{∣x − b∣p, ∣b − a∣p} < pk,

so x ∈ B(a, pk), and B(b, pk) ⊂ B(a, pk).

2. One direction is trivial (⇐).

For the other direction (⇒), we know that there exists x ∈ B(a, pk) ∩B(b, pr).

It follows from (1) that

B(x, pk) = B(a, pk) and B(x, pr) = B(b, pr).

If k ≤ r, then B(a, pk) = B(x, pk) ⊂ B(x, pr) = B(b, pr).

If r ≤ k, then B(b, pr) = B(x, pr) ⊂ B(x, pk) = B(a, pk).
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Now we need to specify our basis of the topology. It follows from the topology

of the metric defined on Qp that

T = {B(a, p−n) such that x ∈ Qp and n ∈ Z}

forms a basis of the topology of Qp. This implies that any open set U in Qp can be

written as a union of elements of T .

Proposition 2.2.1. B(a, p1−n) = a + pnZp, ∀a ∈ Qp, n ∈ Z.

Proof.

x ∈ a + pnZp ⇐⇒ x − a ∈ pnZp

⇐⇒ ∣x − a∣p ≤ p−n

⇐⇒ ∣x − a∣p < p−n+1

⇐⇒ x ∈ B(a, p1−n).

Therefore, the open sets a + pnZp form a basis of open sets for Qp, where a ∈ Qp

and n an arbitrary integer. As pnZp are compact sets, and the function defined by

translation is continuous, then a + pnZp are compact sets as well.

Let us now consider the example of Z7.

Example 2.2.1. Using figures 2.1 and 2.2 on the top of next page, we can observe

that the sphere

S(0,1) = {x ∈ Z7 ∣ ∣x∣7 = 1} = ⋃
x∈{1,...,6}

B(x,1),
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B(0,1) B(1,1)

B(2,1)B(3,1)

B(4,1)

B(5,1) B(6,1)

Figure 2.1: Z7

B(1, 1
7) B(15, 1

7)

B(22, 1
7)B(29, 1

7)

B(36, 1
7)

B(43, 1
7) B(8, 1

7)

Figure 2.2: A zoom into B(0,1)

and that

∀x, y ∈ Z7 such that x ∈ y + 7kZk, we have B(x,7−(k−1)) = B(y,7−(k−1)).

Moreover, for x ∈ Z7 and k ∈ N,

B(x,7−k) = ⋃
j∈{0,...6}

B(x + j × 7k+1,7−(k+1)).

We generalize this result for x ∈ Zp and k ∈ N,

B(x, p−k) = ⋃
j∈{0,...p−1}

B(x + j × pk+1, p−(k+1)).

Definition 2.2.1 (p-adic Schwartz function). A function f ∶ Qp → C is said to be

a p-adic Schwartz function if it is locally constant and compactly supported on Qp,

i.e.

1. For every x ∈ Qp, there exists an open set U ⊂ Qp containing x such that f is

constant on U , i.e. f(x) = f(u) for all u ∈ U .

2. Supp(f) is compact.

10



Every locally constant compactly supported function f ∶ Qp → C can be written

as finite linear combination

f(x) =
n

∑
i=1

ci ⋅ 1Ui
(x),

where ci ∈ C, (Ui)i=1,...n collection of disjoint open sets in Qp, and 1Ui
is the charac-

teristic function of Ui for i = 1,2, . . . n.

The space S(Qp) consisting of complex valued p-adic Schwartz functions is called

the p-adic Schwartz space of Qp.

2.3 p-Adic Fourier Analysis

We would like to define Haar measure on Qp. Actually, the Haar measure is

defined on locally compact groups in general, so it can be defined on Qp as it is a

local field. We mean by a local field a field which is equipped by a non trivial absolute

value and is locally compact in the corresponding topology. A Haar measure on a

locally compact group is a regular Borel measure that is translation invariant. For

more details about Haar measure over Qp, see [Ramakrishnan and Valenza, 2013]

Chapter 1 section 2.

Definition 2.3.1 (Haar measure on Qp). Let a ∈ Qp, n ∈ Z. The Haar measure on

Qp is the measure satisfying

µ(a + pnZp) = p−n.

We will also use the following notation: dµ(x) = dx.

We can notice that µ is translation invariant and that µ(Zp) = 1.
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Example 2.3.1. We have that

Z×
p = (1 + pZp) ∪ (2 + pZp) ∪⋯ ∪ (p − 1 + pZp),

where the sets on the right hand side are pairwise disjoint open compact sets; this

implies that

µ(Z×
p) =

p−1

∑
j=1

µ(j + pZp) = (p − 1)µ(pZp) =
p − 1

p
.

Definition 2.3.2. (Additive character on Qp) An additive character ψ ∶ Qp → C on

Qp is a continuous function such that

ψ(x + y) = ψ(x)ψ(y), ∣ψ(x)∣ = 1, x, y ∈ Qp.

The minimal n such that ψ is trivial on pnZp is called the conductor of the additive

character ψ.

Definition 2.3.3. (Standard additive character on Qp) Let ep(x) be the continuous

complex valued homomorphism on Qp defined by

ep(x) = e−2πi{x}p ,

where

{x}p =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1

∑
i=−k

aipi, where x =
∞

∑
i=−k

aipi ∈ Qp with k > 0, 0 ≤ ai ≤ p − 1,

0, otherwise.

Remark. ep(x) satisfies the conditions of an additive character on Qp, and the con-

ductor of ep is zero. {x}p is intended to be the fractional part (or the tail) of x.

One can prove that any other character on Qp is of the form ep(ax) for some

fixed a ∈ Qp (check [Vladimirov et al., 1994] section III ).
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In classical Fourier analysis, the space of Schwartz functions from R to C is

preserved by the Fourier transform, and we have the Fourier inversion formula
ˆ̂
f(x) =

f(−x). We want to get a similar result on Qp, so it is convenient to consider the space

of p-adic Schwartz function i.e. the space of locally constant compactly supported

functions on Qp. We will follow the proof of [Goldfeld and Hundley, 2011] section

1.6.

Definition 2.3.4 (Fourier transform on Qp). Let y ∈ Qp and let f ∶ Qp → C be

a locally constant compactly supported function. The Fourier transform of f is

defined as

f̂(x) = (Ff)(x) = ∫
Qp

f(y)ep(−xy)dy.

Lemma 2.3.1. For n ∈ Z,

∫
pnZp

ep(x)dx =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p−n if n ≥ 0,

0 otherwise.

Proof. Let x ∈ pnZp.

If n ≥ 0, then {x}p = 0, so

∫
pnZp

ep(x)dx = µ(pnZp) = p−n.

If n < 0, let y = pn ∈ pnZp so that {y}p = pn. Define T ∶ Qp → Qp by T (x) = x + y.

Then as µ is translation invariant and as x + y ∈ pnZp if and only if x ∈ pnZp,

∫
pnZp

ep(x)dx = ∫
Qp

1pnZp(x)ep(x)dx

= ∫
Qp

1pnZp(T (x))ep(T (x))dx

= ∫
Qp

1pnZp(x + y)ep(x + y)dx

= ep(y)∫
Qp

1pnZp(x + y)ep(x)dx

13



= ep(y)∫
Qp

1pnZp(x)ep(x)dx

= ep(y)∫
pnZp

ep(x)dx.

As ep(y) = e−2πipn ≠ 1, we get that ∫
pnZp

ep(x)dx = 0.

Theorem 2.3.2. The space of locally constant compactly supported functions on Qp

is preserved by the Fourier transform.

Proof. Every locally constant compactly supported function can be written as a

finite linear combination of characteristic functions of the compact open sets a+pnZp

witha ∈ Qp and n ∈ Z. Therefore it suffices to prove that the Fourier transform of

1a+pnZp is a locally constant compactly supported function, as integration is a linear

transformation.

1̂a+pnZp(y) = ∫
Qp

1a+pnZp(x)ep(−xy)dx

= ∫
a+pnZp

ep(−xy)dx

= ∫
pnZp

ep(−(a + x)y)dx

= ep(−ay)∫
pnZp

ep(−xy)dx

= ep(−ay)p−n1p−nZp(y), (2.1)

where the last step follows from the previous lemma. Now the function in the last

step is supported on p−nZp, and it is locally constant since it is the product of locally

constant functions.

Lemma 2.3.3. For n ∈ Z and y ∈ Qp,

∫
Qp

1pnZp(x)ep(−xy)dx = p−n1p−nZp(y).

Proof. If y ∈ p−nZp then xy ∈ Zp for all x ∈ pnZp, so the additive character is trivial

14



and the integral is just µ(pnZp) = p−n.

If y /∈ p−nZp, then there is a unique m ∈ Z and u ∈ Z×
p such that y = pmu. Now,

y /∈ p−nZp ⇐⇒ pny /∈ Zp ⇐⇒ pm+nu /∈ Zp ⇐⇒ m + n < 0.

Applying the change of the variable t = xy = pmux, and dt = ∣pmu∣pdx = p−mdx, we

get

∫
Qp

1pnZp(x)ep(−xy)dx = pm∫
pm+nZp

ep(−t)dt = 0,

where the last step follows from lemma (2.3.1) as m + n < 0.

Theorem 2.3.4. If f ∶ Qp → C is locally constant compactly supported function,

then
ˆ̂
f(x) = f(−x).

Proof. It suffices to check this for f = 1a+pnZp , a ∈ Qp and n ∈ Z.

ˆ̂1a+pnZp(y) = ∫
Qp

1̂a+pnZp(x)ep(−xy)dx

= ∫
Qp

ep(−ax)p−n1p−nZp(x)ep(−xy)dx by equation (2.1)

= p−n∫
Qp

1p−nZp(x)ep(−(a + y)x)dx

= 1pnZp(a + y) by lemma (2.3.3)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if a + y ∈ pnZp,

0 otherwise.

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if − y ∈ a − pnZp = a + pnZp,

0 otherwise.

= 1pnZp(−y).

15



Chapter 3

The Kirillov Model

Most of this chapter is taken from [Godement, 1974], chapter 1 and

[Goldfeld and Hundley, 2011], chapter 6.

3.1 Admissible Representations of GL(2,Qp)

In this section, we define the key notions that we need to construct the Kirillov

model.

Definition 3.1.1 (Representation of a group on a vector space). Let G be a group

and let V be a vector space. A representation of G on V is a group homomorphism

π ∶ G→ GL(V ) where GL(V ) is the group of all invertible linear maps V → V .

In other words, a representation is a rule, how to assign a linear transformation

of V to each group element in a way that is compatible with the group operation.

For g ∈ G and v ∈ V , one often writes π(g) ⋅ v to denote the action of π(g) on v,

where π(g′g′′) = π(g′) ⋅ π(g′′) for all g′, g′′ ∈ G. The ordered pair (π,V ) is referred

to as a representation, and V is referred to as the space of π.
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Remark. If the group G and the vector space V are equipped with topologies, then

we shall also require the map G×V → V , given by (g, v) → π(g)⋅v, to be continuous.

Definition 3.1.2 (Irreducible representation). A representation is said to be irre-

ducible if it has no non-trivial invariant subspaces, i.e. the only G-invariant sub-

spaces are 0 and V .

Definition 3.1.3 (Intertwining maps and isomorphic representations). Let

π1 ∶ G→ GL(V1) π2 ∶ G→ GL(V2)

be two representations. An intertwining operator is a linear map L ∶ V1 → V2 such

that

L ⋅ (π1(g) ⋅ v) = π2(g) ⋅ (L ⋅ v)

for all g ∈ G,v ∈ V1. If there is an intertwining operator L ∶ V1 → V2 which is an

isomorphism of vector spaces, then the two representations are said to be isomorphic.

From now on, we shall consider representations (π,V ) where G = GL(2,Qp).

Lemma 3.1.1. Let (π,V ) be a representation of GL(2,Qp) and let v ∈ V . The

following are equivalent:

1. The function

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
→ π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v,

⎛
⎜⎜
⎝

for all

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ GL(2,Qp)

⎞
⎟⎟
⎠
,

is a locally constant function.

2. The stabilizer StabGL(2,Qp)(v) of v in G is open.
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3. There exists a compact open subgroup K ⊂ GL(2,Qp) such that

v ∈ V K ∶= {v ∈ V ∣ π(x) ⋅ v = v for all x ∈K}.

V K is called the set of K-fixed vectors in V .

Definition 3.1.4 (Smooth representation). Let (π,V ) be a representation ofGL(2,Qp).

We say (π,V ) is smooth if every v ∈ V satisfies one of the above conditions of lemma

3.1.1.

Definition 3.1.5 (Admissible representation). Let (π,V ) be a representation of

GL(2,Qp). We say (π,V ) is admissible if it is smooth and, in addition, for every

compact open subgroup K ⊂ GL(2,Qp) the dimension of the space V K is finite.

Lemma 3.1.2. GL(2,Zp) is compact.

Proof. See [Bump, 1998] Proposition 4.5.2.

Lemma 3.1.3. For each n ≥ 1, define the subgroup Kn of GL(2,Qp) by

Kn = {k ∈ GL(2,Zp) ∣k ≡ I2 (mod pnZp)}.

Then Kn is a compact open subgroup of GL(2,Qp), and the collection {Kn}n≥1

constitutes a basis of open neighborhoods of the identity.

Proof. This follows from the topology on GL(2,Qp), which is induced from that on

M2(Qp). For more details, see [Ramakrishnan and Valenza, 2013] chapter 1.

Remark. If G is a topological group, then for any g ∈ G, the map given by left

multiplication by g is a homeomorphism. Consequently, to determine a basis of

open sets for G, it suffices to determine a basis of open neighborhoods around the

identity. The collection {Kn}n≥1 mentioned in the lemma 3.1.2 gives us the required
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basis for GL(2,Qp). Now, every compact open subset of GL(2,Qp) is a finite disjoint

union of cosets of the subgroup

Kn = {k ∈ GL(2,Zp) ∣k ≡ I2 (mod pnZp)}

for some n non-negative integer. Therefore one gets that a representation (π,V ) is

smooth if and only if for every v ∈ V , there exists some n ∈ N such that π(k) ⋅ v = v

for all k ∈Kn.

Definition 3.1.6. Let G be a topological group. Then:

1. A quasi character is a continuous homomorphism from G to C×.

2. A character is a continuous homomorphism from G to S1 = {z ∈ C ∣ ∣z∣ = 1}.

Lemma 3.1.4. Let µ ∶ Q×
p → C be a quasi character, then there exists n ∈ N such

that µ(1 + pnZp) = 1.

Proof. We have µ(1) = µ(1 ⋅1) = µ(1) ⋅µ(1), so that µ(1) = 1. Let V be a small open

neighborhood of 1 in C×, then the only subgroup of C× contained in V is {1}.

Now it is reasonable to have the following definition.

Definition 3.1.7. Let µ ∶ Q×
p → C be a quasi character. Then the conductor of µ

is defined to be zero if µ∣Z×p is trivial. Otherwise, it is defined to be the least n ∈ N

such that µ(1 + pnZp) = 1.

Lemma 3.1.5. SL(2,Qp) is generated by

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

and

⎛
⎜⎜
⎝

1 0

y 1

⎞
⎟⎟
⎠

for x, y ∈ Qp.

Proof. Let

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL(2,Qp), so that ad − bc = 1.
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If c = 0, then ad = 1 and we have

⎛
⎜⎜
⎝

a b

0 d

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

a 0

0 a−1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 a−1b

0 1

⎞
⎟⎟
⎠

Otherwise, if c ∈ Q×
p , then we have

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 c−1a

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

−c 0

0 −c−1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 c−1d

0 1

⎞
⎟⎟
⎠
.

We get that SL(2,Qp) is generated by the matrices

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

,

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

,

⎛
⎜⎜
⎝

1 0

y 1

⎞
⎟⎟
⎠

, and

⎛
⎜⎜
⎝

z 0

0 z−1

⎞
⎟⎟
⎠

, with x, y ∈ Qp and z ∈ Q×
p . But we have

⎛
⎜⎜
⎝

z 0

0 z−1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 0

z−1 − 1 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

z − 1 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 −z−1

0 1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 0

−1 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

−1 1

⎞
⎟⎟
⎠

for all z ∈ Q×
p , and so we get our result.

Lemma 3.1.6. SL(2,Qp) is the commutator subgroup of GL(2,Qp).

Proof. We usually denote the commutator subgroup of a group G by [G ∶ G].

Let G = GL(2,Qp), and let [g, h] ∈ [G ∶ G], then det(ghg−1h−1)= 1 and we get the

first inclusion [G ∶ G] ⊂ SL(2,Qp). For the other inclusion, let x, y ∈ Qp, we have
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the following identities:

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 x/2

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

0 −1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 x/2

0 1

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

1 0

0 −1

⎞
⎟⎟
⎠

−1

⎛
⎜⎜
⎝

1 0

y 0

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 0

y/2 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

0 −1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

y/2 1

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

1 0

0 −1

⎞
⎟⎟
⎠

−1

.

This gives us that

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

and

⎛
⎜⎜
⎝

1 0

y 1

⎞
⎟⎟
⎠

are commutators. But these generate SL(2,Qp),

hence we get that SL(2,Qp) ⊂ [G ∶ G].

Lemma 3.1.7 (Schur’s lemma for irreducible smooth representations). Let (π,V ) be

an irreducible smooth representation of GL(2,Qp). Let T ∶ V → V be an intertwining

map, then there exists a constant c ∈ C such that T ⋅ v = c ⋅ v for all v ∈ V .

Proof. See [Goldfeld and Hundley, 2011] Chapter 6, lemma 6.1.8.

It turns out that smooth representations of G on finite dimensional vector spaces

are not very interesting. In such a case, admissibility will be automatic. The key

assumption then is smoothness. Actually we will prove that a finite dimensional

smooth irreducible representation of GL(2,Qp) factors through the determinant

and some character of Q×
p . This is expected because characters are actually one

dimensional representations. The difficulty arises for infinite dimensional represen-

tations, and this will be discussed in detail in the next section. We first consider

the following theorem where the dimension of V is finite.

Theorem 3.1.8. Let (π,V ) be a finite dimensional irreducible smooth representa-

tion of GL(2,Qp). Then V is one dimensional and there is a quasi-character ω of

Q×
p such that π(g) = ω(det(g)).
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Proof. Choose a basis for V and for each basis vector choose a compact open sub-

group stabilizing it. The intersection of these subgroups is still compact and open,

and fixes everything in V . So the kernel of the representation, say H, contains a

compact open subgroup, and so it is open. Thus there exists ε > 0 such that the

matrix

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

belongs to H for all ∣x∣p < ε. Now let x ∈ Qp, then there exists an

element a ∈ Q×
p such that ∣ax∣p < ε. So we get

⎛
⎜⎜
⎝

a 0

0 1

⎞
⎟⎟
⎠

−1
⎛
⎜⎜
⎝

1 ax

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

a 0

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

belongs to H for all x ∈ Qp, as H is a normal subgroup of GL(2,Qp). Similarly

⎛
⎜⎜
⎝

1 0

y 1

⎞
⎟⎟
⎠

is in the kernel of π for all y ∈ Qp. It follows that SL(2,Qp) ⊂H as these two

types of matrices generate SL(2,Qp). But SL(2,Qp) is the commutator subgroup of

GL(2,Qp), so it acts trivially, and π(g1)π(g2) = π(g2)π(g1) for all g1, g2 ∈ GL(2,Qp).

It follows by Schur’s lemma that each π(g) acts by a scalar on all of V , and there

exists some constant c(g) ∈ C such that π(g) ⋅ v = c(g) ⋅ v for all v ∈ V . This is

true for all g ∈ GL(2,Qp), so using the irreducibilty of (π,V ), we conclude that the

dimension of V is one.

Now we need to check that π factors through the determinant. For each g ∈

GL(2,Qp), define the function

λ ∶ GL(2,Qp) → C×

g → c(g)

such that π(g) ⋅ v = c(g) ⋅ v for all v ∈ V . It is easily proven that this function

is a homomorphism. Observe that det ∶ GL(2,Qp) → Q×
p is surjective with kernel

SL(2,Qp); hence GL(2,Qp)/SL(2,Qp) ≅ Q×
p . But as SL(2,Qp) ⊂H, then SL(2,Qp)
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is in the kernel of λ as well, and so λ must factor through the determinant. We

get a homomorphism ω ∶ Q×
p → C× such that c(g) = ω(det(g)). It follows from

the smoothness of π that H contains a compact open subgroup Kn for some non

negative integer n, which shows that ω(det(Kn)) = ω(1 + pnZp) = 1. Hence ω is

continuous.

Because of this result, we can confine our attention to infinite dimensional rep-

resentations.

Proposition 3.1.1. GL(2,Qp) is generated by the matrices

⎛
⎜⎜
⎝

r 0

0 r

⎞
⎟⎟
⎠

,

⎛
⎜⎜
⎝

a 0

0 1

⎞
⎟⎟
⎠

,

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠

and

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

.

Proof. Observe that

⎛
⎜⎜
⎝

1 0

b 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

−1 0

0 −1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 −b

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠
.

Lemma 3.1.4 shows that we can generate SL(2,Qp). Now, if g ∈ GL(2,Qp) has

determinant a, then g =
⎛
⎜⎜
⎝

a 0

0 1

⎞
⎟⎟
⎠
g′ for some g′ ∈ SL(2,Qp).

From the above proposition, it is enough to know the action of generator matrices

on V in order to determine the representation π completely. It turns out that

diagonal matrices act by some special character called the central character. The

proof of this fact is a direct result of Schur’s lemma.

Proposition 3.1.2. (Central Character) Let V be a complex vector space and let

(π,V ) be an irreducible smooth representation of GL(2,Qp). Then there exists a
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unique multiplicative character ωπ ∶ Q×
p → C× such that

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a 0

0 a

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = ωπ(a) ⋅ v, (∀a ∈ Q×

p , v ∈ V ).

The character ωπ is called the central character associated to (π,V ).

Proof. Let a ∈ Q×
p and let z =

⎛
⎜⎜
⎝

a 0

0 a

⎞
⎟⎟
⎠

be in the center of GL(2,Qp). Then π(z) ⋅

(π(g) ⋅ v) = π(g) ⋅ (π(z) ⋅ v) for all g ∈ GL(2,Qp), v ∈ V . Thus π(z) ∶ V → V is an

intertwining map. By Schur’s lemma, there exists a constant c(a) ∈ C such that

π(z) ⋅ v = c(a) ⋅ v for all v ∈ V . Let ωπ(z) ∶= c(a). Now let us check that ωπ is a

multiplicative character. Let z =
⎛
⎜⎜
⎝

a 0

0 a

⎞
⎟⎟
⎠

, z′ =
⎛
⎜⎜
⎝

a′ 0

0 a′

⎞
⎟⎟
⎠

be any two elements in the

center of GL(2,Qp). As π(zz′) ⋅ v = π(z) ⋅ (π(z′) ⋅ v), we get that c(aa′) = c(a)c(a′)

for all a, a′ ∈ Q×
p .

3.2 Existence of the Kirillov Model

In this section, we present the main theorem which treats with local representa-

tions of GL(2) over non-Archimedean places. This requires the following definition.

Definition 3.2.1 (Kirillov Representation). Fix a prime p and let K, X be two

non-trivial complex vector spaces. Let (π,K) be a representation of GL(2,Qp) such

that K consists of locally constant functions f ∶ Q×
p →X where π operates as:

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y) = ep(by)f(ay) (∀f ∈ K, a, y ∈ Q×

p , b ∈ Qp)

Then (π′,K) is called a Kirillov representation and the vector space K is called a
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Kirillov space.

Theorem 3.2.1 (Main Theorem). Let p be a prime number and let V be complex

infinite dimensional vector space. Assume that (π,V ) is an admissible irreducible

representation of GL(2,Qp). Then (π,V ) is isomorphic to one and only one Kirillov

representation (π′,K) whose space of functions is complex valued. (π′,K) is called

the Kirillov model of the representation (π,V ).

Remark. The terminology for K is apt because it was Kirillov who first proved that

(over any local field) every irreducible unitary representation (that is, representa-

tions where the group action is also required to respect the inner product of the

vector space) remains irreducible upon restriction to the Borel subgroup

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

(This paragraph is mentioned in [Gelbart, 1975] section 4).

The proof of this theorem needs some work, and is done over several steps. In

this section, our goal is to prove the existence of such a model. This requires the

following lemma.

Lemma 3.2.2. Let (π,V ) be an infinite dimensional irreducible admissible represen-

tation of GL(2,Qp). Then there is no nonzero vector invariant by all the matrices

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

, x ∈ Qp.

Proof. Assume that there is some v ∈ V such that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = v for all x ∈ Qp.

Let H be the stabilizer of the space Cv, i.e.

H = {g ∈ GL(2,Qp) ∣ π(g) ⋅ v = λ ⋅ v for some λ ∈ C}

First, the subgroup of matrices

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

that fix v is contained H. It follows from the
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smoothness of π that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = v for those c ∈ Qp such that ∣c∣p is sufficiently

small. Fix such a matrix

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠
∈H. Then

⎛
⎜⎜
⎝

0 −c−1

c 0

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 −c−1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 −c−1

0 1

⎞
⎟⎟
⎠
∈H.

This implies that for any x ∈ Qp,

⎛
⎜⎜
⎝

1 0

x 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

0 −c−1

c 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 −xc−2

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −c−1

c 0

⎞
⎟⎟
⎠

−1

∈H.

Thus, SL(2,Qp) ∈ H. On the other hand, we have that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a 0

0 a

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = ω(a) ⋅ v

for all a ∈ Q×
p , where ω is the central character associated to π. Therefore, H also

contains the center Z of GL(2,Qp). So H contains the subgroup of GL(2,Qp) with

elements of square determinant. The index of such group is finite. As Z ⋅SL(2,Qp)

stabilizes Cv, hence, {π(g) ⋅ v ∣ g ∈ GL(2,Qp)} spans a finite dimensional invariant

subspace. But (π,V ) is both infinite dimensional and irreducible, so the only such

subspace is the zero subspace. Thus v must be zero.

Now we restate the existence of the Kirillov model and we prove it.

Theorem 3.2.3. Let V be a complex infinite dimensional vector space. Then ev-

ery admissible irreducible representation (π,V ) of GL(2,Qp) is isomorphic to some

Kirillov representation (π′,K). Moreover, every function f ∈ K vanishes outside a

compact subset of Qp.

Proof. Following [Jacquet and Langlands, 1970], [Godement, 1974] and
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[Goldfeld and Hundley, 2011], we complete the proof of this theorem in several steps.

Let V0 ⊂ V be the subset defined by

V0 ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v ∈ V ∣∫

p−nZp

ep(−u)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v du = 0, for all large n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Step 1: V0 is a subspace of V .

Subproof. Let v, v′ ∈ V0, then there is some n,m ∈ N large enough such that

∫
p−nZp

ep(−u)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v du = 0 and ∫

p−mZp

ep(−u)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v′ du = 0

If m ≥ n, then p−nZp ⊂ p−mZp. It follows that

∫
p−mZp

ep(−u)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v du

= ∑
y∈p−mZp/p−nZp

ep(−y)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 y

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
∫
p−nZp

ep(−u)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v du

= 0.

Thus ∫
p−mZp

ep(−u)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ (v + v′)du = 0, and so v + v′ ∈ V0. Moreover, V0 is

closed under the multiplication by scalars in C. It follows that V0 is a subspace of

V . ∎

For each v ∈ V , define fv ∶ Q×
p → V /V0 by fv(y) ∶= π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v (mod V0), for all
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y ∈ Q×
p . Define the space of functions K as

K = {fv ∶ Q×
p → V /V0 ∣ v ∈ V } .

Define the map L by

V → K

v → L(v) ∶= fv

where fv is defined above on Q×
p . We claim that L is an isomorphism of vector

spaces.

Step 2: The map L ∶ V →K is an isomorphism of vector spaces.

Subproof. Notice that L is surjective by definition. We need only to prove that it is

injective. Assume there exists some v ∈ V such that L(v) = 0, i.e. fv(y) = 0 for all

y ∈ Q×
p . Define the function φ ∶ Qp → V by φ(u) ∶= π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v, for u ∈ Qp. If we

can prove that φ(u) is constant, then it follows from lemma 3.2.2 that v must be

zero, and consequently L is injective. In particular, V0 ≠ V and X ≠ 0.

It only remains to prove that φ(u) is constant for all u ∈ Qp. As L(v) = 0, then

the function

φn(y) ∶=∫
p−nZp

ep(−uy)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v du =∫

p−nZp

ep(−uy)φ(u)du

vanishes for some large n (where n depends on y). Furthermore, for any compact set

K ⊂ Q×
p , a sufficiently large n can be chosen so that φn(y) = 0 for all y ∈K (i.e. n can

be made independent of y on compact sets). Let ψ ∶ Qp → C be a locally constant

compactly supported function such that ∫
Qp

ψ(u)du = 0, or equivalently, ψ̂(0) = 0
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(this is also equivalent to saying that ψ is orthogonal to the constant function 1). We

also know that the Fourier transform ψ̂(y) = ∫
Qp

ep(−uy)ψ(y)du vanishes outside a

compact subset K of Q×
p by Theorem 2.3.2.

Now using the Fourier inversion formula given in Theorem 2.3.4, we get that

∫
Qp

ψ(u)φ(u)du = ∫
p−nZp

ψ(u)φ(u)du (as ψ is compactly supported)

= ∫
p−nZp

φ(u) (∫
Qp

ψ̂(t)ep(tu)dt) du (by Fourier inversion formula)

= ∫
p−nZp

φ(u) (∫
K
ψ̂(t)ep(tu)dt) du (where K is the support of ψ̂)

= ∫
K
φn(−t)ψ̂(t)dt = 0. (3.1)

Here we choose n such that the support of ψ lies in p−nZp, and φn(y) = 0 for all

y ∈K, where K is the support of ψ̂. We have shown that the integral (3.1) vanishes.

This implies that φ ∶ Qp → V is orthogonal to every locally constant compactly

supported function ψ ∶ Qp → C which is orthogonal to the constant function 1. So

we get that

∫
Qp

ψ(u)(φ(u) − 1)du = 0.

It follows then that φ itself must be the constant function, i.e.

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = v for all u ∈ Qp.

∎

This makes it possible to identify each element v of V with a V /V0-valued function

fv on Q×
p , so that GL(2,Qp) operates on K through π′ in a way such that

π′(g) ⋅ fv(y) ∶= fπ(g)⋅v
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= π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠
⋅ (π(g) ⋅ v)

⎞
⎟⎟
⎠

(mod V0).

We will show that (π′,K) is a Kirillov representation which is isomorphic to (π,V ).

Step 3: Each fv ∈ K satisfies π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ fv(y) = ep(by)fv(ay).

Subproof. Let a, y ∈ Q×
p and b ∈ Qp. On one side, we have

π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ fv(y) = π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠
⋅
⎛
⎜⎜
⎝
π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

= π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v

= π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

ya yb

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v mod (V0).

On the other side, we have: ep(by)fv(ay) = ep(by)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

ay 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v mod (V0).

We must show that

∫
p−nZp

ep(−u)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣
π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

ya yb

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
− ep(by)π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

ya 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦
⋅ v

⎞
⎟⎟
⎠
du = 0

for n large enough. Choose n0 sufficiently large so that ∣by∣p < pn0 . Let n ≥ n0, then

using the change of variable u→ u − by, we get that

∫
p−nZp

ep(−u)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅
⎛
⎜⎜
⎝
π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

ya yb

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v

⎞
⎟⎟
⎠
du

=∫
p−nZp

ep(−u + by)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u − by

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅
⎛
⎜⎜
⎝
π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

ya yb

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v

⎞
⎟⎟
⎠
du
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=∫
p−nZp

ep(−u + by)π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

ya u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v du.

The difference of the right and left hand sides is then zero, which is exactly what

we want. ∎

Step 4: Each fv is locally constant and vanishes outside a compact subset

of Qp.

Subproof. The action of π on V is smooth, then for all v ∈ V , if a ∈ Q×
p with ∣a − 1∣p

sufficiently small, then π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = v. This implies that

fv(ay) = π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

ya 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = fv(y)

for all y ∈ Q×
p , provided that a ∈ Q×

p with ∣a − 1∣p sufficiently small. So fv is locally

constant. Similarly, by smoothness of π on V there exists a sufficiently large positive

integer m such that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v = v for ∣b∣p < p−m. Then by step 2, it follows that

ep(by)fv(y) = π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ fv(y) = π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠
⋅
⎛
⎜⎜
⎝
π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

= π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠
⋅ v

⎞
⎟⎟
⎠
= fv(y)

for all y ∈ Q×
p and ∣b∣p < p−m. Thus fv has a compact support in Qp. ∎

This completes the proof of the stated theorem.
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3.3 The Bruhat-Schwartz Space

Let V0 be the subspace defined in the proof of Theorem 3.2.1. The material of

this section is from [Godement, 1974] and [Goldfeld and Hundley, 2011].

Definition 3.3.1 (normalized unitary character). A normalized unitary character

of Q×
p is a continuous function ω ∶ Q×

p → C which satisfies

• ω(yy′) = ω(y)ω(y′), (∀ y, y′ ∈ Q×
p)

• ∣ω(y)∣C = 1, (∀ y ∈ Q×
p)

• ω(p) = 1.

Definition 3.3.2. We define the Bruhat-Schwartz spaces as:

SX(Q×
p) ∶=

⎧⎪⎪⎨⎪⎪⎩
f ∶ Q×

p →X ∣ f is locally constant, and ∃Nf > εf > 0

such that f(y) = 0 if ∣y∣p < εf or ∣y∣p > Nf

⎫⎪⎪⎬⎪⎪⎭
,

S(Q×
p) ∶=

⎧⎪⎪⎨⎪⎪⎩
f ∶ Q×

p → C ∣ f is locally constant, and ∃Nf > εf > 0

such that f(y) = 0 if ∣y∣p < εf or ∣y∣p > Nf

⎫⎪⎪⎬⎪⎪⎭
.

For the rest of this chapter, let X = V /V0.

Proposition 3.3.1. The Bruhat-Schwartz subspace S(Q×
p) is irreducible under the

action of the subgroup B(Qp) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠
∣ a ∈ Q×

p , b ∈ Qp

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.
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Proof. Consider the representation π ∶ B(Qp) → GL(S(Q×
p)), with the action

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y) = ep(by)f(ay), (∀f ∈ S(Q×

p), a, y ∈ Q×
p , b ∈ Qp).

Notice that S(Q×
p) is stable under the action above.

Every element of S(Q×
p) can be written as a finite linear combination of charac-

teristic functions of cosets a + pnZp, n ∈ Z, a ∈ Qp, a /∈ pnZp. We will prove that, for

all a and n, the characteristic function 1a+pnZp is a linear combination of translates

of 11+pnZp , by the action of B(Qp) given above.

First, suppose that a = 1 and n = 2. For 1 ≤ i ≤ p and y = 1 + y1p + y2p2 + . . . with

yj ∈ {0,1, . . . , p − 1} for j = 1,2, . . . we have

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 i/p2

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ 11+pZp(y) = ep(

i

p2
+ i ⋅ y1

p
) ⋅ 11+pZp(y).

It follows that

1

p

p

∑
i=1

ep(−
i

p2
) ⋅ π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 i/p2

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ 11+pZp(y)

= 1

p

p

∑
i=1

ep(−
i

p2
)ep(

i

p2
+ i ⋅ y1

p
) ⋅ 11+pZp(y)

= 1

p

p

∑
i=1

ep(
i ⋅ y1

p
) ⋅ 11+pZp(y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

p

p

∑
i=1

1 if y1 = 0, y = 1 + y2p2 +⋯ ∈ 1 + p2Zp,

1

p

p

∑
i=1

ep(
i ⋅ y1

p
) if y1 ≠ 0, y ∈ 1 + p2Zp,

0 otherwise.
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=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if y ∈ 1 + p2Zp,

0 otherwise.

= 11+p2Zp
,

where here we have used the fact that

p

∑
i=1

ep(
i ⋅ y1

p
) =

p−1

∑
i=1

(ep(
y1

p
))
i

+ 1 =
1 − (ep(y1p ))

p

1 − ep(y1p )
= 0.

Equation (5.3) also holds for y /∈ 1 + pZp, where we get in this case 11+pZp(y) = 0 on

both sides. Repeating this trick as needed, we can obtain 11+pnZp for any n ≥ 0.

Now let a and n be arbitrary, subject to the condition a /∈ pnZp. Write a = a0pm

with a0 ∈ Z×
p . Then m < n, and a + pnZp = a(1 + pn−mZp). Since y ∈ a + pnZp

if and only if a−1y ∈ 1 + pn−mZp, it follows that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ 11+pn−mZp = 11+pnZp .

This shows that any arbitrary element of S(Q×
p) can be obtained, via the action

of B1(Qp) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠
∣ a ∈ Q×

p , b ∈ Qp

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, from the single element 11+pnZp , i.e. any

subrepresentation of B1(Qp) on the Bruhat-Schwartz space S(Q×
p) that contains

1a+pZp is in fact equal to S(Q×
p).

Using a similar trick, one can prove that given any arbitrary linear combination

of characteristic functions 1a+pnZp , we can recover 11+pZp via the action of B1(Qp),

i.e. if W ∈ S(Q×
p) is a non-zero subrepresentation, then W contains 1a+pZp . This

completes the proof that S(Qp) is irreducible.

Proposition 3.3.2. The Bruhat-Schwartz space SX(Q×
p) = S(Q×

p) ⋅X ⊂ K.

Proof. Let x ∈ X. Let v ∈ V be any element whose image in X = V /V0 is x. Then

fv(1) = x.
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Set f1 = fv and define

f2 ∶=
1

1 − ep(p−1)

⎛
⎜⎜
⎝
f1 − π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 p−1

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f1

⎞
⎟⎟
⎠
.

Then f2(1) = x and f2 is supported on {y ∈ Q×
p ∣ ∣y∣p ≥ 1}.

Next, take n so that the support of f1 (and hence also f2) is contained in p−nZp,

and define

f3(y) ∶=
⎛
⎜⎜
⎝

1

pn

pn−1

∑
j=0

π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 j

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f2

⎞
⎟⎟
⎠
(y) = ( 1

pn

pn−1

∑
j=0

ep(jy)) f2(y).

Then f3(1) = x and f3 is supported on Z×
p . Now, let N be the smallest positive

integer such that f3 is constant on cosets of 1 + pNZp.

Let ω ∶ Z×
p → C× be a normalized unitary character of conductor pN . Then ω

is constant on cosets of 1 + pNZp ∈ Z×
p . By the previous lemma, there are exactly

φ(pN) = (p − 1)pN−1 such characters ω (mod pN) and they satisfy the orthogonality

relation

1

φ(pN) ∑
ω(modpN )

= ω(j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if j − 1 ∈ pNZp,

0 otherwise.

Now, for each character ω (mod pN), define

fw(y) ∶=∫
Z×p

ω(−u)−1 ⋅ π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 u

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f3(y)d×u

= 1

(p − 1)pN−1

pN

∑
j=1
(j,p)=1

ω(j)−1 ⋅ π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

j 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f3(y).

Notice that
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• fω ∈ K and is supported on Z×
p .

• fω(a ⋅ y) = ω(a)fω(y), (∀a ∈ Z×
p , y ∈ Q×

p).

Thus fω ∈ S(Q×
p) ⋅ fω(1). It follows from the previous proposition that the whole

space S(Q×
p) ⋅fω(1) is contained in K. On the other hand, by orthogonality relation,

∑
ω(modpN )

fω(1) =
pN

∑
j=1
(j,p)=1

⎡⎢⎢⎢⎢⎣

1

φpN
∑

ω(modpN )

ω(j)−1

⎤⎥⎥⎥⎥⎦
⋅ π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

j 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f3(1)

= π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f3(1)

= x.

It follows from the previous proposition that for every x ∈ X, the whole space

S(Q×
p) ⋅ x is contained in K. So we get our desired result.

Theorem 3.3.1. K = SX(Q×
p) + π′(w) ⋅ SX(Q×

p), where w =
⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

.

Proof. Let f ∈ SX(Q×
p) = S(Q×

p) ⋅X. K is spanned by {π′(g) ⋅ f ∣ g ∈ GL(2,Qp)}

because (π′,K) is irreducible. Let g ∈ GL(2,Qp)−B(Qp), then we have the identity

g = hwh′ where

h =
⎛
⎜⎜
⎝

1 ac−1

0 1

⎞
⎟⎟
⎠
, w =

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠
, h′ =

⎛
⎜⎜
⎝

−c −d

0 b − adc−1

⎞
⎟⎟
⎠
.

Now, let F ∶= π′(h′) ⋅ f . We proved that the space SX(Q×
p) is invariant under

the action of B1(Qp) (proposition 3.3.1) and under the action of diagonal matrices

(proposition 3.1.2). It follows then that F ∈ SX(Q×
p). Then we have

π′(g) ⋅ f = π′(h) ⋅ (π′(w) ⋅ F )
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= (π′(h) ⋅ (π′(w) ⋅ F ) − π′(w) ⋅ F ) + π′(w) ⋅ F.

The function

(π′(h) ⋅ (π′(w) ⋅ F ) − π′(w) ⋅ F )(y)

= (ep(ac−1y) − 1)(π′(w) ⋅ F )(y)

vanishes for all values of y such that ep(ac−1y) = 1. It also vanishes outside a

compact subset of Qp. We get then that this function is in SX(Q×
p). Therefore

π′(g) ⋅ f ∈ SX(Q×
p) + π′(w) ⋅ SX(Q×

p).

3.4 Uniqueness of the Kirillov Model

For the rest of this section, X = V /V0 as defined previously, and w =
⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

.

We need to prove the uniqueness of the Kirillov model. For this aim, we shall prove

that X is one dimensional. This requires the construction of some operators in order

to describe the action of w on K. We consider then the following definition.

Definition 3.4.1. Fix χ ∶ Z×
p → C× a unitary multiplicative character. Let t ∈ Q×

p .

We define the linear operator J(t, χ) ∶X →X by the action

J(t, χ) ⋅ x = [π′(w) ⋅ ψt,χ(y′)x]
RRRRRRRRRRRy′=1

for all x ∈X, where w =
⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

and for fixed x ∈X,

ψt,χ ∶ Q×
p → Q×

p
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y′ → ψt,χ(y′)x = χ(t−1y′) ⋅ 1Z×p(t−1y′) ⋅ x

Remark. The function y′ → ψt,χ(y′)x ∈ SX(Q×
p), which is in turn contained in K.

Therefore, the action of π′(w) is well defined on this function. The operator Jπ(t, χ)

is defined by applying π′(w) to y′ → ψt,χ(y′)x and then setting “ y′ ”= 1 afterwards,

where this “ y′ ” is not the same as y′ in ψt,χ(y′)x.

Remark. Note that for a fixed x ∈X, J(t, χ) ⋅ x vanishes for large ∣t∣p.

Lemma 3.4.1. Let t ∈ Q×
p , f ∈ SX(Q×

p), and ωπ′ be the central character of π′. Let

pN be the conductor of f . Then for each y ∈ Q×
p , we have

[π′(w) ⋅ f] (y) = ωπ′(y) ∑
χ mod pN

∫
Q×

p

J(ty, χ) ⋅ f(t)d×t.

Proof. We recall the following: If χ is a normalized unitary character of Z×
p which

has conductor pN , then χ is constant on cosets of 1 + pNZp in Zp, and there are

exactly φ(pN) = (p − 1)pN such characters χ such that

1

φ(pN) ∑
χ mod pN

χ(j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if j ∈ 1 + pNZp,

0, otherwise.

Now, let y ∈ Q×
p . Then

ωπ′(y) ∑
χ mod pN

∫
t∈Q×

p

J(ty, χ) ⋅ f(t)d×t

= ωπ′(y) ∑
χ mod pN

∫
t∈Q×

p

[π′(w) ⋅ ψty,χ(y′)f(t)]y′=1 d
×t (for y′ ∈ Q×

p)

= ωπ′(y)
⎡⎢⎢⎢⎢⎣
∫
t∈Q×

p

∑
χ mod pN

π′(w) ⋅ ψty,χ(y′)f(t)
⎤⎥⎥⎥⎥⎦y′=1

d×t (finite sum)

= ωπ′(y)
⎡⎢⎢⎢⎢⎣
∫
t∈Q×

p

π′(w) ∑
χ mod pN

χ((ty)−1y′) ⋅ 1Z×p((ty)−1y′)f(t)
⎤⎥⎥⎥⎥⎦y′=1

d×t

= ωπ′(y) [∫
t∈Q×

p

π′(w)φ(pN) ⋅ 11+pNZp
((ty)−1y′)f(t) ]

y′=1

d×t
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= ωπ′(y) [π′(w)φ(pN) ⋅ ∫
t∈Q×

p

11+pNZp
(t−1)f(ty−1y′)d×t ]

y′=1

= ωπ′(y) [π′(w)φ(pN) ⋅ 1

φ(pN)f(y
−1y′) ]

y′=1

,

where the last step follows from the fact that the volume of 1+ pNZp is
1

φ(pN) , and

that f is invariant under multiplication by 1+ pNZp, while the next to last step is a

substitution, replacing t by ty−1y′. Now,

f(y−1y′) = π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y′),

and
⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

y−1 0

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

y−1 0

0 y−1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠
.

Using these two identities, we get that

ωπ′(y)
⎡⎢⎢⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y−1y′)

⎤⎥⎥⎥⎥⎥⎥⎦y′=1

= ωπ′(y)
⎡⎢⎢⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y′)

⎤⎥⎥⎥⎥⎥⎥⎦y′=1

= ωπ′(y)
⎡⎢⎢⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y−1 0

0 y−1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y′)

⎤⎥⎥⎥⎥⎥⎥⎦y′=1

= ωπ′(y)ωπ′(y−1)
⎡⎢⎢⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y′)

⎤⎥⎥⎥⎥⎥⎥⎦y′=1

=
⎡⎢⎢⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y′)

⎤⎥⎥⎥⎥⎥⎥⎦y′=1
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Now suppose that h ∶ y′ → h(y′) = π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y′). Then

h(yy′) ∶ y′ → h(yy′) =
⎛
⎜⎜
⎝
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
h

⎞
⎟⎟
⎠
(y′) =

⎛
⎜⎜
⎝
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f

⎞
⎟⎟
⎠
(y′)

It follows then that

⎡⎢⎢⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

y 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y′)

⎤⎥⎥⎥⎥⎥⎥⎦y′=1

= [h(yy′)]y′=1

= h(y)

=
⎛
⎜⎜
⎝
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f

⎞
⎟⎟
⎠
(y).

This completes the proof.

Lemma 3.4.2. If T ∈ End (X) commutes with all the operators J(t, χ), where t ∈ Q×
p

and χ ∶ Z×
p → C× (unitary multiplicative character), then T acts by a scalar on all of

X.

Proof. Let FX(Q×
p) denote the space of all functions f ∶ Q×

p →X. Any linear operator

T ∶X →X induces an operator

T ′ ∶ FX(Q×
p) → FX(Q×

p)

f → T ′ ⋅ f,

provided that (T ′ ⋅ f)(y) = T ⋅ f(y) for all y ∈ Q×
p . Here T ⋅x denotes the action of T

on x ∈X. Notice that T ′ maps SX(Q×
p) to SX(Q×

p) as T is a linear operator.
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Let f ∈ SX(Q×
p). As SX(Q×

p) ⊂ K, it follows from the previous lemma that for

every y ∈ Q×
p , we have

π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ (T ′ ⋅ f)(y)

= ωπ′(y) ∑
χ mod pN

∫
Q×

p

J(ty, χ) ⋅ (T ⋅ f(t))d×t

= T ⋅
⎡⎢⎢⎢⎢⎣
ωπ′(y) ∑

χ mod pN
∫
Q×

p

J(ty, χ) ⋅ f(t)d×t
⎤⎥⎥⎥⎥⎦

= T ⋅
⎡⎢⎢⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y)

⎤⎥⎥⎥⎥⎥⎥⎦

= T ′ ⋅
⎛
⎜⎜
⎝
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f

⎞
⎟⎟
⎠
(y). (3.2)

We have thus proved that T ′ commutes with π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

when T ′ is considered

as an operator on SX(Q×
p). We need to prove that K is an invariant subspace of T ′.

Indeed, if f ∈ K, then we can write

f = f1 + π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f2

with f1, f2 ∈ SX(Q×
p). Then

T ′ ⋅ f = T ′ ⋅ f1 + T ′ ⋅ π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f2 = T ′ ⋅ f1 + π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ T ′ ⋅ f2

∈ SX(Q×
p) + π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ SX(Q×

p) ⊂ K.

Thus K is an invariant subspace of T ′.
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Now we want to show that T ′ ∶ K → K commutes with any π′(g) where g ∈

GL(2,Qp). T ′ commutes with π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

d 0

0 d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

for any d ∈ Q×
p because π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

d 0

0 d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

acts by a scalar (central character). Moreover, we have already shown this for

g =
⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

just when T ′ is considered to be acting on SX(Q×
p). Now for any f ∈ K,

f = f1 + π′(w) ⋅ f2 with f1, f2 ∈ SX(Q×
p). Let y ∈ Qp, then

T ′ ⋅ π′(w) ⋅ f(y) = T ′ ⋅ π′(w) ⋅ [f1(y) + π′(w) ⋅ f2(y)]

= T ′ ⋅ π′(w) ⋅ f1(y) + T ′ ⋅ π′(−I2) ⋅ f2(y)

= π′(w) ⋅ (T ′ ⋅ f1)(y) + π′(−I2) ⋅ T ′ ⋅ f2(y) (by (3.2))

= π′(w) ⋅ (T ′ ⋅ f1)(y) + π′(w) ⋅ [π′(w) ⋅ T ′ ⋅ f2(y)]

= π′(w) ⋅ (T ′ ⋅ f1)(y) + π′(w) ⋅ [T ′ ⋅ π′(w) ⋅ f2(y)] (by (3.2))

= π′(w) ⋅ (T ′ ⋅ f1 + T ′ ⋅ π′(w) ⋅ f2)(y)

= π′(w) ⋅ (T ′ ⋅ f)(y).

So T ′ commutes with π′(w). Consider now g =
⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

(a ∈ Q×
p , b ∈ Qp). Then for

any f ∈ K and y ∈ Qp, we have

T ′ ⋅ π′(g) ⋅ f(y) = T ′ ⋅ [ep(by)f(ay)] = ep(by)(T ′ ⋅ f)(ay) = π′(g) ⋅ (T ′ ⋅ f)(y).

Consequently, T ′ commutes with π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

. The matrices

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

,

⎛
⎜⎜
⎝

d 0

0 d

⎞
⎟⎟
⎠

,

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

with a, d ∈ Q×
p and b ∈ Qp generate GL(2,Qp). Thus T ′ commutes with all π′(g),

with g ∈ GL(2,Qp), and so T ′ acts by a scalar. It follows that T also acts by a

scalar.

Theorem 3.4.3 (Commutativity of the operators). For all t, t′ ∈ Q×
p , and all w,w′ ∶
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Z×
p → C× (unitary multiplicative characters), we have

J(t,w) ⋅ J(t′,w′) = J(t′,w′) ⋅ J(t,w).

Proof. We begin with the matrix identity:

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 t

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 −t−1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

t−1 0

0 t−1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

t2 −t

0 1

⎞
⎟⎟
⎠

Let f ∈ SX(Q×
p). For t, y ∈ Q×

p set

ft(y) = π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

t2 −t

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

t−1 0

0 t−1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y) = ep(−ty)ωπ′(t−1) ⋅ f(t2y).

And so ft ∈ SX(Q×
p). We apply π′ on both sides.

On the right hand side: Let y ∈ Q×
p and let Nt be the conductor of ft:

y →
⎡⎢⎢⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 −t−1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

t−1 0

0 t−1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

t2 −t

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f

⎤⎥⎥⎥⎥⎥⎥⎦
(y)

= π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 −t−1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

t−1 0

0 t−1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

t2 −t

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y)

= π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 −t−1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ ft(y)

= ep(−t−1y) π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ ft(y)

= ep(−t−1y) ωπ′(y) ∑
χ(modpNt)

∫
a∈Q×

p

J(ay,χ)ft(a)d×a

= ep(−t−1y) ωπ′(y) ∑
χ(modpNt)

∫
a∈Q×

p

J(ay,χ)[ep(−ta)ωπ′(t−1) ⋅ f(t2a)]d×a

= ωπ′(t−1y) ∑
χ(modpNt)

∫
a∈Q×

p

ep(−t−1y − ta)J(ay,χ)f(t2a)d×a
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= ωπ′(t−1y) ∑
χ(modpNt)

∫
a∈Q×

p

ep(−
a + y
t

)J(ay
t2
, χ)f(a)d×a.

Now we apply π∗ to the left hand side.

Let y ∈ Q×
p , then

y →
⎡⎢⎢⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 t

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f

⎤⎥⎥⎥⎥⎥⎥⎦
(y)

= π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 t

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y)

= π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

⎡⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 t

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
is not in general in SX(Q×

p)

⋅f(y)
⎤⎥⎥⎥⎥⎦

= π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

⎡⎢⎢⎢⎢⎣
π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 t

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y) − π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
this function now is in SX(Q×

p)

⎤⎥⎥⎥⎥⎦
+ f(y)

Let pN be the conductor of f , define

f ′t(y) ∶= π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 t

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y) − π′

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y)

= π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 t

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

⎡⎢⎢⎢⎢⎣
ωπ′(−y) ∑

χ′′(modpN )
∫
a∈Q×

p

J(ay,χ′′)f(a)d×a
⎤⎥⎥⎥⎥⎦

− ωπ′(−y) ∑
χ′′(modpN )

∫
a∈Q×

p

J(ay,χ′′)f(a)d×a

= (ep(ty) − 1)ωπ′(−y) ∑
χ′′(modpN )

∫
a∈Q×

p

J(ay,χ′′)f(a)d×a (3.3)
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Let pN
′

t be the conductor of f ′t , so that the left hand side becomes:

π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 t

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f(y)

= π′
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ f ′t(y) + f(y)

= ωπ′(y) ∑
χ′(modpN

′

t)

∫
z∈Q×

p

J(zy,χ′)f ′t(y)d×z + f(y)

= ωπ′(y) ∑
χ′(modpN

′

t)

∫
z∈Q×

p

J(zy,χ′)
⎡⎢⎢⎢⎢⎣
(ep(tz) − 1)ωπ′(−z)

⋅ ∑
χ′′(modpN )

∫
a∈Q×

p

J(az,χ′′)f(a)d×a
⎤⎥⎥⎥⎥⎦
d×z + f(y)

= ωπ′(y) ∑
χ′(modpN

′

t)

∑
χ′′(modpN )

∫
z∈Q×

p

J(zy,χ′)(ep(tz) − 1)ωπ′(−z)

⋅
⎡⎢⎢⎢⎢⎣
∫
a∈Q×

p

J(az,χ′′)f(a)d×a
⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

This is a function of z. Basi-

cally, ∣az∣p < bdd, but ∣a∣p >

m > 0, so ∣z∣p < bdd/m. How-

ever, problem of z remains near

zero; but this is fixed by the

(ep(tz)−1) factor, where t here

is being fixed.

d×z + f(y) (3.4)

We note that:

• t is temporarily fixed, so we can limit ourselves to compact subsets of Q×
p , so

that ∣t∣p is bounded.

• Nt and N ′
t also can be made bounded for a couple of t′s.

• We need to bound z when a is fixed (mf < ∣a∣p < Mf ), so that we can justify

interchanging the order of integration.

Let Kf be compact subset containing all a’s in the support of f , and let K ′ be
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range of z

OK due to ep(tz)−1

and t bdd above

coming from support of f

Figure 3.1: A sketch of the case

the compact set containing all the z’s for z bounded as mentioned in 3.4. Then

∫
z∈Q×

p

∫
a∈Q×

p

⋯ = ∫
z∈K′

⋯®
vanishes for

∣z∣p small

⎡⎢⎢⎢⎢⎣
∫
a∈Kf

⋯
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

quantity which van-

ishes for ∣z∣p large

⎤⎥⎥⎥⎥⎦

= ∫
z∈K′

∫
a∈Kf

⋯

= ∫
a∈Kf

∫
z∈K′

⋯

Now define the function

K1 ∶ Q×
p ×Q×

p ×Q×
p → End(X)

(a, y, t) →K1(a, y, t) ∶= ωπ′(t−1y) ∑
χ(modpNt)

ep(−
a + y
t

)J(ay
t2
, χ).
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So we get RHS = ∫
a∈Kf

K1(a, y, t)f(a)d×a. Define also

K2 ∶ Q×
p ×Q×

p ×Q×
p → End(X)

(a, y, t) →K2(a, y, t) ∶=

ωπ′(y) ∑
χ′(modpN

′

t)

∑
χ′′(modpN )

∫
z∈K′

[ep(tz) − 1]ωπ′(−z)J(zy,χ′)J(az,χ′′)d×z.

So we get

LHS = ∫
z∈K′

∫
a∈Kf

K2(a, y, t) f(a)d×ad×z + f(y)

= ∫
a∈Kf

∫
z∈K′

K2(a, y, t) f(a)d×z d×a + f(y).

Note that K ′ is chosen sufficiently large so that the above equation holds true.

In order to get rid of the term +f(y), we will take two different t1 and t2, subtract

the term with t2 from the term with t1 in the RHS (respectively LHS), and then

equate the two resulting equations. It follows then that

∫
a∈Kf

(K1(a, y, t1)−K1(a, y, t2))f(a)d×a = ∫
a∈Kf

(K2(a, y, t1)−K2(a, y, t2))f(a)d×a

for all f ∈ SX(Q×
p). For a, y ∈ Q×

p , define the two functions R and Q to be

R(a, y) =K1(a, y, t1) −K1(a, y, t2) Q(a, y) =K2(a, y, t1) −K2(a, y, t2).

Now we try to make z ∈K ′ uniformly in f (where f is restricted to conductor pN).

Note that

• Kf is fixed.

• We are only going to consider functions f whose support is in Kf and f is

invariant under 1 + pN .
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• The domain of such functions f has finitely many points (because finitely

many cosets of Kf/(1 + pN)), but the values also can be in X. So let us limit

ourselves to values in some finite dimensional subspace X ′ ⊂X.

Thus the functions f concerned can only be in a finite dimensional space. Thus we

can find a uniform upper bound for the support. So z ∈K ′ ⊂ p−MZp for some M , is

a uniform function of Kf and N .

Our goal now is to prove that ∀v ∈X ′, Q(a, y)v = Q(y, a)v.

Integrate both sides against the specific function f , which is defined as follows: f is

supported on coset of 1+pN , say a0 +(1+pN) and of value v ∈X ′ (i.e. one operator

is applied to one vector). Then we get that

Q(a0, y)v = R(a0, y)v

= R(y, a0)v (as the RHS is symmetric)

= Q(y, a0)v
(here we need to apply to another function near y0 whose

value on V is y0(1 + pN))

Note that Q depends on Kf , N and the finite dimensional space X ′. Moreover, note

that we can write Q as

Q(a, y)v = ∑
χ′,χ′′

G(a, y,χ′, χ′′)v

Q(y, a)v = ∑
χ′,χ′′

G(y, a,χ′′, χ′)v

where G(a, y,χ′, χ′′) = ∫
z∈K′

(ep(t1z) − ep(t2z))ωπ′(−z)J(zy,χ′)J(az,χ′′)d×z.

From the definition of J(t, χ), notice that J(tu,χ) = χ(u)J(t, χ) for all u ∈ Z×
p . It

follows that

G(au, yw,χ′.χ′′)v = χ′′(u)χ′(w)G(a, y,χ′, χ′′)
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G(yw, au,χ′′.χ′)v = χ′(w)χ′′(u)G(y, a,χ′′, χ′)

for all u,w ∈ Z×
p . We get then that

Q(au, yw)v = ∑
χ′,χ′′

χ′′(u)χ′(w)G(a, y,χ′, χ′′)v

Q(yw, au)v = ∑
χ′,χ′′

χ′(w)χ′′(u)G(y, a,χ′′, χ′)v.

Now, for ψ1, ψ2 unitary characters of Z×
p , we have

∫
u,w∈Z×p

(LHS) ⋅ ψ1(u)ψ2(w)d×ud×w

= ∑
χ′,χ′′

∫
u,w∈Z×p

χ′′(u)ψ1(u)χ′(w)ψ2(w)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 0 unless χ′′ = ψ1 and χ′ =

ψ2, in which we get 1.

G(a, y,χ′, χ′′)d×ud×w

= G(a, y,χ′, χ′′).

Similarly, ∫
u,w∈Z×p

(RHS) ⋅ ψ1(u)ψ2(w)d×ud×w = G(y, a,χ′′, χ′).

But RHS=LHS, then G(a, y,χ′, χ′′) = G(y, a,χ′′, χ′). Thus

∫
z∈K′

(ep(t1z) − ep(t2z))ωπ′(−z)J(zy,χ′)J(az,χ′′)v d×z

= ∫
z∈K′

(ep(t1z) − ep(t2z))ωπ′(−z)J(az,χ′′)J(zy,χ′)v d×z

for all v ∈ X ′, where K ′ depends on N,Kf , t1, t2. We want to check that K ′ is

uniform for all ti such that ∣ti∣p ≤ B, ti ≠ 0. Notice that

t1, t2 ∈ p−BZp Ô⇒ ep(tiz) = 1 for z ∈ pBZp

Ô⇒ ep(t1z) − ep(t2z) = 0 for z ∈ pBZp.

So we can assume that K ′ ∩ pBZp = ∅, so that as ∣ti∣p’s are bounded above, we get

that a part of K ′ is bounded below. Now we need to check if the ∣ti∣p’s are bounded
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below. We look at the functions that span ep(t1z) − ep(t2z) for z ∈ p−MZp − pBZp.

Such functions are constant on the cosets of pBZp. So we can see ti’s as elements of

p−BZp/pMZp.

Start with a locally constant compactly supported function on Qp. Every such

function can be written as finite linear combination of characteristic functions com-

pact open sets of the form a+pnZp, a ∈ Qp, n ∈ Z. So it suffices to consider g = 11+pnZp ,

where g vanishes at zero. Now, using Fourier inversion formula, we have

g(z) = ∫
y∈Qp

ĝ(y)ep(yz)dy,

where by lemma 2.3.2, we have

ĝ(y) = 1̂1+pnZp(y) = ep(−y)p−n1p−nZp(y.)

We also know that ∫
Qp

ĝ(y)dy = g(0) = 0. Choose B, such that pMZp ⊂ B and B

contains the support of ĝ. If S = tiU is the set of representatives of B/pMZp, and if

c is the volume of pMZp, then

g(z) = c∑
ξ∈S

ep(ξz)ĝ(ξ) = ∑
tiU

cep(tiz)ĝ(ti) =
l

∑
i=1

cep(tiz)ĝ(ti).

Now, we fix one t, say t1, and we write g as differences

g(z) =
l

∑
i=1

ci (ep(tiz) − ep(t1z))

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if z ≡ 1 mod (pNZp),

0 if z ∈K ′, z /≡ 1 mod (pNZp).
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This proves that the function

z → ωπ′(−z) ⋅ (J(zy,χ′)J(za,χ′′) − J(za,χ′′)J(zy,χ′))

is orthogonal to all functions in S(Q×
p), and hence must vanish. Therefore

J(zy,χ′)J(za,χ′′) = J(za,χ′′)J(zy,χ′),

which establishes the commutativity of the operators.

Theorem 3.4.4. The dimension of X is one.

Proof. By Theorem 3.4.3, the family of operators J(t, χ) is commutative. It immedi-

ately follows from Lemma 3.4.2 that each J(t, χ) is a scalar operator. Consequently,

any T ∈ End(X) commutes with every J(t, χ). It follows again from Lemma 3.4.2

that every linear operator T ∈ End(X) must be a scalar operator. This forces the

space X to be one dimensional.
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Chapter 4

Application to Local New Vectors

In this chapter, we present one application of the Kirillov model: the theory of

local new vectors. This is similar to the theory of new forms in the sense of modular

forms. The classical theory is due to Atkin & Lehner. We will present the p-adic

analogue of this theory, which is due to [Casselman, 1973]. However, we will follow

the proof of [Deligne, 1973].

Lemma 4.1. Let H be the subgroup of SL(2,Qp) generated by the subgroups

⎛
⎜⎜
⎝

1 Zp

0 1

⎞
⎟⎟
⎠

and

⎛
⎜⎜
⎝

1 0

pnZp 1

⎞
⎟⎟
⎠

, then

i. For n > 0, H is the subgoup of SL(2,Zp) of the form

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠

such that a ≡ d ≡

1 (mod pnZp) and c ≡ 0 (mod pnZp).

ii. For n = 0, H = SL(2,Zp).

iii. For n < 0, H = SL(2,Qp).
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Proof. :

i. We want to prove that

⟨
⎛
⎜⎜
⎝

1 Zp

0 1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

1 0

pnZp 1

⎞
⎟⎟
⎠
⟩ = ⟨

⎛
⎜⎜
⎝

≡ 1 (mod pnZp) Zp

≡ 0 (mod pnZp) ≡ 1 (mod pnZp)

⎞
⎟⎟
⎠
⟩.

Let G be the subgroup of SL(2,Zp) defined by

G =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL(2,Zp) such that a ≡ d ≡ 1 & c ≡ 0 (mod pnZp)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

As

⎛
⎜⎜
⎝

1 Zp

0 1

⎞
⎟⎟
⎠
⊂ H &

⎛
⎜⎜
⎝

1 0

pnZp 1

⎞
⎟⎟
⎠
⊂ H, it is enough to prove that G ⊂ H. Let

⎛
⎜⎜
⎝

1 + pnα β

pnγ 1 + pnδ

⎞
⎟⎟
⎠
∈ G. Now we reduce this into a diagonal matrix using

column and row operations:

⎛
⎜⎜
⎝

1 + pnα β

pnγ 1 + pnδ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 0

−γ(1 + pnα)−1 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 + pnα 0

0 1 + pnδ′

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 −β(1 + pnα)−1

0 1

⎞
⎟⎟
⎠
.

Notice that

⎛
⎜⎜
⎝

1 + pnα 0

0 1 + pnα

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 −α(1 + pnα)−1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

pn 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 α

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

−pn(1 + pnα)−1 1

⎞
⎟⎟
⎠
.

It follows that

⎛
⎜⎜
⎝

1 + pnα 0

0 1 + pnα

⎞
⎟⎟
⎠
∈ G.

We can deduce that

⎛
⎜⎜
⎝

1 + pnα β

pnγ 1 + pnδ

⎞
⎟⎟
⎠
∈ H as it can be written as a product

of generators of H, and so we get our result.

53



ii. We need to prove that SL(2,Zp) is generated by

⎛
⎜⎜
⎝

1 0

Zp 1

⎞
⎟⎟
⎠

and

⎛
⎜⎜
⎝

1 Zp

0 1

⎞
⎟⎟
⎠

.

Let

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL(2,Zp), then ad − bc = 1.

Case 1: If b ∈ Z×
p , then c = b−1(ad − 1).

Let y = b,

x = b−1(d − 1),

z = b−1(a − 1).

Then we get that

1 + yz = 1 + bb−1(a − 1) = a,

y = b,

x + z + xyz = b−1(d − 1) + b−1(a − 1) + bb−1(d − 1)(a − 1) = b−1(ad − 1) = c,

xy + 1 = bb−1(d − 1) + 1 = d.

So

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 + yz y

x + z + xyz xy + 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 0

x 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 y

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

z 1

⎞
⎟⎟
⎠
.

Case 2: If b ∉ Z×
p , then b ∈ pZp, so

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

−c −d

a b

⎞
⎟⎟
⎠
,

where

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠
∈H (by the above case). Notice that d ∈ Z×

p because otherwise

we get b = pku and d = prv where k, r > 0 and u, v ∈ Z×
p . This implies that

ad − bc = p(avpr−1 − cupk−1) = 1, which is impossible over Zp. It follows that

54



⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠

is generated by

⎛
⎜⎜
⎝

1 0

Zp 1

⎞
⎟⎟
⎠

and

⎛
⎜⎜
⎝

1 Zp

0 1

⎞
⎟⎟
⎠

.

iii. First, notice that SL(2,Zp) ⊂H. Moreover, we have the following identity

⎛
⎜⎜
⎝

p 0

0 p−1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 −p

0 1

⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈H

⎛
⎜⎜
⎝

1 0

p−1 1

⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈H

⎛
⎜⎜
⎝

p 1

−1 0

⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈SL(2,Zp)⊂H

∈H

Thus

⎛
⎜⎜
⎝

pn 0

0 p−n

⎞
⎟⎟
⎠
∈H, for n > 0.

We already know that SL(2,Qp) is generated by

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠

and

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠

, where

b, c ∈ Qp. It is enough to to prove that

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠
∈ H because one can get the

other matrix by conjugating by

⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

.

Now for c ∈ Qp, we can write c = upk, for some u ∈ Z×
p and k ∈ Z. We can

assume that k < 0 because otherwise the result follows trivially. Notice that

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

p−k 0

0 pk

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

p−2kc 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

pk 0

0 p−k

⎞
⎟⎟
⎠
∈H,

which is exactly what we want.

Theorem 4.2. Let π be an infinite dimensional admissible irreducible representation

of GL(2,Qp). Let α and β be two characters of Z×
p such that αβ = ωπ (the central

character of π).
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i. There exists a non zero vector v ∈ V such that

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v = α(a)β(d) ⋅ v (a, d ∈ Z×

p , b ∈ Zp)

ii. Let n be the smallest integer such that there exists v in (i), invariant by

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠

for c ∈ pnZp. Then n is at least equal to the conductor of αβ−1, in particular

n ≥ 0.

Proof. :

i. We need to identify v with a function v(x) ∈ K that is supported on Zp and

transforms by α on the cosets of Z×
p . So we need to choose a v(x) satisfying

the relation v(ax) = α(a) v(x) for all a ∈ Z×
p , i.e. v(x) transforms by α(a) on

any coset of Z×
p . The simplest example here is to choose v(x) = α(x) ⋅ 1Z×p(x),

where 1Z×p(x) is the characteristic function of Z×
p . This function is a Schwartz

function, so it is in K, the Kirillov model of π. Then

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v(x)

= π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

d 0

0 d

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

ad−1 bd−1

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
⋅ v(x)

= ωπ(d)ep(bd−1x)v(ad−1x)

= α(d)β(d)α(ad−1)v(x)

= α(a)β(d)v(x).

ii. Take v and n as in the statement of the theorem. Then we have three cases:
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For n = 0, we have that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v = α(a)β(d) ⋅ v and π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v = v.

The stabilizer of v includes SL(2,Zp) (by lemma 4.1), so it includes

⎛
⎜⎜
⎝

a 0

0 a−1

⎞
⎟⎟
⎠

.

This implies that αβ−1(a) = 1 for all a ∈ Z×
p , and so we get that the conductor

of αβ−1 is zero.

For n > 0, v is fixed by

⎛
⎜⎜
⎝

1 Zp

0 1

⎞
⎟⎟
⎠

and

⎛
⎜⎜
⎝

1 0

pnZp 1

⎞
⎟⎟
⎠

. Hence it is fixed by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

≡ 1 (mod pnZp) Zp

≡ 0 (mod pnZp) ≡ 1 (mod pnZp)

⎞
⎟⎟
⎠
, of determinant 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

For all such a ≡ 1 and d = a−1 ≡ 1 (mod pnZp), we have α(a)β(a−1)v = v, which

gives us that αβ−1 is trivial on 1 + pnZp.

For n < 0, we have that v is fixed by SL(2,Qp) (by lemma 4.1). But we

proved in a previous theorem that there is no such non-zero vector. This is a

contradiction. Hence we get that n cannot be strictly negative.

Now we introduce the following set. Let Xk be the subgroup of V defined by

Xk =
⎧⎪⎪⎨⎪⎪⎩
v ∈ V, such that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v = α(a)β(d) ⋅ v and

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v = v ∀a, d ∈ Z×

p , b ∈ Zp, c ∈ pkZp
⎫⎪⎪⎬⎪⎪⎭
.

Definition 4.1. The smallest integer n defined in Theorem 4.2 (ii) means that

Xn ≠ 0 and Xk = 0 for k < n. n is called the conductor of the representation with
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respect to α and β.

If α is the trivial character and β = ωπ (the central character of π), then the

corresponding n is called the conductor of the representation. In this case, n is at

least equal to the conductor of ωπ.

For the rest of this chapter, fix a non zero vector v0 ∈Xn.

Lemma 4.3. For i ≥ 0, we have π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−i 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk ⊂Xk+i.

Proof. First of all, notice that the condition of transforming under

⎛
⎜⎜
⎝

a 0

0 d

⎞
⎟⎟
⎠

is unaf-

fected by

⎛
⎜⎜
⎝

p−i 0

0 1

⎞
⎟⎟
⎠

because

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a 0

0 d

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

p−i 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z = π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−i 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

a 0

0 d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z = α(a)β(d)z

for all a, d ∈ Z×
p . We want to prove that the transformation

⎛
⎜⎜
⎝

p−i 0

0 1

⎞
⎟⎟
⎠

transforms vec-

tors that are

⎛
⎜⎜
⎝

1 0

pkZp 1

⎞
⎟⎟
⎠

- invariant into vectors that are invariant under

⎛
⎜⎜
⎝

1 0

pk+iZp 1

⎞
⎟⎟
⎠

.

Indeed, let H =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0

pkc 1

⎞
⎟⎟
⎠
, such that c ∈ Zp

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
be a subgroup of GL(2,Qp). Let

g =
⎛
⎜⎜
⎝

p−i 0

0 1

⎞
⎟⎟
⎠

. Note that gHg−1

⎛
⎜⎜
⎝

1 0

pk+iZp 1

⎞
⎟⎟
⎠

. One checks that if v is invariant under

H, then gv is invariant under gHg−1. Indeed, let h ∈ H be arbitrary, so ghg−1 is
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arbitrary element of gHg−1. Then

ghg−1(gv) = g(hv) = gv.

Lastly, we need to check invariance under

⎛
⎜⎜
⎝

1 Zp

0 1

⎞
⎟⎟
⎠

for gv. Let b ∈ Zp, then

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠
gv = gg−1

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠
gv = g

⎛
⎜⎜
⎝

1 pib

0 1

⎞
⎟⎟
⎠
v = gv

where the last step follows because i ≥ 0.

Lemma 4.4. π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk−1 = {z ∈Xk such that supp(v) ⊂ pZp}.

Proof. ⊇) We know that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z(t) = z(pt) for all t ∈ Q×

p . Let z′ = π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z.

We want to show that z′ ∈Xk−1.

• π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a 0

0 d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z′ = π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a 0

0 d

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

p 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z = π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

a 0

0 d

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z = α(a)β(d)z′

• Let c ∈ pk−1Zp, so that c = pk−1γ for some γ ∈ Zp. Then using the identity

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

pk−1γ 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

p 0

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 0

pkγ 1

⎞
⎟⎟
⎠
,

we get that

π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

c 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z′ = π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

pk−1γ 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

p 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z

= π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p 0

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

pkγ 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z = π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z = z′.
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• We still need to prove that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z′ = z′. However, we will prove a

stronger statement:

claim supp(z′) ⊂ Zp ⇐⇒ π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z′ = z′ ∀b ∈ Zp.

Proof of the claim: Assume that supp(z′) ⊂ Zp. We know that supp(z)⊂ pZp,

then

z(x) ≠ 0 Ô⇒ x ∈ pZp.

But we also know that z′(x) = z(px), then

z′(x) ≠ 0 Ô⇒ px ∈ pZp Ô⇒ x ∈ Zp.

This implies that ep(bx)z′(x) = z′(x). Indeed, if x ∈ Zp, we get that ep(bx) = 1.

If x /∈ Zp, then z′(x) = 0. Therefore, π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
z′ = z′ for all b ∈ Zp.

For the other implication, assume that supp(z′)/⊂ Zp, then we can find a point

on the support for which ep(bx) ≠ 1. But z′(x) is different than zero on its

support; this contradicts the fact that ep(bx)z′(x) = z′(x).

Under all of the above, we get that z′ ∈Xk−1.

⊆) Conversely, let z ∈ π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk−1, then by lemma 4.3, we get that z ∈ Xk.

One can write z = π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v, where v ∈ Xk−1. Identifying the functions with

the Kirillov model, we get that z(pt) = v(t). From the above claim, we know that

supp(v) ⊂ Zp. Then

z(pt) ≠ 0 ⇐⇒ v(t) ≠ 0 ⇐⇒ t ∈ Zp.
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It follows that

z(u) ≠ 0 ⇐⇒ p−1u ∈ Zp ⇐⇒ u ∈ pZp.

And so supp(z) ⊂ pZp.

Lemma 4.5. We have

dim

⎛
⎜⎜
⎝
Xk/π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk−1

⎞
⎟⎟
⎠
= 1.

Proof. Let x, y ∈ Xk. Identifying our space with the Kirillov model, we can think

of x and y as functions supported on Zp due to π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

invariance (because

of the claim mentioned in the proof of lemma 4.4), where x(ut) = α(u)x(t) and

y(ut) = α(u)y(t) for all u ∈ Z×
p from π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

behaviour. Because of the Kirillov

model, the restrictions of x and y to Z×
p must be proportional, i.e. we can find

(λ,µ) ≠ (0,0) such that λx + µy = 0. Let z = λx + µy, then

• supp(z)⊂ pZp,

• z ∈Xk.

It follows from lemma 4.4 that z ∈ π
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk−1. Therefore, any two elements

x, y ∈ Xk are linearly dependent in Xk/π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk−1 , so that the latter has

dimension 1. The dimension is not zero because we one can write down explicitly

an element π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

pn−k 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v0 where v0 ∈Xn.

Theorem 4.6. For k ≥ n, the space Xk is of dimension k − n + 1, and has as basis

elements π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−i 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v0.
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Proof. Let k ≥ n. From lemma 4.5, we have dim

⎛
⎜⎜
⎝
Xk/π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk−1

⎞
⎟⎟
⎠
= 1.

This implies that dim(Xk) = dim

⎛
⎜⎜
⎝
π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−i 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk−1

⎞
⎟⎟
⎠
+ 1 = dim(Xk−1) + 1. As Xn−1

is zero by definition of n, we get that dim(Xn)=1. One can argue by induction to

get that dim(Xk)= k − n + 1. Now, we want to find the basis vectors for Xk. First,

note that v0 ∈Xn, which is 1− dimensional, then v0 spans Xn.

From lemma 4.3, we have that π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−i 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk ⊂ Xk+i for all i ≥ 0. As v0 ∈ Xn,

then v0 ∈ Xn+1, but also π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v0 ∈ Xn+1, and the latter two elements are

linearly independent. Indeed, assume there exists α,β ∈ C such that

αv0 + βπ
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
v0 = 0 in Xn+1.

This implies that

αv0 = 0 in Xk/π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk−1 .

But v0 is a non zero vector in Xk/π

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
Xk−1 , then we get that α = 0.

Substituting in the above equation, we get then β = 0. It follows that X2 is spanned

by these two vectors as X2 is 2-dimensional. We complete the proof by induction

on k.

Remark. The space Xk defined previously has an equivalent definition. It is actually

the space of all vectors v ∈ V such that v is invariant under

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠

, where a ∈ Z×
p , b ∈

Zp, c ≡ 0 mod(pnZp), d ≡ 1 mod(pnZp).
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Now we can define the local new vector of a representation.

Definition 4.2. Let π be an infinite dimensional admissible irreducible representa-

tion of GL(2,Qp). Let α and β be two characters of Z×
p such that αβ = ωπ. Assume

that α is the trivial character and β = ωπ, and let n be the conductor of π, i.e. the

smallest integer such that Xn is non-zero (and in fact one dimensional). A vector v

in Xn is called the new vector of the representation.

Remark. The new vector is unique up to multiplying by a scalar.

Actually, for k ≥ n, the space Xk is a local p-adic analogue of the congruence

subgroup

Γ0,1(pkZp) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
≡
⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

mod (pnZp)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⊂ GL(2,Zp).

Moreover, the space V Γ0,1(p
n) of vectors that transform under Γ0,1(pn) by β(d) is

one dimensional, so that v ∈ V Γ0,1(p
n) is the new form. Moreover

V Γ0,1(p
k) = ⟨v,

⎛
⎜⎜
⎝

p−1 0

0 1

⎞
⎟⎟
⎠
v, ⋯ ,

⎛
⎜⎜
⎝

p−(k−n) 0

0 1

⎞
⎟⎟
⎠
v⟩

for all k ≥ n. Therefore, a new vector is analogue to the notion of a new form in the

sense of modular forms.
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Chapter 5

The Principal Series

Representations

One of the main goals of [Jacquet and Langlands, 1970] was to classify the local

admissible irreducible representations ofGL(2,Qp). It turns out that this task would

be much easier by using the Kirillov space. In this chapter, we define the principal

series representations and find the associated Kirillov model explicitly.

5.1 Admissibility

In order to guarantee the existence of the Kirillov model of principal series rep-

resentations, we need to check that conditions of Theorem 3.2.1 are satisfied. In this

section, we define the principal series representations of GL(2,Qp) and prove that

they are admissible.

First, we recall the definition of smooth induced representations.

Definition 5.1.1. Let G, H be two groups with H ∈ G. Let ρ ∶ H → GL(V ) be
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a smooth representation. We define the smooth induction of V to G, denoted by

IndGH(V ) or IndGH(ρ), to be the space

IndGH(V ) ∶= {f ∶ G→ V ∣ f is locally constant and f(hg) = ρ(h)(f(g)) ∀h ∈H, g ∈ G}.

G here acts on the induced space by right translations, as we will see in the formula

below.

Let ω1, ω2 be two normalized unitary characters of Q×
p , and let s1, s2 ∈ C. Then

we can consider the characters χ1, χ2 of Q×
p given by

χ1(x) = ω1(x)∣x∣p
s1 and χ2(x) = ω2(x)∣x∣p

s2 .

χ = (χ1, χ2) extends to a character of the diagonal matrices D as

⎛
⎜⎜
⎝

a 0

0 d

⎞
⎟⎟
⎠
→

χ1(a)χ2(d). Consequently, χ = (χ1, χ2) extends to a character of the Borel subgroup

B(Qp) by

χ

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

a 0

0 d

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦
= χ1(a)χ2(d) for all a, d ∈ Q×

p , x ∈ Qp.

Definition 5.1.2. We define the “normalized parabolic induction” of χ to be the

space

Bχ1,χ2
∶=

⎧⎪⎪⎨⎪⎪⎩
φ ∶ GL(2,Qp) → C such that φ is locally constant and

φ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 d

⎞
⎟⎟
⎠
g

⎞
⎟⎟
⎠
= χ1(a)χ2(d) ∣

a

d
∣
p

1
2

φ(g) ∀a, d ∈ Q×
p , b ∈ Qp, g ∈ GL(2,Qp)

⎫⎪⎪⎬⎪⎪⎭
,

where GL(2,Qp) acts on Bχ1,χ2 through right translations, i.e. g1 ⋅φ(g) = φ(gg1) for

all g, g1 ∈ GL(2,Qp), φ ∈ Bχ1,χ2 .
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Remark. In the above definition, we have Bχ1,χ2 = Ind
GL(2,Qp)

B(Qp)
(ρχ1,χ2), where

ρχ1,χ2

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 d

⎞
⎟⎟
⎠
g

⎞
⎟⎟
⎠
= χ1(a)χ2(d) ∣

a

d
∣
p

1
2

ρχ1,χ2(g) ∀a, d ∈ Q×
p , b ∈ Qp, g ∈ GL(2,Qp).

Definition 5.1.3. If (ρχ1,χ2 , Bχ1,χ2) is an irreducible representation, then it is called

the principal series representation of GL(2,Qp) associated to χ = (χ1, χ2).

Remark. [Goldfeld and Hundley, 2011] work with non-normalized induction:

Bnon-normalized(χ1, χ2) ∶=
⎧⎪⎪⎨⎪⎪⎩
φ ∶ GL(2,Qp) → C such that φ is locally constant and

φ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 d

⎞
⎟⎟
⎠
g

⎞
⎟⎟
⎠
= χ1(a)χ2(d)φ(g) ∀a, d ∈ Q×

p , b ∈ Qp, g ∈ GL(2,Qp)
⎫⎪⎪⎬⎪⎪⎭
.

One can go between the two definitions via:

Bnormalized(χ1, χ2) = Bnon-normalized(χ1 ⋅ ∣ ∣p
1
2 , χ2) ⋅ ∣ ∣p

−1
2 ).

Lemma 5.1.1 (Iwasawa’s decomposition). GL(2,Qp) = B(Qp)K, where K = GL(2,Zp).

Proof. See [Bump, 1998] Proposition 4.5.2.

Theorem 5.1.2. Principal series representations are admissible.

Proof. • We first prove that (ρχ1,χ2 , Bχ1,χ2) is smooth. Let f ∈ Bχ1,χ2 . As f is

locally constant, it follows that for each g ∈ GL(2,Zp), there exists n such that

f(gk) = f(g) whenever k ≡ I2 mod (pnZp). What we want to show is that n

can be made independent of g.

Recall from chapter 3 that Kn = {k ∈ GL(2,Zp) ∣K ≡ I2 mod pnZp} is compact

open subgroup for all n ≥ 0. Note that for each k ∈ GL(2,Zp), there exists an
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integer n(k) ≥ 1 such that

f(kk′) = f(k) (∀k′ ∈Kn(k)).

The cosets

k ⋅Kn(k) (k ∈ GL(2,Zp)

form an open cover of GL(2,Zp). As GL(2,Zp) is compact,then we can choose

a finite subcover. Let then n to be the largest value on n(k). As Kn ⊂Km for

n >m, it follows that

f(kk′) = f(k) (∀k ∈ GL(2,Zp), k′ ∈Kn).

Now, using Iwasaswa decomposition, we get that

f(gk′) = f(g) (∀g ∈ GL(2,Qp), k′ ∈Kn).

Therefore we get that (ρχ1,χ2 , Bχ1,χ2) is smooth.

• We now need to prove that (ρχ1,χ2 , Bχ1,χ2) is admissible. Fix a positive integer

n and consider

B nχ1,χ2
∶= {f ∈ Bχ1,χ2 ∣ f(gk) = f(g), ∀g ∈ GL(2,Qp), k ∈Kn}.

We must prove that this space is finite dimensional for each n. By Iwasawa’s

decomposition, we have that GL(2,Qp) = B(Qp) ⋅K. It follows that B/G/K

has one element. Thus B/G/Kn has finitely many representatives, using the

representatives of K/Kn.

Now, any function in B nχ1,χ2
that is fixed by Kn is determined by its val-

ues on these representatives, and the latter are just finitely many. It follows

that B nχ1,χ2
is finite dimensional, and so the principal series representations of

67



GL(2,Qp) are admissible.

Remark. [Goldfeld and Hundley, 2011] find the exact set of representatives and com-

putes the exact dimension. For more details, refer to Proposition 6.5.5.

5.2 The Kirillov Model of the Principal Series

Goal: In this section, we are going to find the Kirillov model of the principal

series representation (ρχ1,χ2 , Bχ1,χ2) of GL(2,Qp). For the rest of the section, let

w =
⎛
⎜⎜
⎝

0 1

−1 0

⎞
⎟⎟
⎠

and let χ = χ1χ−1
2 be a character on Q×

p . The content of this section is

taken from [Godement, 1974] chapter 1, sections 8 and 9.

Lemma 5.2.1 (Bruhat Decomposition). Fix a prime p. The group GL(2,Qp) is

the disjoint union of the double cosets

B(Qp) ⊍ B(Qp)w−1N(Qp),

where

B(Qp) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

0 d

⎞
⎟⎟
⎠
, for a, d ∈ Q×

p , b ∈ Qp

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
is called the Borel subgroup;

N(Qp) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 b

0 1

⎞
⎟⎟
⎠
, for b ∈ Qp

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Remark. The two double cosets are called the “Bruhat cells”. B(Qp) is called the

“little cell”. B(Qp)w−1N(Qp) is called the “big cell”.

Proof. The little cell “B(Qp)” consists of matrices over GL(2,Qp) with c = 0. We
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must prove that B(Qp)w−1N(Qp) is exactly the set of matrices:

B(Qp)w−1N(Qp) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ GL(2,Qp) such that c ≠ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

Indeed, let g =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ GL(2,Qp) such that c ≠ 0. Then

g =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

c−1det(g) a

0 c

⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈B(Qp)

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=w−1

⎛
⎜⎜
⎝

1 dc−1

0 1

⎞
⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈N(Qp)

Let x ∈ Qp, φ ∈ Bχ1,χ2 . Define Φφ(x) ∶= φ

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

to be a function on

GL(2,Qp).

Proposition 5.2.1. Φφ is locally constant, and the map φ→ Φφ is injective.

Proof. As φ is locally constant, it follows that Φφ is locally constant as well. We

need now to check injectivity. Assume that φ ∈ Bχ1,χ2 satisfies

Φφ(x) = 0 ∀x ∈ Qp.

We want to show that this implies φ ≡ 0. Actually, this can be proved using the

Bruhat decomposition. Let g =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ GL(2,Qp).
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• If c ≠ 0, then

g =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

c−1det(g) a

0 c

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 dc−1

0 1

⎞
⎟⎟
⎠
,

which gives us that

φ(g) = φ
⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

c−1det(g) a

0 c

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
φ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 dc−1

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

= χ1(c−1det(g))χ2(c) ∣c−2det(g)∣
p

1
2 ⋅Φφ(dc−1)

= χ1(det(g))χ−1(c) ∣c∣p
−1 ∣det(g)∣p

1
2 ⋅Φφ(dc−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0.

• We still need to prove that φ(g) = 0 if c = 0. Actually, this uses the fact that

the “big cell” in the Bruhat decomposition is everywhere dense in GL(2,Qp).

Let us prove that B(Qp)w−1N(Qp) is a dense subset of GL(2,Qp).

Now we know that det(g)≠ 0, i.e. ad ≠ 0 where a, d ∈ Q×
p . Fix a, b, d and take

a sequence cn such that

– cn → 0 as n→∞.

– cn are suffieciently small so that ad − bcn ≠ 0 for all n.

Then gn =
⎛
⎜⎜
⎝

a b

cn d

⎞
⎟⎟
⎠
→ g as n →∞, just as required. Using the continuity of φ,

we get that

φ(g) = φ(limn→∞gn) = limn→∞(φ(gn)) = 0.

Proposition 5.2.2. Φφ(x) ∣x∣p χ(x) is constant for large ∣x∣p.
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Remark. The space of functions of Φφ will be denoted Fχ.

Proof. Let x ∈ Q×
p . Using the identity

⎛
⎜⎜
⎝

0 −1

1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 −x−1

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

x−1 0

0 x

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

1 0

−x−1 1

⎞
⎟⎟
⎠
,

we get that

φ

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
= χ1(x−1)χ2(x)∣x−2∣

p

1
2φ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

−x−1 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

= χ(x)−1∣x∣p
−1
φ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

−x−1 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
.

As φ is locally constant, then φ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

y 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

is constant for y in the neighborhood of

zero. Then for ∣x∣p sufficiently large, we get that φ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

−x−1 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
= φ(e) which is

constant, and thus

φ

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

1 x

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
= χ(x)−1∣x∣p

−1
φ(e).

Therefore Φφ(x)χ(x)∣x∣p = φ(e) = constant for ∣x∣p sufficiently large.

To get the Kirillov model for the representation (ρχ1,χ2 , Bχ1,χ2), we associate for

each φ ∈ Bχ1,χ2 , the function

ξφ(x) = χ2(x) ∣x∣p
1
2 ∫ φ

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

1 y

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ep(−xy)dy

= χ2(x) ∣x∣p
1
2 Φ̂φ(x) (5.1)
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For the next proposition, we assume the convergence of the integral given in

equation 5.1.

Proposition 5.2.3. The space {ξφ; where φ ∈ Bχ1,χ2} is the Kirillov model of ρχ1,χ2.

In other words, we have

ρχ1,χ2

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ξ(x) = ep(bx)ξ(ax) ∀a ∈ Q×

p , b ∈ Qp.

Proof. Let φ ∈ Bχ1,χ2 , then φ, and so Φφ are locally constant functions. Now using

the fact that

⎛
⎜⎜
⎝

u 0

0 1

⎞
⎟⎟
⎠
φ(x) = φ(x) ∀u ∈ 1 + pNZp (N sufficiently large), x ∈ Qp,

and that Φ̂φ(ux) = Φ̂φ(x), it follows that Φ̂φ is also locally constant. This implies

that ξφ is a locally constant function.

Now, using the matrix identity

w−1

⎛
⎜⎜
⎝

a ay

0 1

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

1 0

0 a

⎞
⎟⎟
⎠
w−1

⎛
⎜⎜
⎝

1 y

0 1

⎞
⎟⎟
⎠
,

we get that

ρχ1,χ2

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ξφ(x) = χ2(x) ∣x∣p

1
2

̂⎡⎢⎢⎢⎢⎢⎢⎣
ρχ1,χ2

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

Φφ

⎤⎥⎥⎥⎥⎥⎥⎦
(x)

= χ2(x) ∣x∣p
1
2 ∫ [ρχ1,χ2φ]

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

1 y

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ep(−xy)dy

= χ2(x) ∣x∣p
1
2 ∫ φ

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

1 y

0 1

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ep(−xy)dy
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= χ2(x) ∣x∣p
1
2 ∫ φ

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

a b + y

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ep(−xy)dy

= χ2(x) ∣x∣p
1
2 ∫ φ

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

a y

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ep(−xy + bx)dy (y → y − b)

= ep(bx)χ2(x) ∣x∣p
1
2 ∫ φ

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

a y

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ep(−xy)dy

= ep(bx)χ2(x) ∣x∣p
1
2 ∣a∣p∫ φ

⎛
⎜⎜
⎝
w−1

⎛
⎜⎜
⎝

a ay

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ep(−axy)dy (y → ay)

= ep(bx)χ2(x) ∣x∣p
1
2 ∣a∣p∫ φ

⎛
⎜⎜
⎝

⎛
⎜⎜
⎝

1 0

0 a

⎞
⎟⎟
⎠
w−1

⎛
⎜⎜
⎝

1 y

0 1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
ep(−axy)dy

= ep(bx)χ2(x) ∣x∣p
1
2 ∣a∣pχ2(a)∣a∣p

−1
2 ∫ Φφ(y)ep(−axy)dy

= ep(bx)χ2(ax) ∣x∣p
1
2 ∣a∣p

1
2 Φ̂φ(ax)

= ep(bx)χ2(ax) ∣ax∣p
1
2 Φ̂φ(ax)

= ep(bx) ξφ(ax).

Now, the Mirabolic subgroup

⎛
⎜⎜
⎝

a b

0 1

⎞
⎟⎟
⎠

acts on this space exactly by the same formulas

that we got for the action of the Mirabolic subgroup on the Kirillov model. There-

fore, by the uniqueness of the Kirillov model, we arrive to the desired result.

It remains now to study the convergence of the integral in 5.1. For this purpose,

we need to distinguish between two types of characters, the ramified and unramified

characters. Any x ∈ Q×
p can be written uniquely as pnu, where n ∈ Z and u ∈ Z×

p is

a unit. This gives an isomorphism Q×
p ≡ Z × Z×

p . The characters of Z are just given

by n → ens for some s ∈ C, which for our purposes we will rewrite in the form p−ns
′
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where s′ = −s
ln(p) . Hence, for all x = pnu (n ∈ Z, u ∈ Z×

p), we can rewrite any character

χ of Q×
p as χ(x) = p−nsω(u) = ∣x∣p

s
ω(u) for some s ∈ C and ω a character of Z×

p . Any

character ω of Z×
p is unitary, i.e. has image in S1.

If the conductor of χ is zero, i.e. ω = 1, we say that χ is unramified. Otherwise,

χ is ramified. This means that the only unramified characters of Q×
p are ∣ ∣p

s
.

Proposition 5.2.4. For Φ ∈ Fχ, the function Φ̂ has the following asymptotic be-

haviour near zero: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aχ(x) + b if χ(x) ≠ 1, ∣x∣p
−1
,

avp(x) + b if χ(x) = 1,

b if χ(x) = ∣x∣p
−1
,

where vp(x) is the p-adic valuation of x, and a, b are complex constants.

Proof. The space Fχ is the direct sum of the Schwartz space S(Qp) and the one-

dimensional subspace spanned by the function

Φχ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χ(x)−1 ∣x∣p
−1

if ∣x∣p ≥ 1 ,

0 if ∣x∣p < 1 .

The behaviour of Φ̂ near 0 is clear for all Φ ∈ S(Qp), so that the main part of the

proof will be for Φχ. We will do the case where χ is unramified, i.e. χ(x) = ∣x∣p
s

for

some s ∈ C. For all x ∈ Q×
p , we write

Φ̂χ(x) = ∑
n∈Z
∫
vp(y)=n

Φχ(y)ep(−xy)d×y

= ∑
n∈Z
∫
vp(y)=n

ep(−xy)χ(y)−1 ∣y∣p
−1
d×y
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So it is enough to consider

∑
n≤0
∫
vp(y)=n

ep(−xy) ∣y∣p
−s
d×y

up to some constant due to the choice of Haar measure. Now we have that

∫
vp(y)=n

ep(−xy) ∣y∣p
−s
d×y = pns∫

vp(y)=n
ep(−xy)d×y

= pns∫
u∈Z×p

ep(−xpnu)du

= pns [∫
u∈Zp

ep(−xpnu)du − ∫
u∈pZp

ep(−xpnu)du]

= pns[∫
Zp

ep(−xpnu)du − p−1∫
Zp

ep(−xpn+1u)du]

= pns ⋅
⎛
⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if vp(x) < −n

1 if vp(x) ≥ −n
− p−1 ⋅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if vp(x) < −n − 1

1 if vp(x) ≥ −n − 1

⎞
⎟⎟⎟
⎠

= pns

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if vp(x) < −n − 1

−p−1 if vp(x) = −n − 1

1 − p−1 if vp(x) > −n − 1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if vp(x) < −n − 1

−pns−1 if vp(x) = −n − 1

pns(1 − p−1) if vp(x) > −n − 1 ,

where step 4 to 5 follows from Lemma 2.3.3. Thus we get that

Φ̂χ(x) = ∑
n≤0
∫
vp(y)=n

ep(−xy) ∣y∣p
−s
d×y

= ∑
−vp(x)−1≤n≤0

∫
vp(y)=n

ep(−xy) ∣y∣p
−s
d×y

= −p(−vp(x)−1)s−1 + (1 − p−1) ∑
−vp(x)≤n≤0

pns. (5.2)
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Case 1: If s = 0, i.e. χ(x) = 1, then

Φ̂(x) = −p−1 + (1 − p−1)(vp(x) + 1) = (1 − p−1)vp(x) + 1.

Otherwise, we need to compute the geometric series ∑
−vp(x)≤n≤0

pns. Indeed,

∑
−vp(x)≤n≤0

pns = ∑
0≤n≤vp(x)

p(n−vp(x))s

= p−vp(x)s ∑
0≤n≤vp(x)

pns

= p−vp(x)s ⋅ 1 − p(vp(x)+1)s

1 − ps

= ( 1

1 − ps)p
−vp(x)s − ps

1 − ps

= ( 1

1 − ps) ∣x∣p
s − ps

1 − ps

Substituting in equation (5.2), we get that

Φ̂χ(x) = −p(−vp(x)−1)s−1 + (1 − p−1) [( 1

1 − ps)p
−vp(x)s − ps

1 − ps ]

= (−p−s−1 + 1 − p−1

1 − ps ) ∣x∣p
s − ps(1 − p−1)

1 − ps

= aχ(x) + b, (5.3)

where a = (−p−s−1 + 1 − p−1

1 − ps ) and b = −p
s(1 − p−1)

1 − ps . This gives us the following cases

where s ≠ 0:

Case 2: If s = −1, i.e. χ(x) = ∣x∣p
−1

, then a = −1 + 1 = 0 and b = p−1. Thus

Φ̂χ(x) = b = p−1.

Case 3: If s ≠ 0,−1, i.e. χ(x) ≠ 1, ∣x∣p
−1

, then a ≠ 0, and Φ̂χ(x) = aχ(x) + b, where a

and b are as given in equation (5.3).

The case where χ is a ramified character assumes some knowledge of Gauss sums.

For more details, refer to [Godement, 1974] chapter 1 lemma 9.
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