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An Abstract of the Thesis of

Christine Elie El Atie for Master of Science
Major: Computer Science

Title: Discrimination-aware Task Assignment in Crowdsourcing

Algorithmic bias has been identified as a key challenge in many AI applica-
tions. One major source of bias is the data used to build these applications. For
instance, many AI applications rely on crowdsourcing to generate training data.
The generated data might be biased if the task assignment function is skewed
towards certain groups of workers based on say gender, ethnicity or location.
This typically happens as a result of a hidden association between the workers’
qualifications for the task and the workers’ attributes. Even in the case where
such bias is intentional, e.g., in the case of positive discrimination, other biases
may be hidden and can thus unintentionally favor acquiring data from certain
groups of workers over others. In this thesis, we propose to quantify and address
discrimination in crowdsourcing task assignment.

We define discrimination as the unbalanced targeting of workers by the task
assignment function. To quantify discrimination, we formulate an optimization
problem that partitions workers based on their attributes, computes the qualifi-
cations of workers in each partition, and finds the partitioning that exhibits the
highest discrimination in task assignment decisions. Due to the combinatorial
nature of our problem, we devise heuristics to navigate in the space of partitions.
We also propose a way to address discrimination to achieve discrimination-free
task assignment. Our experimental results on real and simulated data show
that our approach can effectively unveil, quantify and address discrimination in
crowdsourcing task assignment.
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Chapter 1

Introduction

A major source of algorithmic bias in AI is training data [1, 2, 3] and many AI

applications rely on crowdsourcing to generate that data. In crowdsourcing, data

is requested via Human Intelligence Tasks (HITs) and to ensure high-quality

data, requesters rely on a task assignment function that utilizes the workers’

qualifications for the task to assign tasks to workers . However, if the task

assignment function is skewed towards certain groups of workers based on say

gender, ethnicity or location, the model trained with that data is likely to be

biased. Even if the task assignment function explicitly targets some groups of

workers, e.g., in the case of positive discrimination [4], data may be biased with

respect to subgroups within that group. This typically happens as a result of a

hidden association between the workers’ qualifications for task assignment and

the workers’ attributes. This association can unintentionally favor assigning tasks

to certain groups of workers over others. The ability to detect such associations
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is a necessary first step toward ensuring fairness in decision-making. In this

thesis, we are interested in unveiling, quantifying, and addressing discrimination

in crowdsourcing task assignment function.

While task assginment functions can filter out unqualified workers, they might

also result in a skewed distribution of workers that are targeted by the task. For

instance, it might be the case that while not intentional, the majority of workers

that are allowed to attempt a task are males, white, young, or combinations of

those. This is due to a hidden association between the task assignment function

and the workers’ attributes such as gender and age. Without identifying such

associations, one runs the risk of acquiring biased data and training biased mod-

els. A recent incident that received a lot of attention in the media was regarding

Google’s image classifier, which has shown systematic bias in recognizing images

of African American people [5]. This was mainly attributed to the fact that the

software was not trained and tested by a diverse set of people. In general, without

carefully characterizing the workers that are being targeted by a task assignment

function, we always run the risk of acquiring biased data and making discrimina-

tory decisions, which will definitely have a negative impact on the accuracy and

generality of our application. We illustrate that in the following examples.

Example 1 (Tweet Sentiment Annotation) Consider a crowdsourcing task

that gathers training data for tweet sentiment annotation. The task consists of

annotating a single tweet and some guidelines to help workers achieve the task.
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A typical task assignment function is the combination of acceptance ratio and

language test. Naturally, only qualified workers will be selected. The resulting

data may be skewed toward workers in some location and age group and may not

cover enough views to train a robust model. In that case, we would like to quantify

how discriminatory a task assignment function is with respect to worker groups,

i.e., at which proportions does each worker group get assigned the annotation

task and how different groups are targeted (e.g., young people in English-speaking

countries will be more likely to participate than others).

Similarly, as the following example shows, we argue that discrimination in

targeting workers may occur even in the case of positive discrimination, i.e., in

the case where a specific group of workers is intentionally targeted for the task.

Example 2 (Positive Discrimination) Consider a scenario that explicitly tar-

gets Europeans to gather diverse ratings on American blockbusters on a collabo-

rative recommendation website. To achieve that, the task assignment function is

applied to Europeans and computes their rating variance to target workers whose

ratings are diverse. Such a function may be discriminatory with respect to differ-

ent subgroups of Europeans: e.g., women whose rating variance is generally lower

than men, or, French workers whose ratings are harsher than Spanish workers,

etc. The ability to unveil that discrimination will shed light on the hidden associ-

ations between rating variance and worker groups, and help application developers

make more informed decisions on whether this wanted positive discrimination is
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actually effective or if it is creating biases that are unaccounted for.

1.1 Quantifying Discrimination.

We define discrimination as the unbalanced targeting of workers by the task

assignment function and advocate the need for an algorithmic approach for un-

veiling and quantifying it. Figure 1.1 is a scatter plot of the number of ratings

for different groups of workers in MovieLens. As can be seen from the plot, the

number of ratings vary across different groups, where some are under-represented

and others are over-represented. For instance, older women tend to have fewer

ratings compared to all other groups. This exhibits an inherent discrimination in

the task assignment function with which these ratings were gathered. Note that if

one were to examine gender only (i.e., number of ratings for males versus females)

or age only (i.e., number of ratings for old, middle-aged, young and teen workers),

it may seamlessly appear that the number of ratings across different groups are

balanced. Examining combinations of these two attributes (gender and age) is

what truly reveals discrimination. Our first goal in this thesis is thus to unveil

and quantify discrimination induced by a task assignment function. To do so,

we propose to discover worker groups or partitions based on their attributes, in

a data-driven fashion. More precisely, for each possible partitioning of workers,

we must examine the scores of workers using the task assignment function and

quantify the difference in scores across partitions. Since there could be many
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Figure 1.1: Distribution of the number of ratings for different worker groups in
MovieLens.

possible ways of partitioning workers, and each way might result in a different

amount of discrimination, we propose to model an optimization problem that

finds a partitioning of workers, for which the task assignment function exhibits

the highest discrimination. The rationale is that the partitioning with the highest

discrimination will subsume all others.

To quantify discrimination of a worker partitioning, we compare the ranked

list obtained by sorting workers on their function scores with a per-partition

normalized ranking of workers. The intuition is that the higher the difference

between the total ranking of the wokers and the per-partition normalized rank-

ing, the more different the distribution of scores is across the partitions. In this

thesis, we use Kullback-Leibler divergence (KL-divergence) to compare two rank-
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ings [6]. The highest discrimination of a task assignment function is the highest

KL-divergence value we can obtain between a total ranking of workers and a

per-partition normalized ranking. The problem of finding that value is natu-

rally hard due to the combinatorial number of worker partitions. We propose to

explore faster heuristics.

1.2 Addressing Discrimination.

Once discrimination is identified, we propose to address it. One possible way

is to normalize the obtained scores across the identified partitions, i.e., those

that exhibit the highest discrimination, to make them comparable. We refer to

that approach as normalization-based. Consequently, one can then choose the K

highest scoring workers after normalization or apply a threshold to filter out less

qualified workers for instance. One may also argue that discrimination in task

assignment can be addressed upfront by finding the most diverse set of workers

based on their attributes and who are most qualified for the task. We refer to

this approach as diversity-based and use a greedy algorithm to choose the K most

qualified workers who are most diverse from each other [7].
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1.3 Empirical evaluation.

Our evaluation aims to validate the usefulness of our approach on real datasets,

validate our heuristics, and compare the normalization-based strategy for ad-

dressing discrimination to its baseline diversity-based strategy. In the first set of

experiments, we show that our approach is successful in identifying the max-

imum discrimination of any given task assignment function on a MovieLens

dataset. In the second set of experiments, we validate that our heuristics-based

algorithms are more successful in identifying maximum discrimination on simu-

lated data compared to baseline algorithms. Finally, in the third set of experi-

ments, we demonstrate that the normalization-based strategy is superior to the

diversity-based strategy as it achieves better representativity when acquiring rat-

ings from workers in MovieLens, without sacrificing the quality of the acquired

ratings. We also show that by addressing the identified discrimination using our

normalization-based strategy, the resulting normalized task assignment function

will be discrimination-free.

To summarize, we make the following contributions:

1. We define discrimination as the unbalanced targeting of workers by a task

assignment function based on their attributes. We argue that unveiling and

quantifying discrimination is necessary even in the case where some workers

attributes are specified in the task assignment function.

2. We formalize discrimination quantification in a data-driven fashion as the
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largest KL-divergence between a total ranking of workers and a per-partition

normalized ranking. Due to the combinatorial space of partitions, we devise

heuristics to compute discrimination in acceptable time.

3. We run several experiments. Our results show that our heuristics are fast

without compromising discrimination values and that per-partition score

normalization is necessary to acquire less-biased datasets.

1.4 Thesis Plan

The thesis is organized as follows: Chapter 1 begins by introducing this thesis.

Chapter two then presents a detailed analysis of the previous work done in this

field. Chapter three then describes our Setting and the context we will be working

in. We then proceed to Chapter four that goes through the Approach we are

taking to unveil, quantify, and address discrimination. To show that our approach

is indeed useful we then present Chapter five that shows our experimental results

using different datasets and many task assignment functions. Chapter 6 concludes

this thesis.
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Chapter 2

Literature Review

2.1 Algorithmic Discrimination.

Algorithms have replaced and outdone humans in many tasks but they often take

biased decisions [8]. Discrimination was defined in [9] as the unfair treatment

of a person based on belonging to a certain group of people rather than on

individual merit. An example of discrimination was studied in [10] where a test

was conducted to see if the name of a person, that directly relates to her skin

color and gender, affects the ads shown when searching for her. It was shown

that some specific names yielded discriminatory ads while others did not. Another

example studied in [10], shows that a man surfing the Web gets ads for jobs that

have higher income than the job ads that women get. A very close definition of

discrimination is also presented in [11] as the act of favoring one group due to

some attributes that might be included in the data-set or just inferred from the
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context. Inferred attributes can lead to indirect discrimination. For example,

ethnicity and postal code might be highly correlated and therefore removing

ethnicity from the studied attributes will not have a great effect in avoiding

discrimination [11]. To detect discrimination in algorithms, a framework [12]

for ”unwarranted associations” was designed to identify associations between a

protected attribute, such as a person’s race, and the algorithmic output using

the FairTest tool. In FairTest, these associations are typically assumed to be on

a single-attribute level, which makes it different from our work where the goal is

to quantify discrimination in treatment between worker partitions defined using a

combination of multiple protected attributes.

In our work, we see discrimination, as many before us, as favoring a person

over another only due to her origin, gender, age, etc., which are attributes that

are not necessarily specified in the task assignment function.

2.2 Algorithmic Task Assignment.

Several task assignment strategies exist in the literature, three of which were

defined in [13] and are: 1) Relevance, where workers are assigned tasks that

match their interests; 2) Diversity, where workers are tasks that match their

interests and are diverse; 3) Div-Pay, where tasks are assigned to workers based

on a combination of diversity and payment. In general, task assignment may

or may not rely on workers’ protected data. Some work shows that the use of
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protected data is needed for a perfectly accurate outcome and proposes methods

to balance fairness and accuracy [14]. To make an assignment fair, some accuracy

may be sacrificed (e.g., balancing assignment between males and females may

lead to less accurate assignments according to a ground truth). Other examples

include adaptive methods, by assigning tasks adaptively in order to get more

accurate and lower cost results when the set of workers available are diverse [15].

Similarly, some strategies assign tasks only to a few workers and infer the correct

answers from them without having to assign the same task to many workers [16].

Some only focus on maximizing the requester’s gain to get the highest crowdwork

quality at the lowest cost, by assigning tasks to the best matching workers (in

terms of skills) [17]. Others tackle worker motivation [13] [18], worker problems

such as the unfair rejection of work, or delayed or unfair payment [19].

2.3 Discrimination in crowdsourcing.

Several discrimination scenarios in task assignment were defined in [20]. That

includes only accounting for requester preferences without quantifying how that

affects workers, and vice versa. Another discriminatory scenario in [20] is related

to worker’s compensation since a requester can reject work and not pay the worker

or a worker can get under-payed. Discrimination in crowdsourcing can be defined

for different processes. In this work, we focus on one process: task assignment.

In [21], the authors study ethics in crowd work in general. They analyze recent
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crowdsourcing literature and extract ethical issues by following the PAPA (pri-

vacy, accuracy, property, accessibility of information) concept, a well-established

approach in information systems. The review focuses on the individual perspec-

tive of crowd workers, which addresses their working conditions and benefits.

In [22], the notion of non-discrimination was defined as a measure between

groups of people sharing the same value for some attributes. In that context,

to assess discrimination mathematically, one needs to compare decisions between

different groups of people that differ on the values of those attributes. This as-

sumption states that all groups are equal in the construct space but there may be

a structural bias in the observed space which leads to discrimination in decisions.

Many techniques other than attribute grouping also exist, one of which was stated

in [23] where they cluster points by separating them in a way to minimize the

maximum intercluster distance. In our research, we adapt the definition in [22]

for grouping workers on a combination of their protected attributes.
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Chapter 3

Setting

We present our data model and define the problem of unveiling and quantifying

discrimination in task assignment. We are given a set of workers W , a set of

attributes A = {a1, a2, ..., an} and a set of qualifications B = (b1, b2, . . . , bm).

Attributes in A are inherent properties of workers such as gender, age, ethnicity,

origin, etc. Qualifications in B represent the abilities of a worker for complet-

ing a task. In crowdsourcing, qualifications include the acceptance ratio of the

worker, language skills, mathematical abilities as measured by an analytical test

and so on. On the social Web, a qualification may simply be the predicted rating

of a worker for a movie or the opinion of a worker about a restaurant. Qual-

ifications may be explicitly given by workers or inferred from previously rated

items as in recommendation strategies [24], or from previously completed tasks

in crowdsourcing [25].

A task-assignment function f : W → R calculates for a worker w ∈ W a
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Table 3.1: Example Task-Assignment function for tweet annotation on 10 workers
in a crowdsourcing platform.

Worker Gender Country YearOfBirth Language Ethnicity Experience LanguageTest ApprovalRate f(u)

W1 Female America 2000 English White 5 0.76 0.56 0.620
W2 Female India 2004 English Indian 0 0.50 0.20 0.290
W3 Male America 1976 English White 14 0.89 0.92 0.911
W4 Male India 1976 Indian White 6 0.65 0.65 0.650
W5 Male Other 1963 Other Indian 18 0.64 0.76 0.724
W6 Female India 1963 Indian Indian 21 0.85 0.90 0.885
W7 Male America 1995 English African-American 2 0.42 0.20 0.266
W8 Female America 1982 English African-American 16 0.95 0.98 0.971
W9 Male Other 2008 English Other 0 0.30 0.15 0.195
W10 Male Other 1992 English White 2 0.32 0.25 0.271

qualification score for the given task. For instance, for tweet annotation, f could

simply be the location and language skill of the worker or a more sophisticated

formula that aggregates the worker’s acceptance ratio on the platform, the quality

of the worker’s past contributions, and the worker’s language skill. For a movie

rating task, f could be the variance of ratings of the worker, or a sophisticated

procedure such as a recommendation strategy that computes the expected rating

of the worker for a movie.

The task assginment function f can make use of any attributes in A and

qualifications in B. Its exact shape is not important for the purpose of our work.

Our goal is to quantify the discrimination that happens as a result of applying f to

workers in W for a given task in TA. Workers in W can be sorted in increasing

or decreasing order of their scores computed by f . We refer to the resulting

list as LO. To quantify discrimination induced by f , we consider a full disjoint

partitioning P = {p1, p2, . . . , pk} of the set of workers W on their attributes in

A. Each worker must belong to one and only one partition pi. Given a worker

w ∈ pi, We define f ′(w) as the normalized function score of worker w in partition

14



pi. We experiment with two methods of normalization, namely standardization

and rescaling. In the former, f ′(w) is computed as follows:

f ′(w) =
(f(w)− µi)

σi

where

µi =
1

|pi|
∑
w∈pi

f(w)

and

σi =

√
1

|pi|
∑
w∈pi

(f(w)− µi)2

In the latter, f ′(w) is computed as follows:

f ′(w) =
f(w)−mini

maxi −mini

where

mini = min
w∈pi

f(w)

and

maxi = max
w∈pi

f(w)

We rank workers w ∈ W based on their normalized function values f ′(w)

to obtain a new ranking of workers LP . Finally, we measure discrimination as

KL(LP ||LO), which is the KL-divergence between the original ranking of workers

LO and the ranking of workers after per-partition normalization LP . Intuitively,

15



the higher KL(LP ||LO) is, the more discrimination f induces on workers. The

task assignment function f is said to not exhibit discrimination on workers W , if

and only if there does not exist any full partitioning P of workers W such that

KL(LP ||LO) 6= 0.

Table 3.2: Original ranking of workers LO in Table 3.1 and updated rankings LP1

and LP2 .

L0 W8 W3 W6 W5 W4 W1 W2 W10 W7 W9 KL-divergence
LP1 W3 W8 W6 W5 W4 W1 W10 W7 W2 W9 0.020
LP2 W6 W8 W10 W3 W5 W4 W1 W2 W7 W9 0.081

Example. For example, Table 3.1 displays a set of workers W consisting of 10

workers, their attributes A (columns 2 to 7) and their qualifications B (columns

8 and 9). Assume that the task is tweet annotation and that f scores the workers

w ∈ W as follows:

f(w) = 0.3× LanguageTest(w) + 0.7× ApprovalRate(w)

The first row of Table 3.2 shows the original ranked list of workers LO based

on their f values. The second and third rows show the ranked lists of workers

obtained from two different partitionings P1 and P2, and the quantified discrimi-

nation of each partitioning as measured through KL-divergence between LP1 and

L0, and LP2 and L0, respectively. The partitionings P1 and P2 are displayed in

Figures 3.1 and 3.2.

Our discrimination quantification problem is hence the problem of finding a

16



Figure 3.1: A partitioning P1 of workers in Table 3.1. The workers are partitioned
based on language first then gender. The leaf nodes represent the final partitions
in P1.

full partitioning P of workers in W . One approach is to consider all possible

partitionings of workers based on their attributes and retrieve the partitioning

that returns the maximum discrimination as measured by the KL-divergence

between the original ranking of workers LO and the final ranking of workers

LP induced by per-partition normalization. Intuitively, the partitioning with the

maximum discrimination is the one that best captures the bias induced by the task

17



Figure 3.2: A partitioning P2 of workers in Table 3.1. The workers are partitioned
on country first, and then the workers from country = other only are further
partitioned based on language. The leaf nodes represent the final partitions in
P2.

assignment function f . Finding such a partitioning constitutes our optimization

problem that we formulate as follows.

Definition 1 (Maximum Discrimination Partitioning Problem) : Given

a set of workers W and a task assignment function f , our goal is to fully partition

workers in W into disjoint partitions P = {p1, p2, . . . , pk} based on their attributes

18



in A using the following optimization objective:

argmax
P

KL(LP ||LO)

subject to ∀i, j pi
⋂

pj = φ

k⋃
i=1

pi = W

where

KL(LP ||LO) =
∑
w∈W

rP (w)log
rP (w)

rO(w)

where rO(w) is the rank of worker w in LO and rP (w) is the rank of w in LP .

It is obvious that our problem for finding the maximum discrimination par-

titioning is hard since there are many possible partitionings (exponential in the

number of attribute values). For this reason, in the next chapter, we propose to

develop heuristics-based algorithms to identify partitionings of workers with re-

spect to our optimization objective within reasonable time. We will also describe

how we propose to address discrimination once it is quantified by our algorithms.
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Chapter 4

Approach

4.1 Quantifying Discrimination

As explained in the previous section, to quantify discrimination we rely on solving

an optimization function that finds a partitioning of the workers that maximizes

discrimination. Our optimization problem is hard due to the exponential number

of possible partitionings. For this reason, we propose to use heuristics-based algo-

rithms to identify partitionings of workers with high discrimination. We explore

two such algorithms, which are greedy algorithms that rely on local decisions to

maximize discrimination. Our algorithms rely on the same principle as decision

partition trees that use a gain function to split a dataset [26]. In our case, the

gain function relies on computing KL-divergence between rankings.

Our first algorithm Balanced (Algorithm 1) takes as input a set of workers

W , a task assignment function f : W → R and a set of attributes A for workers
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in W . It returns a partitioning P of all workers in W . Balanced starts by

one partition containing all workers in W . It attempts to split that partition on

the attribute that results in the highest KL-divergence between the normalized

ranking of workers after the split and the current ranking. It then repeatedly

tries to split workers on the remaining attributes and only stops when the KL-

divergence between the current partitioning and the child’s is smaller than that of

the current partitioning and the parent’s. Once it stops, it returns the obtained

partitioning P , which is used to generate its final ranked list LP .

Algorithm Balanced makes use of two helper methods normalize() and

highestKLAttribute(). normalize() takes a set of partitions (i.e., a partitioning)

and a task assignment function, normalizes each partition using either standard-

ization (mean and standard deviation) or rescaling (MIN-MAX) and returns a

ranked list of the workers after their scores are normalized. highestKLAttribute()

takes a set of partitions, a task assignment function and a set of attributes. It

returns the attribute with the highest KL-divergence between the current ranking

of workers based on the given partitions and the new ranking of workers after

they are split using that attribute and performing a per-partition normalization

of scores.

Figure 4.1 shows the partitioning P obtained using Balanced and the KL-

divergence between the original ranking LO and the final ranking LP for the

dataset in Table 3.1. The workers are partitioned on their years of experience

then on gender. The leaf nodes represent the final partitions in the obtained
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partitioning.

Figure 4.1: Partitioning of workers in Table 3.1 using Balanced with an ob-
tained KL-divergence of 0.157.

Algorithm Balanced is an iterative algorithm that results in a balanced

partition tree since the same attribute is used to split all current partitions. Our

second algorithm Unbalanced (Algorithm 2 ) produces an unbalanced tree by

independently deciding for each partition whether to split it further or not. It

takes as input two partitions, one representing a parent partition and the other

representing a current partition for which a splitting decision is to be made.

It also takes the siblings of the current partition, the task assignment function

f : W → R and the set of worker attributes A. It then identifies for the current
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1: P = ∅
2: parent = W
3: parentList = normalize(parent, f)
4: a = highestKLAttribute(parent, f, A)
5: A = A− a
6: current = split(parent, a)
7: currentList = normalize(current, f)
8: while A! = ∅ do
9: a = highestKLAttribute(current, f, A)
10: A = A− a
11: child = split(current, a)
12: childList = normalize(child, f)
13: if KL(currentList, parentList) ≥ KL(childList, currentList) then
14: break
15: else
16: parent = current
17: parentList = currentList
18: current = child
19: currentList = childList
20: end if
21: end while
22: add current to P

Algorithm 1: Balanced (U : a set of workers, f : a task assignment func-
tion, A: a set of attributes)

partition the attribute that would result in the highest KL-divergence between

the current ranking of workers in that partition and the new ranking that would

result from splitting workers using that attribute and normalizing their scores.

It then splits the workers based on the identified attribute and then compares

two KL-divergence values: one computed between workers in the current par-

tition combined with its siblings and their parent partition, and one computed

between workers in the children of the current partition combined with the cur-

rent partition siblings and the parent partition. Algorithm Unbalanced should

be initially invoked by splitting the set of all workers W using the attribute that
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would result in the highest KL-divergence and then calling the algorithm for each

resulting partition. Again, once it terminates, it returns the final partitioning P

which can then be used to generate the final ranked list of workers LP .

Figure 4.2 shows the partitioning P obtained using Unbalanced and the

KL-divergence between the original ranking LO and the final ranking LP for the

dataset shown in Table 3.1. The workers are partitioned on their years of expe-

rience and then only the partitions containing workers with years of experience

between 0 and 5, and between 10 and 15 are further split on gender. The leaf

nodes represent the final partitions in the obtained partitioning.

Figure 4.2: Partitioning of workers in Table 3.1 using Unbalanced with an
obtained KL-divergence of 0.217.

These two algorithms are quadratic as a maximum depending on the number
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1: if A = ∅ then
2: add current to P
3: else
4: parentList = normalize(parent, f)
5: currentList = normalize(current ∪ siblings, f)
6: a = highestKLAttribute(current, f, A)
7: A = A− a
8: children = split(current, a)
9: childrenList = normalize(children ∪ sibling, f)
10: if KL(currentList, parentList) ≥ KL(childrenList, parentList) then
11: add current to P
12: else
13: for each partition child ∈ children do
14: Unbalanced (current, child, children− {child}, f, A)
15: end for
16: end if
17: end if

Algorithm 2: Unbalanced (parent: a partition, current: a partition,
siblings: a set of partitions, f : a task assignment function, A: a set of
attributes)

of times they loop and the number of attributes since each time we’re checking

all remaining attributes and then deciding whether to continue splitting or not.

4.2 Addressing Discrimination

Once a partitioning P is obtained, whether with Balanced or with Unbal-

anced, we propose to address discrimination as follows. First, we normalize the

workers’ function scores for each partition p ∈ P using one of the normalization

techniques described in Section 3 to obtain new function scores f ′(w) . We then

re-rank all workers in all partitions globally based on their new scores f ′(w) and

return the new ranked list LP along with the new scores of workers f ′(w) obtained
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after normalization.
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Chapter 5

Experiments

We run three sets of experiments. In the first set, we apply Balanced and Un-

balanced on a dataset generated from MovieLens using various task assignment

functions and show that our algorithms are successful in quantifying discrimina-

tion. In the second set of experiments, we compare our proposed algorithms to a

set of baselines to validate our heuristics in identifying maximum discrimination

using simulated data. Finally, in the third set of experiments we show that by

addressing the identified maximum discrimination using our normalization-based

strategy, the resulting normalized task assignment function will exhibit less dis-

crimination. We also compare our normalization-based strategy for addressing

discrimination with a baseline diversity-based strategy.

27



5.1 Quantifying discrimination

We test Balanced and Unbalanced on the MovieLens 1M dataset 1. The

dataset consists of 6040 workers with around 1 million ratings in total (972599 to

be exact). Each worker is associated with four attributes, namely gender (Male or

Female), age (Teen, Young, Middle-aged or Old), occupation (one of 22 different

occupations), and location (one of 50 states).

We examine three different task assignment functions. The first function aims

to acquire ratings from workers who have a diverse set of ratings. To this end,

we use rating variance as the task assignment function, i.e.,:

f1(w) =
1

|Iw|
∑
i∈Iw

(rw(i)− µw)2

where Iw is the set of movies that worker w rated, rw(i) is the rating provided

by worker w for movie i, and µw is the average rating provided by the worker

w for all the movies she rated. To discard workers with a very small number

of ratings, our task assignment function only consider workers who have rated

more than 100 movies. The second function aims to acquire ratings from the

least active workers. To this end, we use a task assignment function f2 to rank

workers based on the number of movies they rated. Our third function does not

exhibit any discrimination by construct. It utilizes a task assignment function f3

that takes a worker and returns 0 if the worker has rated fewer than 20 movies

1https://grouplens.org/datasets/movielens/1m/
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and 1 otherwise. The reason we opted for a threshold of 20 is that MovieLens

required at least 20 ratings per worker in the dataset.

Table 5.1: KL-divergence of the partitioning with maximum discrimination for
the MovieLens dataset.

Algorithm Standardization Rescaling
f1 f2 f3 f1 f2 f3

Unbalanced 0.082 0.080 0.512 0.153 0.122 0
Balanced 0.074 0.065 0.499 0.103 0.103 0

Table 5.1 shows the KL-divergence of the partitioning that exhibits the maxi-

mum discrimination as measured by the KL-divergence between the original rank-

ing of workers and the final ranking after score normalization, using both stan-

dardization (i.e, mean and standard deviation), and rescaling (i.e, MIN-MAX).

In the case of rescaling (second half of the table), our algorithms unveiled some

discrimination for the first two functions f1 and f2 and no discrimination in the

case of the third function f3, as indicated by a KL-divergence of 0. On the

other hand, using standardization as a normalization technique (first half of the

table), our algorithms unveiled some discrimination for all three functions (i.e.,

KL-divergence > 0). This is due to the fact that standardization makes use of

the mean and standard deviation of partitions, which highly depend on the size

of partitions (number of workers). That is, if two partitions have different sizes

but the same score distribution, the scores after normalization end up being dif-

ferent. In general, when the workers are not evenly distributed with respect to the

attributes, i.e., there are many more males than females or younger people than
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older ones, using rescaling normalization might be more effective in quantifying

discrimination as it is less sensitive to the sizes of the partitions.

5.2 Evaluating the Algorithms

The goal of this set of experiments is to evaluate our heuristics-based algorithms,

Balanced and Unbalanced, for quantifying maximum discrimination. To

do this, we simulate a crowdsourcing platform consisting of 20,000 workers. We

then sample three different datasets of active workers from the platform. The first

dataset consists of 50 active workers (i.e., |W | = 50). The second consists of 500

active workers and the third consists of 7300 active workers, which is estimated

to be the size of active workers on Amazon Mechanical Turk [27]. Each w ∈ W

has 6 attributes, as follows: gender = {Male, Female}, country = {America,

India, Other}, year of birth = [1950, 2009], language = {English, Indian, Other},

ethnicity = {White, African-American , Indian, Other}, and years of experience

= [0,30], and two qualifications: language test q1 = [25,100] and approval rate q2

= [25,100]. The values of the attributes and qualifications for each worker are set

at random. We also generate five different task assignment functions fi(w) that

score workers based on their qualifications as follows:

1. f1(u) = 0.3 ∗ q1 + 0.7 ∗ q2

2. f2(u) = 0.7 ∗ q1 + 0.3 ∗ q2
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3. f3(u) = 0.5 ∗ q1 + 0.5 ∗ q2

4. f4(u) = 1 ∗ q1 + 0 ∗ q2

5. f5(u) = 0 ∗ q1 + 1 ∗ q2

We compare Balanced and Unbalanced to three baselines. The first two

baselines are copies of our two algorithms, which we refer to as r-balanced

and r-unbalanced and which use a random attribute to split partitions rather

than the attribute that would result in the maximum KL-divergence between

the current partition(s) and their children. r-balanced and r-unbalanced

are used to validate our splitting heuristic that greedily picks the attribute that

results in the highest KL-divergence. The third baseline is an algorithm that

partitions workers on all attributes, which we refer to as Full and which is used

to validate our stopping condition that is triggered when splitting the current

partition(s) does not result in an increase in the KL-divergence. We know that

the first baseline that comes to mind is the exhaustive approach, where we find

the most discriminatory partitioning among all possible partitionings. We tried

running this exhaustive algorithm on our dataset using the attributes that we

have. The algorithm ran for a very extended period of time and needed a lot

more even when it was very optimal and this is due to the large number of

attributes and sub-attributes. That’s why we decided to not rely on this baseline

and use the three that we have here. Table 5.2 and 5.3 displays the KL-divergence

between the original ranking of workers and the ranking after normalizing their
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scores in each of the identified partitions using standardization and scaling.

Table 5.2: KL-divergence of the partitioning with maximum discrimination and
the time taken to identify that partitioning on the simulated dataset using stan-
dardization.

Algorithm KL-divergence Time (in secs.)
f1 f2 f3 f4 f5 f1 f2 f3 f4 f5

Results for 50 workers
Unbalanced 0.212 0.248 0.170 0.232 0.216 0.056 0.059 0.055 0.06 0.052
r-unbalanced 0.132 0.142 0.108 0.150 0.130 0.029 0.036 0.030 0.028 0.028

Balanced 0.078 0.088 0.093 0.074 0.056 0.022 0.022 0.022 0.074 0.025
r-balanced 0.099 0.129 0.073 0.085 0.100 0.006 0.006 0.006 0.006 0.006

Full 0.007 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Results for 500 workers
Unbalanced 0.174 0.194 0.175 0.193 0.190 0.668 0.668 0.682 0.686 0.657
r-unbalanced 0.130 0.126 0.132 0.134 0.116 0.433 0.389 0.398 0.401 0.367

Balanced 0.131 0.123 0.129 0.122 0.128 0.326 0.318 0.319 0.322 0.321
r-balanced 0.076 0.082 0.093 0.064 0.107 0.077 0.067 0.089 0.068 0.084

Full 0.039 0.034 0.036 0.028 0.032 0.012 0.013 0.012 0.011 0.033

Results for 7300 workers
Unbalanced 0.064 0.062 0.062 0.064 0.068 25.675 23.436 25.403 22.310 24.561
r-unbalanced 0.032 0.035 0.033 0.031 0.037 16.574 16.423 15.481 14.806 15.002

Balanced 0.110 0.108 0.107 0.111 0.116 26.322 25.803 25.211 24.787 25.585
r-balanced 0.110 0.108 0.107 0.056 0.116 5.942 6.010 5.995 4.698 5.847

Full 0.110 0.108 0.107 0.111 0.116 0.872 0.882 0.917 0.887 0.844

As can be seen from Table 5.2, in the majority of cases, Balanced and

Unbalanced outperform all baselines by finding a higher KL-divergence. More

precisely, Unbalanced outperforms r-unbalanced for all datasets and for all

task assignment functions using both normalization techniques. On the other

hand, Balanced performs worse than its random counterpart r-balanced in

terms of KL-divergence only 4 times out of 15 when standardization is used as a

normalization technique and only once when rescaling is used as a normalization

strategy. Overall, despite making local decisions, our greedy approach to choose

the attribute that yields the highest KL-divergence before and after splitting

results in higher KL-divergence between the final ranking of workers and the
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Table 5.3: Kl-divergence and time taken to quantify the maximum discrimination
on the simulated dataset using rescaling.

Algorithm KL-divergence Time (in secs.)
f1 f2 f3 f4 f5 f1 f2 f3 f4 f5

Results for 50 users
Unbalanced 0.260 0.336 0.303 0.292 0.280 0.026 0.028 0.025 0.026 0.029
r-unbalanced 0.212 0.211 0.213 0.213 0.176 0.013 0.013 0.013 0.014 0.014

Balanced 0.150 0.167 0.134 0.075 0.131 0.011 0.010 0.011 0.015 0.011
r-balanced 0.136 0.137 0.181 0.106 0.104 0.003 0.003 0.002 0.003 0.003

Full 0.007 0.005 0.009 0.006 0.009 0.001 0.001 0.001 0.001 0.001

Results for 500 users
Unbalanced 0.254 0.231 0.249 0.241 0.264 0.345 0.342 0.341 0.352 0.354
r-unbalanced 0.204 0.189 0.206 0.197 0.190 0.193 0.171 0.187 0.207 0.177

Balanced 0.196 0.172 0.189 0.166 0.195 0.187 0.179 0.185 0.185 0.189
r-balanced 0.108 0.092 0.119 0.068 0.128 0.046 0.040 0.046 0.046 0.044

Full 0.065 0.058 0.063 0.055 0.065 0.011 0.010 0.010 0.022 0.010

Results for 7300 users
Unbalanced 0.068 0.070 0.077 0.053 0.047 21.549 21.073 19.895 18.323 17.677
r-unbalanced 0.038 0.037 0.047 0.006 0.005 12.792 12.824 12.309 8.670 10.523

Balanced 0.146 0.146 0.150 0.136 0.136 23.019 23.380 22.045 21.136 21.228
r-balanced 0.146 0.146 0.150 0.045 0.045 5.278 5.234 5.079 3.180 3.153

Full 0.146 0.146 0.150 0.136 0.136 0.695 0.694 0.688 0.690 0.700

original ones.

When comparing Balanced and Unbalanced to the third baseline Full,

Balanced always performs better or same as Full. regardless of the normaliza-

tion strategy. It precisely performs exactly the same as Full in the case of 7300

workers where both approaches result in a full partitioning. On the other hand,

Unbalanced always performs better than Full in the cases of 50 workers and

500 workers and worse in the case of 7300 workers, using either normalization

techniques. Again, this can be mainly attributed to the non-optimality of local

decisions made by the greedy Unbalanced algorithm which might sometimes

result in early stopping.

In terms of efficiency, all algorithms finish within seconds (a minimum of
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0.001 seconds and a maximum of 26.322 seconds). The algorithm that runs

in the least amount of time is obviously Full since it partitions all workers

using all attributes at once without performing any extra checks. On the other

hand, the algorithm with the highest running time is Unbalanced for all cases

except for the 7300 workers where Balanced requires more time regardless of

the normalization strategy. This is very intuitive given that Unbalanced is a

recursive algorithm that splits every partition along the way until the stopping

condition is met. In the case of 7300 workers however, as we discussed earlier,

Balanced ends up splitting workers on all attributes which results in a deeper

partition tree compared to Unbalanced which stops earlier for most branches.

5.3 Addressing discrimination

Our first goal in this set of experiments is to verify that our normalization-based

strategy for addressing discrimination is indeed effective. First, we re-run our

maximum discrimination partitioning algorithms Balanced and Unbalanced

using the normalized functions returned by each algorithm when run on the

MovieLens dataset for all three functions f1, f2 and f3 defined in Section 5.1

. Recall that f1 targets workers with diverse ratings, f2 targets those with low

activity, whereas f3 does not exhibit discrimination by construct. Table 5.5 dis-

plays the KL-divergence of the partitioning with maximum discrimination when

we run our two algorithms Balanced and Unbalanced using the normalized
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scores returned by each algorithm on the original function scores. As can be seen

from the table, we find that all normalized functions exhibit less discrimination

as indicated by KL-divergence regardless of what algorithm was used, compared

to the original scores (see Table 5.1). For instance, when running Balanced

on the normalized data obtained by running Balanced with f1, workers are

split on gender only and the KL-divergence is reduced from 0.074 to 0.021. Sim-

ilarly, when running Unbalanced on the normalized data obtained by running

Unbalanced on f2, the KL-divergence is reduced from 0.080 to 0.028. This is

consistent for all other cases. This highlights that by normalizing the function

after identifying the partitioning with maximum discrimination, we are able to

reduce the amount of discrimination in the data.

Table 5.4: KL-divergence of the partitioning with maximum discrimination for
the MovieLens dataset after score normalization using standardization.

Algorithm Balanced Unbalanced
f1 f2 f3 f1 f2 f3

Unbalanced 0.021 0.028 0.303 0.032 0.015 0.171
Balanced 0.021 0.028 0.195 0.022 0.024 0.081

Table 5.5: KL-divergence of the partitioning with maximum discrimination for
the MovieLens dataset after score normalization using rescaling.

Algorithm Balanced Unbalanced
f1 f2 f3 f1 f2 f3

Unbalanced 0.047 0.034 0 0.021 0.011 0
Balanced 0.069 0.034 0 0.029 0.032 0

Our second goal is to identify the impact of addressing discrimination on

how workers are targeted by the task assignment function. First, we split our

35



MovieLens dataset into two sets D1 and D2, where D1 contains 80% of the ratings

for each worker and D2 contains the remaining 20%. Our goal is to use the data

in D1 to find workers to target and the data in D2 to verify the usefulness of

discrimination quantification and normalization in worker targeting. To this end,

we run both Balanced and Unbalanced on D1, and retrieve the top-100

workers based on the normalized functions f1 and f2. We also retrieve the top-

100 workers based on the original functions and the top-100 workers based on a

diversity-based strategy that uses the principle of Maximal-Marginal Relevance

(MMR) [7] to find the top-100 highest scored workers who are most diverse from

each other. The MMR approach re-ranks workers based on their MMR values,

which are computed as follows:

MMR(w) = λf(w) + (1− λ) min
w′∈S

Euclidean(w,w′)

where f(w) is the function score of worker w, S is the set of workers already

selected, Euclidean(w,w′) is the Euclidean distance between two workers w and

w′, which is computed based on their attributes gender, age, location and occu-

pation, and λ is a weighting parameter, which we set in our experiments to 0.5.

In Table 5.6, we display the average and the standard deviation of the pair-

wise Euclidean distance between the top-100 workers in each list. As can be

seen from the table, on average the top-100 workers retrieved from the lists that
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Table 5.6: Mean and Standard deviation of the Euclidean distance of the top-100
workers.

f1 f2
List Mean St. Dev. Mean St. Dev.

Original 10.416 5.484 11.576 6.046
Balanced 11.008 5.780 14.032 7.836
Unbalanced 15.291 8.150 14.589 7.603
Balanced Rescale 15.087 8.247 13.027 6.721
Unbalanced Rescale 15.291 8.150 11.576 6.046
MMR 16.323 8.758 16.264 9.197

were generated using our algorithms are more diverse as measured by the pairwise

Euclidean distance between the workers than the top-100 workers from the orig-

inal list and almost as diverse as the top-100 workers retrieved using the MMR

approach for both functions. Recall that MMR explicitly uses the Euclidean dis-

tance to re-rank workers, and thus it is not surprising that it exhibits higher

average pairwise Euclidean distance compared to our algorithms. However, un-

like MMR, our approach is fully data-driven, does not involve any parameters,

and does not utilize any distance function between workers. On the other hand,

the MMR approach requires defining a distance function between workers, which

would mean we have to decide which attributes to diversify on before hand. It

also involves a weighting parameter to combine distance between workers and

their function scores to compute the MMR values. Finally, our approach returns

a full ranking of all workers in very short time, whereas MMR requires the value

of K, which is the number of top workers to be retrieved after re-ranking, since it

will not be feasible to re-rank the set of all workers based on their MMR values.

37



In our last experiment, we show that while we are capable of diversifying users

that were targeted using our algorithms, this does not entail that we compromise

the quality of the data acquired. This experiment is very important and shows

that targeting workers using our approach also entails higher quality of the data

acquired. Table 5.7 displays the average and standard deviation of the variance

of the ratings acquired in D2 by workers targeted in D1 and their number of

ratings in D2, which correspond to the functions f1 and f2, respectively. As

can be observed from the table, the top-100 workers targeted by our algorithms

have higher rating variance on average compared to the top-100 workers from the

original list and the top-100 workers retrieved by the MMR approach. Moreover,

our algorithms when using rescaling would target users whose variances of ratings

are comparable to those of the top-100 users from the original list or using the

MMR approach. Similarly, our algorithms result in targeting less active workers

Table 5.7: Mean and Standard deviation of the rating variance (f1) and the
number of ratings (f2) in D2 for the top-100 workers.

f1 f2
List Mean St. Dev. Mean St. Dev.

Original 0.968 0.510 3.990 0.100
Balanced 0.984 0.506 9.690 9.928
Unbalanced 0.986 0.548 11.290 11.205
Balanced Rescale 0.936 0.586 9.330 9.088
Unbalanced Rescale 0.898 0.604 10.370 10.168
MMR 0.966 0.505 20.180 20.624

in D2 compared to the MMR approach. Note that when using f2 as a task

assignment function, the top-100 workers in the original list have the fewest
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ratings in D2 because of the way the dataset was split, where 80% of the ratings

are in D1 and 20% in D2. This means that the least active workers in both sets

D1 and D2 would be the same, which explains why the top-100 workers in the

original list have the lowest f2 in D2 (average of 3.990 and standard deviation of

0.100).
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Chapter 6

Conclusion

We tackled the question of unveiling discrimination in crowdsourcing task assign-

ment. We proposed to solve a combinatorial problem that finds a partitioning

of workers that exhibits the highest discrimination with respect to a data acqui-

sition process. We developed two heuristics to solve our problem. We showed,

on real and simulated datasets, that our heuristics are fast without compromis-

ing discrimination values and that score normalization is necessary to acquire

less-biased datasets.

The most promising research direction, in our opinion, is to design an interac-

tive human-in-the-loop approach, that unveils discrimination incrementally and

involves the worker by suggesting different ways of addressing it. We believe this

would achieve a good balance between what the worker wants and unveiling the

risks of algorithmic decision-making.
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