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Title: Capturing the Effects of Oil Price Uncertainty in Carbon Integration Network 

Design 

 

Carbon integration is a novel concept that targets the recovery and allocation of 

industrially emitted carbon dioxide, CO2, streams into CO2-using sinks, with the goal of 

attaining a source-to-sink allocation strategy that meets a desired carbon dioxide 

emission reduction target, and an ultimate aim of minimizing the cost of the network, 

while maximizing any revenue attained. 

 

Enhanced Oil Recovery, EOR, is considered one of the most attractive CO2 sink 

options. CO2 streams that are delivered and injected into EOR sites are often classified 

as great revenue sources for CO2 supplying entities. Since oil pricing heavily affects the 

revenue generated from sending captured CO2 streams into EOR sites, and since oil 

prices continuously vary, this paper studies the effect of oil price fluctuations onto the 

design of carbon integration networks. Hence, oil pricing has been selected as the main 

uncertainty parameter, and has been fed into a Linearized Multi-Period Carbon 

Integration model using stochastic data. Since oil prices vary periodically, this model 

has been formulated over several time periods, in which the oil pricing parameters are 

allowed to change over time. Subsequently, the proposed model has been optimized 

using two different approaches: (1) the Binomial Lattice approach, which primarily 

utilizes average uncertainties as expected values, and (2) the Multi-Scenario approach, 

which provides the variables’ values as well as the main objective function of the model 

as a solution basis after accounting for different scenarios. 

 

The performance of both methods has been analyzed and compared using 

random selection of different scenarios which involves simulating each scenario 

individually. The results obtained demonstrate that each approach has its own 

advantages and disadvantages. Sometimes, decision makers may find the information 

extracted from the average values provided by the Binomial Lattice approach to be 

suitable; other times, a more detailed set of solutions may be desired through the Multi-

scenario approach. Hence, the proposed methods may be utilized whenever reckoned as 

seemingly fitting for decision-making circumstances. 
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CHAPTER I 

INTRODUCTION 

 

A. Motivation and Objective 

Most greenhouse gas, GHG, emissions in industry are primarily a result of 

burning fossil fuels, or natural gas material, for energy production in the form of either 

heat or power. In 2010, such activities accounted for about 65% of all global CO2 gas 

emissions [1]. Several industrial processes also produce CO2 emissions through chemical 

reactions that do not involve combustion activities. Many countries are realizing an 

imperative need for the industrial sector to manage their carbon footprints by enforcing 

carbon dioxide reduction targets on GHG emissions [1]. However, meeting such targets 

introduces numerous challenges especially for energy intensive industries. 

Carbon integration aims to identify CO2 capture, recovery and allocation schemes 

in the form of carbon dioxide networks by employing cost effective and revenue 

generating source-to-sink allocation strategies [2]. Carbon dioxide can be utilized in 

many different ways through the chemical or biological conversion to other value added 

products [3]. An industrial zone, which usually consists of a cluster of processing 

facilities within geographic proximity, could ideally incorporate many economic options 

for carbon dioxide converting processes which are often referred to as CO2-using sinks. 

Many of those processes are very useful in converting the majority of carbon dioxide 

emissions that result from industrial activities into value-added products. Introducing 

those conversion routes greatly facilitate industrial symbiosis, which ideally involves the 

reuse of a generated waste stream as useful material in other processes that could 

potentially exist within an industrial cluster [4]. 
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There exist a plethora of studies that focus on carbon dioxide allocation into 

geological storage, such as the work of Middleton and Bielicki [5] and Tan et al. [6]. 

While carbon dioxide allocation into storage tanks incurs additional cost onto a given 

system, CO2-using sinks allow for revenue generating opportunities like the Enhanced 

Oil Recovery, EOR, sink [7]. It should be emphasized that revenue generating sinks often 

require high purity carbon dioxide streams, which are easily attainable by incorporating 

treatment units that are capable of separating CO2 gas from the remaining gaseous 

emission material. Treatment costs are easily attainable, and depend on the technology 

adopted [2]. Another main cost factor to consider are transmission costs, which can be 

accounted for based on the geographic distances between emission sources and CO2 sinks 

within the city, as well as the initial pressure of a given emission source and the required 

pressure conditions at the sink [2]. 

Hence, assessing capture costs, pipeline costs, and compression costs, as well as 

any CO2 revenue options at the sink are vital for determining economically attractive CO2 

connectivity decisions [2]. When accounting for revenue aspects, any financial returns 

that may be generated from CO2 sink options can vary greatly. For instance, oil prices in 

the range of 15-20 US$/barrel EOR have been able to generate revenue of 10 to 16 

US$/ton of CO2 injected [8]. When oil prices were reported to be 90 US$/barrel in 2015, 

the revenue generated upon injecting one ton of CO2 grew up to 70 US$/ton of CO2 

injected [9]. With the continuous oil price fluctuations, the revenue from such sink 

options become quite uncertain. 

This paper mainly aims to incorporate the effect of such uncertainty factors into 

carbon integration network design. Carbon integration networks were first introduced by 

Al-Mohannadi and Linke using a deterministic Mixed Integer Non Linear Programming, 

MINLP, model [2]. Since oil prices have been found to directly affect the corresponding 
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CO2 sink price, and Enhanced Oil Recovery sinks were reported to be one of the greatest 

revenue generating sinks by Al-Mohannadi and Linke, this paper presents a stochastic 

model that captures oil pricing uncertainty in the course of identifying optimal design 

strategies of carbon integration networks. 

 

B. Literature Review 

Generally speaking, investigating uncertainty elements is crucial where they have 

severe impact on the model, the network configuration, and the system as a whole. Not 

accounting for uncertainties is like observing and dealing with the system on one specific 

point in time, whereas in reality, the system experiences many different cases and 

scenarios. 

Uncertainties occur in Carbon Capture and Utilization and Storage, CCUS, 

systems, where they may be associated with CO2 emission sources (e.g. source operating 

lifetime), or CO2 sinks (e.g. sink storage capacity), as well as in water networks, where 

they may be associated with water quality levels and flow rates. Also, uncertainties can 

happen in energy networks, supply chain networks, etc. 

Tan [10] finds an optimal solution for a fuzzy mathematical nonlinear 

programming model of a water network which includes uncertainties in the flow rates, 

quality levels of the source streams, and quality tolerances of stream sinks. The fuzzy 

uncertain parameters have lower and upper bounds. This optimal solution aims to achieve 

the minimum freshwater consumption while avoiding the adverse process effects[11]. 

Tan [10] presents three different case studies from literature along with their optimal 

solutions. The first two case studies are for a single-plant network with and without 
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topological constraints, and the third case study is for inter-plant water integration 

network. 

One article presents the design and optimization of a Carbon Capture, Utilization, 

and Sequestration, CCUS, supply chain network that addresses the issues of selecting the 

sources, the alternate capture technologies and materials, utilization of CO2 sites, and 

sequestration in different storage sites [7]. It is a cost-model whose aim is to minimize 

the overall network cost where the cost includes the dehydration, capture, compression, 

transportation, and injection costs as well as the revenues generated from utilizing the 

CO2. Hasan et al. [7] discusses the computational methods of each of the aforementioned 

costs as well the revenues generated from selling high-purity CO2 to the CO2-EOR sites 

which are the Enhanced Oil Recovery sites. In doing so, a Mixed Integer Linear 

optimization, MILP, model is developed to select the optimum network. This work 

concludes that the selection of the right material and capture technology is a crucial 

element that directly affects the overall network cost [7]. Furthermore a reduction in the 

cost is obtained by diversifying the selected sources between both utilization and 

sequestration. It has been reported that the higher the flow rates from the sources are, the 

lower the cost is, particularly the capture and compression costs. One important fact is 

that the CCUS cost is directly related to the minimum CO2 reduction target; the higher 

the target, the higher the cost. Finally, and most importantly, this work concludes that it 

is possible to reduce more than 50% of the current CO2 emissions from the sources in the 

United States at reasonable costs by implementing the CCUS networks, thus enabling the 

continual use of fossil fuels [7]. 

He et al. [11] propose a Mixed Integer Linear Programming, MILP, model that 

accounts for the following uncertain parameters: the ending time of the operating life of 

each source, the upper limit of carbon dioxide storage capacity of each sink, and the 
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carbon footprint of compensatory power to make up for CCS energy losses. In doing so, 

He et al. [11] assume that those uncertain parameters can be represented as uniformly 

distributed parameters, each having a minimum and a maximum value incorporated into 

their model. According to their work, this model is referred to as the worst-case model. 

Subsequently, He et al. [11] propose a robust MILP model that incorporates uncertainty 

parameters as probability distributions. Upon developing the deterministic MILP model, 

the robust MILP model, and the worst-case model, their results show that uncertainties 

associated with those parameters greatly affect the CCUS network configuration, as well 

as the corresponding operating conditions. Although the deterministic model is able to 

provide feasible and optimal network configurations, the solutions generated from the 

deterministic model may turn out to be infeasible in real life practice. Hence, capturing 

those uncertainty elements is able to provide more realistic solutions of CCUS systems 

[11]. 

King et al. [12] discuss the economics of a CCUS network in which anthropogenic 

CO2 captured from a fossil power plant is processed into the Enhanced Oil Recovery, 

EOR, sinks. In their study they define producers as electricity generation plants, whereas 

consumers as owners of the oil reservoirs [12]. King et al. [12] also explain how the oil 

reservoirs have been selected for their study, as they illustrate which plants have been 

considered as their carbon dioxide sources. After discussing their pipeline network as 

well as the different costs that should be taken into account, King et al. [12] develop a 

cash flow model that integrates CO2 capture at the power plants, CO2 transport through 

the pipelines, and CO2 processing into the EOR sinks. Their goal is to achieve a 20% 

internal rate of return for each part of the process. It has been shown that there is a huge 

uncertainty in various parameters in their model, for example, in the capital cost of 

capture and EOR, oil prices, amount of CO2 needed for each barrel of oil, etc. Monte 
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Carlo simulations have been used to conclude that EOR operations are more likely to 

yield more than 20% internal rate of return due to the uncertainty in the oil prices, that 

have been mainly expected to be higher, and uncertainty in the CO2  prices which have 

been expected to be lower than the values used in their reference case [12]. Monte Carlo 

simulation is an iterative approach where the sample inputs vary probabilistically and 

consequently the model outputs are computed. Subsequently, these results are statistically 

analyzed [13]. Since a complex Monte Carlo simulation is required, this approach has not 

been adopted in this work. 

Ahmed and Sahinidis [14] utilize a two-stage approach in which their variables 

have been categorized into two different sets. First stage variables, known as the design 

variables, are identified as variables that should be decided before the realization of the 

uncertain parameters. Second stage variables, known as the control or operating 

variables, are identified as variables that can be decided after the uncertain parameters 

have been embedded into the scenario. The objective, in such a case, is to minimize both 

first stage costs, and the expected value of the random second stage recourse costs. The 

only limitation of this approach is the fact that it only accounts for the expected value of 

second stage costs, while ignoring any other variations that might occur due to the 

realization of the uncertainties [14]. Thus, in an attempt to resolve this issue, a deviation 

term, referred to as the ‘robustness measure’, has later been incorporated into their model. 

In their paper, an alternative formulation that handles all nonlinearities which result from 

the use of this robustness measure term has been then proposed [14]. 

Ahmed and Sahinidis [14] also present a motivating example to illustrate the 

effects of the real values of the uncertain parameters, that in turn can lead to huge 

variations in the real cost value. To account for this variability, a goal programming 

approach is utilized, which in turn aims to minimize the total cost, both first stage and 
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recourse costs, in addition to a weighted variability contribution. Their study also 

discusses two different frameworks: (1) a robust optimization framework which accounts 

for a risk measure in the objective function, and (2) a restricted recourse framework that 

accounts for the same risk measure in the constraints. Many different applications are 

presented in their study, but their main difficulty is the nonlinearity involved [14]. Due 

to the nonlinearity introduced into the model as a result of using variance as a robustness 

measure, and due to the fact that the variance is a symmetric risk measure which penalizes 

both costs, higher and lower than the expected recourse cost, Ahmed and Sahinidis [14] 

use an upper partial mean, UPM, that is an asymmetric measure of recourse costs 

variability. Their work continues to illustrate the optimization robustness of their 

approach, using the restricted recourse framework explained earlier, for a chemical 

process planning problem under uncertainty. In this problem, a new variable is added, so 

as to account for the positive deviation in a linearized fashion. Additionally, they develop 

a heuristic for the restricted recourse formulation, and finalize the discussion of their 

study using several scenarios [14]. 

Liu and Sahinidis [15] introduce a two-stage stochastic programming approach 

for a chemical process planning problem under uncertainty. Due to the large size of the 

model, Liu and Sahinidis [15] develop a Benders-based decomposition approach. This 

decomposition algorithm divides the Mixed Integer Linear model into two: an integer and 

a continuous component. Another feature of the Benders decomposition model is its 

ability to break the problem into small components. Liu and Sahinidis [15] explain the 

approach with using both discrete parameters as well as continuous random parameters 

[15].  

Bidhandi and Yusuff [16] present a two stage stochastic programming model for 

a supply chain network design problem under uncertainty. First-stage decisions are 
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configuration decisions, while second-stage decisions are those associated with 

processing and transporting products and materials from suppliers to customers, under 

uncertainty. The uncertain parameters are considered to be operational costs, customer 

demand, and facility capacities. Each of those parameters are associated with a log-

normal distribution. Due to the large number of scenarios and due to the difficulty in 

evaluating the expected values in the objective function, Bidhandi and Yusuff [16]  utilize 

a Sample Average Approximation, SAA, technique in their study, together with a Monte 

Carlo simulation, to determine approximations of expected values in place of finding real 

values. The objective function in this case is to minimize the total cost while satisfying 

the customer demands [16]. Furthermore, to improve the computational time, the 

accelerated Benders’ decomposition approach is used in which the integer master 

problems are replaced by linear problems. This modified algorithm along with the 

surrogate constraints leads to much better and improved results compared to the original 

SAA approach [16]. 

Another paper that discusses a two-stage approach to plan for a Carbon Capture 

and Storage, CCS, network under uncertainty which includes CO2 capture, transportation, 

storage, sequestration, and utilization is presented by Han and Lee [17]. In their study, 

Han and Lee [17] account for uncertainties such as CO2 emissions, operating costs, and 

product prices. While their model accounts for an objective function that can either 

maximize profit or minimize cost, their paper addresses the case of maximizing the profit 

while meeting a certain carbon dioxide reduction target. Furthermore, their study 

experiments the effect of different sizes and scales of all facilities used in the network as 

utilization facilities, capture facilities, etc., as well as the effect of several CO2 reduction 

targets over a long-term horizon. Their MILP model is capable of deciding where, how 

much, and how to capture, transport, utilize, store, and sequester carbon dioxide [17]. 
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Following their multi-period deterministic model, Han and Lee [17] formulate a multi-

period stochastic model, combined with an inexact two-stage stochastic programming. 

Subsequently, they compare it to other approaches like Multi-scenario stochastic 

programming, and a two-stage stochastic programming [17]. The uncertainties in 

operating costs and product prices, which are the coefficients of the objective function, 

have been modeled using a Multi-scenario stochastic programming approach, where each 

uncertain parameter is associated with a finite set of scenarios, each with a given 

probability of occurrence. Nevertheless, the uncertainties in CO2 emissions have been 

formulated using a two-stage stochastic model using the expected scenario approach. 

This defines the inexact two-stage stochastic programming approach that combines both 

the Multi-scenario as well as the two-stage stochastic programming approaches [17]. 

An alternative approach is presented by Wang et al. [18] which utilizes the 

concept of a bi-random variable and adopts an Equilibrium Chance-Constrained 

Programming, ECCP, to model a CCUS system under uncertainty. A ‘bi-random’ 

variable is a parameter that has dual random characteristics. In other words, any random 

variable will follow a probabilistic distribution whose characteristic values also follow a 

random distribution. The equilibrium chance concept is used to compare the degree of 

occurrence of two bi-random events. In their study, it is selected over the other chance 

measures, like the primitive chance and average chance, because it is presented as a real 

number that facilitates the comparison and decision making process [18]. Wang et al. [18] 

assume that every bi-random variable has a normal distribution, with characteristic values 

(the mean) being random as well. First, the uncertain optimization model whose objective 

function is to minimize the total cost while satisfying different constraints, such as those 

related to environmental and capacity limits, must be formulated. Following this, the 

random constraints that consist of the bi-random variables must be converted into their 
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deterministic equivalents using the Equilibrium Chance-Constrained algorithm. After 

solving the deterministic model, various optimal solutions can be generated, each based 

on a specific value of the probability-violation level. The results of the case study 

presented by Wang et al. [18] show that for a low constraint violation level, the model is 

more restricted, leading to a higher system cost, and a larger amount of treated CO2 [18]. 

Decision makers can then select the best solution, whilst taking into account the trade-off 

between the profitability and reliability of the system [18]. 

Tan et al. [19] present a continuous time Mixed Integer Non Linear Programming 

model for a Carbon Capture and Storage, CCS, network whose objective is to maximize 

the reduction of CO2 emissions by matching m-CO2 sources to n-CO2 sinks [19]. The 

nonlinearity in the model is due to the presence of some bilinear terms. Due to its 

computational difficulties, this model is linearized into a Mixed Integer Linear 

Programming model, MILP, by eliminating these terms. Then, Tan et al. [19] present two 

case studies to illustrate the importance of their model. An important assumption in their 

model is that the sources have fixed flow rates and operating lives, and the sinks have an 

earliest time of availability and a maximum CO2 storage capacity [19]. The result of these 

assumptions is the primary focus of the model on physical and temporal aspects of CCS 

systems. 

Compernolle et al. [20] apply continuous time real-options models coupled with 

dynamic programming concepts so as to define the investment threshold levels. The real-

options models are split into two: one that focuses on the investment in a CO2 capture 

unit, while the other focuses on the investment in EOR [20]. From the first model, the 

critical price level of CO2 for which the CO2 producer becomes willing to invest in a CO2 

capture unit is determined. Similarly, from the second model, the critical price level of 

oil for which the oil producer becomes willing to invest in EOR is also determined, for a 
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given CO2 cost [20]. According to Compernolle et al. [20], CCUS is not economically 

feasible due to the high investment cost required. However, one way that allows pursuing 

this technology is to effectively use the CO2, for instance, in Enhanced Oil Recovery [20]. 

Assuming that CO2 exchange will take place from a CO2 producer to an oil producer, 

attractive price ranges for such transactions can be identified [20]. Uncertainties in oil 

and CO2 prices are also addressed using a sensitivity analysis approach. In their paper, 

the minimum oil price needed to process the trade in CO2 depends on several factors, 

such as the CO2 permit price, the lifetime of the oil field, the rate of oil extraction per ton 

of CO2 injected, and the discount rate [20]. The sensitivity analysis shows that a longer 

oil field lifetime results in a lower minimum oil price. For high CO2 permit prices, 

electricity producers that invest in the capture unit must be willing to pay a fee to oil 

producers to store the CO2; thus CO2 input could also become revenue to oil producers 

according to Compernolle et al. [20]. 

The impact of various other uncertainty elements on Carbon Capture, Utilization 

and Storage, CCUS, problems are profound. Many previous work investigated the impact 

of those effects, using a variety of different techniques. For instance, Tan et al. [13] 

propose a two-stage approach that relies on the P-graph framework in the first stage to 

specify the n-best networks that are optimal and sub-optimal solutions. Such alternative 

solutions are then considered in the second stage, in which a Monte Carlo simulation is 

utilized to test for the system’s sensitivity to changes in the parameters. Two different 

case studies are considered by Tan et al. [13]: (1) a carbon-constrained energy planning 

problem, and (2) a carbon dioxide capture and storage planning problem between sources 

and sinks. After arbitrary optimal and near-optimal solutions have been obtained from 

both stages, the P-graph framework has then been used to test the robustness of such 

attained alternatives to parameter variations using Monte Carlo simulations. 
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Subsequently, the best network for implementation can then be selected. In the second 

case study, Tan et al. [13] assume a normal distribution for both the amount of carbon 

dioxide that can be captured from the sources and the total capacity of the sinks. 

Optimizing the model using the P-graph resulted in 71 networks. Some of those solutions 

are optimal and the others are sub-optimal networks. These networks fail if the excess 

storage capacity of at least one sink is negative. The Monte Carlo simulation shown in 

this specific case shows that there is a high probability of failure of two networks, one of 

which is optimal and the other is sub-optimal. Thus, it has been found that the use of 

Monte Carlo simulations are beneficial to study the system sensitivity to perturbations of 

such parameters [13]. Their work addresses two case studies, one of which is the carbon 

integration network with uncertainty in the availability of carbon dioxide in the sources 

and in the storage capacity of the sinks [13]. 

In contrast to the work presented by Tan et al. [13], and all other previous 

contributions that were discussed above, this work studies a different uncertainty 

variable, in the form of oil pricing, and investigates its effect on carbon integration 

network design problems. 
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CHAPTER II 

BACKGROUND 

 

Based on the literature review discussion presented above, it has been realized 

that only certain mathematical techniques can be utilized to model oil price uncertainty. 

For instance, Ross [21] concludes that the continuous-time geometric Brownian Motion 

Model, which is an extensively used approach that is often utilized for modeling stock 

prices of real assets, cannot be used to model stochastic oil prices. This is due to a key 

assumption that is required by this model, which states that the future pricings are 

independent of past prices and past price movements. Therefore, having a general 

understanding of such appropriate methods that can accurately capture and model oil 

pricing uncertainty is crucial. This chapter illustrates two approaches: (1) Risk-Neutral 

uncertainty model or models that use data, and (2) Chance Constrained Programming. 

 

A. Risk-Neutral uncertainty model or models that use data 

Ross [21] discusses many methods for modeling the oil price uncertainties, such 

as the Risk-Neutral model. This method can help identify whether a certain option is 

underpriced or overpriced with respect to a current price of the security itself [21]. This 

model assumes, being at any state 𝑖, the log ratio of the next state will be a random 

variable with a normal distribution with a mean 𝜇𝑖, and a standard deviation 𝑠𝑖 that are 

related according to Equation (1), where: 𝑟 is the interest rate, and 𝑁 is the number of 

trading days in a year (taken to be equal to 252 days). 

 𝜇𝑖 =
𝑟
𝑁⁄ − 

𝑠𝑖
2

2
⁄                                                             (1) 
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If this type of model is to be adopted, a separate simulation would be required to 

find the expected worth of an option. Hence, to avoid simulation models, oil prices will 

not be modeled using the Risk-Neutral model in this paper. On the other hand, if the aim 

is to value an option, one could use a model that assumes that the future will tend to 

follow the past. In such a case, the model would then assume that currently being at any 

state 𝑖, the logarithm of the ratio of tomorrow’s price to today’s price is a random variable 

that is normally distributed using a mean �̅�𝑖 value and a standard deviation 𝑠𝑖 value, which 

in turn would require a certain computation process so as to obtain those values based on 

given data.  

Other methods also exist, which mainly rely on a bootstrap approach instead of 

a normality assumption, for which the future is dependent on the past [21]. This latter 

approach assumes that the best approximation for the log distribution ratio of a certain 

state is to randomly choose one of the data values. In both cases, a separate simulation 

is required to be able to determine the expected value of a future price. 

 

B.  Chance Constrained Programming 

In addition to all aforementioned approaches, the Chance Constrained 

Programming is also an alternative modeling method, which in turn combines a 

mathematical programming model with chance constraints in the form of probability 

levels of attainment [22]. For instance, if 𝛼 is a confidence level that is predetermined by 

the decision maker, then a constraint will be satisfied at least 𝛼 times of all the possible 

cases [22]. A typical mathematical programming model often follows the following 

structure: 

𝑀𝑎𝑥 𝑓(𝑥)                                                                       (2) 
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𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏                                                                    (3) 

Chance constrained models can be utilized in many applications, usually 

involving financial planning, portfolio selection models, blending applications, agent 

recruitment planning, etc. [22]. The objective function 𝑓(𝑥) can be a profit function that 

needs to be maximized. It consists of 𝑛 variables 𝑥, and it includes the profit contribution 

rate constants. There are 𝑚 constraints in 𝐴𝑥, each of which is limited by constant 𝑏 [22]. 

Charnes and Cooper present three formulations of the chance constraint models [22]: 

 

1. Maximize the expected value of a probabilistic function 

𝑀𝑎𝑥 𝐸[𝑌]  (Where 𝑌 = 𝑓(𝑥))                                                    (4) 

 𝑠. 𝑡.  Pr(𝐴𝑥 ≤ 𝑏) ≥  𝛼                                                                (5)   

Any of these coefficients, 𝑌, 𝐴, 𝑜𝑟 𝑏 may be probabilistic. This formulation 

renders the maximization (or minimization) of a function and guarantees that a constraint 

is met at least 𝛼 times. While the expected value of a function is often linear, chance 

constraints are usually nonlinear. This formulation is recommended when the target is to 

optimize the objective function while staying within the limits of the resources at a certain 

probability level [22]. 

 

2. Minimize the variance 

       𝑀𝑖𝑛 𝑉𝑎𝑟 [𝑌]                                                                                 (6) 

                    𝑠. 𝑡.  Pr(𝐴𝑥 ≤ 𝑏) ≥  𝛼                                                                  (7) 
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This formulation is usually applied to identify the portfolio investments with the 

minimum variance while satisfying the set of chance constraints. It is often used to 

measure the risk associated with a certain activity, which is not the case in this paper. 

 

3. Maximize the probability to satisfy a chance constraint set 

𝑀𝑎𝑥 Pr(𝑌 ≥ 𝑡𝑎𝑟𝑔𝑒𝑡)                                                          (8)  

𝑠. 𝑡.  Pr(𝐴𝑥 ≤ 𝑏) ≥  𝛼                                                          (9) 

This formulation is generally much more difficult to accomplish [22]. The 

structure of the chance constraints in the form of probability levels renders it a nonlinear 

set which requires a nonlinear programming solution. This nonlinearity limits the size of 

the model; as such, it can no longer yield a solution in case a large number of constraints 

or variables is involved [22]. As a result, this approach is not adopted in this work. 
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CHAPTER III 

METHODOLOGY 

 

The deterministic model presented by Al Mohannadi and Linke [2] that represents 

the carbon integration network has been utilized as the base model in this study. The base 

model combines a set of equations that mathematically describe the capture process of 

carbon dioxide sources, in both treated or untreated forms, followed by a series of 

pressurization stages (compression and pumping), then transportation of CO2 streams to 

the various sinks into which they are allocated [2]. The same model has also been 

extended in later studies, so as to account for multi-period considerations [23], and natural 

gas monetization strategies [24]. 

The objective function of the base model aims to minimize the total cost of the 

network, which is a combination of the following individual costs: the treatment cost to 

treat the captured CO2 streams, the capital and operating costs of the compressors and 

pumps needed in each source-sink connection, the transportation cost to transport the 

treated and untreated flows from the sources to the sinks, and the processing cost of these 

streams into the sinks [2]. The deterministic model includes a set of constraints that must 

be satisfied, for instance, the capacity’s limit of each sink, the available amount of CO2 

in each source, etc. Since the model involves several integer and binary variables, it was 

classified as a Mixed Integer Non Linear Programming, MINLP, model according to Al 

Mohannadi and Linke [2]. Since most parts of the model were already linear to begin 

with, only two modifications have been implemented onto the MINLP model adopted 

from Al Mohannadi and Linke. Hence, the MINLP has been linearized into a Mixed 

Integer Linear Programming, MILP, by implementing an alternative linear equation that 
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describes the pumping cost. In addition, the highly non-linear diameter computations 

which were previously utilized in the transportation cost using if statements have been 

replaced with a linear alternative. Following this, the linearized deterministic model has 

then been converted into a stochastic multi-period one. 

As explained earlier, the oil prices that are never certain, directly affect the 

processing cost into the EOR sink, which in turn affects the total cost. This is why it is 

crucial to capture the uncertainty and fluctuations of the oil prices by which the goal of 

this paper is achieved which is to find the optimal carbon integration network under the 

uncertain oil prices that vary randomly with the objective to minimize the total cost. 

Dealing with uncertain parameters is more realistic because uncertainty is with no doubt 

one of the most controlling phenomena. Our model’s main target is to investigate the 

effect of having stochastic parameters, particularly the oil price, on the design of the 

carbon integration network as well as on the total cost/revenue of the network. 

In this paper, the variability, uncertainty, and oil price fluctuations are first 

modeled using a Binomial Lattice model, which was developed by Luenberger [25]. This 

model is classified as a discrete-time approximation of the continuous-time geometric 

Brownian motion model [26]. This approach overcomes the independence assumption of 

the continuous-time geometric Brownian motion model, this is why it is the first chosen 

approach in this paper. Second, the uncertain oil prices are modeled using a Multi-

scenario approach which considers real scenarios that may occur and averages the result 

over a subset of scenarios. This approach is heavily used since it takes into account 

realistic scenarios that might take place. 

This chapter illustrates the two approaches: (1) the Binomial Lattice approach, 

and (2) the Multi-scenario approach to model the uncertain oil prices. 
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A. The Binomial Lattice Approach 

The Binomial Lattice model is derived from the continuous-time geometric 

Brownian motion model that is widely used to model the stock price behavior. This model 

takes into consideration the quality of the oil being extracted and sold; the oil might be 

treated, liquefied, or both before being sent to the consumers [26]. These mentioned 

factors explicitly affect the selling price of the oil, which in turn will affect the revenue 

generated from carbon dioxide streams injected into these EOR sites. Melki [26] states 

that to model this uncertainty and fluctuations of the oil price, the respective data must 

be collected and the volatility and the expected growth rate of the oil price must be 

estimated. These data and estimates will then be used to model the oil prices using a 

Binomial Lattice model. Furthermore, oil treatment issues will not be accounted for. 

Instead, it was assumed that consumers are held responsible for treating the oil received, 

based on its respective use at the sink [26]. 

Generally speaking, the Binomial Lattice, which is a discrete-time model, is 

capable of capturing oil prices periodically. This means that if the price at the beginning 

of the period is 𝑆, then the price at the beginning of the next period will have one of two 

values. It will either go up by a factor 𝑢 > 1 with a probability 0 < 𝑝 < 1 to be equal 

to 𝑢𝑆, or it will go down by a factor 𝑑 < 1, with a probability 1 − 𝑝 to be equal to 𝑑𝑆. 

Having 𝑆, 𝑢 and 𝑑 all positive then the price can never have a negative value which allows 

the consideration of the logarithm of the price as a variable [25]. Luenberger [25] defined 

the parameters of the Binomial Lattice model as follows: 

 The expected yearly growth rate:  

𝑔𝑟 = 𝐸[ln(𝑆𝑇 𝑆𝑠⁄ )]                                         (10) 
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Where 𝑆𝑇 is the price at the end of the whole period (1 year), and 𝑆𝑠 is the initial 

stock price; 

 The yearly variance:  

𝜎2 = 𝑣𝑎𝑟[ln(𝑆𝑇 𝑆𝑠⁄ )]                                               (11) 

 The probability: 

 𝑝 =  
1

2
+ 

1

2
 (
𝑔𝑟

𝜎
)√∆𝑡                                       (12)  

Where 𝜎 is the yearly standard deviation and ∆𝑡 is the period length that is really 

small. 

 The factor associated with price increase: 

                          𝑢 =  𝑒𝜎√∆𝑡           (13) 

 The factor associated with price decrease: 

                                      𝑑 =  𝑒−𝜎√∆𝑡        (14) 

An option is defined as the right to buy (a call option) or to sell (a put option) an 

asset under specified price and specified period of time. The option premium is defined 

as the price of the option itself which may be only a fraction of the price of the asset. This 

premium cannot be returned in case the option holder does not want to exercise the option. 

The term exercise the option is usually used when the holder actually buys or sells the 

asset by obeying the terms of the option [25]. 

It is required to specify the details of the option, which are often description of 

the asset, stating whether it is a call or a put option, the exercise price or the strike price, 

the expiration date stating if it is an American or European option, and the premium price. 

The strike price is the price at which the asset will be bought or sold when the option is 

exercised. The expiration date is the period of time during which the option is valid. There 
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are two styles of the expiration date; the American option states that the option can be 

exercised anytime during this period until the last day, whereas the European option states 

that the option can only be exercised on the last day which is exactly the expiration date 

[25]. 

The procedure to find the parameters of the Binomial Lattice model requires 

collecting several data such as the risk-free interest rate, the current oil price, the oil 

futures prices and the oil futures options prices on a specific date. The daily treasury yield 

curve rates for October 2017 have been obtained from the U.S. Department of the 

Treasury [27]. Table 1 summarizes the relevant information. Assuming a maturity of 3 

months for future options prices, the U.S. Treasury interest rate at 3 months becomes 𝑟 =

1.07%. The market price of crude oil has been considered as a spot market which has 

then been used to obtain the future oil prices. The corresponding data is provided in Table 

2. The current price is taken to be the price of the hydrocarbon that’ll be delivered the 

next month due to the delay that occurs in delivering the oil which is almost a month. 

Thus, the current crude oil price according to October 2017, as shown in Table 2, 

is $49.25/𝑏𝑎𝑟𝑟𝑒𝑙. 

Table 1: U.S Daily Treasury Yield Curve Rates of October 2017[27] (Source: www.ustreas.gov) 

Date 1 Mo 3 Mo 6 Mo 1 Yr. 2 Yr. 3 Yr. 5 Yr. 7 Yr. 10 Yr. 

10/02/17 0.95 1.01 1.22 1.31 1.49 1.63 1.94 2.17 2.34 

10/03/17 1.01 1.07 1.21 1.32 1.47 1.62 1.92 2.15 2.33 

10/04/17 1.00 1.08 1.21 1.33 1.47 1.62 1.92 2.15 2.33 

10/05/17 1.02 1.07 1.21 1.35 1.49 1.63 1.94 2.17 2.35 

10/06/17 1.03 1.07* 1.22 1.35 1.54 1.66 1.97 2.20 2.37 

*The treasury yield interest rate at 3 months maturity 

Table 2: Crude Oil Futures Prices [29] (Source: Wall Street Journal on 08/10/2017) 

Month Last 

Crude Oil – Electronic Nov 2017 49.25* 
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Crude Oil – Electronic Dec 2017 49.60 

Crude Oil – Electronic Jan 2018 49.84 

Crude Oil – Electronic Feb 2018 50.09 

Crude Oil – Electronic Mar 2018 50.22 

Crude Oil – Electronic Apr 2018 50.38 

Crude Oil – Electronic May 2018 50.37 

Crude Oil – Electronic Jun 2018 50.39 

Crude Oil – Electronic Jul 2018 50.34 

Crude Oil – Electronic Aug 2018 50.31 

Crude Oil – Electronic Sep 2018 50.27 

Crude Oil – Electronic Oct 2018 50.28 

Crude Oil – Electronic Nov 2018 52.31** 

*The current crude oil future price on November 2017 

**the crude oil future price 1 year from now, on November 2018 

In addition to the above information, future crude oil prices are needed to estimate 

the volatility of the oil price. In order to be able to use Black-Scholes equation, the data 

collected must correspond to a European call option with an expiration date on January 

2018 (3 months maturity). The strike price taken from Chicago Mercantile Exchange [28] 

which was found to satisfy the aforementioned criteria is $50/barrel and the value of the 

option is $6.82/barrel. 

Following the above data collection process, the Black-Scholes equation has then 

been used to calculate the implied volatility of the oil price. The call option Black-Scholes 

formula is stated in Equation (15), where: 𝐶 is the price of the option, 𝑆0 is the current 

future price, 𝑁(𝑥) is the standard cumulative normal probability distribution, 𝐾 is the 

strike price, 𝑟 is the risk-free interest rate, 𝑇 is the expiration time, and 𝜎 is the volatility 

of oil price [25]: 

𝐶 = 𝑆0𝑁(𝑑1) − 𝐾𝑒
−𝑟(𝑇)𝑁(𝑑2)      (15) 
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𝑑1 = 
ln(𝑆0 𝐾⁄ )+ (𝑟+𝜎2 2⁄ )∗𝑇

𝜎√𝑇
       (16) 

𝑑2 = 𝑑1 − 𝜎√𝑇        (17) 

It should be noted that the Black-Scholes equation was found to yield a volatility 𝜎 =

72.46%. 

Moving on, the two factors that represent the increase and the decrease (per 

period) of the oil price have been calculated using Equations (18) and (19) respectively.  

 𝑢 =  𝑒𝜎√∆𝑡 = 2.064         (18) 

𝑑 =  𝑒−𝜎√∆𝑡 = 0.485         (19) 

Each time period,  ∆𝑡,  was taken as 1 year. The probabilities associated with an 

increase (𝑢) or decrease (𝑑) in the oil price have been defined as 𝑞𝑢 and 𝑞𝑑, respectively. 

Those two values have been determined by setting the current value of futures price to 

zero, as shown in Equations (20), (21), and (22) below. 

𝑞𝑢𝑆[𝑢 − (1 + 𝑟
′)] + 𝑞𝑑𝑆[𝑑 − (1 + 𝑟

′)] = 0      (20) 

𝑞𝑢 = 
(1+𝑟′)−𝑑

𝑢−𝑑
= 0.365        (21) 

𝑞𝑑 =  1 − 𝑞𝑢 = 0.635        (22) 

In the above equations, 𝑟′ is defined as the rate of increase of the different oil 

futures prices, which is not the same as the risk-free interest rate, r [25]. Using the future 

oil prices highlighted in Table 2, 𝑟′ has been calculated to be 6.2%, according to Equation 

(23): 

𝑟′ = 
𝐶𝑟𝑢𝑑𝑒 𝑂𝑖𝑙 𝐹𝑢𝑡𝑢𝑟𝑒 𝑃𝑟𝑖𝑐𝑒𝑁𝑜𝑣 2018

𝐶𝑟𝑢𝑑𝑒 𝑂𝑖𝑙 𝐹𝑢𝑡𝑢𝑟𝑒 𝑃𝑟𝑖𝑐𝑒𝑁𝑜𝑣 2017
= 

52.31

49.25
− 1                (23) 



24 
 

Upon collecting all the necessary data which is required to execute the multi-

period Binomial Lattice model, it is essential to note the following: 

1. Due to the limited information available, it has been assumed that the same values 

for the parameters (𝑢, 𝑑, 𝑞𝑢, 𝑞𝑑) hold on for all the time periods. 

2. Starting by the current price 𝑆0 = $49.25 at the end of the 0th period, the oil price 

has a probability 𝑞𝑢 to increase and become 𝑢 ∗ 𝑆0 and a probability 𝑞𝑑 to 

decrease and become 𝑑 ∗  𝑆0. Similarly, the Binomial Lattice tree goes on with 

each node giving two new nodes. 

3. At the end of every time period, the expected value is calculated using Equation 

(24) and is considered to be the value for the processing cost parameter, CRS, into 

the EOR sink in the model: 

𝐶𝑅𝑆𝑝𝑒𝑟𝑖𝑜𝑑 =  ∑ 𝑝𝑖 ∗ 𝑜𝑝𝑖𝑖 ∈𝐼       (24) 

Where 𝑝𝑖 is the probability of oil price increase/decrease in time period 𝑖, and 𝑜𝑝𝑖 

is the oil price relative to this probability at the specific node in time period 𝑖 (the 

summation must be carried out over all the nodes at each time period separately). 

It should be noted that the main multi-period Binomial Lattice model was 

implemented using AMPL. However, since the expected value of the CRS parameter that 

is associated with the EOR sink must first be calculated, a separate MATLAB code was 

used to perform those calculations. The AMPL model file that has been used to 

implement the multi-period Binomial Lattice approach is provided in Appendix A. This 

model has been implemented using “MATLAB version R2017, and optimized using the 

CPLEX solver via AMPL, on a laptop with Intel ® Core ™ i5-2410M, 2.30 GHz, 4.00 

GB RAM, 64-bit Operating System”. A flowchart that summarizes the main steps 

involved in the MATLAB code which has been utilized to iteratively calculate the 
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expected CRS value for each time period is illustrated in Figure 1. The code starts by 

defining a Pascal matrix for n time periods, as well as a row vector to have the CRS values 

in after calculating these values using the for loops. The detailed MATLAB code is 

provided in Appendix B. All MATLAB codes have been implemented using “MATLAB 

version R2017 on a laptop with Intel ® Core ™ i5-2410M, 2.30 GHz, 4.00 GB RAM, 

64-bit Operating System”. Following the execution of the MATLAB code, the eight 

expected CRS values attained have then been exported into AMPL and have been used 

as input data for the EOR sink in each of the eight time periods in the carbon integration 

multi-period Binomial Lattice model. 

 

 

 

 

 

 

 

In summary, Figure 2 outlines the main sequence of steps that have been utilized 

to execute the Binomial Lattice approach. As it has been discussed above, the MATLAB 

code is first used to calculate the expected values of CRS parameters for each time period, 

then these values are used as input data into the optimization model to obtain the optimal 

solution for the Binomial Lattice multi-period approach. 

 

 

Define Pascal 
matrix for n 
time periods 

(n=8) 

Define a row 
vector of size 
(1, 8) to save 
CRS values in 

Input constant 
values 

Use "For" 
loops to 
calculate 
expected 

value of CRS 
for each time 

period 

Figure 1: Steps in MATLAB code to calculate expected values of CRS for each time period for the Binomial 

Lattice approach 



26 
 

 

 

 

 

 

 

 

 

 

B. The Multi-Scenario Approach 

The second approach is Multi-scenario approach where each scenario consists of 

several time periods. This approach relies on oil prices either increasing or decreasing by 

the end of each time period, in each scenario. Using MATLAB version R2017, a matrix 

of all the possible scenarios is first created. Out of this matrix, a subset of random and 

unique scenarios are to be selected for uncertain oil prices that might occur over the time 

periods under study (8 different cases have been utilized in this study). This subset of 

scenarios, represented by binary numbers for either an increase (one) or a decrease (zero) 

in the oil price in each time period, is to be converted into another matrix to calculate the 

processing cost parameter, CRS, into the Enhanced Oil Recovery sink for each time 

period in every scenario to be used as data in the AMPL model. Then, this AMPL model 

is run to get the optimal solution for the Multi-scenario multi-period approach. This 

procedure is summarized in Figure 3. Moreover, the AMPL model, detailed in Appendix 

C, is a modified version that incorporates the multi-period Multi-scenario approach, 

which in turn relies on averaging the objective function (total cost) over all scenarios 

 

Run MATLAB 
Code 

Obtain CRS 
values as 

Expected Values 

Input 

corresponding 

CRS values into 

AMPL data file 

Run AMPL 

model via 

CPLEX 

Get optimal 

solution for 

Binomial Lattice 

approach 

Figure 2: Sequence of steps utilized for the multi-period Binomial Lattice approach 
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considered in the subset. This AMPL model has also been implemented and optimized 

using the CPLEX solver via AMPL, on a laptop with Intel ® Core ™ i5-2410M, 2.30 

GHz, 4.00 GB RAM, 64-bit Operating System”. 

 

 

 

 

 

 

 

 

 

 

In order to run the formulated AMPL multi-period Multi-scenario model for a 

subset of random and unique scenarios as previously explained, the CRS values 

associated with the EOR sink must be calculated for each time period of these scenarios. 

The MATLAB code that is utilized to perform those calculations is summarized in 

Appendix D. 

  

Run MATLAB 
Code 
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time period in 
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Input CRS 

values into 
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Run AMPL 

model via 

CPLEX 

Extract optimal 

solution using 

Multi-scenario 

approach 

Figure 3: Sequence of steps utilized for the multi-period Multi-scenario approach 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

This chapter illustrates the main objective of this paper, describes the carbon 

integration network studied, the implementation of both approaches, and the detailed 

procedure to analyze their performance. It further analyzes the results obtained. 

 

A. The Detailed Procedure 

The presented optimization-based model is primarily useful for determining 

which CO2 sources are the best to capture, and to which sinks they should be allocated, 

under uncertain sink revenue conditions. The model takes into account the treatment, 

compression and pumping of the streams needed to satisfy the sinks requirements. In 

order to illustrate the benefits of the proposed model, the same case study which was 

presented by Al-Mohannadi and Linke [2], has been revisited, for the purpose of 

illustrating the two different approaches which have been detailed above (1) the multi-

period Binomial Lattice approach and (2) the multi-period Multi-scenario approach, for 

estimating the total cost of an optimum carbon integration network. The case study 

involves five different plants within an industrial cluster: namely an ammonia plant, an 

iron and steel plant, a refinery, a power plant, and a fuel additive plant. In total, there are 

four carbon dioxide source streams which have been considered: one stream from the 

ammonia plant, one stream from the steel plant, one stream from the power plant, and 

one stream from the refinery. Moreover, a total of six carbon dioxide utilizing sinks have 

been considered: (1) an algae sink, (2) a greenhouse sink, (3) a methanol sink, (4) a urea 
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sink, (5) an EOR sink, and (6) a storage sink. All details pertaining to flowrate and 

composition data associated with the outlined source and sink streams are outlined in Al-

Mohannadi and Linke [2].  

The purpose of this section is to analyze and compare the accuracy of each 

described approach. Eight different time periods (assuming 1 year each) have been 

considered when conducting this analysis, and the net carbon reduction target, NCRT, 

has been set to 3%, over eight time periods. Depending on which specific scenario will 

be occurring, the actual total network cost can be calculated and compared to the 

estimated optimal total network cost, which was attained using the AMPL model. Hence, 

a MATLAB code is initially used to generate a subset of 100 random scenarios. 

Following this, two different MATLAB codes are used to calculate the actual total cost 

of each scenario after the realization of uncertain oil prices of this specific scenario. In 

this step, the first MATLAB code corresponds to the Binomial Lattice approach, while 

the second MATLAB code corresponds to the Multi-scenario approach. Once all the 

above steps have been completed, a total of 100 simulations have been executed, one at 

a time using each MATLAB code separately, and the actual total costs attained from each 

simulation have been extracted and reported. The cost information was found imperative 

at this stage, to be able to compare it with the estimated total network cost attained using 

each approach, respectively. Finally, the two approaches are compared. 

To provide a better understanding of the procedure followed, the sequence of 

steps outlined above is demonstrated using an illustrative flowchart, Figure 4, which is 

shown below. 
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First, an optimal network solution is attained independently for each of the two 

approaches, using an AMPL model that calls the CPLEX solver. Then, 100 specific 

scenarios are generated using a MATLAB code along with their CRS values. Following 

the generation of those specific scenarios, each scenario is implemented separately using 

two independent MATLAB codes that calculate the actual total network cost; the first 

code follows the Binomial Lattice approach while the second follows the Multi-scenario 
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Figure 4: Summary flowchart 
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approach. The two MATLAB codes which have been used to obtain the total actual cost 

for each scenario are discussed in sections B and C below. 

B. Binomial Lattice MATLAB Code Description 

The MATLAB code which was developed to calculate the actual total cost for 

each realized scenario using the Binomial Lattice approach starts off by inputting the 

fixed data values that were calculated optimally using the AMPL Binomial Lattice model. 

The 𝑥𝑖′𝑠 values are constant numbers obtained from the optimal solution: 

𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =  𝑥1                 (25) 

𝐶𝐶𝐴𝑃 = 𝑥2                 (26) 

𝐶𝑂𝑃 = 𝑥3                (27) 

𝑃𝑂𝑃 = 𝑥4                  (28) 

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 =  𝑥5              (29) 

Then, to calculate the pump capital cost, 𝑃𝐶𝐴𝑃, for all source-sink connections 

over the eight time periods, four matrices are created, where each matrix is for a source 

and has all 𝑃𝐶𝐴𝑃 for every sink, in which each row refers to a sink. The 𝑃𝐶𝐴𝑃 value will 

simply be the summation of all elements of these matrices. These values  𝑦𝑖𝑗 for each 

matrix are also obtained from the optimal solution of the Binomial Lattice AMPL model. 

The matrix for source 1 is presented below, and in similar way, the matrices of the 

remaining sources are done: 

𝑆1 = 

(

 
 
 

𝑦
11

𝑦
12

𝑦
13

𝑦
14

𝑦
15

𝑦
16)

 
 
 

                 (30) 

Then, the elements are summed up along the columns: 

𝑆1𝐶 = 𝑠𝑢𝑚(𝑆1, 1)        (31) 
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Same steps are repeated for the remaining sources. Then, the resulting elements 

are added, which are the 𝑃𝐶𝐴𝑃 value for each source: 

𝑃𝐶𝐴𝑃 =  𝑆1𝐶 + 𝑆2𝐶 + 𝑆3𝐶 + 𝑆4𝐶       (32) 

Next, to calculate the processing cost into the sinks, 𝐶𝑠𝑖𝑛𝑘, a matrix CS (k, Pd), 

where k is the number of sinks and Pd is the number of time periods is created and filled 

with zeros. Similarly, another matrix 𝐹𝐶𝑂2(𝑘, 𝑃𝑑) is defined and filled with its 

corresponding values of the flow of 𝐶𝑂2 coming from all sources to each sink k in every 

time period Pd from the optimal solution of the AMPL model. Also, a third matrix 

𝐶𝑅𝑆 (𝑘, 𝑃𝑑) is defined and filled with its corresponding parameters of processing costs 

except for the Enhanced Oil Recovery sink whose parameters are randomly selected by 

the MATLAB code explained before. The last step is to fill in the CS matrix by using for 

loops (k=6, Pd=8) 

𝐶𝑆 (𝑘, 𝑃𝑑) = 0         (33) 

𝐹𝐶𝑂2(6,8) =  

(

  
 

𝑒11 𝑒12 𝑒13 𝑒14 𝑒15 𝑒16 𝑒17 𝑒18
𝑒21 𝑒22 𝑒23 𝑒24 𝑒25 𝑒26 𝑒27 𝑒28
𝑒31 𝑒32 𝑒33 𝑒34 𝑒35 𝑒36 𝑒37 𝑒38
𝑒41 𝑒42 𝑒43 𝑒44 𝑒45 𝑒46 𝑒47 𝑒48
𝑒51 𝑒52 𝑒53 𝑒54 𝑒55 𝑒56 𝑒57 𝑒58
𝑒61 𝑒62 𝑒63 𝑒64 𝑒65 𝑒66 𝑒67 𝑒68)

  
 

     (34) 

𝐶𝑅𝑆(6,8) =  

(

  
 

𝑟11 𝑟12 𝑟13 𝑟14 𝑟15 𝑟16 𝑟17 𝑟18
𝑟21 𝑟22 𝑟23 𝑟24 𝑟25 𝑟26 𝑟27 𝑟28
𝑟31 𝑟32 𝑟33 𝑟34 𝑟35 𝑟36 𝑟37 𝑟38
𝑟41 𝑟42 𝑟43 𝑟44 𝑟45 𝑟46 𝑟47 𝑟48
𝑟51 𝑟52 𝑟53 𝑟54 𝑟55 𝑟56 𝑟57 𝑟58
𝑟61 𝑟62 𝑟63 𝑟64 𝑟65 𝑟66 𝑟67 𝑟68)

  
 

      (35) 

𝑓𝑜𝑟 𝑘 = 1: 6         (36) 

𝑓𝑜𝑟 𝑃𝑑 = 1: 8         (37) 

𝐶𝑆(𝑘, 𝑃𝑑) =  𝐹𝐶𝑂2(𝑘, 𝑃𝑑) ∗ 𝐶𝑅𝑆(𝑘, 𝑃𝑑) ∗ 365       (38) 

𝑒𝑛𝑑 
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𝑒𝑛𝑑 

𝐶𝑆𝐶 = 𝑠𝑢𝑚(𝐶𝑆, 1)            (39) 

𝐶𝑆𝑅 = 𝑠𝑢𝑚(𝐶𝑆𝐶, 2)            (40) 

The total actual cost for a specified realized scenario with the Binomial Lattice 

approach is: 

𝑇𝑜𝑡𝑐𝑜𝑠𝑡 = 𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝐶𝐶𝐴𝑃 + 𝐶𝑂𝑃 + 𝑃𝑂𝑃 + 𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 +

𝑃𝐶𝐴𝑃 + 𝐶𝑆𝑅            (41) 

 

C. Multi-scenario MATLAB Code Description 

The MATLAB code which was developed to calculate the actual total cost for 

each realized scenario using the Multi-scenario approach starts off by inputting the fixed 

data values calculated optimally by AMPL Multi-scenario model. The 𝑡𝑖
′𝑠 values are 

constant numbers from the optimal solution: 

𝐶𝑡𝑟𝑒𝑎𝑡 =  𝑡1             (42) 

𝐶𝐶𝐴𝑃𝑇 =  𝑡2             (43) 

𝐶𝑂𝑃𝑇 = 𝑡3             (44) 

𝑃𝐶𝐴𝑃𝑇 = 𝑡4             (45) 

𝑃𝑂𝑃𝑇 =  𝑡5             (46) 

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 =  𝑡6           (47) 

Now, to calculate 𝐶𝑠𝑖𝑛𝑘 a matrix of size k rows and Pd columns is defined and 

filled with zeros: 

𝐶𝑆(6,8) = 0             (48) 
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Then, another matrix for 𝐹𝐶𝑂2𝑇 is defined and its values are obtained from the 

optimal solution for the AMPL model which are the average flows of 𝐶𝑂2 coming to sink 

k in every time period Pd over all scenarios, each row refers to a sink k and each column 

refers to a time period Pd: 

𝐹𝐶𝑂2𝑇(6,8) =  

(

  
 

𝑠11 𝑠12 𝑠13 𝑠14 𝑠15 𝑠16 𝑠17 𝑠18
𝑠21 𝑠22 𝑠23 𝑠24 𝑠25 𝑠26 𝑠27 𝑠28
𝑠31 𝑠32 𝑠33 𝑠34 𝑠35 𝑠36 𝑠37 𝑠38
𝑠41 𝑠42 𝑠43 𝑠44 𝑠45 𝑠46 𝑠47 𝑠48
𝑠51 𝑠52 𝑠53 𝑠54 𝑠55 𝑠56 𝑠57 𝑠58
𝑠61 𝑠62 𝑠63 𝑠64 𝑠65 𝑠66 𝑠67 𝑠68)

  
 

     (49) 

Now, a third matrix CRS of size k*Pd is defined and its values are obtained from 

the parameters of processing cost into sink k, except for the Enhanced Oil Recovery sink, 

whose values are those selected randomly by the MATLAB code explained earlier: 

𝐶𝑅𝑆(6,8) =  

(

  
 

𝑟11 𝑟12 𝑟13 𝑟14 𝑟15 𝑟16 𝑟17 𝑟18
𝑟21 𝑟22 𝑟23 𝑟24 𝑟25 𝑟26 𝑟27 𝑟28
𝑟31 𝑟32 𝑟33 𝑟34 𝑟35 𝑟36 𝑟37 𝑟38
𝑟41 𝑟42 𝑟43 𝑟44 𝑟45 𝑟46 𝑟47 𝑟48
𝑟51 𝑟52 𝑟53 𝑟54 𝑟55 𝑟56 𝑟57 𝑟58
𝑟61 𝑟62 𝑟63 𝑟64 𝑟65 𝑟66 𝑟67 𝑟68)

  
 

   (50) 

Now, the CS matrix is filled by using for loops: 

𝑓𝑜𝑟 𝑘 = 1: 6            (51) 

𝑓𝑜𝑟 𝑃𝑑 = 1: 8           (52) 

𝐶𝑆(𝑘, 𝑃𝑑) = 𝐹𝐶𝑂2𝑇(𝑘, 𝑃𝑑) ∗ 𝐶𝑅𝑆(𝑘, 𝑃𝑑) ∗ 365       (53) 

𝑒𝑛𝑑 

𝑒𝑛𝑑 

 

Then, the total 𝐶𝑠𝑖𝑛𝑘 cost is calculated by summing up the individual elements 

of the CS matrix: 

𝐶𝑆𝐶 = 𝑠𝑢𝑚(𝐶𝑆, 1)           (54) 
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𝐶𝑆𝑅 = 𝑠𝑢𝑚(𝐶𝑆𝐶, 2)           (55) 

 

Hence, the total actual cost (𝑇𝑜𝑡𝑐𝑜𝑠𝑡) for a specified realized scenario using the 

Multi-scenario approach may be obtained according to the following: 

𝑇𝑜𝑡𝑐𝑜𝑠𝑡 = 𝐶𝑡𝑟𝑒𝑎𝑡 + 𝐶𝐶𝐴𝑃𝑇 + 𝐶𝑂𝑃𝑇 + 𝑃𝐶𝐴𝑃𝑇 + 𝑃𝑂𝑃𝑇 +

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐶𝑆𝑅           (56) 

 

D. Analyzing the performance of the two approaches 

The results of optimizing both approaches with a net carbon reduction target, 

NCRT, of 3% are presented in Table 3. Moreover, the resulting values of the flow of CO2 

coming from all sources to each sink in every period in the Binomial approach are 

presented in Tables 4 and 5, while those of the Multi-scenario approach are presented in 

Tables 6 and 7. 

Table 3: Optimal Solution of both approaches 

 Binomial Lattice Multi-scenario 

Objective Function -372,266,106 -943,331,624 

Net capture over all periods 21,850 15,627 

 

Table 4: Flow of CO2 coming from all sources to each sink in every period (periods 1 to 4) 

(Binomial) 

 Period 1 Period 2 Period 3 Period 4 

Algae 0 0 0 0 

EOR 2,914 2,914 2,914 2,914 

Greenhouse 0 0 0 0 

Methanol 0 0 0 0 

Storage 0 0 0 0 

Urea 0 0 0 0 
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Table 5: Flow of CO2 coming from all sources to each sink in every period (periods 5 to 8) 

(Binomial) 

 Period 5 Period 6 Period 7 Period 8 

Algae 0 0 0 0 

EOR 2,914 2,914 2,914 2,914 

Greenhouse 0 0 0 0 

Methanol 0 0 0 0 

Storage 0 0 0 0 

Urea 0 0 0 0 
 

Table 6: Flow of CO2 coming from all sources to each sink in every period (periods 1 to 4) (Multi-

scenario) 

 Period 1 Period 2 Period 3 Period 4 

Algae 0 0 0 0 

EOR 2,082 2,232 1,829 1,889 

Greenhouse 0 0 0 0 

Methanol 5 198 102 324 

Storage 0 0 0 0 

Urea 0 0 0 0 
 

Table 7: Flow of CO2 coming from all sources to each sink in every period (periods 5 to 8) (Multi-

scenario) 

 Period 5 Period 6 Period 7 Period 8 

Algae 0 0 0 0 

EOR 1,683 1,884 1,696 1,732 

Greenhouse 0 0 0 0 

Methanol 169 324 247 382 

Storage 0 0 0 0 

Urea 0 0 0 0 
 

The last step involved performing 100 simulations on both MATLAB codes, one 

scenario at a time, and the total actual cost is reported. All terms of the objective function 

take the optimal values obtained by AMPL model, except for the processing cost into the 

sinks which depends on the scenario chosen because it is based on the uncertain oil prices. 

First, 100 simulations of the Binomial Lattice approach are documented, followed by 

those of the Multi-scenario approach, which are outlined in Tables 8 and 9, respectively. 

It should be emphasized that the individual scenarios reported in Tables 8 and 9 represent 

specific cases that might occur, and are not solutions of the network problem itself. The 
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AMPL model has been primarily utilized to extract the optimal network solution upfront, 

but then, a single scenario will actually occur in reality, which would ultimately yield a 

different network cost compared to that attained from the AMPL model. It should be 

noted that the oil prices change very similarly in both approaches, and because a specific 

scenario is carried out individually each time, the exact oil price is associated with the 

respective scenario being carried out. The two different approaches have been compared 

in order to identify which of the two provides a better and a closer estimate of the network 

cost with that of the optimal case obtained from AMPL model. 

Table 8: Results attained for 100 scenarios implemented using the Binomial Lattice approach 

Scenario Number Scenario Total Cost ($) 
1 0    1    0    0    0    0    0    0 54,129,000 

2 1    1    0    1    1    0    1    0 -1,852,400,000 

3 1    0    0    0    0    0    1    0 -35,427,088 

4 1    0    1    1    1    0    0    1 -1,328,700,000 

5 1    0    0    1    0    1    0    1 -214,113,568 

6 1    1    0    1    0    1    0    0 -975,445,606 

7 1    0    0    0    1    0    0    1 -73,823,409 

8 1    1    1    1    0    0    0    0 -2,407,700,000 

9 1    1    0    0    0    1    0    0 -427,367,373 

10 1    0    1    1    0    1    1    0 -1,329,000,000 

11 1    1    0    0    1    0    1    0 -633,601,352 

12 0    1    0    0    0    1    1    0 8,819,088 

13 0    1    1    1    1    1    0    1 -3,055,800,000 

14 0    1    1    1    0    0    1    0 -550,958,855 

15 1    1    0    1    1    0    1    1 -2,581,200,000 

16 0    1    0    0    1    0    0    0 18,392,000 

17 1    0    0    0    1    1    0    0 -133,598,291 

18 1    1    1    0    1    0    1    0 -2,204,700,000 

19 0    1    1    1    0    1    0    1 -893,228,553 

20 0    0    1    1    0    1    1    0 -174,228,193 

21 0    0    0    1    1    1    1    0 -114,559,672 

22 0    0    0    0    1    0    0    1 120,923,582 

23 0    1    0    1    1    1    0    1 -639,557,568 

24 1    0    0    0    1    0    1    1 -133,704,652 

25 0    0    0    0    0    1    0    0 127,730,686 

26 1    0    1    0    0    0    0    1 -196,883,086 

27 1    1    1    0    0    0    1    1 -1,327,900,000 

28 1    0    0    0    1    1    1    0 -256,870,690 

29 0    0    1    0    1    1    0    0 -10,751,336 

30 0    0    1    1    1    0    1    0 -257,189,773 

31 1    1    1    1    1    0    1    0 -7,392,500,000 

32 1    1    0    0    1    0    0    0 -510,328,953 

33 0    0    1    0    1    0    0    1 49,023,546 

34 1    1    0    0    1    0    0    1 -550,639,772 

35 0    1    1    1    0    1    1    0 -1,246,200,000 

36 1    0    0    1    0    0    0    0 -104,561,738 
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37 1    0    1    1    0    0    1    1 -804,948,923 

38 0    1    0    1    0    0    0    0 -21,812,880 

39 1    1    0    0    0    0    0    1 -367,592,491 

40 1    0    1    0    1    0    1    1 -634,133,157 

41 1    1    1    0    0    0    0    1 -1,073,700,000 

42 1    0    0    1    0    0    1    1 -173,909,110 

43 1    1    1    1    1    0    0    0 -5,161,100,000 

44 0    1    0    0    1    1    1    1 -345,363,042 

45 1    0    1    1    0    0    1    0 -633,707,713 

46 0    0    1    1    0    0    1    0 -10,751,336 

47 0    1    1    0    1    0    0    1 -297,181,509 

48 1    0    0    1    0    1    1    1 -468,316,358 

49 1    0    0    1    1    1    0    0 -551,065,216 

50 0    0    1    1    0    1    0    1 -91,266,613 

51 1    1    1    1    1    1    0    0 -10,491,000,000 

52 0    0    0    1    0    0    0    1 111,457,453 

53 1    0    1    0    0    0    1    0 -216,453,510 

54 0    1    1    0    0    1    0    1 -214,219,929 

55 1    0    1    0    0    0    0    0 -187,416,957 

56 0    1    1    0    0    1    0    0 -173,909,110 

57 0    1    1    0    0    0    1    0 -133,704,652 

58 0    1    0    1    1    0    0    0 -174,015,471 

59 1    1    1    0    1    1    0    0 -2,932,700,000 

60 0    0    0    1    0    0    0    0 113,691,034 

61 1    0    1    0    0    1    0    0 -256,657,968 

62 0    1    1    1    1    0    0    0 -1,074,700,000 

63 0    0    1    0    0    1    0    1 68,487,609 

64 1    0    0    0    0    0    0    1 -30,853,565 

65 1    0    0    1    0    1    1    0 -297,075,148 

66 1    1    0    1    1    1    1    0 -4,811,900,000 

67 0    1    0    0    1    1    0    0 -50,849,000 

68 0    1    1    1    0    0    1    1 -722,200,065 

69 0    1    0    0    1    0    1    1 -50,956,000 

70 0    0    0    0    1    0    0    0 123,157,163 

71 0    1    0    0    0    1    0    1 28,389,512 

72 1    1    0    0    0    0    1    0 -387,162,915 

73 1    0    1    1    1    1    1    1 -7,742,700,000 

74 1    0    1    0    0    1    1    0 -379,930,367 

75 1    1    1    1    0    1    1    0 -5,891,500,000 

76 0    0    0    1    1    0    0    0 77,953,738 

77 0    0    1    0    1    1    1    1 -305,264,945 

78 0    1    1    0    1    1    0    1 -722,412,787 

79 1    0    0    0    0    1    0    0 -44,893,217 

80 0    0    0    0    0    0    0    0 131,453,321 

81 1    1    0    1    0    0    1    0 -804,417,118 

82 1    0    0    0    0    0    0    0 -28,619,984 

83 1    0    1    0    1    1    0    1 -805,161,645 

84 1    0    0    0    1    1    1    1 -428,111,900 

85 1    0    1    1    0    1    0    1 -975,977,411 

86 0    0    0    0    0    1    0    1 125,497,105 

87 0    0    0    1    1    1    0    0 8,712,727 

88 0    0    1    1    0    1    1    1 -345,469,403 

89 1    0    0    1    1    0    0    1 -297,075,148 

90 1    0    0    0    1    1    0    1 -173,909,110 

91 1    0    0    1    1    0    1    0 -380,036,728 

92 1    0    1    1    0    1    1    1 -2,057,800,000 

93 1    1    1    0    0    1    1    1 -2,580,800,000 

94 1    0    0    1    1    0    1    1 -551,277,938 



39 
 

95 0    1    0    1    1    0    1    1 -468,529,080 

96 1    0    1    0    0    1    0    1 -296,968,787 

97 0    0    1    0    0    0    1    0 87,419,867 

98 1    1    0    1    0    1    0    1 -1,146,700,000 

99 0    1    0    1    0    1    1    0 -214,326,290 

100 0    1    0    0    0    0    1    0 47,322,000 

* 1 represents an increase in the oil price while 0 represents a decrease in the oil price, for each time 

period. 

 

Table 9: Results attained for 100 scenarios implemented using the Multi-scenario approach 

Scenario Number Scenario Total Cost ($) 
1 0    1    0    0    0    0    0    0 2,033,200 

2 1    1    0    1    1    0    1    0 -1,182,600,000 

3 1    0    0    0    0    0    1    0 -61,079,000 

4 1    0    1    1    1    0    0    1 -846,430,000 

5 1    0    0    1    0    1    0    1 -171,470,000 

6 1    1    0    1    0    1    0    0 -671,690,000 

7 1    0    0    0    1    0    0    1 -84,065,000 

8 1    1    1    1    0    0    0    0 -1,568,000,000 

9 1    1    0    0    0    1    0    0 -330,249,806 

10 1    0    1    1    0    1    1    0 -848,230,000 

11 1    1    0    0    1    0    1    0 -450,410,000 

12 0    1    0    0    0    1    1    0 -25,094,000 

13 0    1    1    1    1    1    0    1 -1,896,600,000 

14 0    1    1    1    0    0    1    0 -371,290,000 

15 1    1    0    1    1    0    1    1 -1,615,800,000 

16 0    1    0    0    1    0    0    0 -19,316,000 

17 1    0    0    0    1    1    0    0 -121,450,000 

18 1    1    1    0    1    0    1    0 -1,403,800,000 

19 0    1    1    1    0    1    0    1 -583,630,000 

20 0    0    1    1    0    1    1    0 -129,930,000 

21 0    0    0    1    1    1    1    0 -91,649,000 

22 0    0    0    0    1    0    0    1 49,768,000 

23 0    1    0    1    1    1    0    1 -420,890,000 

24 1    0    0    0    1    0    1    1 -119,420,000 

25 0    0    0    0    0    1    0    0 53,737,000 

26 1    0    1    0    0    0    0    1 -162,140,000 

27 1    1    1    0    0    0    1    1 -884,070,000 

28 1    0    0    0    1    1    1    0 -193,700,000 

29 0    0    1    0    1    1    0    0 -31,616,000 

30 0    0    1    1    1    0    1    0 -177,840,000 

31 1    1    1    1    1    0    1    0 -4,520,600,000 

32 1    1    0    0    1    0    0    0 -378,160,000 

33 0    0    1    0    1    0    0    1 5,764,300 

34 1    1    0    0    1    0    0    1 -402,120,000 

35 0    1    1    1    0    1    1    0 -789,110,000 

36 1    0    0    1    0    0    0    0 -104,500,000 

37 1    0    1    1    0    0    1    1 -532,200,000 

38 0    1    0    1    0    0    0    0 -45,377,000 

39 1    1    0    0    0    0    0    1 -292,870,000 

40 1    0    1    0    1    0    1    1 -421,470,000 

41 1    1    1    0    0    0    0    1 -733,990,000 

42 1    0    0    1    0    0    1    1 -145,480,000 

43 1    1    1    1    1    0    0    0 -3,212,700,000 

44 0    1    0    0    1    1    1    1 -236,360,000 
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45 1    0    1    1    0    0    1    0 -430,410,000 

46 0    0    1    1    0    0    1    0 -31,689,000 

47 0    1    1    0    1    0    0    1 -212,270,000 

48 1    0    0    1    0    1    1    1 -321,550,000 

49 1    0    0    1    1    1    0    0 -378,220,000 

50 0    0    1    1    0    1    0    1 -81,639,000 

51 1    1    1    1    1    1    0    0 -6,523,400,000 

52 0    0    0    1    0    0    0    1 43,632,000 

53 1    0    1    0    0    0    1    0 -173,530,000 

54 0    1    1    0    0    1    0    1 -164,360,000 

55 1    0    1    0    0    0    0    0 -156,510,000 

56 0    1    1    0    0    1    0    0 -140,400,000 

57 0    1    1    0    0    0    1    0 -114,410,000 

58 0    1    0    1    1    0    0    0 -136,290,000 

59 1    1    1    0    1    1    0    0 -1,874,400,000 

60 0    0    0    1    0    0    0    0 44,959,000 

61 1    0    1    0    0    1    0    0 -199,520,000 

62 0    1    1    1    1    0    0    0 -685,510,000 

63 0    0    1    0    0    1    0    1 17,004,000 

64 1    0    0    0    0    0    0    1 -58,417,000 

65 1    0    0    1    0    1    1    0 -219,760,000 

66 1    1    0    1    1    1    1    0 -2,961,100,000 

67 0    1    0    0    1    1    0    0 -62,323,000 

68 0    1    1    1    0    0    1    1 -473,070,000 

69 0    1    0    0    1    0    1    1 -60,296,000 

70 0    0    0    0    1    0    0    0 51,095,000 

71 0    1    0    0    0    1    0    1 -13,703,000 

72 1    1    0    0    0    0    1    0 -304,260,000 

73 1    0    1    1    1    1    1    1 -4,674,000,000 

74 1    0    1    0    0    1    1    0 -271,770,000 

75 1    1    1    1    0    1    1    0 -3,653,700,000 

76 0    0    0    1    1    0    0    0 23,610,000 

77 0    0    1    0    1    1    1    1 -205,660,000 

78 0    1    1    0    1    1    0    1 -472,900,000 

79 1    0    0    0    0    1    0    0 -67,198,000 

80 0    0    0    0    0    0    0    0 56,052,000 

81 1    1    0    1    0    0    1    0 -561,140,000 

82 1    0    0    0    0    0    0    0 -57,089,000 

83 1    0    1    0    1    1    0    1 -532,030,000 

84 1    0    0    0    1    1    1    1 -295,490,000 

85 1    0    1    1    0    1    0    1 -642,750,000 

86 0    0    0    0    0    1    0    1 52,409,000 

87 0    0    0    1    1    1    0    0 -19,397,000 

88 0    0    1    1    0    1    1    1 -231,720,000 

89 1    0    0    1    1    0    0    1 -219,380,000 

90 1    0    0    0    1    1    0    1 -145,410,000 

91 1    0    0    1    1    0    1    0 -267,670,000 

92 1    0    1    1    0    1    1    1 -1,281,400,000 

93 1    1    1    0    0    1    1    1 -1,633,300,000 

94 1    0    0    1    1    0    1    1 -369,460,000 

95 0    1    0    1    1    0    1    1 -310,330,000 

96 1    0    1    0    0    1    0    1 -223,480,000 

97 0    0    1    0    0    0    1    0 28,750,000 

98 1    1    0    1    0    1    0    1 -773,480,000 

99 0    1    0    1    0    1    1    0 -160,640,000 

100 0    1    0    0    0    0    1    0 -1,956,600 
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From the results attained, it has been observed that both approaches can be 

effective for decision-making, however, while both capture uncertainty using a multi-

period base model, the two approaches differ in several aspects, especially in terms of the 

amount of random data it utilizes in the execution process. Hence, any decision maker 

should be aware of those differences. First off, it has been observed that the Binomial 

Lattice approach is able to provide an optimal multi-period carbon network solution that 

is based on average estimates of the CRS values, without taking into account the 

differences in network connectivity that could probably occur over the different time 

periods. On the other hand, the Multi-scenario approach can provide multi-period carbon 

network solutions, while accounting for network connectivity differences that may result 

due to the uncertain oil prices (which can either increase or decrease in each time period).  

When comparing the CRS execution procedure of both methods, the Binomial 

model, involves a MATLAB code that calculates expected CRS values for every time 

period; thus only 8 CRS values have been utilized in this study as input values into the 

AMPL model for extracting optimal network solutions. On the other hand, the MATLAB 

code that was used to calculate the CRS values for the Multi-scenario approach results in 

100 different scenarios, each of which consisting of 8 time periods; thus, in total 800 CRS 

values have been imported into the AMPL model for extracting optimal network 

solutions, averaged over all 100 scenarios. Thus, the Binomial approach uses expected 

CRS values that are calculated using the probabilities of the uncertain oil prices going up 

or down together with the new price predictions each case. On the contrary, the Multi-

scenario approach utilizes a more rigorous approach for calculating CRS values, using 

data from various scenarios that might occur. Hence, the Multi-scenario approach 

calculates more exact CRS values given the current state of the oil price (i.e. whether it 
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increased or decreased in this specific period of this specific scenario under study), then 

uses all attained CRS values to obtain the optimal network solution. 

Analyzing the different results that are outlined in Tables 8 and 9 associated with 

every scenario, one can realize several differences. The AMPL model of the Binomial 

Lattice approach estimates a revenue of $ 372,266,106 as an optimal solution. Going 

through the individual scenarios, one can spot a case that generates a revenue of $ 

10,491,000,000, differing by almost $ 10 Billion, compared to the optimal solution that 

was extracted through AMPL. Moreover, another odd case is reported, where the network 

is predicted to be highly un-profitable, with a total reported cost of around $ 131 Million. 

When analyzing the scenarios generated using the Multi-scenario approach, more 

realistic network cost estimates have been reported. The AMPL model reports an optimal 

solution with a suggested revenue of $ 943,331,624, which is obviously higher than the 

revenue suggested by the optimal AMPL solution obtained using the Binomial Lattice 

approach. This is most likely due to the fact that the Multi-scenario approach is able to 

generate different scenarios that might occur not only average values as it is the case with 

the Binomial approach. The most profitable scenario was reported to result in a revenue 

of $ 6,523,400,000 which differs by almost $ 5.5 Billion when compared to the estimated 

Multi-scenario solution generated by AMPL. Hence, almost half of the difference is 

reported using the Multi-scenario approach, compared to the Binomial Lattice case. 

Moreover, the most expensive scenario was reported at a total actual cost of $ 56,052,000, 

which is much more realistic than the most expensive case reported by the Binomial 

Lattice solutions. 
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CHAPTER V 

CONCLUSION  

 Two different stochastic linearized multi-period models that can be utilized to 

generate optimal carbon integration networks have been proposed in this paper: (1) the 

Binomial Lattice model and (2) the Multi-scenario model. Ultimately, the goal was to be 

able to determine the best CO2 source-to-sink allocations, under uncertain oil price 

conditions.  Both approaches have been reported to be effective and easy to implement. 

However, several differences between the two methods have been reported. As for which 

approach to recommend, it has been found that it completely depends on the desired 

quality of information that could help achieve a viable and informed decision. In some 

cases, the use of average estimates provided by Binomial Lattice approach, may prove to 

be enough, while in other cases when a more detailed analysis is required, where the 

Multi-scenario approach might prove to be more rigorous in terms of the quality of 

network solutions that can be extracted under uncertain conditions. When it comes to 

decision-making activities, having a specified list of criteria before making any real 

decisions would certainly be useful, and it should be emphasized that exact same 

solutions may or may not be attainable in real situations, depending on the circumstances. 
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NOMENCLATURE 

 

𝜇𝑖  The mean of a normally distributed random variable (log ratio of 

the next state) 

𝑠𝑖    Standard deviation of a normally distributed random variable 

𝑟   Interest rate (%) 

𝑁    Number of trading days in a year (taken to be equal to 252 days) 

�̅�𝑖  The mean of a normally distributed random variable (logarithm of 

the ratio of tomorrow’s price to today’s price) 

𝛼    Confidence level (dimensionless) 

𝑓(𝑥)    Objective function in chance constrained programming model 

𝑥    The decision variables in chance constrained programming model 

𝐴  Coefficients of the decision variables in chance constrained 

programming model 

𝑏    Constants in chance constrained programming model 

𝐸[𝑌]    The expected value of a probabilistic function 

𝑌    The objective function f(x) 

𝑃𝑟   Probability (%) 

𝑉𝑎𝑟(𝑌)   Variance of Y 

𝑢    The factor for the price increase (dimensionless) 

𝑝    Probability 

𝑑    The factor for the price decrease (dimensionless) 

𝑔𝑟    The expected yearly growth rate 

𝑆𝑇    The price at the end of the whole period ($) 

𝑆𝑠    The initial stock price ($) 

∆𝑡    The period length (years) 

𝐶    The price of the option ($) 

𝑆0    The current future price ($/barrel) 

𝑁(𝑥)    The standard cumulative normal probability distribution 

𝐾    The strike price ($) 

𝑇    The expiration time (years) 

𝜎    The volatility of the oil price ($/barrel) 
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𝑞𝑢    The probability to have an increase in the oil price 

𝑞𝑑    The probability to have a decrease in the oil price 

𝑟′    The rate of increase of the different oil futures prices 

𝑝𝑖    The probability of oil price increase/ decrease in time period I 

𝑜𝑝𝑖    The oil price at a specific node in time period I ($/barrel) 

𝑃𝑑          Time period 

𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  Positive, treatment and separation cost of 𝐶𝑂2 from source s to 

satisfy sink k's requirement over all periods ($) 

𝐶𝐶𝐴𝑃  Positive, total capital cost of the compressors for all s-k 

connections over all periods ($) 

𝐶𝑂𝑃                           Positive, total operating cost of the compressors over all periods ($) 

𝑃𝑂𝑃           Positive, total operating cost of the pump over all periods ($) 

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛  Positive, total transportation cost over all periods ($) 

𝑆1    The matrix for source 1 

𝑦𝑖𝑗    The inputs for each matrix for each source 

𝑆1𝐶    The summation of the matrix 𝑆1 along the columns 

𝑆2𝐶    The summation of the matrix 𝑆2 along the columns 

𝑆3𝐶    The summation of the matrix 𝑆3 along the columns 

𝑆4𝐶    The summation of the matrix 𝑆4 along the columns 

𝑃𝐶𝐴𝑃    Total pumping capital cost ($) 

𝐶𝑆    The matrix that has CRS values 

𝐹𝐶𝑂2  Flow of 𝐶𝑂2 coming from all sources to each sink k in every time 

period 𝑡𝑜𝑛 𝐶𝑂2 𝑑𝑎𝑦⁄  

𝐶𝑅𝑆  Processing costs of 𝐶𝑂2 streams into the sinks ($) 

𝐶𝑆𝐶    The summation of CS elements along the columns 

𝐶𝑆𝑅    The summation of CSC elements along the rows 

𝑇𝑜𝑡𝑐𝑜𝑠𝑡   The total cost ($) 

𝐶𝑡𝑟𝑒𝑎𝑡   Positive, Average treatment and separation cost of 𝐶𝑂2 from 

source s to satisfy sink k's requirement, over all periods and 

scenarios ($) 

𝐶𝐶𝐴𝑃𝑇  Positive, Average capital cost of the compressors, for all periods, 

all scenarios ($) 



46 
 

𝐶𝑂𝑃𝑇  Positive, Average operating cost of the compressors, over all 

periods and scenarios ($) 

𝑃𝐶𝐴𝑃𝑇  Positive, Average capital cost of the pumps used in all periods and 

scenarios ($) 

𝑃𝑂𝑃𝑇  Positive, Average operating cost of the pumps over all periods and 

scenarios ($) 

𝐹𝐶𝑂2𝑇[𝑘, 𝑃𝑑]  Positive, Average flow of 𝐶𝑂2 to sink k coming from all sources 

and treatment units in every time period, over all scenarios (ton 

CO2/day) 

𝑠𝑖𝑗    The inputs for the FCO2T matrix 

𝑟𝑖𝑗    The inputs for the CRS matrix 
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APPENDICES 

 

Appendix A: Linearized Optimization-based Model for the Binomial Lattice 

Approach: 

The objective function, of the linearized optimization-based model for the 

Binomial Lattice, is to minimize the total cost subject to constraints that should be 

satisfied. This model is a modified version of the base model presented by Al-Mohannadi 

and Linke [2]. The total cost is a combination of several individual costs: treatment, 

compression, pumping, transportation, and processing costs. The constraints are mainly 

placed to avoid any violations on the limits of CO2 available in the sources, and to satisfy 

the requirements and capacities of the sinks, the quality and the pressure of CO2 processed 

into each sink, the merging of treated and untreated flows, and the net carbon reduction 

target to be achieved. 

𝑀𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑀𝑖𝑛 𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +  𝐶𝐶𝐴𝑃 +  𝐶𝑂𝑃 +  ∑ ∑ 𝑃𝐶𝐴𝑃[𝑠, 𝑘]𝐾𝑆 +  𝑃𝑂𝑃 +
 𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐶𝑠𝑖𝑛𝑘           (A.1) 

 

Subject to 

𝑄𝑝[𝑠, 𝑃𝑑] ≥ 𝐿𝑆[𝑠] ∗ 𝑤[𝑠, 𝑃𝑑]          ∀ 𝑆, 𝑃𝑑        (A.2) 

𝑄𝑝[𝑠, 𝑃𝑑] ≤ 𝑅[𝑠] ∗ 𝑤[𝑠, 𝑃𝑑]          ∀ 𝑆, 𝑃𝑑        (A.3) 

𝑄𝑝[𝑠, 𝑃𝑑] =  ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇𝐾 + ∑ 𝑈[𝑠, 𝑘, 𝑃𝑑]𝐾           ∀ 𝑆, 𝑃𝑑    (A.4) 

𝑄𝑄𝑝[𝑠, 𝑘, 𝑃𝑑] =  ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇 + 𝑈[𝑠, 𝑘, 𝑃𝑑]          ∀ 𝑆, 𝐾, 𝑃𝑑    (A.5) 

𝑅[𝑠] ∗ 𝑦𝑟[𝑠] ≥  ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑] ∗ 𝑦𝑢[𝑠]𝑇𝐾 + ∑ 𝑈[𝑠, 𝑘, 𝑃𝑑]𝐾  ∗ 𝑦𝑢[𝑠]           ∀ 𝑆, 𝑃𝑑   (A.6) 

𝐹𝑝[𝑘, 𝑃𝑑] =  ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇𝑆 + ∑ 𝑈[𝑠, 𝑘, 𝑃𝑑]𝑆            ∀ 𝐾, 𝑃𝑑    (A.7) 

𝐹𝑝[𝑘, 𝑃𝑑] ∗ 𝑍𝑚𝑖𝑛[𝑘] ≤ ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇𝑆 ∗ 𝑦[𝑠, 𝑡] + ∑ 𝑈[𝑠, 𝑘, 𝑃𝑑] ∗    𝑦𝑢[𝑠]𝑆          ∀ 𝐾, 𝑃𝑑 

      (A.8) 

𝐹𝐶𝑂2𝑝[𝑘, 𝑃𝑑] =  ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇𝑆 ∗ 𝑦[𝑠, 𝑡] + ∑ 𝑈[𝑠, 𝑘, 𝑃𝑑] ∗  𝑦𝑢[𝑠]𝑆           ∀ 𝐾, 𝑃𝑑  
      (A.9) 

𝑦𝑢[𝑠] = 𝑦𝑟[𝑠]          ∀ 𝑆                    

(A.10) 

𝐹𝑝[𝑘, 𝑃𝑑] ≤ 𝐺𝑚𝑎𝑥[𝑘]         ∀ 𝐾, 𝑃𝑑                       
(A.11) 

𝐿𝑝[𝑠, 𝑘] ∗ 𝑥[𝑠, 𝑘] ≤  ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇 + 𝑈[𝑠, 𝑘, 𝑃𝑑]          ∀ 𝑆, 𝐾, 𝑃𝑑              

(A.12) 

𝑀𝑝[𝑠, 𝑘] ∗ 𝑥[𝑠, 𝑘] ≥  ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇 + 𝑈[𝑠, 𝑘, 𝑃𝑑]          ∀ 𝑆, 𝐾, 𝑃𝑑 
   

(A.13) 

𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑃𝑑] =  
1000∗0.01

24∗36
∗
𝑄𝑄𝑝[𝑠,𝑘,𝑃𝑑]∗𝑑𝑒𝑙𝑝𝑝𝑢𝑚𝑝[𝑠,𝑘]

630∗0.7
             ∀ 𝑆, 𝐾, 𝑃𝑑                   (A.14) 

𝑃𝐶𝑂𝑀𝑃[𝑠, 𝑘, 𝑃𝑑] = 𝑄𝑄𝑝[𝑠, 𝑘, 𝑃𝑑] ∗ 𝑆𝑃𝑃[𝑠, 𝑘] ∗
1000

24
          ∀ 𝑆, 𝐾, 𝑃𝑑                  (A.15) 

𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑝[𝑃𝑑] =  ∑ ∑ ∑ 𝑦[𝑠, 𝑡]  ∗  𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑]  ∗  𝐸𝑇[𝑡]  ∗  𝐶𝑃𝑇[𝑠, 𝑡]  ∗ 𝑑𝑎𝑦𝑠𝑇𝐾𝑆     ∀ 𝑃𝑑  

                (A.16) 

𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =  ∑ 𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑝[𝑃𝑑]𝑃𝑑                  (A.17) 

 

𝐶𝐶𝐴𝑃𝑖[𝑠, 𝑘] = 158902 ∗ 𝐶𝑅𝐹 ∗ (
𝑃𝐶𝑂𝑀𝑃[𝑠,𝑘,𝑃𝑑]

224
)
1

               ∀ 𝑆, 𝐾, 𝑃𝑑                  (A.18) 

𝐶𝐶𝐴𝑃 =  ∑ ∑ 𝐶𝐶𝐴𝑃𝑖[𝑠, 𝑘]𝐾𝑆                                      (A.19) 
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𝐶𝑂𝑃𝑖[𝑠, 𝑘, 𝑃𝑑] = 0.8 ∗ 𝑃𝐶𝑂𝑀𝑃[𝑠, 𝑘, 𝑃𝑑] ∗ 𝑒𝑙𝑒𝑐 ∗ 𝑑𝑎𝑦𝑠 ∗ 24          ∀ 𝑆, 𝐾, 𝑃𝑑                 (A.20) 

𝐶𝑂𝑃𝑝[𝑃𝑑] =  ∑ ∑ 𝐶𝑂𝑃𝑖[𝑠, 𝑘, 𝑃𝑑]𝐾𝑆           ∀ 𝑃𝑑                (A.21) 

𝐶𝑂𝑃 =  ∑ 𝐶𝑂𝑃𝑝[𝑃𝑑]𝑃𝑑                    (A.22) 

𝑃𝐶𝐴𝑃[𝑠, 𝑘] = 𝐶𝑅𝐹 ∗ (
1.11∗106∗𝑃𝑃𝑈𝑀𝑃[𝑠,𝑘,𝑃𝑑]

1000
+ 𝑧𝑝[𝑠, 𝑘, 𝑃𝑑] ∗ 0.07 ∗ 106)    ∀ 𝑆, 𝐾, 𝑃𝑑    

                   (A.23) 

𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑃𝑑] ≤ 10000000 ∗ 𝑧𝑝[𝑠, 𝑘, 𝑃𝑑]          ∀ 𝑆, 𝐾, 𝑃𝑑              (A.24) 

𝑃𝑂𝑃𝑖[𝑠, 𝑘, 𝑃𝑑] = 0.8 ∗ 𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑃𝑑] ∗ 𝑒𝑙𝑒𝑐 ∗ 𝑑𝑎𝑦𝑠 ∗ 24          ∀ 𝑆, 𝐾, 𝑃𝑑            (A.25) 

𝑃𝑂𝑃𝑝[𝑃𝑑] =  ∑ ∑ 𝑃𝑂𝑃𝑖[𝑠, 𝑘, 𝑃𝑑]𝐾𝑆           ∀ 𝑃𝑑                (A.26) 

𝑃𝑂𝑃 =  ∑ 𝑃𝑂𝑃𝑝[𝑃𝑑]𝑃𝑑                    (A.27) 

𝑃[𝑠, 𝑘] = 4 ∗
𝑑𝑒𝑙[𝑠,𝑘]

2
          ∀ 𝑆, 𝐾                  (A.28) 

𝑄𝑄𝑝[𝑠, 𝑘, 𝑃𝑑] ≤ 𝑟𝑎𝑡𝑖𝑜[𝑠, 𝑘] ∗ 2 ∗ 𝑃[𝑠, 𝑘]          ∀ 𝑆, 𝐾, 𝑃𝑑               (A.29) 

𝑑𝑒𝑙[𝑠, 𝑘] ≤ 10000 ∗ 𝑑[𝑠, 𝑘]         ∀ 𝑆, 𝐾                 (A.30) 

𝐶𝑝𝑖𝑝𝑒[𝑠, 𝑘] = 𝐶𝑅𝐹 ∗  (96904 ∗ 𝑑[𝑠, 𝑘] + 95230 ∗ 2 ∗ 𝑑𝑒𝑙[𝑠, 𝑘])          ∀ 𝑆, 𝐾            (A.31) 

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑ 𝐻[𝑠, 𝑘] ∗ 𝐶𝑝𝑖𝑝𝑒[𝑠, 𝑘]𝐾𝑆                 (A.32) 

𝐶𝑠𝑖𝑛𝑘𝑖[𝑘, 𝑃𝑑] =  𝐹𝐶𝑂2𝑝[𝑘, 𝑃𝑑] ∗ 𝐶𝑅𝑆[𝑘, 𝑃𝑑] ∗ 𝑑𝑎𝑦𝑠          ∀ 𝐾, 𝑃𝑑             (A.33) 

𝐶𝑠𝑖𝑛𝑘𝑝[𝑃𝑑] =  ∑ 𝐶𝑠𝑖𝑛𝑘𝑖[𝑘, 𝑃𝑑]𝐾           ∀ 𝑃𝑑                (A.34) 

𝐶𝑠𝑖𝑛𝑘 =  ∑ 𝐶𝑠𝑖𝑛𝑘𝑝[𝑃𝑑]𝑃𝑑                     

(A.35) 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝑝[𝑃𝑑] =  ∑ 𝐹𝐶𝑂2𝑝[𝑘, 𝑃𝑑] ∗ (1 − 𝐸𝐾[𝑘])𝐾 − ∑ ∑ ∑ 𝐸𝑇[𝑡] ∗ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑃𝑑] ∗ 𝑦[𝑠, 𝑡] ∗𝑇𝐾𝑆

𝑔𝑎𝑚𝑚𝑎[𝑡] −  ∑ ∑ (𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑃𝑑] + 𝑃𝐶𝑂𝑀𝑃[𝑠, 𝑘, 𝑃𝑑]) ∗ 𝐸𝑃 ∗
24

1000𝐾𝑆      ∀ 𝑃𝑑   

                  (A.36) 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸 =  ∑ 𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝑝[𝑃𝑑]𝑃𝑑                 (A.37) 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸 ≥ 𝑁𝐶𝑅𝑇                   (A.38) 

 

 

Appendix B: MATLAB Code for obtaining the CRS values for the Binomial Lattice 

𝐴(8,9) = 0           

 (B.1) 

𝐴 =  

(

 
 
 
 
 

1 1 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0
1 4 6 4 1 0 0 0 0
1 5 10 10 5 1 0 0 0
1 6 15 20 15 6 1 0 0
1 7 21 35 35 21 7 1 0
1 8 28 56 70 56 28 8 1)

 
 
 
 
 

       

  (B.2) 

𝐶𝑅𝑆𝑝𝑒𝑟𝑖𝑜𝑑(1,8) = 0          

 (B.3) 

𝑆0 = 49.25           
 (B.4) 

𝑢 = 2.064           

 (B.5) 

𝑑 = 0.485           
 (B.6) 

𝑞𝑢 = 0.365           

 (B.7) 

𝑞𝑑 = 0.635           
 (B.8) 

𝑓𝑜𝑟 𝑖 = 1: 𝑠𝑖𝑧𝑒(𝐴, 1)          

 (B.9) 

𝑧 = 0                          
(B.10) 

𝑓𝑜𝑟 𝑗 = 1: 𝑠𝑖𝑧𝑒(𝐴, 2)                        

(B.11) 
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𝑧 = 𝑧 + 𝐴(𝑖, 𝑗) ∗ (𝑞𝑢 ∗ 𝑢)
(𝑖−𝑗+1) ∗ (𝑞𝑑 ∗ 𝑑)

(𝑗−1) ∗ 𝑆0                        

(B.12) 

𝑒𝑛𝑑 

𝐶𝑅𝑆𝑝𝑒𝑟𝑖𝑜𝑑(1, 𝑖) =  −𝑧                                       

(B.13) 

𝑒𝑛𝑑 

𝐶𝑅𝑆𝑝𝑒𝑟𝑖𝑜𝑑                        

(B.14) 

 

Appendix C: Linearized Optimization-based Model for the Multi-Scenario 

Approach 

The objective function, of the linearized optimization-based model for the Multi-

scenario approach, is to minimize the total cost subject to constraints that should be 

satisfied. The model below is a modified version of the one presented by Al-Mohannadi 

and Linke [2]. This version of the model has been modified to incorporate the presence 

of different scenarios, unlike the model presented in Appendix A. The parameters, 

variables, and constraints have all been modified to account for each scenario that might 

happen. 

𝑀𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝐶𝑡𝑟𝑒𝑎𝑡 + 𝐶𝐶𝐴𝑃𝑇 + 𝐶𝑂𝑃𝑇 +  𝑃𝐶𝐴𝑃𝑇 + 𝑃𝑂𝑃𝑇 + 𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 + ∑
𝐶𝑠𝑖𝑛𝑘[𝑖]

𝑐𝑐  

             (C.1) 

Subject to 

𝑄𝑝[𝑠, 𝑖, 𝑃𝑑] ≥ 𝐿𝑆[𝑠] ∗ 𝑤[𝑠, 𝑖, 𝑃𝑑]          ∀ 𝑆, 𝑐, 𝑃𝑑       (C.2) 

𝑄𝑝[𝑠, 𝑖, 𝑃𝑑] ≤ 𝑅[𝑠] ∗ 𝑤[𝑠, 𝑖, 𝑃𝑑]          ∀ 𝑆, 𝑐, 𝑃𝑑       (C.3) 

𝑄𝑝[𝑠, 𝑖, 𝑃𝑑] =  ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇𝐾 + ∑ 𝑈[𝑠, 𝑘, 𝑖, 𝑃𝑑]𝐾           ∀ 𝑆, 𝑐, 𝑃𝑑   (C.4) 

𝑄𝑄𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑] =  ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇 + 𝑈[𝑠, 𝑘, 𝑖, 𝑃𝑑]          ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑   (C.5) 

𝑅[𝑠] ∗ 𝑦𝑟[𝑠] ≥  ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗ 𝑦𝑢[𝑠]𝑇𝐾 + ∑ 𝑈[𝑠, 𝑘, 𝑖, 𝑃𝑑]𝐾  ∗ 𝑦𝑢[𝑠]           ∀ 𝑆, 𝑐, 𝑃𝑑  

           (C.6) 

𝐹𝑝[𝑘, 𝑖, 𝑃𝑑] =  ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇𝑆 + ∑ 𝑈[𝑠, 𝑘, 𝑖, 𝑃𝑑]𝑆            ∀ 𝐾, 𝑐, 𝑃𝑑   (C.7) 

𝐹𝑝[𝑘, 𝑖, 𝑃𝑑] ∗ 𝑍𝑚𝑖𝑛[𝑘] ≤ ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇𝑆 ∗ 𝑦[𝑠, 𝑡] + ∑ 𝑈[𝑠, 𝑘, 𝑖, 𝑃𝑑] ∗𝑆

                  𝑦𝑢[𝑠]      ∀ 𝐾, 𝑐, 𝑃𝑑          (C.8) 

𝐹𝐶𝑂2𝑝[𝑘, 𝑖, 𝑃𝑑] =  ∑ ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇𝑆 ∗ 𝑦[𝑠, 𝑡] + ∑ 𝑈[𝑠, 𝑘, 𝑖, 𝑃𝑑] ∗𝑆

                                     𝑦𝑢[𝑠]         ∀ 𝐾, 𝑐, 𝑃𝑑                       (C.9) 

𝐹𝐶𝑂2𝑇 [𝑘, 𝑃𝑑] =  ∑
𝐹𝐶𝑂2𝑝[𝑘,𝑖,𝑃𝑑]

𝑐𝑐           ∀ 𝐾, 𝑃𝑑                (C.10) 

𝑦𝑢[𝑠] = 𝑦𝑟[𝑠]          ∀ 𝑆                   (C.11) 

𝐹𝑝[𝑘, 𝑖, 𝑃𝑑] ≤ 𝐺𝑚𝑎𝑥[𝑘]         ∀ 𝐾, 𝑐, 𝑃𝑑                 (C.12) 

𝐿𝑝[𝑠, 𝑘] ∗ 𝑥[𝑠, 𝑘] ≤  ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇 + 𝑈[𝑠, 𝑘, 𝑖, 𝑃𝑑]          ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑            (C.13) 

𝑀𝑝[𝑠, 𝑘] ∗ 𝑥[𝑠, 𝑘] ≥  ∑ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗ 𝐸𝑇[𝑡]𝑇 + 𝑈[𝑠, 𝑘, 𝑖, 𝑃𝑑]          ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑            (C.14) 

𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑖, 𝑃𝑑] =  
1000∗0.01

24∗36
∗
𝑄𝑄𝑝[𝑠,𝑘,𝑖,𝑃𝑑]∗𝑑𝑒𝑙𝑝𝑝𝑢𝑚𝑝[𝑠,𝑘]

630∗0.7
           ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑            (C.15) 

𝑃𝐶𝑂𝑀𝑃[𝑠, 𝑘, 𝑖, 𝑃𝑑] = 𝑄𝑄𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑] ∗ 𝑆𝑃𝑃[𝑠, 𝑘] ∗
1000

24
          ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑             (C.16) 

𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑝[𝑖, 𝑃𝑑] =  ∑ ∑ ∑ 𝑦[𝑠, 𝑡] ∗ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗ 𝐸𝑇[𝑡] ∗ 𝐶𝑃𝑇[𝑠, 𝑡] ∗ 𝑑𝑎𝑦𝑠𝑇𝐾𝑆           ∀ 𝑐, 𝑃𝑑 
                   (C.17) 

𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡[𝑖] =  ∑ 𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑝[𝑖, 𝑃𝑑]𝑃𝑑           ∀ 𝑐               (C.18) 

𝐶𝑡𝑟𝑒𝑎𝑡 =  ∑
𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡[𝑖]

𝑐𝑐                    (C.19) 

𝐶𝐶𝐴𝑃𝑖[𝑠, 𝑘, 𝑖, 𝑃𝑑] = 158902 ∗ 𝐶𝑅𝐹 ∗ (
𝑃𝐶𝑂𝑀𝑃[𝑠,𝑘,𝑖,𝑃𝑑]

224
)
1

          ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑             (C.20) 

𝐶𝐶𝐴𝑃𝑝[𝑖, 𝑃𝑑] =  ∑ ∑ 𝐶𝐶𝐴𝑃𝑖[𝑠, 𝑘, 𝑖, 𝑃𝑑]𝐾𝑆           ∀ 𝑐, 𝑃𝑑               (C.21) 
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     𝐶𝐶𝐴𝑃[𝑖]         ∀ 𝑐, 𝑃𝑑                                         (C.22) 

𝐶𝐶𝐴𝑃𝑇 =  ∑
𝐶𝐶𝐴𝑃[𝑖]

𝑐𝑐                    (C.23) 

𝐶𝑂𝑃𝑖[𝑠, 𝑘, 𝑖, 𝑃𝑑] = 0.8 ∗ 𝑃𝐶𝑂𝑀𝑃[𝑠, 𝑘, 𝑖, 𝑃𝑑] ∗ 𝑒𝑙𝑒𝑐 ∗ 𝑑𝑎𝑦𝑠 ∗ 24          ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑            (C.24) 

𝐶𝑂𝑃𝑝[𝑖, 𝑃𝑑] =  ∑ ∑ 𝐶𝑂𝑃𝑖[𝑠, 𝑘, 𝑖, 𝑃𝑑]𝐾𝑆           ∀ 𝑐, 𝑃𝑑                (C.25) 

𝐶𝑂𝑃[𝑖] =  ∑ 𝐶𝑂𝑃𝑝[𝑖, 𝑃𝑑]𝑃𝑑          ∀ 𝑐                 (C.26) 

𝐶𝑂𝑃𝑇 =  ∑
𝐶𝑂𝑃[𝑖]

𝑐𝑐                    (C.27) 

𝑃𝐶𝐴𝑃𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑] = 𝐶𝑅𝐹 ∗ (
1.11∗106∗𝑃𝑃𝑈𝑀𝑃[𝑠,𝑘,𝑖,𝑃𝑑]

1000
+ 𝑧𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑] ∗ 0.07 ∗ 106) ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑  

              (C.28) 

𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑖, 𝑃𝑑] ≤ 10000000 ∗ 𝑧𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑]          ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑              (C.29) 

     𝑃𝐶𝐴𝑃𝑖[𝑖, 𝑃𝑑] =  ∑ ∑ 𝑃𝐶𝐴𝑃𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑]𝐾𝑆           ∀ 𝑐, 𝑃𝑑                    (C.30) 

     𝑃𝐶𝐴𝑃[𝑖] ≥  𝑃𝐶𝐴𝑃𝑖[𝑖, 𝑃𝑑]            ∀𝑐, 𝑃𝑑                                 (C.31) 

     𝑃𝐶𝐴𝑃𝑇 = ∑
𝑃𝐶𝐴𝑃[𝑖]

𝑐𝑐                                  (C.32) 

𝑃𝑂𝑃𝑖[𝑠, 𝑘, 𝑖, 𝑃𝑑] = 0.8 ∗ 𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑖, 𝑃𝑑] ∗ 𝑒𝑙𝑒𝑐 ∗ 𝑑𝑎𝑦𝑠 ∗ 24          ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑            (C.33) 

𝑃𝑂𝑃𝑝[𝑖, 𝑃𝑑] =  ∑ ∑ 𝑃𝑂𝑃𝑖[𝑠, 𝑘, 𝑖, 𝑃𝑑]𝐾𝑆           ∀ 𝑐, 𝑃𝑑               (C.34) 

𝑃𝑂𝑃[𝑖] =  ∑ 𝑃𝑂𝑃𝑝[𝑖, 𝑃𝑑]𝑃𝑑          ∀ 𝑐                 (C.35) 

𝑃𝑂𝑃𝑇 =  ∑
𝑃𝑂𝑃[𝑖]

𝑐𝑐                    (C.36) 

𝑃[𝑠, 𝑘] = 4 ∗
𝑑𝑒𝑙[𝑠,𝑘]

2
          ∀ 𝑆, 𝐾                     (C.37) 

     𝑄𝑄𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑] ≤ 𝑟𝑎𝑡𝑖𝑜[𝑠, 𝑘] ∗ 2 ∗ 𝑃[𝑠, 𝑘]          ∀ 𝑆, 𝐾, 𝑐, 𝑃𝑑                   (C.38) 

𝑑𝑒𝑙[𝑠, 𝑘] ≤ 10000 ∗ 𝑑[𝑠, 𝑘]         ∀ 𝑆, 𝐾                 (C.39) 

 𝐶𝑝𝑖𝑝𝑒[𝑠, 𝑘] = 𝐶𝑅𝐹 ∗  (96904 ∗ 𝑑[𝑠, 𝑘] + 95230 ∗ 2 ∗ 𝑑𝑒𝑙[𝑠, 𝑘])          ∀ 𝑆, 𝐾                            (C.40) 

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑ 𝐻[𝑠, 𝑘] ∗ 𝐶𝑝𝑖𝑝𝑒[𝑠, 𝑘]𝐾𝑆                 (C.41) 

𝐶𝑠𝑖𝑛𝑘𝑖[𝑘, 𝑖, 𝑃𝑑] =  𝐹𝐶𝑂2𝑝[𝑘, 𝑖, 𝑃𝑑] ∗ 𝐶𝑅𝑆[𝑘, 𝑖, 𝑃𝑑] ∗ 𝑑𝑎𝑦𝑠          ∀ 𝐾, 𝑐, 𝑃𝑑             (C.42) 

𝐶𝑠𝑖𝑛𝑘𝑝[𝑖, 𝑃𝑑] =  ∑ 𝐶𝑠𝑖𝑛𝑘𝑖[𝑘, 𝑖, 𝑃𝑑]𝐾           ∀ 𝑐, 𝑃𝑑                (C.43) 

𝐶𝑠𝑖𝑛𝑘[𝑖] =  ∑ 𝐶𝑠𝑖𝑛𝑘𝑝[𝑖, 𝑃𝑑]𝑃𝑑           ∀ 𝑐                 (C.44) 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝑝[𝑖, 𝑃𝑑] =  ∑ 𝐹𝐶𝑂2𝑝[𝑘, 𝑖, 𝑃𝑑] ∗ (1 − 𝐸𝐾[𝑘])𝐾 − ∑ ∑ ∑ 𝐸𝑇[𝑡] ∗ 𝑇𝐹[𝑠, 𝑘, 𝑡, 𝑖, 𝑃𝑑] ∗𝑇𝐾𝑆

𝑦[𝑠, 𝑡] ∗ 𝑔𝑎𝑚𝑚𝑎[𝑡] −  ∑ ∑ (𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑖, 𝑃𝑑] + 𝑃𝐶𝑂𝑀𝑃[𝑠, 𝑘, 𝑖, 𝑃𝑑]) ∗ 𝐸𝑃 ∗
24

1000𝐾𝑆      ∀ 𝑐, 𝑃𝑑  

                  (C.45) 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸[𝑖] =  ∑ 𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝑝[𝑖, 𝑃𝑑]𝑃𝑑           ∀ 𝑐               (C.46) 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸[𝑖] ≥ 𝑁𝐶𝑅𝑇           ∀ 𝑐                 (C.47) 

 

Appendix D: MATLAB Code for obtaining the CRS values for the Multi-Scenario 

Approach 

 
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 [𝑂𝑃] = 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜(𝑛)         (D.1) 

𝑂𝑃(2𝑛, 𝑛) = 0           
 (D.2) 

𝑓𝑜𝑟 𝑖 = 1: 2𝑛 − 1          

 (D.3) 

𝑏𝑖𝑛𝑎𝑟𝑦 = 𝑑𝑒2𝑏𝑖(𝑖)          
 (D.4) 

𝑏𝑖𝑛𝑎𝑟𝑦 = 𝑓𝑙𝑖𝑝𝑙𝑟(𝑏𝑖𝑛𝑎𝑟𝑦)         

 (D.5) 

𝑠𝑖𝑧𝑒𝑏𝑖𝑛𝑎𝑟𝑦 = 𝑠𝑖𝑧𝑒(𝑏𝑖𝑛𝑎𝑟𝑦, 2)         (D.6) 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑛 − 𝑠𝑖𝑧𝑒𝑏𝑖𝑛𝑎𝑟𝑦         (D.7) 

𝑂𝑃(𝑖, : ) = [𝑧𝑒𝑟𝑜𝑠(1, 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 𝑏𝑖𝑛𝑎𝑟𝑦]       

 (D.8) 

𝑒𝑛𝑑 

𝑐 = 100 ( 𝑐 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 𝑡𝑎𝑘𝑒𝑛)       (D.9) 

𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(2𝑛, 𝑐)                   

(D.10) 

𝐵(𝑐, 𝑛) = 0  (𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠)                (D.11) 

𝑓𝑜𝑟 𝑖 = 1: 𝑐                     

(D.12) 

𝐵(𝑖, : ) = 𝑂𝑃(𝑟𝑎𝑛𝑑𝑜𝑚(𝑖), : )                   

(D.13) 
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𝑒𝑛𝑑 

𝐵                      
(D.14) 

𝐶𝑅𝑆(𝑐, 𝑛 + 1) = 0                    

(D.15) 

𝑓𝑜𝑟 𝑖 = 1: 𝑐                     
(D.16) 

𝑓𝑜𝑟 𝑗 = 2: 𝑛 + 1                    (D.17) 

𝐶𝑅𝑆(𝑖, 1) = 49.25                    

(D.18) 

𝑢 = 2.064                     

(D.19) 

𝑑 = 0.485                     

(D.20) 

𝑖𝑓 𝐵(𝑖, 𝑗 − 1) = 1                    
(D.21) 

𝐶𝑅𝑆(𝑖, 𝑗) = 𝑢 ∗ 𝐶𝑅𝑆(𝑖, 𝑗 − 1)                   

(D.22) 

𝑒𝑙𝑠𝑒 

𝐶𝑅𝑆(𝑖, 𝑗) = 𝑑 ∗ 𝐶𝑅𝑆(𝑖, 𝑗 − 1)                   

(D.23) 

𝑒𝑛𝑑 

𝑒𝑛𝑑 

𝑒𝑛𝑑 

𝐶𝑅𝑆 (𝑡𝑜 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝐶𝑅𝑆 𝑚𝑎𝑡𝑟𝑖𝑥)                  (D.24) 

𝑒𝑛𝑑  
 

Nomenclature (Appendices) 

 
Sets: 

Set S    Sources 

Set K    Sinks 

Set T    Treatment Techniques 

Set Pd    Time Periods 

 

Parameters: 

𝑦[𝑠, 𝑡]    Composition of the treated flow from source s treated in t (%) 

𝑦𝑢[𝑠]    Composition of untreated flow (%) 

𝑦𝑟[𝑠]    Composition of the raw source flow from source s (%) 

𝐸𝑇[𝑡]    Treatment unit carbon removal efficiency (%) 

𝐶𝑃𝑇[𝑠, 𝑡]   Cost parameter for carbon removal, ($ 𝑡𝑜𝑛⁄ 𝐶𝑂2) 
𝐶𝑅𝐹    Capital recovery factor, to annualize capital costs (dimensionless) 

𝑒𝑙𝑒𝑐    Cost of electricity, ($ 𝐾𝑊ℎ)⁄  

𝑑𝑎𝑦𝑠    Number of days per year 

𝐻[𝑠, 𝑘]   Distance from source s to sink k, (𝑚𝑖𝑙𝑒) 
𝑇𝑆[𝑠]    Temperature of source s, (𝐾) 
𝑣[𝑠, 𝑘]    Outlet velocity of flow from source s to sink k, (𝑚 𝑠⁄ ) 
𝑀[𝑠]    Molecular mass of source s (kg/kmol) 

𝑃𝑆[𝑠]    Pressure of source s (kPa) 

𝑃𝐾[𝑘]    Pressure of sink k (kPa) 

𝑑𝑒𝑙𝑡𝑎𝑝[𝑠, 𝑘]   Pressure difference between source s and sink k (kPa) 

𝑑𝑒𝑙𝑡𝑎𝑝𝑖𝑝𝑒[𝑠, 𝑘]     Pressure drop parameter within a pipe from source s to sink k 

(𝑘𝑃𝑎) 
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𝑑𝑒𝑙𝑝𝑝𝑢𝑚𝑝[𝑠, 𝑘]    Pressure difference per stream, used for pumps (kPa) 

𝑝𝑖      Constant =3.14 

𝐶𝑅𝑆[𝑘, 𝑃𝑑]  Cost parameter of processing CO2 into sink k in period Pd, 

negative value reflects a revenue ($ 𝑡𝑜𝑛 𝐶𝑂2⁄ ) 
𝐿𝑆[𝑠]    Lower bound of flow available in source s (MTPD) 

𝑅[𝑠]    Raw source flow in a given source s (MTPD) 

𝑍𝑚𝑖𝑛[𝑘]   Minimum composition required at sink k (%) 

𝐺𝑚𝑎𝑥[𝑘]   Maximum flow capacity requirement of sink k (MTPD) 

𝐿𝑝[𝑠, 𝑘]  Lower flow limit of a pipe from source s to sink k having merged 

treated and untreated streams (MTPD) 

𝑀𝑝[𝑠, 𝑘]  Upper flow limit of a pipe from source s to sink k having merged 

treated and untreated streams (MTPD) 

𝑁𝐶𝑅𝑇    Net Carbon Reduction Target (%) 

𝐸𝐾[𝑘]    Sink efficiency factor (dimensionless) 

𝑔𝑎𝑚𝑚𝑎[𝑡]   Amount of 𝐶𝑂2 emitted from treatment unit energy use  

    0.0338 𝑡𝑜𝑛 𝐶𝑂2 𝑡𝑜𝑛 𝐶𝑂2⁄  𝑝rocessed out of treatment unit 

𝐸𝑃  Carbon footprint parameter associated with power use 

(0.366 𝑘𝑔 𝐶𝑂2 𝐾𝑊ℎ⁄ ) 
𝑆𝑃𝑃[𝑠, 𝑘]   Specific power for each connection, (𝐾𝑊ℎ/𝑘𝑔) 
𝑟𝑎𝑡𝑖𝑜[𝑠, 𝑘]   Ratio parameter for the diameter (dimensionless) 

𝑐    Number of scenarios 

𝐶𝑅𝑆[𝑘, 𝑖, 𝑃𝑑]  Cost parameter of processing CO2 into sink k in period Pd, in 

scenario i, negative value reflects a revenue ($ 𝑡𝑜𝑛 𝐶𝑂2⁄ ) 
𝑆1    The matrix for source 1 

𝑦𝑖𝑗    The inputs for each matrix for each source 

𝑆1𝑅    The summation of the matrix 𝑆1 along the rows 

 𝑆1𝐶    The summation of the matrix 𝑆1𝑅 along the columns 

𝑆2𝐶    The summation of the matrix 𝑆2𝑅 along the columns 

𝑆3𝐶    The summation of the matrix 𝑆3𝑅 along the columns 

𝑆4𝐶    The summation of the matrix 𝑆4𝑅 along the columns 

𝑒𝑖𝑗    The inputs for the FCO2 matrix 

𝑟𝑖𝑗    The inputs for the CRS matrix 

𝑠𝑖𝑗    The inputs for the FCO2T matrix 

𝐶𝑆    The matrix that has CRS values 

𝐶𝑆𝐶    The summation of CS elements along the columns 

𝐶𝑆𝑅    The summation of CSC elements along the rows 

𝑇𝑜𝑡𝑐𝑜𝑠𝑡   The total cost ($) 

 

Variables: 

𝑤[𝑠, 𝑃𝑑]        Binary, 1 if flow is taken from source s, in period Pd 

(dimensionless) 

𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑃𝑑]  Positive, pumping power (𝐾𝑊 𝑑 𝑡𝑜𝑛 𝐶𝑂2)⁄ , in period Pd 

𝑃𝐶𝑂𝑀𝑃[𝑠, 𝑘, 𝑃𝑑]  Positive, compression power from source s to sink 

k (𝐾𝑊 𝑑 𝑡𝑜𝑛 𝐶𝑂2)⁄ , in period Pd 

𝑇𝐹[𝑠, 𝑘, 𝑇, 𝑃𝑑]      Positive, flow to be treated sent from source s to sink k per period 

Pd (MTPD) 

𝑈[𝑠, 𝑘, 𝑃𝑑]  Positive, untreated flow to be sent from source s to sink k per 

period Pd (MTPD) 
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𝑥[𝑠, 𝑘]  Binary, relates to merging the treated and untreated streams or not 

(dimensionless) 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝑝[𝑃𝑑] Positive, the net capture of 𝐶𝑂2 in each time period Pd 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸  Positive, the net capture of 𝐶𝑂2 over all time periods 

(𝑡𝑜𝑛 𝐶𝑂2 𝑑𝑎𝑦⁄ )  
𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑝[𝑃𝑑]  Positive, treatment and separation cost of 𝐶𝑂2 from source s to 

satisfy sink k's requirement in period Pd ($/period) 

𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  Positive, treatment and separation cost of 𝐶𝑂2 from source s to 

satisfy sink k's requirement over all periods ($) 

𝐶𝐶𝐴𝑃𝑖[𝑠, 𝑘]  Positive, individual capital cost of the compressor used in every s-

k connection that satisfies all periods ($/period) 

𝐶𝐶𝐴𝑃  Positive, total capital cost of the compressors for all s-k 

connections over all periods ($) 

𝐶𝑂𝑃𝑖[𝑠, 𝑘, 𝑃𝑑]  Positive, individual operating cost of the compressor used in every 

s-k connection, for every period Pd ($/period) 

𝐶𝑂𝑃𝑝[𝑃𝑑]                  Positive, total operating cost of compressors per period Pd ($/period)

  

𝐶𝑂𝑃                           Positive, total operating cost of the compressors over all periods ($) 

𝑃𝑂𝑃𝑖[𝑠, 𝑘, 𝑃𝑑]         Positive, individual operating cost of the pump used in every s-k 

connection, for every period Pd ($/period) 

𝑃𝐶𝐴𝑃[𝑠, 𝑘]  Positive, individual capital cost of the pump used in every s-k 

connection that satisfies all periods ($) 

𝑃𝑂𝑃𝑝[𝑃𝑑]   Positive, total operating cost of pumps per period Pd ($/period) 

𝑃𝑂𝑃    Positive, total operating cost of the pump over all periods ($) 

𝐶𝑝𝑖𝑝𝑒[𝑠, 𝑘]   Positive, cost parameter of the pipe from s to k ($ 𝑚𝑖𝑙𝑒)⁄  

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛  Positive, total transportation cost over all periods ($) 

𝐶𝑠𝑖𝑛𝑘𝑖[𝑘, 𝑃𝑑]  Processing cost of 𝐶𝑂2 in each sink in period Pd ($/ton 

CO2/period) 

𝐶𝑠𝑖𝑛𝑘𝑝[𝑃𝑑]  Total processing cost of 𝐶𝑂2 in all sinks k, per period Pd ($/ton 

CO2/period) 

𝐶𝑠𝑖𝑛𝑘    Total processing cost of 𝐶𝑂2 in all sinks k, over all periods ($) 

𝑄𝑝[𝑠, 𝑃𝑑]   Positive, the total of treated and untreated flows from every s, in 

every   period Pd (MTPD) 

𝑄𝑄𝑝[𝑠, 𝑘, 𝑃𝑑]   Positive, the total of treated and untreated flows from s to k, in 

every period Pd (MTPD) 

𝑧𝑝[𝑠, 𝑘, 𝑃𝑑]   Binary, for if else pumping cost, in every period Pd 

(dimensionless) 

𝐹𝑝[𝑘, 𝑃𝑑]  Positive, flow into sink k coming from all sources and treatment 

units, in every period Pd (MTPD) 

𝐹𝐶𝑂2𝑝[𝑘, 𝑃𝑑]  Positive, flow of 𝐶𝑂2 to the sink k coming from all sources and 

treatment units, in every period Pd (ton CO2/day) 

𝑑𝑒𝑙[𝑠, 𝑘]  Positive variable to find the diameter needed for the flow from s 

to k (dimensionless) 

𝑃[𝑠, 𝑘]  Positive integer variable that approximates the diameter needed for 

every s-k connection (dimensionless) 

𝑑[𝑠, 𝑘]  Binary variable that's related to del, it's 1 if there is a pipe between 

s and k (dimensionless) 

𝑤[𝑠, 𝑖, 𝑃𝑑]  Binary, 1 if flow is taken from source s, in period Pd, and scenario 

i (dimensionless) 
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𝑃𝑃𝑈𝑀𝑃[𝑠, 𝑘, 𝑖, 𝑃𝑑]  Positive, pumping power (𝐾𝑊 𝑑 𝑡𝑜𝑛 𝐶𝑂2)⁄ , in period Pd and 

scenario i 

𝑃𝐶𝑂𝑀𝑃[𝑠, 𝑘, 𝑖, 𝑃𝑑]  Positive, compression power from source s to sink 

k (𝐾𝑊 𝑑 𝑡𝑜𝑛 𝐶𝑂2)⁄ , in period Pd and scenario i 

𝑇𝐹[𝑠, 𝑘, 𝑇, 𝑖, 𝑃𝑑]     Positive, flow to be treated sent from source s to sink k per period 

Pd and scenario i (MTPD) 

𝑈[𝑠, 𝑘, 𝑖, 𝑃𝑑]  Positive, untreated flow to be sent from source s to sink k per 

period Pd and scenario i (MTPD) 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸𝑝[𝑖, 𝑃𝑑]    Positive, the net capture of 𝐶𝑂2 in each time period Pd and scenario 

i 

𝑁𝐸𝑇𝐶𝐴𝑃𝑇𝑈𝑅𝐸[𝑖]   Positive, the net capture of 𝐶𝑂2 over all time periods for each 

scenario (𝑡𝑜𝑛 𝐶𝑂2 𝑑𝑎𝑦⁄ ) 
𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑝[𝑖, 𝑃𝑑]  Positive, treatment and separation cost of 𝐶𝑂2 from source s to 

satisfy sink k's requirement in period Pd and scenario i ($/period) 

𝐶𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡[𝑖]  Positive, treatment and separation cost of 𝐶𝑂2 from source s to 

satisfy sink k's requirement over all periods for each scenario i ($) 

𝐶𝑡𝑟𝑒𝑎𝑡   Positive, Average treatment and separation cost of 𝐶𝑂2 from 

source s to satisfy sink k's requirement, over all periods and 

scenarios ($) 

𝐶𝐶𝐴𝑃𝑖[𝑠, 𝑘, 𝑖, 𝑃𝑑]  Positive, individual capital cost of the compressor used in every s-

k connection for every period Pd and scenario i ($/period) 

𝐶𝐶𝐴𝑃𝑝[𝑖, 𝑃𝑑]  Positive, total capital cost of the compressors, for every period Pd, 

and scenario i, for all connections ($/period) 

𝐶𝐶𝐴𝑃[𝑖]  Positive, the highest compressor capital cost over all periods in 

each scenario i ($) 

𝐶𝐶𝐴𝑃𝑇  Positive, Average capital cost of the compressors, for all periods, 

all scenarios ($) 

𝐶𝑂𝑃𝑖[𝑠, 𝑘, 𝑖, 𝑃𝑑]  Positive, individual operating cost of the compressor used in every 

s-k connection, for every period Pd and scenario i ($/period) 

𝐶𝑂𝑃𝑝[𝑖, 𝑃𝑑]  Positive, total operating cost of the compressors, for each period 

Pd and scenario i ($/period) 

𝐶𝑂𝑃[𝑖]  Positive, total operating cost of the compressors over all periods 

for each scenario i ($) 

𝐶𝑂𝑃𝑇  Positive, Average operating cost of the compressors, over all 

periods and scenarios ($) 

𝑃𝐶𝐴𝑃𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑]  Positive, individual capital cost of the pump used in every s-k 

connection, for every period Pd and scenario I ($/period) 

𝑃𝐶𝐴𝑃𝑖[𝑖, 𝑃𝑑]  Positive, the capital cost of the pumps used for all s-k connections 

in each scenario and every time period ($/period) 

𝑃𝐶𝐴𝑃[𝑖]  Positive, the highest pump capital cost over all time periods in 

every scenario ($) 

𝑃𝐶𝐴𝑃𝑇  Positive, Average capital cost of the pumps used in all periods and 

scenarios ($) 

𝑃𝑂𝑃𝑖[𝑠, 𝑘, 𝑖, 𝑃𝑑]  Positive, individual operating cost of the pump used in every s-k 

connection, for every period Pd and scenario i ($/period) 

𝑃𝑂𝑃𝑝[𝑖, 𝑃𝑑]  Positive, total operating cost of the pumps, for every period Pd and 

scenario i ($/period) 

𝑃𝑂𝑃[𝑖]  Positive, total operating cost of the pump over all periods for each 

scenario i ($) 
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𝑃𝑂𝑃𝑇  Positive, Average operating cost of the pumps over all periods and 

scenarios ($) 

𝐶𝑝𝑖𝑝𝑒[𝑠, 𝑘]   Positive, cost parameter of the pipe from s to k ($ 𝑚𝑖𝑙𝑒)⁄  

𝐶𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛  Positive, total transportation cost over all periods ($) 

𝐶𝑠𝑖𝑛𝑘𝑖[𝑘, 𝑖, 𝑃𝑑]  Processing cost of 𝐶𝑂2 in each sink in period Pd and scenario i 

($/period) 

𝐶𝑠𝑖𝑛𝑘𝑝[𝑖, 𝑃𝑑]  Total processing cost of 𝐶𝑂2 in all sinks k, for every period Pd and 

scenario i ($/period) 

𝐶𝑠𝑖𝑛𝑘[𝑖]  Total processing cost of 𝐶𝑂2 in all sinks k, over all periods for each 

scenario i ($) 

𝑄𝑝[𝑠, 𝑖, 𝑃𝑑]  Positive, the total of treated and untreated flows from every s, in 

every period Pd and scenario i (MTPD) 

𝑄𝑄𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑]  Positive, the total of treated and untreated flows from s to k, in 

every period Pd and scenario i (MTPD) 

𝑧𝑝[𝑠, 𝑘, 𝑖, 𝑃𝑑]  Binary, for if else pumping cost, in every period Pd and scenario i 

(dimensionless) 

𝐹𝑝[𝑘, 𝑖, 𝑃𝑑]  Positive, flow into sink k coming from all sources and treatment 

units, in every period Pd and scenario i (MTPD) 

𝐹𝐶𝑂2𝑝[𝑘, 𝑖, 𝑃𝑑]  Positive, flow of 𝐶𝑂2 to the sink k coming from all sources and 

treatment units, in every period Pd and scenario i (ton CO2/day) 

𝐹𝐶𝑂2𝑇[𝑘, 𝑃𝑑]  Positive, Average flow of 𝐶𝑂2 to sink k coming from all sources 

and treatment units in every time period, over all scenarios (ton 

CO2/day) 
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