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This work tackles the ossification and complexity problem of communication networks in 
terms of management, configuration, control, connection and security. These complexities 
are as a result of the great dependencies on network hardware and vendor-specific operation. 
In order to support the evolving nature of new networking technologies and the introduction 
of IoT, Edge Computing, Cloud Computing, Fog Computing, 5G, among others, the network 
must be transformed to a more flexible, agile, dynamic, and multi-tenant infrastructure. This 
work addresses the demand for a new networking platform that is capable of adapting to the 
quick pace imposed by the evolution of the digital world and its communication. Towards 
the afore elaborated challenge, the work in this thesis addresses the provisioning of new 
protocols and networking services that would provide a more suitable platform and 
foundation for the developing communication world. To achieve dynamically reconfigurable 
and extensible network platforms, network softwarization and virtualization are utilized to 
provide advanced networking structures and services. The proposed set of networking 
services that would fulfill the work profound goals include: (1) simplified network 
management, configuration, and control. (2) Flexible enterprise site connectivity in SDN 
environments. (3) Malicious data plane detection for enhanced SDN security. (4) Secure 
authentication and dynamic network configuration for Fog computing in virtualized wireless 
SDN environments. 
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CHAPTER 1 

INTRODUCTION AND THESIS OBJECTIVES 

 

1.1 Introduction 

The IP protocol stack has been the main network connecting technology since the 

inception of the Internet in the mid 90s. IP networks are proving day after day that they are 

neither efficient nor scalable for supporting the current thriving IT industry [4]. The 

complexity of provisioning, configuring and dynamically updating networks is one of the 

main problems hindering the adoption of scalable modern network architectures such as IoT, 

5G, Cloud computing, Edge/Fog computing, among others. This necessitates the design and 

implementation of new generation network configuration and connectivity protocols to 

support the agility, elasticity, mobility, security, and dynamic management of these new 

trends in modern networks and the cloud.   

There is a growing demand on network agility and flexible network resource allocation and 

release across and within cloud data centers utilized by multiple tenants. The ossification and 

the inflexibility of the network architecture and technology adopted by the IT industry impose 

many limitations and problems for the advancement of the modern networking technologies. 

This requires a call for action on delivering elastic network connectivity and configuration 

schemes utilizing the recent advancements in network softwarization and virtualization.  

Another major challenge facing current cloud data centers is represented in the flexible 

management of security mechanisms to ensure the authenticity, confidentiality, privacy, and 
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availability of network data and services. The ongoing advancements and fast development 

of cloud networking services spanning geographically-dispersed data centers and multi-

tenant cloud network architectures together with the new trends in network virtualization and 

Software-Defined Networking (SDN) raises several security concerns related mainly to 

network data authentication and accurate data plane operation. In this thesis we propose a set 

of protocols and services for flexible and dynamic network connectivity, provisioning, and 

security utilizing the new trends in network virtualization and softwarization. 

Computing virtualization has been the main driving force for the dramatic proliferation of 

the cloud computing model we are familiar with today. The main service execution 

containers in modern data centers are represented in Virtual Machines (VMs) that can be 

instantiated, managed, operated, and configured on-demand based on tenants’ requirements 

and workload patterns. The great success achieved in the field of computing virtualization 

has paved the way for the emergence of networking virtualization platforms that are rapidly 

laying the ground for specialized Network as a Service (NaaS) [1] cloud offerings. Using the 

NaaS model, entire Virtual Networks (VNets) can be created and managed instantaneously 

upon tenants’ requests. Many cloud NaaS models exist today and the number is highly 

increasing with the advancements in network virtualization hypervisor design. Moreover, the 

emergence of a novel network architecture represented in the SDN [2] concept, where 

network switching units can be dynamically reprogrammed to control the various aspects of 

networking operations, had a sizeable positive impact on the NaaS cloud support. This is due 

to the fact that SDN has shed the light on the significance of coupling the network 
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programmability features with the network virtualization counterparts to truly realize an 

elastic networking infrastructure.  

Accordingly, the world of communication is currently witnessing the evolution of 

programmable network configuration and management through the advancement of SDN 

and network virtualization. Today, Virtual Internet Service Providers (ISPs) leverage the 

SDN centralized network programmability and network virtualization features to provide 

resilient and easily reconfigurable network connection services. Tenants on the other hand, 

are seeking communication services that exploit configuration flexibility, performance, 

scalability, security, and interoperability.	

Moreover, the programmability and dynamism features achieved in SDN networks are 

mainly due to the inherent SDN architecture which is based on the separation of the network 

control and configuration logic from the network switching logic, by offering dedicated SDN 

controllers with fine-grained control over network routing and reconfiguration. The network 

is logically divided into two main planes: the control plane and the switching plane. The 

control plane is where the SDN controller operates by constructing a global view of the 

network topology and disseminating a collection of routing action rules over the 

switching/routing network nodes. The switching plane is mainly responsible of packet 

forwarding across the set of switches/routers comprising the physical network. This novel 

architecture lays the ground for a highly appealing concept in networking represented in the 

ability to easily and remotely configure network topologies in an “elastic” virtualized manner 

analogous to the techniques used in virtualizing servers and storage in modern data centers. 

Based on the network virtualization concept, the SDN controller can provide tenants with 
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customized network topology views of the physical network based on their requirements and 

resource demands thus supporting, for the first time in the history of network computing, the 

basis of a truly NaaS provider infrastructure. 

In spite of the increasing popularity in NaaS offerings, three main issues are still 

hindering the wide adoption of NaaS services in the cloud, namely, 1) the NaaS model does 

not provide any assistance or support for the tenants in designing their network topologies or 

managing the network-wide services, 2) the assorted pricing schemes offered by NaaS 

providers, as well as the occasional price variations and deals complicate the cost-effective 

selection of cloud providers, and 3) NaaS services do not support VNet partitioning, whereby 

the VNet is partitioned into several logical parts that can communicate seamlessly as a single 

unit. Network partitioning allows for cost-effective and performance-efficient VNet 

deployment based on the tenants’ preferences and constraints. 

A second challenge is that traditional ISPs do not support tenants with flexible 

connectivity solutions that can dynamically adapt to meet tenants’ requirements in terms of 

security, cost, performance, and reliability, which puts extra burdens on the tenants to 

manually impose their connectivity constraints. With SDN, the whole network connectivity 

can be reprogrammed utilizing information delivered from the tenants and the SDN providers 

to deliver seamless mechanisms in the deployment, configuration, and migration of the 

communication sites on available SDN infrastructures. 

On the security front, a major security risk in any packet switching network is mainly 

represented in the malicious operation of the network forwarding units which is also the case 

in SDN networks which must be supported with dedicated security services at the data plane 
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to ensure that the switching units responsible of forwarding the packets are not executing or 

participating in any active attack on the network traffic. One challenge is providing a 

certifying security service that provides, with high confidence levels, SDN tenants with 

sufficient guarantees that the network they are running their applications on is free of 

malicious activities on the data plane. This service should (1) trigger security alarms in real 

time, (2) be efficient in applying the network monitoring/probing operations using compact 

data structures, and most importantly (3) be specifically designed for securing SDN 

networks. Thus it is of high importance to utilize the afore mentioned SDN-specific 

properties to effectively support the security services in SDN networks. The flexibility and 

programmability features of the SDN network model provide appealing advantages for the 

advancement of network autonomous creation and configuration. The introduction of the 

concept of data plane/control plane separation significantly facilitates network programming 

and central control over the switching and routing mechanisms of the global network view. 

Moreover, SDN can support enhanced security services in the Mobile Edge Computing 

(MEC) platforms. Despite the great advancements in mobile technology, mobile devices are 

still relatively limited in computing resources, memory, battery life and power. Together with 

the bandwidth demands being expected to continue doubling, and the profound development 

of computing-intensive, and resource and power demanding mobile applications, there is a 

great need for outsourcing applications on one hand, and bringing the servers to the network 

edge, on the other hand. Mobile cloud computing has had the strongest impact in outsourcing 

computation and offloading tasks to more sophisticated and resourceful servers to relief the 

mobile devices from running such services locally on their terminals. MEC was introduced 
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to address the latency challenge by transferring the cloud data and services to infrastructure 

providers in the vicinity of the mobile user. Such services can be accessed via cellular or Wi-

Fi access points. Fog distributed computing emphasizes on MEC and extends resource and 

memory servers to support mobile users’ expected movement and service demands. 

Moreover, Fog servers manage autonomous and independent data processing for real-time 

computing-intensive mobile applications. This results in a three-tier network consisting of 

three main entities: the mobile user, the Fog server(s), and the cloud service(s). 

Security and privacy in Fog/MEC environments are of great concern. A major security 

problem is the attack from rogue Fog nodes, where a malicious server impersonates a Fog 

node and advertises itself as a legitimate server to the mobile user. Another important 

challenge to Fog computing is represented in the vulnerabilities of the underlying physical 

wireless network. Client access to Fog services is mainly done using Wi-Fi networks and any 

vulnerability in the wireless security implementation would affect the whole service stack. 

1.2 Thesis Objectives  

The objective of this work is to tackle the ossification and complexity problem of 

communication networks in terms of management, configuration, control, connection and 

security. These complexities are as a result of the great dependencies on network hardware 

and vendor-specific operation. In order to support the evolving nature of new networking 

technologies and the introduction of IoT, Edge Computing, Cloud Computing, Fog 

Computing, 5G, among others, the network must be transformed to a more flexible, agile, 

dynamic, and multiple-tenant infrastructure. This work addresses the demand for a new 

networking platform that is capable of adapting to the quick pace imposed by the evolution 
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of the digital world and its communication. Towards the afore elaborated challenge, the work 

in this thesis addresses the provisioning of new protocols and networking services and 

technologies that would provide a more suitable platform and foundation for the developing 

communication world. To achieve a more agile, dynamically reconfigurable and extensible 

network platforms, network softwarization and virtualization are utilized to provide 

advanced networking structures and services. The following is the proposed set of 

networking services that would fulfill the work profound goals: 

 - Simplified Network Management, Configuration, and Control: To fulfill this 

objective we design and implement a cloud network configuration and provisioning service 

in a software-defined networking architecture. This centralized cloud service is proposed for 

creating virtualized networks in SDN-based cloud architectures that supports dynamic 

provisioning operations based on QoS, pricing, privacy, reliability, and energy requirements. 

To fulfill the objective of dynamically provisioning and configuring multiple network 

topologies according to tenants demands, this service should provide a unified interface 

through which tenants network specifications and constraints are fed to the service 

provisioning algorithms thereby creating, configuring and updating their networks 

dynamically on demand. 

 - Flexible Enterprise Site Connectivity in SDN Environments: On this front we 

present a complete SDN-based Internet connection solution for dynamically linking 

geographically separated enterprise branches. Network virtualization in a softwarized 

platform is to be exploited in order to provide tenants with a dynamic virtual network 

connectivity service that would increase the agility and dynamism in network connection. 
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This service should be designed to connect geographically separated enterprise branches 

based on the SDN infrastructure with minimum operation cost. Virtual SDNs (vSDN) should 

be created and dynamically managed for the tenant’s sites that are logically decoupled from 

the network infrastructure, to provide configurable network topologies and isolation on the 

SDN network virtualization platform.  

  - Malicious Data Plane Detection for Enhanced SDN Security: For achieving this 

objective we design and implement a protocol for detecting malicious switching elements in 

SDN virtualized environments. The introduction of network softwarization and the 

separation of the hardware from the software network controller brings forwards SDN related 

security and correct operation breaches. To ensure the correctness of the SDN network data 

plane performance, network virtualization is to be exploited to provision a cloud security 

service for detecting malicious switching elements in SDN environments.  

 - Secure Authentication and Dynamic Network Configuration for Fog 

Computing in Virtualized Wireless SDN Environments: To achieve this objective we present 

a secure and scalable authentication and network configuration protocol for Fog and mobile 

edge computing that leverages the SDN platform and wireless network virtualization. The 

proposed design addresses the security problem of rogue fog nodes and provide a secure and 

flexible network creation and configuration mechanisms for cloud service providers at the 

network edge. This goal emphasizes on promoting a more secure and dynamic 

communication among the mobile client, the infrastructure provider, and the cloud service 

provider. 
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CHAPTER 2 

LITERATURE SURVEY 

 

In this chapter we present a literature survey of the main research approaches related to 

the proposed work. We start, in Section 2.1, by presenting a fundamental survey on network 

virtualization concepts and architectures. Section 2.2, presents a brief introduction of the new 

generation networking, SDN networking architecture. In Section 2.3, we introduce network 

as a service models and the latest advancements in NaaS platforms based on the SDN model. 

Finally, in Section 2.4 we discuss the security problems that emerged as a result of the SDN	

centralization of the network control and the research approaches devised to detect and 

circumvent malicious attacks in SDN environments.  

2.1 Network Virtualization: Basic Concepts & Architecture 

Network virtualization is the main enabler for the next generation networking in the 

fields of telecommunication and the Internet [5]. Virtualization facilitates the feasibility of 

creating multiple heterogeneous networks on the same physical infrastructure. Sharing the 

physical resources results in “elastic” network topologies composed of virtual nodes 

connected via virtual links to provide dynamic end-to-end connectivity services. The network 

virtualization property, imposed by a network virtualization hypervisor layer, provides the 

spawned virtual networks with full isolation among each other to achieve relatively high 

levels of privacy and security. In such virtualization environments, VNets are characterised 

by elevated degrees of flexibility and ease of management, elasticity and dynamism, 

scalability, isolation, and heterogeneity [6].  
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Flexibility and ease of management: multiple virtual networks can be created, deployed, 

and destroyed independent of the underlying physical network. Service providers can 

provision their choice of network topology and forwarding protocols irrespective of the 

underlying physical network for the sake of delivering flexible configurations to support 

tenants’ services. 

Isolation: VNets can coexist on the same physical infrastructure and their corresponding 

traffic is logically segregated using the virtual network hypervisor. The latter is responsible 

for separating the VNets address space to provide higher levels of isolation and to reduce the 

probability of fault propagation among the configured virtual networks. 

Elasticity and Dynamism: Using network virtualization techniques, VNets can be 

created, scaled up, and scaled down instantaneously using configurable software commands. 

This expedites the process of resource allocation and release without the need to restructure 

the underlying hardware infrastructure or network configuration. 

Scalability: with network virtualization, VNets can practically scale up to the resources 

dedicated to the physical network with minimal performance overhead imposed by the 

network virtualization layer. This is considered a major property to ensure the scalability of 

the coexisting VNets [7]. 

Heterogeneity: with network virtualization, Service providers can provision VNets with 

their arbitrary independent topologies and forwarding protocols irrespective of those of the 

leased physical network infrastructure.  

These technical advantages of Network virtualization has been originated and evolved 

from the great advancements in server virtualization [8] which in turn was the main enabler 



	
 
	

11	

for infrastructure and platform services in cloud computing [9]. Server computing 

virtualization has been introduced by the virtual machine software that abstracts and 

decouples the software from the underlying machine hardware. Multiple virtual machines 

can coexist on the same underlying physical machine thus providing full isolation, on-

demand provisioning, and flexible management. 

Network virtualization has witnessed extensive attention in academia and industry due to the 

dynamic nature of connectivity achieved which remarkably aids in reducing the OPEX 

(operational expenses) and the CAPEX (capital expenses) as explained in the Network 

Function Virtualization (NFV) work presented in [10]. The dynamism and flexibility 

properties provided by network virtualization push for a better utilization of the network 

resources and ease of management and mobility of the network components. This high level 

of flexibility that can be achieved by VNets, and supported lately by appealing network 

programmability architectures represented in the SDN networking paradigm, is the primary 

reason behind the proliferation of virtualization techniques in the networking research and 

academia projects. 

Network virtualization had a highly positive impact on the cloud computing industry. Today 

cloud service providers are separated into two major roles: (1) the Infrastructure Providers 

(InPs) that mange and offer wide varieties of physical network resources and substrates that 

meet the requirements and needs of tenants, and (2) the Service Providers (SPs) which 

provision end to end network services by aggregating resources from different InPs according 

to tenants’ requests related mainly to cost, flexibility, programmability, security, and privacy, 

among others. 
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Fig. 2.1 - Network virtualization layers and provider categorization 
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As a result, the virtual network environment (VNE) [11] greatly facilitates the 

utilization of a dynamic network infrastructure where multiple SP’s provision multiple 

heterogeneous VN’s that can independently coexist on the same network substrates but with 

full isolation and flexibility. This is illustrated in Figure 2.1. 

In [6], the authors classify network virtualization into four main network categories 

namely: Virtual Local Area Network (VLAN), Virtual Private Network (VPN), active and 

programmable networks, and overlay networks. VLANs are networks that connect nodes and 

hosts together using logical addressing and have a single broadcast domain. VLANs coexist 

on the same physical LAN where each separate broadcast domain is enforced by the layer 2 

switches to achieve traffic isolation. Broadcast domains are enforced by mapping a multiport 

virtual bridge on the underlying physical switch and by dedicating this bridge to a distinct 

VLAN. VPN is a network created on top of other networks that are located in different 

geographic locations. Hosts in a VPN from different network sites appear to be on the same 

virtual network that share the same broadcasting address. The VPN technology was initially 

created to ensure a secure encrypted network connection between institutional sites and their 

remote clients over a public internetwork such as the Internet. Many protocols currently 

support the VPN functionality, the most popular are IP Security (IPSec) [29], Point-to-Point 

Tunneling Protocol (PPTP) [30], and Layer 2 Tunneling Protocol (L2TP) [31]. It should be 

noted here that the Secure Socket Layer (SSL) and Transport Layer Security (TLS) [17] 

protocols can also be used to support the secure network communication of a VPN 

connectivity solution by employing their authentication, encryption, and integrity 

mechanisms. Active and programmable networks are a new generation of network 



	
 
	

14	

technologies, protocols, and platforms that are primarily proposed to support the dynamic 

and active inclusion of software and hardware services into network elements. These types 

of networks are supposed to enhance the resiliency, security, management, and customization 

of the network components to ultimately enable a form of seamless plug-and-play 

functionality. Active and programmable networks had a great role in the demand for network 

virtualization to provision dynamic services decoupled from the underlying network 

resources. Overlay networks are networks consisting of a set of nodes with logical direct 

connectivity possibly over a path of multiple physical nodes. Overlay networks are mainly 

used to implement new features on the Internet and for experimental fixes, research, and 

deployment of new functions and architectures. Popular examples of overlay networks are 

represented in Peer-to-Peer (P2P) networks, Voice-over-IP (VoIP) networks, and content 

distribution networks. 

2.2 Software-Defined Networking Architecture 

SDN is the new generation networking architecture that is based primarily on the concept of 

separating the forwarding plane from the control plane and centralizing the latter in a set of 

one or more controller units. This pushes the network evolution greatly by facilitating the 

programmability of the network functions, controls, management, and configuration. This is 

achieved by abstracting the operation of the switching elements in the data plane by 

constructing their forwarding tables and actions centrally at the control plane. Centralizing 

the control plane and functionally separating it from the data plane is considered a major 

contribution brought forward by SDN to the networking domain which is the main enabler 

for further advancements represented mainly in network virtualization and programmability. 
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According to [12], the SDN architecture is targeted by all the members of the networking 

industry namely: the Internet service providers, network infrastructure providers, network 

vendors, enterprises, and end users. This great demand is expected after the long-termed 

ossification of the internet that will fend as a result of the following innovations of the SDN 

architecture: 

1 The separation of the control and management plane from the data plane: In 

traditional IP networks, control and data plane functions are featured in the network nodes. 

The separation introduced by the SDN relies on introducing network nodes as forwarding 

elements that utilize the open flow protocol for data transfer in the network. A central 

controller or set of controllers represented in the control and management plane are 

responsible for setting the control rules adequate to transport the network messages in the 

data plane. The L3 routing protocols and the management functions are the responsibility of 

the controller in this architecture. This results in a simplified set of forwarding elements in 

the network that can be easily managed, maintained and replaced.  

2 Centralizing the control plane: The Internet architecture has been based on 

distributing the communication elements in order to avoid the vulnerable nature of a 

centralized communication system. It is only in the recent years that SDN proposed the 

concept of centralizing control. Accordingly, the network is divided into subnets, controlling 

and managing these sub-networks is aided by the statistics data that is collected from the 

switching elements using the Northbound API [13] of the controller that enables the efficient 

management and utilization of the underlying network resources. The centralization 

advantage lies in (1) the fast propagation of maintenance activities, (2) the introduction and 
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enforcement of new policies and updates, (3) the flexible registration, revocation, and 

reconfiguration of network switching elements and (4) and the better visibility of network 

topologies which facilitates enhanced internetworking and connectivity establishment. 

3 Northbound APIs for control plane programmability [13]: The network 

operating system in the SDN architecture provides a set of user-friendly API’s that facilitates 

programming the underlying network components. The controller provides a software 

representation of the switching hardware in order to make it vendor independent. An example 

is the OpenDaylight [14] SDN controller. This is analogous to the computer operating system 

that witnessed the programmability hype after it was hardware specific. This is the key to 

prevent the ossification of the Internet and provision for the exploration of network 

programmability virtues. 

4 Flow based control: this is enforced by the SDN controller on the network 

switching units and is governed by the specifications of the OpenFlow [15] protocol. 

OpenFlow defines a collection of low-level operations for updating and maintaining the 

switches flow tables which contain the entries that define the packet forwarding mechanisms 

fed to the switch by the SDN controller. Accordingly, SDN-compliant switches started 

emerging to support the flow-based, software-controlled forwarding mechanisms imposed 

by the specifications of the OpenFlow protocol. Typically, to be OpenFlow-compliant [16], 

a network switch must implement: 

- A flow table data structure to store packet forwarding rules 

- A secure mechanism to exchange control traffic with the SDN controller, mainly 

ensured using the TLS protocol [17]. 



	
 
	

17	

- The necessary software modules for consuming OpenFlow messages and executing 

their corresponding semantics.  

The OpenFlow protocol operation in the data plane relies on three main fields comprising the 

entries of the switch’s flow table: 

- The header field: this field identifies network flows for the purpose of packet 

forwarding. It is worth mentioning here that the header field can consist of a set of 

subfields to define flows spanning different layers in the network protocol stack, 

typically layers L1 to L4.  

- The flow counter field: the counter field is incremented whenever a packet header 

matches the respective flow table entry. This leveraged by the SDN controller to 

manage the network by dynamically maintaining fresh network flow statistics. 

- The flow action field: this field specifies the actions that must be executed as a result 

of a match on the header field of the respective flow table entry. Three principal 

actions are defined namely: forward to port, forward to controller, and drop packet. 

When a packet arrives at an ingress port with no matching flow table entry, the packet 

is forwarded as a “PacketIn” to the SDN controller over the TLS secure channel. 

Consequently, the controller takes the responsibility of updating the switch flow table 

with the suitable forwarding rules. 

2.3 Network as a Service Models in Software-Defined Networks 

The NaaS concept was firstly introduced by Costa et al. in [1]. With this service, tenants are 

granted an isolated and secure access to the underlying network resources by providing them 

with virtualized network views on top of the physical network infrastructure. NaaS services 
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are mainly implemented by integrating advanced packet inspection and forwarding policies 

that isolate the network traffic of the respective tenants’ virtual network views and provide 

them with their own virtual routing and switching network elements. The main benefits 

provided by the NaaS model are represented in the following supported functionalities: 

• Virtualized and dynamic network topologies: with NaaS, tenants can have a 

virtualized logical view of the physical network that can be “elastically” up scaled and down 

scaled based on the tenants’ application requirements. All the necessary abstractions required 

to implement this functionality are hidden from the tenant in the network virtualization 

hypervisor layer. This layer is responsible of maintaining the mapping between the logical 

network views and the underlying physical infrastructure.  

• Customized packet forwarding mechanisms: The network virtualization 

hypervisor implements customized packet forwarding policies and pushes it to the physical 

switching units to provide a traffic isolation functionality among the tenants’ virtual network 

views. It is this functionality that makes NaaS services very suitably implemented in SDN 

environments where the SDN controller aids the network virtualization hypervisor in pushing 

the forwarding rules to the physical switches to support traffic isolation. 

• In-network processing: the packet inspection capability of NaaS services can 

greatly assist the SDN controller in providing in-network processing functionality such as 

supporting network aggregation, opportunistic caching, packet filtering firewalls, content-

based networking, among others. These functions can be better supported in NaaS due to 

their dependency on the application specifics. Hence tenants directly controlling the network 

infrastructure via the virtual network views in NaaS can provide highly efficient in-network 
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processing functions since they are the entities aware of the application types running on the 

virtual network views.  

Extensive research work focused on providing virtualized network services in SDN-based 

networks. In [18], Drutskoy et al. presented FlowN, a NaaS architecture that utilizes SDN 

concepts and database mapping techniques to provide tenants with their own virtual network 

topology, address space, and controller on top of a single physical data center. FlowN is 

lightweight due to the utilization of container-based virtualization which allows the system 

to instantiate isolated SDN controllers for the different tenant networks using one physical 

controller. In [19], Sherwood et al. presented FlowVisor, a switch virtualization architecture 

that maps the forwarding services of hardware switches to multiple virtual switches that can 

be used to construct multiple virtual networks with distinct switching logic. FlowVisor can 

run on commodity switches supporting the OpenFlow protocol, which makes it an attractive 

network virtualization solution for existing production data center networks. 

In OpenVirteX [3], the authors followed a novel network virtualization approach that made 

it mimic, to a high degree, computing virtualization mechanisms and operations, such as 

dynamic configuration, instantiation, destruction, snapshotting, and on-demand migration. 

This gives network virtualization a leading edge in being capable of supporting flexible NaaS 

solutions whose configuration, infrastructure management, topology specification, and 

addressing schemes are completely under the tenants’ control. It should be noted here that 

NCaaS relies on the OpenVirtex solution in developing the prototype test bed 

implementation. In CoVisor [20], the authors followed an SDN controller virtualization 

approach that allows a single network controller to be virtualized into multiple controller 
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applications supporting different operational platforms and development languages. CoVisor 

allows for the control on shared network traffic by enabling the enforcement of multiple 

policies on separate controller applications such as firewall, load balancer, SSL accelerator, 

application gateway, router, and traffic analysis policies. The work proposed in this paper 

compliments the above schemes by providing a unified interface that hides the complexities 

of VNet creation and management from the tenant while maintaining the same levels of 

tenant control over the provided VNets. 

OpenStack Neutron [21] is undoubtedly the most popular SDN networking project for 

implementing NaaS services in virtualized cloud environments. OpenStack [22] is a 

dedicated cloud operating system designed for controlling the compute, storage, and 

networking resources of big cloud data centers via a standardized Web interface known as 

the OpenStack dashboard. The main OpenStack projects are: 

• SWIFT and CINDER for controlling object and block storage respectively 

• NOVA for controlling computer resources 

• NEUTRON for providing virtualized networking services 

• KEYSTONE for supporting identity management services 

• GLANCE for providing image services 

OpenStack Neutron (originally codenamed Quantum) provides cloud tenants with direct 

access on the physical network infrastructure to control the network topology and addressing 

schemes in multi-tenant cloud environments. Neutron is the main OpenStack component for 

providing network virtualization and isolation in SDN cloud platforms. Neutron supports 
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tenants with an advanced plugin-based API for programming multiple virtual networks with 

isolated addressing mechanisms. Such APIs are the main pillar that provides tenants with the 

necessary tools to have better control over additional network functionality such as security, 

privacy, QoS, intrusion detection and prevention, packet filtering firewalls, and advanced 

logging and auditing.  

2.4  SDN Security Threats and Models 

Extensive research work has tackled the security problems that emerged as a result of 

the SDN centralization of the network control. 

In [37], the various SDN threats and vulnerabilities are discussed with a thorough 

analysis. The work proposed a secure mechanism that targets each introduced SDN threat 

vector including: network OS replication, application level replication, software and hardware 

solutions on the control plane to avoid common mode faults and bugs and to increase the 

network tolerance to hardware and software accidents and malicious behaviors. Moreover, the 

authors introduced self-healing mechanisms, isolated security domains, fast and dynamic 

network recovery, and redundant switch-controller association mechanisms. This work 

represents a call for action to trigger further research in SDN security solutions. 

In [42], the authors present a comprehensive security survey that summarizes the 

security threats of SDN frameworks and categorizes them based on the layers and SDN 

interface vulnerabilities. On the other hand, the survey discusses and categorizes the security 

solutions based on the SDN network programmability infrastructure. The centralization of 

network programming has introduced both security threats and at the same time new and 
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dynamic security solutions. Most of the solutions involved middle boxes that enforce the 

network security policy and adjustment in the security monitoring and prevention capabilities. 

In [36], the authors tackle the problem of lack of trust in the network OS and applications 

running on top of them where redundant controllers were introduced to the SDN network and 

a new layer is created to compare the output of the controllers and ensure consistency among 

the controllers and the network state and policy. This paper lays the ground for designing a 

trust scheme for redundant controllers in SDN. 

The work in [38] presents a formal verification methodology to ensure the safety, 

security, and reliability of SDN applications that have access to network monitoring APIs 

using the OpenFlow semantics. However, it introduces some limitations in verifying the 

network reliability properties, which was justified due to the complexities and non-

standardized network topologies in SDN architectures. FRESCO in [39] introduced an 

OpenFlow security application framework, which facilitates rapid and dynamic creation and 

deployment of security functions for attack detection and mitigation on the OpenFlow layer. 

In [40], the authors introduce a framework of multiple distributed controllers that 

coordinate SDN control to achieve high scalability and security measures. This is achieved 

via a cluster-based mechanism that allows the dynamic addition and removal of controllers to 

the network without network interruption and down time. Any type of OpenFlow controllers 

can be used in the proposed framework where the switches and applications are unaware of 

the underlying reassignment of controllers. JGroups are used to synchronize controllers and 

ensure correct controller-switch mapping. This work recommends the deployment of multiple 

redundant controllers in the SDN infrastructure without any consideration to the performance 
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and security implications. In [51], the authors propose a security framework to detect 

suspicious changes in network topology and the SDN data plane. The work uses the flow 

graphs abstraction to approximate the network operations and thereby detect any suspicious 

deviation that may be considered as an attack. The main limitation in this work is that the 

detection mechanism is non-deterministic and is dependent on the accuracy of the flow graph 

approximation mechanisms. In [34], the authors present a traffic monitoring system in SDN 

based on sketches. This model, named “Open Sketch”, can support the detection of suspicious 

traffic surges that may spring as a result of a denial of service (DOS) attack on a particular 

network part. The main limitation in this work is mainly related to the following set of points: 

1. It operates on the physical network layer in the SDN model, which, as stated 

previously, renders it a traditional network security solution with no focus on the SDN 

particularities. 

2. Software engines running on the SDN switches themselves carry out the sketch 

calculation and updates. Trusting the switches in calculating the sketches can falsify the 

resulting traffic monitoring measurements by malicious switches and accordingly can mislead 

any security decision related to the source of possible attacks. 

3. This work mainly focuses on detecting suspicious deviations in network traffic 

and does not shed light on traffic dropping, augmenting, and modification attacks. 

In [46], a non-SDN sketch-based solution for detecting attacks on routers is proposed. 

The approach is typically analogous to that followed by Open Sketch. Several research works 

have proposed the application of Machine Learning (ML) techniques to provide intrusion 

detection services in the SDN network architecture [70]. These approaches mainly focused on 
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Deep Learning (DL) and classification algorithms to enhance the accuracy of the intrusion 

detection system and maintain low false posities rates. In [70] the authors present a DL-based 

system for detecting distributed denial of service attacks in SDN. The system is implemented 

as a network application on top of the POX controller. DL is mainly employed for traffic 

classification and for reducing the large set of features extracted for the packet headers and 

needed for attack detection. The main limitation in [70] is the high processing resources it 

requires on the SDN controller in the packet collection and features extraction phases. In this 

DL model, every network packet across the whole network is collected for feature extraction 

which imposes a sizeable load on the SDN controller. This fact is aggravated in vast SDN 

networks composed of a large number of forwarding switches in the data plane which results 

in a serious bottelneck on the SDN controller. The VISKA SDN attack categorization model 

presented in this paper targets the detection of more attack types in addition to denail of service 

attacks such as interruption attacks, blocking attacks, and man-in-the-middle attacks. 

Moreover, VISKA imposes minimal overhead on the SDN controller by isolating the source 

of attack using a highly efficient probing mechanim before proceeding with attack 

categorization. As a result, the attack categorization module on the SDN controller needs to 

collect the ingress/egress network packets of a small set of switches that are detected malicious 

instead of collecting the entire network traffic. 

A similar DL-based approach is presented in [71]. In this work Tang et al. propose a 

flow-based anomaly detection system based on deep neural networks for intrusion detection 

in SDN. This model uses a limited number of network features for attack detection for the 

purpose of ehancing the feature extraction process. The main limitation in [71] is represented 
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in the accuracy of attack detection which reaches 75.75%. This renders it infeasible for 

competing with existing intrustion detection systems or for application in commercial 

products. In [72] the authors propose a framework for detecting and classifying anomalies in 

SDN using information theory and machine learning techniques. The network traffic profiles 

are collected using Sflow [73]. The process consumes high memory and processing power to 

analyze traffic information and inspect packets. The resulting framework identifies flows as 

malicious, benign, or unknown to be further analyzed. In [74] the authors address DDoS 

attacks based on Support Vector Machoine (SVM) classification algorithms in SDN 

environments. The design is based on the information collected from the switches flow table 

states. The flow table information are used to create six-tuple characteristic values based on 

which the SVM algorithm classifies traffic as normal or attacker abnormal traffic. The 

disadvantages of this work is that it only addresses the DDoS attack on one hand on the other 

hand, the training phase has to be executed on real network data and on predetermined periods 

of time to ensure the correctness of the resulting classifier model. This necessitates more 

computing resources and processing power on the SDN controller. Similar ML-based 

intrusion detection approaches are presented in [57, 75]. 

Mobile applications and services are witnessing a massive growth that is triggering a 

proliferation in mobile network traffic. Many of the mobile traffic result from applications 

and services that are location-based [76] and are resource and network demanding. This 

motivated the provisioning of Fog or MEC computing which according to [77] is a result of 

the evolution of the Cloud and the dramatic growth of mobile services. In [77], the authors 

discuss the importance of Fog computing to accommodate the dramatic growth of mobile 



	
 
	

26	

traffic and the resource demanding nature of mobile applications and services. The ultimate 

aim of reducing latency and ensuring efficient network operation and service delivery is 

addressed by utilizing more robust and short communications with MEC servers, thus, 

replacing the traditional Internet-long thin connections [78]. 

In [79], Roman et al. provide a comprehensive survey on the security threats facing 

MEC/Fog implementations today. The main focus in this survey is on the Denial of Service 

(DOS), Man-in-the-Middle (MITM), and rogue Fog node attacks. The survey also presents 

some recommendations for mitigation techniques to such threats. Another survey on MEC 

security is presented in [80]. In this survey, the authors provide a brief description of the MEC 

security threats inherited from cloud computing (authentication, reputation and trust, network 

security) as well as those specific to the Fog architecture such as the rogue Fog node attack. 

In [81, 82], MEC security is addressed in the context of smart grid applications and machine-

to-machine (M2M) communication. In [82], the authors demonstrate the feasibility of rogue 

node attack in Fog environment by compromising the gateways on the path to the mobile 

client. The major problems hindering the provisioning of a feasible and reliable prevention 

technique of fake Fog node attacks are: 1) the complex trust scenarios for various MEC server 

deployment choices among the mobile clients, infrastructure providers, and the Cloud service 

providers, 2) the dynamic nature of MEC in creating, deleting, and upgrading virtual machine 

(VM) instances of Fog nodes, which further complicates trust/reputation scenarios, 3) 

authentication is hard to enforce in Fog computing as presented in [82], where authentication 

at the three different tiers of the Fog architecture using PKI is non-scalable and inefficient. 

Authentication on the various gateways on the network and on the data collectors at the client 
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side is deployed to control malicious users, falsified data reporting, and spoofed IP addresses 

attacks. The work in [81] implements and elaborates on MITM attacks in Fog/MEC networks. 

Servers at the network edge can be compromised and may be replaced by malicious ones. In 

this attack, clients connect to deceptive SSID, which is hijacked by a third party that controls 

the gateways and compromises all the communication by inserting a network program into 

the TCP/IP stack of the compromised network to hijack and replay communicated data. The 

authors simulate the attack in a Fog environment and discover how stealthy it could be by 

measuring the CPU, memory, and power consumption exerted by the attacker and which was 

found to be minimal and not detectable by an IDS anomaly system. In [83], the author presents 

an efficient security protocol for mutually authenticating mobile edge clients and fog servers. 

This work does not take into consideration authenticating the MEC client and the fog server 

to the main cloud service provider. 

A recent vulnerability in the Wi-Fi security protocol, WPA2, was discovered by 

Vanhoef and Piessens [84]. The attack is known as the key reinstallation attack (KRACK). 

Briefly, the attack exploits a vulnerability in the WPA2 4-way handshake that is used to 

establish a Pairwise Temporal Key (PTK). The PTK in addition to a packet number nonce are 

considered the main components for generating the encryption key used to secure the wireless 

data stream. The adversary blocks message 3 of the 4-way handshake and tricks the wireless 

access point to retransmit it, thus causing the reinstallation of the PTK and resetting the packet 

number nonce. As such, the adversary can collect a set of packets encrypted using the same 

PTK packet number combinations. Thus, the WPA2 data confidentiality stream cipher can be 

attacked. In some WPA2 implementations, the key reinstallation attack can be executed up to 
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19 times in a row before the wireless access point throws an exception. Moreover, a similar 

attack scenario can be executed on the Group Temporal Key (GTK) and the Integrity Group 

Temporal Key (IGTK). More details on this attack are presented in [84, 85]. 
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CHAPTER 3 

NETWORK CONFIGURATION AND CONNECTIVITY 

SERVICES 

 
This chapter provides a description of the design schemes and algorithms proposed to 

target the challenges represented in the virtualization of various networking services in SDN  

environments. These algorithms and services address the essential drivers for future 

communication technologies, such as 5G and IoT, by providing more dynamic, agile and 

flexibly reconfigurable and mobile networks. In Section 3.1 we propose the design and 

implementation of NCaaS, a centralized cloud service for creating VNets in SDN-based 

Cloud architecture. This is followed, in Section 3.2, by proposing VNCS, a network service 

that connects geographically separated enterprise branches based on the Software-Defined 

Networking (SDN) infrastructure.	

3.1. NCaaS: Network Configuration as a Service 

In this section, we present NCaaS, a centralized cloud service for creating VNets in 

SDN-based cloud architectures. The proposed service relieves tenants from the burdens and 

complexities of VNet creation and management by supporting dynamic provisioning 

operations based on QoS, pricing, privacy, reliability, and energy constraints set by the 

tenant. Moreover, it provides a unified interface through which tenants’ network 

specifications and constraints are fed into the service provisioning algorithms. These 

algorithms, in turn, handle the negotiation with the different SDN NaaS providers and 

dynamically apply the necessary VNet creation, partitioning, and migration mechanisms to 
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ensure the satisfaction of the tenants’ preferences. A proof of concept test bed 

implementation of the proposed service will be provided on top of the OpenVirteX network 

virtualization platform. The presented NCaaS service paves the way for a more dynamic 

network slicing and NaaS services which represent a hot research topic for future 5G and IoT 

networks. 

NCaaS provides tenants with their predefined VNets that meet their constraints while 

guaranteeing a minimum cost. The tenant VNet is composed of a set of n software services 

that interact together to achieve the desired functionality of the tenant’s business logic. These 

n services are to be deployed on a set of VMs distributed among t providers. NCaaS 

algorithms utilize provider-related information as well as tenants VNet specification and 

constraints to create a minimum cost virtual network that complies with these specifications 

and constraints. Figure 3.1 demonstrates the set of NCaaS algorithms responsible for creating 

the VNet based on the providers’/tenants’ input and specifications. 
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Fig. 3.12- NCaaS algorithms for dynamically creating the tenants’ virtual networks. 

3.1.1NaaS Providers Offers 

The NCaaS algorithms operates based on input information retrieved from a set of NaaS 

providers representing 1) their offered VM profile specifications and their respective cost 

including the hardware/software specifications of the VM, such as the number of virtual 

CPUs and their speed, the amount of RAM available, the storage capacity, the operating 

system and supporting software, and the network bandwidth, 2) the upload/download data 

communication rates, and 3) the energy resources used by the provider, and the privacy 

services offered. This information is either input from the providers, or gathered and 

updated by the NCaaS service. This information is further arranged in three main tables 

or matrices as follows: 
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• The Profile-Cost Matrix (CP): this matrix (Figure 3a) shows the cost of the 

different VM profiles offered by the various cloud providers. Each element in this matrix 

𝐶𝑃),* represents the cost of the kth VM profile along with its bandwidth rates offered by 

the ith cloud service provider. 

• The Upload/Download Rate Matrix (UDR): this matrix (Figure 3b) specifies 

the data upload/download rate offered by each of the 𝜏 cloud providers. Element UDRi 

consists of the upload/download rate per data unit offered by the ith cloud service 

provider. Without loss of generality, we assume same rates for data upload and 

download. 

𝐶𝑃,, ⋯ 𝐶𝑃,.
⋮ ⋱ ⋮

𝐶𝑃1, ⋯ 𝐶𝑃1.
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𝑆𝐷8,, ⋯ 0

𝑆𝑃,
⋮
𝑆𝑃8

𝑅,
⋮
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                              (a)                   (b)                           (c)                        (d)     (e) 

Fig. 3.23- Input information to the NCaaS algorithms: a) The Profile–Cost matrix; b) The 
Upload/Download Rate matrix; c) The Service Dependency matrix; d) The Service Profile matrix; e) The 
Performance matrix. 

 

 

• The Provider Profile Matrix (PP): this matrix provides three main records 

related to 1) the reputation rank of the provider, 2) the level of privacy supported, and 3) 

the eco-friendly compliance of the providers with green energy saving policies. Such 

metrics are mainly provided by trusted third parties as described in [23, 24]. In addition 

to the reputation, privacy, and energy metrics, the PP matrix specifies the geographical 

physical location of the corresponding providers’ data centers. 
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3.1.2 Tenants Preferences and Constraints 

The second form of input provided to the NCaaS VNet creation algorithms is a set of tenants’ 

specifications and constraints. These are represented in three main matrices: 

• The Service Dependency matrix (SD): The SD matrix designates the degree 

of dependency among the different network services. Dependency in this context reflects the 

amount of data communicated between the respective services. This matrix is an nxn 

symmetric matrix for a tenant predefined set of n services (S1, S2, …, Sn) as shown in Figure 

3.2c. Each entry SDi,j in the service dependency matrix indicates the amount of network 

traffic exchanged between services i and j per unit time. SDi,j of zero value indicates no 

linking between services i and j. Thus, obviously, the values of the matrix main diagonal are 

set to zeros. Moreover, assuming that SDi,j is the same as SDj,i, renders the SD matrix 

symmetric. 

• The VNet service profile matrix (SP): the matrix (Figure 3.2d) represents the 

profiles and resource requirements of the underlying VMs running the network services. SPi 

is the service profile of the ith tenant service. As indicated in Section 3.1.1, the service profile 

designates the hardware/software specifications of the VM such as the number of virtual 

CPUs and their speed, the amount of RAM available, the storage capacity, the operating 

system and supporting software, the network bandwidth, among others. NCaaS allocates 

network resources on various providers based on this matrix. 

• The performance constraint matrix R: this matrix corresponds to the tenant 

specified services that require high performance and minimum network delay. The R matrix 

entries are set in the range 1≤R≤10 where 10 represents high performance services and a rate 
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of 1 indicates relatively lower service performance demands. The performance constraint 

matrix (Figure 3.2e) is used in the performance constraints and the topology creation 

algorithm as will be presented in Section 3.1.4. 

In addition to the matrices described above, NCaaS presents a unified interface that prompts 

tenants to identify a set of network provider constraints as listed below: 

- Location of physical provider sites according to tenant’s region preferences as well as 

specifying tenants’ black-listed provider set, if any. 

- The minimum accepted provider’s reputation rank (refer to [24] for more details on 

reputation ranking schemes in cloud computing). 

- Energy requirements where the tenant may select NaaS providers with environmental 

friendly data centers, renewable energy options and energy consumption limits. 

- The desired level of privacy on specific parts of the network (refer to [23] for more details 

on privacy level specifications). 

3.1.3 NCaaS Partitioning Algorithm 

NCaaS supports an adaptable VNet partitioning mechanism that provides flexibility in 

placing the different VNet services on different provider sites depending on the performance 

and cost requirements of these services. For instance, the online network services that require 

high performance qualities are placed on top-notch provider sites with relatively high service 

pricing, while the backup and archiving components can be placed on provider sites with 

lower service price. Partitioning also allows for the essential VNet services to be deployed 

on provider sites that are geographically closer to the tenant, which plays a role in enhancing 

the performance of these services. Moreover, VNet partitioning enhances the reliability and 
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fault tolerance capabilities of the network by allowing the NCaaS service to replicate, clone, 

and snapshot only small slices of the VNet (such as those with critical online operation) and 

hence avoiding the expensive operation on the whole VNet. The NCaaS partitioning problem 

aims at assigning the set of n services composing the tenant VNet to a set of partitions on a 

collection of selected cloud providers. The next subsection presents a mathematical 

formulation for the NCaaS partitioning optimization problem by specifying the objective cost 

function and the set of constraints on this objective function. This is followed by devising a 

greedy approximation algorithm for solving this partitioning problem. 

3.1.4 Cost Optimization Formulation and Objective Function 

In this section, we formalize the objective function representing the overall cost of deploying 

the tenant’s VNet services on the different cloud providers. The main objective is to minimize 

this cost while considering the tenants’ constraints and providers’ specifications. Using the 

set S of n services (𝑆, à𝑆8) and the set PR of	𝜏 cloud providers (𝑃𝑅, à𝑃𝑅.), the cost of 

mapping a service Si with VM profile Pi to provider PRk is defined as: 

𝑐𝑜𝑠𝑡(𝑖, 𝑘) = (𝐶𝑃),* + 𝑆𝐷),C×(𝑈𝐷𝑅*8
CE,	;C∉HIJK)LMI	*	 +𝑈𝐷𝑅HIJK(C))  (1) 

Equation 1 represents the cost of deploying service i on provider k in addition to the 

communication cost of service i with all the dependent services j as specified in the SD 

matrix. The function prov(j) returns a reference to the cloud provider hosting service j.  Next, 

we define the binary constraint 		𝑋)* as: 

		𝑋)* = 	
1		𝑖𝑓	𝑆)	𝑖𝑠	𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑	𝑜𝑛	𝑃𝑅*
0		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																											

  (2) 

The objective function of the optimization problem to be minimized is presented as follows: 
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	𝑓 𝑥 = 𝑐𝑜𝑠𝑡 𝑆), 𝑆C, 𝑃𝑅*, 𝑃𝑅[E\]^_(`)a 	×	𝑋)*×		𝑋C[  (3) 

Where 𝑉 = 𝑖, 𝑗, 𝑘,𝑚 𝑖 < 𝑗	, 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑛, 𝑘 ≤ 𝜏,𝑚 ≤ 𝜏  

Minimizing 𝑓 𝑥  will result in placing the services of the VNet on providers with minimum 

overall deployment and communication cost in addition to the following constraints: 

 		𝑋)*,...
(*,[) ×		𝑋C[ 	= 1	∀	𝑖, 𝑗	𝑖𝑛	𝑆  (4) 

 Where		𝑋)*, 𝑋C[	 ∈ 0,1 and k¹m 

Equation 4 indicates that service i can be hosted by only one provider at a time. The same 

applies for service j. 

Another essential constraint is the performance constraint directly indicated by the 

performance constraint matrix R and influenced by the distance between the 

providers	𝑃𝑅*, 𝑃𝑅[ hosting the connected services 𝑆), 𝑆C: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 	𝑃𝑅*, 𝑃𝑅[ ×	𝑆𝐷),C ≤ 	𝛿 ×max 𝑅), 𝑅C    (5) 

where 𝛿	is a normalization constant that tunes the range in the R matrix to a suitable (distance 

× data dependency) factor. 

This problem is a binary integer optimization problem, which can be reduced to a Multiple 

Knapsack problem [25] whose computational complexity is exponential in terms of the 

number of services and providers. The optimal solution of a Multiple Knapsack problem is 

usually obtained via branch-and-bound [26] techniques. Greedy algorithms are well-suited 

for approximating such type of problems in terms of computing times and storage resources. 
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In the next section, we propose the Network Partitions Creation algorithm, which is an 

approximate greedy algorithm for solving this NP-complete problem. 

A sample example consisting of 4 services {s1, s2, s3, s4} and 3 providers {p1, p2, p3} is 

fed to the NCaaS optimization algorithm using the following matrix configurations: 

CP: The profile-cost matrix: 	

2.1				2.5
1.24		1.5
0.9				1.2
0.7			0.91

$/hr 

SP: The Service Profile matrix: 

P1
𝑃2
𝑃3
𝑃4

	

SD: The Service Dependency matrix: 

0			0.5			1.2			14	
0.5			0			5.7			12
1.2			5.7			0			19
14			12			19			0

 GB/hr 

UDR: The Upload/Download Rate matrix: 0.07
0.1

 $/GB 

The NCaaS optimization algorithm produced the following solution: 

Service to Provider mapping	:  

cost $/hr p1 p2 p3 
s1 4.486 2.355 4.4 
s2 2.99 2.18 4.566 
s3 2.073 4.43 4.892 
s4 4.88 6.3 6.17 

	

Based on the above costs, the service distribution among the providers is found as follows: 

s1 p2 
s2 p2 
s3 p1 
s4 p1 
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The resulting minimum cost based on the above service allocation is 11.488$/hr. 

To compare the above solution to the optimal solution, we generated all the 64 possible 

service to provider allocations using a Matlab script, calculated the cost of each allocation, 

and picked the allocation with the minimum total cost. The optimal solution found for this 

specific problem is equal to that generated by the optimization algorithm.  These results prove 

that the Multiple Knapsack approximation is fit to the optimization problem. The results were 

compliant due to the relatively small problem size. Applying the NCaaS optimization 

algorithm on larger problem sizes should consequently provide a near optimal solution [25].  

3.1.5 Network Partitions Creation Algorithm 

NCaaS utilizes provider data (Section 3.1.1) along with the tenant VNet specification 

and constraints (Section 3.1.2) in order to achieve the minimum cost objective function 

presented in Equation 3. 

To serve this goal, the NCaaS‘s Network Partitions Creation algorithm starts in phase 1) by 

short listing the set of candidate cloud providers based on the PP matrix and tenants 

requirements. The algorithm proceeds by checking providers’ offers in the resource CP 

matrix against the tenant specified SP matrix to map each of the n VNet service to the 

provider of minimum cost satisfying the corresponding resource profile. At the end of this 

phase, all the services of the respective VNet would be arranged in partitions that are mapped 

to minimum cost providers. In phase 2) and to achieve minimum cost, the highly connected 

services are rearranged on the set of partitions to satisfy minimum connection cost among 

providers while ensuring tenants’ specified performance criteria. Thus, the tenant specified 
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services’ dependency matrix, along with the provider upload/download cost rate, are utilized 

to achieve the minimum cost objective. The pseudo code of the Network Partitions Creation 

algorithm is presented below: 

 

Algorithm	1:	Network	Partitions	Creation	Algorithm	

Phase	1	Minimum	cost	profile	selection:	
Step	1	
Select	 the	 candidate	 provider	 list	 based	 on	 the	
tenants’	constraints	on	the	providers’	qualifications	in	
terms	 of	 reputation,	 energy,	 physical	 location	 and	
privacy.	
Step	2	
Create	 the	 Profile-Cost	 Matrix	 (CP)	 with	 rows	
corresponding	 to	 p	 providers	 and	 columns	 to	 n	
services	where	CPi,j	is	the	cost	of	deploying	service	j	on	
provider	i.	
Step	3	
Create	the	Partitions	matrix	PT	of	dimension	𝜏´n.	Each	
row	 i	 in	 the	 PT	 matrix	 indicate	 the	 set	 of	 services	
selected	 to	 run	 at	 provider	 i.	 At	 this	 stage,	 this	
selection	 is	 merely	 based	 on	 the	 minimum	 cost	
offered	 by	 the	 various	 cloud	 providers	 for	 different	
service	profiles.	Effectively,	each	row	i	in	the	PT	matrix	
represent	a	network	partition	to	be	deployed	at	the	ith	
cloud	provider	site.	
Phase	 2	 Achieving	 least	 inter	 partition	
communication	cost:		
Step	4	
Create	dependency	hash	table	D	[1àn].	Each	entry	Dk	
in	 D	 represents	 the	 amount	 of	 dependency	 that	
service	 k	 has	 with	 the	 other	(𝑛 − 1)	services	 in	 the	
network.	 To	 calculate	Dk	we	utilize	 the	SD	matrix	 as	
follows:	

for	i	from	1àn	
for	j	from	1àn	

						if	j	≠	i	
										Di	+=	SDi,j	 	

Step	5	
Sort	D	in	decreasing	order	to	start	with	the	service	of	
maximum	connectivity	influence	on	the	other	services	
for	each	service	i	in	D	
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Create	a	cost	vector	V	[1àt]	where	each	entry	Vk	

represents	 the	 cost	 of	 deploying	 service	 i	 in	
partition	k	added	 to	 the	cost	of	 interconnection	
between	service	 i	and	the	rest	of	the	services	 in	
the	other	partitions.	

for	each	k	in	PT		
Vk	=	CPk,i	

for	each	service	j	in	SD	excluding	those	in	partition	k	
if	 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 	𝑘, 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑗) ×	𝑆𝐷),C ≥
	𝛿 ×max 𝑅), 𝑅C 		

increment	k	(change	partition)	
Break		
Vk	+=SDi,j´UDRk	

Step	5	

Find	the	entry	of	minimum	cost	in	V.	The	entry’s	index	
represents	 the	 optimum	 partition/provider	 for	
running	service	i.	

 
 

 

3.1.6 Topology Generation 

After running the partitioning algorithm, the VNet is divided into partitions each of which 

contains a set of the VNet services to be deployed on a particular cloud provider. The 

topology creation algorithm arranges the services on the provider site in a fat-tree-based 

topology (popular in today’s data centers), which involves a branching factor EBR that is 

inversely proportional to the number of ports involved in the topology creation. EBR is the 

ratio of the number of edge switch ports that are connected to servers to those connected to 

core switches. The minimum value for EBR is 1, which indicates that there is a dedicated link 

connecting the edge switch to the core switch for each node in the network. This directly 

contributes to minimizing the data transfer delay between the services across the edge and 

core switching layers. To fulfill the performance constraints specified by the tenant and 

represented in the performance matrix R (refer to Section 3.1.2), the maximum performance 
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value Rmax of the services in the partition is used to calculate EBR according to the following 

equation: 

𝐸𝐵𝑅 = 𝑡𝑟𝑢𝑛𝑐(	𝛼	𝑅[z{)   (6) 

Where α is a normalization factor that bounds the EBR value to a predefined range. 

3.1.6.1 Topology Creation Algorithm 

This section presents the base algorithm for creating each VNet partition topology. The 

parameters used in the topology creation are listed below along with the topology creation 

algorithm:  

1. k: number of edge switches. 

2. NE: number of ports per edge switch. 

3. NC: number of ports per core switch. 

4. NP is the total number of servers in a partition. 

5. ES: maximum number of edge switch ports to connect to servers deduced from EBR 

by: 

ES=trunc(NE´EBR/(1+EBR)). 

6. EC: number of edge switch ports to connect to core switches obtained from ES such 

that: EC=NE-ES. 

7. B: maximum number of ports that can connect to each edge switch where B = 

ceiling(NC/k). 
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Algorithm	2:	Topology	Creation	Algorithm	

Phase	1	Initialization:	

Compute	𝐸𝐵𝑅 = 𝑡𝑟𝑢𝑛𝑐(𝛼	𝑅𝑚)	
Set	 Scounter	 =	 0	 	 //equivalent	 to	 the	 number	 of	
services	connected	
ES	=	trunc(NE×EBR/(1+EBR))	
Set	k	=1									//	(edge	switch	counter)		
Phase	 2	 Creation	 of	 edge	 switches	 and	 their	
corresponding	port	connections:		
Let	i	=	Scounter	
Create	edge	switch	ESk	
While	Scounter	≤	ES	and	Scounter	≤	NP	
						if	Si	is	not	connected,	connect	it	to	ESk	

increment	Scounter,	increment	i	
for	each	j	≤	NP	and	j>i	
							find	j	with	maximum	SDi,j		
						if	Sj	not	connected,	connect	it		
												increment	Scounter	
											If	Scounter	<	NP	then	increment	k				//	
																																													//add	 another	 edge	
switch	
Goto	Create	edge	switch	

Phase	3	Creation	of	the	core	level	
Set	c=0	as	the	core	switch	counter	
EC=NE-ES		
B=	NC	div	k	
if	B	≥	EC	then	increment	c,	create	core	switch	CSc	and	
connect	each	edge	switch	to	it	via	EC	ports	
else	

let	r	=	EC	
while	r	≥	B	

increment	 c,	 create	 core	 switch	 CSc	 and	
connect	each	edge	switch		to	it	via	B	ports		
decrement	r	by	B	:	r	=	B	-	r	
if	r	>	0	

increment	 c,	 create	 core	 switch	 and	
connect	 to	 each	 edge	 switch	 via	 r	 ports	
Redistribute	 edge	 switches	 over	 core	
switches	 by	 EC/c	 connections	 per	 edge	
switch		
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Fig. 3.34- Partitions connection algorithm demonstration 

3.1.7 Partitions Connection Algorithm 

 Using the SDN network programming features, VNet partitions can be easily joined to 

provide a complete VNet view to the tenant. The following example (see Figure 3.3) 

demonstrates how multiple VNet partitions implemented on possibly different provider sites 

can interact to provide the tenant with a single compositional VNet. Without loss of 

generality, the example demonstrates the algorithm for achieving connectivity between two 

VNet partitions, VNet partition 1 and VNet partition 2 consisting of two hosts each. 

For functionally joining the two VNet partitions we use two forwarding hosts FH1 and FH2 

at VNet partition 1 and VNet partition 2, respectively. At VNet partition 1, the SDN 

controller sends the rule “forward all traffic to H3 & H4 to FH1”. Similarly, at VNet partition 
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2, the SDN controller sends the rule “forward all traffic to H1& H2 to FH2”. The FH1-to-

FH2 link can be implemented as an IP tunnel as follows: All frames arriving at FH1 are 

encapsulated in respective IP packets and sent to FH2 and vice versa. All the packets received 

by FH2 are de-capsulated and the resulting frames are forwarded to their designated hosts. 

Analogously, all traffic received by FH1 is de-capsulated and forwarded to its destination. 

With this procedure, the tenant will view a single VNet composed of the corresponding 

partitions. 

To prevent any performance bottlenecks due to the utilization of a single forwarding host, 

the Partitions Connection Algorithm can be extended by adopting more than one forwarding 

host per partition. Communication with other services (residing on other partitions) in the 

network is assigned equally among the available forwarding hosts in the source partition. In 

other words, the SDN controller will send the forwarding rules to the network switches to 

divide the outgoing load among the forwarding hosts based on the destination service 

receiving the traffic. In the same sense, the encapsulation algorithm on the source forwarding 

host is configured to forward the traffic equally among the forwarding hosts in the destination 

partition. This is also based on the recipient service receiving the traffic in the destination 

partition. That is, the source forwarding host is configured to assign the set of services 

deployed in the destination partition among the set of forwarding hosts available in that 

partition. This ensures fair distribution of workload among the forwarding hosts on the source 

as well as on the sink sides. 
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3.1.8 NCaaS Implementation 

The NCaaS algorithms are fully implemented using Mathworks Matlab 2014 [27]. To 

demonstrate a full-fledged functionality of the NCaaS service and to test for the fulfillment 

of the NCaaS objective function of minimum cost as the systems scales, we simulated three 

main prototype cloud configurations. Configuration 1 consists of 5 providers and 10 services, 

Configuration 2 consists of 7 providers and 14 services, and Configuration 3 consists of 14 

providers and 28 services. The NaaS architecture utilized is the OpenVirteX network 

virtualization platform. This choice is due to the great flexibility provided by OpenVirteX in 

terms of address space isolation, topology specification, and dynamic network 

reconfiguration at runtime.  

Table 3.1 Profile offers based on real provider pricing data 

Profile	Offer	
	($/h)	
Range	

1	 2	 3	 4	 5	 6	 7	 8	 9	

M
in
	

0.
00

5	

0.
01

5	

0.
02

5	

0.
05

	

0.
05

6	

0.
13

	

0.
26

	

0.
51

	

1.
25

	

M
ax
	

0.
01

3	

0.
02

6	

0.
05

3	

0.
10

4	

0.
12

6	

0.
25

2	

0.
50

4	

1.
00

8	

2.
53

	

	

OpenVirteX is installed on a VirtualBox [28] VM and runs on top of the Mininet network 

emulator [54]. For each VNet partition, the NCaaS algorithms ultimately produce a .JSON 

file that formally describes the VNet partition topology. The partitions’ files are fed to the 

OpenVirteX network embedder to automate the process of mapping the respective VNet 

partition onto the physical data center network. It is worth mentioning here that NCaaS may 

in theory rely on any available NaaS services. The only requirement here is to feed the NCaaS 

Topology Creation algorithm with the standard network deployment interface used by the 
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respective NaaS services. The matrices representing the tenants and providers input (refer to 

Section 3.1.1) are populated with reasonable values for each experiment run (40 runs in total 

for each of the three configurations). The most important matrices fed into the NCaaS 

algorithms are populated as follows: 

1. The CP matrix profile values are randomly generated in the ranges specified in Table 

3.1 which are based on real pricing values extracted from the websites of the top 12 

cloud providers in the IaaS market. 

2. The UDR matrix values are randomly generated in the range $0.03/GB to $0.11/GB. 

This range is based on real data transfer rates extracted from the websites of 6 cloud 

providers. 

3. The SD matrix entries linking communicating services are populated with assumed 

values in the range of 100 KB to 24 MB per hour. 

4. The SP matrix is initialized with reasonable profile settings for the services in the 

three simulated configurations. 

5. The R matrix is instantiated with random values in the range of 1 to 10 (this is based 

on the specification of the R matrix in Section 3.1.1). 

For the performance constraint implementation, the physical distances among providers are 

randomly generated in the range 1 to 20. These distances are implemented as the weights on 

the links connecting the partitions in the network configuration files. To achieve the required 

normalization level, the normalization constant 𝛿	used is 48. 

For each of the three prototype configurations, the cost of deploying the entire tenant’s VNet 

on a single cloud provider is computed for the whole set of candidate providers. These costs 
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are compared to the cost of deploying the same VNet using the partitioning algorithms of the 

NCaaS service. On all the tested cloud configurations, the NCaaS service always produced 

the minimum cost in comparison with single NaaS provider deployment while satisfying the 

tenant’s constraints and requirements. The results attained for configurations 1 – 3 are 

respectively presented in Figures 3.4, 3.5, 3.6. On average, the cost saving achieved for the 

first configuration (5 providers, 10 services) is 26.58%, for the second configuration (7 

providers, 14 services) is 30.68% and for the third configuration (14 providers, 28 services) 

is 37.62%. This demonstrates the scalability of the NCaaS algorithms in increasing the cost 

savings as the problem size increases. These results are presented in Figure 3.7. 

 
Fig. 3.45- Cost ($/h) achieved in the first configuration when deploying the VNet services on the candidate 
providers and when applying the NCaaS algorithms. 
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Fig. 3.56- Cost ($/h) achieved in the second configuration when deploying the VNet services on the candidate 
providers and when applying the NCaaS algorithms. 

 

 

Fig. 3.67- Cost ($/h) achieved in the third configuration when deploying the VNet services on the candidate 
providers and when applying the NCaaS algorithms. 
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Fig. 3.78- NCaaS Cost savings per hour achieved when deploying the three VNet configurations. 

 
3.2 Virtual Network Connectivity As A Service Using A Software-Defined 

Networking Approach 

The VNCS service creates and manages networks that efficiently connect tenant remote sites 

using the vISP SDN-based network providers’ infrastructure and presents the tenant with a 

unified and reliable virtual network which satisfies its constraints and preferences while 

periodically upgrading and updating the underlying SDN networks according to providers’ 

offers and tenants’ service agreement purviews. To achieve this level of network creation 

flexibility with remarkably personalized features, VNCS algorithms provide a centralized 

interface to input tenant’s network specifications, constraints, preferences, and restrictions on 

one hand, and SDN providers’ offers and their corresponding network features and updates 

on the other hand. Figure 3.8 illustrates VNCS’s network connectivity mechanism. 

3.2.1 Tenant Network Design Constraints 

The first step in designing the vSDN network, is to set the tenant network information and 
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a) Location indices matrix (LI): this matrix represents the tenant’s branches’ geographic 

locations where each entry LIi is the location index of branch i. The LI matrix is used in 

the initial phase of the VNCS network creation algorithm in selecting the candidate 

SDN providers’ sites that can connect each branch.  

b) Maximum number of interconnecting hops matrix (MH): in this matrix, the tenant 

specifies the maximum permitted number of interconnecting SDN provider sites MHi,j 

between each pair of the tenant’s branches i and j. The VNCS service uses this value to 

restrict the number of connecting hops as a performance measure. 

c) Branches connectivity level matrix (CL): this matrix designates the degree of 

connectivity among the different network branches. This matrix is a τ x	τ symmetric 

matrix for a tenant predefined set of τ branches (𝐵,, 𝐵7, … , 𝐵�). Each entry CLi,j 

indicates the amount of network traffic exchanged between branches i and j per unit  

Fig. 3.89- VNCS network connectivity mechanism. 

time. Obviously, the values of the matrix main diagonal are set to zeros.  
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d) Performance factor matrix (P): this performance information is specified by the tenant 

based on the connectivity and dependency level between branches in the enterprise. Pi,j 

is the communication performance level reflecting the network delay that is requested 

for the path connecting branches i and j. This constraint must be satisfied in the VNCS 

network creation algorithm.  

e) Reliability factor matrix (R): in this matrix, the tenant specifies the communication 

reliability level requested from the VNCS service for each branch. This reliability 

constraint matrix must be satisfied in the VNCS network creation algorithm, through 

redundant connecting paths on one hand, and the SDN providers’ specified number of 

redundant communication paths they offer in each of their connecting sites on the other 

hand.  

f) Security index matrix (SI): this matrix indicates the levels of communication security 

between different branches of the enterprise on one hand and the physical location 

restriction of the connecting SDN sites and black listed providers on the other hand. 

The value SIi, is an index that represents the security index required for branch i.  

g) Geographic distance matrix (D): this matrix represents the distance between the 

tenants’ branches where Di,j is the geographic distance between branches i and j. This 

distance is an essential constraint in the VNCS network creation algorithms where SDN 

providers are selected in order to minimize latency and meet the tenant’s performance 

constraints. 
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h) Provider reputation level (RpI): in this matrix, the tenant indicates for each branch i, 

the SDN network providers’ reputation and ranking index RpIi that is required. RpI is 

significant in the selection of SDN network providers in the VNCS service algorithms. 

In addition to these essential tenant specified input matrices that are utilized in the VNCS 

network creation process, the tenant can personalize the behavior of the VNCS service in 

terms of the network update process according to seasonal changes, network components 

migration feasibility and its timing, and the service occasional feedback information and its 

frequency. 

3.2.2 SDN Network Provider Information 
The VNCS service optimizes the tenant network creation by ultimately utilizing 

information that is periodically gathered from SDN network providers. This information 

involves pricing, available connecting sites, reliability network specification, and geographic 

location of the SDN network infrastructure that can be delivered to the VNCS service. The 

following matrices define the information input from SDN providers:  

a) Connectivity cost matrix (C): every SDN network provider should provide the VNCS 

service with the location of the areas that it connects and the corresponding connection 

sites’ costs. For provider i and site j, the value Ci,j corresponds to the cost of the 

connecting site given by an SDN network provider. 

b) Site spanned connected area (SA): for a provider i and site m, SAi,m represents the 

geographic area that site m can connect. This matrix is used by the VNCS algorithms 

in the step of selecting the candidate providers that can connect the tenant sites 

according to their locations. 
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c) Site geographic specification matrix (GS): this matrix represents the specific 

geographic location GSi,j  of the sites j network infrastructure that are used by the SDN 

provider i in the network connecting service. GSi,j  matrix is used by the VNCS service 

to meet the security measures and restrictions that are identified by the tenant in matrix 

SI.  

d)  Upload/Download Communication Cost Matrix (UDC): this matrix represents the 

upload/download data rates UDCi,j offered by providers i for site j.  

e) Site Reliability factor (SR): for each given provider k, the matrix values SRi represent 

the reliability and redundancy measures it provides for each of its available connecting 

site infrastructure i. The SR values of the candidate sites contribute in accomplishing 

the tenants’ reliability requirements and constraints that are set in matrix R in Section 

3.2.1. 

3.2.3 VNCS Branch Connection Mechanism 
The VNCS service provides tenants with a completely adaptable and personalized 

VNets that fully connect their geographically separated remote sites exclusively using SDN 

infrastructure. The VNCS adaptable network creation mechanism is achieved by the Network 

Distribute and Bond algorithm (NDB) that enables it to flexibly deploy, replicate and migrate 

parts of the connecting networks among different SDN providers. In the next subsection, a 

mathematical formulation of the VNCS distribute and bond network optimization problem is 

described. This is followed by developing a greedy algorithm that approximates the VNCS 

optimization solution. 
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3.2.4 Problem Optimization Formalization 
The problem formulation of the VNCS network creation is described in this section. 

The VNCS objective function is to minimize the overall cost of connecting tenants’ sites by 

configuring the connecting VNets on different vISP providers. Let the set B represent the τ 

branches (𝐵, à𝐵�) of the tenants’ enterprise that are input to the VNCS service. The set VP 

represents the φ candidate vISP network providers (𝑉𝑃, à𝑉𝑃�	) each having a set of sites S, 

the cost of connecting branch Bi to VPk  in the VNet is defined by: 

𝑐𝑜𝑠𝑡(𝑖, 𝑘) = 𝐶),* + 𝐶𝐿),�×(𝑈𝐷𝐶*�	
�E,	;�	�)	z�	HIJK(�)�	*	 +𝑈𝐷𝐶HIJK(�))   (7)   

 

Where 𝐶),* represents the VPk ’s cost of connecting branch i to provider k and prov(b) is the 

provider that branch b is connected to. The connectivity level 𝐶𝐿),� 	between branch i and 

the rest of the branches in the VNet is multiplied by the upload/download costs of involved 

providers. 

To formulate the objective function of minimizing the VNet connection cost and fulfilling 

the tenant’s constraints, consider the following binary variable X given by: 

		𝑋)* = 	
1		𝑖𝑓	𝐵)	𝑖𝑠	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑	𝑜𝑛	𝑃*
0		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																											

                                 (8) 

The optimization problem objective function f is thus given by (9) which represents the cost 

of vSDN deployment for the tenant’s branches’ communication, such that all the feasible 

sites’ deployment for all possible combinations of the tenant’s branches are considered in a 

pairwise calculation of the branches’ connection costs (7). The problem is to minimize f(x): 
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𝑓 𝑥 = 𝑐𝑜𝑠𝑡 𝐵), 𝐵C, 𝑉𝑃*, 𝑉𝑃H�,∅ 	×	𝑋)*×		𝑋CH																					(9) 

where 𝐵)  and 𝐵C  represent all possible pairs of branches in the VNet that are deployed 

on	𝑉𝑃* , and 𝑉𝑃H	respectively where p can be equal to k. 𝜕 and ∅ represent the sets of all 

possible combinations (10, 11) with the constraint that a branch can be directly connected to 

one SDN provider at a time (12): 

𝜕	 = 𝑖, 𝑗, 𝑖 < 𝑗	, 𝑖 ≤ τ, 𝑗 ≤ τ                                                 (10) 

∅ = 𝑘, 𝑝 𝑘 ≤ φ	, 𝑝 ≤ φ	                                                    (11) 

		𝑋)*
,..�
(*,H) ×		𝑋CH 	= 1	∀	𝑖, 𝑗	𝑖𝑛	𝐵            (12) 

where		𝑋)*, 𝑋CH	 ∈ 0,1  

Along with minimizing the objective function, the following set of constraints has to be 

satisfied: 

a) Geographic-security constraint: this is the security constraint for connecting branch 𝐵) 

on site 𝑆�of provider p, which states that, 𝑆�  geographic location should satisfy the 

security restrictions for branch 𝐵)  in the 𝑆𝐼  matrix: 	𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 	𝑆� ∉

	𝛿(𝑆𝐼))	, 𝑎𝑛𝑑		𝑋)H = 1 

 where 𝛿 is the geographic-restriction factor in the 𝑆𝐼 entry. 

b) Distance-performance constraint: the performance requirement Pi,j on the connection 

between each pair of branches i and j has to be met by restricting a threshold on the 
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ratio of the distance between the sites 𝑆[ and 𝑆8	at providers p and k that are hosting 

the branches to distance Di,j between the branches: 

									𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 	𝑆8, 𝑆[ ×	𝜎 ≤ 𝑃),C×	𝐷),C		𝑎𝑛𝑑			𝑋)H = 	𝑋C* = 1 

      where	𝜎 is a normalization factor that tunes the computed distance value to the range 

of the matrix P values. 

c) Area constraint: this restraints the set of possible sites that can be assigned to connect 

the geographically separated tenant branches. This constraint is established by utilizing 

the tenant’s LI matrix and the provider’s SA matrix: 

	𝐿𝐼) ⊂ 𝑆𝐴[	𝑎𝑛𝑑			𝑋)H = 1		 

𝑤ℎ𝑒𝑟𝑒	𝑠𝑖𝑡𝑒	𝑚	 ∈ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟	𝑝 

d) Number of hops constraint: this constraint is indicated in the tenant MH matrix and 

should be satisfied when connecting each branch i to site m on provider p: 

	𝑛𝑢𝑚_𝑜𝑓_ℎ𝑜𝑝(	𝑆[	 ⟶	𝑆8) ≤ 𝑀𝐻),C	𝑎𝑛𝑑			𝑋)H = 	𝑋C* = 1	 

       						𝑤ℎ𝑒𝑟𝑒		𝑠𝑖𝑡𝑒𝑠	𝑚 ∈ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟	𝑝	𝑎𝑛𝑑	𝑠𝑖𝑡𝑒	𝑛	 ∈ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟	𝑘 

Ultimately, this problem is an integer optimization problem, which is reduced to a multiple 

knapsack problem [32]. This is an np-complete problem having a computational complexity 

of exponential order in terms of the number of branches and sdn providers. To solve this 

problem, taking into consideration the computational power and resources limitations 

involved in the proposed service, a greedy algorithm, distribute and bond, is devised. This 

algorithm (illustrated in the following section) approximates an optimal solution to the VNCS 

problem. 
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3.2.5 Network Distribute and Bond Algorithm 
VNCS distribute and bond algorithm starts connecting the tenant branches by optimally 

selecting SDN providers’ sites to achieve minimum cost and at the same time meet network 

performance and behavioral constraints. The distribute and bond algorithm starts in phase 1 

by finding the set of all feasible sites (GF) that each branch can connect to by taking into 

consideration the branch’s geographic position, security, and performance constraints. In 

phase 2, the branches are ordered in decreasing order of expected communication traffic. The 

algorithm starts connecting the branches with higher network traffic levels. In phase 3, to 

connect a branch, the vSDN deployment and communication costs of connecting it to each 

feasible provider site in GF is computed. The algorithm finds the total minimum cost SDN 

provider site and at the same time satisfies the distance-performance constraint and the 

maximum allowable number of hops (MH) to each branch in the VNet. After mapping each 

branch to the corresponding SDN provider site, the cost of that SDN provider site is 

decremented to allow for adjustable incremental costs offered by the respective SDN 

providers. The algorithm is detailed below: 

Algorithm	3:		Network	Distribute	and	Bond	Algorithm	
Phase	 1	 SDN	 feasible	 site	 selection	 for	 the	 VNet	
branches:	
Step	1	
Select	the	candidate	provider	list	based	on	the	tenants’	
constraints	 on	 the	 providers’	 qualifications	 in	 terms	 of	
reputation,	reputation	index	(RpI),	and	physical	location.	
To	 identify	 the	 respective	 providers’	 sites,	matrix	 ID	 is	
generated	 where	 each	 entry	 IDk,x	 represents	 a	 unique	
identifier	that	designates	site	x	at	provider	k.	
Step	2	
Create	 GF,	 the	 geographically	 feasible	 sites	 matrix	 for	
each	branch	i	that	consists	of	the	providers’	sites	whose	
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connectivity	spanning	area	SA	complies	with	the	branch	
location	LIi		and	SIi.			

for	k	from	1à	φ	
				for	x	from	1àsites(k)	

	if	LIi	Î	SAk,x		
										if	SAk	,x	complies	with	SIi	
													GFi,k=	site	IDk,x	

Phase	2	find	the	branch	with	maximum	communication	
traffic:	
Step	3	
Construct	 the	 vector	 T	 [1à	 τ ]	 of	 expected	 network	
traffic	size	(connectivity	level)	to	each	branch	in	the	VNet	
where	 each	 entry	 Ti	 represents	 the	 total	 amount	 of	
dependency	 that	 branch	 i	 has	with	 the	 other	(	τ	 − 1)	
branches	in	the	network.	To	calculate	Ti	we	utilize	the	CL	
matrix	as	follows:	

for	i	from	1à	τ	
for	j	from	1à	τ	

										Ti	+=	CLi,j	 	
Sort	 T	 in	 decreasing	 order	 to	 connect	 the	 branches	
starting	 with	 the	 branch	 of	 maximum	 connectivity	
influence	on	the	other	braches	in	the	VNet.		
Construct	the	connection	branch	matrix	CX	of	size		𝜏×𝜏	,	
each	element	CXm,n	 represents	the	 list	of	provider	sites	
that	connect	branches	m	and	n.	This	matrix	is	initialized	
to	0.	Construct	matrix	SB	that	 indicates	the	site-branch	
mapping,	where	each	entry	SBg	corresponds	to	site	g	id	
linked	to	a	vector	of	the	h	branches	that	connect	to	it.	
Phase	3	Connect	the	branches	Ti	to	the	minimum	cost	
provider:	
Step	4	
Start	 with	 the	 maximum	 Ti	 branch	 and	 find	 in	 the	 GF	
matrix	 the	 provider	 site	 that	 results	 in	 minimum	
connection	cost	for	branch	i:	
Create	a	cost	vector	CV	where	CVi,k	represents	the	cost	of	
the	VNet	deployment	for	branch	i	on	site	GFi,k	added	to	
the	cost	of	the	interconnection	between	branch	i	and	the	
rest	 of	 the	 network	 branches	 depending	 on	 the	
connectivity	level	matrix	CL	excluding	branches	that	are	
connected	to	the	same	provider	site	and	abiding	with	the	
performance	and	distance	constraints:		
								for	each	GFi,k	at	provider	p	site	l	
												CVi,k	=	Cp,l	
											for	j	from	1à	τ	
𝒊𝒇	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 	𝑆�, 𝐶𝑋C,C ×𝑃),C ≥ 	𝜎×	𝐷),C 			
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			CVi,k=MAX, 𝑏𝑟𝑒𝑎𝑘		
							CVi,k	+=		CLi,j´UDCp,l	

Step	5	
Find	the	minimum	of	the	cost	vector	CVi	and	check	if	the	
number	of	hops	involved	in	connecting	branch	i	with	the	
current	 connected	 branches	 (in	 the	 CX	 matrix)	 is	
compliant	with	the	maximum	number	of	allowed	hops	in	
the	 MH	 matrix.	 If	 not,	 continue	 choosing	 the	 next	
minimum	until	the	hop	constraint	is	satisfied.	
Map	branch	 i	to	the	corresponding	provider	site,	which	
thus	 provides	minimum	 cost.	 Update	 the	CXi,i	with	 the	
provider	site	that	is	assigned	to	branch	i.	Add	the	branch-
site	 mapping	 to	 the	 SB	 matrix	 and	 decrement	 the	
provider’s	 site	 cost	 in	 the	 C	 matrix	 according	 to	 the	
following	formula:		

𝐶H,� = (∝ 	+(𝑛 − 1)×𝛽)×	𝑖𝑛𝑖𝑡𝑎𝑙_𝑠𝑖𝑡𝑒_𝑐𝑜𝑠𝑡	
where:	
∝	is	a	percent	of	the	initial	cost	offered	by	provider	p	for	
connecting	a	branch	to	site	l.	
𝛽 	is	 the	 incremental	 charge	 factor	 for	 connecting	
subsequent	branches	to	the	same	site	l	
n	is	the	number	of	branches	connecting	to	site	l.		
Step	6	
Update	the	total	NVet	price	by	adding	the	total	cost	of	
connecting	branch	i,	CVi,k	.	
Step	7	
If	a	new	provider	was	selected,	connect	it	to	the	closest	
provider	site	in	the	resulting	VNet	by	applying	the	Inter	
vSDN	 Connection	 algorithm	 described	 in	 the	 next	
section.		
Step	8	
The	next	branch	i	to	connect	to	the	VNet	is	the	next	item	
in	 the	T	 vector	which	 is	 the	 next	maximum	 connected	
branch	(step	3).	Go	to	step	5	

 

3.2.6 Inter vSDN Connection Algorithm 
The NDB algorithm postulates that the sites hosting the vSDNs will be connected in 

order to deliver a connected graph topology of the tenant’s branches. The tenant must be 

provided with a complete network view of the connected branches transparent to the 

underlying SDN provider sites. In order to connect the vSDNs hosting the branches, the SDN 
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network programming feature is utilized by developing a routing application on top of the 

controllers of each vSDN site. The site connection algorithm uses tunneling to connect the 

branch vSDNs that are deployed on different SDN provider sites. For instance, two tenant 

branches B1 and B2 whose communication vSDNs are deployed on sites S1 and S2 are joined 

as follows: data communicated from branch B2 to branch B1 is routed to the routing 

application running on the controller of B2 which encapsulates the frame into an IP packet 

and sends it to the vSDN controller of S1. At S1, another controller application decapsulates 

the packet and delivers the frame to the designated branch B1. It should be noted here that 

we are utilizing the SDN controller at the provider site to route the inter-branch traffic. This 

design choice leverages the specifics of the SDN architecture to handle the routing 

mechanisms across the branches, though dedicated routing hosts can be feasibly employed 

to handle this task. 

3.2.7 VNCS Implementation 
The VNCS NDB algorithm is implemented using Matlab. To test the efficiency and 

convergence of the NDB algorithm, we implemented 5 network configurations as shown in 

Table 3.2. 

                                      Table 3.2 Network configurations simulated 

Configuration # of Branches # of SDN Provider 
Sites 

1 20 5 
2 50 10 
3 100 20 
4 150 25 
5 300 30 

 

The C matrix of the providers’ sites’ connection costs are set to random values in the range of 

$20 to $90 per month. The UDC matrix values are also set randomly in the range $0.05/GB 
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to $0.14/GB (this is based on a survey on actual ISP rates in the US) [33]. The CL matrix of 

the expected communication levels among the branches is set in the range 100 KB to 24 MB 

per hour. The values of ∝ and β in the C\,�  formula in Step 5 of the NDB algorithm are 

respectively selected in the range of (0.1 to 0.5) and (0.1 to 0.3). The site/branch distances are 

selected in the range of 0.5 to 20,000 Kms. P and R, the performance and reliability values 

are set randomly in the range (1 to 5) and σ was set to 5.5 which means that the maximum 

distance allowed between the sites hosting branches with maximum performance 

communication constrains (P=5) is 0.1 of the branches’ separating distance; for minimum 

performance values (P=1) the maximum allowed site distance is 5 times the branches’ one. 

The SA and LI matrices were assigned values from an array that was randomly initialized to 

adequate values. For each cloud configuration in Table 3.2,  the NDB algorithm is executed 

on ten different sets of  random matrix values (in the ranges described above). All the NDB 

simulations output the representation of the VNet connectivity graph of the tenant SDN 

connected branches. We measured the convergence time of this algorithm on a 1.3 GHz Intel 

Core i5 MacBook Air laptop supported with 4 GB of RAM. The results are plotted in Figure 

3.9. The convergence time increases with the increase in the number of branches and SDN 

providers which is anticipated since these parameters represent the NDB problem size and 

hence source of complexity. The total cost of the resulting VNet deployment on the selected 

SDN providers using the NDB optimization algorithm is compared to that resulting from the 

unoptimized solution where the different branches are connected to the same ISP (the average 

of three providers was considered). The percent savings are presented in Figure 3.10. 
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																														Fig. 3.910- Convergence time of the DNB algorithm. 

 

                         Fig. 3.1011- Percent savings achieved over the unoptimized solution. 

 

The VNCS architecture utilized is the OpenVirteX [3] network virtualization platform. 

This choice is due to the great flexibility provided by OpenVirteX in terms of address space 

isolation, topology specification, and dynamic network reconfiguration at runtime. 

OpenVirteX is installed on a Virtual machine and run on top of the Mininet network emulator 

[53]. Based on the OVX network mapping mechanisms, the VNets respectively representing 
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the branch and site networks are described using a .JSON representation and fed to the 

OpenVirteX network embedder to automate the process of network mapping in Mininet.  

Future implementation extensions include: (1) enhancing the system model to support 

the online/non-disruptive migration among SDN providers, (2) dynamically 

upgrading/degrading the leased SDN provider’s resources based on the load or traffic 

intensity, and (3) augmenting security protocols to support the confidentiality, authentication, 

and integrity of network traffic exchanged among the enterprise branches and across the SDN 

providers’ sites.  

 

 

 

 

 

 

 

 

 

 

 

 



	
 
	

64	

 

CHAPTER 4 

NETWORK SECURITY IN SDN AND MEC 

ENVIRONMNETS  

This chapter presents the design and implementation of security mechanisms that 

enhance the security of networks that comprises netwrok programmability components. The 

significance of  the presented services and mechanisms extends to NaaS services reliability 

and secure agility which is a major requirement for future communication and networks.. 

Section 4.1 presents the design and implementation of a Cloud security service for detecting 

malicious switching elements in SDN virtualized environments in realtime while essentially  

building on network slicing and programability. Section 4.2 introduces a secure 

authentication protocol for edge computing using progrmmable networking platform and 

wireless network virtualization. The prosposed protocol provides a more secure edge 

environment for Fog providers and clients by targeting the major problem of rogue Fog 

nodes. The proposed authentication protocol supports the well-being of future edge/cloud 

service implementations.	

4.1 Network Programming and Probabilistic Sketching for Securing the Data Plane 

In this section we present, VISKA, a cloud security service for dynamically detecting 

malicious switching elements in software defined networking (SDN) infrastructures. The 

main contributions of VISKA lie in: 1) utilizing network programming and secure 

probabilistic sketching in SDN environments to dynamically detect and isolate parts of the 
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data plane that experience malicious behaviour, 2) applying a set of focused packet probing 

and sketching mechanisms on isolated network partitions/views rather than focusing the 

security mechanisms on the whole physical network, 3) efficiently analyzing the network 

behavior of the resulting views by recursively partitioning them in a divide-and-conquer 

fashion to logarithmically reduce the problem size in order to localize abnormal/malicious 

switching units, and 4) providing an attack categorization module that analyzes live 

ingress/egress traffic of solely the maliciously-detected switch(es) to identify the specific 

type of attack, rather than inspecting the whole network traffic as is done in traditional 

intrusion detection systems. This significantly enhances the performance of attack detection 

and reduces the load on the controller. A test-bed prototype implementation is realized on 

the Mininet network emulator. The experimental analysis corroborated the algorithms’ 

convergence property using the linear and FatTree topologies with network sizes of up to 

250 switches. Moreover, an implementation of the attack categorization module is realized 

and achieved an accuracy rate of over 90% for the different attack types supported.  

4.1.1 Threat Model 
The VISKA security service operates in a typical SDN network composed of a set of 

physical switching elements (data plane) configured and controlled by one or more controllers 

(control plane). The control plane is responsible of configuring the data plane with the 

necessary flow rules that form the basis of the switching units’ flow tables. The 

communication between the control and data planes is governed by the rules of a protocol 

such as OpenFlow. 
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The adversary model we consider in this work is represented by a set of switching nodes 

within the SDN physical network. VISKA is capable of detecting, with high confidence levels, 

active attacks related to malicious or misbehaving switch operation and localizing the 

source(s) of the attacks. Active attacks mainly include packet modification, packet dropping, 

and packet injection, which induce a deviation from the normal network behavior. These 

attacks are analyzed and categorized in order to further secure the data plane and the control 

plane in the underlying SDN network. Examples of such active attacks consists of one or more 

switches colluding to: 

1. Inject malicious packets for the purpose of instigating DoS attacks on both layers, data 

and control, of the SDN network. 

2. Drop network packets for the purpose of maliciously occluding particular network 

flows. 

3. Augment network flows with padding packets to conceal the malicious effect of packet 

dropping. 

4. Modify the contents of packets to cause traffic rerouting, to execute man-in-the-middle 

attacks, or to poison particular network flows. 

5. Delay the forwarding of network traffic to disrupt the quality of service (QoS) of the 

SDN network.  

VISKA assumes that the SDN controller is trusted and free of malicious security 

vulnerabilities. In other words, the controller is expected to be operated by legitimate 
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administrative authorities and that it executes valid code that delivers authentic flow rules to 

the data plane switching units. 

The VISKA service can be divided into two complementary modules: 1) packet 

probing-based security module for detecting malicious data plane elements, 2) real network 

data-based module for categorizing attacks and creating signatures for novel attacks within 

the SDN network. 

The VISKA security algorithms are designed to operate in a highly malicious SDN 

environment and can tolerate relatively large number of misbehaving switches. This comes 

at the expense of the time complexity of the attack localization algorithms as will be 

demonstrated in Section 4.1.2.4. The accurate localization of the attack source highly 

facilitates the process of mitigating the attack. This is one of the great security advantages 

provided by the VISKA service. The mitigation strategy proceeds by firstly ceasing the 

malicious switch(es) forwarding activities and reporting this action, together with the details 

of the categorized attack, to the SDN service provider. The latter can administratively execute 

the necessary technical actions to inspect and possibly rectify the configuration and 

operational context of the malicious source(s) to resume its/their forwarding activities by 

leveraging the control plane global network view and the OpenFlow protocol. 

4.1.2  System Design 
The VISKA service architecture, as depicted in Figure 4.1 utilizes network 

programming for recursively partitioning the SDN data plane. The controller routing and 

forwarding achieved through OpenFlow messages on the data plane, allow for the 

segregation of network partitions, consequently isolating parts of the SDN network referred 

to as views that would recursively map to the malicious switches, if any. To achieve the goal 
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of localizing maliciously behaving switches, a graph-theoretic partitioning algorithm 

recursively divides the data plane network into two equal-degree network partitions that have 

minimal interconnecting edges. Each network partition is probed by a set of data packets 

dynamically generated by a probing module on top of the SDN controller. The controller 

probing module consists of two processes, a sender process (Ps) responsible of generating 

and pushing the probing packets into the data plane, and a receiver process (Pr) responsible 

of receiving the probing packets from the data plane. The routing of the probing packets from 

Ps to Pr is transparently updated by the SDN controller in the switches’ flow table entries.  

To achieve the goal of real time detection of malicious activities in the network data plane, 

the Tug-of-war sketch data structure is employed on the probing streams. Sketches are 

probabilistic data structures that compactly represent the frequency of occurrences of items 

in data streams using a hashing function in sub-linear space. Sketching algorithms are 

adopted in this work due to their efficient summarization of large data sets which allows 

VISKA to detect deviations in detect abnormal switch behavior in real time. For each probing 

time interval t, the computations of summarized sketches of the probing packets are generated 

at Ps and are appended with a timestamp accumulator indicating the packets’ transmission 

time, ts. The sketch data structure and the timestamps are sent to the active security service 

in the cloud for inspection. Analogously, the receiver process, Pr, computes and sends the 

sketch of the received probing packets and the corresponding packet receipt timestamps. The 

VISKA cloud security service algorithms compile the data structures received from Ps and Pr 

in order to: 
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1) 1) Recognize the levels of deviation between the data sketches of the sent and 

received probing packets, and 

2) 2) Compute the average time delay on the probe path based on the sent and received 

timestamp accumulators. 

 

Fig. 4.112- VISKA’s conceptual SDN design.  S(D1) and S(D2): the source and destination sketch data 
structures, TSAs and TSAr: the sender and receiver time stamp accumulator data structures, Vals and 
Valr: the sender and receiver validity vectors. 
 

The VISKA algorithms use these computations in order to decide on the probability of 

malicious switch behavior in the corresponding network partition and furthermore categorize 

the type of attack in the infected regions of the network by inspecting the real traffic on the 
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egress and ingress ports of exclusively the maliciously-detected switch(es) and not of the 

whole network traffic. 

The VISKA algorithms are thoroughly elaborated in the following subsections. It is worth 

mentioning here that the VISKA procedures utilize sizeable probing data streams and 

timestamps to ensure the accurate detection of misbehaving switches along the recursively 

generated network partitions. Sketching data structures in such setup leads to major reduction 

in computational complexity, better utilization of storage, and as a consequence, a 

performance-efficient real time malicious detection. 

4.1.2.1 The View Probing and Sketching Algorithm (VPS) 
The View Probing and Sketching (VPS) algorithm produces sketch summaries of the 

probing data at the source and destination controller processes by utilizing the Tug-of-war 

sketching algorithm [17]. The probing packet stream (𝐷: (𝑑� → 𝑑K)) is sent from Ps to Pr by 

traversing all the switches in a given network view. A probe-route module running on the 

SDN network controller, pushes the necessary forwarding rules to ensure that the  

Fig. 4.213- VISKA’s sketch data structure on probing data 
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probing packets visit each switch in the corresponding network partition. 

At Ps and Pr, the probing stream 𝐷 is fed to a sketch engine to produce a compact sketch 

representation 𝑠(𝐷) that is sent to the cloud security service for analysis. For each probing 

packet 𝑑), a four-wise independent hashing function η[d¢] is applied, which uniformly  

Fig. 4.314- : VISKA’s Timestamp Accumulator data structure 

maps to a pair of values: an index 𝑗 in the sketch vector and a value 𝑣 in {-1, +1}; 𝑣 is added 

to 𝑠 𝐷  at index 𝑗. The timestamp is appended by the controller probing processes to the 

sketch data structure corresponding to the sent and arrival times, respectively using 

acumulator data  structures, as will be explained later in this section.The sketch representation 

of the corresponding probing data stream is evaluated as the summation of the dot product of 

the hashed values and the data stream as follows: 

𝑠 𝐷 = d¢.η[
_

¢E�

d¢] 
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which is a randomized linear projection of the input data stream. The resulting 𝑠 𝐷  vector 

at time 𝑡 is sent to the cloud security service for analysis. The linearity property of tug-of-

war sketch indicates that using the same family of pseudo-random hashing functions, η, on 

two sets of data streams, 𝐷, and 𝐷7, then for any constants 𝑎 and 𝑏: 

𝑎𝐷, + bD7 = as(D,) + bs(D7). 

This linearity property is essential for estimating the difference between the two probe data 

streams (sent and received) along a network partition. 

As a result of the linearity of this sketch based on [47], the second norm difference between 

the two received sketches reflect any deviation between the sent and received data streams 

subject to an ϵ error and with minimum probability of (1 − δ) thus: 

|s(D,) − s(D7)|7 = 	∆,   where∆= (1 ± ϵ)×|D, − D7|7				                     (1) 

The sketch’s second norm difference estimation results in a more accurate representation of 

the deviation between the corresponding data streams. Such deviation indicates a malicious 

activity if ∆ is greater than a preset threshold, τ. This probing and sketching procedure is 

repeated every time interval t to detect abnormal switch behavior in real time. 

The Tug-of-war probabilistic sketching algorithm was adopted in the security model because 

of its light-weight processing requirements which typically consists of simple hash function 

calculations. Moreover, the relatively small sized sketch data structure representation relative 

to the number of probing packets it summarizes induces minimal overhead for network 

transmission and reception as well as storage. The sketches 𝑠(𝐷,) and 𝑠(𝐷7) represent a 
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compact hash representation of the probing data streams with O ,
ϵ«
log ,

δ
 computations 

where ϵ	is the error and (1 − δ)	is the confidence level. Considering the network and stroage 

overhead imposed by the sketch representation, each sketch data structure is comprised of W 

counters of z bits each where  z = 1 + ,
7
log	(4 *

²
ln 7��²

´
) . This is comprehensively 

described in Section 4.1.2.4.3. 

The timestamp accumulator (TSA) data structures are created and computed at the sender 

and receiver processes concurrently with the sketch creation for the aim of detecting delay-

causing attacks or otherwise nework congestion. Each probe packet is further hashed to a 

value c which is utilized as an index in the TSAr and TSAs vectors. These vectors represent 

the summation of the timestamps of the probing packets that map to the hash value c at the 

controller sender and reciever processes, respectively. 

Figures 4.2 and 4.3, respectively describe the sketch and timestamp accumulator data 

structures on the probing data. Each outgoing probing packet is passed to the sketch engine 

represented by the funnel symbol in Figure 4.2, to output an index i and a value v in {-1,1}, 

which is appended to s(D1) at position i. The hashing function h is invoked on each packet to 

yield the index c at which the timestamp of that packet is appended in the TSAs and TSAr 

vectors. When the probing stream is entirely transmitted, the sketch s(D1) comprises the 

corresponding sketch values and each TSAs entry represents the sum of the time stamps of 

the packets according to the hash value mapping to TSAs entry indicies. In order to ensure 

the correctness of the packets timestamps, a validity vector (Val) is updated for each probing 

packet to count the number of packets according to their hashed value. Each time a timestamp 
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is appended at index c, the validity vector is incremented by one at that same index. 

Ultimately, the probing packets are sent to the controller process Pr while s(D1), TSAs  and 

the validity vector Vals are transferred to the VISKA cloud service for analysis. 

Analogously, at the controller probing process Pr, the data structures 𝑠(𝐷7), TSAr, Valr are 

created and calculated. These data structures are sent to the VISKA service for comparison 

and malicious activity detection. 

The VPS algorithm calculates the second norm difference ∆	of the two sketches 𝑠(𝐷,) and 

𝑠 𝐷7 	received at the VISKA service. If ∆ is greater than a preset threshold τ, the network is 

considered malicious and the attack categorization and summarization module MACM is 

invoked. On the other hand, the difference in the sent and received timestamps is calculted 

on the probing stream by: 

(1) First, checking that the validity vectors from sender and reciever at each index j are 

equal; this indicates that the corresponding packets are successfully received and the 

timestamp counters at that index j are valid. 

(2) The timestamp differnce 𝑇𝑆𝐴I	 𝑗 − 𝑇𝑆𝐴¶ 𝑗 	is calculated and added to the total ∆·¸¹, 

which is the total difference in timestamp of the current probing stream. The total time 	∆·¸¹ 

is divided by the sum ValCount of the corresponding valid packet counts in vector Vals and 

Valr. This results in the average time delay of the correctly received probing stream as 

described in Equation (2). 

 ∂ 	= (𝑇𝑆𝐴𝑟 − 𝑇𝑆𝐴𝑠)/ValCount                       (2)                                                             



	
 
	

75	

If the value of ∂ exceeds a threshold Γ¿,	the network is considered malicious. Otherwise, if 

the time delay is greater than the congestion threshold ΓÀ , the corresponding data plane 

elements are considered congested. 

The values of Γ¿ and ΓÀ depend on the overall network round trip time (RTT). Since RTT 

can change from one probing period to the other (even within an individual probing period), 

the values of Γ¿ and ΓÀ dynamically change based on this variation in RTT. To maintain a 

smooth variation in the values of Γ¿  and ΓÀ  we followed an algorithm analogous to the 

retransmission timer calculation algorithm followed in TCP [42]. The details of the Γ¿ and 

ΓÀ  calculations are presented in the following smoothing equations using the estimators 

mRTT and vRTT respectively representing the mean and variance of RTT in the 𝑖�Á probing 

period. 

mRTT¢Â, = 𝑎×𝑅𝑇𝑇 + (1 − 𝑎)×mRTT¢                                                                     (3) 

vRTT¢Â, = 𝑏×( 𝑅𝑇𝑇 −mRTT¢ ) + (1 − 𝑏)×vRTT¢                                                (4) 

ΓÀ¢Â, = mRTT¢Â, + 4×vRTT¢Â,                                                                                 (5) 

Γ¿¢Â, = 2×ΓÀ¢Â,                                                                                                           (6) 

The gains 𝑎 and 𝑏 are set to 
,
Ä
 and ,

Å
 respectively. 

In the first probing period the mean and variance estimators are set as follows: 

mRTT, = 𝑅𝑇𝑇 

vRTT, = 𝑅𝑇𝑇/2 
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(3) Finally, if the two values ∆	and ∂ are within safe boundaries, the network is interpreted 

as normally operating. 

After sending each sketch data and timestamp data structures, the probing hosts flush them to 

compute the following interval sketch. 

The TLS protocol is implemented on the controller probing processes to ensure the integrity 

and authenticity of the source and destination sketches when transferred to the cloud service 

over the network links. When the VISKA service is to be adopted and executed in a real 

world environment, it is very important to masquerade the patterns of the probing packets 

introduced in the network to prevent any malicious node ability to recognize VISKA 

functionality. This is addressed in the same sense wherein the software-based control on the 

probing processes and their parameters provide the VISKA probing module the control on 

randomizing certain fields in the probing packets IP header (eg. Identification, TTL, Options 

and Padding, and ECN fields), the data sections are randomized to conceal any deterministic 

features that may reveal the probing nature of these packets.  

It is worth noting here that the feasibility of using the Timestamp Accumulator data structure 

relies on the accurate time synchronization among the system clocks of the nodes in the 

network. To achieve this, we utilize the control-plane centralization property of the SDN 

architecture by deploying a Network Time Protocol (NTP) [58] server on the SDN controller. 

NTP is the defacto standard in achieving high-quality time synchronization in modern 

Internet networking infrastructures. Relying on the local SDN controller in time 

synchronization instead of utilizing a remote NTP public server aids in a more precise time 

synchronization by avoiding the asymmetrical latency delays incurred by the NTP time 
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packets exchanged between the probing module and the public time server. This results in a 

maximum of 0.5 to 1.5 msec time lag between any two network nodes. This is sufficient for 

correct operation of the VISKA Timestamp Accumulator realization. The VPS algorithm is 

presented in Algorithm 4. 

4.1.2.2 The Network Views Partitioning Algorithm (NVP) 
To guarantee malicious-free switch behavior at the network data plane, the correct network 

functionality should be checked at the switch granularity level. In order to minimize the 

executions of the VPS algorithm, described in section 4.1.2.1, in checking the physical 

switches, the SDN network is recursively partitioned into two semi-uniform network 

partitions. Each resulting partition is probed for possible sources of deviation in the 

forwarding mechanism. Only partitions marked as malicious will be further subdivided using 

the NVP algorithm. In this sense, the NVP algorithm generates the network partitions and 

feeds them to the probing algorithm VPS to check any deviation in the corresponding current 

network partition. If the VPS algorithm indicates an above-threshold deviation in the sketch 

calculations and/or the timestamp analysis, the VISKA service recursively executes NVP to 

partition the respective network topology into two separate network views with minimum 

interconnecting edges. The two resulting network partition are fed separately to the VPS 

algorithm at the controller for subsequent behavior check. This recursive partitioning method 

is applied until the algorithm isolates the source of maliciousness in the data plane, if present. 

The efficient real-time detection and localization of malfunction was fully achieved in 

VISKA by ensuring the segregation of the network partitions owed to the programmable 
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SDN network architecture. Two main approaches contributed to the feasibility of isolating 

the problem within separate network views: 

1. The Karger’s randomized algorithm for generating minimum graph cuts [48] was adopted 

in the NVP algorithm in order to partition the network graph into two separate sets (mapped 

to the corresponding network views) with minimum interconnecting edges. 

2. A probe-route module is executed on the SDN controller for the probing packets to traverse 

the switches incorporated within a network view. The controller pushes the necessary rules 

to the data plane switches to restrain the probing data stream to the corresponding network 

partition thus, ensuring network views segregation. 

This recursive partitioning of the network views, isolates the malfunctioning views which 

results in a near logarithmic time complexity in the size of the network. 

The Karger’s graph cut algorithm [48] is based on the contraction of edges and merging the 

nodes in a connected unidirectional graph 𝐺(𝑛, 𝑒) . This algorithm continues randomly 

selecting nodes and merging them iteratively until the graph is reduced into two sets 

represented in two vertices. These two sets remain connected; to minimize the connecting 

edges between the two sets, the Karger’s algorithm repeats this contraction procedure a 

predefined number of times until a minimum graph cut is produced between the two 

partitions with a high probability. For a graph of 𝑛 number of vertices and 𝑒 number of edges, 

Karger’s contraction method returns a minimum graph cut with a probability of success: 

PÀ ≥
n
2

É,
 

and a probability of not attaining a minimum cut of: 
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PÊÀ ≤
1
n

 

The algorithm randomly repeats the contraction procedure R = n
2 ln( n) times in order to 

arrive at a minimum cut in time complexity of O R. e = O	(n7e	log	n). 

In summary, the network topology graph is input to the NVP partitioning algorithm, which 

outputs two sets of switches constituting two separate network partitions with minimum 

interconnecting edges. Each partition is fed to the VPS algorithm to check if any 

malfunctioning is present. Depending on the output of the VPS algorithm, a network 

view/partition is either rendered correctly functioning and is thus discarded, or 

malfunctioning and thus, it is recursively partitioned by the NVP algorithm until the size of 

the switches in the respective partition is less than or equal to a minimum, m. The NVP 

algorithm is presented in Algorithm 1. 

4.1.2.3 The Malfunction and Attack Categorization and Summarization Module(MACM) 
The first stage of the VISKA service operation is the VISKA malicious switch detection  

where the VISKA VPS algorithm returns the switch(es) that was/were classified as 

malicious. The second stage of the VISKA service is the MACM module which is responsible 

of identifying and categorizing the attacks induced by the malicious network  elements. The 

MACM module is invoked in Algorithm 1 in the VPS function when a malicious activity is 

detected. This stage is essential for securing the SDN network provider services. The SDN 

provider utilizes the VISKA service to detect malicious operation in its data plane. VISKA 

aids in guarding against an important set of attacks that initiate in these network 

infrastructures such as DoS, interruption, blocking, delay, and Man-in-the-Middle attacks. 
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The second stage of the VISKA service, the MACM, primarily identifies two classes of data 

plane malfunction: 

(1) The distorted traffic malfunction class (CatI), where the second norm difference of the sent 

and received sketches is beyond a preset threshold	τ, which reflects a malicious deviation in 

the probing stream introduced by the data plane elements of the current network partition. 

(2) The time delay malfunction class (CatII), where the packets are received by the probing 

host correctly (no significant sketch difference is recognized ∆< 	τ), however, the average 

time delay of the transmitted probe packet stream is beyond a normal network congestion 

value, ∂ ≥ 	Γ¿. 

In the case of CatI malfunction detection, the maliciously categorized data plane switching 

elements are further investigated to summarize the attack in order to deduce and block 

probable network wide malfunction. 
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The egress and ingress traffic of the malicious detected switches are collected for certain time 

periods 𝑡)  in order to categorize and summarize the investigated attack. The SDN 

infrastructure is utilized in investigating the traffic ingress and egress of the malicious  

Fig. 4.415- : Ingress/Egress traffic capture at the controller of the m switches neighboring switches 𝑚𝑐. 

switches by forwarding traffic in and out of the malicious switch to the controller. The set of 

switches, 𝑚𝑐, that are one-hop away from the malicious switch in the network, are primarily 

identified. A data collecting module running on the controller sends the	𝑚c switches the 

necessary action rules that dictate sending all packets having the malicious switches as their 

next hop to the controller. The controller monitoring module utilizes data mining features on 

the periodically collected data to categorize and summarize the attack, or otherwise specify 

the malfunction as a benign behavior. 

In order to achieve anomaly categorization and early stage attack detection, the VISKA cloud 

service primarily identifies the malicious switches in the VPS and NVP algorithms. Next, the 

VISKA MACM algorithm exploits the SDN controller centralized network programmability 
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to capture the egress and ingress traffic of the malicious switches on the controller as depicted 

in Figure 4.4. These packets are first prepared and analyzed by grouping them according to 

source address, destination address, source port, and destination port. Important packet 

header fields are stored and grouped at the controller and are prepared for comparison and 

categorization at the VISKA cloud service to identify and specify potential network attacks. 

The MACM process consists of the following three phases: 

Phase 1: The analysis of the egress and ingress traffic of the m switches is demonstrated in 

Figure 4.4. The packets are sent by the malicious switches neighbouring switches (𝑚𝑐) to the 

controller. The controller in turn captures these packets and passes them to the MACM 

module, which stores the necessary header information of the captured packets. The collected 

data is prepared and grouped according to specific header fields in information tables. 

In Figure 4.5, two hashing functions are applied on specific fields of the packets’ headers in 

order to find certain patterns and characteristics in the captured traffic for time intervals t¢. 

First, the packets’ destination IP addresses are input to the hashing function hashd. Packets 

with the same hashed destination IP address are aggregated. The resulting E_Dest table 

includes the packet information categorized by their corresponding destination IP addresses. 

Analogously, another hash function hashs is applied on the source address of the captured 

packets to categorize and prepare the source address aggregation table (E_Src). 
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This procedure of hashing and aggregation is done on both egress and ingress traffic to 

prepare the data for analysis by the MACM algorithm. The prepared attributes that are stored 

for analysis in the aggregation tables for each packet include the source IP, destination IP, 

transport protocol, SYN packet and ACK packet flags. This collected packet information is 

ready to be analyzed in phase 2. 

Fig. 4.516- : Egress flow summarization aggregated based on source and destination IPs (analogous hashing 
structures are applied on the Ingress traffic). 

 

Phase 2: The traffic information tables collected in phase 1 from the egress and ingress ports 

of the malicious data elements are analyzed, and certain features are extracted for the purpose 

of attack categorization. The following is a list of the parameters and features characterizing 

the collected packets. 

1. I_Sum(): the sum of the size of the ingress packet flow in bytes. 

2. E_Sum(): the sum of the size of the egress packet flow in bytes. 
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3. I_count(destIP): the number of ingress packets with the same destination IP, destIP 

4. I_count_srcIP(destIP): the count of the different source IPs for the ingress flows with 

the same destination IP, destIP. 

5. I_Sum(destIP), I_Avg(destIP), I_SD(destIP): The sum, average and standard 

deviation, respectively, of the size of the ingress packet flow with the same 

destination IP address in bytes. 

6. I_count_SYN(destIP), I_count_ACK(destIP): the number of ingress packets of type 

SYN and ACK respectively with the same destination IP address. 

7. I_count(srcIP): number of ingress packets with the same source IP, srcIP. 

8. I_count_SYN(srcIP), I_count_ACK(srcIP): the number of ingress packets of type 

SYN and ACK respectively with the same destination IP address. 

Similarly, the following parameters are computed for the Egress traffic: 

E_Sum(destIP) E_count(srcIP) E_count_srcIP(destIP) 
E_Avg(destIP) E_count(destIP) E_count_SYN(destIP) 
E_SD(destIP)  E_count_ACK(destIP) 

 

Phase 3: The information tables, the features and the characteristics of the ingress and egress 

data, which are collected and computed in phases 1 and 2, are subsequently utilized and 

analyzed to categorize the network attacks induced by the m switches. The following is a list 

of the MACM identified attacks: 
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(1) DoS on the controller: The egress traffic is checked for packets where the controller is 

the destination address including packet-in messages from the malicious switch. If the 

number of these packets exceeds a certain permitted threshold for normal network operation 

ΓÀ, then the switch is considered “DoSing” the controller. 

 (2) DoS on network node: This attack could be on a host or switching element in the 

network. This is identified by checking the count of the egress packets with the same 

destination address. When this count is larger than that of the ingress packets and at the same 

time it is beyond a threshold, 	Γ¿^Í, the corresponding destination is detected to be DoSed, 

and further analysis is done by the network administrator to identify the rival attack. The 

VISKA algorithms utilize the SDN centralization and programmability features for early 

detection of such DoS attacks on the network nodes in real-time and in early stages. As a 

result, the VISKA service secures the tenants SDN network against presumable DoS attacks. 

(3) Data Blocking attack: This intruder attack selectively blocks traffic to specific 

destinations in the network for the aim of inducing erroneous network operation. Such attacks 

decrease the tenants’ trust in the corresponding SDN network provider. To avoid this, the 

VISKA MACM algorithms inspect the ingress and egress packets of the malicious switches 

(detected by the VPS VISKA algorithms) and if the egress traffic is found to be less by a 

certain network permissible threshold,	ΓÎÏ, from the ingress one, the malicious switches are 

identified to be blocking network traffic. The blocking attack is therefore detected on the 

destination address or from the specific source address in the investigated network traffic. 

The IP addresses of the captured packets that were blocked are further analyzed and the 

involved network elements are inspected by the network administrator. 
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 4) Man-in-the-middle (MITM) attack: VISKA algorithms detect MITM attacks at very 

early stages in real-time. MITM attack prevention is of high significance to network tenants 

to ensure network confidentiality and integrity in the cloud. The MACM captures packets at 

the malicious switches and checks the homogeneity of all source-destination packet flows on 

the egress and ingress ports of the malicious switch. If the flows are not homogeneous within 

a certain permissible network limit, the packets are further investigated by checking the size 

of traffic to a single unique destination address with the same group of source addresses in 

the corresponding flows. This destination IP does not appear in the consequent flows on the 

ingress ports and concurrently, the count of the source addresses is the same as the 

investigated source address classified packet counts. Therefore, the same packets are being 

forwarded to another destination host, which indicates a MITM attack. Note that the attack 

detection mechanism is extendable to address additional attack categories based on tenants’ 

demands and for specific network requirements. This is made feasibly by leveraging the 

controller’s programmability features in SDN platforms and the modular VISKA attack 

detection module design. 

The VISKA attack detection and categorization algorithms are summarized in Algorithm-4. 

A block diagram summarizing the architecture of the VISKA algorithmic modules and their 

interaction is illustrated in Figure 4.6. 

ALGORITHM	 4:	 VISKA	 MALICIOUS	 SWITCH(ES)	
DETECTION/ATTACK	CATEGORIZATION	ALGORITHM	
Let	G	be	the	graph	representing	the	SDN	network	
Let	n	be	number	of	switches	in	G	
Let	e	be	the	number	of	edges	in	G	
Let	 V	 be	 the	 granular	 network	 view/partition	 to	 be	
checked	for	maliciousness.	Initially	V	=	G	
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Let	m	be	the	maximum	malicious	partition	size	(m=1	to	
reach	single	switch	granularity)	
Let	Ps,	Pr	be	 the	controller	probing	processes	allocated	
for	probing	the	bootstrapping	network	view	V	
VISKA(V,	Ps,	Pr)	
			If	(VPS(V,	Ps,	Pr)	=	malicious)	
									if(n<=m)	
														return	V	(containing	malicious	switch)	
									else	
											(V1,	V2,	Ps,	Pr)	=	NVP	(G,	n,	e)	
											VISKA(V1,	Ps,	Pr)	
											VISKA(V2,	Ps,	Pr)	
		else	return	(correct	or	congested	partition	behavior)	
VPS:	View	Probing	and	Sketching	function	
VPS(V,	Ps,	Pr)		
						Randomly	Generate	probing	data	D1(d1…dk)	at	Ps		
						and	send	to	Pr	
					sketch:	create	sketch	data	vector	s=0	 ,	and	TSAs	=0,	
counts=0	at	Ps	
					for	each	v	packet	d_	in		D1	
															compute	 i, value = η`[d_]	
															insert	at	index	i	in	sketch	𝑠(𝐷1)	vector:		
																										𝑠(𝐷1))	+= 𝑣𝑎𝑙𝑢𝑒	
															compute	(j)=	h(dv)						
																				𝑇𝑆𝐴𝑠C	+= 𝑠𝑒𝑛𝑡	𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝	
																											(𝑉¶)C+= 1		
					send:	𝑠 𝐷1 , 𝑇𝑆𝐴𝑠, 𝑉𝑎𝑙¶		to	VISKA	service	for	analysis	
Compute:	(steps	sketch	through	send)	on	Pr	to	generate	
and	send	𝑣𝑒𝑐𝑡𝑜𝑟𝑠	𝑠(𝐷2),	𝑇𝑆𝐴𝑟, 𝑎𝑛𝑑	𝑉𝑎𝑙I 	
At	VISKA				
	count=0						
			∆	= |s D1 − s D2 |7	
		for	i	from	1	to	k		
								if		𝑉𝑎𝑙¶) = 𝑉𝑎𝑙I)					
											∆·¸¹+=𝑇𝑆𝐴𝑟) − 𝑇𝑆𝐴𝑠) 	
											ValCount+= (𝑉¶)) 	
		∂ 	= ∆·¸¹/ValCount	
if	∆	≥ threshold	τ	or	∂ ≥ ΓL 	
																return	malicious,	call	MACM (∆, ∂)	
										else	if		∂ ≥ ΓÐ 	
																return	correct,	congested	
									else	
														return	correct	
NVP:	Network	Views	Partitioning	Function	

NVP	(G,	n,	e)	
										(G1,	G2)=	Karger	(G,	n,	e)	
											Insert	forwarding	rules	for	the	probing	packets		
											on	controller	
											At	the	SDN	network	controller	
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									-	 Isolate	 network	 partitions	 V1,	 V2	 corresponding					
												to	the	Karger	output	(G1,	G2)	
												return	(V1,	V2,	Ps,	Pr)	

MACM: Malfunction and Attack Categorization Module	

MACM	(∆, ∂)	
		if	n ≤ 	m	
				if			∆≥ 	τ	
									𝐶𝑎𝑡𝐼	 = 1		(attack	∈	to	 Category	 I	 where	 an	 active	
attack	is	being	initiated	in	the	network)	
	else	//	∂ ≥ ΓL 		
							𝐶𝑎𝑡𝐼𝐼	 = 1		 (attack	 ∈	 to	 Category	 II	 where	 a	 time	
delay	introducing	attack	is	introduced	in	the	network)	
if	𝐶𝑎𝑡𝐼	 = 1			
	
malicious	 switch(es)	 ingress	 and	 egress	 traffic	 is	
collected	and	mined:	
if		E_Sum(	)/I_Sum(	)	>	ΓE𝑑	
		for	each	destIP	in	table	E_Dest	
					if	(E_Sum(destIP)-I_Sum(destIP)>	Γdos)	AND		
									(E_count(destIP)	– I_count(destIP)>	Γp)	
				alarm:	DoS	on	destIP	(Flooding)	
				if	(E_count_ACK(destIP)-E_count_SYN(destIP)	<	Γcon)					
									AND	(E_Avg(destIP)<	Γsyn)	AND	((E_count(destIP)		
									– I_count(destIP)>	Γp)	
					alarm:	DoS	on	destIP	(SYN	attack)	
else	if	E_Sum()/I_Sum()	<	ΓId	
				for	each	destIP	in	table	E_Dest	
										if	(E_count(destIP)	– I_count(destIP))<	Γbh	
													alarm:	interruption	of	traffic	to	destIP		
else		//	E_Sum()/I_Sum()		within	boundaries)	
			for	each	destIP	in	table	I_Dest	
		 if	 (dest-IP	 is	 not	 in	 E_Dest)	 AND	
(I_count(destIP)-	E_count(destIP)	<	Γbh)	
													alarm:	blocking	on	dest	IP	
			for	each	srcIP	in	table	I_Src	
		 if	 (srcIP	 is	 not	 in	 E_Src)	 AND	 (I_count(srcIP)-																			
																							E_count(srcIP)	<	Γbh)	
													alarm:	blocking	on	srcIP	
			for	each	destIP	in	E_Dest	
								if	 destIP	 is	 not	 in	 I_Dest	 AND	
E_count(destIP)>	Γmitm	
													alarm:	MITM	attack	at	destIP	

Algorithm-4. VISKA Algorithms 
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The values of the thresholds in the MACM module are set empirically and are bounded in 

the ranges depicted in Table 4.1. The threshold values are dependent on the maximum 

throughput of the switching elements in the data plane, the average packet size, the time of 

ingress/egress flow collection, and the minimum and maximum percent of packets generated 

at the maximum switch throughput in the collection time period that are necessary to initiate 

a particular attack. This network-specific specification of the threshold ranges facilitates a 

more accurate threshold selection mechanism in real SDN network environments. The 

individual threshold range parameters for each attack type are presented as follows: 

Table 4.13 Attack Detection Thresholds Ranges 

  

𝑿𝒎𝒂𝒙 is the maximum throughput of the switching elements in the deployment network. 

𝒕𝒊 is the data collection time period used by the MACM module. 

𝜶𝒍, 𝜶𝒉  are respectively the minimum and maximum percent of packets generated by the 

malicious switching element at the maximum throughput 𝑋[z{  in the time period 𝑡) 

(multiplied by a factor of 10ÉÙ) necessary to initiate a DoS attack. 

Attack type Threshold(s) Range 
Denial of Service Attack (1 + 𝛼�) ≤ ΓE𝑑 ≤ 3×(1 + 𝛼�) 

ΡzK�×	𝑋[z{×	𝑡)	×	𝛼� ≤ Γdos×10Ù ≤ 2×ΡzK�×𝑋[z{×	𝑡)×	𝛼Á  
Γdos�JÝ
ΡzK�

≤ Γp ≤
ΓdosÁ)�Á
ΡzK�

 

Interruption/Blocking Attack 𝑋[z{×	𝑡)×	𝛽� ≤ Γbℎ×10Ù ≤ 𝑋[z{×	𝑡)	×	𝛽Á  
Man-in-the-Middle Attack 𝑋[z{×	𝑡)	×	𝛾� ≤ Γmitm×10Ù ≤ 𝑋[z{×	𝑡)	×	𝛾Á  
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𝜷𝒍 , 𝜷𝒉  analogous to 𝛼�  and 𝛼ℎ , 𝛽�  and 𝛽ℎ  are respectively the minimum and maximum 

percent of packets generated by the malicious switching element at the maximum throughput 

𝑋[z{  in the time period 𝑡)  (multiplied by a factor of 10ÉÙ ) necessary to initiate an 

Interruption/Blocking attack. 

𝜸𝒍 , 𝜸𝒉  analogous to 𝛼�  and 𝛼ℎ , 𝛾�  and 𝛾ℎ  are respectively the minimum and maximum 

percent of packets generated by the malicious switching element at the maximum throughput 

𝑋[z{  in the time period 𝑡)  (multiplied by a factor of 10ÉÙ ) necessary to initiate an 

Interruption/Blocking attack. 

According to the nature of the detected attack in the network, the controller mitigates the 

attack by sending the necessary flow rules to isolate and suspend the operation of the 

maliciously-detected forwarding element in the data plane. 

4.1.2.4 Algorithm Complexity and Convergence Analysis 

Analysis of the Malicious Switch Detection Function: 
In this section, we provide a mathematical complexity analysis of the worst case, average 

case, and best case running times of the VISKA malicious switch detection algorithms as a 

function of the network size. Moreover, we present the cost of the MACM malfunction and 

attack categorization algorithm invoked when a malicious activity is detected. 

Worst case analysis: The worst case scenario arises when a malicious behavior is detected 

by the VPS function in every recursive network partition provided by the NVP partitioning 

function. The worst case runtime complexity T(n) is given by: 

Tâ n = 2Tâ
Ê
7
+ Cost NVP + Cost(VPS)                                                           (7) 
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where n is the network size, Cost NVP  and Cost(VPS) are the costs of running the NVP and 

VPS functions, respectively. The multiplicative factor of 2, in 2Tâ
Ê
7

, indicates that the 

recursive steps are applied on the two network partitions produced by the NVP function. This 

case arises when the VPS algorithm detects malicious activity in both network views. From 

the previous subsections: 

Cost NVP = O	(n7e	log	n) and Cost VPS = O ,
ϵ«
log ,

δ
. 

Substituting in Equation (7) we get: 

Tâ n = 2Tâ
Ê
7
+ O	 n7e	log	n + O ,

ϵ«
log ,

δ
                                                           (8) 

Note that O ,
ϵ«
log ,

δ
 depends on the size of the sketch data structure allocated on the 

controller probing module. Since it does not depend on the network size n, it can be replaced 

by a constant C in Equation (8) to get: 

Tâ n = 2Tâ
Ê
7
+ O	(n7e	log	n) 	+ C                                                                       (9) 

Solving the recursive equation in (5), we get a closed form worst case runtime complexity of 

O	(n7e	(log	n)7)	.  

 A summary of the worst case complexity equations and their meaning is presented in Table 

4.2. 
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 Table 4.24VISKA worst case complexity analysis summary 

 

Average case analysis: The average case scenario arises when a malicious behavior is 

detected by the VPS function in one of the two recursive network views provided by the NVP 

partitioning function. The average case runtime complexity Tå(n) is given by: 

Tå(n) = Tå
Ê
7
+ Cost NVP + Cost(VPS)                                                                  (10)  

Note that Tå
Ê
7

 is not multiplied by a factor of 2 since the recursion is only applied on one 

network partition and not both partitions as is the case in the worst case scenario. 

Replacing the values of Cost NVP  and Cost(VPS) in Equation (10), we get: 

Tå(n) = Tå
Ê
7
+ O	(n7e	log	n) + C                                                                               (11) 

Solving the recursive equation in (11) we get a closed form average case runtime complexity 

of O	(n7e	(log	n))	. 

A summary of the average case complexity equations and their meaning is presented in Table 

4.3. 

Term Meaning Value 
Tâ n  The worst case runtime complexity of the VISKA 

malicious switch detection algorithms. n designates 
the network size.  

2Tâ
n
2
+ Cost NVP + Cost(VPS) 

Cost NVP  The worst case runtime complexity of the Network 
Views Partitioning function. This is typically the cost 
of the Karger algorithm. 

O	(n7e	log	n) 

Cost VPS  The worst case runtime complexity of the View 
Probing and Sketching function. This cost depends on 
the size of the sketch data structure and not on the 
network size. Accordingly it can be replaced by an  
constant C. 

O
1
ϵ7
log

1
δ
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 Table 4.35VISKA average case complexity analysis summary 

 

Best case analysis: The best case analysis scenario obviously occurs when the whole 

network does not contain any malicious activity. In this case, no recursive partitioning is 

going to be carried out on the network view and thus, the base case will be reached by first 

applying the VPS function on the network view. As such, the best case runtime is simply a 

constant C. 

The convergence of the VISKA malicious switch detection algorithm is evidently guaranteed 

by having a deterministic base case step in Algorithm 4 that ends the recursion on a particular 

network view when either (1) a set of source malicious switches of size 𝑚 is isolated by the 

VPS function, or (2) a network view is found to be non-malicious by the VPS function. 

Analysis of the Attack Categorization Module: 
The MACM module is executed once the malicious switches are detected and identified. The 

main complexity in this module is related to the transmission of the ingress/egress traffic to 

the SDN controllers by the 𝑚𝑐 switches, and the analysis of such traffic by the controller for 

the purpose of attack categorization. The complexity mainly depends on the number of 𝑚𝑐 

Term Meaning Value 
Tå(n) The average case runtime complexity of the VISKA 

malicious switch detection algorithms. n designates 
the network size. Note that Tå

Ê
7

 is not multiplied by 
a factor of 2 since the recursion is only applied on one 
network partition. 

Tâ
n
2
+ Cost NVP + Cost(VPS) 

Cost NVP  The worst case runtime complexity of the Network 
Views Partitioning function.  

O	(n7e	log	n) 

Cost VPS  The worst case runtime complexity of the View 
Probing and Sketching function. This cost depends on 
the size of the sketch data structure and not on the 
network size. Accordingly it can be replaced by an  
constant C. 

O
1
ϵ7
log

1
δ

 

Tâ n  After solving the recurrence relation in Equation 5. O	(n7e	(log	n)) 
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switches and the flow size crossing them per unit time. We faithfully believe that an SDN 

controller can tolerate such traffic load and categorization processing due to the following 

reasons: 

1. The MACM module analyses the ingress/egress traffic flowing solely into/from the 

maliciously detected switch(es) rather than inspecting the whole network traffic as 

is the case in traditional intrusion detection systems in the literature.  

2. The number of mc switches in modern data center topologies is minimal compared 

to the total number of network switches. For instance, in the k-ary FatTree 

topology, which is widely deployed in today’s data centers, the total number of 

switch nodes is O(k7 + k). Each edge switch is connected to O(k/2) neighbors and 

each aggregation or core switch to O(k) neighbours. 

3. The MACM algorithm operates merely on the packet headers, thus eliminating the 

need to transmit the entire flow of packets to the controller. This drastically reduces 

the size of the ingress/egress flows transmitted to the SDN controller and the 

resources needed to process them. 

4. Most modern SDN architectures are relying on replicated controller instances, 

which aids in balancing and distributing the processing load of the collected 

network data for analysis and mining. 

5. A feasible approach that can be easily employed in the VISKA implementation to 

reduce the load on the SDN controller is to employ a central dedicated host for 

traffic collection and analysis. In this sense the MACM attack categorization 
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module can be efficiently deployed on an external host connected to the controller 

to further enhance the VISKA efficiency and performance. 

MACM malfunction and attack categorization cost: This module is invoked when the 

malicious switches, with the predetermined granularity size 𝑚 , are detected. As 

demonstrated in Section 4.2.2.3 (MACM phases 1 and 2), the algorithm captures packets at 

the malicious switch(es) ingress and egress ports and stores necessary header information of 

the real network traffic captured packets (this collection process of phase1 has a constant 

runtime complexity C). The collected information tables from the egress and ingress ports of 

the malicious data element(s) are analyzed, and certain features are extracted for the attack 

categorization. The basic operation in the MACM phase 2 complexity is the hashing 

operation (refer to Figure 4.5) which is executed on the total number of packets in the ingress 

and egress traffic flowing into the m maliciously-detected switch(es). let fèé  and f¢é 

respectively represent the number of egress and ingress packets in the collected traffic. This 

renders the complexity of phase 1 as follows: 

Cost	of	MACMHℎåÍè	,,7 = θ(C+ 2(fèé +	 f¢é))                                              (12) 

The factor 2 in Equation 12 is the result of applying the hashing operations on the source as 

well as on the destination IP packet addresses in the collected flows as demonstrated in Figure 

4.5. 

The MACM phase 3 (Malfunction and Attack Categorization Module), presented in 

Algorithm 4, analyzes the traffic information tables collected and stored in phases 1 and 2. 
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The complexity of this phase depends on the specific attack type which is summarized in 

Equation 13 below: 

cost	of	MACM\ÏåÍè	ì = cost	 DoS	detection + cost Interruption	detection +

cost blocking	on	dest	IP + cost	 blocking	on	srcIP +

	cost MITM	attack	at	destIP)																																																																																																				(13                                                                           

Analyzing equation 13 based on the MACM phase 2 code in Algorithm 4, we get equation 

14 which depends on the number of egress and ingress packets in the collected traffic, fèé 

and f¢é respectively. This is formulated as follows: 

Cost_	MACM\ÏåÍè	ì = 	O(fèé) + O fèé + O f¢é + O f¢é + O(fèé)= 

O(fèé + f¢é)                                                                                                                   (14) 

Based on equation 8 and 10, the complexity cost of the MACM module is designated as 

follows: 

Tîïðñ fèé, f¢é = Cost	of	MACM\ÏåÍè	,,7 + Cost	of	MACM\ÏåÍè	ì                                 

Tñïðñ fèé, f¢é = θ(C+ 2(fèé +	 f¢é)) + O(fèé + f¢é)                                            (15) 
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The MACM module is therefore effectively order of O(fèé + f¢é). 

Fig. 4.617- : VISKA general architecture 
 

A summary of the complexity analysis of the MACM module is presented in Table 4.4. 

 In comparison with the literature of intrusion detection mechanisms, VISKA’s worst 

case complexitiy of O	 n7e	 log n 7  in detecting the source of malicious attacks is 

considered highly efficient. In the most prominent IDS backtracking plugin to the SNORT 

system implemented in [86], the intrusion detection worst case complexity was found to be 

O	 pÄ . The input parameter p in [86] represents the number of malicious packets generating 

the attack. This is usually much higher than the number of nodes n that we followed in 

VISKA’s algorithmic complexity analysis. In [87] the system maintains a set of Tunable 
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Finite Automaton (TFA) states for categorizing malicious attack sources. The number of 

active states b is linked to the total number of states by the below worst case complexity cost:  

 

Where P is the number of all possible statuses and NT is the number of TFA states. The 

runtime worst case complexity is directly proportional to P in TFA setups. Comparing to 

VISKA, complexity-wise 𝑁·� ≫ n7e	 log n 7. This renders the VISKA worst-case runtime 

much more efficient than pattern matching intrusion detection implementations in TFA 

setups.  

Non-Deterministic Finite Automata (NFAs) for deep packet inspection using pattern 

matching currently exhibits a very poor exponential runtime algorithmic cost in its various 

implementations using: (1) backtracking algorithms (pcre), (2) Table lookup (lex) by 

converting the NFA to a Deterministic Finite Automata (DFA), and (3) On-the-fly 

determinization by employing the grep command implementation. A similar exponential IDS 

in SDN environments in presented in [88]. 

Sketch Size Analysis 

The sketch data structures are created on the controller probing module and are incrementally 

updated based on the probing data packets. The size of the sketch allocated counters has a 

great influence on the error	ϵ and the confidence level δ	of the sketch computations. 

Sketch number of counters 𝐖: Based on the analysis in [20, 21], using two four-wise 

independent hashing functions for the index 0, . .W − 1  and the value 

−1,+1 	computations, the second normal difference |s(D,) − s(D7)|7 = 	∆ will correctly 
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estimate |D, − D7|7 with error ϵ and confidence level (1 − δ) given that the depth of the 

sketch W  (number of counters) is directly proportional to the number of computations 

required by the four-wise independent hashing function in the worst case complexity 

analysis: W ∈ O ,
÷«
log ,

ø
. This is described in section 4.1.2.1. Therefore, W for each sketch 

is dependent on the error	ϵ and the confidence level δ	and not on the number of the probing 

data packets k. Having W independent of the size of the input data is of great significance in 

the VISKA algorithm implying that the probing size can be dynamically increased with 

limited space requirements on the controller. 

Sketch counter size 𝐳: Each counter in the sketch data structure can hold values between 

[−b,+b] as a result of the increments/decrements of the hash function on the probing data 

packets. Range b depends on the size of memory allocated for each counter. Evidently, b is 

dependent on the size of the probing input k, the depth of the sketch, and the computations’ 

confidence level. Based on the following equation, b is O(log	k): 

z = log 2b = 1 + ,
7
log	(4 ú

û
ln 7��û

ø
)                                                                       (16)                         

Equation 16 is based on the following analysis and computations [20]. Based on the union 

bound [2], no counter overflows in the counter array with a maximum probability of 	(1 −

δ
,��
) since the confidence level is (1 − δ) for the correct functioning of the sketch with error 

ϵ. This suffices that a counter would overflow with a maximum probability of ( ,
û

δ
,��
). 

Consider variable X¢ to represent the sketch resulting values in −1,+1  to be stored in the 

sketch counters at index i.  X¢ will be equal to 1 with ptobability W/2 and -1 with probability 
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W/2 and 0 otherwise. Variable X = 	 X¢ú
¢E,  is the result count in each bin after applying all 

the input probing packets. Applying the Chernoff bound [36] for the size of each counter |X| 

to exceed the allocated size b, we get the following: 

P X ≥ b ≤ 2eÉ
Î«

7úýå] þÿ < ø
,��û

                                                                             (17)                           

knowing that  𝑉𝑎𝑟	 𝑋) = 1/𝑊 and solving 17, results in equation 16. 

Table 4.46VISKA complexity analysis summary of the macm attack categorization module 

Term Meaning Value 
Tîïðñ fèé, f¢é  The cost of the MACM attack 

categorization module as a function of 
the number of egress packets fèé and 
the number of ingress packets  f¢é. 

Cost	of	MACM\håÍè	,,7
+ Cost	of	MACM\håÍè	ì 

Cost	of	MACMHÁåÍè	,,7  Represents the cost of data collection 
and applying the hash operation on the 
destination IP and source IP addresses 
of each egress and ingress packet.  

θ(C + 2(fèé +	 f¢é))  

Cost_	MACM\håÍè	ì The worst case runtime cost of 
detecting the different types of DoS, 
Interruption/Blocking, and MITM 
attacks. 

O(fèé + f¢é) 

Tñïðñ fèé, f¢é  Adding the costs of phases 1, 2, and 3 
and simplifying the complexity terms, 
we get the worst case runtime cost of 
the MACM module to be in the order 
of fèé + f¢é. 

θ(C + 2(fèé +	 f¢é)) + O(fèé + f¢é) = 
O(fèé + f¢é) 

 
4.1.3 System Implementation 

The VISKA system design is implemented on top of the Mininet network emulator. We 

created two main testbed network topologies in Mininet represented in the theoretical linear 

topology and the popular data center FatTree [52] network topology. This choice is adopted 

to test the VISKA algorithm behaviour on diverse network topologies in order to empirically 

analyze the performance efficiency of the algorithms on linearly- and hierarchically-
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connected network switch infrastructures. The technical specification of the simulation 

environment is described in Table 4.5. 

 Table 4.57Simulation environment technical details 

 

A probing module is developed on the FloodLight SDN controller for the purpose of (1) 

exchanging a set of 𝑘  probing packets, (2) calculating the corresponding sketches and 

timestamp accumulators, and (3) sending their sketch and timestamp data structure results to 

the VISKA cloud service. 

The VISKA cloud service calculates the sketch’s second norm difference estimation as well 

as the valid timestamp differences of the probing packets and recursively executes the NVP 

graph partitioning algorithm based on the detection of malicious operation in the tested 

partitions. 

To simulate the Category II attack (refer to Section 4.2.2.3), we used the Mininet delay 

property on all the links connecting the malicious switch SW6 to the neighbouring switches 

SDN controller FloodLight 0.91 [32] 
Network topology  Linear and FatTree 
Network size For each topology, we implemented five network 

sizes comprising 10, 50, 100, 150, 200, and 250 SDN 
switching elements. These parameters are chosen to 
cover a wide range of data center sizes for viably 
testing the scalability of the algorithms on real SDN 
networks. 

Remote cloud service The cloud algorithms are developed using the Java 
platform and deployed on an Amazon EC2 [16] VM. 

Cloud VM instance the t2.micro with 1 vCPU and 1 GB RAM 
Physical machine running Mininet MacBook Pro Mid 2015 laptop running OSX10.12 

and supported with 2.5 GHz Intel Core i7 and 16 GB 
of DDR3 RAM 
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SW3, SW4, SW7, and SW10 (refer to Figure 4.4). The implementation value set for the delay 

property to initiate a delay attack is 40 ms. 

To simulate the various Category I attacks presented in Section 4.2.2.3, we used the 

Floodlight REST API’s. Table 4.6 describes the list of attacks supported: 

 Table 4.68Attack types supported by the MACM module 

 

We simulated the attacks described in Table 4.6 using the FloodLight REST APIs. This 

resulted in generating a dataset for testing the performance (accuracy) of the attack 

categorization algorithms in the testbed implementation as well as in further real-world 

deployments on target SDN networks. The generated dataset is comprised of TCPDump raw 

Attack Type Description 
DoS attack on 
host with IP 
address 10.0.0.4 

To simulate this attack, we crafted a static flow action rule that commands the malicious 
switch SW6 to forward all traffic received on any of its ingress ports to the IP address 
10.0.0.4. The following is an example of a StaticEntryPusher command that simulates 
this attack: 
	𝑐𝑢𝑟𝑙	 − 𝑋	𝑃𝑂𝑆𝑇	 − 𝑑	′{"𝑠𝑤𝑖𝑡𝑐ℎ" ∶ "00: 00: 00: 00: 00: 00: 00: 06"	, "𝑛𝑎𝑚𝑒"

∶ "𝐷𝑂𝑆_𝑜𝑛_10.0.0.4"	, "𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦" ∶ "32768"	, "𝑖𝑛_𝑝𝑜𝑟𝑡"
∶ "𝑎𝑛𝑦"	, "𝑎𝑐𝑡𝑖𝑣𝑒" ∶ "𝑡𝑟𝑢𝑒"	, "𝑒𝑡ℎ_𝑡𝑦𝑝𝑒" ∶ "0𝑥0800"	, "𝑎𝑐𝑡𝑖𝑜𝑛𝑠"
∶ "𝑠𝑒𝑡_𝑓𝑖𝑒𝑙𝑑 = 𝑒𝑡ℎ_𝑑𝑠𝑡 → 	𝑎6: 𝑏8: 34: 23: 8𝑒: 42	, 𝑠𝑒𝑡_𝑓𝑖𝑒𝑙𝑑
= 𝑖𝑝𝑣4_𝑑𝑠𝑡 → 10.0.0.4, 𝑜𝑢𝑡𝑝𝑢𝑡
= 𝑎𝑙𝑙"	}′	ℎ𝑡𝑡𝑝://𝑙𝑜𝑐𝑎𝑙ℎ𝑜𝑠𝑡: 8080/𝑤𝑚/𝑠𝑡𝑎𝑡𝑖𝑐𝑒𝑛𝑡𝑟𝑦𝑝𝑢𝑠ℎ𝑒𝑟/𝑗𝑠𝑜𝑛 

DoS attack on 
controller 

Analogous to the DoS attack on a specific IP, we command SW6 to send all traffic 
received on any of its ingress ports to the controller. 
 

Interruption of 
traffic to host with 
IP address 
10.0.0.4 

To simulate this attack scenario, we craft a static flow action rule that commands the 
switch SW6 to drop a portion of the packets destined to host 10.0.0.4. For instance, 
switch SW6 only drops the packets with destination IP 10.0.0.4 and received on ingress 
port 1. Packets received on ingress ports 2 and 3 and destined to 10.0.0.4 are forwarded 
normally. 

Blocking traffic 
destined to host: 
IP address 
10.0.0.4 

To simulate this attack, we crafted a rule similar to the one above but which commands 
the malicious switch SW6 to drop all packets destined to host 10.0.0.4. That is SW6 
drops packets destined to 10.0.0.4 received on any of its ingress ports. This is achieved 
using the StaticEntryPusher commands. 

Blocking traffic 
from host with IP 
address 10.0.0.3 

In this attack scenario the malicious switch SW6 is commanded to drop all packets with 
source IP 10.0.0.3 received on any of its ingress ports. 
 

Man-in-the-
Middle attack via 
host 10.0.0.2 

In this attack scenario, the malicious switch SW6 modifies the destination IP and 
Ethernet addresses to those of the host 10.0.0.2. 
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network packets collected in the SDN network topology presented in Figure 4 and generated 

using the IPerf tool [59], web browsing, email messaging, video streaming over a time period 

of 4 hours. The dataset consists of 130547 packets with a total size of 978 MBs simulating 

30 DoS attacks, 30 Interruption/Blocking attacks, and 30 MITM attacks. The main purpose 

of the generated data set is to tune the attack detection thresholds employed in the MACM 

algorithm to optimal values based on the ROC curves described later in this section. 

 Table 4.79Summary of terms used in the simulation 

 
 

 

 

 

The attacks introduced in Table 4.6 change in the probing streams that resulted in a second 

norm difference in the calculated sketches ∆≥ τ, and in a timestamp difference ∂ > Γ¿ in the 

delay attack simulation. Subsequently, the attacks were successfully detected to the 

granularity of 𝑚 switches, which was set to as low as one switch in the experiments. A highly 

significant parameter that is considered in the experiments is the percent of malicious 

switches introduced (Ms). Therefore, we tested a malicious switch number consisting of 5%, 

10%, and 15% of the network size for the two topologies. The parameters used in the 

experiments are summarized in Table 4.7. It is worth mentioning here that we employed a 

Network Size 𝑛 10, 50, 100, 150, 200, 250 
τ	(≥ 𝜖) 0.1 
1 − 𝛿 99% 
∆ ≥ 0.1 
𝑘 10Å packets 

𝑧 18 bits 
𝑊 > ,

.«
𝑙𝑜𝑔 ,

´
, size_of (TSA), 

size_of(Val) 

700 counters 

Maximum malicious partition size 𝑚 3 
Percent malicious switches 𝑀𝑠 
(resulting in ∆≥ τ)  

5%, 10%, and 15% of network size 
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sketch data structure of 1575 bytes (W = 700 and z = 18	bits), which is typically the size 

of a single IP packet, to summarize a network traffic flow consisting of 108 probing packets. 

In this work we present the analysis of the DoS, Interruption/Blocking, and MITM attacks 

for each of the previously mentioned topologies and sizes. In the analysis of the VISKA 

attack detection and localization part, for each tested configuration, we calculate the average 

number of recursive steps and the total average convergence time needed by the VISKA VPS 

and NVP algorithms to localize all malicious nodes in the different SDN network topologies. 

The experiments on each configuration are replicated 5 times. The average number of 

recursive steps and the convergence time results are plotted in Figures 4.7 and 4.8, 

respectively, for the linear topology, and Figures 4.9 and 4.10 for the FatTree topology.  

Fig. 4.718- : Average number of recursive steps required to detect the malicious switches in the linear network 
topology. 
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Fig. 4.819- : Convergence time required by VISKA to detect the malicious switches in the linear network 
topology. 

 

Fig. 4.920- : Average number of recursive steps required to detect the malicious switches in the FatTree 
network topology .  

Fig. 4.1021- : Convergence time required by VISKA to detect the malicious switches in the FatTree network 
topology. 
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The VISKA algorithms successfully converged to detecting the sources of malicious 

forwarding in the SDN data plane in all the executed experiments. The presented results 

demonstrate relatively better performance of VISKA on the FatTree topology compared to 

the linear one. The improvement reached an average of 42% in the number of recursive steps 

and 49.6% in the convergence time over the different network sizes and degrees of 

maliciousness tested. This renders the VISKA algorithms better suited for operation on a real 

hierarchical data center topology represented by the FatTree topology. Evidently, the 

convergence time of VISKA algorithms is proportional to the SDN network size and the 

degree of switch maliciousness. The proposed VISKA service is thus demonstrated to 

provide the network with a scalable network security solution with the flexibility and 

dynamism of software. The convergence time results support the scalability of the algorithms 

on linear and hierarchical data center topologies. 

In the linear topology, the increase in network size from 10 to 50 resulted in a convergence 

time increase of 16 sec (Ms=5%), 18.75 sec (Ms=10%), and 21.66 sec (Ms=15%), while the 

increase from 50 to 250 resulted an increase of 32 sec (Ms=5%), 32.84 sec (Ms=10%), and 

33.5 sec (Ms=15%). 

Similarly for the FatTree topology, the increase in netwok size from 10 to 50 resulted in a 

convergence time increase of 6.5 sec (Ms=5%), 8.3 sec (Ms=10%), and 8.7 sec (Ms=15%), 

while the increase from 50 to 250 resulted an increase of 14.85 sec (Ms=5%), 15.3 sec 

(Ms=10%), and 17.8 sec (Ms=15%). 
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The uniform variations in the convergence time as the network size and degree of 

maliciousness increase show that the algorithms scale well as the network size and degree of 

maliciousness increase because of the recursive polylogarithmic nature of the VISKA 

partitioning algorithm, which focuses the security probing, solely, on isolated parts of the 

network. 

The analysis of the MACM attack categorization algorithm is realized on the topology 

presented in Figure 4.4, for simplifying the analysis. This starts by implementing a 

mechanism to collect the ingress and egress traffic flowing into/from the malicious switches, 

respectively. To achieve this, we use the Floodlight REST APIs to push static flow action 

rules into the 𝑚𝑐  switches that are sending and receiving traffic from/to the malicious 

switch(es). The static flows pushed by the controller will transparently result in sending all 

traffic destined to and received from a maliciously-identified switch into the controller. 

Crafting such flows in OpenFlow is pretty simple: first, we create a JSON message indicating 

(1) the name of the flow, (2) the DatapathID (DPID) of the switch we want to insert this flow 

on, (3) the set of criteria matching the traffic to be transparently redirected, and (4) the actions 

to be executed by the switch on the traffic matching the flow criteria. For instance, 

transparently sending a copy of all traffic flowing from switch SW6 to switch SW10 in the 

topology demonstrated in Figure 4.4, we leverage the curl tool [60] to push the corresponding 

action rule as follows: 

𝑐𝑢𝑟𝑙	 − 𝑋	𝑃𝑂𝑆𝑇	 − 𝑑	′{"𝑠𝑤𝑖𝑡𝑐ℎ": "	00: 00: 00: 00: 00: 00: 00: 0𝑎", "𝑛𝑎𝑚𝑒": "𝑓𝑙𝑜𝑤 − 𝑆𝑊6
− 𝑆𝑊10", "𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦": "32768", "𝑖𝑛_𝑝𝑜𝑟𝑡": "4", "𝑎𝑐𝑡𝑖𝑣𝑒": "𝑡𝑟𝑢𝑒", 

	"𝑒𝑡ℎ_𝑡𝑦𝑝𝑒": "0𝑥0800", "𝑎𝑐𝑡𝑖𝑜𝑛𝑠": "𝑠𝑒𝑡_𝑓𝑖𝑒𝑙𝑑 = 	𝑜𝑢𝑡𝑝𝑢𝑡
= 𝑛𝑜𝑟𝑚𝑎𝑙, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟"}′	ℎ𝑡𝑡𝑝://𝑙𝑜𝑐𝑎𝑙ℎ𝑜𝑠𝑡: 8080/𝑤𝑚/𝑠𝑡𝑎𝑡𝑖𝑐𝑒𝑛𝑡𝑟𝑦𝑝𝑢𝑠ℎ𝑒𝑟
/𝑗𝑠𝑜𝑛 
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Where 

§ "switch":" 00:00:00:00:00:00:00:0a" is the DPID of switch SW10 

§ "in_port":"4" designates the SW10 interface connected SW10 to SW6. 

§ "actions":"set_field= output=normal, controller" commands SW10 to send all traffic 

matching the specified criteria to the controller and to the normal interface specified by the 

switch’s L2 pipeline. 

Analogous static flow rules are injected into switches SW3, SW4, and SW7. Moreover, 

similar JSON messages are crafted to configure the Floodlight controller to send action rules 

to switches SW3, SW4, SW7, and SW10 enforcing the transfer of a copy of the ingress traffic 

destined to SW6 into the controller. 

After collecting the ingress/egress traffic, we applied the hashs and hashd aggregation 

functions to categorize the packets based on the source and destination IPs, respectively. The 

list of MACM phase 2 features specified in Section 4.2.2.3 are extracted from the aggregated 

data and analyzed for the purpose of attack categorization. The hashing and analysis 

procedures are implemented in Python in the Floodlight controller’s address space. 

The most significant step in the accurate detection of the various attack types in the MACM 

attack categorization module is the tuning of the threshold parameters to achieve an optimal 

true positives/false positives attack detection rate. The MACM attack categorization module 

relies on: 

1.  The ΓEd,Γdos,Γp threshold parameters for detection DoS attacks. 
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2. The Γbℎ threshold parameter for detecting Interruption/Blocking attacks. 

3. The Γmitm threshold parameter for detecting MITM attacks. 

Table 4.810Threshold values used in the MACM implementation 

 

 

Fig. 4.1122- : ROC of the true positives versus the false positives rates for the different DoS attack threshold 
parameter triplets ΓEd,Γdos, and	Γp. 
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Fig. 4.1223- : ROC of the true positives versus the false positives rates for the different values for the 

Interruption/Blocking attack threshold parameter Γbℎ. 
 

 
 

 

 
Fig. 4.1324- : ROC of the true positives versus the false positives rates for the different values for the Man-in-

the-Middle attack threshold parameter Γmitm. 
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𝑋[z{ = 1.72	𝑀𝑝𝑝𝑠 , ΡzK� = 576	𝑏𝑦𝑡𝑒𝑠 , 𝑡) = 60	𝑠𝑒𝑐𝑠 , 𝛼� = 10% , 𝛼ℎ = 90% , 𝛽� = 5% , 

𝛽ℎ = 70%, 𝛾� = 5%, 𝛾ℎ =50%. The 21 threshold values are presented in Table VIII and are 

generated in increments of 5% between the low threshold range and the high threshold range. 

The attack scenarios included in the dataset described earlier in this section are adopted on 

each of the 21 threshold values presented in Table 4.8 in order to empirically find the 

optimum value for the DoS thresholds ΓEd,Γdos,Γp, the Interruption/Blocking threshold 

Γbℎ, and the MITM threshold Γmitm. Based on the true positives and false positives rates of 

the attack detection system observed, we generate the ROC curve for each attack type (refer 

to Figures 4.11, 4.12, and 4.13). The resulting ROC curves for each attack type shows that at 

higher values of thresholds, the system does not detect the attack. As we gradually increment 

the threshold values, an optimum point is reached representing the best true positives/false 

positives detection rate. This is represented in point P12 in the DoS ROC (refer to Figure 

4.11) where ΓEd = 1.98,Γdos = 463.6	×10ì,Γp = 804.6 at which the system resulted in 

almost 90% true positives rate and around 8% false positives rate. After this point, for lower 

threshold values, the attack is detected, however the false positives rate increases rapidly. 

The optimum threshold value for the Interruption/Blocking attack detection is located at point 

P12 (refer to Figure 4.12) with Γbℎ=319.4 resulting in a 93% true positives rate and an 8.6% 

false positives rate. The optimum Γmitm (213.75) for the MITM attack detection is located 

at point P13 (refer to Figure 4.13) with a true positives rate of 92% and a false positives rate 

of 8.4%. 

4.2  Secure Authentication for the Edge Using SDN and Wireless Virtualization 

  This section presents a secure authentication protocol for edge computing using the 
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Software-Defined Networking platform and wireless network virtualization. The main 

contribution of the presented protocol lies in: (1) designing and implementing a 

practical solution to the security problem of rogue Fog nodes, and (2) providing the 

cloud service provider with exclusive control over the security configuration and 

specification of its leased virtual networks independent of the security mechanisms 

implemented by the underlying infrastructure provider. The cloud provider 

dynamically enforces its security policies on the communication at the network edge, 

therefore circumventing any possible security vulnerabilities in the underlying physical 

wireless infrastructure, such as the recently discovered key reinstallation vulnerability 

in WPA2. The authentication protocol manages the trusted communication among the 

mobile client, the infrastructure provider, and the cloud service provider, yet confines 

the PKI deployment to solely the infrastructure and cloud providers. This enhances the 

scalability of the system and reduces the complexity of its security management and 

configuration. A system testbed is simulated using the Mininet emulator and the 

Amazon EC2 Cloud. 

4.2.1 System Design 
The SDN architecture is targeted by all the members of the networking industry 

namely: Internet service providers, network infrastructure providers, network vendors, 

enterprises, and end users [62]. The innovations of the SDN architecture are mainly 

represented in: (1) the separation of the control and management plane from the data plane, 

(2) the centralization of the control plane, (3) the availability of control plane 

programmability APIs, and (4) the support of dedicated flow-based protocol control. SDN is 
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utilized in the MEC/Fog architecture in which the Cloud is the central controller of the Fog 

servers where selective applications are localized and are timely synchronized and managed 

by the controller. 

Next, we present the system and threat models and then, move on to describe the security 

protocol steps executed by the mobile client, Cloud service provider, and the network 

infrastructure provider to ensure the security objectives described in Section 4.1.1. 

4.2.2 System Model 
The system model we present in this work is a MEC architecture based on the virtualization 

of computing, storage, and networking infrastructure and more specifically, virtualizing the 

wireless access points and base stations. An infrastructure provider (InP) offers infrastructure 

services that are leased by Cloud service providers to offer their clients localized services, in 

order to enhance the QoS delivered using wireless access points. Mobile users connect to 

virtual wireless access points to gain access to the Cloud servers locally at the network edge. 

The system architecture components are described as follows (refer to Figure 4.14):  

• Infrastructure Provider (InP): The InP manges and offers wide varieties of physical 

network resources and substrates that meet the requirements and needs of tenants. This entity 

lies at the lowest system level and provides the computing, storage and network resources 

for the MEC system. This provider can range from a resource-lucrative Internet Service 

Provider (ISP) to a relatively small Internet cafe to provide a wireless Internet access point 

as well as network infrastructure leased by Cloud service providers. 

• Cloud Service Provider (CSP): The CSP provides clients with a set of Cloud 

services based on the Cloud computing model. To enhance the mobile client experience when 



	
 
	

114	

operating on their Cloud services, CSPs utilize MEC computing by leasing computing, 

storage, and networking infrastructure at the InP site. 

• Virtual Network Layer: The InP in the proposed system, provides CSPs with full 

control over their leased MEC networks by utilizing network virtualization and SDN. 

Network virtualization facilitates the feasibility of creating multiple heterogeneous networks 

on the same physical infrastructure (Figure 4.14). Sharing the physical resources results in 

“elastic” network topologies composed of virtual nodes connected via virtual links to provide 

dynamic end-to-end connectivity services. The network virtualization property, imposed by 

a network virtualization hypervisor layer, provides the spawned virtual networks with full 

isolation among each other to achieve relatively high levels of privacy and security. In such 

virtualization environments, virtual networks are characterised by elevated degrees of 

flexibility and ease of management, elasticity and dynamism, scalability, isolation, and 

heterogeneity. Wireless virtualization is moreover employed by utilizing the capabilities of 

modern wireless base stations to support mulitple SSIDs, which map to the various virtual 

base stations at the virtual network layer. Each registered CSP, in the InP network 

infrastructure, is provided with virtual network and access point and is supported with a full 

access control over the leased resources. In other words, the CSP is the only entity that 

specifies which mobile clients are capable of accessing its virtual SSID at the network edge. 

This is enforced by utilitzing trusted computing units such as TPM modules by the Trusted 

Computing Group (TCG) [63] to physically and logically secure the access to the SSID key 

database. 
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• Mobile Clients: mobile clients are the main consumers of the edge Cloud services 

via their wireless networking interfaces. Mobile clients subscribe to the InP site to gain access 

to the high QoS MEC Cloud services at the provider site. Mobile clients are granted access to 

the MEC services by the corresponding CSP. 

	

 
Fig. 4.1425- : The virtualized MEC architecture proposed in this work	

4.2.3 Threat Model 
The main threat model we assume in this work is represented in the rogue Fog node 

attack, which results when a certain attacker maliciously injects a false server node in the 

network and claims its ownership to a particular legitimate CSP. This attack incurs 

disastrous consequences since it can trick clients to interact with a rogue server node as if it 

were a legitimate one and thus, it puts huge amounts of client communication data, some of 

which is considered sensitive, in the hands of the attacker. The attacker may leverage the 

sensitive data to further execute other forms of active attacks on the underlying network 

infrastructure. For this reason, exceptional attention should be directed towards mitigating 
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such kinds of attacks.	The approach we follow in this work targets this problem by 

providing the CSP with a full security control over its leased virtual networks by leveraging 

SDN, wireless virtualization, and trusted computing. All the authentication mechanisms of 

the Fog servers, as well as the mobile clients are totally under the control of the CSP. 

Moreover, since the client communication with the Fog nodes is mainly wireless and based 

on the 802.11i Wi-Fi standards, concerns arise regarding the vulnerabilities in the 

underlying wireless network security implementations. This is considered highly crucial 

after the recently discovered key reinstallation vulnerabilities in the WPA2 security 

standard currently securing 802.11i wireless networks. The security protocol presented 

mitigates such forms of vulnerabilities by a set of design features that will be described in 

the security analysis presented in Section 4.2.5. 

The system design proposes a novel MEC architecture that delegates the authentication and 

confidentiality of the edge servers directly to the Cloud service provider to ensure high 

security levels and mitigate the possibility of rogue Fog node attacks. We assume that the 

infrastructure and Cloud service providers belong to a public-key infrastructure (PKI) 

where each entity is equipped with a public/private key pairs. The various entities’ public 

key is signed by a trusted certification authority (CA) and enlcosed in a public-key 

certificate. It should be noted here that the mobile client may not be part of the PKI. This 

enhances the scalability of the system and reduces to great degree the complexity of its 

security management and configuration. 
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Fig. 4.1526- : The authentication protocol execution steps. 

4.2.4 The Mobile Client-InP-CSP Security Protocol 
The main objective of the mobile client-InP-CSP security protocol is to provide a secure 

authentication mechanism of the mobile clients and the Fog servers to the CSP. This is done 

by delegating the security configuration and specification to the Cloud provider itself and 

providing it with an isolated wireless virtual network whose access is entirely under the 

control of the CSP. After the authentication step, the mobile clients and the Google VMs can 

communicate securely using Transport Layer Security (TLS) encrypted sessions. 

The protocol steps are described in Figure 4.15: 

Firstly, the mobile client (C1) contacts the InP administrator to request access to the Internet 

access point at the InP site. The InP physically shares a key KPH-C1 with the client C1 that 
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enables it to connect to the subscriber wireless network (SSID_Sub). After this step, the client 

C1 is connected to the InP site using the shared KPH-C1 via the SSID_Sub wireless network. 

C1 uses the SSID_Sub channel to request access to the MEC services (in this example Google 

services) at the InP network edge.  

In step 4, C1 sends to the InP the following request message: 

𝐺𝑜𝑜𝑔𝑙𝑒||𝐺𝑜𝑜𝑔𝑙𝑒_𝑈𝑠𝑒𝑟𝐼𝐷||𝑟𝑎𝑛𝑑||𝐻(𝑟𝑎𝑛𝑑||𝐺𝑜𝑜𝑔𝑙𝑒_𝐴𝑐𝑐𝑒𝑠𝑠_𝑐𝑟𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑠) 

The InP learns from the message body the identity of the CSP that the client wants to connect 

to (Google in this example), and then establishes a secure communication session with it 

using the secure TLS protocol. The InP forwards the request message to that corresponding 

CSP (Google) via the secure TLS session. From this point on, the CSP is the entity 

responsible for the access control to its servers at the network edge (InP site). The CSP 

extracts from the request message the CSP User-Access-credentials to authenticate the client 

and ensure his/her eligibility to access its MEC servers. This step prevents any malicious user 

from accessing the CSP servers at the network edge. Consequently, after authenticating the 

mobile client, the CSP generates a user key 𝐾2ÉC1 for accessing the CSP virtual wireless 

network at the edge. To send this key safely to the InP site, the CSP encrypts it using a key 

K452  that is previously shared with a tamperproof device installed at the infrastructure 

wireless base station. The tamperproof device could be a TPM module that is totally 

configured and controlled by the CSP. The CSP sends the key-access-message: 

(𝐸6789(𝐾2ÉC1)) to the tamperproof module. At the InP site, the tamperproof module decrypts 

the key-access-message and appends K2ÉC1 to the list of authorized keys database that can 
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connect to the CSP virtual SSID (in this example Google virtual SSID “SSID_G”). The 

tamper proof device establishes a secure TLS connection with the mobile client C1 over the 

SSID_Sub channel in order to send the SSID_G access key K2ÉC1. The mobile user C1 can 

now connect using this key to the virtual base station SSID_G using the retrieved key 𝐾2ÉC1 

and thereby access the CSP MEC servers at the network edge with high QoS. 

Further data communication between the mobile client and the edge servers is exclusively 

managed by the CSP. One option that the CSP would implement is TLS-based HTTPs 

sessions for enforcing the confidentiality of data without relying on the underlying security 

mechanisms provided by the wireless infrastructure. 

4.2.5 Security Analysis 
We formally verified the safety of the proposed security protocol using the 

SPAN/AVISPA cryptographic verification tool [64]. SPAN/AVISPA analyzes each step in 

the protocol execution and checks its security against a set of specified safety goals and attack 

scenarios. The main attacks considered are represented in masquerade, replay, and man-in-

the-middle attacks. SPAN/AVISPA is a role-based security verifier that implements the set 

of acting nodes or agents as roles and specifies the set of messages exchanged among these 

roles. The protocol specification language employed in SPAN/AVISPA is the High-Level 

Protocol Specification Language (HLPSL) [65], which consists of a set of formal constructs 

for defining the roles (agents), the keys and parameters used in the different protocol phases, 

the messages exchanged among the designated roles, the knowledge assumed by the agents 

and the attacker, and the set of safety goals and security properties that AVISPA should 

verify. 
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The verification scenario we implemented is comprised of 4 main roles: (1) the mobile client, 

(2) the infrastructure edge provider, (3) the cloud service provider, and (4) the tamperproof 

edge device. The security properties that AVISPA verified are represented in: 

(1) The security of the Google_Access_Credentials in the request message sent from the 

mobile client to the infrastructure provider in step 5 and the freshness of this request message. 

(2) The security of the request message sent from the infrastructure provider to the cloud 

service provider in steps 6 and 7. 

(3) The security of the KG-C1 symmetric encryption key exchanged between the cloud 

service provider and the Google tamperproof device in step 10. 

(4) The security of the KG-C1 symmetric encryption key exchanged between the Google 

tamperproof device and the mobile client. 

(5) The safety against the various forms of masquerading, replay, and man-in-the-middle 

attacks. 

SPAN/AVISPA produced a “safe” output for all the above security properties. A detailed 

analysis of the presented authentication protocol steps is presented in the following set of 

points: 

(1) In protocol steps 1, 2, 3, and 4 the mobile client gets access to a subscription WiFi network 

(SSID_Sub). The access to SSID_Sub is provided by physically sharing an access key KPH-

C1. This network allows the client to communicate with the InP. In protocol steps 5, 6, 7, and 

8 the mobile client authenticates to the CSP to get access to its MEC services. 

(2) The access is granted by sending an authentication request message via the InP to the 

CSP using a secure TLS session. The main components in the authentication request message 



	
 
	

121	

are the mobile client user ID and a hash of the access credentials to the MEC services. A 

random salt value is appended to the access credentials before hashing to prevent any brute 

force guessing attacks on the access credentials. 

If the mobile client is authenticated successfully to the CSP, the latter generates a secret key 

𝐾:É;,. This is the key that the mobile client uses afterwards to access the CSP virtual wireless 

network provided by the InP. 

(3) To give the CSP exclusive control over the security of its leased virtual WiFi network, a 

CSP tamper-proof TPM module is installed on the infrastructure wireless base station. 𝐾:É;, 

is securely transmitted to the TPM module by encrypting it with a CSP key 𝐾·<:  to get 

𝐸=>?@ 𝐾:É;, . 𝐾·<:  can be loaded into the TPM module in the initial deployment phase 

mainly by burning it into the module’s ROM. It is worth mentioning here that using 

tamperproof modules is not anymore an expensive design choice in current computing and 

network architectures. This fact is corroborated by a set of indicators in successful network 

and Cloud implementations that rely on trusted computing modules and tamper-proof 

coprocessors for providing their security services and trust commitments [66, 67]. 

(4) In protocol step 11, the TPM module decrypts 𝐸=>?@(𝐾:É;,) 

and adds 𝐾:É;, to the database of authorized access keys to access the CSP wireless virtual 

network SSID_G. It is worth mentioning here that the CSP is exclusively controlling the 

access to SSID_G by generating 𝐾:É;, and maintaining a tamper-proof key database for 

storing it securely on the infrastructure wireless base station using a TPM module.  

(5) In protocol steps 12 and 13, the TPM module sends 𝐾:É;, securely to the mobile client 

using an encrypted TLS session. 
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(6) In protocol step 14, the mobile client uses 𝐾:É;,  to access the virtual CSP wireless 

network SSID_G. 

All further data communication between the mobile client and the CSP edge servers takes 

place over SSID_G. The CSP dynamically implements its own security policies that governs 

the communication with the mobile clients independent of the infrastructure security policies. 

This is highly vital to circumvent any security vulnerabilities in the underlying wireless 

network [68]. A paragon example on that is the recently discovered key reinstallation attack 

on WPA2 protocol implementations [69]. Note that WPA2 key reinstallation vulnerability 

does not jeopardize the authentication protocol steps described in Section 4.2.1.3 since the 

protocol messages are either innately not confidential or are secured using custom TLS 

encrypted sessions. 

4.2.6 System Implementation 

 In this section, we present a brief proof-of-concept implementation of the proposed MEC 

authentication protocol. The implementation model is illustrated in Figure 4.16. We execute 

the functionality of the CSP using an Amazon EC2 VM. The VM instance type used is the 

t2.micro with 1 vCPU and 1 GB RAM. The InP network infrastructure is simulated using the 

Mininet network emulator running on a VirtualBox Linux VM. The physical machine 

employed to run Mininet is an iMac Late 2013 desktop running OSX El Capitan 10.11 and 

supported with 2.7 GHz quad-core Intel Core i5 processor and 8 GB of 1600 MHz DDR3 

RAM. The mobile edge device set utilized consists of two Android mobile devices and two 

Mac OS X laptops as specified below. We use these devices to emulate the concurrent 

authentication protocol execution of up to 100 mobile edge devices. 
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Fig. 4.1627- : The system proof of concept implementation.emulate	the	concurrent	authentication		

To achieve this, we develop a multi-threaded client application to run on the Android phones 

and another one to run on the MAC laptops.  

Each application thread emulates a mobile edge device. Along with the specs of the devices, 

we show the maximum number of threads to be executed on each device, which typically 

represents the maximum number of concurrent authentication protocol executions (MCPE) 

that are initiated on that particular device. Moreover, we utilize the VMware Fusion server 

virtualization software to respectively partition the Mac laptops into two guest VMs running 

Windows and Ubuntu in addition to the Mac OSX main host machine. 

• Samsung Galaxy S4 mini running Android KitKat 4.4.4, with 1.7 GHz dual-core 

Krait 300 and 1.5GB RAM; MCPE=5. 

• Samsung Galaxy S8 running Android Nougat 7.0, with 4x2.3 GHz  octa-core M2 and 

4GB RAM; MCPE=5. 
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• Apple MacBook Pro Retina (2012) running Mac OSX  Sierra 10.12, with 2.3 GHz 

quad-core Intel Core i7 and 8GB 1600 MHz DDR3 RAM; 

o Main host: 15; Windows 7 VM (2 GB RAM): 15; Ubuntu 14.04 VM (2 GB RAM): 

15 

• Apple MacBook Pro Retina (2015) running Mac OSX  High Sierra 10.13, with 2.5 

GHz quad-core Intel Core i7 and 16 GB 1600 MHz DDR3 RAM; 

o Main host:15; Windows 7 VM (2 GB RAM): 15; Ubuntu 14.04 VM (2 GB RAM): 

15 

Fig. 4.1728- : The average protocol execution time vs. the number of concurrent protocol executions for 
authenticating mobile edge clients.  

We followed this mobile edge device emulation using light-weight application threads to 

reduce the wireless channel allocation load on the wireless base station and to better reflect 

the performance overhead imposed by the authentication protocol operations. The wireless 

base station employed is the Linksys E2500 (N600) dual-band wireless-n router. The TLS 

implementation is based on the Java Secure Socket Extension (JSSE) and the encryption and 

hashing implementations are respectively developed using the Java Cipher and 
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MessageDigest classes. The tamperproof device is simulatedusing a USB stick encrypted 

with a CSP key and containing the keys authorized to access the SSID_G Wi-Fi network. We 

assume that the logic for accessing the SSID_G network channel is totally under the control 

of the CSP, i.e. executed in the tamperproof device and cannot be logically or physically 

accessed by the InP. This implementational model is considered a viable proof-of-concept 

that demonstrates the correct operation of the authentication protocol. A set of 10 

experiments was conducted with and without authentication during different times of the day. 

The MEC server application tested is a variant of the Google Drive file sharing service. The 

respective response time of the application with authentication on the mobile client 

experienced an end-to-end time delay of 149 ms (refer to Figure 4.17) from the initiation of 

the authentication request to receiving the respective WiFi credentials to connect to the Fog 

server(s). To emulate the MEC authentication protocol operation in a real-life network 

scenario, we executed the protocol on increasing number of mobile edge devices (using 

application-level threads) ranging from a single device up to a maximum of 100 concurrent 

nodes. Figure 4.17 demonstrates the average end-to-end time delay experienced at each node 

when connecting the respective concurrent devices. As expected, the average time delay 

increases as the number of connected devices increases to reach 800 ms when all the 100 

edge nodes are concurrenlty executing the authentication protocol. This delay is experienced 

only once and is mainly due to the Internet communication with the main cloud service 

provider (Amazon EC2 in this implementation). Another important performance parameter 

that we measured is related to the network overhead imposed by the application of the 

proposed authentication protocol. This was found to be 6.1 KB, which is mainly due to the 
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overhead of the TLS session between the InP and CSP. This TLS session is only executed 

once and it should be noted that smart TLS tuning techniques such as session reuse and 

caching would reduce this overhead to less than 1 KB. 
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTIONS 

 

In this thesis, we present the research accomplishments that has been achieved which 

satisfies the thesis goals and objectives. We present the design and implementation of a set 

of network services and protocols for dynamically and flexibly provisioning, configuring, 

and securing networks in programmable network environments. This thesis work focuses on 

the utilization of network virtualization and programmability through the separation of 

network hardware and software in order to provision novel dynamic cloud services for 

network tenants. The set of services delivered create a major breakthrough in the current 

networking platform and secure communication services in order to pave the way for a more 

dynamic, agile and flexible networking infrastructure. The following is a list that summarizes 

the research work that has been achieved and the corresponding fulfilled network services. 

5.1 Dynamic Vnets Provisioning in Virtualized SDN-Based Cloud Architectures 

The main contribution behind this work is to offer an integrated service that handles 

the different aspects of VNet creation and management on behalf of cloud tenants while 

satisfying their requirements and constraints. The work employed a flexible network 

partitioning mechanism that allows the hosting of the network parts on multiple cloud 

providers to provide a minimum VNet deployment cost. The presented centralized cloud 

service creates VNets in SDN-based cloud architectures. NCaaS relieves tenants from the 

burdens and complexities of VNet creation and management by supporting dynamic 
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provisioning operations based on QoS, pricing, privacy, reliability, and energy requirements. 

NCaaS provides a unified interface through which tenants network specifications and 

constraints are fed into the service provisioning algorithms. These algorithms, in turn, handle 

the negotiations with the different SDN NaaS providers and dynamically apply the necessary 

VNet creation, partitioning, and migration mechanisms to ensure the satisfaction of the 

tenants’ preferences. A mathematical formulation of the cost optimization problem is 

provided along with a set of approximation algorithms for carrying out the partitioning and 

topology designs. A test bed proof of concept implementation of the NCaaS algorithms is 

developed on top of the OpenVirteX network virtualization platform and tested using the 

Mininet network emulator.  

5.2 An SDN-Based Virtualized Network Framework For Linking Geographically 
Separated Enterprise Branches 

Towards the fulfillment of the thesis objective, another main challenge was presented in 

VNCS, a network connectivity service for linking enterprise branches using virtualized SDN-

based provider networks. The VNCS service creates and manages Virtual SDNs (vSDN) for 

the tenant’s sites that are logically decoupled from the network infrastructure, providing 

configurable network topology and isolation on the SDN network virtualization platform. 

VNCS service algorithms ensure the dynamic spawning of the tenant specified vSDN that 

satisfies its constraints with minimum connection cost based on the SDN providers’ offers 

and tenant’s specifications and preferences that are inputs to the VNCS algorithms interface. 

VNCS enables tenants to specify how their remote sites are to be connected along with a list 

of network constraints independently from the service provider and the infrastructure 

provider by dynamically configuring, managing and maintaining interconnecting networks 
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that link tenant’s remote sites. The work mathematically formulated the network connectivity 

problem and described an approximation algorithm for solving it. The VNCS service 

algorithms receive a set of input specifications from the enterprise tenant and SDN providers 

and ultimately creates a configurable network topology while coordinating the 

encapsulation/decapsulation mechanisms for unifying the address space among the various 

branches to appear as seamlessly operating on a single network. VNCS is implemented on 

top of the OVX network virtualization platform and tested with a wide set of input 

configurations and network sizes. The implementation analysis verified the correctness of 

the resulting network topology and the feasibility of the convergence time needed to construct 

this topology. 

5.3 	Secure Sketching On Programmable SDN Network Views For Security Service 
Provisioning	

 A novel approach in localizing malicious nodes in the SDN data plane and categorizing any 

present attacks by utilizing network programming and probabilistic sketching is presented. 

The VISKA security algorithms are designed to run in real time with minimal convergence 

time for isolating malicious forwarding elements in the data plane. This is the main 

contribution of the work where malicious switch detection is achieved by an efficient 

logarithmic divide-and-conquer approach that divides the network view in half in each 

recursive iteration. The network programming functions in SDN allow the system to 

autonomously isolate network partitions that may be experiencing malicious activity. This is 

done flexibly with pure software operations. The attacks detected include: 1) network time 

delay insertion, 2) MITM, 3) DoS on a certain server, 4) block on a certain source IP, 5) 

block on a certain destination, 6) miscellaneous blocks to induce network malfunction, and 
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7) DoS on the controller. The algorithms were tested for convergence using a variety of SDN 

network sizes and number of malicious switching elements. The various attacks were 

experimented and the detection thresholds were identified. The system was capable of 

achieving over 90% detection accuracy. It is worth mentioning here that a very appealing 

application to the VISKA model is in supporting net neutrality in modern SDN-based NaaS 

provider networks. VISKA attack categorization mechanisms can provide a valuable 

feedback on probable breaches that violate net neutrality exertion in an SDN-based network. 

This is demonstrated by the following points: 

1. VISKA detects malicious traffic shaping violations that induce delay attacks on 

network packets by leveraging the Timestamp Accumulator data structure presented 

in Section 4.1.2.1. 

2. VISKA detects DoS attacks that interfere with the “freedom of speech” approach 

pushed by the Open Internet [61] standards. The Open Internet approach indicates 

that the full network resources should be accessible by clients transparently and 

easily. 

3. VISKA prevents any discrimination by IP address by detecting blocking attacks on a 

certain destination or source network address. 

4. VISKA aids in preventing malicious over provisioning of network bandwidth by 

detecting delay attacks resulting from unfair bandwidth distribution. 

5.4 MEC Secure Authentication Protocols using SDN and Wireless Virtualization	
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We presented a secure and scalable authentication protocol for edge computing using the 

SDN platform and wireless network virtualization. The edge computing system is mainly 

based on virtualizing networking resources including the wireless access point where an ISP 

offers infrastructure services that are leased by Cloud service providers to offer their clients 

localized services using the ISP access point. In such architecture, it was feasible to devise a 

security protocol that assigns the confidentiality and the authenticity of the mobile user-edge 

services to the Cloud service provider. As a result, the Cloud service provider can fully 

control and customize the security policies of the edge service communication. The main 

contribution of this work is to target the security problem of rogue Fog nodes and to provide 

a secure and flexible network creation and configuration mechanisms for Cloud service 

providers at the network edge. A system testbed was simulated using the Mininet emulator 

and the Amazon EC2 Cloud. Future extensions include: (1) extending the authentication 

architecture to cover cellular MEC platforms, (2) leveraging the tamperproof device to 

deploy more sophisticated authentication, confidentiality, and privacy modules to provide 

customized security levels depending on the mobile users’ preferences and the services 

requested and (3) utilizing a real tamperproof cryptographic coprocessor for truly 

safeguarding the SSID_G key database and operation from the InP. 
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