
 

 



 

 

AMERICAN UNIVERSITY OF BEIRUT 

 

 

 

A RISK-BASED APPROACH FOR OPTIMIZING PROOF-LOAD 

TEST PROGRAMS FOR DRIVEN PILES 
 

 

by 

IHAB MAAMOUN HOSSEIKY MALAEB 

 

 

 

A thesis 

submitted in partial fulfillment of the requirements 

for the degree of Master of Engineering 

to the Department of Civil and Environmental Engineering 

of the Maroun Semaan Faculty of Engineering and Architecture 

at the American University of Beirut 

 

 

 

 

Beirut, Lebanon 

September 2018 

 

 

 

 

 







v 

 

 

ACKNOWLEDGMENTS 

 

 

 

I would like to express my appreciation to my advisors Dr. Shadi Najjar and Dr. 

George Saad for their valuable and academic assistance. I would also like to thank Dr. Salah 

Sadek for his tremendous help as a committee member and for reading my thesis. 

 

 

Finally, I want to thank my family for their full support and commitment to make 

this journey possible. 

 

 

 

 

 

 

 

 

 



vi 
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Title: A Risk-Based Approach for Optimizing Proof-Load Test Programs for Driven Piles 
 

There is currently an inconsistency in the recommendations that are available in pile 

design codes and practices regarding the required number of proof-load tests and the level of 

the proof loads for piles. Najjar et al. (2017) proposed a pre-posterior decision making 

framework to allow for selecting the optimal pile load test program that would result in the 

maximum expected benefit to a project while maintaining a target level of reliability in the 

pile design at the site.  The proposed methodology was based on a robust Bayesian approach 

that allows for updating the capacity distribution of piles at a site given the results of the 

proof-load test program. In the proposed methodology, Najjar et al. (2017) adopted a 

simplified statistical model for the pile capacity, whereby the uncertainty in the pile capacity 

due to spatial variability in a site was assumed to be known and modeled by a fixed 

coefficient of variation of 0.2. In addition, the application of the proposed decision-making 

framework was limited to an illustrative design example that targeted driven steel pipelines 

in sands. The objectives of this thesis are to (1) extend the statistical model that is proposed 

by Najjar et al. (2017) for the pile capacity by modeling the uncertainty in the pile capacity 

at the site (coefficient of variation due to spatial variability) as an uncertain variable that is 

updated with pile load test results, (2) study the sensitivity of the decision making framework 

to the parameters describing the uncertainty in the capacity and the load, and (3) apply the 

pre-posterior decision making framework to a number of practical design scenarios that 

involve driven piles of different characteristics and soils of different nature. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

Proof-load tests play an important role in verifying the validity of design methods 

and construction procedures. In current design and construction practices for deep 

foundations, designers are allowed to utilize reduced factors of safety provided that a pile 

load testing program is implemented on a number of foundations at the site. Generally, a 

reduced design factor of safety of 2.0 is considered acceptable provided that the majority of 

the tested foundations survive proof-load tests up to twice the design load (ASTM D1153 

1994). However, many international design codes and practices allow for the use of reduced 

factors of safety of different magnitudes, with the proposed factors of safety being dependent 

on the number and type of pile load tests that are conducted.  

Some common recommendations from international pile design codes as adapted 

from Matsumoto et al. (2008) are summarized in Table 1. These recommendations indicate 

variability in the correlation between the type and number of the specified pile load tests and 

the recommended reduced design factor of safety. In addition to the variability between the 

recommendations, a major drawback of any recommendation is that the designer does not 

have any indication of the inherent reliability/safety that is associated with the resulting 

design, since the recommendations are generally based on experience and are not associated 

with any robust reliability/risk analysis that supports their use.  
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Table 1 Worldwide Recommended Safety Factors for Static and Dynamic Pile Load Test 

Programs 
 

 

1.1 Background on Proof-Load Testing of Piles 

In the last two decades, several research efforts have targeted analyzing the impact 

of proof-load tests on the design of foundations in the framework of a reliability analysis. 

Examples include the work of Zhang and Tang (2002), Zhang (2004), Su (2006), Najjar and 

Gilbert (2009a), Kwak et al. (2010), Park et al. (2011, 2012), Abdallah et al. (2015a, 2015b), 

Huang et al. (2016), and Najjar et al. (2017). In these studies, results of proof load tests are 

used to update the main statistical descriptors of the pile capacity distribution, and the 

updated distribution is used to calculate an updated estimate of the proof-tested reliability 

index or probability of failure. Results from previous studies show that different 

combinations of reduced factor of safety, proof load level, and number of positive proof load 

tests could be selected to achieve the desired level of reliability. For example, designers have 

the option of choosing test programs that are based on a few number of load tests that are 

conducted to a relatively high proof load level, or load tests that include larger number of 

Country FS, No 

Load Tests 

FS, with 

Static Tests 

FS, with 

Dynamic Tests 

Comments 

USA, ASCE 1996 3 1.6 to 1.9 1.7 to 2 Design capacity is 0.4-1.0 MN 
 1.8 to 2.2 2 to 2.4 Design capacity > 1.0 MN 

Europe, EC7 2001 - 1.64 1.95 More than 5 Static, More than 20 Dynamic 

Japan 3 2.7 2.7 - 
Sweden 2000 - - 2 If 25% of piles tested. 

1.6 If 100% of piles tested. 

Mexico 3 2 2 to 2.5 Between 1% to 5%. Min is 3 tests. 

Singapore 3 2 - Capacity verified by a number of load tests 



3 

 

 

proof tests that are conducted to a relatively smaller proof load level. These studies show the 

need for systematic and rational approaches that would allow for choosing the number of 

proof-load tests and the magnitude of the proof load that would maximize the value of any 

pile load test program. 

Bayesian techniques can be used to update the probability distribution of the 

foundation capacity at the site given the result of a pile load test program. This analysis is 

referred to as a “posterior” analysis. Najjar et al. (2017) proposed a rational decision 

framework that is aimed at selecting the optimal pile load test program. The decision analysis 

is based on a “pre-posterior” decision making methodology that allows for selecting the pile 

load test program (number and level of proof load tests) that would result in the maximum 

expected benefit while maintaining a target level of reliability in the pile design at the site. 

The analysis is capable of incorporating all possible test scenarios which could include both 

failures (capacity of the pile is exceeded at the designated proof load) and successes (pile 

capacity is higher than the proof load) with their associated likelihoods of occurrence. This 

methodology is original, practical, and is based on site-specific information that is unique to 

any given project. The methodology presented is an additional step that is taken to rationalize 

the process of designing pile load test programs and is expected to help in reducing the current 

inconsistencies in pile design codes and practices regarding the required number of proof-

load tests and the level of the proof loads. 

In the methodology, Najjar et al. (2017) adopted a statistical model for the pile 

capacity that is based on the model proposed by Zhang (2004) which considers that 

uncertainty in the pile capacity originates from two sources: (1) the uncertainty due to the 
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model used to predict the capacity, and (2) the uncertainty due to inherent variability in the 

capacity within the site (within-site variability). The resulting pile capacity model is shown 

on Figure 1 (Najjar et al. 2017). The methodology assumes that model uncertainty due to bias 

in the predictions of available empirical models leads to uncertainty in the mean pile capacity 

at the site. This source of uncertainty is reflected in the probability distribution of the mean 

pile capacity, rmean as indicated in Figure 1 and could be updated using results from pile proof 

load tests or tests in which the piles are loaded to failure. The mathematical formulation 

required to update the distribution of the mean pile capacity given results from pile load tests 

is presented in Zhang (2004).  

The main limitation in the model that was proposed by Zhang (2004) and which was 

adopted by Najjar et al. (2017) is that it assumes that the within-site variability could be 

represented by a constant coefficient of variation (r = 0.2) that cannot be reduced by 

conducting pile load tests. The concept of within-site variability of pile capacity originates 

from the work of Zhang and Tang (2002) who illustrated that piles constructed using the 

same design method may yield different capacities within one site as a result of spatial 

variability in the soil properties across the site. By analyzing results from nine different sites 

where multiple pile load tests that are conducted on identical piles were reported, Zhang and 

Tang (2002) showed that the COV representing within-site variability in pile capacities 

varied among sites and ranged from 0.1 to 0.3. Based on this data, an average COV of 0.2 

was adopted to model within-site variability in the models presented in Zhang and Tang 

(2002), Zhang (2005) and Najjar et al (2017). The adoption of a constant COV of 0.2 that is 

not updated in the Bayesian exercise is a limitation that will be addressed in this study. 
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Figure 1 Statistical Model of Pile Capacity by Najjar et al. (2017) 

 

Another feature of the statistical pile capacity model adopted by Najjar et al. (2017) 

is the incorporation of an uncertain lower-bound capacity in the probability distribution of 

the mean pile capacity (see Figure 1). Gilbert et al. (2005) and Najjar and Gilbert (2009b) 

hypothesized that there is a physical limit to the smallest possible capacity for a pile 

foundation, and that this limit is greater than zero. The basis for this hypothesis is that the 

strength of soil, even when substantially disturbed, is greater than zero. Gilbert et al. (2005) 

presented simple models for predicting lower-bound capacities for driven piles in sand and 

clay. By comparing the measured pile capacities (from load test databases) with the 
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calculated lower-bound capacities, Gilbert et al. (2005) provided evidence that none of the 

measured pile capacities fell below the calculated lower bound capacities. For piles in 

cohesive soils, the ratio of the lower-bound capacity to the predicted capacity ranged from 

0.4 to 0.9 and had an average of 0.6. For cohesionless, siliceous soils, the ratio of the lower-

bound capacity to the predicted capacity ranged from 0.5 to 0.9 with an average of 0.7. In the 

Bayesian approach presented in Najjar et al. (2017), the lower-bound capacity was updated 

using pile load tests. However, results showed that the prior lower-bound distribution was 

not affected by the updating process, with the focus being on the distribution of the mean 

capacity.  

The main outcome in the study conducted by Najjar et al. (2017) is a rational 

decision making that would facilitate the choice of a load test program that has the maximum 

expected benefit to the project. The main decision alternatives were (1) the proof load level 

rproof and (2) the number of proof load tests to be conducted, n. For each of the potential test 

outcomes that are associated with a given decision alternative, the updated reliability index 

could be evaluated using Bayesian techniques. The resulting updated reliability index will 

depend on the outcome, with relatively high indices expected for cases involving positive 

tests and relatively low indices for cases involving failures. These reliability indices could be 

lower or higher than a target reliability index that is set for the piles in the project. As a result, 

outcomes where the updated reliability index is below the target indicate that the allowable 

capacity per pile (design load per pile) will have to be reduced in light of the load test results. 

On the other hand, outcomes where the updated reliability index is above the target allow for 

an increase in the allowable capacity (design load) per pile in comparison to the base case. 
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The allowable pile capacity (design load) could be calculated by utilizing the updated 

capacity distribution for that particular outcome.  

From a practical design standpoint, any increase or decrease in the allowable 

capacity per pile as a result of conducting the proof load tests can be translated to (1) 

reduction/increase in the total number of piles required to support the superstructure loads 

without changing the geometry of the piles, or (2) reduction/increase in the geometry of the 

piles (length and/or diameter) without changing the total number of piles required. For the 

work presented in Najjar et al. (2017), the consequences associated with the outcomes of any 

decision alternative are assumed to be reflected in the total number of required piles without 

resorting to any change in the pile length or diameter. Based on the above, the consequences 

of any potential test outcome will be reflected in the benefits/costs associated with 

reducing/increasing the required number of piles to support the superstructure load without 

changing the geometry of the piles under consideration.  

The financial benefit is reflected in the cost savings associated with this reduction 

in the number of piles. On the other hand, there is a negative financial cost that is associated 

with the cost of conducting the load test program alternatives and the cost of replacing failed 

piles when relevant. The net benefit of any test outcome can be calculated by subtracting the 

benefits due to reducing (or cost due to increasing) the number of piles in the site from the 

costs associated with conducting the proof load tests including the cost of replacing failed 

piles. Once the net benefit of all the test alternatives and their associated potential outcomes 

are calculated, the “expected” benefit   of each alterative load test program can be calculated. 



8 

 

 

The alternative pile testing program that has the highest expected benefit could then be 

selected as the test alternative that has the highest value.   

To illustrate the practicality and value of the proposed decision-making framework, 

Najjar et al. (2017) presented a practical design example that involves piles that are driven in 

a site consisting of medium dense sand. The pile design consisted of closed-ended steel pipe 

piles with an outside diameter of 355 mm and a length of 25 m. The predicted nominal axial 

capacity of a single driven pile is 1.8 MN and the lower-bound is calculated to be equal to 

0.9 MN accounting to about 0.5 of the nominal axial capacity.  For the purpose of illustrating 

the decision-making methodology, hypothetical cases that involve different superstructure 

loads were adopted, and it was assumed that the superstructure load will be supported by a 

group of identical steel pipe piles that will share the superstructure load equally.  

The example illustrating the use of the decision framework was limited to 

determining the optimum proof load level and the optimum number of tests to be conducted.  

The number of pile load tests that were considered as decision alternatives is 1, 2, 3, 5, 7, and 

10 proof tests to be conducted at load levels of 1.5, 2, and 2.5 times the design load or 0.75, 

1.0, and 1.25 times the predicted capacity. These decision alternatives are presented in the 

context of a simplified decision tree in Fig. 2 (Najjar et al. 2017) with detailed calculations 

pertaining to the case of the test alternative that includes a proof load level of 2.0 times the 

design load presented for illustration. The results indicate that the proof-load test program 

alternative that is based on conducting 5 proof load tests up to a proof load level of 1.5 times 

the design load yields the largest expected benefit ($ 297,965) among all other test 

alternatives. 
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Figure 2 Decision Making Tree for Choosing the Optimum Test Program (from Najjar et al. 

2017) 

 

 

 



10 

 

 

1.2 Research Objectives and Scope of Work 

The main objective of this thesis is to extend the decision making framework 

proposed by Najjar et al. (2017) to achieve the following three main goals: (1) upgrade the 

statistical model that is proposed by Najjar et al. (2017) for the pile capacity by modeling the 

uncertainty in the pile capacity at the site (coefficient of variation due to spatial variability) 

as an uncertain variable that is updated with pile load test results, (2) study the sensitivity of 

the decision making framework to the parameters describing the uncertainty in the capacity 

and the load, and (3) apply the pre-posterior decision making framework to a number of 

practical design scenarios that involve driven piles of different characteristics and soils of 

different nature. The ultimate goal is to formulate a general set of recommendations regarding 

the design of proof load tests for driven piles that are designed using different empirical 

design procedures in soil profiles that range from cohesive to cohesionless soils.  

 

1.3 Thesis Outline 

The thesis is divided into eleven chapters. Chapter 1 is an introduction on the topic 

with a brief background, and a summary of the research objectives and methodology. Chapter 

2 presents a revise on the statistical model used. Chapter 3 details the Bayesian updating 

framework used throughout the thesis. Chapter 4 studies the different uncertain within site 

variability. Chapters 5 discusses a sensitivity analysis on the lower-bound and the mean 

distribution which reflects the method’s uncertainty, Chapter 6 presents a brief background 
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on the pre-posterior analysis, Chapter 7 details the different sites used in the pre-posterior 

analysis. Chapter 8 and 9 studies the pre-posterior analysis of different methods in different 

sites with and the cost sensitivity respectively. Chapter 10 explains the designed interface on 

MATLAB, and Chapter 11 concludes the research and gives recommendations. 
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CHAPTER 2 

REVISED PROBABILISTIC PILE CAPACITY MODEL 
 

2.1 Modeling Within-Site Variability  

Zhang and Tang (2002) showed based on limited field data that the variability in the 

capacity of identical piles within a site varies and could be represented by coefficients of 

variation ranging between 0.1 to 0.3. In the previous work of Zhang and Tang (2002) and 

Najjar et al. (2017), the spatial variability was modeled with a deterministic COV of 0.2. In 

this work, an effort will be made to model the COV representing within site variability as an 

uncertain parameter that follows a number of potential probability distributions.  The effect 

of the choice of the probability distribution of the within-site variability on the updating 

process will be studied in the following chapters.  

Three potential probability distributions for modeling the COV representing within-

site variability were studied. The distributions are listed in Table 2 and include a uniform 

distribution, a truncated normal distribution, and a truncated lognormal distribution. The 

statistics of these distributions were selected based on the limited data presented in Zhang 

and Tang (2002). For the uniform distribution, lower and upper bounds of 0.1 and 0.3 where 

selected based on the data available. For the truncated normal and lognormal distributions, a 

mean of 0.2 and a COV of 0.3 were calculated from the field data and selected to define the 

distributions which were also truncated between 0.1 and 0.3 for practical considerations.  
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Table 2 Candidates for the probability distribution of the COV (within-site variability in 

pile capacity) that is incorporated in the proposed capacity model 

 

Distribution of COV Distribution coefficients 

Uniform distribution Lower bound = 0.1; upper bound = 0.3 

Truncated normal distribution Mean = 0.2; COV = 0.3; lower = 0.1; upper = 0.3 

Truncated Log-normal distribution Mean = 0.2; COV = 0.3; lower = 0.1; upper = 0.3 

 

A graphical representation of the revised probability capacity model is presented in 

Figure 3. As indicated in the figure, the pile capacity distribution (Fig. 3a) will be modeled 

by a lognormal distribution that is described by a mean and a coefficient of variation. The 

coefficient of variation which reflects within site variability is assumed to be uncertain as 

indicated in Figure 3b. The mean capacity is also assumed to be uncertain and is reflective 

of the model uncertainty in the empirical models used to predict the capacity of the pile. The 

uncertainty in the mean capacity is presented in Fig. 3c and reflects the presence of an 

uncertain lower-bound capacity that will be used to truncate the tale of the mean capacity 

distribution. A major change in the proposed model compared to the Najjar et al. (2017) 

model is that the probability distribution of the lower bound pile capacity in the proposed 

model will not be updated given the results of proof load test. This decision is based on the 

results presented in Najjar et al. (2017) and which showed that the lower-bound capacity is 

not affected by the updating process. 
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Figure 3 The Capacity Distribution Model that will be adopted in proposed framework 

(a) Pile Capacity Model, (b) Within-Site variability model, and (c) mean and lower-

bound capacity models. 
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2.2 Probability Distribution of Lower-Bound Capacity 

Gilbert et al. (2005) presented evidence of the existence of a lower-bound capacity 

for driven piles in sand and clays. This capacity is a physical quantity that should be predicted 

using methods/models that takes into consideration the pile dimensions and the soil 

properties. In the study conducted by Najjar et al. (2017), the mean of the lower-bound 

capacity was assumed to be 0.5 of the mean of the mean capacity distribution. Gilbert et al. 

(2005) showed, based on analysis of the databases for driven piles in clays and sands, that 

the ratio of the lower-bound to the mean capacity of driven piles could range between 0.4 to 

0.9. In this study, a sensitivity analysis will be conducted on the mean value of the lower 

bound capacity by varying the mean lower bound from 0 (no lower-bound), to 0.4, 0.5, and 

0.6 of the mean capacity. The coefficient of variation of the lower-bound is assumed to be 

equal to 0.2 and the distribution of the lower-bound capacity is assumed to be lognormal 

based on Najjar and Gilbert (2009b).  

 

2.3 Probability Distribution of the Mean Pile Capacity 

The mean of the mean capacity represented in Fig. 3 is typically estimated from 

databases of pile load tests as the product of the bias factor of the capacity prediction model 

and the nominal predicted capacity. The bias factor is defined as the average of the ratio of 

measured to predicted capacities based on available databases. On the other hand, the COV 

of the rmean is generally calculated as the coefficient of variation of the ratio of measured to 

predicted capacities for the cases analyzed in the database. Therefore, the values of the bias 
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factor and the COV are linked to the method used to calculate the pile capacities. In this 

work, the statistics representing model uncertainty will be obtained from previous work done 

by Gilbert et al. (2005), Zhang (2004), Lacasse et al. (2013), and Lehane et al. (2017). 

The latest study that reported statistics for the model uncertainty of available pile 

capacity prediction models is that of Lehane et al. (2017). The analyzed capacity models that 

were considered in Lehane et al. (2017) were tailored to predicting the capacity of offshore 

piles in sand and clays. The selection criteria for the database limited the cases studied to: (1) 

driven piles only, (2) steel and concrete piles, and (3) piles with a minimum diameter of 20 

cm. The statistics of the model factors for driven piles in sands and clays as predicted using 

two commonly used design approaches (American Petroleum Institute and ICP methods) are 

summarized in Table 3.   

The revised probabilistic capacity model that is presented in Figure 3 could be 

updated given results from proof load test programs. The updating is conducted within a 

Bayesian framework whereby the distributions of the mean capacity and the COV 

representing within-site variability can be updated.  

Table 3 The Statistics of current-API and ICP Methods Used for Piles in Sand and clay 

Methods Bias factor COV References 

Current-API (Sand) 1.66 0.56 Lehane et al. (2017) 

Current-API (Clay) 1.54 0.33 Lehane et al. (2017) 

ICP method (Sand) 1.04 0.27 Lehane et al. (2017) 

ICP method (Clay) 0.98 0.31 Lehane et al. (2017) 
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2.4 Load Distribution 

Most of the reliability analyses in the literature treat the applied load as an uncertain 

parameter that follows a lognormal distribution. In this work, the load distribution is 

considered similar to Najjar et al. (2016) as a lognormal distribution with a COV of 0.15. 

This choice of the coefficient of variation is illustrated by the coefficient of variation 

specified by AASHTO (2004) (0.13 for the dead load and 0.18 for the live load). 
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CHAPTER 3 

BAYESIAN UPDATING FRAMEWORK 
 

3.1 Probabilistic Representation of the Model Parameters 

The revised probabilistic model that describes the pile capacity consists of 3 random 

variables: the mean capacity which represent the model uncertainty, the lower bound 

capacity, and the coefficient of variation that represent the within site variability. The model 

parameters to be updated based on proof-load test results are the mean and the coefficient of 

variation, whereas the lower-bound will not be updated. The probabilistic representation and 

the updating process of the model parameters will be similar to the approach presented in 

Najjar et al. (2017). Since updating the probability density function of the mean capacity and 

the coefficient of variation involves mathematical complexities, a decision was made to 

transform the probability density functions of the mean, lower-bound, and coefficient of 

variation into representative probability mass functions (PMFs) while ensuring a realistic 

representation of the PDF.  

Since the distributions are lognormal, the minimum value in the PMF range was 

determined as the mean value minus 4 standard deviation while the maximum value is the 

taken as the mean plus 12 standard deviation. After identifying the minimum and maximum 

value of each distribution, the range is then divided into intervals that result in values that 

form the PMF. 
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After constructing the three PMFs, the joint probability mass function between rmean 

and rLB 𝑝𝑅𝑚𝑒𝑎𝑛,𝑅𝐿𝐵
(𝑟𝑚𝑒𝑎𝑛, 𝑟𝐿𝐵) is established as: 

𝒑𝑹𝒎𝒆𝒂𝒏,𝑹𝑳𝑩
(𝒓𝒎𝒆𝒂𝒏, 𝒓𝑳𝑩) = 𝒑𝑹𝒎𝒆𝒂𝒏|𝑹𝑳𝑩

(𝒓𝒎𝒆𝒂𝒏|𝒓𝑳𝑩) × 𝒑𝑹𝑳𝑩
(𝒓𝑳𝑩)        ( 1 ) 

 

Such that 𝑝𝑅𝑚𝑒𝑎𝑛|𝑅𝐿𝐵
(𝑟𝑚𝑒𝑎𝑛|𝑟𝐿𝐵) is the conditional probability mass function of rmean 

given the lower bound capacity rLB and 𝑝𝑅𝐿𝐵
(𝑟𝐿𝐵) is the marginal probability mass function 

of rLB. This conditional probability 𝑝𝑅𝑚𝑒𝑎𝑛|𝑅𝐿𝐵
(𝑟𝑚𝑒𝑎𝑛|𝑟𝐿𝐵) is defined by a PMF that 

represents a truncated lognormal distribution where: 

𝒑𝑹𝒎𝒆𝒂𝒏|𝑹𝑳𝑩
(𝒓𝒎𝒆𝒂𝒏|𝒓𝑳𝑩) = {

𝟎, 𝒊𝒇 𝒓𝒎𝒆𝒂𝒏 < 𝒓𝑳𝑩
𝒑𝑹𝒎𝒆𝒂𝒏,𝑵𝑻

(𝒓𝒎𝒆𝒂𝒏)

𝟏−𝑭𝑹𝒎𝒆𝒂𝒏,𝑵𝑻
(𝒓𝑳𝑩)

, 𝒊𝒇 𝒓𝒎𝒆𝒂𝒏 > 𝒓𝑳𝑩
               ( 2 ) 

 

Where 𝑝𝑅𝑚𝑒𝑎𝑛,𝑁𝑇
(𝑟𝑚𝑒𝑎𝑛) is the probability of a given rmean as obtained from the PMF 

of the non-truncated distribution of rmean and  𝐹𝑅𝑚𝑒𝑎𝑛,𝑁𝑇
(𝑟𝐿𝐵) is the cumulative distribution 

function of rmean evaluated at the lower-bound capacity rLB with the CDF being calculated 

from the non-truncated distribution of rmean. 

As discussed, the lower-bound distribution is not updated whereas the mean 

distribution is to be updated based on proof load-test results. Therefore, a new PMF of the 

mean distribution is constructed due to the effect of truncation of the lower-bound 

distribution. The values of the new PMF of the mean are calculated such that: 

 

𝒑𝑹𝒎𝒆𝒂𝒏,𝑻
(𝒓𝒎𝒆𝒂𝒏) = ∑ 𝒑𝑹𝒎𝒆𝒂𝒏 ,𝑹𝑳𝑩

(𝒓𝒎𝒆𝒂𝒏, 𝒓𝑳𝑩,𝒊)
𝒏𝟐
𝒊=𝟏                                   ( 3 ) 
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Where 𝑝𝑅𝑚𝑒𝑎𝑛,𝑇
(𝑟𝑚𝑒𝑎𝑛) is the updated marginal probability mass function due to the 

truncation of the lower-bound distribution. After constructing the new PMF of the mean 

distribution, the joint probability mass function between rmean and rCOV 

𝑝𝑅𝑚𝑒𝑎𝑛,𝑇,𝑅𝐶𝑂𝑉
(𝑟𝑚𝑒𝑎𝑛, 𝑟𝐶𝑂𝑉) is established as: 

𝒑𝑹𝒎𝒆𝒂𝒏,𝑻,𝑹𝑪𝑶𝑽
(𝒓𝒎𝒆𝒂𝒏, 𝒓𝑪𝑶𝑽) = 𝒑𝑹𝒎𝒆𝒂𝒏,𝑻

(𝒓𝒎𝒆𝒂𝒏) × 𝒑𝑹𝑪𝑶𝑽
(𝒓𝑪𝑶𝑽)             ( 4 ) 

 

Where 𝑝𝑅𝑚𝑒𝑎𝑛,𝑇
(𝑟𝑚𝑒𝑎𝑛) and 𝑝𝑅𝐶𝑂𝑉

(𝑟𝐶𝑂𝑉) are the marginal probability mass 

functions of the truncated rmean and the marginal probability mass function of rCOV 

respectively. An example prior and updated joint PMF between rmean and rCOV is presented in 

Figure 4. 

 

  

Figure 4 (a) the prior joint PMF between rmean and rCOV (b) the updated joint PMF 

between rmean and rCOV after 5 successful proof load tests conducted at 2xDL 
 

 

3.2 Bayesian Updating of the Capacity Distribution. 

In any particular site, a limited number of proof load tests are conducted on piles. 

Therefore, to update the probability distribution of the model parameters, Bayes’ Theorem 

(equation 5) should be used such that: 

𝒇𝜱|𝜺(𝜱|𝜺) =
𝑳(𝜺|𝜱)𝒇𝜱(𝜱)

∫ ….
+∞

−∞ ∫ 𝑳(𝜺|𝜱)𝒇𝜱(𝜱)𝒅𝜱𝟏..𝒅𝜱𝒏
+∞

−∞

                                              ( 5 ) 
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Where 𝑓𝛷|𝜀(𝛷|𝜀) and 𝑓𝛷(𝛷) are the updated and prior joint distributions of the 

model parameters, 𝛷, 𝐿(𝜀|𝛷) is the likelihood function, and 

∫ … .
+∞

−∞
∫ 𝐿(𝜀|𝛷)𝑓𝛷(𝛷)𝑑𝛷1. . 𝑑𝛷𝑛

+∞

−∞
is a normalizing constant. 

The mean capacity and the coefficient of variation of the pile are modeled as 

probability mass functions instead of probability density function in order to facilitate the 

calculation of equation 5. To update the capacity’s distribution, we assume that “n” proof-

load tests are conducted at a level rproof and “k” tests out of these “n” tests survive (positive 

load tests). Therefore, “n-k” tests will not survive (negative proof load tests) and the 

likelihood of observing the result of the pile load test program giving a combination of rmeani 

and rCOVj is given in equation (6) such that: 

𝑷(𝜺|𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽,𝒋) = [𝑷(𝒓 > 𝒓𝒑𝒓𝒐𝒐𝒇|𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽,𝒋]𝒌[𝑷(𝒓 ≤ 𝒓𝒑𝒓𝒐𝒐𝒇|𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽,𝒋]
𝒏−𝒌        

       ( 6 ) 

For the case under consideration where the capacity follows a lognormal distribution 

that has an uncertain mean and an uncertain coefficient of variation rCOV, the likelihood 

function can be expressed in equation 7 such that: 

𝑷(𝜺|𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽,𝒋) = [𝟏 − 𝜱 (
𝐥𝐧 𝒓𝒑𝒓𝒐𝒐𝒇−𝝀𝒊

𝝃𝒋
)]

𝒌

[𝜱 (
𝐥𝐧 𝒓𝒑𝒓𝒐𝒐𝒇−𝝀𝒊

𝝃𝒋
)]

𝒏−𝒌

       ( 7 ) 

Where 𝜆 and ξ are the parameters of the lognormal capacity distribution and are 

calculated according to equations 8 and 9. 

   

𝝀𝒊 = 𝐥𝐧(𝒓𝒎𝒆𝒂𝒏,𝒊) −
𝛏𝒋

𝟐

𝟐
                                                                                  ( 8 ) 

 

𝛏𝒋 = √𝐥𝐧(𝟏 + 𝒓𝑪𝑶𝑽,𝒋
𝟐)                                                                                 ( 9 ) 
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The likelihood function is used to update the joint prior probability mass function 

such that: 

𝒑′𝑹𝒎𝒆𝒂𝒏,𝑻,𝑹𝑪𝑶𝑽
(𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽,𝒋|𝜺) =

𝑷(𝜺|𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽,𝒋).𝒑𝑹𝒎𝒆𝒂𝒏,𝑻,𝑹𝑪𝑶𝑽
(𝒓𝒎𝒆𝒂𝒏,𝒊,𝒓𝑪𝑶𝑽,𝒋)

∑ ∑ 𝑷(𝜺|𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽,𝒋).𝒑𝑹𝒎𝒆𝒂𝒏,𝑻,𝑹𝑪𝑶𝑽
(𝒓𝒎𝒆𝒂𝒏,𝒊,𝒓𝑪𝑶𝑽,𝒋)𝒎𝟐

𝒋=𝟏
𝒎𝟏
𝒊=𝟏

     ( 

10 ) 

𝑝′𝑅𝑚𝑒𝑎𝑛,𝑇,𝑅𝐶𝑂𝑉
(𝑟𝑚𝑒𝑎𝑛,𝑖, 𝑟𝐶𝑂𝑉,𝑗|𝜀) and 𝑝𝑅𝑚𝑒𝑎𝑛,𝑇,𝑅𝐶𝑂𝑉

(𝑟𝑚𝑒𝑎𝑛,𝑖, 𝑟𝐶𝑂𝑉,𝑗|𝜀) are the updated 

and the prior joint probabilities of the combination 𝑟𝑚𝑒𝑎𝑛,𝑖 and 𝑟𝐶𝑂𝑉,𝑗, respectively, and n1 

and n2 are the number of bins in the PMFs of the truncated mean and COV distributions, 

respectively. 

It is important to note that the results of the proof load tests are assumed to be 

statistically independent. Therefore, the tests should be conducted at well separated distances 

between the piles to minimize any bias in the results due to the correlation in the soil 

properties and to represent the full range of spatial variability across the site. 

 

3.3 Calculation of the probability of failure 

A MATLAB code was developed to model the parameters, update the joint prior 

PMF of rmean and rcov, and calculate the prior and updated probability of failure due to proof 

load tests. In all the case studies represented in this thesis, the load distribution is modeled as 

a lognormal distribution with a fixed mean and COV, and the capacity distribution is modeled 

as a lognormal distribution with a variable mean and COV. Therefore, an exact solution for 

the probability of failure exists such that: 

𝒑𝒇 = 𝜱 (−
(𝝀𝑹−𝝀𝒔)

√(𝝃𝑹)𝟐+(𝝃𝑺)𝟐
) = 𝜱(−𝜷)                                                        ( 11 ) 
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Where β is the reliability index, and Φ() is the standard normal cumulative 

distribution functions. In addition, 𝜆𝑅and 𝜉𝑅 are the parameters of the lognormal distribution 

of the capacity calculated from rmean and rCOV, and 𝜆𝑆and 𝜉𝑆 are the parameters of the 

lognormal distribution of the load calculated from smean and δS. It is important to note that 

equation 11 is used in case the mean and the COV of both the capacity and the load are 

constants. In our work, the mean of the capacity and the COV are random variables. 

Therefore, the theorem of total probability is required to incorporate all possible values of 

rmean and rCOV with their corresponding likelihood. The prior probability of failure in such a 

case can be obtained from equation 12, whereas the updated probability of failure, due to the 

proof load tests results, can be calculated according to equation 13 such that: 

𝒑𝒇 = ∑ ∑ 𝜱 (−
(𝝀𝑹,𝒊−𝝀𝒔)

√(𝝃𝑹,𝒋)𝟐+(𝝃𝑺)𝟐
)𝒏𝟐

𝒋=𝟏
𝒏𝟏
𝒊=𝟏 𝒑𝑹𝒎𝒆𝒂𝒏,𝑻,𝑹𝑪𝑶𝑽

(𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽,𝒋) = 𝜱(−𝜷)        ( 12 ) 

𝒑𝒇 = ∑ ∑ 𝜱 (−
(𝝀𝑹,𝒊−𝝀𝒔)

√(𝝃𝑹,𝒋)𝟐+(𝝃𝑺)𝟐
)𝒏𝟐

𝒋=𝟏
𝒏𝟏
𝒊=𝟏 𝒑′𝑹𝒎𝒆𝒂𝒏,𝑻,𝑹𝑪𝑶𝑽

(𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽,𝒋) = 𝜱(−𝜷)       ( 13 ) 

These two equations are coded as a double loop operation on MATLAB to account 

for the contribution of all possible values of the mean and the coefficient of variation of the 

capacity. 
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                                                CHAPTER 4 

UPDATING PILE CAPACITY DISTRIBUTION WITH 

PROOF LOAD TESTS 
 

In this chapter, the probabilistic pile capacity model will be updated using results of 

proof load tests and the effect of the updating process on the probability of failure will be 

studied. The sensitivity of the updating process to the choice of the lower-bound capacity, 

mean pile capacity, and the proof load test program will be investigated.   

 

4.1 Prior versus Updated PMFs for r
mean 

and r
COV 

 

The effect of the updating process on the marginal PMFs of r
mean 

and r
COV 

is 

illustrated in Fig. 5. The analysis pertains to the case where 5 successful proof load tests are 

conducted on piles designed with factor of safety of 2.0 and tested at a proof load level of 2 

times the design load. Results are presented for the case where a truncated lognormal 

distribution is used to model the uncertainty in within site variability (rcov). The 

corresponding results for the other two candidate distributions (uniform and truncated 

normal) for rcov are presented in Fig. 6 to investigate the effect of the choice of the probability 

distribution on the results. For all the cases analyzed, results on Figs. 5 and 6 indicate that 

the effect of conducting proof load tests is concentrated on the distribution of the mean pile 

capacity rmean compared to the distribution of rCOV. The distribution of rmean is shifted 

significantly to the right as a result of the successful proof load test results. With regards to 
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the effect of the updating process on rCOV, results show that the probability of smaller values 

of rCOV increased after updating whereas the probability masses for the higher values of rcov 

were reduced. This observation was valid, irrespective of the type of distribution used to 

model rCOV. This is expected to have a positive impact on the updated reliability index for 

the proof-loaded design. 
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Figure 5 The Prior and Updated Distributions of (a) Within-Site Variability (Truncated 

Lognormal rcov), and (b) Mean Pile Capacity (rmean) 

 

 

 

 

 

Coefficient of Variation 

Prior Marginal 

PMF of the COV 

Updated Marginal PMF of the COV (5 successful 

Proof-Load Tests up to 2 x Design Load) 

Updated Marginal PMF of Mean 

Capacity (5 successful Proof-Load 

Tests up to 2 x Design Load) 

Prior Marginal PMF 

of Mean Capacity 

Mean Pile Capacity (KN) 
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Figure 6 The Prior and Updated Distributions for (a) Truncated Normal Within-Site 

Variability, and (b) Uniform Within Site Variability. 

 

The effect of the updating process on the reliability index of the design is studied in 

Figure 7 which shows the variation of the reliability index with the number of positive load 

tests. Results are shown for different proof load levels (1.5 to 3 times the design load) and 

for the three candidate probability distributions of rCOV. Also shown on Fig. 7 are results 

pertaining to the case where rCOV is assumed to be a deterministic value that is equal to the 

mean of rCOV for the other three distributions.  

 

 

 

 

 

 

 

 

Coefficient of Variation 

Prior Marginal PMF 

of the normal COV 

Updated Marginal PMF of the normal COV (5 

successful Proof-Load Tests up to 2 x Design Load) 

Coefficient of Variation 

Prior Marginal PMF 

of the uniform COV 

Updated Marginal PMF of the uniform COV (5 

successful Proof-Load Tests up to 2 x Design Load) 
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Results on Figure 7 indicate that the effect of the choice of the probability 

distribution on the reliability index is relatively small and can be considered negligible. The 

assumption of a uniform distribution for rcov seems to produce reliability indices that are 

slightly smaller than those obtained for the truncated normal and lognormal distributions for 

all proof load levels. Since the updated reliability indices were found to be insensitive to the 

choice of the probability distribution describing rCOV, it could be concluded that the prior 

capacity distribution which represents within-site variability of identical piles could be 

represented by a coefficient of variation rcov that follows a truncated log-normal distribution 

bounded between 0.1 and 0.3, with a mean of 0.2 and a COV of 0.31. 

Although the updated reliability indices were insensitive to the distribution of rCOV, 

results on Fig. 7 show that the assumption of a deterministic rCOV that is not updated in the 

Bayesian exercise results in reliability indices that are larger than the cases involving an 

uncertain rCOV. This indicates that the assumption of a deterministic rCOV which was adopted 

by Najjar et al. (2017) may lead to conservative results which incorrectly magnify the impact 

of proof-load tests on the updated reliability index. This is particularly true for cases 

involving larger levels of proof load and number of positive proof load tests varying between 

1 to 10. It is thus recommended that rCOV be considered an uncertain parameter that is updated 

in the Bayesian updating exercise. This recommendation is adopted in this thesis.  

Analysis of the data on Figure 7 also indicates that, irrespective of the assigned rCOV 

distribution, the updated reliability index appears to be very sensitive to the initial 5 proof 

load tests. The sensitivity of the reliability index to the number of tests seems to decrease as 

the number of successful proof load tests increase further. 
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Figure 7 Effect of proof load test levels on the reliability index for different rCOV 

distributions (FS =2) 

 

4.2 Correlation between the COV and the mean distributions 

In the prior pile capacity model that is adopted in this paper, the prior distributions 

of the mean capacity and the COV are considered to be uncorrelated (statistically 

independent). This assumption is based on the lack of any physical reason that would imply 

positive or negative correlation between the two parameter (mean and COV). Since both 

parameters are updated during the Bayesian exercise, the updated joint PMF could be used 

to back-calculate any correlation that exists after the updating. The correlation coefficient (ρ) 

between rmean and rcov could be calculated from the covariance (cov) between rmean and rcov in 

the updated joint PMF such that:   
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𝝆𝒎𝒆𝒂𝒏,𝑪𝑶𝑽 =
𝒄𝒐𝒗(𝒎𝒆𝒂𝒏,𝑪𝑶𝑽)

𝝈𝒎𝒆𝒂𝒏× 𝝈𝑪𝑶𝑽
                                                                            ( 14 ) 

𝒄𝒐𝒗(𝒎𝒆𝒂𝒏, 𝑪𝑶𝑽) = ∑ ∑ 𝒑′𝑹𝒎𝒆𝒂𝒏,𝑹𝑪𝑶𝑽𝒋𝒊 (𝒓𝒎𝒆𝒂𝒏, 𝒓𝑪𝑶𝑽|𝜺) × 𝑹𝒎𝒆𝒂𝒏 × 𝑹𝑪𝑶𝑽 − 𝑬(𝒎𝒆𝒂𝒏) ×

𝑬(𝑪𝑶𝑽)                                                   ( 15) 

𝝈𝒎𝒆𝒂𝒏 = √𝑬(𝒎𝒆𝒂𝒏𝟐) − 𝑬(𝒎𝒆𝒂𝒏)𝟐                                                    ( 16 ) 

𝝈𝑪𝑶𝑽 = √𝑬(𝑪𝑶𝑽𝟐) − 𝑬(𝑪𝑶𝑽)𝟐                                                            ( 17 ) 

Where 𝑐𝑜𝑣(𝑚𝑒𝑎𝑛, 𝐶𝑂𝑉) is the covariance between rmean and the rCOV and 𝜎𝑚𝑒𝑎𝑛, 𝜎𝐶𝑂𝑉 

are the standard deviation of rmean and rCOV, respectively. E(mean) and E(COV) are the 

expected values of rmean and rCOV, respectively and 𝑝′𝑅𝑚𝑒𝑎𝑛,𝑅𝐶𝑂𝑉
 is the updated joint probability 

mass function of the combination of 𝑟𝑚𝑒𝑎𝑛 𝑖  and 𝑟𝐶𝑂𝑉 𝑗. 

The resulting correlation coefficients for cases where the number of successful proof 

load tests and the proof load level are varied are presented in Table 4 for the case where rcov 

is assumed to follow a trunated lognormal distribution. For the case where no tests are 

conducted, the correlation coefficient between rmean and rCOV is zero as expected. For the 

cases involving proof load tests of different numbers and levels, results on Table 4 indicate 

that small positive or negative correlations exist between the mean distribution and the COV 

ranging between -0.127 for 1 positive proof load test at 3xDL level and 0.28 for 15 positive 

load tests conducted at a high level (3xDL). These correlations could be considered to be 

small and are not expected to play a significant role in determining the reliability of the proof 

load tested design.  
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Table 4 correlation between rmean and rCOV after updating (FS=2) 

  Proof load test level 

  1xDL 1.5xDL 2xDL 2.5xDL 3xDL 

N
u
m

b
er

 o
f 

su
cc

es
sf

u
l 

p
ro

o
f 

lo
ad

 t
es

ts
 

0 0 0 0 0 0 

1 0.013 0.008 -0.029 -0.070 -0.127 

3 0.035 0.060 0.062 0.047 0.026 

5 0.050 0.090 0.115 0.118 0.112 

15 0.090 0.178 0.229 0.260 0.280 

 

4.3 Sensitivity of Results to the lower-bound Capacity and Mean Capacity Distributions 

In this section, the sensitivity of the updating process to the assumptions of the 

lower-bound capacity distribution and the pile capacity prediction method will be studied as 

part of a comprehensive parametric analysis. The sensitivity of the problem to the assumption 

of the distribution of the lower-bound capacity will be tested for different scenarios which 

involve different pile capacity prediction methods using different ratios of lower-bound to 

mean capacity. The values of this ratio will vary from 0 (no lower bound), to 0.4, 0.5, and 

0.6 of the mean pile capacity. Since the lower-bound distribution truncates the tail of the 

mean capacity distribution, it is important to study the effect of the COV of the mean capacity 

(representing model uncertainty in pile capacity predictions) on the results. 

The sensitivity of the updating process to the lower-bound capacity will be studied 

on two types of rmean distributions: (1) a mean capacity distribution with a relatively high 

COV of 0.5 (indicative of pile capacity predictions in sands) and (2) a mean capacity with a 

relatively low COV value of 0.15 (indicative of pile capacity predictions for clay). The two 

distributions are presented in Figure 8. In Figure 8(a), the lower-bound has a mean of 200 
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KN and a COV of 0.2 while rmean has a mean of 400 KN and a high COV of (0.5). Figure 

8(b) shows the same distributions but with a low COV of 0.15 for rmean. The figure reflects 

the expected important role that a lower-bound capacity could play in defining the capacity 

model for the case with a higher COV of 0.5 compared to the negligible effect for the case 

with a COV of 0.15. For the case with higher COV for rmean, the lower-bound capacity 

truncates the tail of the distribution of rmean and eliminates lower capacity values. 

 

Figure 8 The effect of the lower bound truncation on the (a) mean capacity with a 

COV = 0.5 (b) mean capacity with a COV = 0.15 
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Figure 9 shows the variation of reliability index as a function of positive proof load 

tests for a high COV mean distribution. Results are shown for three levels of proof load tests 

(1.5xDL, 2.0xDL, and 2.5xDL) and four values of the mean lower-bound capacity (0, 0.4, 

0.5, and 0.6 times the mean capacity). 

 

Figure 9 The variation of the reliability index as a function of positive proof load tests for 

different lower-bound to mean ratio applied at a 0.5 COV mean distribution (FS = 2) 

 

Results on Fig. 9 show that for the case where no proof load tests are conducted (prior 

case), the value of the lower-bound capacity has a significant impact on the reliability index 

which is shown to vary from 1.6 (for the case with no lower-bound capacity) to about 2.5 

(for the case with a lower-bound capacity equal to 0.6 times the mean capacity). The effect 

of the lower-bound capacity tends to decrease as the number of positive load tests increase, 

but this effect varies for different levels of proof load tests. For a smaller proof load level 

(1.5 x DL), the reliability index for different prior lower-bound capacities starts to converge 
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from the fifth positive test. For higher proof load levels (2xDL and 2.5xDL) the reliability 

index of different lower bounds converges from the second and first positive proof load test, 

respectively. These results are expected due to the fact that the updated mean capacity 

distribution is shifted to the right due to the positive load tests and therefore away from the 

lower bound distribution which leads to a decrease in the effect of truncation of the lower 

bound distribution on the reliability index. 

Results on Fig. 9 pertain to the case where all the proof load tests are assumed to be 

positive. The effect of failures on the reliability index for different mean ratios of lower-

bound capacity to mean capacity is studied on Fig. 10a for the same cases analyzed in Fig. 9 

(COV of rmean = 0.5). The analysis entails four scenarios as follows: (1) all the tests are 

positive, (2) one test is negative, (3) three tests are negative, and (4) five tests are negative. 

The variation of the reliability index as a function of the proof load test (2xDL) 

outcome of these four scenarios are represented in Figure 10a. Whereas the results of the 

same scenarios conducted at different proof load levels are presented in Appendix 1. Results 

on Figure 10 indicate that the assumption of different lower-bound capacities has a significant 

impact only on cases where all the tested piles fail in carrying the proof load. In these cases, 

a difference of about 1.0 exists in the updated reliability index for the case involving no lower 

bound and the case involving a mean lower-bound capacity that is taken as 0.6 times the 

mean capacity. Interestingly, results also show that successive negative proof load tests 

followed by one positive proof load test is sufficient for the convergence of the reliability 

index for the four assumed values of the mean lower-bound capacity. As an example, if 6 

proof load tests are conducted where 5 tests are negative and the sixth test is positive, the 
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results show that the reliability index of the 4 lower-bound ratios varies between 1.8, when 

there is no lower-bound, and 2 when the ratio of the lower-bound to that of the mean is 0.6. 

This detailed study reveals that the effect of the ratio of the lower bound to that of 

the mean on the updated reliability index is negligible (for the case with a COV of 0.5 for 

rmean) for at least one positive proof load test, whereas this effect is significant for the prior 

results (no tests are applied) or for the case where all the proof load tests are negative.   

 The results on Figures 9 and 10a pertain to the case where the COV of the mean 

capacity is relatively high (COV = 0.5, ex. case of piles in sands). To illustrate the effect of 

the lower-bound for cases involving a smaller level of uncertainty in the mean capacity (COV 

= 0.15, ex. case of piles in clay) the same procedure is applied and the results are presented 

in Fig. 10b).  Figure 10b shows the effect of positive and negative proof load tests conducted 

at 2xDL level, on the 0.15 COV mean distribution for different lower-bound ratios. The effect 

of other proof load tests levels for the same mean distribution is found in Appendix 1.  

The results show that the prior reliability index (no tests are conducted) varies 

between 2.45 when there is no lower bound and 2.5 when the ratio of the lower bound to that 

of the mean is 0.6. This reveals that the lower bound has no effect on the prior reliability 

index. This result is expected given the low COV of the mean capacity distribution, rendering 

the lower bound ineffective when truncating the left hand tail of the mean capacity 

distribution. More importantly, results on Fig. 10b indicate that the reliability index is 

insensitive to the assumption of the ratio of the mean lower-bound capacity to the mean 

capacity for both positive and negative proof load test results.  
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Figure 10 Effect of the mean lower-bound capacity on the reliability index for cases involving 

proof load levels of 2xDL and (a) COV of rmean = 0.5 and (b) COV of rmean = 0.15 (FS = 

2). 
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For the rest of this study, the mean of the lower-bound capacity is chosen to be half 

that of the mean capacity. However, in the decision making exercises that will be presented 

in chapter 7, the mean lower-bound capacity will be calculated for each case history analyzed 

based on the lower-bound prediction models proposed by Gilbert et al. (2005). 

 

4.4 Sensitivity of the Results to the Pile Prediction Method  

Pile prediction methods suffer from model uncertainty that could be quantified using 

databases of pile loads tests. The study by Lehane et al. (2017) showed that different pile 

prediction methods exhibited different levels of model uncertainty. The statistics describing 

the bias in the model predictions show significant differences between methods (SPT-based 

or CPT-based) and soil types (sands versus clays). These model uncertainties are reflected in 

the probability distribution of the mean pile capacity in the pile capacity model adopted in 

this thesis (Figure 3c). It is thus expected that the results of the Bayesian updating exercise 

in the presence of proof load tests will be affected by the choice of the method used to predict 

the pile capacity.  

The pile prediction methods differ for every soil type and can be classified into 

methods that target driven piles in sand and others that target driven piles in clay. For pile 

prediction methods in sands, these methods can be further classified as Standard Penetration 

Test (SPT) – based methods and Cone Penetration Test (CPT)-based methods. A summary 

of the statistics describing model uncertainty for SPT-based methods and CPT-based 

methods for driven piles in sands and clays are presented in Tables 5 and 6, respectively.  
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Table 5 The Statistics of Methods Used for Piles in Sand 

Methods (Sands) 
Skin friction End bearing 

References 
Bias 

fact

or 

COV Bias factor COV 

API (SPT) 1.58 0.61 1.60 0.57 Lacasse et al. (2013) 

NGI-05 (CPT) 1.09 0.23 1.02 0.21 Lacasse et al. (2013) 

ICP-05 (CPT) 1.09 0.23 1.16 0.21 Lacasse et al. (2013) 

Fugro-96 (CPT) 1.25 0.30 0.90 0.24 Lacasse et al. (2013) 

UWA-05 (CPT) 1.05 0.35 1.10 0.25 Lacasse et al. (2013) 

 

Table 6 The Statistics of Different Methods Used to Design Piles in Clays 

Methods (clays) Bias factor COV References 

API 1.11 0.27 Lacasse et al. (2013) 

NGI-05 1.06 0.16 Lacasse et al. (2013) 

ICP-05 0.99 0.23 Lacasse et al. (2013) 

Fugro-96 1.01 0.18 Lacasse et al. (2013) 

 

The two main parameters that will affect the result of the prior and updated 

reliability index are the bias factor and the COV. The bias factor is the mean of the ratio of 

the measured capacity to that predicted capacity as obtained from pile load test databases. 

The bias factor governs the position of the mean capacity distribution. The second factor is 

the COV, which is calculated as the COV of the ratio of the measured to predicted pile 

capacities as obtained from the databases. The COV will govern the uncertainty/spread in the 

distribution of the mean pile capacity.  

4.4.1 Sensitivity analysis for pile prediction methods for sand 

Table 5 presents the bias factor and the COV of different SPT and CPT based 

methods for sand. These parameters were suggested by Lacasse et al. (2013) based on a 

comprehensive state-of-the-knowledge database of full-scale pile load tests. These statistical 

parameters are divided into statistics related to the skin friction and statistics related to the 
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tip resistance. As expected, the statistics of the model uncertainty factors differ between the 

tip resistance and the skin friction in any given prediction method. Therefore, the prior and 

updated reliability indices of the piles could differ from site to site depending on the 

percentage of the load that is carried by tip resistance relative to the percentage that is carried 

by skin friction even using the same prediction model.  

To analyzed representative cases with different relative percentages of tip versus 

skin resistances in the reliability analysis, three combinations of skin friction and tip 

resistance are analyzed: (1) 80% of the total resistance is governed by skin friction and 20% 

by tip resistance. (2) 50% for skin friction and 50% for tip resistance, and (3) 20% for skin 

friction and 80% for tip resistance. Since the MATLAB code that was developed for this 

thesis adopts as input only one value for the bias factor and COV for the mean capacity 

distribution, a first order approximation was used to combine the contributions of the bias 

factor from skin friction and tip resistance into one bias factor and COV for each of the three 

cases analyzed such that:   

𝝀 = %𝒔𝒌𝒊𝒏 × 𝝀𝒔𝒌𝒊𝒏 + %𝒕𝒊𝒑 × 𝝀𝒕𝒊𝒑                                                           ( 18 ) 

𝑪𝑶𝑽 =
√(%𝒔𝒌𝒊𝒏)𝟐×(𝑪𝑶𝑽𝒔𝒌𝒊𝒏)𝟐×(𝝀𝒔𝒌𝒊𝒏)𝟐+(%𝒕𝒊𝒑)𝟐×(𝑪𝑶𝑽𝒕𝒊𝒑)𝟐×(𝝀𝒕𝒊𝒑)𝟐

%𝒔𝒌𝒊𝒏×𝝀𝒔𝒌𝒊𝒏+%𝒕𝒊𝒑×𝝀𝒕𝒊𝒑
                   ( 19 ) 

Where λ and COV are the combined bias factor and COV of the mean capacity 

distribution, respectively. The results of the first order approximation are presented in Table 

7 for the methods involving driven piles in sand.  Results indicate that the SPT-based API 

method has the highest combined bias factor (~1.6) and highest COV (between 0.42 and 

0.50). The NGI and the ICP methods exhibit relatively similar model factor statistics with 

bias factors in the order of 1.04 to 1.08 for NGI and 1.10 to 1.15 for ICP with COVs ranging 
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from 0.17 to 0.19 for both methods. The COVs for FUGRO and UWA methods are relatively 

larger and range from 0.20 to 0.28 with associated bias factors ranging from 0.97 (80% skin 

friction vs 20% end bearing) to 1.18 (20% skin friction vs 80% end bearing) for FUGROs 

method and 1.06 to 1.09 for the UWA method. It should be noted that for almost all the 

methods analyzed the lower values of COV tend to be for cases involving 80% end bearing 

and 20% skin friction, which is reflective of the larger COVs that are associated with skin 

friction predictions in Table 5. 

 

Table 7 The bias factor and COV results for different skin friction and tip resistance 

combinations for CPT based methods 

Methods 
Percentage skin 

friction 

Percentage tip 

resistance 

Calculated bias 

factor 

Calculated 

COV 

Current 

API 

80 20 1.584 0.500 

50 50 1.59 0.417 

20 80 1.596 0.473 

NGI-05 

80 20 1.076 0.191 

50 50 1.055 0.156 

20 80 1.034 0.173 

ICP-05 

80 20 1.104 0.187 

50 50 1.125 0.155 

20 80 1.146 0.176 

Fugro-

96 

80 20 1.180 0.257 

50 50 1.075 0.203 

20 80 0.970 0.201 

UWA-

05 

80 20 1.060 0.282 

50 50 1.075 0.213 

20 80 1.090 0.213 

 

To illustrate the effects of the method used to predict the pile capacity and the 

percentages of the skin and tip resistances to the total capacity on the reliability index, cases 



41 

 

 

involving piles that are designed with a factor of safety of 2.0 and subjected to proof load 

tests with a proof load level of 2xDL are considered. In all the cases analyzed, a lower-bound 

capacity with a mean that is equal to 0.5 times the mean pile capacity is considered. Figures 

11a to 11d show the prior and updated reliability indices for the 3 proportions of skin friction 

and tip resistance for the API, Fugro-96, ICP, and UWA method, respectively as a function 

of the number of proof load tests including possible failures.  

For the API method, results on Fig. 11a indicate that the prior and updated reliability 

indices were not sensitive to the different proportions of skin friction and tip resistance. The 

prior reliability indices were about 2.7 and increased to values exceeding 3.0 for proof load 

test programs with no failures. For cases involving failures, results for the API method 

indicate that at least 50% of the tests have to be positive in order for the updated reliability 

index to exceed 2.5 and that at least 75% of the tests have to be positive so that a target 

reliability index that exceeds 3.0 is achieved, with the minimum number of four proof load 

tests.    

Results for the FUGRO method (Fig. 11b) show that the prior and updated reliability 

indices are sensitive to the 3 combinations of skin friction and end bearing. For the prior 

cases, a higher reliability index of 2.41 is achieved when the pile resistance is governed by 

the skin resistance (80% skin and 20 %tip resistance) compared to a reliability index of 2.04 

when the pile’s tip is 80% of the total resistance. This result is expected since the combination 

of (80% skin and 20% tip resistance) has the higher bias factor, even though it has the highest 

COV but the difference in the bias factor in this method dominates the COV variation.  
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To bring the reliability index to values that are greater than 2.5 and 3.0, proof load 

test programs that consist of one positive test and three positive tests are needed, respectively. 

For test programs that may involve failures, results for the FUGRO method show that at least 

50% of the tests should be positive for the cases involving 80% and 50% skin friction, and at 

least 67% of the tests should be positive for the cases involving 20% skin friction. If a higher 

target reliability index of 3.0 is required, results indicate that a minimum number of 6 proof 

load tests should be conducted, with a percentage of successful piles of at least 85% for all 

skin friction and end bearing combinations. These numbers are higher than those witnessed 

for the API method indicating the need for additional proof load tests and a larger percentage 

of successful piles in the FUGRO method to achieve target levels of reliability in the proof-

tested designs. 

Results for the ICP method (Fig. 11c) show that for the prior cases, a higher 

reliability index of 2.65 is achieved when the pile resistance entails 20%-80% and 50%-50% 

combinations of skin friction to tip resistance. The prior reliability index is reduced to 2.50 

for the case where the skin resistance governs (80%-20%). Upon implementing proof-load 

test programs, an updated target reliability index of 3.0 can be achieved with a minimum of 

2 positive tests, irrespective of the skin friction to tip resistance proportions. For the cases 

involving possible failures, results indicate that test program with at least 50% positive tests 

are required to achieve a target reliability index of 2.5. To achieve the higher reliability index 

of 3, at least 5 tests have to be conducted with a minimum of 80% of the tests being positive. 
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     (a) API Method 

 

(b) FUGRO Method 
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(c) ICP Method 

 

(d) UWA Method 

Figure 11 The variation of the reliability index as a function of different proof load test 

outcome for (a) API method, (b) FUGRO method, (c) ICP method, and (d) UWA method 

(FS = 2. Rproof = 2xDL) 
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Similar to the ICP method, results for the UWA method (Fig. 11d) show that for the 

prior cases, a higher reliability index of about 2.35 is achieved when the pile resistance entails 

20%-80% and 50%-50% combinations of skin friction to tip resistance. The prior reliability 

index is reduced to a low value of 2.0 for the case where the skin resistance governs (80%-

20%). Upon implementing proof-load test programs, updated target reliability indices of 2.5 

and 3.0 can be achieved with a minimum of 1 and 2 positive tests, respectively, irrespective 

of the skin friction to tip resistance proportions. For the cases involving possible failures, 

results indicate that test program with a minimum of 3 tests and at least 66% positive tests 

are required to achieve a target reliability index of 2.5. To achieve the higher reliability index 

of 3, at least 5 tests have to be conducted with a minimum of 80% of the tests being positive. 

These results are relatively similar to those observed in the ICP method.  

To provide a one-to-one comparison between the prior and updated reliability indices 

for the different pile prediction methods, the results pertaining to the 50% skin – 50% tip 

resistance combination are presented for the API, ICP, and UWA methods on Figure 12. The 

curves on Fig. 12 clearly indicate that the pile prediction method plays a role in defining both 

the prior and updated reliability indices. The difference between methods is mostly portrayed 

for the cases involving proof load test programs with no failures. In these cases, the API 

method seems to result in the largest reliability indices compared to the other two methods. 

Interestingly, for cases involving failure, the results from the different methods start to 

converge, particularly for cases where the number of proof load tests and the number of 

failures increase. For cases with relatively high percentages of failed load tests (for example 

3 and 4 proof tests with 3 failures and 5 and 6 tests with 5 failures), the results from the ICP 
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diverge slightly from the results of the other two methods with updated reliability indices that 

are relatively larger than the other two methods. These results confirm the need for 

incorporating the effect of the pile prediction method in any reliability-based decision making 

framework that aims at optimizing the value of proof-load test programs for driven piles. 

 

 

Figure 12 Comparison between the prior and updated reliability indices observed for (a) 

API method, (b) ICP method, and (c) UWA method (FS = 2, rproof = 2xDL) 

 

In conclusion, the effect of different combinations of tip resistance and skin friction 

on the prior and updated reliability index of the pile varies from method to another, since this 

effect is directly linked to the statistics of the bias factor and the COV that varies from method 

to another.    
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4.4.2 Sensitivity analysis for pile prediction methods for clay  

Table 6 summarizes the statistics describing the model uncertainty for prediction 

methods involving driven piles in clays as presented in Lehane et al. (2017). For these 

methods, the mean bias factors range from 0.99 to 1.11 and the model uncertainty is 

represented by COVs ranging from 0.16 to 0.27. To investigate the sensitivity of the updating 

process to the pile prediction method, prior and updated reliability indices are calculated and 

plotted for cases involving proof load test programs that are conducted using proof load levels 

of 1.5xDL (Fig. 13a) and 2.5xDL (Fig. 13b). All cases pertain to piles that are designed using 

a reduced factor of safety of 2.0. 

The prior results (no proof load tests are conducted) on Figure 13 show that the prior 

reliability indices vary between a minimum of 2 for the ICP method and a maximum of 2.5 

for the NGI method, indicating that methods with the largest bias factors and the lowest COV 

yield the highest reliability indices. For the case involving the smaller proof load level of 

1.5xDL, the updated reliability indices indicate that at least 2 positive tests are required to 

achieve a target reliability index of 2.5 and 9 positive tests are required to achieve the higher 

target reliability index of 3.0. These relatively large numbers are due to the relatively small 

proof load level of 1.5xDL. For the cases involving possible failures, results indicate that as 

little as one negative test result for a proof load level of 1.5xDL results in a significant 

reduction in the reliability index. If one failure occurs at this proof load level, the target 

reliability indices of 2.5 and 3 cannot be achieved even if 10 tests are conducted. This 

observation applies equally to all pile prediction methods.  
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Figure 13 The variation of the reliability index as a function of different proof load test 

outcomes at rproof equal to (a) 1.5xDL and (2) 2.5xDL for different pile prediction method in 

clay (FS = 2) 
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Figure 13b shows the reliability indices of different clay-based methods as a function of the 

number of static proof load tests conducted at 2.5xDL level. Results for this relatively high 

proof load level indicate that one positive proof load test is enough to increase the reliability 

index of the different methods above the target reliability index of 2.5. To achieve a higher 

target reliability index of 3.0, one positive test is enough for the API method while two 

positive tests are required for the other three methods. For cases involving possible failures, 

results on Fig. 13b indicate that at least 30% of the tested have to be positive so that a 

reliability index of 2.5 is achieved. This percentage of positive tests need to be increased to 

50% for achieving a reliability index of 3.0. These conclusions are valid for all pile prediction 

methods. 

 Despite the uniformity in the recommendations regarding the number of tests needed 

to achieve a required reliability index in each pile prediction methods, the detailed results on 

Fig. 13a and 13b show significant differences between the updated reliability indices among 

methods. It is this expected that the pile prediction method will have a significant impact in 

the context of a decision making framework that aims that maximizing the value of proof 

load test programs for a given case study. The decision making framework will utilize the 

prior and updated reliability indices shown on Fig. 13 as input to the decision tree. As such, 

decision is expected to be significantly influences by the method used to predict the pile 

capacity even for piles in clay.   
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CHAPTER 5 

DECISION MAKING FRAMEWORK 
 

The main outcome in the study conducted by Najjar et al. (2017) is a rational 

decision making that would facilitate the choice of a load test program that has the maximum 

expected benefit to the project. The method relies on a pre-posterior approach (Ang and Tang 

1984) which takes into consideration different possible outcomes of any decision alternative.  

 

5.1 Methodology of Decision Framework (Najjar et al. 2017) 

In the method presented in Najjar et al. (2017), the main decision alternatives were 

(1) the proof load level rproof and (2) the number of proof load tests to be conducted, n. For 

each of the potential test outcomes that are associated with a given decision alternative, the 

updated reliability index could be evaluated using Bayesian techniques. The resulting 

updated reliability index will depend on the outcome, with relatively high indices expected 

for cases involving positive tests and relatively low indices for cases involving failures. These 

reliability indices could be lower or higher than a target reliability index that is set for the 

piles in the project. As a result, outcomes where the updated reliability index is below the 

target indicate that the allowable capacity per pile (design load per pile) will have to be 

reduced in light of the load test results. On the other hand, outcomes where the updated 

reliability index is above the target allow for an increase in the allowable capacity (design 
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load) per pile in comparison to the base case. The allowable pile capacity (design load) could 

be calculated by utilizing the updated capacity distribution for that particular outcome.  

From a practical design standpoint, any increase or decrease in the allowable 

capacity per pile as a result of conducting the proof load tests can be translated to (1) 

reduction/increase in the total number of piles required to support the superstructure loads 

without changing the geometry of the piles, or (2) reduction/increase in the geometry of the 

piles (length and/or diameter) without changing the total number of piles required. For the 

work presented in Najjar et al. (2017), the consequences associated with the outcomes of any 

decision alternative are assumed to be reflected in the total number of required piles without 

resorting to any change in the pile length or diameter. Based on the above, the consequences 

of any potential test outcome will be reflected in the benefits/costs associated with 

reducing/increasing the required number of piles to support the superstructure load without 

changing the geometry of the piles under consideration.  

The financial benefit is reflected in the cost savings associated with this reduction 

in the number of piles. On the other hand, there is a negative financial cost that is associated 

with the cost of conducting the load test program alternatives and the cost of replacing failed 

piles when relevant. The net benefit of any test outcome can be calculated by subtracting the 

benefits due to reducing (or cost due to increasing) the number of piles in the site from the 

costs associated with conducting the proof load tests including the cost of replacing failed 

piles. Once the net benefit of all the test alternatives and their associated potential outcomes 

are calculated, the “expected” benefit   of each alterative load test program can be calculated. 
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The alternative pile testing program that has the highest expected benefit could then be 

selected as the test alternative that has the highest value.   

To illustrate the practicality of the decision-making framework, Najjar et al. (2017) 

presented a practical design example that involves piles that are driven in a site consisting of 

medium dense sand is considered. The pile design consisted of closed-ended steel pipe piles 

with an outside diameter of 355 mm and a length of 25 m. The predicted nominal axial 

capacity of a single driven pile is 1.8 MN and the lower-bound is calculated to be equal to 

0.9 MN accounting to about 0.5 of the nominal axial capacity.  For the purpose of illustrating 

the decision-making methodology, hypothetical cases that involve different superstructure 

loads were adopted, and it was assumed that the superstructure load will be supported by a 

group of identical steel pipe piles that will share the superstructure load equally.  

The example illustrating the use of the decision framework was limited to 

determining the optimum proof load level and the optimum number of tests to be conducted.  

The number of pile load tests that were considered as decision alternatives is 1, 2, 3, 5, 7, and 

10 proof tests to be conducted at load levels of 1.5, 2, and 2.5 times the design load or 0.75, 

1.0, and 1.25 times the predicted capacity. These decision alternatives are presented in the 

context of a simplified decision tree in Fig. 14 (Najjar et al. 2017) with detailed calculations 

pertaining to the case of the test alternative that includes a proof load level of 2.0 times the 

design load presented for illustration. The results indicate that the proof-load test program 

alternative that is based on conducting 5 proof load tests up to a proof load level of 1.5 times 

the design load yields the largest expected benefit ($ 297,965) among all other test 

alternatives. 
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Figure 14 Sample Decision Making Example as Presented in Najjar et al. (2017) 

 

 

5.2 Model and MATLAB code update  

In this section, the mathematical framework of the pre-posterior decision analysis 

that pertains to the capacity model that was adopted in this study is presented.  The decision 



54 

 

 

framework is based on that proposed by Najjar et al. (2017) and incorporates input related to 

the super structure load and pile capacity which depends on the type of soil, piles dimensions, 

and design method used to predict the capacity. To test the applicability of the decision 

framework, several sites were chosen to represent soils of different types, piles of different 

dimensions, and different design methods.  

The main strength of the decision framework lies in its ability to incorporate 

different possible outcomes of any decision alternative. In the decision tree, each possible 

outcome is associated with a likelihood of occurrence. This likelihood is calculated for every 

outcome as a function of the parameters of the prior joint probability PMF or rmean and rCOV 

such that: 

𝒑(𝜽) = ∑ ∑
𝒏!

𝒌!(𝒏−𝒌)!

𝒏𝟐
𝒋=𝟏 [𝟏 −𝒏𝟏

𝒊=𝟏

𝜱 (
𝐥𝐧 𝒓𝒑𝒓𝒐𝒐𝒇−𝝀𝒊

𝝃𝒋
)]

𝒌

[𝜱 (
𝐥𝐧 𝒓𝒑𝒓𝒐𝒐𝒇−𝝀𝒊

𝝃𝒋
)]

𝒏−𝒌

𝒑𝑹𝒎𝒆𝒂𝒏,𝑻,𝑹𝑪𝑶𝑽
(𝒓𝒎𝒆𝒂𝒏,𝒊, 𝒓𝑪𝑶𝑽), 𝒋  ( 20 ) 

Where 
𝑛!

𝑘!(𝑛−𝑘)!
 is a factor that takes into consideration different combinations and 

permutations that characterize any possible outcome. 

The first step in the pre-posterior analysis is to calculate the required number of piles 

if no tests are conducted according to equation 21.  

𝑵𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 = 𝑺𝒔𝒖𝒑𝒆𝒓 /𝑫𝑳𝒏𝒐 𝒕𝒆𝒔𝒕                                                                ( 21 ) 

Where 𝑁𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 is the required number of piles in a certain site if no tests are 

conducted, 𝑆𝑠𝑢𝑝𝑒𝑟 is the total load in the site, and 𝐷𝐿𝑛𝑜 𝑡𝑒𝑠𝑡 is the calculated dead load of each 

pile that ensures a reliability index of 3. 

The required number of piles could be reduced after the implementation of a proof 

load testing program. For illustration, the number of pile load tests to be considered in the 
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decision alternative ranges from 1 to 10, and in some particular cases and sites, the number 

of tests can reach to 20 pile load tests. For each outcome of the alternative load tests, the 

likelihood is calculated according to equation 22, and the required DL to achieve a reliability 

index of 3 is calculated using the MATLAB code. The next step is to calculate the new 

required number of piles for each outcome according to equation: 

𝑵′𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 = 𝑺𝒔𝒖𝒑𝒆𝒓 /𝑫𝑳𝒐𝒖𝒕𝒄𝒐𝒎𝒆                                                            ( 22 ) 

Where 𝑁′𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 is the updated required number of piles in a certain site due to the 

results of the proof load test, 𝑆𝑠𝑢𝑝𝑒𝑟 is the total load in the site, and 𝐷𝐿𝑜𝑢𝑡𝑐𝑜𝑚𝑒 is the calculated 

dead load of each pile that ensures a reliability index of 3 after conducting the proof load test. 

In order to choose the optimum proof load test program, the initial cost (no pile load 

tests are conducted) and the cost of each outcome need to be calculated. The net benefit of 

each outcome can be calculated by using the equation: 

𝑩(𝒂𝒊, 𝜽𝒋) = 𝑵𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅. 𝑪𝒑𝒊𝒍𝒆 −  𝑵′𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅. 𝑪𝒑𝒊𝒍𝒆 − 𝒏𝑪𝒓,𝒑𝒓𝒐𝒐𝒇 − (𝒏 − 𝒌). 𝑪𝒑𝒊𝒍𝒆        ( 23 ) 

Where 𝐶𝑝𝑖𝑙𝑒 is the cost of manufacturing and installing the driven pile, 𝐶𝑟,𝑝𝑟𝑜𝑜𝑓 is 

the cost of conducting a proof load test, and (𝑛 − 𝑘). 𝐶𝑝𝑖𝑙𝑒 is the cost of the replacing the 

piles that failed during the proof load test, if any. 

Once the net benefit of all the test alternatives and their associated potential outcomes 

are calculated, the “expected” benefit  of each alterative load test program ai can be 

calculated by multiplying the net benefit B(ai, j)  of each outcome by the likelihood of 

occurrence of that outcome P(j) and summing the contributions of all outcomes such that: 

 

      (24) 
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The alternative pile testing program that has the highest expected benefit could then 

be selected as the test alternative that has the highest value.   

The base case costs that were adopted in this study are specified as follows: (1) The 

cost of production and installing a single closed ended pile is 97$/ft, and (2) the cost of 

running a static proof load test on such piles is in the order of 10$/KN of test load.   
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CHAPTER 6 

PRACTICAL APPLICATIONS FOR PROPOSED 

DECISION MAKING FRAMEWORK 

One of the main objectives of this thesis is to apply the pre-posterior decision-

making framework to a number of practical design scenarios that involve driven piles of 

different characteristics and soils of different nature. The ultimate goal is to formulate a 

general set of recommendations regarding the design of proof load test programs for driven 

piles that are designed using different empirical design procedures in soil profiles that range 

from cohesive to cohesionless soils. To achieve this ultimate goal, four published case 

histories with representative soil profiles and pile types were selected as indicated in Table 

8. Two of the case histories involve sites that were predominantly sand and two involve clay 

sites. The Cimarron River site (Nevels and Snethen 1994) consists of loose to medium dense 

sands while the Pigeon Creek site (Paik et al. 2003) consists of dense sands. For the clays 

sites, the soil mainly consisted of slightly overconsolidated clays. The main difference 

between the two case histories is the in the length of used piles whereby the piles that were 

considered for the Port of Khorramshahr site (Hutchinson and Jensen 1968) were relatively 

short (13.9m) while the piles that were considered for the Louisiana site (Darragh and Bell 

1969) were relatively long (30.5m). All of these case histories were included as part of the 

database analyzed in Lehane et al. (2017). The choice of these case histories was driven by 

the fact that the published papers included sufficient detailed information about the soil 

profile and properties to allow for a proper determination of the predicted pile capacity (SPT 



58 

 

 

and CPT-based) and lower-bound capacities (Gilbert et al. 2005 models) for all the prediction 

models that were analyzed in this thesis. 

Table 8 Description of different sand and clay sites 

Site Type Site name Reference 

Dominant 

Type of 

soil at 

side 

Type 

of soil 

at tip 

Pile 

length 

(m) 

Pile 

diameter 

(cm) 

Loose to Medium 

Sand 

Cimarron 

River 

Nevels and 

Snethen 

1994 

Sand (M) 
Sand 

(L) 
19 66 

Dense Sand 
Pigeon 

Creek 

Paik et al. 

2003 

Grav. 

Sand (D) 

Grav. 

Sand 

(D) 

6.9 35.6 

Clay – Short Pile 

Port of 

Khorramsh

ahr, Iran 

Hutchinson 

& Jensen 

(1968) 

Slightly 

OC clay 
- 13.9 35 

Clay – Long Pile Louisiana 
Darragh & 

Bell (1969) 

Slightly 

OC clay 
- 30.5 32.4 

 

 

6.1 Site No. 1: The Cimarron River Site (Driven Piles in Loose to Medium Sand) 

The Cimarron River Site is located on the U.S. Highway 64 bridge over the 

Cimarron River in Northway, Oklahoma. Figure 15 shows the piles’ dimension and the site 

conditions in addition to the SPT and CPT data collected from the site. The considered piles 

are closed ended precast concrete driven piles with a 66 cm diameter and a 19-m length. The 

soil in the site is a Quaternary terrace and alluvium deposit overlying the Flowerpot shale. 

This Flowerpot shale is about 122 m thick, whereas the Cimarron River deposits are 

approximately 20 m thick and involve a mixture of sand and gravel. 
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Figure 15 Characteristics of the Cimarron River Site 

 

Table 9 summarizes the predicted capacities using the API (SPT-based), the ICP 

(CPT-based) and the predicted lower-bound capacities using the Gilbert et al. (2005) model. 

The current API method refers to API (2000) while the ICP-05 method refers to Jardine et 

al. (2005) and API (2007).A pre-posterior decision making analysis was conducted to 

investigate the optimal proof load test program for the piles in the Cimarron River Site.  In 

the analysis, several cases of superstructure loads were assumed since the magnitude of the 

applied load is expected to directly correlate with the total number of piles in the site. In 

addition, the analysis was repeated for the SPT-based API method and for the CPT-based 

ICP method to study the impact of the pile prediction method on the resulting optimum test 

program.  
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Table 9 The pile's capacity according to different methods in the Cimarron River Site 

Methods Predicted Capacity Bias Factor Mean Pile Capacity 

Current API 2206 1.66 3661 

ICP-05 3609 1.04 3753 

Lower-bound 1032 1.0 1032 

 

To illustrate the procedure followed in choosing the optimal static proof load test, 

the case involving the ICP method for calculating the pile capacity in the Cimarron River 

Site is considered. The predicted pile capacity according to this method is 3609 KN as shown 

in Table 9. Using this predicted capacity and the statistics of the bias factor of the ICP method 

(Table 5), the probabilistic capacity model for the piles at the site can be developed. In the 

model, it is assumed that the within site variability (rcov) follows the truncated lognormal 

distribution with a mean of 0.2, a COV of 0.31, and a lower and upper bound of 0.1 and 0.3, 

respectively. This within site variability is assumed for all the case histories analyzed in this 

chapter.  

For the above pile capacity distribution, the prior design load that a single pile could 

sustain while maintaining a target reliability index of 3.0 is calculated to be equal to 1214 

KN (FS = 2.97). In the prior analysis which is needed to calculate the prior number of piles 

at the site, the load distribution is assumed to be lognormal with a mean that is equal to 1214 

kN and a COV of 0.15 as is the convention. For illustration, if the total superstructure load is 

assumed to be carried by 300 piles in the site, the total prior design load will be equal to 365 

MN.  

For the case were alternative proof load-test programs are envisaged for the piles at 

the site, the piles will be initially designed with a reduced factor of safety of 2.0. For the 
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example case that is considered above, this will lead to a design load (DL) that is equal to the 

predicted capacity (3609 kN) divided by the factor of safety (2.0) with a value of 1804.5 kN. 

The pre-posterior analysis is conducted for alternative proof-load test programs consisting of 

static proof load tests at levels of 1.5xDL, 1.75xDL, 2xDL, 2.25xDL, and 2.5xDL. Based on 

the outcomes of the test program, the pile capacity distribution is updated and an updated pile 

design load is calculated to yield a desired target reliability index of 3.0. The updated design 

load is then used to calculate the updated number of piles needed to sustain the total load on 

the structure. If the updated number of piles is smaller than the prior number, cost savings 

will be incurred for the project cost resulting in a net cost benefit for that particular outcome.    

Figure 16 shows the net expected benefit for all the decision alternatives as a 

function of the number of tests and the proof-load level. These results pertain to the 

illustrative case which involves 300 piles (prior analysis) in the Cimarron River Site with pile 

predictions made using the CPT-based ICP design method for driven piles in sand. The figure 

shows that the optimal test alternative is to conduct 3 static proof-load tests at 1.5xDL level 

with a maximum net expected benefit of 205,082 $.  

To test the sensitivity of the optimal load test program to the magnitude of the 

applied superstructure load (or total number of piles), the same analysis is repeated for 

number of piles varying from 50 (relatively small total foundation load) to 1000 piles 

(relatively large foundation load). The results of this exercise are presented in Figure 17 and 

include a depiction of the variation of the number and percentage of optimal proof load tests 

as a function of the total number of piles that is envisaged in the prior analysis.  
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The results on Fig. 17 show that for a small number of piles (50 piles) no tests are 

required. For example, a total load of 60 MN (50 piles in the site) requires no proof load tests 

and each pile can carry a dead load of 1214 kN (FS = 2.97) for a target reliability index of 3. 

When the number of piles increases in the site the optimal required number of proof load 

tests increases, but the required level of proof load test for the ICP method is always 1.5xDL. 

For 100 piles in the site, it is required to conduct 1 proof load test at 1.5xDL. However, the 

number of tests vary according to the number of piles. So, when the number of piles is 

between 200 and 300, 3 proof load tests are required, and when the number of piles in the 

site becomes between 700 and 1000, 6 proof load tests are required.  

 
Figure 16 Expected benefit of alternative proof load test programs 
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Figure 17 Optimal number of proof load tests and the percentage of tests (relative to the 

total number of piles) as a function of number of piles using the ICP method in the 

Cimarron River Site (optimal rproof = 1.5DL) 

 

Concerning the optimum percentage of proof load tests (relative to the total number 

of piles), results on Fig. 17 show that the optimum percentage of proof load tests test piles 

increases initially to a high value of 1.5% (for the case involving 200 piles), drops slightly to 

1.0% and remains more-or-less constant up to a total number of piles of 500. For cases with 

higher number of piles, the percentage decreases more or less linearly with the total number 

of piles, reaching a low value of 0.6% for the case involving 1000 piles at the site. 

When the same exercise is repeated using the API method (Fig. 18) as the main pile 

prediction method, results for the case involving 300 piles indicate that 5 tests (rather than 3 

tests for ICP method) are required to maximize the value of the proof-load test program, with 

the optimum proof load level being 2.0 x DL rather than 1.5 x DL (ICP method). These results 

are important since they indicate the importance of the pile prediction method on the optimum 

proof load test program (level of proof load and number of proof load tests).  
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The results of Figure 18 demonstrate that for the API method no tests are required 

if the number of piles in the site is below 10. The optimal number of tests starts to increase 

when the number of piles is 50 and reaches 5 tests when the number of piles within the site 

reaches 300. The optimal number of static proof load tests remains at 5 when the number of 

piles in the site is above 300. As for the percentage of the tests, it is constant at 2% cases 

involving less than 200 piles and starts decreasing systematically when the number of piles 

within the site increases, reaching a minimum of about 0.5% for the cases involving 900 and 

1000 piles. This decrease in the optimal percentage of test piles was also observed in the ICP 

method in the same site. 

 

 

Figure 18 The optimal number of proof load test and the percentage of tests as a function of 

number of piles using the API method in the Cimarron River Site (optimal rproof = 2 x DL) 
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6.2 Site No. 2: The Pigeon Creek Site (Driven Piles in Dense Sand) 

The Pigeon Creek site (Paik et al. 2003) is located at the south side of the Pigeon 

River in Indiana. The first 13 to 14 m in the site is predominantly gravelly sand in addition 

to 2 m of fill at the top that were removed before the pile installation. After 14 m, the soil is 

made up of stiff till, containing clays and silts. The dry unit weight of the gravelly sand ranges 

between 15.61 and 18.64 KN/m3. For the void ratios it also ranges between 0.41 and 0.68, 

whereas the specific gravity (Gs) is taken as 2.67. SPT and CPT test results in addition to the 

pile geometry are shown in Figure 19. The results of the SPT and CPT tests show that the 

sand is loose in the first 3 meters and then changes to dense and very dense state below that 

level.  The piles used are closed-ended piles of 6.9m length and a diameter of 35.6 cm. 

 

Figure 19 Characteristics of the Pigeon Creek Site 
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Table 10 summarizes the calculated capacities of the lower bound in addition to the 

calculated pile capacities using the API and ICP methods. The results of the decision making 

analysis for the piles in this site are presented in Figures 20 and 21 for the ICP and API 

methods, respectively. As is the case for the Cimarron River Site, results for the Pigeon Creek 

site indicate that the optimal proof load level for the ICP method is 1.5xDL level while that 

of the API method is 2.0 x DL. Moreover, the variation of the optimum number and 

percentage of proof load tests with the total number of piles in the site is relatively similar to 

that of the Cimarron River Site.  

Table 10 pile's capacity according to different methods in the Pigeon Creek Site 

Methods Predicted Capacity Bias Factor Mean Pile Capacity 

Current API 647 1.66 1074 

ICP-05 1444 1.04 1502 

Lower-bound 255 1.0 255 

 

 

 
Figure 20 The optimal number of proof load test and the percentage of tests as a function of 

number of piles using the ICP in Pigeon Creek Site (optimal rproof = 1.5DL) 

 

0

0.2

0.4

0.6

0.8

1

1.2

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000

Pe
rc

en
ta

ge

O
p

ti
m

al
 N

u
m

b
er

 o
f 

te
st

s

Number of piles in the site

Number of tests Percentage



67 

 

 

 
Figure 21 The optimal number of proof load test and the percentage of tests as a function of 

number of piles using the API in the Pigeon Creek Site (optimal rproof = 2xDL) 
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for cases involving 1000 piles. The associated optimal percentage of test piles decreases 

exponentially from 4% (for cases involving 50 piles) to 1% (for cases involving 1000 piles). 

 

6.3 Site No. 3: The Port of Khorramshahr, Iran (Short Driven Piles in Clay) 

The site in the third case study is situated in the port of Khorramshahr in Iran and 

the field data was collected from Hutchinson et al. (1968). The soil profile is predominantly 

clay with a top 2 to 3m of weathered crust (humus) that is underlain by a deep layer of 

normally consolidated to slightly over consolidated clay. Under this thick clay layer, a 

sequence of dense to very dense fine sand with occasional layers of stiff and over-

consolidated clays exist. The liquid limit of the clay layer varies between 40 to 57%, its 

plastic limit varies between 18 to 27%, and its water content has an average of 33%. The bulk 

density of this silty clay is 1.87 t/m3 and its specific gravity is 2.74. The pile is a closed ended 

pile with a 35-cm and 13.9 m length. Figure 22 shows the piles dimensions, the soil 

description, in addition to the remolded and undisturbed shear strength profiles that will be 

used as basis for calculating the lower-bound capacity and the predicted pile capacity (see 

Table 11).  
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Figure 22 Characteristics of the port of Khorramshahr 

 

 

Table 11 pile's capacity according to different methods in the port of Khorramshahr 

Methods Predicted Capacity Bias Factor Mean Pile Capacity 

Current API 356 1.54 548 

ICP-05 540 0.98 529 

Lower-bound 226 1 226 

 

Results in Table 11 indicate that the predicted pile capacity is 356 kN using the API 

method and 540 kN using the ICP method. The predicted lower-bound capacity using the 

remolded shear strength turned out to be equal to 226 kN.  

The same decision-making framework was utilized to calculate the optimal proof- 

load test program for the piles in the port of Khorramshahr. The results of the ICP method 

are presented in Figure 23 while the results for the API method are presented in Fig. 24. For 
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the ICP method, results of the decision making exercise indicate that the optimum level for 

the proof load is 1.5xDL. On the other hand, results for the API method indicate that the 

optimum level of the proof load is 2.25xDL. These results are different than those witnessed 

for Sand sites using the API method where the optimal proof load level was found to be 

2.0xDL. This observation points to the importance of conducting site specific decision 

analyses to optimize proof load test programs for driven piles. 

Figure 23 and 24 show the results of the optimal number and percentage of static 

proof load tests as a function of the total number of piles in the Port of Khorramshahr clay 

site for the ICP and API pile prediction methods, respectively. For the ICP method, results 

indicate that there is no need for static proof load tests when the foundation system includes 

of less than 10 piles. As the number of piles increase beyond 10, the optimal number of proof 

load test increases to reach 7 tests when the piles in the site reach around 200 piles and 

remains constant at 7 tests up to a total number of piles of 400.  The optimal number of proof 

load tests then starts to increase till we reach 17 tests at 600 piles. After that, the optimal 

number remains constant at 17 tests up to a total number of piles of 1000. The optimal number 

of piles when presented as a percentage of the piles at the site decreases from a high value of 

about 4% for cases involving only 50 piles to around 1.7% for the case where the foundation 

system involves 1000 piles.  
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Figure 23 The optimal number and percentage of proof load tests as a function of number 

of piles using the ICP in the Port of Khorramshahr (optimal rproof = 1.5xDL) 

 

 
Figure 24 The optimal number and percentage of proof load test as a function of number of 

piles using the API in the Port of Khorramshahr (optimal rproof = 2.25xDL) 

 

For the API method (Fig. 24), the optimal number of proof load tests increases 

linearly from 2 tests (for the case involving 50 piles) to a maximum of 18 tests (for the case 

involving 700 piles). For a pile number ranging between 700 and 1000 piles, the optimal 

number of proof load test remains constant at 18 tests. When these numbers are expressed as 

a percentage, results indicate that 5% of the piles need to be tested if the number of piles is 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

P
e

rc
e

n
ta

ge

O
p

ti
m

al
 N

u
m

b
er

 o
f 

te
st

s

Number of piles in the site

Number of tests Percentage

0

1

2

3

4

5

6

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700 800 900 1000
Pe

rc
en

ta
ge

O
p

ti
m

al
 N

u
m

b
er

 o
f 

te
st

s

Number of piles in the site

Number of tests Percentage



72 

 

 

small (100 piles). As the number of piles increases in the site, the optimal percentage of tested 

piles decrease, reaching minimum values of 1.8 % for 1000 piles. 

 

6.4 Site No. 4: Louisiana Site (Long Pile in Clay) 

The Louisiana site (Darragh et al. 1969) is located near the Mississippi River. The 

upper 30 feet in the site consist of natural levee clays. Underlying these clays are backswamp 

clays that extend up to 120 feet depth.  Drying and wetting of these clay deposits had turned 

them into slightly overconsolidated clays. The water table in the site is shallow and ranges 

between 2ft (0.61m) and 4ft (1.22 m) below the ground surface. Table 12 summarizes the 

engineering properties of the two clay layers present in Louisiana site. 

The piles used in the site are closed ended driven piles that are 30.5m long and 32.4 

cm in diameter. Figure 25 shows the geometry of the pile used, in addition to the minimum 

and the design shear strength of the clay situated in the site at different depth, where these 

values are used to calculate the lower-bound and the pile’s capacity, respectively. The 

calculated capacities of the lower bound and predicted capacities are presented in Table 13. 
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Table 12 Soil characteristics in the Louisiana site 
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Figure 25 Characteristics of the Louisiana site 
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Table 13 pile's capacity according to different methods in the Louisiana site 

Methods Predicted Capacity Bias Factor Mean Pile Capacity 

Current API 1167 1.54 1797 

ICP-05 1762 0.98 1727 

Lower-bound 1100 1.0 1100 

 

The results of the ICP method for the Louisiana site are presented in Figure 26 while 

the results for the API method are presented in Fig. 27. As in the case of the first clay site, 

results of the decision making exercise indicate that the optimum level for the proof load is 

1.5xDL for the ICP method and 2.25xDL for the API method.  

 

Figure 26 and 27 show the results of the optimal number and percentage of static 

proof load tests as a function of the total number of piles in clay site for the ICP and API pile 

prediction methods, respectively. For the ICP method, results indicate that there that the first 

10 piles in the site require no pile load testing. As the number of piles increase, the optimal 

proof load test increases gradually reaching 6 tests for the case involving 200 piles. Between 

200 piles and 600 piles, the optimal number of piles increases very gradually reaching a value 

of 7 tests for the case involving 600 piles. For cases with number of piles exceeding 600, the 

optimal number of tests increases dramatically to reach a maximum number of 17 tests for 

the cases involving 900 and 1000 piles, respectively. The optimal number of piles when 

presented as a percentage of the piles at the site decreases from a high value of about 4% for 

cases involving only 50 piles to around 1.6% for the case where the foundation system 

involves 1000 piles. 
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Figure 26 The optimal number of proof load test and the percentage of tests as a function of 

number of piles using the ICP in the Louisiana Site (optimal rproof = 1.5xDL) 

 

Figure 27 The optimal number of proof load test and the percentage of tests as a function of 

number of piles using the API in the Louisiana Site (optimal rproof = 2.25xDL) 

 

For the API method (Fig. 27), the optimal number of proof load tests increases 

linearly from 2 tests (for the case involving 50 piles) to a maximum of 15 tests (for the case 

involving 700 piles). For a pile number ranging between 700 and 900 piles, the optimal 

number of proof load test remains constant at 15 percent but jumps to 18 tests for the case 

involving 1000 piles. When these numbers are expressed as a percentage, results indicate that 
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4% of the piles need to be tested if the number of piles is small (50 piles). As the number of 

piles increases in the site, the optimal percentage of tested piles decrease, reaching minimum 

values of 1.8 % for 1000 piles. 

 

6.5 Discussion of Case Histories 

The results of the decision making exercises that were conducted in the four sites 

point to similarities in some aspects of the response and to differences in other aspects. For 

example, results for all ICP-based methods (in sand or clay) indicated that the optimum proof 

load level is 1.5xDL. On the other hand, the optimum proof load level was higher for the 

API-based methods which showed differences for sites in sand (2.0xDL) compared to sites 

in clay (2.25xDL). With regards to the optimal number and percentage of proof load tests, 

results indicated some similarities when it comes to the type of soil.  

To shed more light on these similarities and to investigate the ability to generalize 

the response based on the type of soil, the results were grouped based on soil type and plotted 

on Figs. 28 (sand) and 29 (clay). 

For any given prediction method (API or ICP), the results for the sand sites on Fig. 

28 show a more or less similar variations in the optimal number and percentage of tests with 

the total number of piles at the site for the two different sand sites (loose sand versus dense 

sand). This similarity in the response is more pronounced in the ICP method whereby the two 

curves in the two sites almost overlapped. For the API method, some differences exist 

between the two sites in the required percentage of proof load test for cases involving a small 
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number of piles (less than 100 piles). The high percentage of tests for the low number of piles 

can be explained by the fact that the optimal number of static proof load tests when the site 

consists of 50 piles is 1 to 2 tests which reflects the percentage of 2 and 4% respectively due 

to the small number of piles. 

For cases with greater number of piles (above 200 piles), the two curves from the 

two sites approach each other leading to more-or-less similar results from a practical point of 

view. In fact, one could argue that the curves representing the variation of the optimal 

percentage of tests with the number of piles almost converge to a value of 1.0% for cases 

with 400 to 500 piles. After that, all curves converge indicating that the optimal percentage 

of proof load test decreases from 1.0% to about 0.6% for the maximum number of piles 

considered (1000 piles in the site). Despite this fact, it is worth noting that the ICP method 

requires optimal static proof load tests to be conducted at 1.5xDL while the API method 

requires optimal tests to be conducted at 2.0xDL. 
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Figure 28 Comparison between (a) optimal percentage of proof load tests and (b) optimal 

number of tests for the 2 sand sites according to ICP (optimal rproof = 1.5xDL) and API 

method (optimal rproof = 2.0xDL) 

 

For the clay methods, the percentage and number of the optimal static proof load 

tests are presented for the two sites and the two prediction methods as a function of the total 

number of piles in Figure 29. 

The results show that the ICP and the current-API method in clay converge more 

than in the sand profiles. The percentage of optimal static proof tests for both methods in the 

2 sites is 4% if there is only 50 piles. For 100 piles, the percentage varies between 3 and 5% 

and then starts to decrease gradually to reach 2% of the total number of piles (in the four 

scenarios) for 1000 piles in the site. The higher percentages for the small number of tests is 

due to the relatively high number of tests (2 tests) compared to the relatively low number of 

total piles (50 piles). 

The results also prove that the required optimal number of static load test for clay 

methods is higher than the number of optimal static proof load test in sands. This observation 
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is explained by the difference in pile’s capacity in sand and clay. Piles having the same length 

have a greater capacity in sand than in clay. This low capacity in clay minimizes the effect 

of the positive load test of the pile (minimum change in the design load if the proof load test 

is positive).  

 

 

 

 

Figure 29 Comparison between (a) optimal percentage of proof load tests and (b) optimal 

number of tests for the 2 clay sites according to ICP (optimal rproof = 1.5xDL) and API 

method (optimal rproof = 2.25xDL) 
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CHAPTER 7 

SENSITIVITY ANALYSIS ON TEST AND PILE COSTS 
 

To show the effect of the piles’ production and installation costs and the proof load 

tests’ cost on the calculated net benefit and therefore on the optimal number of proof load 

tests, a sensitivity analysis is conducted on the 4 cases analyzed in Chapter 6.  

In the analysis conducted in Chapter 6, the cost of each pile was assumed to be equal 

to $97 per linear foot of pile length. This cost includes pile material and pile installation costs 

which is considered relatively high in many areas of the world were the availability of pile 

driving contractors and local expertise in pile driving is generally limited. Moreover, a fixed 

cost of $97 /ft was adopted for all case histories in Chapter 6 despite slight differences in the 

diameter of the piles adopted. In reality, the cost of piles including installation depends on 

the diameter of the pile and on local experience. As a result, the cost per linear foot could be 

smaller than 97$/ft. For example, typical pile costs for the State of Michigan (2003) are 

presented in Table 14 for pre-cast concrete piles with diameters equal to those observed in 

the four case histories. These costs show that the pile costs could range from $29/ft for piles 

with a relatively small diameter of 12 inches and could increase to about $70/ft for piles with 

a diameter of 24 inches.  

Similarly, the cost of pile testing could change from one site to the other. In Chapter 

6, the cost of pile testing was priced at $10 per kN of test load. In this chapter, the sensitivity 

of the results to the choice of the test cost will be investigated by increasing the cost to $20 

per kN as indicated in Table 14.  
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                    Table 14 The pile and test costs for different case histories 

Case 

History 

Pile 

Diameter 

Assumed Pile 

Cost (chapter 6) 

State of Michigan 

Cost (2003) 

Test Cost 

(scenario 1) 

Test Cost 

(scenario 2) 

1 24” 97$/ft 70$/ft 10$/KN 20$/KN 

2 14” 97$/ft 35$/ft 10$/KN 20$/KN 

3 14” 97$/ft 35$/ft 10$/KN 20$/KN 

4 12” 97$/ft 29$/ft 10$/KN 20$/KN 

 

 

7.1. Case of Sand Sites 

Figure 30(a) shows the base case result for the 2 sand sites and the 2 capacity 

prediction methods calculated in chapter 6 using a pile cost of 97$/ft and a test cost of $10/kN. 

On the other hand, Figure 30(b) shows the number of optimal proof load tests when the pile’s 

cost is obtained from the State of Michigan and the test cost is kept at 10$/KN. Finally, Figure 

30(c) shows the optimal proof load test number while keeping the pile’s prices of the State 

of Michigan (2003) and increasing the test cost to 20$/KN. The associated optimal 

percentages of proof load tests for the 3 different cost combinations are shown in Figure 31. 

The results of Figure 30(b) show that a drop in the pile’s cost (compared to 97$/ft) 

translates into a decrease in the optimal number of tests required in the site. For example, if 

we have 500 piles in the site, the optimal number of piles in the 2 sand sites decreases from 

5 to 7 proof load tests (1 and 1.4%) if the pile’s cost is 97$/ft to a smaller number of 2 to 5 

tests (0.4 to 1%) if the pile’s cost in the State of Michigan (2003) is adopted. Since the piles 
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in the two sites have two different diameters (24’’ in site 1 compared to 14’’ in site 2), there 

is a difference in the pile’s cost per linear feet based on the State of Michigan costs. This 

variation in the cost is reflected in the number of optimal proof load tests where Figures 30b 

and 31b show that the optimal number of tests (for the case of 500 piles as an example) in 

the Pigeon Creek site (14” diameter) drops from 5 to 7 optimal proof load tests to 2 to 4 

optimal proof load tests. This drop is greater than that witnessed for the Cimarron River site 

(24” diameter) where the optimal proof load tests drop from 5 to 7 tests to 3 to 5 tests.  

 
 

 
 

Figure 30 The optimal number of piles in sand sites (a) test cost 10$/KN and price 97$/ft 

(b) test cost 10$/KN and the piles’ cost of state of Michigan (2003), and (c) test cost 

20$/KN and the piles’ cost of state of Michigan (2003). 
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Figure 31 The percentage of piles in sand sites (a) test cost 10$/KN and price 97$/ft (b) test 

cost 10$/KN and the piles’ cost of state of Michigan (2003), and (c) test cost 20$/KN and the 

piles’ cost of state of Michigan (2003). 

 

The sensitivity analysis regarding the test cost is shown in Figures 30c and 31c for 

the sand sites. In this analysis, the pile’s cost is based on the State of Michigan prices, but 

the test cost is increased to 20$/KN. The results of the optimal proof load tests show an 
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same example of 500 piles in the site, the range of optimal number of tests is in the range of 

1 to 4 (0.2 to 0.8%) pile load tests compared to 2 to 5 tests (0.4% to 1.0%). 

 

7.2. Case of Clay Sites 

The same cost sensitivity analysis is conducted in the clay sites. Figure 32(a) shows 

the base case result for the 2 clay sites and the 2 capacity prediction methods calculated in 

chapter 6 using a pile cost of 97$/ft and a test cost of $10/kN. On the other hand, Figure 32(b) 

shows the number of optimal proof load tests when the pile’s cost is obtained from the State 

of Michigan and the test cost is kept at 10$/KN. Finally, Figure 32(c) shows the optimal proof 

load test number while keeping the pile’s prices of the State of Michigan (2003) and 

increasing the test cost to 20$/KN. The associated optimal percentages of proof load tests for 

the 3 different cost combinations are shown in Figure 33. 

The clay sites show the same behavior as the sand sites, where the number of optimal 

proof load test drops when the cost of the pile decreases from 97$/ft to the assigned prices 

by the State of Michigan (2003). For the same example where the prior number of piles in 

the site is 500, the optimal number of proof load tests drops from 7-13 tests (1.4-2.6%) till 5-

7 tests range (1-1.4%). It is important to note that the results of the 2 sites drop in the same 

manner since the pile’s diameter in these 2 case histories is approximately the same (14 

inches versus 12 inches). The second sensitivity analysis is defined by an increase in the test 

cost from 10$/KN to 20$/KN keeping the pile’s cost given by the State of Michigan (2003). 

This increase in the test cost reveals an additional decrease in the optimal proof load test, as 

in the sand sites, where the range of optimal proof load test decreases from 5 to 7 tests (for 
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the case of $10/kN) to a lower range of 2-5 tests range (for the case of $20/kN) if the prior 

number of piles in the site is 500 piles. 

 

  
 

Figure 32 The optimal number of piles in clay sites (a) test cost 10$/KN and price 97$/ft (b) 

test cost 10$/KN and the piles’ cost of state of Michigan (2003), and (c) test cost 20$/KN 

and the piles’ cost of state of Michigan (2003). 
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Figure 33 The percentage of piles in clay sites (a) test cost 10$/KN and price 97$/ft (b) test 

cost 10$/KN and the piles’ cost of state of Michigan (2003), and (c) test cost 20$/KN and the 

piles’ cost of state of Michigan (2003). 
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CHAPTER 8 

CONCLUSIONS 

 

In this thesis, the statistical model that was proposed by Najjar et al. (2017) to be a 

basis for a decision making framework that would optimize proof load test programs was 

updated to take into consideration an uncertain COV for the within-site variability in pile 

capacity. This uncertain rCOV was incorporated in the pile capacity model and updated after 

implementing a proof-load test program in the site. A sensitivity analysis was then conducted 

to investigate the effect of incorporating an uncertain rCOV (which represent the site 

variability), and the lower-bound capacity, and the mean capacity (which represent the 

method variability) on the updated reliability index. it was shown that the lower-bound as a 

significant effect on the prior values of the reliability index in addition to the negative proof-

load test. This effect of the lower-bound start to decrease and vanish when 1 or more positive 

test are applied in the site. For the sensitivity analysis mean capacity a huge analysis is 

applied where the methods are differentiated between methods is sand and other in clays. 

Moreover, the sand methods are divided into skin at tip resistances in order to verify the 

effect of each of these parameters. It was shown that the bias factor of the method plays a 

significant role on affecting the prior reliability index, where high bias factors reveals for a 

high prior reliability index. Whereas for the COV, it was shown that small COVs increase 

the prior reliability index but decrease the effect of updated results of the proof load test, and 
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the high COV decrease the prior reliability index but have a positive effect on the updated 

reliability index when the static proof load testing is positive. 

In order to generalize an optimal static proof load test, 4 sites were chosen (2 sand 

sites and another 2 clays sites). The piles capacities were calculated according to 2 methods 

the current-API method and the ICP method. Several pre-posterior analyses were conducted 

on these two sites and it was shown that clay sites require higher number of static proof load 

tests than the sand sites for the same prior number of piles in the site. In addition, the results 

show that there is a high percentage of static proof load tests for small prior number of piles 

and this percentage starts to decrease and converge for different methods and sites when the 

prior total number of piles in the site increase. For the proof load test level, it was shown that 

the level for the ICP method is 1.5xDL for both clay and sand sites. Whereas, the static proof 

load test level for the current API method is 2xDL and 2.25xDL for the sand and clay sites 

respectively. This indicates that the methods having bias factor close to one requires a 1.5xDL 

level test, and methods having higher bias factor requires higher levels of tests. 

In addition, a sensitivity analysis was conducted on the cost of the proof load test 

and that of installing and fabricating the pile in order to see the effect of the cost on the 

optimal proof load test. The results show that the number of proof load tests decrease when 

the cost of the pile decrease, since this decrease in the pile cost increase the effect of the test 

cost and the efficiency on each test which reveals a decrease in the proof load test number. 

In addition, the increase in the cost of the test from 10$/KN to 20$/KN also decrease the 

number of static proof load tests since the price of the test increase so the greater the tests are 

the more the expected benefit decreases. 
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 Appendix 1: Sensitivity Analysis of the Lower-bound 

 

 

Figure 34 The variation of the reliability index as a function of positive proof load tests of 

1.5xDL level for different lower-bound to mean ratio applied at a 0.5 COV mean 

distribution (FS = 2) 
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Figure 35 The variation of the reliability index as a function of positive proof load tests of 

2.5xDL level for different lower-bound to mean ratio applied at a 0.5 COV mean 

distribution (FS = 2) 
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Figure 36 The variation of the reliability index as a function of positive proof load tests of 

1.5xDL level for different lower-bound to mean ratio applied at a 0.15 COV mean 

distribution (FS = 2) 

 

Figure 5 The variation of the reliability index as a function of positive proof load tests of 

2.5xDL level for different lower-bound to mean ratio applied at a 0.15 COV mean 

distribution (FS = 2)  
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Appendix 2: Mean Sensitivity 

 

Figure 38 The variation of the reliability index as a function of different proof load tests 

outcome conducted at 1.5xDL level for different skin-tip combinations for Fugro method 

(FS = 2) 
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Figure 39 The variation of the reliability index as a function of different proof load tests 

outcome conducted at 2.5xDL level for different skin-tip combinations for Fugro method 

(FS = 2) 

 

Figure 40 The variation of the reliability index as a function of different proof load tests 

outcome conducted at 1.5xDL level for different skin-tip combinations for API-05 method 

(FS = 2) 
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Figure 41 The variation of the reliability index as a function of different proof load tests 

outcome conducted at 2.5xDL level for different skin-tip combinations for API method (FS 

= 2) 
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Figure 42 The variation of the reliability index as a function of different proof load tests 

outcome conducted at 1.5xDL level for different skin-tip combinations for ICP-05 method 

(FS = 2) 

 

Figure 43 The variation of the reliability index as a function of different proof load tests 

outcome conducted at 2.5xDL level for different skin-tip combinations for ICP-05 method 

(FS = 2) 
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Figure 44 The variation of the reliability index as a function of different proof load tests 

outcome conducted at 2xDL level for different clay methods (FS = 2) 

 


