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As the load demand persists to increase globally with the growing capacity of 

distributed generation, distribution systems witness various voltage violation problems. 

In this context, designing strategies to ensure voltage profile enhancement is a 

significant challenge in the current operation of distribution networks. Volt/VAr control 

(VVC) is a major function that is employed by distribution management systems to 

manage the voltage magnitudes throughout the distribution system. VVC also serves 

other secondary objectives such as the minimization of the real power loss in 

distribution networks. To address its objectives, VVC periodically adjusts capacitor 

switches, transformer taps, and the reactive power set-points of distributed generation. 

This thesis builds on solving the VVC problem using mixed-integer conic programming 

(MICP) in radial and meshed networks. To speed up computations and alleviate voltage 

violations in meshed networks, the thesis proposes solving the VVC problem using a 

discrete coordinate-descent algorithm, starting from a solution to the continuous 

relaxation of the VVC mixed-integer conic program. The optimality of such an 

approach is investigated by evaluating the gap relative to the MICP objective function 

value. Numerical results are reported on radial and meshed test distribution networks 

with up to 3146 nodes. The obtained results demonstrate the superior performance of 

discrete-coordinate descent (DCD), when initialized by solving a continuous relaxation 

of the MICP, against the DCD algorithm with the classical initialization from the 

current operating point. Although the DCD is a local search method, the proposed 

approach yields an acceptable VVC solution with improved computational performance 

in various distribution networks.   

 

Keywords—Centralized control, distributed power generation, load flow control, 

reactive power control, voltage control. 

 



vii 

CONTENTS  

 
ACKNOWLEDGEMENTS ……………………………………………….. 

  

     v 

ABSTRACT……………………………………………………………………... 

 

 

    vi 

LIST OF TABLES…………………………………………………………….. 

 

      ix   

 

Chapter 

 

  I. INTRODUCTION……………………………………………………….

. 

 

      1 Appendix VIII Sample of 
   

 

 

A. C

O

N

T

E

N

T

S   

(

A

) 
 

 

                                                                                                                                          

Page 

 

ACKNOWLEDGEMENTS ......................................................................  
 

  

v 

ABSTRACT ....................................................................................................................................................  
 

 

 vi 

LIST OF ILLUSTRATIONS ...........................................................................................................  
 

 

 ix 

LIST OF TABLES .....................................................................................................................................  
 

 xi 

 

 

Chapter 

 

I. INTRODUCTION…………………………………………………………………

 

  1 

 A. VVC using nondeterministic techniques………………        3 

 B. VVC using deterministic techniques………………        4 

 C. Thesis contributions …………………………………..       4 

 II. MIXED INTEGER CONIC PROGRAMMING (MICP) …      8 

 A. Conic programming and mixed integer optimization………………        8 

 B. Mixed integer conic optimization for VVC……………… 

 

    10 

 C. Results on radial and meshed networks using VVC MICP formulation… 

 

    14 

 D. Chapter conclusion …………………………………………...     15 

III. DISCRETE COORDINATE DESCENT (DCD) …………    17 

A. Introduction to DCD ……………………………………     17 

B. Flowchart of DCD algorithm for VVC ………………     18 

C. Results on feasibility recovery via DCD……………… 

 

    21 

D. Chapter conclusion …………………………………………...     22 

  



viii 

IV. CHEAP STARTING SOLUTION FOR DCD………… 

 

  24 

A. DCD: A local search method ……………………………………     24 

B. DCD starting from MICP relaxation and current operating point ………     26 

C. Chapter conclusion …………………………………………...     28 

V. CONCLUSION ………………………………………..   29 

A. Radial networks ……………………………………     29 

B. Meshed networks …………………………………………...     30 

 
 REFERENCES ……………………………………….. 

 

 33    

 

 

 

 

  



ix 

TABLES 

 

 

 

Table                                                                                                                            Page 

 

1. A summary of the test networks..............................................................       7 

2. The obtained percentage loss reduction and the corresponding 

execution time using the MICP formulation (instances having voltage 

violations are marked with *).............................................. 

 

 

15 

3. The DCD feasibility recovery, starting from the MICP solution, in the 

meshed test networks....................................... 

 

22 

4. The optimality of COP+DCD and CP+DCD as benchmarked relative 

to MICP ........................................ 

 

27 

5. The computational performance of COP+DCD and CP+DCD in terms 

of the number of coordinate-descent iterations and the execution 

time............................................. 

 

 

28 

6. The execution time of MICP and CP (s) for the radial 

networks............................................... 

 

30 

7. The execution time of MICP and CP (s) for the meshed 

networks....................................... 

 

31 

 
 

 

 



 

1 

CHAPTER I 

 INTRODUCTION 

 

As the world population increases, the need for the optimal exploitation of the 

existing power systems becomes more apparent. In this context, numerous power grids 

have been transformed into smart grids after being subjected to fundamental 

improvement [1].
 

Under the influence of unprecedentedly increasing demand, the power 

distribution systems usually suffer from unpermitted voltage reduction at distant nodes 

[2]; in addition, the increased installed capacity of distributed generation and its 

intermittent nature contribute to voltage fluctuations. Therefore, efficient voltage 

control is studied as a major practical task which distribution networks should perform 

to ensure voltage profile enhancement [3]. Volt/VAr control (VVC) is a major function 

that is employed by distribution management systems to manage the voltage magnitudes 

and the reactive power flow throughout the distribution system [4, 5, 6]. Maintaining 

the voltage magnitudes within acceptable limits is a primary task of VVC, while power 

loss minimization is a secondary objective. Still, Volt/VAr optimization serves multiple 

operation modes in the advanced distribution management systems [6]. For instance, 

Volt/VAr optimization evaluates, during the operation planning stage of a grid, the 

settings of the voltage regulators and the reactive compensation elements that are 

tailored to execute the monitoring and control mode of the modern distribution systems 

[6]. In addition, Volt/VAr optimization plays a fundamental role in the regular 

execution of the distribution system demand response.  

VVC periodically adjusts the transformer tap positions, the capacitor switch 

statuses, and the reactive power output of distributed generation by solving an 
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optimization problem; the optimization problem is formulated such that the real power 

loss is minimized and the operational security constraints are guaranteed [4, 7, 8, 9].  

Hence, VVC performs the relevant dispatching of reactive control devices as function of 

time, so that the required objectives are fulfilled.  

In this thesis, the On-load Tap Changing mechanism is a subject of study as it 

permits the adjustment of the tap positions of an energized transformer. In contrary, the 

No-load Tap Changing mechanism may still exist in some power systems, where the 

adjustment of the tap positions of a transformer is not possible unless the transformer is 

de-energized. With the diverse controllers involved in VVC, the necessity of a 

centralized solution becomes explicit to accomplish a well-coordinated management in 

response to load changes and network alterations [10]. Subsequently, the centralized 

VVC, in advisory and closed loop modes, is most often implemented as a 

complementary part of SCADA-based modern distribution management systems [10]. It 

should be pointed out that the only difference between the advisory and closed loop 

modes relies in the way the Volt/VAr control addresses the control actions. Specifically, 

the Volt/VAr advisory mode tackles the control actions manually, while the closed loop 

control mode of VVC entails automatic execution. 

Technically, VVC algorithms exist in two forms: rule-based and network-based 

[4, 10]. While rule-based VVC is simple to employ, the network-based VVC yields 

better solutions, using the grid's mathematical model and the real-time measurements 

from the SCADA system [10]. Network-based VVC solves an optimization problem to 

compute the optimal vector of transformer tap positions, discrete shunt controls, and 

distributed generation reactive powers. According to [4], the network-based VVC is a 

nondeterministic polynomial (NP) problem with discrete and continuous variables that 

are coupled through nonlinear constraints [4]. To solve this problem, several techniques 



 

3 

have been reported in the literature. In general, these methods are either 

nondeterministic or deterministic. In what follows, the use of both methods is briefly 

reviewed. Then, the contributions of the thesis are described.  

 

A. VVC using nondeterministic techniques 

According to some field experts, it is always sufficient to seek a near optimal 

solution to such VVC problems using nondeterministic methods, including heuristics 

and meta-heuristics. For example, the authors in [11] adopted a particle swarm 

optimization technique to solve a mixed-integer nonlinear optimization problem, whose 

multi-objective function not only involves power loss but also includes the cost 

resulting from the switching operations associated with the tap changers and switched 

capacitors. The VVC solution was achieved in [8] with a new method that consolidates 

the primal-dual interior point method and the genetic algorithm (GA). Based on the 69- 

and 119-node test systems, the authors in [8] argued that the proposed method was 

useful in achieving faster convergence, better accuracy, and a more reliable VVC 

solution than the conventional GA. Using an improved harmony search algorithm with 

adaptive parameter selection, the reactive power coordinated optimization problem was 

solved in [12] for distribution networks involving distributed generators and switched-

type controllers. However, the performance of the given algorithm, as is the case with 

many bio-inspired techniques, is still questionable when dealing with large-scale 

networks in real-time applications.  
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B. VVC using deterministic techniques 

Several deterministic approaches have been investigated to solve the network-

based VVC problem in distribution networks. Together with the branch-and-bound 

approach, a trust region sequential quadratic programming method was used in [3] to 

iteratively compute an approximate solution to the coordinated VVC problem. To 

accommodate the integration of distributed generators, the authors in [13] proposed a 

decentralized reactive power optimization method for transmission and distribution 

networks based on the generalized Benders decomposition, after employing the second-

order conic programming relaxation technique. To further address the reactive power 

optimization problem in active distribution networks, a sensitivity-based relaxation and 

decomposition technique was utilized in [14] to formulate a mixed-integer second-order 

cone optimization problem. The authors in [14] supported the significance of their 

methodology through improved computational capabilities. In [15], a mixed-integer 

second-order cone programing model was formulated to solve the optimal operation 

problem of radial distribution networks with energy storage; this formulation was 

obtained after performing variable substitution, convexification of constraints, and an 

equivalent disjunctive formulation for the model of tap-changing transformers. The 

authors described in [16] a distributed second-order cone programming solver for VVC; 

in contrary with other second-order cone programming formulations, this algorithm was 

derived based on the alternating direction method of multipliers and can be 

implemented in a distributed manner. 

 

C. Thesis contributions  

The need for a novel and more realistic model of the VVC problem persists to 

be an active research area [17]. Due to the wide application of mixed-integer conic 
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programming in VVC, as reported in the literature, the significance of such a promising 

convexification technique is highlighted in the reduction of the problem complexity for 

distribution networks. Currently, the practical exploitation of convex optimization 

techniques gains substantial attention as seen in [18, 19] and the design of novel convex 

optimization algorithms represents an extensive research area as observed in [20, 21]. 

By taking advantage of the derived conic programming formulation of radial 

distribution load flow in [22], this thesis proceeds by examining the power of mixed-

integer conic programming (MICP) for VVC, which was proposed in [4], in 

guaranteeing a lower bound of the optimal objective function value in multiple 

distribution networks. However, MICP is computationally intensive, which makes it not 

suited to real-time applications. This thesis proposes solving a continuous relaxation of 

the MICP, and then using this solution to initiate a search via discrete-coordinate 

descent (DCD). The continuous relaxation can be efficiently solved using state-of-the-

art convex optimization software such as CPLEX [23], and the DCD method is used to 

restore feasibility (if lost due to rounding of the continuous MICP control variables) and 

to improve the objective function value. 

 

Thesis Outline 

The rest of the thesis is organized in 4 chapters: 

Chapter 2: In this chapter, the conic programming and the mixed integer optimization 

for VVC are reviewed. The global optimality of the VVC solution, as provided by the 

mixed integer conic programming (MICP), is investigated in various radial networks; 

the reason behind the voltage violations that may arise in meshed networks is clarified. 
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Chapter 3: The discrete coordinate-descent algorithm (DCD) is illustrated as a viable 

Volt/VAr control algorithm. Its effectiveness is illustrated in the different network 

configurations. 

Chapter 4: A cheap starting solution for DCD is proposed in this chapter. The more 

advantageous performance of DCD with such a starting point is described in terms of 

the achievable higher loss reduction, as compared to the DCD with the classical 

initialization method. 

Chapter 5: The thesis concludes with a summary describing the obtained results in a 

comparative form between the four methods which are: the MICP formulation, the DCD 

initialized with the MICP solution, the DCD initialized with the solution of the MICP 

continuous relaxation, and the DCD initialized with the current operating point.  

 

 

 

Table 1 shows the characteristics of the test networks, which are the modified 

Brazilian distribution system in addition to 1464- and 3146-node test systems; R 

describes a radial network while M represents a meshed one. The table shows for each 

network the load multiplying factor (LMF), the number of nodes  , the number of 

switched capacitors (CAP), the number of tap-changing transformers (TR), and the 

number of DG connections. The resolution per distribution generation VAr output is set 

to      pu [4] and the complete data files are available for download from [24].  
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Table 1. A summary of the test networks 

Name LMF n CAP TR DG 

B_R 1 161 2 6 7 

1k5_LR 0.33 1464 8 8 5 

1k5_MR 0.5 1464 8 8 5 

1k5_HR 1 1464 8 8 5 

3k_LR 0.5 3146 13 15 10 

3k_MR 0.8 3146 13 15 10 

3k_HR 1 3146 13 15 10 

B_M 1 160 2 6 7 

1k5_LM 0.33 1464 8 8 5 

1k5_MM 0.5 1464 8 8 5 

1k5_HM 1 1464 8 8 5 

3k_LM 0.5 3146 13 15 10 

3k_MM 0.8 3146 13 15 10 

3k_HM 1 3146 13 15 10 
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CHAPTER II 
 

 MIXED INTEGER CONIC PROGRAMMING (MICP) 
 

This chapter implements the Volt/VAr control (VVC) optimization problem as 

a mixed integer conic program. The chapter starts by a brief description of conic 

programming and mixed integer optimization. Then, the VVC formulation is cast for 

radial networks as a mixed integer conic program; the mixed integer conic formulation 

is relevant for VVC in meshed networks, in the sense that it guarantees a tight lower 

bound on the VVC objective function value. The numerical results are discussed for 

radial and meshed test networks, and the chapter ends with the relevant conclusions. 

 

A. Conic programming and mixed integer optimization 

In the field of mathematical optimization, convex optimization gains great 

practical interest where the global minimum could be systematically attained using 

commercial software such as CPLEX [23]. According to [25], a convex set   is a set that 

contains the line segment between any two points in the set. Mathematically speaking,  

                                              (1)                       

This is illustrated in Figure 1. 

 

 

Figure 1. Convex set (A) and nonconvex set (B). 
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In accordance with [25], a function f :   →   is called convex if  

                                                            (2)                       

 

Consequently, a convex optimization problem seeks the minimization of a convex 

objective function over a convex set; the convexity of the problem guarantees that the 

local minimum must be a global minimum. 

Although a wide range of distinct convex optimization problems exists, linear 

programming and the conic programming are still among the most common and easily 

implemented formulations. Still, the implementation of conic programming in VVC has 

always been technically attractive as previously illustrated in the literature review. 

Before defining the mathematical formulation of conic programming, it is required to 

explore the definition of the norm cone as shown in (3). 

Norm cone { 𝒙 𝑚          / ‖𝒙‖  𝑚} (3)                       

The norm cone is called second-order cone 𝑪 whenever the used norm is the standard 

Euclidean norm ‖𝒙‖ . 

Starting from the definition of the second-order cone, it is now possible to 

illustrate the mathematical model of any second-order cone program as shown in (4)-

(6), where the problem parameters are:  𝒍       , 𝑬       , 𝑭       , and 𝒙       

is the vector of decision variables. 

min  𝒍𝒙 (4)                       

subject to:  

𝑬𝒙 ≥ 𝑭 (5)                       

 𝒙   𝑪 (6)                       
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If some of the elements of 𝒙 are restricted to take integer values, then the optimization 

formulation becomes a mixed integer optimization problem.  

 

B. Mixed integer conic optimization for VVC 

In [22], the conic programming formulation of radial distribution load flow was 

proposed and tested on several radial networks. The major merit of such a modeling 

approach was manifested in [4], where MICP was presented as a suitable formulation 

for VVC in radial networks. In what follows, the description of such a VVC formulation 

for radial networks is provided based on [4].  

In this section,   denotes the total number of nodes in a radial network; in 

addition, the number of capacitor bank settings and transformer tap positions (see 

Figure 2) are referred to as    and    respectively.  

The following notation is employed for sets in the VVC formulation:  

     Collection of nodes connected to node i by a branch. 

   Collection of branches in a radial system. 

   Collection of nodes where switchable shunt capacitors are located. 

   Collection of nodes where distributed generators are connected. 

   Collection of branches having tap-changing transformers. 

 

As mathematical notations:  

          Lower and upper limits of the interval set in which a real quantity   

varies. 

        Real and imaginary components of a complex quantity  .  

   Conjugate of the complex quantity  . 
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Figure 2. Tap-changing transformer.  

From a power system modeling point of view, the following list of symbols is 

used to define the problem: 

   ,    Voltage and injection current at node i. 

       Voltage magnitude at the slack node. 

   Voltage angle at node  . 
    Vectors of nodal voltages and injection currents. 

    Series admittance of branch ij. 

    Compensation current due to distributed generation at node i.  

    Magnitude of current traversing branch ij. 

        Load real and reactive power at node i. 

         Supplied real and reactive power by distributed generation at node i. 

    Produced reactive power by the switched capacitor at node i. 

       Injected real and reactive power at node i. 

    Nominal reactive power produced (at 1 p.u voltage) by the switched 

capacitor at node i, with the possible set of values ,   
   

        
    

-  

    Transformer tap in branch ij, with the possible set of 

values,   
   

        
    

-  

 

In the context of such a VVC formulation for radial networks, define    

   
  √ ⁄   for every node  , and             (     ) and                     for 

every branch   . 

The Volt/VAr optimization problem can be mathematically formulated so that 

the objective function is to minimize the network losses (7) while satisfying the power 

injection equality constraints (8)-(9), the conic constraints (10), the current magnitude 
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constraints (12), the constraints (13-14) accounting for the tap-changing transformers 

and the discrete capacitor switch statuses together with the distributed generation VAr 

output (15)-(17). It is worth mentioning that the optimization problem maintains the 

voltage magnitudes (11) within their prescribed limits. The control variables in the VVC 

problem are the transformer tap positions, the capacitor switch statuses, and the reactive 

power outputs of the distributed generation. 

min  ∑ ∑  √       
 
      

        
       (7)                       

subject to:  

∑  √    
        

         
               

      

 

   {       } 

(8)                       

∑ [ √    
        

         
     ]             

      

 

   {       } 

(9)                       

     ≥    
     

  ,      ≥   ,                                                              (10)                       

   
     √ ⁄        

     √ ⁄          {       }  

           
 √ ⁄     

(11)                       

√    
 (     )      

     (   
   )

 
               (12)                       

   (   
   

)
 

  ≥    
   

 (   
   

)
 

 (   
   

)
 

   
    

   (   
   

)
 

      
   

 (   
    )

 

 (   
   

)
 

   
    

          {       } 

(13)                       

∑    
     

             
   

 {   } (14)                       

    √    
   

  ≥   
   

√     
   

    
   

   
    

    √    
   

     
   

√     
    

    
   

   
    

(15)                       



 

13 

         {       } 

∑   
     

            
   

 {   } (16)                       

   
           

                  (17)                       

 

In accordance with (13), the transformer taps are discrete variables which obey 

the fact that     
   

    
     

. The reactive power injection by the capacitor banks also 

changes in discrete steps (15) at 1 per-unit voltage, with    
   

    
     

 [4]. If the voltage 

magnitude is different from 1 per-unit at the node to which the capacitor bank is 

connected, then the reactive power injection by the capacitor bank is proportional to the 

square of the nodal voltage magnitude.  

The VVC problem, as modeled above for radial networks, falls in the category 

of mixed-integer conic optimization problems whose global minimum could be 

systematically searched for using commercial software such as CPLEX [23]. If the 

conic constraints (10) are binding at the optimal solution, then the solution to the mixed 

integer conic programming (MICP) formulation is feasible for the original VVC 

problem; this is likely to hold in practice and gives a globally optimal solution.  

Even though the above formulation describes the VVC problem in radial 

networks only, the MICP formulation can also be employed to solve the VVC problem 

in meshed networks after relaxing the cycle constraints. Because cycle constraints are 

relaxed, the MICP solution will not in general be feasible for meshed networks. As a 

matter of fact, if the conic constraints are binding at the optimal solution, then the 

optimal objective value of the MICP solution serves as a lower bound for the original 

VVC problem. Thus, the MICP solution is not a global optimum for the meshed VVC 

problem unless such solution satisfies the cycle constraints with binding conic 

constraints.  
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In comparison with mixed-integer conic programming, mixed-integer linear 

programming solvers have a longer history of research and development; it is therefore 

useful to tightly approximate the conic constraints in (10) by a set of polyhedral 

constraints [4]. With this conversion, state-of-the-art optimization tools such as the 

CPLEX mixed-integer linear programming solver can be employed to solve the VVC 

problem.  In what follows, the obtained results following the VVC MICP formulation 

are studied for the various radial and meshed test networks. 

 

C. Results on radial and meshed networks using VVC MICP formulation 

The execution of the different VVC algorithms in this thesis was carried out in 

Matlab on a Windows 10 virtual machine having Intel(R) Xeon(R) CPU E5-2695 v4 at 

2.10GHz, 2100 MHz, 24 Cores, 24 Logical Processors and 42.0 GB of RAM. In this 

section, the CPLEX [23] solution of the mixed-integer conic VVC problem is shown, 

after the tight polyhedral approximation of the conic constraints. The default relative 

optimality gap tolerance used in CPLEX is 0.01%, and a time limit of 48 hours is 

employed. 

In Table 2, the percentage loss reduction (LR (%)) is shown as obtained from 

MICP. As previously noted, the MICP generated a global solution to VVC for the radial 

test instances; this is validated by checking that the conic constraints are binding at the 

optimal solution. Regarding the meshed networks, the majority of the instances show 

slight voltage violations (which are marked with *) as expected. Because cycle 

constraints are not accounted for in MICP, a power flow based iterative procedure 

starting from the MICP control set points is generally required to recover a feasible 

solution in meshed networks; this feasible solution will satisfy the power flow equations 

that include cycle constraints, in addition to voltage magnitude limits. The feasibility 
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recovery procedure is examined in the next chapter. However, in some meshed test 

instances (B_M and 3k5_LM), a single power flow execution shows that the MICP 

control settings do not give rise to voltage magnitude violations and therefore there is 

no need for feasibility recovery for these instances. 

 

Table 2. The obtained percentage loss reduction and the corresponding execution time 

using the MICP formulation (instances having voltage violations are marked with *) 

Name 
LR 

(%) 
Time (s) 

B_R 11.92 170.7 

1k5_LR 16.35 2389.7 

1k5_MR 15.91 2161.8 

1k5_HR 19.93 4195.2 

3k_LR 12.5 63192.6 

3k_MR 16.71 35338.5 

3k_HR 20.05 61626.3 

B_M 13.87 155.2 

1k5_LM 14.42* 4704.2 

1k5_MM 14.47* 4600.4 

1k5_HM 18.16* 5969.8 

3k_LM 11.78 172815.3 

3k_MM 15.66* 172832.6 

3k_HM 18.78* 172837.6 

 

D. Chapter conclusion 

To sum up, this chapter examines the performance of the mixed integer conic 

programming (MICP) solution for the VVC problem in different distribution network 

configurations. First, the chapter reviews the effectiveness of the convex property of 

conic problems in establishing a globally optimal solution. Then the chapter examines, 

through numerical results using CPLEX, the computational power of the MICP in 

solving the VVC problem for predefined radial and meshed networks. As VVC is a real-

time control function, and it has to comply with the distribution management system's 
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real-time computing requirements, the numerical results reveal that MICP, which has 

long computing time, could be practically used to give a tight lower bound against 

which the solution quality of heuristic techniques can be measured. The tight lower 

bound coincides with the global optimum whenever the conic constraints are binding 

and cycle constraints (in meshed networks) are satisfied; the globally optimal solution 

could be used as a benchmark for the solution set points of heuristic techniques. To 

speed up the VVC computational time in real-time applications, the next chapter studies 

the discrete coordinate-descent algorithm (DCD) as a viable network-based VVC 

algorithm. 
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CHAPTER III 

 DISCRETE COORDINATE DESCENT (DCD) 

 

This chapter explores the discrete coordinate descent (DCD) algorithm as a 

practical tool to tackle VVC in real-life implementations. The chapter starts by an 

introduction covering the DCD as a VVC industry standard. Then, the flowchart of the 

VVC solution by DCD is illustrated. Finally, the chapter investigates the DCD 

numerical results on recovering feasible solutions for meshed networks, starting from 

the MICP solutions.  

 

A. Introduction to DCD 

When applying the network-based VVC formulation in real-time applications, 

reliable performance and rapid execution are the most desirable attributes of any 

proposed algorithm. The practical complexity of such a problem appears mainly in 

having a nonlinear objective function and a diverse set of control variables that are 

coupled by power flow equality constraints. Other soft operational constraints exist; 

however, such constraints may be more flexible to relax based on the expert's 

knowledge and the load variation curve [26]. As a result, the class of multistep discrete 

programming search methods has been endorsed as a possible tool to tackle VVC in 

real-life implementations [4, 10, 26]. Amongst different discrete programming methods, 

the multistep discrete programming method searches for the best solution in the 

neighborhood of an initial starting point.  

The discrete coordinate-descent algorithm (DCD) has been illustrated as a 

viable VVC algorithm. During the minimization process, the DCD algorithm gradually 
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approaches a local minimum by iterative update of an individual control variable in a 

discrete variable step. While the discrete movement is simply one reasonable increment 

or decrement step in the chosen control variable, the DCD algorithm takes over the 

preferred direction, which guarantees the most admissible decrease in the objective 

function value throughout the iterative search.  

 

B. Flowchart of DCD algorithm for VVC 

In terms of its operation, and with respect to all permissible directions of all the 

control variables, the DCD algorithm iteratively evaluates the value of the objective 

function under concern. Consequently, the DCD algorithm selects in each iteration the 

search direction that achieves the most favorable reduction in the objective function 

value. The control variable corresponding to this system wise reduction is then updated 

in the associated direction. During each iteration, the algorithm repeats the same 

evaluation over all search directions; when no additional decrease in the objective 

function is achievable, the algorithm ends. Figure 3 shows the flowchart of DCD for 

VVC. In the flowchart, DCD_iteration symbolizes the DCD iteration number, SD 

denotes the index of the search direction, BSD represents the index of the best search 

direction, and IOF/ COF represent the initial/current objective function values.  

To solve the VVC using DCD, two main conditions should be met. In the first 

place, all the control variables of the problem should be discrete; this condition is 

fulfilled by discretizing the range from which the distributed generation reactive power 

can be supplied. Secondly, the mathematical problem is reformulated to minimize an 

objective function        (18) accounting for power loss and the penalized operational 

violations. Specifically,    penalizes violated voltage limit constraints, and    penalizes 

violated current limit constraints. 
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Figure 3. Flowchart of DCD algorithm for VVC.  
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To ensure a time efficient computation when solving multiple power flows in 

DCD, the current injection (CI) method is employed; the result of the CI method is the 

nodal voltages and the network power loss. The vector of nodal voltages is initialized as 

a starting point of the method; the present vector of nodal voltages is then used to 

evaluate the next vector of nodal injection currents via (19). By applying sparsity 

ordering and matrix factorization, the newly estimated nodal voltages are then 

computed using the nodal matrix equation (20). As shown in (20),   is the nodal 

equations coefficient matrix. Following the most recently computed nodal voltages, an 

iterative update of the injection currents repeats itself in a loop mode until a 

convergence test is satisfied.  

   
      

  
  

(19) 

      (20)          

 

Due to the presence of switchable shunt capacitors, the elements of the   

matrix change, requiring re-factorization of the matrix in the DCD execution. To use the 

same factorization in the power flow computations, switchable capacitors in the VVC 

can be handled using the compensation method [4]. By referring to [4], it is useful to 

start with the initial   matrix, to which corresponds an injected current    for every node 

i, and where the initial setting of the shunt capacitor is denoted by    
   . Then, any 

update in the switch status of shunt capacitors at node i (from    
    to    ) is dealt with 

using the updated injected current   
  that includes the compensation term as follows: 

  
            

            (21) 
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Similarly, the compensation technique is adopted to handle tap changes in the 

DCD implementation. The   matrix is formulated at the initialization stage by having 

the tap-changing transformer between nodes i and j with tap     
   . At this level, the 

injected currents at nodes i and j are respectively    and   . Thereafter, when the tap 

position between nodes i and j becomes     , the injected currents at both nodes i and j 

are updated to   
  and   

   In this way, there is no need to update the   matrix 

continuously in the power flow computations. On the contrary, any updates in the tap 

position between two nodes i and j are dealt with using the updated injected currents 

  
  and    

  which account for the compensation terms as follows [4]: 

  
   

    *(   
   )

 
      

 + (     )      
              )  

(22) 

  
          

               ) (23)          

 

In addition, the impact of distributed generation at node i is handled using the 

compensation current: 

    
        

  
  

(24) 

 

C. Results on feasibility recovery via DCD 

As previously illustrated in chapter 2, the MICP solution of the VVC problem 

was not feasible for the majority of the meshed network instances. This follows the fact 

of employing a necessary relaxation of the cycle constraints in meshed networks in 

order to make use of the VVC MICP formulation. In this section, DCD is used to 

recover a feasible solution for the original VVC problem in the meshed networks. The 
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DCD feasibility recovery process, starting from the MICP solution, will achieve a 

feasible solution satisfying power flow equations and voltage magnitude limits. 

The results of the execution of DCD starting from the MICP control set points 

(referred to by MICP+DCD) are shown in Table 3. In Table 3, the percentage loss 

reduction (LR (%)) is as obtained from MICP and MICP+DCD. To study the optimality 

of MICP+DCD, as benchmarked relative to MICP, the GAP (%) (via (25)) is illustrated 

in column 4 relative to the MICP objective function value. The significance of 

MICP+DCD is confirmed through achieving reliably feasible solutions, where voltage 

violations (in instances marked with *) are no more observed. 

GAP (%)  
                                                             

                              
 (25) 

 

Table 3. The DCD feasibility recovery, starting from the MICP solution, in the meshed 

test networks  

Name 
MICP MICP+DCD 

LR (%) LR (%) GAP (%) 

B_M 13.87 MICP is Feasible 

1k5_LM 14.42* 14.19 0.2684 

1k5_MM 14.47* 14.40 0.0811 

1k5_HM 18.16* 18.01 0.1810 

3k_LM 11.78 MICP is Feasible 

3k_MM 15.66* 15.51 0.1772 

3k_HM 18.78* 18.60 0.2174 

 

D. Chapter conclusion 

This chapter explores the practical value of the discrete coordinate-descent 

algorithm (DCD) in accomplishing the most admissible decrease in the VVC objective 

function value throughout an iterative search. In the first place, the chapter describes the 

prominence of DCD in the reliable and rapid execution of the network-based VVC 
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problem in real-time applications. The practical integration of DCD in VVC 

optimization problems is explained next through a flowchart associated with the 

required clarifications. Then, the power of DCD in recovering feasible solutions for 

meshed MICP solutions is revealed through numerical results. All in all, DCD is 

manifested as a practical tool to recover feasible solutions for MICP solutions. The 

feasibility recovery could be useful even for radial MICP solutions, where the conic 

constraints are not binding at the optimal solution; however, this case was not observed 

in the studied radial test instances. Building on the findings of the current chapter, a 

cheap starting solution is proposed in chapter 4 for the DCD algorithm applied to VVC 

optimization problems. 
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CHAPTER IV 

CHEAP STARTING SOLUTION FOR DCD 

 

Since the previous chapters reveal that MICP has long computing time, this 

chapter proposes solving the VVC problem using a discrete coordinate-descent 

algorithm, starting from a solution to the continuous relaxation of the VVC mixed-

integer conic program. In this chapter, the local search behavior of DCD is studied by 

investigating the effect of the starting solution point on the DCD final result. The 

effectiveness of the proposed cheap starting point, which is the solution of the MICP 

continuous relaxation, is demonstrated numerically against the classical initialization 

method. At the end of this chapter, a conclusion is derived from this comparison in 

terms of reliability and computational time. 

 

A. DCD: A local search method 

In many real-life challenging optimization problems, it is appropriate to reach a 

local optimum within acceptable time, rather than to spend extensive search and 

expensive resources until a global optimum is guaranteed. A local search algorithm, 

such as DCD, is an optimization algorithm that yields a locally optimal solution by 

conducting iterative transitions from one solution to another in the existing search 

space. The search process is launched by initializing the local search method with a 

starting point.  

During the optimization process, the local search method iteratively updates 

the current solution by taking over the most preferred direction in its neighborhood, 

which eventually establishes the most admissible change in the objective function value. 
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Subsequently, the starting solution point has an effect on the final results obtained using 

DCD, as is the case with any other local search method. For this reason, it is desirable to 

initialize the DCD with a point close to the optimum. In fact, the execution of any local 

search method stops in one of two possible events: either the time limit is exceeded or 

no additional change is experienced in the objective function value. 

As modeled in (7)-(17), the VVC mixed-integer conic program accounts for the 

tap-changing transformers, the reactive power injections by the capacitor banks, and the 

reactive power outputs of the distributed generation. While the VAr outputs of the 

distributed generation vary as continuous variables within their prescribed limits (17) in 

MICP, the transformer tap positions and the capacitor switch statuses are treated as 

discrete control variables (13)-(15). Hence, such discrete variables are coupled with 

binary variables (14)-(16) to guarantee that every transformer tap     (from the set 

,   
   

        
    

-), and every nominal switched capacitor reactive power     (from the 

set ,   
   

        
    

-), takes one value at the end of execution of the MICP program. 

Given that MICP requires long computing time, and that the local search behavior of 

DCD is desirable in practice, this chapter proposes solving the VVC problem using 

DCD starting from a solution to the continuous relaxation of the VVC mixed-integer 

conic program.  

Whenever the binary constraints of the variables    
   

and   
   

in (14) and (16) 

are dropped, such binary variables are seen as continuous ones. Thus, a continuous 

relaxation of the VVC mixed-integer conic program arises. Following the previously 

described polyhedral approximation of the conic constraints in (10), the CPLEX linear 

programming solver is consequently employed to solve the VVC continuous relaxation, 

and thus to generate a continuous solution of the discrete control variables in a very 
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reasonable computing time, in comparison with the original time intensive MICP 

formulation.  

In what follows, the proposed DCD initialization methodology, based on such 

solution to the continuous relaxation of the VVC mixed-integer conic program, is 

investigated against the classical initialization method. While the proposed 

methodology rounds the control set-points to their nearest discrete values, the classical 

initialization method is based on the current operating point (COP as provided in the 

data files [24]).   

 

B. Results for DCD starting from: MICP relaxation and current operating point 

This section compares the numerical results for the execution of DCD starting 

from: (i) the current operating point (COP+DCD) and (ii) the solution to the continuous 

relaxation of the VVC mixed-integer conic program (CP+DCD). The results are 

reported for both radial and meshed networks.  

To conduct the required comparison, the percentage loss reduction (LR (%)) is 

given in Table 4 as obtained from COP+DCD and CP+DCD. The optimality of 

COP+DCD and CP+DCD, as benchmarked relative to MICP, is illustrated in columns 3 

and 5 respectively through the gap (GAP (%)) relative to the MICP objective function 

value. The superior performance of CP+DCD as compared to COP+DCD is confirmed 

through achieving a maximum GAP < 0.45% for CP+DCD, while the GAP for 

COP+DCD reaches around 5.2% for the 1464-node network at peak load. 

Moreover, Table 5 shows the required number of the coordinate-descent 

iterations (CD iterations) and the corresponding time (CD time (s)) for COP+DCD and 

CP+DCD. CP+DCD attains a VVC solution with a much smaller number of CD 

iterations (ranging between 2 and 23) and consequently a much shorter time (maximum 
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CD time < 14 s); this is because the CP (i.e. the MICP relaxation) initializes DCD with 

a point close to the optimum, thus reducing the number of steps in the coordinate decent 

search.  

 

Table 4. The optimality of COP+DCD and CP+DCD as benchmarked relative to MICP 

Name Configuration 
 COP+DCD CP+DCD 

LR (%) GAP (%) LR (%) GAP (%) 

B_R Radial 11.88 0.0529 11.89 0.0367 

1k5_LR Radial 14.11 2.6091 16.32 0.0368 

1k5_MR Radial 14.07 2.1374 15.88 0.0326 

1k5_HR Radial 17.67 2.7524 19.92 0.0232 

3k_LR Radial 11.12 1.5504 12.26 0.2749 

3k_MR Radial 14.92 2.1079 16.54 0.2025 

3k_HR Radial 17.4 3.2189 19.91 0.1789 

B_M Meshed 13.37 0.5728 13.78 0.0965 

1k5_LM Meshed 12.14 2.5958 14.40 0.0258 

1k5_MM Meshed 11.83 2.9948 14.28 0.2117 

1k5_HM Meshed 13.67 5.2000 18.07 0.1164 

3k_LM Meshed 8.81 3.2527 11.53 0.2786 

3k_MM Meshed 11.85 4.3170 15.54 0.1469 

3k_HM Meshed 14.56 4.9372 18.42 0.4409 
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Table 5. The computational performance of COP+DCD and CP+DCD in terms of the 

number of coordinate-descent iterations and the execution time  

Name  Configuration 
 COP+DCD CP+DCD 

CD iterations CD time (s) CD iterations CD time (s) 

B_R Radial 54 1.1 5 0.2 

1k5_LR Radial 109 11.8 20 2.0 

1k5_MR Radial 102 15.5 14 2.4 

1k5_HR Radial 136 24.0 23 4.4 

3k_LR Radial 92 34.6 11 4.4 

3k_MR Radial 109 110.1 8 8.2 

3k_HR Radial 104 53.6 21 11.6 

B_M Meshed 58 1.1 2 0.2 

1k5_LM Meshed 85 6.6 16 1.3 

1k5_MM Meshed 60 7.8 12 1.7 

1k5_HM Meshed 72 14.6 18 3.6 

3k_LM Meshed 73 32.6 14 6.3 

3k_MM Meshed 80 41.8 6 11.4 

3k_HM Meshed 79 61.4 19 13.6 

 

C. Chapter conclusion 

The current chapter proposes the MICP relaxation as a cheap starting solution 

for the discrete coordinate descent (DCD) algorithm in VVC optimization problems. 

After highlighting the local search behavior of DCD and consequently the effect of the 

starting solution point on the DCD final solution, the chapter illustrates that initiating 

DCD with the solution to a continuous relaxation of the MICP, is a practically good 

initiative to yield an acceptable VVC solution in a very reasonable computing time for 

different network configurations. The superior performance of CP+DCD against 

COP+DCD is evident through numerical results showing that not only do the CP+DCD 

solutions have a much smaller gap relative to the MICP solutions, but that also such 

solutions are attained with a much shorter time. The overall conclusion of the thesis 

work is clarified in chapter 5.  
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CHAPTER V 

CONCLUSION 

 

This chapter seeks to shed light on the overall conclusions, which are reached 

by the end of this thesis work. The conclusions are derived for radial and meshed 

networks after performing comparisons, per each network type, between the MICP 

solution (as seen in chapter 2), DCD initialized with the MICP solution (MICP+DCD as 

observed in chapter 3), DCD initialized with MICP relaxation (CP+DCD as examined 

in chapter 4), and DCD initialized with the current operating point (COP+DCD as also 

illustrated in chapter 4). 

 

A. Radial networks 

Regarding the seven radial networks which are tested in this thesis, the MICP 

solution not only represents the tight lower bound against which the quality of the 

attained solution by heuristic techniques could be measured, but also is feasible to the 

original VVC problem. Thus, the MICP solution practically coincides with the global 

optimum; this is demonstrated by having binding conic constraints at the MICP 

solution. Table 2 shows that the MICP control settings do not give rise to voltage 

magnitude violations. Hence, the feasibility recovery via DCD (denoted by 

MICP+DCD) is not required. 

Since DCD is an endorsed tool to tackle VVC in real-life implementations, the 

MICP solution could be used as a benchmark for the solution set points of CP+DCD 

and COP+DCD. While CP+DCD and COP+DCD gain the advantage of requiring 

shorter computing time against the MICP approach, CP+DCD appears much more 
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practical than the classical technique COP+DCD in industrial applications. As 

compared to the COP+DCD solutions, not only do the CP+DCD solutions have a much 

smaller gap relative to the MICP solutions (see Table 4), but also such solutions are 

attained with a much shorter time (see Table 5); this is because the MICP relaxation 

initializes DCD with a point close to the optimum, thus reducing the number of steps in 

the coordinate descent search. In Table 6, the remarkable difference in the execution 

time between CP and MICP is shown for the radial networks. 

 

Table 6. The execution time of MICP and CP (s) for the radial networks 

Name MICP CP 

B_R 170.7 1.5 

1k5_LR 2389.7 37.3 

1k5_MR 2161.8 54.3 

1k5_HR 4195.2 39.5 

3k_LR 63192.6 159.8 

3k_MR 35338.5 207.0 

3k_HR 61626.3 134.9 

 

 

B. Meshed networks 

With respect to the seven meshed networks which are employed in this 

research, the generated MICP solution is generally not feasible to the original VVC 

problem (see Table 2); the solution serves to be the tight lower bound against which the 

quality of the achievable solution by heuristic techniques could be measured. This 

observation is attributed to relaxing the cycle constraints in the MICP formulation of the 

meshed VVC problem. Hence, the DCD initialized with the MICP solution (referred to 

by MICP+DCD) is carried out to yield a feasible solution (see Table 3), whose degree 
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of optimality is gauged against the MICP lower bound; such a feasible solution satisfies 

power flow and voltage constraints. 

Therefore, only a tight lower bound of the VVC actual solution is established 

by the MICP formulation in the meshed networks; nevertheless, the MICP formulation 

requires extensive computations especially for such meshed networks (see Table 2). 

Yet, a local search method, as DCD, represents the system wise resolution technique in 

practice. As a result, CP+DCD and COP+DCD are studied as practical VVC 

implementation tools in the meshed networks. The optimality of both tracks, CP+DCD 

and COP+DCD, is benchmarked relative to the VVC tight lower bound; this bound is 

attained by the MICP formulation as discussed before. By taking advantage of the 

computing performance of the VVC industry standard, the DCD algorithm, CP+DCD 

and COP+DCD both solve the VVC problem in a time-efficient manner. However, the 

obtained solutions via CP+DCD are more reasonable than those acquired by the 

classical technique COP+DCD in terms of the gap (relative to the VVC lower bound 

which the MICP formulation sets up) and the required computing time (see Tables 4, 5); 

this improvement is achievable because the MICP relaxation launches DCD with a 

starting point in the neighborhood of the optimum. In Table 7, the remarkable difference 

in the execution time between CP and MICP is shown. 

 

Table 7. The execution time of MICP and CP (s) for the meshed networks 

Name MICP CP 

B_M 155.2 1.2 

1k5_LM 4704.2 37.2 

1k5_MM 4600.4 40.6 

1k5_HM 5969.8 47.9 

3k_LM 172815.3 162.6 

3k_MM 172832.6 264.9 

3k_HM 172837.6 151.8 
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A future research direction is to consider the uncertainty of the distributed 

generation real power output (representing renewable sources) in the VVC solution. 
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