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An Abstract of the Thesis of

Wael Al Rahal Al Orabi for Master of Computer Science
Major: Computer Science

Title: Malware Detection and Classification Using Recurrent Neural Networks

Malware detection and classification is becoming one of the hottest era of re-
search due to the fact that the number of malware is increasing nowadays which
raises many questions and concerns related to security. For example, recently
ransomware is a malware that targeted huge companies and infected many com-
puting systems. Over the years, researchers have focused on automating the
process of detecting malware in computing systems by designing approaches that
rely on data mining and machine learning methodologies. These approaches were
proved to be efficient by achieving great results in terms of accuracy. On the other
hand, one of their limitations is that they still being considered as shallow mod-
els compared to deep learning. Deep learning technologies rely on more complex
computational architecture which needs more data. As the computational com-
plexity of the model increases, a larger dataset is required to train, build, and
validate it. To remedy the limitations of those shallow approaches, in this the-
sis we propose an automated solution for malware detection and classification in
binary executable sequences based on deep learning. We define a new malware
language which is designed with the concept of a vocabulary, documents, and
words. Each malware assembly instance is a document, and each assembly ac-
tion in the malware document is a word. Consequently, a malware vocabulary is
defined as a set of malware documents. This language design is used to extract
the features from executable binary sequences. We develop a hybrid classification
model that consists of two main component: feature extraction and classification
component. The feature extraction component is based on the predefined mal-
ware language. We have different architectures for the classification component
such as Long Short Term Memory (LSTM), Gated Recurrent Units (GRU), 1 di-
mensional Convolutional Neural Networks (1DCNN), and a hybrid architecture
that consists of 1D-CNN and LSTM. We validated our models empirically by
running a set of experiments on Microsoft Malware dataset provided on Kaggle.
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The hybrid architecture (1D CNN LSTM) reached the highest accuracy value of
99.31
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Chapter 1

Introduction

This chapter introduces machine and deep learning and motivation for addressing

malware detection and classification research area. Also, it discusses the problem

statement and our main objectives and contributions. Finally, it presents the

organization of the thesis.

1.1 Introduction to Machine and Deep Learning

Machine Learning is the process of learning from data. A machine learning

model learns the changes in a system that performs tasks associated with artificial

intelligence. There are a lot of tasks that could be learned such as diagnosis,

classification, planning, robot control, text and voice recognition, prediction of

financial values and studies. These changes might enhance an already existing

model or might be used to develop a new machine learning based model. One

important class of machine learning is classification. In classification problems

objects are classified into their correct classes. For example, detecting if an input

file is a malware or not is considered a binary classification. On the other hand,
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classifying a pre-known malware file into its correct class of malware is a multi-

class classification problem where the set of malware families is greater than two.

Deep Learning is considered as a subset of machine learning in artificial intel-

ligence (AI) that has a different and special architecture. Deep learning is com-

posed of a set of neural networks that are capable of learning from unstructured

and unlabeled data. It is also known as Deep Neural Learning or Deep Neural

Network. High level abstractions in deep learning is based on the traditional

algorithms used in machine learning using multiple nonlinear transformations on

the level of the hidden layers. These algorithms are used to model high level

abstractions in data through the use of architectures composed from multiple

nonlinear transformations aiming for learning the representations of data.

Deep learning is mainly specified in building and training a set of neural

networks which are considered very powerful in decision making problems. Not

all the algorithms in the Learning field are classified as deep, but they should

contain a series of nonlinearities or non-linear transformations before leading to

the desired output. As an advantage of deep learning is that it removes the

manual identification of features in dataset and relies on the training process to

identify and discover useful patterns in the input samples. This will make the

training of neural networks easier and faster and may lead to better results that

advances the field of AI.
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1.2 Motivation

In the internet age, the world is becoming totally connected to each other. As the

internet is evolving and the computers are being the essential component of our

daily life, the number of malware is increasing tremendously. This phenomenon

raised many concerns to security issues in corporate and business and also at a

personal level. Consequently, malware detection became a very important and

essential area of research to be investigated. Researchers used different technolo-

gies to deal with malware detection and classification problem such as signature

based, heuristic based analysis, data mining, machine learning, and deep learning.

Originally, researchers designed many solutions that rely on signature based

and heuristic based analysis methodologies in order to investigate and solve mal-

ware detection and classification problem. The former methodology is based

on recognizing patterns across the binary representation of malware executable

while the latter is based on detecting recognizable patterns from malware exe-

cution traces. One limitation of those approaches is that they are capable of

detecting a malware only after the system is infected by the malware and it is

available for analysis.

1.3 Problem Statement

Over the years, many approaches were designed and implemented to solve mal-

ware detection and classification problem scenarios based on more complex tech-

nologies such as data mining and machine learning [1] [2]. In general, these
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technologies share the same high level architecture of the model. The architec-

ture is divided into two modules: feature extraction module and a classification

module. Feature extraction module can be achieved using either static analysis

methods such as [1] [3], or dynamic analysis methods such as [4][5]. The output

of the feature extraction component (features mainly) is fed into the classification

component. The latter is designed based on data mining, machine learning, or

deep learning set of algorithms in order to process these features and classify the

malware under investigation into its correct class.

Data mining and machine learning approaches were and still being used heav-

ily in automating the process of detecting and classifying malware. These ap-

proaches were proved to be efficient by achieving great results in terms of accuracy

[6][7][8]. On the other hand, one of their limitations is that they still being con-

sidered as shallow models compared to deep learning. This is due to the fact

that approaches that rely on data mining and machine learning can be avoided

using several techniques such as code obfuscation [9]. Deep Learning is a new

technology that is based on machine learning set of algorithms that is capable of

producing better and more accurate results in malware detection and classifica-

tion contexts due to its complex structure. It is capable of processing data using

more complicated paradigms.
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1.4 Objectives and Contributions

In this thesis, we aim to develop a new deep learning based model for malware

detection and classification that can outperform existing approaches in the lit-

erature. Our developed model is based on convolutional neural network and a

special type of recurrent neural network defined as Long Short Term Mermory

(LSTM). We define a new language for malware. We design a malware with a

concept of a vocabulary, documents, and words. A malware vocabulary is defined

as a set of malware documents. A malware document is defined as an assembly

instance, and a malware word is an action in the malware document. We ex-

tract our features using a python parser based on our new malware language.

Finally, we design, implement, and present our new hybrid CNN-LSTM based

classification component along with a deep feed forward fully connected neural

network.

Our contributions that are presented in this thesis can be summarized as

follows:

• We built a new language design for malware detection and classification for

executable binary sequences.

• We developed a python parser to extract the actions that a malware intends

to perform in a running environment which are known as features to our

classification component.

• We designed and implemented a new model for malware detection and
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classification based on convolutional neural networks and a special type of

recurrent neural networks known as LSTM and a deep feed forward fully

connected neural network.

• The proposed approach is capable of detecting and classifying malware by

viewing the malware as a sequence of assembly instructions. By study-

ing and analyzing those instructions, the model is capable of knowing the

intention of detecting and classifying the malware into its correct class.

• The proposed approach is capable of detecting the malware file during com-

pilation rather than running time. In other words, the malware is detected

before it infects the system.

1.5 Thesis Organization

The thesis is organized as follows: Chapter 2 presents basic concepts and back-

ground related to machine, deep learning, recurrent neural networks along with

their mathematical formalization. Chapter 3 surveys existing solutions related

to malware detection and classification in the literature. In this chapter, three

approaches are discussed mainly static analysis approaches, dynamic analysis ap-

proaches, and deep learning based approaches. Chapter 4 presents our proposed

approach. First, we describe the high level architecture of our solution. Second,

we give an overview about word embedding concept in deep learning. Third, we

present the details of our language based feature extraction component. Finally,

we present our hybrid convolutional neural network (CNN) - Long Short Term

6



Memory (LSTM) based classification model along with the our developed algo-

rithm. Chapter 5 presents our empirical evaluation process of our LSTM based

classification model in comparison with other investigated models for malware

detection and classification. Chapter 6 concludes this thesis and presents future

work.
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Chapter 2

Background and Basic Concepts

This chapter presents the background material, and some basic concepts needed

for the rest of the thesis. It mainly discusses machine and deep learning technolo-

gies especially neural networks, recurrent neural networks, and their limitations.

Also, it gives a mathematical overview of the aforementioned topics.

2.1 Machine Learning

This section discusses some key concepts of machine learning along with its set

of algorithms especially neural networks. Also, it gives a basic intuition of the

mathematical formulation related to machine learning.

2.1.1 Definition and Overview

Machine learning is defined as the process of learning patterns from data. It

is considered as a subset of artificial intelligence. It brings the computer science

field and mathematical probability to enhance the predictive power of the desired

model. The idea behind machine learning is to train a model on some source of

dataset known as training data and test it on a new dataset which is referred
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to as testing data. The accuracy of the model can be generated based on some

mathematical formulas that can be applied. The value of the accuracy and the

prediction capabilities of the model change proportionally. Higher accuracy value

leads to a higher and better predictive model and vice versa.

2.1.2 General Approach of Machine Learning

This section discusses the algorithm that should be applied in almost all machine

learning problems. Mainly, it consists of the below six steps. The last two steps

are executed multiple times and in a loop manner aiming for best accuracy values.

1. Define the problem: In this step, many questions should be answered prior

to starting the technical work on the problem. These questions address

relevant points such as: what will be predicted? what is the format of the

output? what is the available data? what is the format of the input? and

is there background knowledge needed to do this well?

2. Gather data: Once the problem is well defined, dataset should be gathered.

Many preprocessing techniques can be applied on the dataset in order to

have only the needed information and in the right format.

3. Decide on a machine learning algorithm: This is a very important and

crucial step in order not to use the wrong algorithm. In this step, many

questions arises such as what is the type of the problem (supervised or

unsupervised, detailed below)? how simple is the algorithm to understand?

how difficult is the algorithm to implement? and can it handle the existing
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amount of data?

4. Split data into training and testing: The dataset should be divided into

training dataset and testing dataset. This is essential since the model should

be tested on dataset that is totally different from the dataset that was

trained on. One technique to split the data is to use 60% as training data,

20% as testing data, and 20% as validation data.

5. Train: The model is trained on the training dataset multiple times until

an acceptable performance level is reached. Based on the algorithm used,

its hyper-parameters are twisted and modified aiming for a higher accuracy

and consequently a better predictive model.

6. Test: In this step, the model is tested on the testing data and its perfor-

mance is analyzed.

2.1.3 Types of Machine Learning

There are different types of machine learning classes: supervised, unsupervised,

and semi-supervised.

Supervised Learning

Supervised machine learning is where there are the input variable X and its

corresponding output Y and an algorithm is used to learn the mapping function

between the input and the output. This is referred to as labeled data. The

ultimate goal is to approximate the mapping function very good so that the
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model is capable of predicting the right output for new input instances. It is

called supervised since the learning process of the algorithm from the training

dataset can be thought of as a teacher supervising the learning process. The

correct output of a new instance variable is known, so the algorithm iteratively

makes predictions on the training dataset which are corrected by the teacher.

The learning process stops when the algorithm achieves an acceptable level of

performance. Supervised machine learning problems can be divided into two

classes, classification and regression.

1. Classification: The aim of such problems is to classify or predict the correct

class of an input instance. The problem can be either a binary or multi

class classification. In binary classification, there are two predefined output

classes while in multi class classification, the set of predefined output classes

contains three or more classes.

2. Regression: The aim of regression supervised machine learning problems is

to predict the correct output of a new input instance where the output is

real value.

Unsupervised Learning

Unsupervised machine learning is the process of learning complex patterns from

the structure of distribution of the data where there exist the input variable X

without its corresponding output class. The dataset is known as unlabeled data.

This approach is called unsupervised since the learning process has no correct
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answers and there is no teacher supervising it. Algorithms should discover and

present interesting structure and patterns in the data alone. There are two types

of unsupervised machine learning problems: clustering and association.

1. Clustering: The aim of such problems is to cluster data into groups. For

example, in some business domains, customers might be grouped by their

purchasing orders.

2. Association: The aim of such problems is to extract and identify rules that

describe large portions of the dataset. For example, extracting a rule such

that if a person is buying item X, then he/she will buy item Y.

Semi-supervised Learning

Semi-supervised learning lies between both supervised and unsupervised learning.

In-semi supervised learning, only few of the input instances are labeled. Many

real world problems lies in semi-supervised learning class. This is due to the fact

that it is very expensive to label each input instance and on the other extreme it

is very cheap to deal with unlabeled data. Unsupervised and supervised learning

algorithms can be used in such problems. Unsupervised learning techniques can

be used to discover and learn the structure of the input data variables, and

supervised learning techniques can be used to make predictions about unlabeled

data, feed that predication back to the supervised learning algorithm as training

dataset and make prediction of new unseen data.
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2.1.4 Machine Learning Algorithms

There is a set of machine learning algorithms such as Decision Trees [10], Naive

Bayes Classification [11], Linear Regression [12], Logistic Regression [12], Ordi-

nary Least Squares Regression [13], Support Vector Machines, Ensemble Methods

[14], Clustering Algorithms [15], Principal Component Analysis [16], Singular

Value Decomposition [14], Independent Component Analysis [16], Neural Net-

works [17], K-mean clustering [15], Random Forest [12], and their regularized

and boosted versions [18]. Table 2.1 classifies the aforementioned algorithms into

their correct class: supervised or unsupervised.

One thing to note is that neural network algorithm can be used in supervised

and unsupervised applications. As discussed in section 2.1.3, it depends if the

data is labeled or not. Neural networks are discussed in section 2.1.5.
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Machine Learning Algorithm Supervised Unsupervised

Decision Trees [10] X

Naive Bayes [8] X

Linear Regression [31] X

Logistic Regression [31] X

Ordinary Least Squares Regression [9] X

Support Vector Machines [7] X

Ensemble Methods [20] X

K-mean clustering [20] X

Principal Component Analysis [31] X

Singular Value Decomposition [34] X

Independent Component Analysis [41] X

Neural Networks [12] X X

Random Forest [41] X

Apriori Algorithm [8] X

Table 2.1: Supervised vs Unsupervised Machine Learning Algorithms

2.1.5 Neural Netowrks

Neural Networks can be defined as a set of algorithms that aim to identify pat-

terns in a specific dataset using a set of processes that mimic the way a human

brain operates. Neural networks have the ability to adapt changes in the input

without changing the design of the output criteria. A neural network consists of
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three layers: input layer, one or more hidden layers, and an output layer. The

dimensions of these layers are changed based on the problem. The layers are

interconnected such a connection can exist between any two nodes in the neural

network. The input layer receives the input, and each hidden layer in the neural

network is a mathematical function such as a linear regression that captures and

recognizes information based on a predefined architecture. Each node feeds the

signal generated by linear regression into an activation function that might be

nonlinear. Finally, the output layer contains classifications or output signals to

which input patterns should be mapped. Neural networks are being used in differ-

ent application domains such as financial operations, trading, business analytics,

product planning and maintenance. They are widely used in forecasting, risk

assessment, and fraud detection problems. On the other hand, deep learning is

defined as designing complex models based on neural networks such as recurrent

neural networks which are presented in section 2.2.

2.2 Recurrent Neural Networks

Recurrent neural networks (RNN) are defined as a set or group of neural network

that are capable of processing sequential data. In other words, given an input

vector x(t), an RNN processes this data to produce an output vector o(t). RNN

has the advantage of passing information from one time step t to step t+1 .

Recursive neural networks are widely used in different application domains

such as malware detection, machine transition, speech and handwriting recogni-
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tion, images processing and description generation, image/video captioning, word

prediction, and text translation [19].

RNN is different from multilayer neural networks in the sense that it takes

advantage of one of the most important concepts in machine learning, which is

known as parameter sharing. RNN shares parameters across different parts of

the same model.

RNN can be modeled using two types of graphs: folded and unfolded. The

unfolded version of an RNN shows the details of each time step of the sequence

processing model while the recurrent version shows an abstraction of the model.

Figure 2.1 depicts different representations of RNN [20].

Figure 2.1: Folded and Unfolded Representation of RNN

The specifications of RNN can be summarized in the below three major points.

1. Parameter sharing: RNN shares parameters between different time steps of

the model.

2. Model input size: The input size is the same during all the time steps of

the sequence. This is due to the fact that the input is specified in terms

of the transition from one state to another rather than the input training

16



dataset size.

3. RNN has the possibility of learning a unique transition function overall the

model. This is pretty important since it reduces the cost of learning a new

objective function at each time step of the sequence model.

4. From the previous points, we can infer that in some cases RNN will require

less training data that other neural networks approaches.

2.2.1 RNN Mathematical Foundations

This section describes the mathematical formulas used by a standard recurrent

neural network to calculate its output at each time step t . This can be decom-

posed into two parts: feed forward propagation and back propagation through

time. The latter is derived from back propagation generic algorithm with some

modifications. A list of all mathematical notations used in this section is listed

in Appendix B.

Feed Forward Propagation Formulas

The equations that are applied during the feed forward propagation algorithm.

Equation 2.1 shows the S(t) which represents the hidden layer at time t.

s(t) = tanh(b+Ws(t−1) + Ux(t)) (2.1)

where b is a bias vector, W is the hidden layer to output layer matrix, U is

the input layer to hidden layer matrix, x(t) is the input vector at time t , and

s(t−1) is the hidden layer at time t-1 .
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o(t) = C + V s(t) (2.2)

where o(t) is given as the output vector of the recurrent neural network at

time t, V is the hidden to hidden layers matrix, and C is a bias vector. Finally

ŷ(t) which is given in Equation 2.3

ŷ(t) = softmax(o(t)) (2.3)

Hyperbolic Tangent Activation Function

The hyperbolic tangent function is an old mathematical function. It is defined

as the ratio between hyperbolic sine and hyperbolic cosine functions. The below

function gives the mathematical intuition behind tanh function. It is a non linear

function and used in deep learning to transform the output from a linear to non-

linear one.

tanh =
sinh

cosh

=
ex − e−x

ex + e−x

=
e2x − 1

e2x + 1

=
1− e−2x

1 + e−2x

(2.4)
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Figure 2.2 illustrates the hyperbolic tangent activation function [21].

Figure 2.2: Hyperbolic Tangent Activation Function

Softmax Activation Function

The softmax function takes as input a vector of dimension N of arbitrary real

values and gives another vector of the same dimension with real values in the range

of (0,1) that sum up to 1. The actual per element formula given in Equation (2.5)

as:

Sj =
eaj∑N
k=1 e

ak
∀j ∈ 1 ˙...N (2.5)

Figure 2.3 depicts the softmax activation function [22].
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Figure 2.3: Softmax Activation Function

2.2.2 Variations of Recursive Neural Networks Models

There are some variations to the basic RNN which are detailed below.

1. Recurrent networks that produce an output at each time step and have re-

current connections between hidden units. In this model, there are multiple

connections. At time step t, there is a connection between the input layer

at time tand the hidden layer at time t , another connections between the

hidden layer of time step t to time steps t-1 and t+1 , and a connection

between the hidden layer t to the output layer t .

2. Recurrent networks that produce an output at each time step and have

recurrent connections only from the output layer at one time step to the

hidden units layer at the next time step. At each time step t , there is a

connection between the input layer at time t and the hidden layer at time

t and a connection between the hidden layers at time t to the output layer

at time t .
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3. Recurrent networks with recurrent connections between hidden units that

read an entire sequence and then produce a single output. At each time

step t , there is a connection between the input layer t and the hidden layer

t , another connections between the hidden layers of time step t to time

steps t-1 and t+1 , and only one connection between the last hidden layer

T to the output layer T .

4. Bidirectional recurrent neural networks which is used when the output at

time step t may depend on time step t-1 and t+1 .

5. Deep bidirectional recurrent neural networks which are bidirectional recur-

rent neural networks with multiple layers per time step t .

Table 2.2 shows the advantages and disadvantages of each RNN model. This is

can be referred to as a comparison between the different models being investi-

gated.
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Model Pros Cons

Model 1
Any f(x) that is computable
by a turing machine TM can be computed by
this RNN.

Gradients Loss function
computational complexity.
Training cannot be parallelized.
Expensive totrain.
Runtime complexity: O (t).

Model 2

Training can be parallelized
with the gradient of each step
in isolation.
No need to calculate the
output for (t-1) since the
training set produces the
ideal value of that output.

Less powerful (lack of hidden
to hidden connections).
Cannot simulate universal
turin machine TM.

Model 3
Less Computational cost for
the output.

Has to read the entire input
sequence at each time step.

Model 4 / 5

Fit for situations where
output at time step (t)
depends on previous and
future elements.
Higher learning capacity.

Hard to train.
Needs a lot of training data.

Table 2.2: Comparison between different RNN Models

2.2.3 RNN Mathematical Foundation

This section presents the mathematical details of the loss function of recurrent

neural networks and its gradient calculation [23].

Loss Function

The loss function of an RNN is defined as the sum of error at each time step t .

The total loss for a given sequence of x values paired with a sequence of y would

be the sum of losses over all time steps. It is defined as the negative likelihood of

y(t) given a sequence of x1, ..., x(t). The below equation defines the loss of RNN.
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Et = L
([
x1, x2, ..., x(t)

]
,
[
y1, y2, ..., y(t)

])
=
∑
t

L(t)

= −
∑
t

logPmodel

(
y(t)|

[
x1, x2, ..., x(t)

])
In the remainder of this subsection, the total loss function is represented as

in Equation (2.6).

Et = −y(t) log ŷt (2.6)

where the loss function is dot products between the vectors y(t) and element-

wise logarithm of ŷ(t).

Gradient Calculation

In order to be able to calculate the gradient of a recurrent neural network, we must

calculate the gradient of its parameters. As previously discussed, the parameters

of RNN are U, V, and W. The calculation of each parameter is detailed next.

Gradient of Parameter V

The parameter V is only present in ŷt, then let qt = V st, then we have the

following:

∂Et

∂Vij
=
∂Et

∂ŷtk

∂ŷtk
∂qtl

∂q̂tl
∂Vij

(2.7)

From Equation. (2.6), we know that:
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∂Et

∂ŷtk
= −ytk

ŷtk
(2.8)

The function ŷ is the softmax function, so it will have the same gradient which

is given in Equations (2.9) and (2.10).

∂ŷtk
∂qtl

= −ŷtkŷtl for k 6= l (2.9)

∂ŷtk
∂qtl

= ŷtk(1− ŷtk) for k= l (2.10)

Putting equations (2.8), (2.9), and (2.10) together, we obtain the below:

−ytl
ŷtl
ŷtl +

∑
k 6=l

(
−ytl
ŷtl

)
− ŷtkŷtl = −ytl + ytlŷtl +

∑
k 6=l

ytkŷtl

= −ytl + ŷtl
∑
k

ytk

(2.11)

knowing that yt are all one hot vectors that sum up to 1, we can define the

following:

∂Et

∂qtl
= ŷtl − ytl (2.12)

Since qt = V st, then: qtl = Vlmstm. Therefore, we have the following:

∂qtl
∂Vij

=
∂

∂Vij
(Vlmstm)

= δilδjmstm

= δilstj

(2.13)
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Combining equations (2.12) & (2.13), we get the following:

∂Et

∂Vij
= (ŷti − yti) stj; (2.14)

which is known as the outer product. Therefor, the gradient of V is given in

equation (2.21) below.

∂Et

∂V
= (ŷt − yt)

⊗
st; (2.15)

where
⊗

is the outer product.

Gradient of Parameter W

The calculation of the gradient of the parameter W depends on st and ŷt. Also,

ŷt depends on W directly and indirectly through st and st−1 respectively.

Let zt = Uxt + Wst−1, then if we ignore the bias vector b, we get: st =

tanh (zt).

Applying the chain rule, we get the following:

∂Et

∂Wij

=
∂Et

∂ŷtk

∂ŷtk
∂qtl

∂qtl
∂stm

∂stm
∂Wij

(2.16)

We already calculated the first two terms of Equation (2.19), so we need to

elaborate on the third and fourth terms. The third term is pretty simple and is

illustrated in Equation (2.22).
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∂qtl
∂stm

=
∂

∂stm
(Vlbstb)

= Vlbsbm

= Vlm

(2.17)

The gradient of the fourth term requires us to notice that there is a direct

dependence of st on Wij and implicit dependence of st on Wij through st−1.

Therefore, we have:

∂stm
∂Wij

→ ∂stm
∂Wij

+
∂stm
∂s(t−1)n

∂s(t−1)n
∂Wij

(2.18)

where n is a dummy index variable. Note that we can just apply this to yield:

∂stm
∂Wij

→ ∂stm
∂Wij

+
∂stm
∂s(t−1)n

∂s(t−1)n
∂Wij

+
∂s(t−1)n
∂s(t−2)p

∂s(t−2)p
∂Wij

(2.19)

where n and p are dummy index variables. The above will continue until we

reach st−1 which is initialized to a vector of zeros.

Note that we can collapse the last term to
(

∂stm
∂s(t−2)n

∂s(t−2)n

∂Wij

)
and the first term

to
(

∂stm
∂stn

∂stn
∂Wij

)
, then we get the collapsed form in Equation (2.25) below.

∂stm
∂Wij

=
∂stm
∂srn

∂srn
∂Wij

(2.20)

where n is a dummy index variable. We sum over all the values of r less than

t, we get the following:

∂stm
∂Wij

=
t∑

r=0

∂stm
∂srn

∂srn
∂Wij

(2.21)
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Combining the above, we get the final equation of the gradient of the param-

eter W as shown below:

∂Et

∂Wij

= (ŷtl − ytl)Vlm
t∑

r=0

∂stm
∂srn

∂srn
∂Wij

(2.22)

Gradient of Parameter U

The gradient of the parameter U is similar to that of W since both have direct

and indirect dependencies on st and st−1 respectively. Therefore, applying the

same derivations on U as in W, we get Equation 2.23

∂Et

∂Uij

= (ŷtl − ytl)Vlm
t∑

r=0

∂stm
∂srn

∂srn
∂Uij

(2.23)

Total Gradient

The total gradient is given as just the summation of the gradient of V, W and

U over all the time steps for a given back propagation algorithm. This can be

referred to as follows:

Etotal =
t=T∑
t=0

[
(ŷtl − ytl)Vlm

t∑
r=0

∂stm
∂srn

∂srn
∂Uij

]
+ (2.24)

t=T∑
t=0

[
(ŷtl − ytl)Vlm

t∑
r=0

∂stm
∂srn

∂srn
∂Wij

]
+

(ŷt − yt)
⊗

st
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2.2.4 Back Propagation Through Time Algorithm

Back Propagation (BP) is the key and main algorithm that makes training deep

model computationally traceable. The idea behind this algorithm is to calcu-

late the derivatives starting from the error using the chain rule of differentiation

aiming to learn the most appropriate and optimized parameters for the learning

model.

BPTT is a derived algorithm of the basic back propagation algorithm. The

idea is that the derivative is summed up at each time step. As discussed in section

2.2.3, in recurrent neural networks we need to calculate the gradient of the error

Etotal with respect to U,W and V and learn optimized parameters for the model.

The gradients of the error are summed up with respect to each parameter as the

error values are summed up at each time step t .

As shown in section 2.2.3, the gradient of the parameter V does not depend on

previous time steps which tends to make it easy to be calculated (simple matrix

multiplication). On the other hand, the gradient of U and W depends directly on

the current time step and indirectly on all previous time steps less than t . Then,

it is required to keep track and sum up the gradient of each parameter (U and

W ) at each time step. This is not considered a simple and straight forward task.

This fact will lead to the vanishing / exploding gradient limitation as described in

section 2.2.5. This limitation is also known as long term dependencies challenge.
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2.2.5 Recurrent Neural Networks Limitation

Long term dependencies challenge is defined in terms of the computation of the

gradient of the recurrent neural network at each time step t . This limitation is

also known as the vanishing / exploding gradient problem. The idea is that the

gradient calculated at each time step will either vanish or explode after at time

step tj such that tj is greater than ti. Recurrent neural networks with stable

parameters (that are the same over the whole network) will not solve the issue.

For the gradient vanishing problem, we can notice from the gradient calcula-

tion of U and W parameters that we are applying the chain rule multiple times.

Also, knowing that the gradient is the derivative of a vector function with respect

to a vector, then the result will be a matrix called the Jacobian matrix whose

elements are all point wise derivatives.

According to [19], the L2 Norm of the Jacobian matrix has an upper bound

value of 1. This makes sense since the hyperbolic tangent tanh function maps all

the values into a range of values between -1 and 1, and its derivate is bounded

by 1 as shown in Figure 2.4 [24].

Thus, the derivate of the hyperbolic tangent tanh function is zero at both ends

since it approaches a flat line. In this sense, the gradients in previous layers will

be derived to zero. Subsequently, this will lead to the gradient vanishing problem

after few small time steps since multiple matrix multiplications with small values

are performed. Therefore, the gradients at time step ti such that ti less than t

will not contribute to the learning rate of the model where t is the current time
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Figure 2.4: Derivative of Hyperbolic Tangent Function

step.

Similarly, the exploding gradient problem is explained based on the same

key ideas and concepts but with one small difference, that is the values in the

Jacobian matrix will be large enough.

Vanishing gradients are more problematic than exploding gradients since it

is not obvious when they occur and how to deal with them. Also, the exploding

gradient problem can be noticed during the implementation since the values of

the gradients will be Not a Number (NaN) and the code will crash.

In order to overcome these limitations multiple solutions can be applied which

are listed below [16].

1. The exploding gradient problem can be solved by clipping the gradients at
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a predefined threshold.

2. Regularization techniques can solve the vanishing gradient issue by applying

proper initialization of the matrices U and W.

3. The use of ReLU instead of hyperbolic tangent tanh function. This is

helpful due to the fact that the derivative of ReLU is either zero or one

which will get rid of the vanishing/exploding gradient limitation.

4. Use of a special type of recurrent neural networks known as Long-Short

Term Memory (LSTM) which is detailed in section 2.2.6.

2.2.6 Long Short Term Memory (LSTM)

Long-Short Term Memory (LSTM) can be defined as recursive neural networks

with memory that are capable of holding the gradient for long time without being

vanished or exploded. This is accomplished due to the fact that LSTMs allow

for self loops which generate paths that can hold the gradient over time t with

t being large enough. In general, LSTMs have the following four major decision

that should be decided at each time step t .

1. Decide which information are irrelevant and should be thrown away at the

current cell state.

2. Decide which information are useful and should be stored at the current

cell state.
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3. Update the current cell state at time step t into the next cell state at time

step t+1 .

4. Decide which information should be included in the output of the current

cell state.

2.2.7 Long Short Term Memory Mathematical Founda-
tions

As discussed in section 2.2.6, at each time step (t), each LSTM cell should

perform four actions. The mathematical background of each decision is explained

as following.

Forget Gate

Forget gate is the gate where the LSTM decides which information are irrelevant

and should be thrown away from the network. The forget gate is calculated as

shown in Equation (2.25).

F
(t)
i = σ

(
b
(F )
i +

∑
j

U
(F )
i,j x

(t)
j +

∑
j

W
(F )
i,j h

t−1
j

)
(2.25)

where

• x(t) is the current input vector.

• h(t) is the current hidden layer in which it contains the output of all previous

LSTM cells.

• b(F ) is the bias vector of the forget gate.
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• U (F ) is the input weights for the forget gate.

• W (F ) is the recurrent weights for the forget gate.

External Input Gate

External input gate is the gate where the LSTM receives new input xt at time t.

The external input gate is calculated as shown in Equation (2.26). The calculation

of the external input gate is the same as the forget gate with its own parameters.

We will refer to it as G
(t)
i at each time step t.

G
(t)
i = σ

(
b
(G)
i +

∑
j

U
(G)
i,j x

(t)
j +

∑
j

W
(G)
i,j h

t−1
j

)
(2.26)

where

• x(t) is the current input vector.

• h(t) is the current hidden layer in which it contains the output of all previous

LSTM cells.

• b(G) is the bias vector for the external input gate.

• U (G) is the input weights for the external input gate.

• W (G) is the recurrent weights for the external input gate.

LSTM Internal State

Internal state is the state where the LSTM calculates its internal state before

passing it to the output gate. The internal state is calculated as shown in Equa-

tion (2.27).
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S
(t)
i = F

(t)
i S

(t−1
i +G

(t)
i σ

(
bi +

∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
t−1
j

)
(2.27)

where

• b is the bias vector for the LSTM cell.

• U is the input weights for the LSTM cell.

• W is the recurrent weights for the LSTM cell.

Output Gate

Output gate is the gate where the LSTM calculates its output at time t. The

output gate is calculated as shown in Equation (2.28).

Q
(t)
i = σ

(
b
(Q)
i +

∑
j

U
(Q)
i,j x

(t)
j +

∑
j

W
(Q)
i,j h

t−1
j

)
(2.28)

where

• x(t) is the current input vector.

• h(t) is the current hidden layer in which it contains the output of all previous

LSTM cells.

• b(Q) is the bias vector for the output gate.

• U (Q) is the input weights for the output gate.

• W (Q) is the recurrent weights for the output gate.
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LSTM Cell Output

Cell output is the output of the LSTM at each cell of the network. The LSTM

cell output is calculated as shown in Equation (2.29).

h
(t)
i = tanh

(
S
(t)
i

)
Q

(t)
i (2.29)

where

• S(t)
i is the internal state output.

• Q(t)
i is the output gate.

• softmax is an activation function.
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Chapter 3

Literature Review

This chapter discusses different approaches founded in the literature related to

malware detection and classification problem. This chapter is divided into three

sections. The first section discusses static analysis techniques while the second

is dedicated for dynamic ones. In the third section, we detail several solutions

that are based on deep learning. Also, we state the results obtained in different

approaches in order to compare our results to them in Chapter 5.

3.1 Static Analysis Approaches

The architecture of malware detection and classification solutions based on data

mining, machine learning, and deep learning is mainly composed of two compo-

nents: feature extraction component and a classification component. In this sec-

tion, we introduce the literature review of feature extraction component such as

static techniques, data mining, and machine learning classification components.

In static approaches, features of malware executables are extracted and ana-

lyzed before their execution begins. In [1], a model was designed that computes
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frequencies from extracted string in executable binaries. These features are then

fed to a Naive Bayes classifier for training. During the training phase, the clas-

sifier is trained on those features in order to build the necessary knowledge that

is needed for the testing phase. In the testing process, the classifier predicts the

correct class of a new malware. Another twisted approach tends to extract the

system resources that an executable binary is trying to access such as dynami-

cally linked libraries (DLLs) and their corresponding library functions based on

the portable execution representation of an incoming binary [1].

In [6], a malware executable is represented as a gray scale image vector. The

approach is based on the assumption which states that the images that have the

same layout and texture will most likely belong to the same family of images.

On the classifier level, the Euclidean distance between vector representations of

malware was used in order to predict the correct class of a new incoming instance.

In another attempt [3], each malware instance is represented as a disassembled

file and function calls graph were extracted as features. Each feature can be

described as follows: each node in the graph is a system call with some number

of feature vectors that represent the function attributes. This method tends

to adopt an ensemble of classifiers for automated malware classification after

learning the confidence level associated with the classification capability of each

attribute type.

Many malware detection and classification proposed solutions represent mal-

ware instances as text and aim to extract their byte n-grams and opcode n-grams

37



during the feature extraction phase. These extracted n-grams are then treated as

feature vectors of words. In [1], n-grams were collected from binary executables

instances as features and were used to train a Multinomial Naive Bayes classifier

to predict the correct class of a new malware instance. Different classification

models such as Decision Tree, SVM, Naive Bayes, and their boosted versions

were tested using the same solution.

Another approach that extracted n-grams from executable binaries was pro-

posed in [2] with a little twist. Feature selection techniques were used to obtain

the most significant n-gram terms with variation of their length. Each executable

binary was represented as a text document and calculated its frequency term.

These frequency terms were inputted to the classification model such as Artificial

Neural Network, Naive Bayes, Decision Tree, and SVM. Another similar approach

was applied in [7] with only one difference. The extraction and collection of n-

grams was facilitated by transforming executable binaries into disassembled files.

opcodes were extracted but their parameters were disregarded in order to bypass

evasive techniques that obfuscate memory addresses and values.

There exists some limitations for static analysis approaches such as code ob-

fuscation, data obfuscation, and disruption of malware syntax by using opaque

constants and predicates. Code obfuscation is the process of modifying an ex-

ecutable so that it is no longer readable but remains fully functional. Data

obfuscation is a form of data masking where data is purposely scrambled to pre-

vent unauthorized access to sensitive materials. Disruption of malware syntax by
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using opaque constants and predicates is the process of adding opaque constants

and predicates to the syntax of the malware instances to overcome the developed

model for malware detection. Thus, the malware will be useless for the model and

it will not be able to extract the correct features for the classification component.

Dynamic analysis approaches were designed and implemented to overcome the

aforementioned limitations of static analysis approaches.

3.2 Dynamic Analysis Approaches

Malware detection and classification solution based on dynamic analysis rely on

setting executable binaries in some safe and virtual environment and monitoring

the behavior of at runtime aiming to extract useful execution patterns as features

to the classification model.

An approach was proposed in [28] that extracts behavioral features from a

running malware instance in a virtual environment which is passed then for hu-

man analysis. Another similar approach was designed and proposed where sim-

ilarities in the changes that a malware instance tends to perform to the system

were clustered and used as feature vectors. This clustering was done based on a

normalized compression distance as a measure to perform hierarchical clustering

on these vectors. In a similar approach [4],the interaction behavior of malware

executable binaries with system resources were extracted and used as features to

train a k-medoid clustering algorithm.

Analysis of system calls is known as a common dynamic analysis technique
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that is heavily used to facilitate malware detection and classification. In [5], fea-

ture vectors were built by collecting system calls from each incoming executable

binary located in a safe and virtual environment which are passed to train an

SVM classifier. Another similar slightly different approach was designed and

proposed in [29]. The difference is that they represented malwares system calls

as malware instructions (MIST) in each incoming malware binary executable.

MIST q-grams and their corresponding frequencies were collected and used as

feature vectors which in their turn were passed to the classification model in

order to predict and output the correct class of a new malware instance.

In [30], features were extracted using recurrent neural networks (RNN) from

API call log sequences. They considered only the first 5 minutes of the log

file in order to reduce the dimension of the input features and the complexity

of the classification model. These features were then fed into a convolutional

neural network (CNN) to obtain an accuracy value of 96% using a dataset of

170 samples. A comperative study between machine learning alogirthms used for

malware detection was investigated in [31]. They compared different classification

algorithms that were trained on API calls. Correlation based feature selection

and decision tree reported the best accuracy result of value 96.8%.

Another approach that uses API call streams from 100 benign samples being

WindowsXP 32-bit system files along with their associated metadata was pro-

posed in [31]. These features were fed into a Naive Bayes classifier where an

accuracy of 92.8% was reported. In [32] the same set of features were used with
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a Random Forest classifier to achieve 94% and 95% for accuracy and F-measure

values respectively. Also, the highest accuracy achieved that uses the same set of

features was 97.4% using a shallow feed-forward neural network [33]. Table 3.1

lists the differences between static and dynamic approaches.

Even though dynamic analysis overcome some limitations of static analysis,

it still suffers from some limitations when exposed to more powerful techniques.

First, malware that recognizes the environment in which it runs can recognize its

presence inside a sandbox or a virtual environment and can alter its execution

accordingly in order to evade detection. Second, malware that run in kernel

space need not use system calls to perform its tasks, and hence it can neither be

detected nor classified through system call analysis. Deep learning approaches

were introduced to deal with more powerful class of malware that are capable of

hacking dynamic analysis approaches.

3.3 Deep Learning Approaches

Neural Network and deep learning approaches were used for malware detection

and classification in system call sequences as well. In [34] a solution was designed

for malware detection and classification in system calls using deep learning that

consists of two layers: convolutional and recurrent neural networks. The con-

volutional part consists of convolution neural networks and pooling layers. It is

used to capture the correlation between neighboring vectors and produce new

features. Max pooling is applied on the output of the convolutional part in order
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Paper
Reference

Static Dynamic Classification Algorithms

[1] X NB & MNB

[6] X Euclidean Distance

[3] X Ensemble of Classifiers

[2] X ANN, NB, DT, and SVM

[7] X ANN, NB, DT, and SVM

[25] X -

[26] X NN

[27] X MNB & LR

[28] X -

[8] X Clustering

[4] X k-medoid Clustering

[5] X SVM

[29] X SVM

[31] X NB & J48 DT

[32] X RF

Table 3.1: Static vs Dynamic Malware Detection and Classification Approaches

to reduce its dimensionality. The output is then fed into the recurrent neural

networks part for processing using LSTM cells. Mean pooling was applied on the

output of the LSTMs in order to further reduce the complexity of processing the

data. Dropout [35] was used in order to prevent overfitting.
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Another application domain that is tackled using a static analysis deep learn-

ing approach for malware detection and classification in images and OpCode

3grams. In [36], the proposed solution used to capture malware and classify

them is based on two parts: feature extraction and deep learning model. The

feature extraction part combines a gray scale image and OpCode 3-gram which

describes the malware from different angles. The dataset was divided into train-

ing and testing data where the deep learning model is trained on the training

data set, and tested on the testing data. This method was proved to be effective

by achieving promising results. Moreover, [37] proposed another approach based

on deep learning and recurrent neural networks that is capable of detecting and

classifying malware of dynamic data. This approach reached an accuracy that is

more than 93% and 98% in 4 and 20 seconds of execution time respectively. An-

other work was introduced on malware detection and classification in [38] where

a solution was formalized based on deep learning for malware detection and clas-

sification in software binaries. They reached an accuracy up to 95% and a false

positive rate of 0.1% over an experimental dataset of more than 400,000 software

binaries.

In [39], Windows APIs were extracted from real and large file sample collection

along with SEAs to design an approach for malware detection and classification

using deep learning. Their architecture of two phases: unsupervised pre-training

and supervised back propagation. SEA model perform pre-training by putting all

the parameters of all layers in one parameter space in a bottom-up manner and
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supervised BP is applied to tune the models parameters in a top-down direction.

Their approach reached an accuracy of 95%. A recent attempt for malware

detection and classification was proposed in [40]. In this approach, malware

instances were executed using a light weight file emulator developed by Microsoft

in order to extract system calls. LSTM was used in order to extract features from

system calls and then a linear regression classifier was used to detect the correct

class for a new malware instance.

RNNs and Echo State Networks (ESNs) were used as classifiers for malware

detection and classification in [41]. ESNs were found to report higher accuracy

value of around 95% with an error of 5% than RNNs. In another attempt [9],

an ensemble of RNNs was used for early malware detection as well. An accuracy

value of 94% was reported by predicting whether an executable is malicious or

benign within the first 5 seconds of execution only. Table 3.2 lists the different

deep learning based approaches for malware detection and classification problem.

In [25], a comperative study was conducted between static, dynamic, and

hybrid approaches solutions for malware detection. Dynamic approaches based

on Hidden Markov Model (HMM) were proved to be the most efficient ones

with accuracy of 98% using dataset of 785 instances. In another attempt [26], a

malware was detected using a deep forward neural network using features derived

from code. A true positive value of 92.5% was achieved on validation dataset,

but this value decreased on testing data to 67.7%. Moreover, according to work

done in [27] accuracy dropped from 97% to 20% on validation to testing dataset
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on Android software.

Although deep learning approaches overcome the limitations of static and

dynamic analysis, they still have some drawbacks. First, the deep learning models

are very complex and requires a lot of processing time to finish its execution. They

need a lot of feature engineering methods to extract the needed features for the

classification models. Another limitation is that deep learning models requires a

large dataset for feature extraction. Also, a huge dataset is needed to build and

train the model.
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Paper
Reference

CNN Classification Algorithms

[34] X RNN

[35] X RNN

[36] RNN

[37] RNN

[38] DNN

[39] DNN

[40] LSTM & LR

[41] ESN & RNN

[30] X CNN

[9] RNN

[33] NN

Table 3.2: Deep Learning Malware Detection and Classification Approaches

3.4 Word Embedding

Word embeddings are known as vector representations of words that will be used

as features for our deep learning model. In word embeddings, words that appear

frequently in similar context tend to be neighbors in the embedding space. In

natural language processing (NLP) domain, we can say that these words tend

to have similar features. This major property makes it different from n-grams

representations of words. Figure 3.1 depicts a high level example of word embed-
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ding. The clusters are decomposed based on colors. Each color represents a set of

words that appear frequently in a similar context, so they have similar features.

For example, lets consider the two sentences ‘‘Deep learning is the trend

nowadays” and “Machine Learning is the trend today” the two words

“Machine Learning” and “Deep Learning” share the same contextual in-

formation, which means that these two new domains are close to each other in

the embedding space. Thus, they should belong to the same cluster group in

Figure 3.1.

Figure 3.1: Word Embedding Example
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Chapter 4

Proposed Approach

This chapter presents the proposed approach which is divided into two main

components: feature extraction component and a classification model. We start

with an overview of the architecture of the proposed model, then discuss word

embedding and detail our feature extraction and CNN-LSTM based classification

components.

4.1 High Level Architecture

The methodology of our approach is described as follows. It is composed of two

main components: a feature extraction component and a classification compo-

nent based on CNN and LSTM as shown in figure 4.1. The latter is known as

special types of RNN. In this figure, the first component is the feature extraction

component that takes as input a set of malware instances represented as assem-

bly text files. This component extracts all the actions that a malware intends to

perform on a computing system using a developed parser and a predefined set of

assembly instructions. These actions will serve as features for the classification
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component. The second component is a deep learning classification component

which takes these features as input to train the model. The model predicts the

correct class of a new malware instance during the validation and testing phases.

Figure 4.1: Model High Level Architecture

4.2 Word Embedding

There is a set of word embedding algorithms that were applied in our experiments

such as Word2vec [42], FastText [43], and GloVe [44]. These word embedding

algorithms were not useful to our approach since they were designed and imple-

mented based on meaningful set of English words. Our features are based on

assembly instructions such as jmp, mov, add, sub, etc. which are meaningless to
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those algorithms. The word embedding algorithm used in the proposed approach

is built during the feature extraction component. Initially, the word embedding

matrix is initialized to random values and then it is adjusted while the features

are extracted. The output is a matrix representation that includes vector repre-

sentation for each extracted feature. The word embeddings matrix Qx ∈ Rd×|V |,

is defined as the stack of all vector representations of all malware instances where

d and |V | are the dimension of the word vector and the vocabulary size respec-

tively. These features are then fed into the classification component for further

analysis and computations.

4.3 Feature Extraction Component

This section describes the details of the feature extraction component of our ap-

proach. We will start by defining our malware language design and then discuss

how these features are useful in our solution to malware detection and classifica-

tion problem [45].

Our malware is designed with the concept of a vocabulary, documents, and

words. To that end, we define a malware vocabulary, malware document, and

a malware word. Each malware assembly instance is a document, and each as-

sembly action in the malware document is a word. Consequently, a malware

vocabulary is defined as a set of malware documents. Figure 4.2 depicts the de-

sign of our malware language. In this figure, the parser takes as input a set of

malware instances represented in assembly text files and extracts all the actions
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that a malware intends to perform.

Assembly instructions executed by a malware instance are considered as very

important and useful features in order to build and train a model that is capable

of detecting the correct class of a new malware input. In our context, each

malware instance is a document and our objective is to extract the words of

each document. These words are the set of actions performed by a malware in

our language design. In order to achieve our goal, we developed a parser that

parses each malware document and extracts all the existing words based on a

predefined set of 431 assembly instruction. These features will be fed as input

to our classification model as explained in the next section.

Figure 4.2: Malware Language Design

Algorithm 1 is a pseudo code of the parser. The parser is divided into two

main functions. The first one changes the names of all the input files into stan-

dard format in order to read the files in an automated manner. The second

function reads all the input assembly files and extract their actions. For each
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input file, there exists a corresponding output file that contains its list of actions.

Then, each output file is stored in a separate list of actions. Also, the correct

class of each malware instance is stored in a list.

Data: Labeled Assembly Files As Input AFI , Output Assembly Files OFI

Start Parsing
Function Rename
repeat

Take an assembly file AF 1′
I from AFI

OFI′ = Rename (AF 1′
I )

OFI = Append OFI′

until there are no instances in AFI ;
Function Parse Actions
repeat

Take an assembly file OF 1′
I from OFI

while (!EOF):

words = toWords(line):

if (words exists in Assembly List):

Actions OF 1′
I = append(words)

until there are no instances in OFI ;
Function Read Input Label
repeat

Input Label = Label(OFI)
until there are no instances in OFI ;
End Parsing

Algorithm 1: Parser Pseudo Code of Feature Extraction Component
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4.4 Classification Component

This section describes the details of the classification component of our proposed

approach. The ultimate objective of this component is to classify a new malware

instance into its correct class. To that end, we built a deep neural network model

which is illustrated in Figure 4.3. Our model makes use of vector representa-

tions which are referred to as word embeddings that are extracted in the feature

extraction component.

The design of our approach is highly dependent on the the architecture of CNN

and LSTM. We designed and implemented four different architectures for our

deep learning model. The first architecture depends on long short term memory,

the second one depends solely on gated recurrent networks, the third depends on

convolutional neural network, and the fourth is a hybrid approach that depends

on one dimensional convolutioal neural network (1D-CNN) and an long short

term memory (LSTM) with a predefined number of fully connected layers. All

architecutres of our classification component make use of an activation function.

The activation function can be either softmax (Equation 2.5) or hyperbolic

tangent (Equation 2.4).

As described in Chapter 2, Hochreiter and Schmidhuber defined and devel-

oped LSTM as a special kind of RNN [46]. One major contribution and advan-

tage of LSTM is its capability of mapping variable length word vectors to a fixed

length ones by transforming the current input word vectors xt with the output

of the hidden layer of the previous step ht−1. In Figure 4.3, U , W , and Vi, where
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1 ≤ j ≤ N , are weight matrices that refer to input-to-hidden, hidden-to-hidden,

and hidden-to-output connections, respectively. An LSTM cell is then computed

as described in Chapter 2 Section 2.2.7 (Equation 2.29).

In Figure 4.3, the classification model is based on one dimensional convo-

lutional neural network and long short term memory. First, the input Xt is

inputted to the CNN layer where each square is a network. second, the output of

the convolutional neural network serves as input to the recurrent neural network

based component. This component consists of multiple long short term memory

(LSTM) cells where each cell contains multiple neural networks. At each time

step t, xt is given as input to each LSTM cell where 0 ≤ t ≤ n. U, W, and

V are the input to hidden, hidden to hidden, and hidden to output matrices

respectively. These matrices are shared among all LSTM cells. Each LSTM cell

processes the output of the previous LSTM cell with its current input xt. For

example, let t = 5, then LSTMCELL5 processes the output of LSTMCELL4 and

input x5. The output of LSTMCELL5 serves as input to LSTMCELL6 and so

on until reaching t = N. At t = N, the output is given as input to the deep

forward neural network for further processing. An activation function is applied

on the final output produced after the data is processed by the deep forward

neural network. The learning capability of our hybrid model is the combination

of both components which are the convolutional neural networks and long short

term memory.The description of the LSTM GRU, and CNN are covered within

the aforementioned discussion of the 1D-CNN LSTM architecture. Consequently,
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the LSTM based architecture makes use of the second component of Figure 4.3.

As for the GRU architecture, it uses the second component with only one differ-

ence which is the presence of GRU layers instead of LSTM layers. On the other

hand, the CNN architecture makes use of only the first component of the model

depicted in Figure 4.3.

. . .

S
of
tm
a
x

. . .
. . .

. . . . . .. . .

. . . . . .. . .

Xt

CNN

LSTMCell LSTMCell

xt−(i+1) xt−i xt

U UU

ht−2ht−i ht−1

W WW

V1

Vj−1

Vj

Vj+1

Figure 4.3: Representation of CNN-LSTM Architecture for Malware

Algorithm 2 describes the overall procedure applied in order to read the orig-

inal assembly input file, extract the needed features which are the actions a mal-

ware instance intends to execute, train a CNN-LSTM based classification model,

and classify a new malware instance into its correct class of malwares. The im-

plementation and experiments described in Chapter 5 are based on algorithm

2. This algorithm is divided into data pre-processing step and model creation,

training, and validation step. In data pre-processing the model takes as input all

malware instances as assembly files and parses them as described in Algorithm

55



1. For all malware instances, the list of actions are extracted and stored inside

a list of actions. The vector representation is then computed for each malware

inside the list. In the second part, the classification model is built as follows. The

embedding which is mainly the vector representation computed in the first part

is added to the model. Then, the deep learning component such as convolutional

neural network and long short term memory are added to the model. After that,

the dropout is added to the model in order to avoid overfitting. The drouput

is applied on the level of the input layers, hidden layers, and output layer. To

note that dense function is applied on the output in order to transform the vector

representation from 128 to 9 since we have 9 different malware families. The acti-

vation function is added to the model before compiling it. At the end, the model

is trained and validated on the training and validation datasets respectively.
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Data: Labeled Assembly Files As Input AFI , Output Assembly Files OFI

repeat
Take an assembly file AF 1′

I from AFI

OFI′ = Parse AF 1′
I

OFI = Append OFI′

until there are no instances in AFI ;
repeat

Take an assembly file OF 1′
I from OFI

Actions OF 1′
I = ParseActions OF 1′

I

Actions Vector OF 1′
I = Vector Representation(Actions OF 1′

I )

until there are no instances in OFI ;
Model.add(Embedding (OFI))

Model.add(CNN (OFI))

Model.add(LSTM (OFI))

Model.add((Dropout (OFI)))

Model.add((Dense (OFI)))

Model.add((Activation (OFI)))

Model.compile()

Model.fit(training data, training data labels, validation data, validation
data labels)

Model.predict(testing data)

Algorithm 2: Pseudo Code of Hybrid Classification Component
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Chapter 5

Performance Evaluation

This chapter presents a description of the dataset used in our performance eval-

uation and the results of all the investigated models. We start by the results

achieved of the machine learning algorithms which are logistic regression and

support vector machines. Then, the results of LSTM, CNN, GRU and 1D-CNN

LSTM architecture are presented respectively. At the end of this chapter, a

comparison of different architecture is discussed.

5.1 Dataset Description

The dataset is provided by Kaggle competition [47]. The data a set of known

malware files representing a mix of 9 different families. Each malware file has an

Id, a 20 character hash value uniquely identifying the file, and a Class, an integer

representing one of 9 family names to which the malware may belong to Ramnit,

Lollipop, Kelihos ver3, Vundo, Simda, Tracur, Kelihos ver1, Obfus-

cator.ACY, and Gatak .

The dataset is divided into training and testing data. The training dataset
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and testing dataset consists of 10867 and 10872 malware instances respectively.

The training dataset is decomposed into 80% as training set to train the model

and 20% as validation dataset to validate the learning curve of our model. The

training and validation datasets are labeled and our model is tested against the

provided testing data. As discussed in Chapter 4, we extracted the actions that

a malware intends to perform in assembly format that serves as features to our

LSTM based classification model.

5.2 Experimental Results

The performance of our deep learning based model is evaluated by conducting a

set of experiments. We started by testing two machine learning based approaches

which are logistic regression and support vector machine in order to set a baseline

for our analysis. The aim is to check how deep learning approaches added value

to the results obtained.

5.2.1 Parameters and Metrics

The evaluation metrics used to asses our experiments are loss and accuracy. In

deep learning, the loss is defined as negative log-likelihood which is defined as

the cross entropy between two probability distributions p and q over a given set

of samples defined in Equation 5.1.

L(p, q) = −
∑
x

p(x) log q(x) (5.1)

The main objective is to minimize the loss value with respect to the model’s
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parameters by changing the weight vector values through different optimization

methods such as back propagation and back propagation with time in recurrent

neural networks. The loss value implies how well a certain model is behaving

after each iteration of optimization. Ideally, the loss should be reduced after each

or several iterations.

The accuracy of a model is determined after the model parameters are learned

and fixed and no more learning is taking place. The test samples are fed into

the model and wrong classifications are recorded after comparing with the true

target. The percentage of mis-classification is calculated. In other words, the

accuracy value is calculated as defined in Equation 5.2.

Accuracy = 1− L(p, q) (5.2)

We will represent the probability of taking an infected sequence of data from

an infected file. This can be summarized as what is the probability that the

taken sequence length from the infected file represents a signature of malware?

We assume the following assumptions:

• There exist at most one instance of malware at each file.

• Let X be the probability of having an infected sequence of data from an

infected file.

• Let M be the position of malware instance.
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• Let SL be the sequence length taken into consideration of the complete

input file length.

• Let IFL be the complete input file length.

• Let NS be the number of samples.

Then, the probability of X is given in Equation (5.3).

P (X) =
SL

NS

=
M + 1

IFL− (M + 1)

(5.3)

5.2.2 Machine Learning Models

The aim of designing machine learning algorithms is to set a baseline for our

evaluations and interpretations of our variations of deep learning based archi-

tectures. We implemented and conducted two different machine learning based

solutions using the same design of our feature extraction component. Theoreti-

cally, a neural network is a set of stacked multiple logistic regression layers and

support vector machine is capable of providing good results. Thus, we have cho-

sen our machine learning models to be based on logistic regression and support

vector machine classifiers.

The word embedding algorithm used for the machine learning algorithm is

known as term frequency-inverse document frequency (TFIDF). TFIDF is a nu-

merical statistical value that reflects the importance of word for a document in

a set of vocabulary document [48].
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Figure 5.1: Accuracy of Different Machine Learning Classifiers

We conducted several experiments using logistic regression algorithm and sup-

port vector machine classifiers. Figure 5.1 shows different accuracy values for lo-

gistic regression and support vector machines based classifiers versus the dataset

size. The accuracy value of logistic regression starts with a value of 44% with

a dataset of 2000 samples. This value increases to 68% as the dataset increases

from 2000 to 10600 samples. As for the support vector machines classifier, the

accuracy value increased from 49% to 74% as the dataset size increased from 2000

to 10600 malware instances. The best accuracy values obtained by the logistic

regression and support vector machine is 68% and 74% respectively. These results

will serve as a baseline for our comparison and analysis with our deep learning

based classifiers.
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5.2.3 Benchmark of Classification Models

We benchmark the parameters versus all the classification models such as LSTM,

GRU, CNN, and LSTM CNN. We study how the hyper parameters are affecting

the accuracy value of the aforementioned models. The hyper parameters are

number of layers, dataset size, dropout percentage, sequence length, number of

filters, and kernel size.

Figure 5.2 shows the variation of accuracy value as the number of layers for

LSTM, GRU, and CNN LSTM classification models. Generally, the accuracy

value is increasing (loss is decreasing) as the number of layers is increasing. For

LSTM, the accuracy value increased from 0.5421 to 0.9863 as the number of

LSTM layers is increasing from 2 to 8. For GRU, the accuracy value increased

from 0.4129 to 0.7991 as the number of GRU layers is increasing from 2 to 8. For

LSTM CNN, the accuracy value increased from 0.7954 to 0.9931 as the number

of LSTM layers is increasing from 2 to 6. The accuracy value remains 0.9931 as

the number of LSTM layers increased from 6 to 8.

Figure 5.2: Variation of Accuracy of Classification Models versus Number of
Layers
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Figure 5.3 shows the variation of accuracy value as the dataset size varies for

LSTM, GRU, CNN and CNN LSTM classification models. Generally, the accu-

racy value is increasing (loss is decreasing) as the dataset size is increasing. For

LSTM, the accuracy value increased from 0.63433 to 0.98544 as the dataset size

increased from 2000 to 8000. The accuracy value remains the same as the dataset

size increased from 8000 to 10600. For GRU, the accuracy value increased from

0.43433 to 0.90044 as the dataset size increased from 2000 to 10600. For CNN,

the accuracy value increased from 0.50001 to 0.96888 as the dataset size increased

from 2000 to 7000. The accuracy value remains the same as the dataset size in-

creased from 7000 to 10600. For CNN LSTM, the accuracy value increased from

0.65433 to 0.99311 as the dataset size increased from 2000 to 7000. The accuracy

value remains the same as the dataset size increased from 7000 to 10600.

Figure 5.3: Variation of Accuracy of Classification Models versus Dataset Size

Figure 5.4 shows the variation of accuracy value as the dropout percentage varies

for LSTM, GRU, CNN and CNN LSTM classification models. Generally, the

accuracy value is decreasing (loss is increasing) as the dropout percentage is
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increasing. For LSTM, the accuracy value decreased from 0.9321 to 0.6102 as

the dropout percentage increased from 20 to 50. For GRU, the accuracy value

decreased from 0.8403 to 0.5705 as the dropout percentage increased from 20

to 50. For CNN, the accuracy value decreased from 0.9342 to 0.5409 as the

dropout percentage increased from 20 to 50. For LSTM CNN, the accuracy value

decreased from 0.9542 to 0.7109 as the dropout percentage increased from 20 to

50.

Figure 5.4: Variation of Accuracy of Classification Models versus Dropout Per-
centage

Figure 5.5 shows the variation of accuracy value as the dropout percentage varies

for LSTM, GRU, and CNN LSTM classification models. Generally, the accuracy

value is increasing (loss is decreasing) as the sequence length is increasing. For

LSTM, the accuracy value increased from 0.6241 to 0.9512 as the sequence length

increased from 500 to 2000. For GRU, the accuracy value increased from 0.5343

to 0.8901 as the sequence length increased from 500 to 2000. For CNN LSTM, he

accuracy value increased from 0.7541 to 0.9931 as the sequence length increased

from 50 to 1500. For the latter model, the accuracy value did not change as the
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sequence length increased from 1500 to 2000.

Figure 5.5: Variation of Accuracy of Classification Models versus Sequence
Length

Figure 5.6 shows the variation of accuracy value as the number of filters varies

for CNN and CNN LSTM classification models. Generally, the accuracy value is

increasing (loss is decreasing) as the number of filters is increasing. For CNN, the

accuracy value increased from 0.5243 to 0.9453 as the number of filters increased

from 3 to 12. For LSTM CNN, the accuracy value increased from 0.6243 to

0.9931 as the number of filters increased from 3 to 9. To note that increasing the

number of filters from 9 to 12 did not affect the accuracy value for the LSTM

CNN hybrid model.

Figure 5.6: Variation of Accuracy of Classification Models versus Number of
Filters

66



Figure 5.7 shows the variation of accuracy value as the kernel size varies for CNN

and CNN LSTM classification models. Generally, the accuracy value is increasing

(loss is decreasing) as the kernel size is increasing. For CNN, the accuracy value

increased from 0.6459 to 0.9614 as the kernel size increased from 5 to 25. For

LSTM CNN, the accuracy value increased from 0.7608 to 0.9931 as the kernel

size increased from 5 to 20.. To note that increasing the kernel size from 20 to

25 did not affect the accuracy value for the LSTM CNN hybrid model.

Figure 5.7: Variation of Accuracy of Classification Models versus Kernel Size

5.2.4 Parameters Validation

We study the loss value of the aforementioned hyper-parameters. We start by

varying the number of LSTM layers versus the dataset size and sequence length

taken into consideration from each assembly input file (number of actions). As

shown in figure 5.8, generally the loss value is decreasing as the dataset size

increases. For 1 LSTM layer, the loss value decreased from 0.82 approximately

0.4 as the dataset size increases from 2000 to 10600 samples. For 2 LSTM layers,

the loss value decreased from 0.63 approximately 0.19 as the dataset size increases
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from 2000 to 10600 samples. For 4 LSTM layers, the loss value decreased from

0.44 approximately 0.07 as the dataset size increases from 2000 to 7000 samples.

For 4 LSTM layers, the loss value remains the same as the dataset size increased

from 7000 to 10600 instances.

Figure 5.8: Variation of Loss versus dataset size for multiple number of LSTM
layers

Figure 5.9: Variation of Loss versus dataset size for multiple number of LSTM
layers

The embedding algorithm is an important factor of the leaning model as it

helps the model to learn complex pattern from unstructured data aiming for

better classification. We have tried different embedding algorithms for our deep
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learning classification model such as FastText, word2vec, Glove, and a new train-

able embedding algorithm that starts from random matrix and adjust its values

accordingly.

Figure 5.10: Variation of Loss versus dataset size for different word embedding
algorithms

Figure 5.11: Variation of Loss versus dataset size for different word embedding
algorithms

It turns out the already implemented embedding algorithms did not work

well in our problem since they are trained on English Text rather than assembly

actions. The new trainable embedding algorithm returned the best performance

among all the embedding algorithms as shwon in Figures 5.10 and 5.11. In those
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figures, we show the performance of different word embedding algorithms versus

dataset size and sequence length as well. The loss value decreases as the dataset

size and sequence length increases.

Dropout is a regularization technique used in deep learning to avoid overfit-

ting. The idea behind dropout technique is to drop a specific number of the nodes

in the network to reduce its complexity aiming to avoid overfitting. We tried dif-

ferent dropout percentages that varies from 20% to 50% versus the dataset size

and sequence length as shwon in figures 5.12 and 5.13.

Figure 5.12: Variation of Loss versus dataset size for multiple dropout percentage
values

Figure 5.13: Variation of Loss versus dataset size for multiple dropout percentage
values
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In both experiments, the loss value decreases the dataset size and sequence

length increase. Comparing the dropout percentage used, we can see that the

loss value remains very high for 50% which led to a very poor classification model

since the network is not capable of learning any pattern from the data. As for the

dropout percentage of 20%, the loss value reaches zero, but the model did not

return good results which implies that the model is overfitting on the training

dataset with dropout percentage of 20%. The best value for dropout percentage

is 30% which decreases the loss value and did not overfit on the training dataset.

For the convolutional neural networks, we have varied the number of CNN

filters of our model and studied their impact on the classification model versus

the dataset size and sequence length. The loss value decreases as the dataset

size and sequence length increases. The different values of CNN filters used are

3,6,9, and 12. The loss value reaches zero with 12 filters which turned out to be

overfitting on the training dataset on both experiments. The best value for CNN

filters is 9 in which it dcreases the loss value and did not overfit on the training

dataset. The results obtained for the CNN filters are shown on figures 5.14 and

5.15.
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Figure 5.14: Variation of Loss versus dataset size for multiple CNN filters

Figure 5.15: Variation of Loss versus dataset size for multiple CNN filters

On the other hand, an important hyper parameter for CNN architecture is

the kernel size. Similarly, we varied the kernel size versus the dataset and the

sequence length. The loss value of the model decreases as the dataset size and the

sequence length increases. The model returned the best results when the kernel

size is 15 as shown in figures 5.16 and 5.17.

Table 5.1 summarizes the best values for the different hyper parameters used

in our hybrid 1D CNN LSTM model.
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Figure 5.16: Variation of Loss versus dataset size for multiple kernel size values

Figure 5.17: Variation of Loss versus sequence length for multiple kernel size
values

Hyper Parameter Value

Number of LSTM
layers

4

Embedding
Algorithm

Trainable Embedding

Dropout 30%

CNN Filters 9

Kernel Size 15

Table 5.1: Summary of best values for different hyper-parameters of our classi-
fication model
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5.2.5 Analysis

In this section, we will analyze the results obtained using different four architec-

tures of our deep learning based classifiers. Initially, we will start by comparing

our architectures to our developed machine learning classifier. Then, we will

compare our different models to each other and to previous proposed solutions

discussed in Chapter 3.

Table 5.2 summarizes the accuracy values reached by our different models.

The logistic regression and support vector machines classifiers accuracy values

are 68% and 74% respectively. The lowest accuray value reached among the

different deep learning based models is 95%. This value was reached by the

GRU model. CNN based model recorded a better accuracy value of 96%. Also,

our LSTM based architecture performed better than GRU and CNN models by

achieving an accuracy value of 98.544%. The best accuracy value was achieved by

our hybrid CNN-LSTM based architecture. This architecture outperformed all

the aforementioned approaches and recorded an accuracy value equals to 99.31%.

This is due to the fact that the CNN layer is enhancing the model capability of

learning more complex patters by treating the malware as a sequence. The output

of the CNN is serving as a starting point to the LSTM layers for further analysis

as described in our proposed approach. We notice that the number of LSTM

layers used in the hybrid approach is 2 and not 4 as opposed to other approaches.

Thus, using CNN is increasing the learning capability of the model while reducing

the performance complexity of the system.
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Classifier Accuracy Value

Logistic Regression 68%

Support Vector Machine 74%

GRU 95%

LSTM 98.544%

CNN 96%

CNN-LSTM 99.31%

Table 5.2: Summary of Accuracy Values of Different Architectures of our Model

We notice that our CNN-LSTM model outperforms LSTM one using a dataset

of 7000 instead of 10600 samples. Also, the number of LSTM layers used in

the hybrid approach is 2 instead of 4. Thus, we can conclude that the hybrid

architecture is better than LSTM one in terms of accuracy and hyper parameters

values. Figure 5.18 depicts the achieved accuracy values for all models.

Figure 5.18: Summary of Accuracy Values of Different Architectures of our Model

Comparing our deep learning approaches to our baseline represented by lo-
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gistic regression and support vector machine algorithms, we can notice that ;in

the worst case; deep learning based classifiers outperforms machine learning algo-

rithms by 22% approximately. In the best case scenario, deep learning technolo-

gies is better than machine learning algorithms by almost 25%. The accuracy

obtained in [49] is 99.78% which is slightly higher than the accuracy obtained

by our hybrid model. This can be due to the fact that in [49], the malware is

represented as a gray scale image and the features are extracted from each pixel

in the image using convolutional neural network which adds more feature engi-

neering methods to their model. This will lead in a more complex model that

needs more data and consequently more time to train, build, and validate the

underlying classification model. On the other hand, the hybrid model presented

in this thesis uses a predefined set of assembly instructions to extract the actions

that a malware intends to execute on a computing system as features. This way,

the model will be less complex and the it will needs less time to be trained and

validated.

The set of experiments of the different architectures of the deep learning

based classification components were conducted on an NVIDIA Quadro P2000

Graphical Processing Unit (GPU) that has a total of 1024 CUDA cores, 5 GB

of GPU memory, 140 GB of GPU memory bandwidth, and Theano as a backend

for GPU. As for the implementation, the parser is implemented using Python

and the classification component using Keras as a deep learning framework. The

batch size of the experiments is highly dependent on the specifications of the GPU
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being used. Consequently, it affects the execution time of the classification model

inversely proportional. As the value of the batch size increases the execution time

decreases. On the other hand, the execution time varies proportionally to the

dataset size. Thus, the execution time of the classification model increases as the

dataset size increases.

The values used for the batch size are {10, 20, and 30} for dataset size of

10600 malware instances. Table 5.3 shows the execution time (in minutes) of

the proposed model versus the different aforementioned batch size values. The

execution time of the model is 498 minutes when the batch size is 10. As the

batch size increases from 10 to 30, the execution time decreases from 498 to

368 minutes. The highest value used for the batch size is 30 due to memory

constraints. Memory allocation errors were thrown when trying to use a batch

size value greater than 30.

Batch Size
Execution

Time

10 498

20 407

30 368

Table 5.3: Execution time versus batch size

Bias and variance are two main sources of error in machine and deep learning.

An ultimate classifier must not suffer neither from high bias nor high variance.

Thus, bias and variance should be optimized to have minimal values. The bias

value is considered the same as the error of the model on the training referred to

77



as training error dataset. Thus, having a high training error indicates high bias.

On the other hand, variance is defined as the difference between the training error

and the error on the development dataset referred to as development error. In

general, there exist a trade off between bias and variance. Techniques that are

applied to reduce bias result in high variance and vice versa.

Learning curves are designed to plot the error of the model versus the size of

the training dataset. These curves provide good significant if the classification

model suffers from high bias or high variance. Figure 5.19 shows that the training

error of our 1D CNN LSTM classifier increases from 0 to 21% as the dataset size

increases from 500 to 7000 samples. Thus, the classification model has high

bias. On the other hand, the training error remains the same as the dataset

size increases from 7000 to 10600 instances. The same figure shows that the

development error decreases from 60% to 23% as the dataset size increases from

500 to 7000 instances. Also, the development error is not affected as the dataset

size increases from 7000 to 10600 samples. This indicates that increasing the

datatset size helps in avoiding high variance in the classification component.

To avoid high bias, we increased the complexity of the model size by increasing

the number of neurons in our LSTM network to 4 instead of 2. Also, we decreased

the dropout percentage from 50% to 10%. This results in decreasing the bias from

21% to 0.5% and thus the classification model does not suffer from high bias. On

the other hand, the consequences of these techniques is that the variance value

is increased to 22.5% (23-0.5). In order to have an acceptable variance value,
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Figure 5.19: Learning Curve of Hybrid CNN LSTM Classifier

we started increasing gradually the dataset size from 500 7000 instances. Also,

we increased the dropout value from 30% to 10% which led to a development

error of 3%. Thus, the new variance value is 2.5% which is acceptable for our

classification model. As a consequent to increasing the complexity of our hybrid

classification component and the dataset size, the execution time of our model

increased from 2 to 16 hours approximately but without leading to computational

or memory issues.
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Chapter 6

Conclusions

In this thesis, we presented a new approach for malware detection classification

based on deep learning technologies. Our approach is composed of two main

components: Feature extraction component and a classification component that

has different architectures. We defined a new language for malware based on the

concept of word, document, and vocabulary. The feature extraction component is

based on the aforementioned malware specific language. As for the classification

component, multiple architectures were implemented and tested. We started by

developing two machine learning based classification components to set them

as a baseline in our performance evaluation study. The first machine learning

architecture is based on logistic regression and the second one is based on support

vector machines. The SVM based component outperforms the logistic regression

one by reaching an accuracy value of 74%. Thus, our baseline accuracy is 74%.

The first and second architectures are fully dependent on LSTM and GRU

respectively. We trained and tested our different models using Microsoft malware

dataset. By running experiments using these two models, we noticed that LSTM
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achieves a higher accuracy from GRU but that the execution time of GRU is less

than LSTM. This uis due to the fact that the mathematical equations of LSTM

are more complex than GRU and needs more time to be computed. Also, the

dataset is smaller, the GRU model outperforms the LSTM one. The third model

is based solely on one dimensional convolutional neural network (1D-CNN). This

model is considered between both LSTM and GRU model. It reaches a higher

accuracy value than GRU but less than LSTM. The fourth and ultimate approach

is based on a 1D convolutional neural network (1D-CNN) and Long Short Term

Memory (LSTM) followed by a deep feed forward neural network. This architec-

ture outperforms all the aforementioned ones by reaching an accuracy value of

99.31%.

Comparing our deep learning approach to our machine learning baseline, we

can conclude that deep learning raised the performance 21% and 25.31% in the

worst and best case scenarios respectively. Also, the hybrid 1D-CNN LSTM

based approach is the best architecture for the classification component of our

automated solution for malware detection and classification.
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Appendix A

Abbreviations

RNN Recurrent Neural Networks

LSTM Long Short Term Memory

CNN Convolutional Neural Networks

SVM Support Vector Machine

API Application Programming Interface

SEA Stacked AutoEncoder

PTT Propagation Through Time

BPTT Back Propagation Through Time

ANN Artificial Neural Networks

NB Naive Bayes

MNB Multi-Naive Bayes

DT Decision Tree

DNN Deep Neural Networks

MLP Multi-layer Perceptron

NN Neural Networks
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GRU Gated Recurrent Units

DNN Dense Neural Network

NLP Natural Language Processing

HMM Hidden Markov Model

ESN Echo State Network

LR Linear Regression

RF Random Forest

TFIDF Term Frequency Inverse Document Frequency

GPU Graphical Processing Unit
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Appendix B

Mathematical Notations

• xti is the input variable of RNN a time step t

• s(t)i is the internal state of RNN at time step t

• o(t)i is the output of RNN at time step t

• b is a bias vector

• U is input layer to hidden layer matrix

• V is hidden to hidden layer matrix

• W is hidden layer to output layer matrix

• σ is the Sigmoid function

• F (t)
i is the forget gate of LSTM cell at time step t

• G(t)
i is the external input gate of LSTM cell at time step t

• S(t)
i is the internal state of LSTM cell at time step t

• S(t)
i is the output gate of LSTM cell at time step t
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• h(t)i is the output of LSTM cell at time step t

• ŷ(t) is the sofmax of o(t)

• Sj is the actual per element formula of the softmax activation function

• Et is the partial loss function of RNN at time step t

• Etotal is the total loss function of RNN over all time steps t

• ∂Et

∂Uij
is the partial derivative of the loss function with respect to U

• ∂Et

∂Vij
is the partial derivative of the loss function with respect to V

• ∂Et

∂Wij
is the partial derivative of the loss function with respect to W

•
⊗

is the symbol that represents outer product
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