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An Abstract of the Dissertation
of

Yara Antoine Rizk for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: On Taming Large Optimization Problems: A Machine Learning Approach
for an Improved Performance of Ad Hoc Teams of Heterogeneous Agents
in Package Delivery

With the emergence of Internet of Things, cloud computing, and smart cities
empowered by artificial intelligence and machine learning, transportation systems
have witnessed improved operational performance from safety and sustainability
to greener logistics and efficiency. Given that the “last mile” of the delivery
process is the most expensive phase, autonomous package delivery systems are
gaining traction as they aim for faster and cheaper delivery of goods to city,
urban and rural destinations. This interest is further fueled by the emergence
of e-commerce, where many applications can benefit from autonomous package
delivery solutions. However, the environment stochasticity, variability and task
complexity for autonomous operation make it difficult to deploy such systems in
real-world applications without the incorporation of advanced machine learning
and optimization algorithms. Moving away from designing a “one size fits all”
agent to solve the outdoor package delivery problem and considering ad-hoc teams
of agents trained within a data-driven framework could provide the answer.

In this work, we argue that heterogeneous multi-agent systems (MAS) can be
leveraged to insure some efficient multimodal transport which uses vehicular and
non-vehicular agent cooperation for task completion. While the pickup and deliv-
ery problem (PDP) is one of the most popular models of package delivery, it does
not support MAS. Therefore, we present PDP formulations that allow coalition
formation (CF), i.e. a constrained optimization problem is formulated to solve
for the delivery schedule while considering teams of agents for task execution.
Specifically, 3-index and 2-index mixed integer programming (MIP) approaches
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are derived. However, the large number of optimization variables in both formula-
tions causes convergence issues when using branch and bound type optimization
solvers, which led to adopting heuristic and data driven approaches. Multiple
solvers are presented to find near-optimal schedules including quantum genetic
algorithm (QGA), genetic algorithm (GA) and artificial neural networks (ANN).
To further improve the performance of the ANN solver, we propose a non-iterative
training algorithm for recurrent neural networks (RNN), context-dependent ini-
tialization approaches, and a regularization algorithm based on transfer entropy
and Kullback-Leibler divergence. Multiple synthetic PDP scenarios with varying
problem sizes are generated to evaluate the performance of the proposed solvers
and create a labeled training set for ANN.

The algorithmic contributions of this dissertation include: (1) PDP formu-
lations that allow coalition formation (PDP-CF), (2) QGA solver for PDP-CF,
(3) GA solver for PDP-CF, (4) ANN solver for PDP-CF, (5) batch and online
non-iterative training algorithms for RNN, (6) context dependent initialization
algorithms for ANN, and (7) information theoretic regularization algorithms for
deep learning.
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Chapter 1

Introduction

1.1 Motivation

With the automation of many everyday tasks resulting from cheaper and better
electronics and robotic systems, some tasks such as package delivery still lag
behind due to many difficulties. However, the emergence of Internet of Things
and smart cities can help make autonomous delivery commonplace, benefiting
many industries like retail, healthcare and emergency response.

As e-commerce becomes more popular, evidenced by its $1,471 billion sales
worldwide in 2015 [3], shipping products to consumers is taking up a larger por-
tion of companies’ revenues. The “last mile” of the delivery process is the most
expensive phase, with Amazon reportedly spending approximately $11.5 billion
in 2015 on shipping costs [4]. Furthermore, the number of packages shipped by
Amazon is estimated at about 608 million packages a year and is steadily in-
creasing [5]. With consumers expecting faster and cheaper delivery, companies
like Amazon are looking for better package delivery systems.

Automated delivery can also lead to smarter healthcare systems. The first
impact involves automating prescription drug delivery. Almost 60% of Ameri-
cans take at least one prescription drug [6] and about 34% of those are elderly
individuals [7] who get more prescriptions than younger individuals [8]. Further-
more, almost 46.2 million people reside in rural areas [9] and 18% of rural area
populations are elderly residents [10]. An automated delivery system would allow
elderly people to live more independently and improve their quality of life, espe-
cially those in rural areas. Furthermore, using drones and all terrain autonomous
vehicles would help reduce the need to build new roads and reduce maintenance
costs of existing roads due to reduced wear and tear. Since a sharp increase in
the 65 and older population is expected in the coming years, especially in rural
areas [11], this technology will become even more crucial.

We can envision scenarios in which automated delivery of test samples to lab-
oratories for medical testing can improve the quality of healthcare. This involves
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the delivery of tissue or bodily fluids that require special handling conditions to
medical laboratories capable of running the required tests. For example, rural
area hospitals that would not have sophisticated medical laboratory equipment
and account for almost 33% of US hospitals [12], may choose to send blood or
other samples to a larger, better equipped hospital to run the required tests,
allowing rural area hospitals to improve their diagnosis without spending money
on expensive equipment or asking patients to make the trip to bigger hospitals.
Furthermore, when encountering a possible virus or rare disease outbreak, the
automated package delivery system can efficiently delivery samples to the Cen-
ter for Disease Control and Prevention (CDC) or other government entities, for
further analysis and record keeping, who can take appropriate measures to en-
sure the safety of the general public. The delivery system can also be used to
transport antidotes for rare diseases from the CDC to the hospitals.

Automated package delivery can be applied to emergence response situations
to improve response time. Considering wilderness and natural park reservations,
transporting anti-venom to people who have been poisoned in the wilderness can
be faster than transporting the patients to the nearest hospital. For example,
snakebites in rural parts of India and Bangladesh have resulted in thousands
of deaths a year [13, 14] which could be prevented with the timely delivery of
anti-venom. In addition, park rangers would not be required to leave their base
stations to provide supplies to individuals in need of the anti-venom or first
aid supplies, reducing time wasted on traveling between various locations in the
parks, improving response time and allowing the rangers to aid multiple individ-
uals from their headquarters. This is particularly helpful in undermanned parks
or parks with treacherous terrain and in difficult weather conditions. In the event
of natural disasters such as earthquakes and hurricanes, infrastructure damage
makes many areas inaccessible preventing essential first aid resources from reach-
ing the people that need it most. Therefore, delivering relief packages to these
inaccessible areas could be possible with an autonomous delivery system.

A fully automated package delivery system utilizes autonomous ground and
aerial vehicles to deliver packages to consumers, as shown in Figure 1.1. This het-
erogeneous MRS consists of cooperating robots with various capabilities working
to accomplish a common goal. The complexity of real world problems, uncer-
tainty, stochasticity and variability of real world environments prevents the de-
sign one autonomous robot that can efficiently adapt to all circumstances. This
autonomous system could achieve faster package delivery at lower costs. However,
many questions still face researchers before heterogeneous MRS can be deployed
for autonomous package delivery and in real world applications. How can robots
within a MAS make decision that contribute to the completion of the common
task, in a decentralized fashion? When should and how can robots form coalitions
with other robots to complete specific tasks? How can the repeated Coalition For-
mation (CF) problem be solved? Can Deep Learning (DL) solve decision making
problems more efficiently? Therefore, additional research is necessary in the fields
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Figure 1.1: An autonomous package delivery system in an outdoor environment.

of artificial intelligence, machine learning, robotics, MAS, distributed optimiza-
tion and other related fields, to successfully deploy heterogeneous MRS in real
world applications.

1.2 Thesis Question

The main research question that will be address in this thesis is the following.

How can agents within a heterogeneous MAS make decisions about coalition
formation to cooperatively achieve a complex task?

1.3 Thesis Approach

We build on the work of the scheduling community by formulating a PDP that
allows CF based on optimization theory. Specifically, we modify the objective
function and constraints of Mixed Integer Programming (MIP) PDP formula-
tions to allow CF. However, this approach resulted in an optimization problem
that scaled exponentially with the number of agents. To improve the formula-
tion’s scalability, we investigated search-based approaches such as GA and data
driven approaches such as ANN. Then, we evaluated the performance of the
proposed approaches on multiple PDP scenarios. Furthermore, we sought to im-
prove the performance of ANN solvers by proposing a computationally efficient
training algorithm for Recurrent Neural Networks (RNN). Context-dependent
initialization algorithms and information theoretic pruning techniques were also
investigated and tested on multiple publicly available benchmarks.
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1.4 Thesis Contributions

In this work, the main contributions are the following:

• A survey on heterogeneous MAS in various applications, the state of the
art in four main building blocks of MAS, and their challenges.

• A survey on decision making models, their applications and challenges.

• A formal definition of PDP that allows CF.

• A 3-index MIP formulation of PDP-CF.

• A 2-index MIP formulation of PDP-CF.

• A GA solver formulation for PDP-CF.

• A QGA solver formulation for PDP-CF.

• A non-iterative training algorithm for RNN.

• An online learning algorithm for non-iteratively trained RNN.

• A context-dependent initialization algorithm for non-iteratively trained ANN.

• A context-dependent initialization algorithm for iteratively trained ANN.

• A regularization approach for DL.

1.5 Document Outline

The thesis is organizing into the following chapters:

• Chapter 2 summarizes relevant work on MRS in autonomous package de-
livery and other complex tasks after presenting an overview of MAS.

• Chapter 3 summarizes relevant work on decision making models in MAS
which are an integral part of any intelligent agent.

• Chapter 4 presents a formulation of PDP-CF based on a 3-index and 2-index
PDP formulation. The cost function and constraints are detailed.

• Chapter 5 presents a GA and QGA solver for PDP-CF.

• Chapter 6 presents ANN solver formulations for PDP and discusses the
necessary steps before empirical results can be generated.
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• Chapter 7 presents a non-iterative training algorithm for RNN. Two vari-
ants are formulated for multiple RNN architectures and shown to outper-
form iteratively trained RNN on time-series regression problems. An online
learning formulation is also presented based on Kaczmarz’s approximation
of Recursive Least Squares (RLS).

• Chapter 8 introduces a context-dependent initialization algorithm for non-
iteratively trained ANN. The algorithm is validated on multiple regression
benchmarks and shown to outperform randomly initialized networks.

• Chapter 9 presents an initialization algorithm for iteratively trained ANN.
The algorithm, which computes initial weights from a non-iteratively trained
autoencoder, outperforms randomly initialized networks on multiple classi-
fication and regression benchmarks.

• Chapter 10 presents an information theoretic approach to DL regularization
where transfer entropy is adopted as a criterion to neuronal connection
pruning. The proposed algorithm is shown to reduce the risk of overfitting
by reducing the ANN model complexity.

• Chapter 11 summarizes the contributions of this thesis, comments on its
findings and proposes future research directions.
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Chapter 2

Heterogeneous Multi Agent
Systems: A Survey

In this chapter, we present a brief overview of MAS before discussing related
work on MRS applications including autonomous package delivery systems.

2.1 Multi-Agent Systems

2.1.1 Intelligent Agents

An intelligent agent is a physical (robot) or virtual (software program) entity
that can autonomously perform actions on an environment while perceiving this
environment to accomplish a goal [15]. A rational agent seeks to perform actions
that result in the best outcome [15]. A cognitive architecture is the “underlying
infrastructure for an intelligent agent” [16]: the agent’s brain. It consists of
perception, reasoning, learning, decision making, problem solving, interaction and
communication. Its evaluation is based on domain specific performance measures,
generality, versatility, rationality, optimality, efficiency, scalability, autonomy and
improvability [16].

Many agent categorizations have been proposed in the literature. One cate-
gorization distinguishes three types of agents: reactive, deliberative and hybrid
agents. Reactive agents simply react to environmental changes. Their work-
flow contains two primitives: sense (S) and act (A). Deliberative agents initiate
actions without any external trigger and rely on planning. This sense-plan-act
or sense-model-plan-act paradigm contains three primitives which are performed
sequentially: sense (S), plan (P) and act (A). Hybrid agents perform actions
based on a planning algorithm or react to current perceptions. The workflows for
these three types of agents are represented in Figure 2.1. A finer categorization
divides agents into: simple reflex (react to current sensory input), model-based
reflex (keep an internal state of the environment), goal-based (perform actions
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Figure 2.1: Three-tier heterogeneous MRS architecture: robot, locally connected
MRS, group of MRS connected through the cloud

to complete a goal), and utility-based (maximize a utility function) agents [15].
These four categories are considered learning agents if they learn an element of
the environment or their control algorithms’ parameters with the help of a critic.

2.1.2 Multi-Agent Systems

MAS are composed of multiple autonomous, interacting agents that have common
or conflicting goals and sensory information [17]. They are characterized by de-
centralized and incomplete information, asynchronous computations and decen-
tralized control [18]. However, centralized or hybrid systems are also considered
MAS. MRS restrict agents to physical robots [19]. MAS has been viewed as an
area in distributed artificial intelligence “concerned with coordinated, concurrent
action and problem solving” [20], with the second sub-field being distributed prob-
lem solving. On the other hand, [21] defined distributed intelligence as a group
of entities that perform cognitive functions such as reasoning, solving problems
and learning. The term cognitive computing system has also been used to refer
to MAS and defined as hardware-software co-optimized architectures composed
of diverse intelligent agents that can interact with humans and each other to
complete tasks by exploiting each entity’s strengths [22]. Mobile cognition im-
plements distributed cognitive computing architectures on mobile platforms such
as robots, cars and smart phones.

MAS evaluation criteria are either domain specific or invariant [23]. Domain
specific criteria quantify performance. For search and rescue, performance mea-
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sures include the number of rescued persons or extinguished fires [24]. Domain
invariant criteria include solution optimality, algorithm time and space complex-
ity, load balancing, fairness, resource utilization and re-allocation quickness, com-
munication overhead, robustness to noise and agent failures, and scalability [23].

MAS have been divided into categories based on multiple criteria. One divi-
sion, based on agents’ diversity and communication capabilities, consists of four
classes: homogeneous non-communicative, homogeneous communicative, hetero-
geneous non-communicative, and heterogeneous communicative [25]. Agent di-
versity can be either from sensory or actuation capabilities, cognition algorithms
or morphology [26]. MAS have also been classified as centralized, hierarchical,
decentralized or hybrid architectures [26]. Considering agent interaction complex-
ity lead to three classes: no direct interaction, simple interaction and complex
conditional interaction [27].

Focusing on interaction types, MAS can exhibit cooperative, competitive and
collaborative interaction based on goals, resources and agent skills [21, 28]. A
broader classification is positive versus negative where agents aid or do not in-
terfere with each other versus actively impede other agents. We mainly focus on
cooperative interaction where agents are aware of other agents, share the same
goals, and their individual actions lead to the accomplishment of the common
goal. Examples include search and rescue, exploration, classification of a target,
and displacing objects, to name a few [29].

Figure 2.1 represents a heterogeneous MRS architecture with three levels of
hierarchy. At the highest level, information about all the robots and the complex
task is available in the cloud. Robots can communicate through the cloud and
make use of any computational resources and information available in the cloud.
The lower level (MRS) contains a subset of robots with an assigned sub-task.
Interaction between this subset or coalition is local and can be one of the dif-
ferent types of interactions already discussed. Information is gathered from the
various robots’ sensors and exchanged among them. Finally, the lowest level is
the agent which has access to its sensory input and control of its own actuators.
It can communicate with other robots within its coalition and can connect to
the cloud. Since the system is heterogeneous, agents are not identical and can
have different cognitive architectures (reactive, deliberative or hybrid) or differ-
ent physical properties (Unmanned Ground Vehicle (UGV), Unmanned Aerial
Vehicle (UAV)...). This three tier architecture can lead to automating complex
tasks that could not be automated in simpler MRS frameworks.

2.1.3 Tasks

Cooperative MRS are assigned a wide variety of tasks with varying degrees of
complexity. Single-robot tasks can be accomplished by one robot [30] such as
small scale mapping, pick and place, and navigation problems. Multi-robot tasks
require multiple cooperating robots [30]. Multi-robot tasks can be further dis-
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tinguished based on the required level of cooperation for successfully completion,
ranging from loosely to tightly coordinated. Loosely coordinated tasks can be
decomposed to sub-tasks that can be independently executed with minimum in-
teraction among robots. Examples include large scale exploration and mapping,
hazardous material clean-up, tracking and surveillance. In such scenarios, the
environment can be divided into disjoint areas and the robots operate within
their specified areas. Tightly coupled tasks are not decomposable and require co-
ordinated execution with significant interaction among robots. Examples include
robot soccer, object transport and large scale construction.

2.2 Multi-Robot System Workflow

To systematically design MRS capable of accomplishing complex tasks, we iden-
tify four main design blocks: task decomposition, CF, task allocation and task
execution or MAS planning and control [31, 32], as shown in Figure 2.2. First,
task decomposition is the process of dividing a complex task into a set of sub-
tasks that can either be independently or sequentially executed. This division
should depend on the set of agents that will complete these sub-tasks and based
on the model of the world known to the agents. Given a set of heterogeneous
agents, agents with different sensing, actuating and reasoning capabilities, agents
should be assigned to sub-tasks while forming coalitions if any one robot can
not independently perform a sub-task. The blocks take use information from
the overall system or team of MAS level, denoted by the darkest grey blocks.
Once the agents have been divided into coalitions and assigned a sub-task, MAS
planning and control algorithms can be applied to generate a sequence of ac-
tions using knowledge of the state of the world approximated by the perception
capabilities of the system. Lighter grey blocks denote that information transfer
occurs between agents in a single coalition and the resulting output is at the
MAS level. The coalitions will be revised based on the actions performed by the
coalitions and environmental constraints obtained from the current model of the
world. Finally, perception takes place at the agent level. While some systems
may assume shared perceptions, the act of perceiving is performed agents before
combining this information. As shown in Figure 2.2, the white blocks represent
agent level functions.

2.3 Multi-Robot System Applications

Many MRS have been proposed to solve a broader set of complex tasks. They
have all taken a step towards deployment in the real world, but they still make
some assumptions or simplifications that limit the system’s generalization. We
discuss some of these systems next, grouping them based on the complexity of
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Figure 2.2: Proposed workflow

tasks they execute and their level of automation, from most to least automated.
In the first level (least automated), only task execution is automated, while the
second level also automates task allocation or CF. The third level does not
automate task decomposition. The fourth level automates the entire system.
Figure 2.3 portrays the distribution of existing work across levels of automation
and task complexity. Table 2.1 summarizes the literature on MRS and their
tasks, mentioning only those references with a second or greater automation
level. “N/A” stands for not applicable, i.e. this component of the workflow was
not considered in the cited work. To the best of our knowledge, no references
were found that automated the entire process (fourth level of automation).

2.3.1 Third Level of Automation

A few references achieved the third level of automation where CF, task allo-
cation and task execution were performed by a MRS. In [33], dynamically
formed teams of Segways and Pioneer (wheeled) robots hunted for treasure col-
laboratively in unknown environments using a coordination mechanism based on
TraderBots [34]. [35] proposed CF and task allocation algorithms for MRS where
UAV were monitoring an environment. [36] simulated multi-robot navigation us-
ing a hierarchical clustering algorithm that grouped robots into teams, assigned
mobility tasks to these groups and allowed them to navigate without collisions.
Finally, [37] attempted to speedup convergence of exploration tasks by develop-
ing a supervisory control algorithm. This approach allowed robots to form teams
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Figure 2.3: Comparing existing work based on the task complexity and the degree
of system automation

and assigned a sector zone to explore.

2.3.2 Second Level of Automation

The following references achieved the second level of automation. Task allocation
and execution were automated in [38] and validated on MRS performing health
care facility tasks. [39] performed multi-robot navigation, cooperation and object
construction using a distributed, auctioning-based task (re)-allocation algorithm.
[40] presented a cooperative MRS consisting of modular robots, capable of re-
configuring their shapes, that was validated on a bar-pushing task. The system,
referred to as SMART, relied on inter (between robots) and intra (within the
modular robot) communications for cooperative planning to achieve the best
modular robot and team configuration for the task at hand. In [32], a humanoid
and wheeled robot collaborated to track and kick a ball into a goal. The humanoid
kicked the ball after enhancing its tracking accuracy with the help of the wheeled
robot. Task decomposition and CF were performed by a human designer. Task
allocation was performed using a utility function that assigned a task to the most
qualified agent. Then, task execution was performed by the robots’ controllers.
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Many MRS have been validated on search and rescue or prosecute tasks where
task allocation and execution were automated. [41] presented a robot utility
based task allocation algorithm that allocated tasks to a swarm of heteroge-
neous UGV. [42] proposed a binary max sum task allocation algorithm validated
in Robocup Rescue, while [43] validated the task allocation algorithm on search
and prosecute heterogeneous UAV systems. Other work automated CF and task
execution. [44] automated CF in Robocup rescue using swarm intelligence. [45]
applied particle swarm optimization based CF for a MRS of UAV performing
search and prosecute tasks, while [46, 47] developed a multistage CF algorithm.
Finally, [48] developed a framework for land mine detection (COMRADES) that
included two types of UGV. This framework performed multi-robot task alloca-
tion based on spatial queuing, information gathering and sensor scheduling based
on the prediction market algorithm and cooperative exploration based on Voronoi
partition coverage.

2.3.3 First Level of Automation

Finally, we present references that only automated the task execution phase in
MRS, grouping and ordering them based on task complexity. [49] introduced
PLASTIC-Policy to discover the best policy for cooperation among robots in ad
hoc teams allowing robots to adapt on the fly and validated on RoboCup soccer.
This problem was modeled as a Markov Decision Process (MDP) and solved
using a fitted Q-iteration algorithm. In [50], three distinct robots, an overhead
crane, a mobile manipulator, and a roving eye were used to precisely place a long
heavy beam. Combining ground and aerial robots improved the overall system
performance. [51] developed a distributed round robin Q-learning algorithm to
transport a hose using a group of UGV.

Swarmanoids is a MRS composed of three types of robot swarms with comple-
mentary capabilities: eye-bots (quad-rotors with cameras), hand-bots (grippers),
foot-bots (wheeled robots: e-pucks) [52]. The system performed object search
and retrieval. A complex task was decomposed into sub-tasks by the human de-
signer. Each sub-task can be performed by one type of robot in the system, i.e.
the robots in the system were designed in a way to generate a one to one mapping
between sub-tasks and robots, eliminating the need for task allocation. There-
fore, this system was able to accomplish a more complex task even though it’s
workflow is less automated due to the system design which included robots with
complementary skills and individual robots that can form predefined coalitions.

[53] performed underwater search and rescue in natural disaster scenarios
using Unmanned Underwater Vehicle (UUV) and UAV. Autonomous robots per-
formed a rough preliminary search to identify areas of interest requiring a more
thorough search which was later investigated by teleoperated vehicles. [54] de-
veloped a navigation and Simultaneous Localization and Mapping (SLAM) algo-
rithm for information gathering in disaster relief. OmniMapper SLAM is based on
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graph theory and square-root smoothing and mapping. The NavigationManager
integrates the search-based planning and ARA*.

Tracking and surveillance applications adopted MRS to improve coverage
by leveraging the heterogeneity of robots and the diverse media (land, air, wa-
ter). [55] developed a distributed algorithm, HiDDeN, that supervised the com-
pletion of UAV and UUV missions in military surveillance and coast securing
application. [56] presented a distributed framework to control an air-ground MRS
where a UGV cooperated with UAV to complete tasks relayed by a ground station.
The system relies heavily on communication between the UGV and UAV. The
overall system follows a behavior based autonomy framework where sub-tasks are
represented as functional components in a state machine. Field experiments on
target detection and surveillance validated the proposed framework on a 3-robot
system. [57] focused on UAV, combining helicopters and airships with diverse
sensing capabilities, that collaborated to track a target, and inspect and monitor
an area [57]. Ground systems included [58] who proposed a behavioral graph
based collision avoidance and set point tracking navigation algorithm for MRS.
MRS patrolling that adopted a decision making algorithm based on Bayesian de-
cision rules was validated on indoor patrolling with six Pioneer robots [59]. [60]
deployed a large number of robots for intruder detection and tracking by first
performing exploration and mapping of an unknown indoor environment using a
few expensive robots and a large number of cheap sensory robots. [61] developed
a framework that allowed UAV to improve their self-localization and localization
of objects of interest on the group by cooperating with a GPS-enabled UGV. [62]
performed gait monitoring using UAV-UGV MAS.

Navigation, exploration and mapping tasks have also leveraged UAV-UGV
cooperation. For example, a large number UGV performing motion tasks were
aided by a UAV which communicated location related information [63]. Similarly,
[64] used a single UAV to improve UGV SLAM. [65] adopted a MRS as a sensor
monitoring solution in greenhouses, using UGV and UAV to record temperature,
humidity, specific gas levels and others. While UAV were teleoperated, UGV
navigated independently.

[66] developed a decentralized Lyapunov synthesis navigation algorithm with
collision avoidance for MRS. [67] proposed a decentralized multi-robot depth first
search algorithm that allowed UGV to efficiently explore unknown environments
with minimal information exchange and collision avoidance. [68] developed a co-
operative navigation algorithm based on graph and networking theory to ensure
complete coverage of the environment explored by mobile robots gathering infor-
mation. [69] developed a hierarchical algorithm that allowed robots with limited
capabilities to perform mapping and exploration by receiving tasks from more
powerful robots.

Formation control algorithms for MRS have been developed to control UGV
and UAV using Lyaponuv framework [70], while [71] focused on UGV only but
presented a distributed Lyapunov controller. [72] controlled wheeled and legged
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Table 2.1: Existing MRS
Reference,
Year

Agents Task Task
decom-
position

CF Task alloca-
tion

Decision mak-
ing model

Validation

[37], 2016 UGV Exploration N/A Supervisory control algorithm Simulations

[36], 2016 UGV Navigation N/A Hierarchical
Clustering

Hierarchical
Clustering

Hierarchical
Clustering

Simulations

[48], 2015 UGV Land mine
detection

N/A N/A Prediction
market

Voronoi parti-
tion coverage

Simulations,
Experiments

[35], 2015 UAV Surveillance N/A Dynamic
ANT

Multi-Robot
Task alloca-
tion

Dynamics con-
trollers

Simulations

[33], 2006 UGV Treasure
hunt

Human
Expert

Auctioning TraderBots Dynamics con-
trollers

Experiments

[46], 2016 UAV Search and
prosecute

N/A Multistage
sub-optimal
CF

N/A Distributed fi-
nite state ma-
chines

Simulations

[41], 2016 UGV Search and
rescue

Human
Expert

N/A Robot Utility Swarm Intelli-
gence

Simulations,
Experiments

[43], 2015 UAV Search and
prosecute

N/A N/A Welfare based
task alloca-
tion

Dynamics con-
trollers

Simulations

[42], 2015 UGV Search and
rescue

N/A Human Ex-
pert

Binary Max
Sum

Dynamics con-
trollers

Simulations

[47], 2015 UAV Search and
prosecute

N/A MSOCFA N/A Dynamics con-
trollers

Simulations

[45], 2011 UAV Search and
prosecute

N/A Particle
swarm opti-
mization

N/A Dynamics con-
troller

Simulations

[44], 2011 UGV RoboCup
Rescue

N/A Swarm
intelligence

N/A Dynamics con-
trollers

Simulations

[32], 2010 Wheeled
UGV,
humanoid

Kick ball into
goal

Human
Expert

Human Ex-
pert

Utility func-
tion

Dynamics con-
trollers

Simulations,
Experiments

[40], 2015 Modular
robots

Bar pushing N/A SMART N/A SMART Experiments

[39], 2011 Khepra II Object trans-
port, Coop-
erative navi-
gation

N/A N/A Auctioning Dynamics con-
trollers

Simulations,
Experiments

[38], 2015 UGV Health care
facility

N/A N/A Auctioning Dynamics con-
trollers

Simulations

robots navigating and avoiding obstacles in a given formation. Finally, [73] de-
veloped a planar based algorithm for cooperative heterogeneous UAV.

2.4 Autonomous Package Delivery

Automated package delivery systems have been developed and tested for indoor
environments, such as in hospitals [74–76], and office building [77] which gener-
ally do not require cooperating heterogeneous MRS as a single robot is able to
independently deliver packages [74]. Indoor robot package delivery problems are
generally modeled as warehouse problems [78]. However, outdoor environments
present additional challenges such as weather conditions and large distances that
cannot be handled by systems designed for indoor delivery. Other systems that
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require similar or overlapping skill sets as automated package delivery have been
developed including service robots [79–82], fruit picking robots [83–85] and restau-
rant waiter robots [86, 87]. While they cannot be extended to outdoor delivery
without additional considerations, they provide a good starting point for research.

The difficulty of package delivery is further augmented when considering out-
door environments that are less predictable and less constrained. In robotics,
the health of the system, which degrades with time from usage, further com-
plicates the problem [88]. Some work in the literature has investigated outdoor
automated package delivery such as [89] who proposed a CF algorithm based on
real world application assumptions and considered the package delivery domain
but did not report any experimental results. [90] studied task allocation for au-
tonomous package delivery in emergency response scenarios, specifically a team of
unmanned aerial vehicles delivering relief packages to stranded individuals in the
aftermath of an earthquake. Preliminary experiments showed promising results
but still needs to be incorporated in end-to-end implementations of heterogeneous
MRS. [91] proposed a path planning algorithm for cooperating robots in delivery
systems but assumed a pre-formed team of one ground and one aerial vehicle.
Furthermore, the algorithm did not make use of Internet of Things to obtain
traffic and weather information to improve path planning.

Finally, a survey on cloud robotics has assessed the state of the art of tech-
nologies enabling automated package delivery and other applications [92]. They
defined cloud robotics as robotic systems that utilize information from the cloud
or other non-robotic networks to aid them. They surveyed various areas of cloud
robotics including cloud aided learning, crowd sourcing, and accessing big data.
They also identified many remaining challenges developing frameworks to move
robotics algorithms to the cloud which they termed as “Robotics and Automation
as a Service”, developing algorithms to clean and make sense of big data, and
developing algorithms robust to varying network latency, among other challenges.

While the state of the art has made significant strides toward deploying au-
tonomous end-to-end package delivery systems, many assumptions and simpli-
fications are made in the presented work, from statically forming cooperating
teams to simplifying the environment. A unified framework that allows coop-
erating heterogeneous robots to utilize smart city, Internet of Things and cloud
infrastructure to efficiently delivery packages has not been presented yet.
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Chapter 3

Decision Making Systems: A
Survey

In this chapter1, we present a brief overview of decision making models in MAS
since it is an integral part of intelligent agents and MAS that will allow such
systems to accomplish increasingly complex tasks. Specifically, in this survey,
we investigate state of the art work within the past five years on cooperative
MAS decision making models, including Markov decision processes, game theory,
swarm intelligence and graph theoretic models. We survey algorithms that re-
sult in optimal and sub-optimal policies such as reinforcement learning, dynamic
programming, evolutionary computing and neural networks. We also discuss the
application of these models to robotics, wireless sensor networks, cognitive radio
networks, intelligent transport systems and smart electric grids. In addition, we
define key terms in the area and discuss remaining challenges that include in-
corporating big data advancements to decision making, developing autonomous,
scalable and computationally efficient algorithms, tackling more complex tasks
and developing standardized evaluation metrics. While recent surveys have been
published on this topic, we present a broader discussion of related models and
applications.

3.1 Introduction

The number of devices connected to the Internet has been increasing over the
past few years and projected to exceed 20 billion devices by 2020 [93,94]. These
devices can communicate with each other to form MAS that can cooperate to
overcome individual limitations and achieve complex tasks. This has led to the
emergence of cognitive computing systems which were defined by IBM as systems

1A version of this chapter has appeared in Rizk, Y., Awad, M., and Tunstel, E., “Decision
Making in Multi Agent Systems: A Survey,” IEEE Transactions on Cognitive and Develop-
mental Systems, vol. 10, no. 3, pp. 514-529, 2018.
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Figure 3.1: Scope of Existing Surveys on MAS Decision Making.

that can interact with each other and humans to exploit their strengths when ac-
complishing a task [22]. At the heart of cognitive systems is the decision making,
or planning and control module which allows agents to generate a sequence of
actions that will lead to the accomplishment of their goals.

Multiple surveys on MAS decision making have been published. While some
briefly discussed a wide range of models and applications, others focused on
a specific model or application. We present a more up-to-date discussion on
cooperative MAS decision making, covering a wide range of applications and
models. Figure 3.1 depicts the scope of existing surveys in terms of their relative
breadth of covered models and applications, while highlighting the targeted scope
of our survey. Color coding distinguishes references’ publication date: surveys
published more than 10 years ago are in red, 5 to 10 years in green and less than
5 years in blue.

The surveys closest to our work, in the upper right corner of Figure 3.1,
covered a wide range of MAS decision making methods including game theory,
RL, swarm intelligence, and evolutionary computing, and discussed multiple ap-
plications including robot soccer, prey-predator pursuit, air traffic control and
others [25, 95]. However, these surveys have become outdated and do not cover
some key advancements in the field such as the contributions of deep learning.
Some surveys covered a wide range of models but focused on multiple problems
in robotics. Seven main research areas on MRS were discussed in [19], including
robot architectures, mapping and exploration, motion coordination and object
transport and manipulation. Multiple unanswered research questions were iden-
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tified in [19] including complex task automation using MRS. Cooperative control
of multi-vehicle systems and their applications in the military, transportation
systems and mobile sensor networks were surveyed in [29] who concluded that
additional work in system integration, distributed embedded system verification
and decision making at higher level abstractions was necessary before successful
deployment of MRS. Yan et al. surveyed multiple aspects of robot coordination
including decision making, planning and communication, and observed that more
powerful coordination schemes are necessary to automate complex tasks [96].

Surveys discussing one model and its applications included recent work on de-
centralized Partially Observable Markov Decision Process (POMDP) [97], swarm
intelligence in robotics [98–102], and multi-agent RL [103, 104]. Multi-objective
particle swarm optimization (PSO) variants [105], algorithms based on bees [106],
metaheuristic algorithms [107], and artificial bee colony variants and applica-
tions [108] have also been surveyed.

The following surveys discussed multiple models for one application such as
formation control and coordination [109,110], task allocation [111,112], intrusion
detection [113–115] and smart electric grids [116]. Finally, certain surveys focused
on a single model applied to one application such as multi-agent RL for robotics
[117], swarm intelligence for robot path planning [118], PSO for clustering [119]
and swarm intelligence for data mining [120].

In this paper, we survey existing cooperative MAS decision making models
including MDP and its variants, game theory, and swarm intelligence. Figure 3.2
depicts a fuzzy comparison between the discussed models based on three criteria:
heterogeneity, scalability and communication bandwidth. While other models
exist, such as belief-desire-intention models based on the human’s practical rea-
soning theory [121] and independent choice logic which combined probabilistic
information with logic programming to represent knowledge [122], their MAS ex-
tensions [123,124] have not been widely adopted in recent work. Multiple methods
that find optimal or sub-optimal action sequences for the various decision making
models are surveyed. These include Reinforcement Learning (RL), dynamic pro-
gramming (DP), RNN and evolutionary computing, to name a few. We present
decision making applications in robotics, wireless sensor networks (WSN), traffic
signal control and others. Finally, we discuss some of the remaining challenges
in cooperative MAS decision making such as leveraging big data advancements,
creating more scalable, distributed and computationally efficient algorithms that
can tackle more complex tasks, and developing evaluation standards.

In what follows, we first define key terms in the field of MAS in section 3.2.
Then, we introduce various decision making models in sections 3.3 through 3.6
and their applications in section 3.8. Remaining challenges and insights on future
research directions are discussed in section 3.9 before concluding in section 3.10.
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Figure 3.2: Comparison of Decision Making Model Frameworks.

3.2 Multi-Agent Systems

In this section, we define and categorize MAS before discussing its constituting
blocks: agents and local interactions. Then, we focus on key terminology for
decision making problems, which is an element of intelligent agents.

3.2.1 Multi-Agent Systems

MAS are composed of multiple autonomous, interacting agents that have com-
mon or conflicting goals and sensory information [17]. MAS are generally de-
centralized, asynchronous systems but can sometimes be centralized or hybrid.
Their evaluation criteria include domain specific performance metrics and domain
invariant criteria such as time and space complexity, load balancing, fairness, re-
source utilization, communication overhead, robustness and scalability [23]. MAS
have been categorized based on multiple criteria such as diversity of agents, com-
munication capabilities and interaction types. Agent heterogeneity stems from
diverse sensing and actuating capabilities, computing resources, cognitive algo-
rithms and morphology [26]. Considering agent interaction complexity leads to
three classes of MAS: no direct interaction, simple interaction and complex con-
ditional interaction [27].
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3.2.2 Agents

An intelligent agent is an autonomous entity capable of performing actions on its
environment and perceiving its environment, aiming to accomplish a goal [15]. It
can be a physical entity such as robots with sensors and actuators or a virtual
entity such as software agents. An intelligent agent exhibits the fundamental
properties of perception, reasoning, learning, decision making, problem solving,
interaction and communication [16]. It is evaluated based on its solution op-
timality, generality, robustness, efficiency, autonomy and ability to learn and
improve [16]. Agents are categorized based on many different criteria. One cat-
egorization depends on the decision making algorithm’s instigator and results in
three types of agents: reactive, deliberative and hybrid. Reactive agents react
to environmental changes. Deliberative agents initiate actions without external
triggers. Hybrid agents can react to the environment or initiate actions based
on their planning algorithm. Another categorization, proposed in [15], is based
on the agent’s underlying architecture and contains four classes: simple reflex
agents, model-based reflex agents, goal-based agents, and utility-based agents.
Simple reflex agents react to current sensory input only while model-based reflex
agents keep an internal state of the environment. Goal-based agents perform
actions that lead to accomplishing their goals and utility-based agents maximize
their utility.

3.2.3 Interactions

In addition to the complexity of interactions, MAS can exhibit different types of
interactions based on agent goals, resources and skills [21,28]. Broadly speaking,
interactions can be positive or negative. In the former, agents aid each other in
accomplishing their goals, while in the latter, agents actively impede other agents’
progress. Positive interaction can be further divided to collective, cooperative,
collaborative and coordinative. In collective interaction, agents are unaware of
other agents’ existence but share a common goal and each agent contributes to
its completion, as in robot formation control and foraging. Cooperative inter-
action is similar to collective interaction except that agents are aware of other
agents’ existence. Examples include search and rescue, exploration and object
displacement. In collaborative interaction, agents do not have common goals
but help each other accomplish their individual goals. Finally, in coordinative
interaction, agents within an environment work together to minimize interfer-
ence and complete their individual goals; MRS path planning is one example.
Negative interaction can be either conflicting where agents do not have enough
resources to complete their goals and fight for external resources or competitive
where agents have conflicting goals. In this work, we focus on cooperative MAS
since it is an integral part of many smart city systems but still has many open
research questions before effective deployment in real-world scenarios is possible.
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It is considered by some one of the more challenging interactions due to the need
for high correlation and synchronization between agents and time sensitivity of
agents’ actions, especially in robotics. However, some of the models discusses in
this survey can be applied to MAS with positive interactions such as swarm in-
telligence in collective MAS, game theory in collaborative MAS and graph theory
in coordinative MAS.

3.2.4 Decision Making

Decision making, or planning and control, enables an agent to accomplish its goals
by determining what action to perform. The decision making problem can either
be episodic or sequential [15]. The output of the former is a single action while the
latter produces a sequence of actions or policy. The decision making algorithm
is evaluated based on policy optimality, search completeness, time complexity
and space complexity. A policy is optimal if it has the highest utility. A search
algorithm is complete if it guarantees to return an optimal policy in finite time,
when it exists. Time complexity quantifies the amount of time needed to search
for a solution while space complexity quantifies the amount of computational
memory needed. In this work, we focus on sequential decision problems which
can be of two types: finite or infinite horizon. Finite horizon implies that decisions
need to be made for a finite number of time steps while infinite horizon problems
last forever. When discussing decision making in the context of MAS, learning
can be either centralized or decentralized. [95] used the terms team learning and
concurrent learning. In the former, one learner learns policies for all agents in
the system while in the latter, each agent learns its own policies in parallel to
other agents. Credit assignment, how to distribute rewards among cooperating
agents, is one problem that arises and should be appropriately handled to achieve
optimal performance. Communication, whether direct or indirect, is another issue
in cooperative decision making that should be considered.

3.3 Markov Decision Processes

In this section, we present the MDP formulation, its extension to MAS and par-
tially observable environments, and conclude with some insights on this method.

3.3.1 Markov Decision Process

An MDP, a discrete time stochastic control process, is characterized by fully
observable states and outcomes that are influenced by decision makers. It satisfies
the Markov property which states that decisions made at the current time step
rely on a finite number of previous time steps. It can also be viewed as a fully
observable stochastic game with a single player. In some texts, it is referred to
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as a dynamic program, stochastic dynamic program, sequential decision process,
and stochastic control problem. An MDP is defined by the tuple (S,A, P,R, γ). S
represents the set of states, s, of the environment. A represents the set of actions,
a, an agent can perform. In some states, certain actions are not permissible, i.e.
only a subset of the actions can be performed, denoted by As. P represents the
transition probability. Pa(si, sj) denotes the probability that the environment will
transition to state sj from state si when an agent performs action a. R represents
the reward. Ra(si, sj) denotes the received reward when performing action a and
the environment goes from state si to state sj. γ represents a discount factor,
γ ∈ [0, 1), that gives more weight to present reward than future reward. MDP
was found to be P-complete [97]. Constrained MDP impose additional constraints
on MDP, resulting in more than one cost for every action and the final policy
depends on the initial state of the process [125]. Time-dependent MDP [126]
extends MDP to continuous time state spaces where value iteration is performed
on a piece-wise linear value function.

A solution to an MDP is a policy that should be performed by an agent to
maximize its total reward, measured using a value function V . A policy function
maps states to actions: π : s → a or a = π(s). Action selection methods
determine what action to select next, based on the estimated value functions of
the action set, while considering the exploration-exploitation trade-off. A greedy
method picks the action with the highest value, ε-greedy selects the best action
with a probability of 1−ε. Boltzmann exploration assigns probabilities of selecting
actions using an exponential function of the value function.

Many algorithms have been proposed to find optimal and sub-optimal policies
for MDP. DP [127], temporal difference learning [128–130], policy search [131],
and linear programming [132, 133] require models of the state transition and
reward functions. If these models are unknown or too complex, approximate
methods are adopted and include model-free RL approaches like Q-learning [134]
and SARSA [135], evolutionary computing [136, 137], RNN [138–143], and deep
RL [144,145]. Distributed optimization methods have been adopted to solve MDP
problems. First, the alternating direction method of multipliers decomposes the
MDP into subproblems. Then, a distributed Newton method [146] or linear
programming algorithm [147] find the optimal policy.

MDP extensions have been proposed for MAS. Multi-agent MDP (M-MDP)
extends MDP to MAS by assuming a joint action space with a team reward model
and fully observable environment. A central learner learns a vector of actions that
should be performed by the agents and the reward is common to all agents [17].
The worst-case complexity of finite horizon M-MDP is P-complete [148] which
is solvable in polynomial time by a Turing machine, an abstract model of com-
puting devices. As the number of agents increases, the joint state and action
spaces’ dimensionalities increase exponentially. To ease the computational bur-
den, independence is assumed to make objective functions factorable. Solving
the problem iteratively also reduces the computational complexity. Distributed
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implementations of the central learner have been developed for factorable objec-
tive functions [149]. On the other hand, decentralized MDP (dec-MDP) assumes
an independent action space with local reward and jointly fully observable en-
vironments [17]. In other words, individual agents view a partially observable
environment but the aggregate observations of all agents in the MAS make the en-
vironment fully observable. Finite horizon dec-MDP was proven to be worst case
NEXP-complete (solvable in exponential time using a non-deterministic Turn-
ing machine), when three or more agents are considered [150]. Since actions
and rewards are local, this approach falls under the concurrent learning class of
MAS learning. Assuming agent observations and transitions are independent, the
model is known as TI dec-MDP and its complexity is NP-complete, meaning a
solution can be found in polynomial time by a non-deterministic Turing machine.
This model can be further simplified by assuming independent rewards to obtain
a P-complete complexity in the worst case.

3.3.2 Partially Observable MDP

POMDP is a generalization of MDP to partially observable environments and
is defined by (S,A, P,Ω, O,R, γ) where Ω represents the set of observations, O
is the observation function and the remaining terms are as defined for MDP.
POMDP was found to be PSPACE-complete [97]. Many algorithms have been
proposed in the literature to provide exact and approximate solutions for the
POMDP and its variants, including value iteration [151, 152], expectation maxi-
mization [153,154], nonlinear optimization [155], quadratically constrained linear
programming [156], Monte Carlo methods [157, 158], and DP [159, 160] when
state and transition models are known. When they are not known, heuristic
search algorithms [161], genetic algorithms [162], RNN [163–166] and model-free
RL methods were applied. Authors in [167] learned the number of states to
represent in a non-parametric scheme and used RL to find policies for POMDP.
Unsupervised learning was adopted to learn an observation space transformation
to a latent representation space where policies are learned, in [168]. Forward
simulation was used to estimate policy utilities [169].

Decentralized POMDP (Dec-POMDP) generalizes POMDP to MAS where
rewards are common and based on joint actions but observations are individu-
alistic [97]. The goal is to maximize the reward of the entire system as agents
collaborate to achieve a common task. Communication among agents can be
explicit (Dec-POMDP-COM) or implicit (Dec-POMDP). This model is NEXP-
complete [150]. Approximate solutions have been proposed based on bounded
policy iteration [170], Q-value function methods [171], multi-agent A∗ [161], ge-
netic algorithms [162], DP [172–174] and a Bayesian learning, stick-breaking pol-
icy algorithm [175]. A set of approximate inferences and heuristics including
bootstrapping were used to find approximate solutions to dec-POMDP in [176].

The multi-agent team decision problem (MTDP) [177], equivalent to dec-
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POMDP when agents have perfect recall [178], extends economic team theory to
robotics. It includes models for implicit and explicit communication and is proven
to be NEXP-complete. Multi-agent POMDP (M-POMDP) extends M-MDP to
partially observable environments, and is PSAPCE-complete which means the
algorithm’s memory requirements are polynomial function of the input size. Like
M-MDP, it is a team learning approach that has a central learner, and employed
Bayesian RL framework to learn policies [179].

Networked distributed POMDP (ND-POMDP) assumes local interaction among
agents to reduce the computational cost of finding policies [180]. ND-POMDP is a
factored dec-POMDP model where observations and transitions are independent
and rewards are divided among neighboring agents. Its worst case computational
complexity is NEXP-complete. Algorithms used to find policies for this model
include multi-agent RL [181], DP [182], and distributed constrained optimiza-
tion [180]. Interactive POMDP (I-POMDP), a concurrent learning approach,
generalizes POMDP to MAS by modeling other agents in the system while main-
taining a belief of the system state [183]. Finitely nested I-POMDP is PSPACE-
complete [178] and approximate solutions have been proposed based on particle
filters [184], value iteration [185] and Monte Carlo sampling methods [186].

3.3.3 Some Insights

MDP and its variants have been widely adopted in many complex MAS deci-
sion making problems, despite the very restrictive Markovian assumption. Even
though these models do not scale well, they are able to handle agent heterogene-
ity. Recently, deep learning approaches have been adopted to solve various MDP
models and provided a roadmap to solve non-Markovian models as well. In ad-
dition, deep learning has allowed the extension of MDPs from the discrete space
to the continuous space, which is more suitable for robotic MAS.

3.4 Game Theory

Game theory develops models of interaction between rational decision makers
under different circumstances [187]. It has been applied in many fields from
economics and psychology to artificial intelligence. In this section, we focus on
two types of games that have been commonly applied to cooperative MAS in
artificial intelligence: stochastic games and Bayesian games.

3.4.1 Partially Observable Stochastic Games

Stochastic or Markov games [188] are sequential probabilistic games. They can
also be viewed as a generalization of repeated games where a game from a collec-
tion of normal form games can be played at a given step [17]. Payoffs depend on
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both actions and the state of the game at the current stage. Players’ actions and
the game’s current state cause the game to transition to other states. Stochastic
games are represented using the tuple (Q,N,A, P, r) where Q denotes the set of
games that can be played, N denotes the set of players or agents participating
in the game, A = A1× ...×AN denotes the actions of the players, P denotes the
transition probability function and r denotes the reward or payoff. They belong
to the complexity class NP ∩ co − NP [189] and can be solved using DP [188],
Q-learning [190] and linear programming under certain conditions [17].

To solve a game, a strategy profile or solution concept must be obtained; it
is a strategy for each player. A strategy, equivalent to a policy in MDP [15], is
a rule used by agents to select an action. An equilibrium strategy is defined as
the best response of an agent to another agent’s strategy, i.e. the agent cannot
improve its expected utility by changing its strategy. It does not always exist
in stochastic games but may exist under restricted conditions. For example,
stochastic games with a finite number of players, actions and states always have
a Nash equilibrium, defined as the strategy profile which maximizes each player’s
utility knowing the strategy of others in the game [191]. Evolutionary stable
strategy is a refinement of the Nash equilibrium which requires a strategy to be
stable to any perturbations that may occur to the games as they evolve [192] and
was extended to stochastic games [193]. Stochastic games have been shown to
have an evolutionary stable strategy under certain conditions [194].

Partially observable stochastic games (POSG) extend stochastic games to
partially observable environments where the payoffs are not known to the players.
They are represented by the tuple (Q,N,O, A, P, r, b0) where O denotes the set of
observations and b0 denotes the initial state distribution. POSG have been used
to model learning sequential decision making in cooperative MAS [195]. Finding
a Nash equilibrium for POSG belongs to the NP-hard computational complexity
class [196], meaning they are computationally at least as difficult as NP problems
which are solvable by a non-deterministic Turing machine in polynomial time.
POSG subclasses include MDP, POMDP and their MAS extensions.

Many exact and approximate solutions have been proposed for POSG. An
iterative method to eliminate dominant strategies was proposed in [196]. Au-
thors in [173] combined a generalized version of the DP used for POMDP and
eliminated dominated strategies to find a solution to POSG. When agents use
the same payoffs, this approach can converge to an optimal solution. The pro-
posed method was tested on multi access broadcast channel control and compared
to a policy tree building brute force algorithm. POSG have also been used to
model cooperative MAS decision making in partially observable Markovian envi-
ronments [195,197]. However, this model’s solution is intractable as the number
of agents increases. Therefore, an approximate solution was computed based on
Bayesian games to achieve decentralized control in robot teams with limited com-
munication. The algorithm was validated on the 2-robot tag problem, 2-agent
lady and tiger problem and multiple access broadcast channel problems.
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3.4.2 Bayesian Games

Bayesian games are games with incomplete information. Generally, these uncer-
tainties can be modeled as uncertainties in agents’ payoffs [17]. They are defined
by (N,G, P, I) where N represents the set of agents, G represents the set of
games the agents might be playing, P represents the common prior distribution
over all the games and I = (I1, ..., IN) represents the partitions of G, for each
agent. Examples of Bayesian games include signaling games, bargaining, auc-
tions, and market competitions. Strategic policies can be obtained by converting
incomplete games to imperfect information ones. Solving for the Bayesian Nash
equilibrium, the Nash equilibrium in Bayesian games, includes best response, RL
or other learning rules, linear programming [198] and Monte Carlo methods [199].
Bayesian Nash equilibrium, which consists of a strategy profile and a player’s be-
lief about other players’ types, always exists.

3.4.3 Some Insights

While game theoretic approaches had been mainly used in competitive MAS,
some models have gained popularity in cooperative MAS due to the agents’ ca-
pabilities of modeling other agents in the game. This property can be useful in
robotic systems where robots are unable to communicate with others. However,
this restricts the number of agents in the system due to increasing computational
costs. Game theory’s systematic mathematical approach has been an attractive
quality for many applications but combining it with some heuristic approaches
such as deep learning might lead to improved performance in robotic applications
and others.

3.5 Swarm Intelligence

Swarm intelligence describes the behavior of decentralized cooperative agents,
whether natural or artificial, working toward a common global goal [200]. Self-
organized and distributed behavior of locally aware and locally interacting agents
are pillars of swarm intelligence [18]. Systems modeled in this fashion generally
consist of many autonomous but homogeneous agents implementing simple rules
with agent interactions restricted to local neighborhoods.

3.5.1 Biologically Inspired Algorithms

Swarm intelligence was inspired by many social insects and animals including
ants, bees, wasps, termites, bats, fish, and birds. In some ways, swarm intelligence
is similar to RL; both are iterative algorithms that use a reinforcement signal to
learn a solution [18]. However, the reinforcement signal modifies the behavior of
the agent differently in both algorithms.
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Many algorithms have been inspired by bee colony behavior. Bee colony op-
timization [201] is based on direct communication among agents performing a
series of moves for a certain duration based on the strength or fitness of the so-
lution, also known as “waggle dancing”. This recruits other agents to the most
fit solution. Navigation is based on path integration where agents continuously
update a vector indicating the position of the start location. Ant colony optimiza-
tion (ACO), inspired by ant colony behavior, is a class of algorithms that rely
on indirect communication [202]. Navigation is based on depositing pheromones
along the trail. A more fit solution results in stronger pheromones on the trail
that lead to recruiting more agents. PSO is inspired by flocks of bird and schools
of fish [203]. Agents navigate the environment searching for better solutions us-
ing principles from birds’ movements. A pigeon inspired optimization algorithm
relied on the magnetic field, sun and landmarks to achieve path planning [204].
Distributed implementations of ACO [205, 206] and PSO [207] have been devel-
oped to speedup convergence.

3.5.2 Some Insights

While such systems exhibit desirable properties like robustness, flexibility, scala-
bility, low complexity, inherent parallelism and fault tolerance [52,99], they have
important limitations. Most swarm systems consist of identical agents, leading
to their limitations according to [52]. The agents must be homogeneous or can
be divided into a small number of homogeneous clusters following simple rules
to make decisions. However, there are many applications, such as search and
rescue operations, that require heterogeneous, complex agents working toward a
common goal.

3.6 Graph Theory

Decision making in MAS have been modeled as graphs with nodes representing
agents and edges representing interactions and information flow among agents
[208]. In this section, we focus on one popular approach called influence diagrams
(IDs), briefly discussing the model and some of its strengths and weaknesses.

3.6.1 Influence Diagrams

IDs are referred to as decision networks in [15] and are a graph theoretic approach
that provide a framework for decision making by adding actions and utilities to
Bayesian networks [209]. Chance nodes (ellipses) represent random variables.
Decision nodes (rectangles) represent choices available to the agent and utility
nodes (diamonds) compute the utility of these choices. The action with the
highest utility is chosen. IDs can be converted to decision trees by traversing the
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diagram from top to bottom, creating a node in the decision tree when a decision
node is encountered and adding edges with values equal to probabilities of parent
nodes; leaves portray the utility of a path. IDs require the optimization of all
parent nodes of a decision variable [122]. Dynamic IDs (DIDs) extend IDs to
sequential decision making problems by combining DP with IDs [210] and have
been viewed as computationally equivalent to POMDP [211]. They exploit the
separability of the value function to generate computationally efficient solutions.

Multi-agent IDs (MAIDs) generalized IDs to MAS by generating decision
rules that depend on decision rules made by other agents [212]. This is graph-
ically represented by connecting decision nodes that depend on each other; a
directed relevance graph is thus produced. MAIDs represent games with imper-
fect information graphically and are an alternative to the normal and extensive
forms of game representation [211]. They can be converted either to extensive
form games or to IDs and then solved.

A network of IDs (NIDs) is built on top of MAIDs to account for uncertainties
in other agents’ decision making and hierarchy of beliefs [213]. This formalism
can represent irrational behavior and distinguishes between different agent mod-
els in the systems, i.e. it does not treat all other agents identically. Acyclic
NIDs can be solved using a bottom up approach by converting each block to a
MAID and solving it. Duplicates are included to account for beliefs about oth-
ers’ strategies. Cyclic NIDs are converted to acyclic NIDs and solved. However,
both MAID and NID are applicable to episodic decision making only. Interactive
DIDs were proposed in [211] as a MAS extension of DIDs and can be viewed as
computational counterparts of I-POMDP. Models of other agents are clustered
to reduce computational complexity but lead to approximate solutions.

3.6.2 Some Insights

Graph theory models the interaction of agents, allowing them to exchange infor-
mation and make decision accordingly. However, the computational complexity
of this approach increases exponentially in densely connected graphs with many
nodes (agents). The main benefits of graph theory in MAS come from combin-
ing it with other approaches such as MDPs and control theory (discussed next)
to extend these approaches to MAS. Furthermore, exploiting special structures
such as sparsely-connected dense sub-graphs are a common approach to reduce
computational cost and improve performance.

3.7 Control Theory

Control theory is an established field that aims to control physical systems by
designing controllers using modify the input to achieve the desirable output. Its
sub-fields include non-linear, adaptive, optimal, robust and stochastic control, to
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name a few, and produce controllers with various properties to overcome lim-
itations imposed by the real-world environment they operate in. However, as
automation problems became more complex, researchers extended control theory
to MAS by developing distributed controllers. We present a brief overview of this
broad field next.

3.7.1 Distributed Cooperative Control

Distributed controllers are designed by combining concepts from control and
graph theory. Specifically, interactions among agents are modeled using graph
theory and the control problem is decomposed among the agents to obtain a dis-
tributed controller. The amount of communication among agents is dependent
on the design of the distributed controller and can vary based on the nature and
complexity of the task (whether it is easy decomposable), the optimality of the
control algorithm and other factors. Since many controllers are based on opti-
mization algorithms, distributed optimization is an integral part of distributed
control [214]. Unlike other approaches, distributed cooperative controllers de-
signed using control and graph theory can be mathematical validated to prove
optimality, stability, robustness, and convergence, to name a few properties.

Distributed controllers have been applied to various control problems. For
example, a Lyapunov based voltage and frequency controller was designed for
micro-grid systems that only requires local communication among neighbors [215]
and a secondary voltage distributed controller based on input-output feedback
linearization that requires sparse communication [216]. A Lyapunov based dis-
tributed lead-follower control system was developed that scaled to large MAS
when the interaction topology is an undirected graph [217]. Distributed consen-
sus tracking was achieved by designing: distributed adaptive controllers in weakly
connected, directed graphs [218], a distributed optimal control algorithm [219],
and non-linear distributed impulsive control (control signals are given as im-
pulses instead of continuously) with delayed impulses in undirected graphs [220].
Stochastic sampling in leader-follower consensus problems has been shown to
improve scalability of MAS [221]. Distributed impulsive control has also been
applied to heterogeneous MAS synchronization problems [222]. Yang et al. pro-
posed distributed output regularization using adaptive control in MAS with a
switching topology [223]. Other applications include formation control [224] and
navigation [225] in MRS.

3.7.2 Some Insights

While control theory adopts systematic mathematical approaches to develop con-
trollers, some systems are simply too complex and intractable for such methods.
For example, most algorithms assume linear systems. Therefore, data-driven

29



methods such as those in distributed artificial intelligence are necessary to auto-
mate certain complex tasks in real-world environments. Nevertheless, distributed
cooperative controllers are necessary in some applications where sufficient data
is not available or mathematically-proven optimal controllers are crucial like in
aviation or military domains.

3.8 Applications

MAS decision making models have been applied to many problems in various
fields from robotics to wireless sensor networks. Next, we mention some of the
problems that have been solved using the aforementioned decision making models.

3.8.1 Robotics

Cooperative MRS have been applied to many problems that require various de-
grees of coordination. Loose coordination examples include formation control and
foraging, while tight coordination examples include object transport and robot
soccer. Environment uncertainty, robot actuating and sensing diversity, system
scalability, real-time processing and limited computational resources are a few
challenges that should be addressed when designing decision making algorithms.
Decisions related to robot actions, information sharing, and coalition formation,
are essential to the successful deployment of robots in real world environments.
POSG has been applied to multiple problems in robotics [226, 227]. MDPs [228]
and POMDP [229–233] have been used for robotics coordination including robot
soccer [234]. Graphical models for consensus [235], formation [236, 237], and
rendez-vous [236] have also been investigated. Finally, swarm intelligence has
been applied to underwater environments [238], 3D space [52] and robot path
planning problems [118,204]. It has been applied to dynamic task allocation [239],
distributed localization problems [240], foraging tasks [241–243], collision free
navigation [244, 245] and communication free flocking with minimal memory re-
quirements [246]. Swarm-bots, wheeled robots that can physically connect to each
other and form larger entities, accomplished coordinated motion, self-assembly,
cooperative transport, goal search and path formation [247,248]. The thermotac-
tic behavior of honeybees inspired the decision making of a swarm of microbots
with limited communication capabilities in spatial behavior problems [249]. Swar-
manoids, a heterogeneous system composed of three types of complementary
swarm robots, performed complex tasks like object retrieval in 3D space [52].

3.8.2 Repeated Coalition Formation

Forming groups of agents that change based on environmental conditions is crit-
ical to the successful deployment of MAS in real-world environments. Repeated
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coalition formation under uncertainty deals with forming time varying coalitions
where agents do not have complete information about other agents’ capabilities.
Adopting traditional coalition formation methods such as auctioning and search
algorithms cannot handle uncertainty since they assume complete knowledge of
agent capabilities. Therefore, this problem has been modeled as a sequential de-
cision making problem by many researchers and solved using some of the decision
making models discussed in this work, which can handle information uncertainty.
This allows the dynamic formation of robot teams where uncertainty is high and
can lead to the automation of complex tasks that was previously unfeasible.

While searching for a solution that strikes a balance between redundancy for
fault tolerance and agent’s skill complementarity is challenging enough, attempt-
ing to do so with incomplete and noisy information about agents’ skills further
complicates matters. Dynamically reforming coalitions also poses its own chal-
lenges by requiring the algorithm to determine the lifetime of a coalition. How-
ever, repeated coalition formation with uncertainty allows MAS to cope with the
stochastic environments and complex tasks.

Matthews et al. assumed the problem was fully observable and adopted MDP
to model a football team formation problem [250]. Agent transitions between
coalitions were modeled as a MDP, the Shapley value and marginal contribu-
tions were used to prune the search space and the best coalition structure was
found using Markov probability distributions [251]. A POMDP model was also
adopted to allow agents to learn other agents’ capabilities by interacting with
each other [252]. IDs solved the problem of coalition formation for complex real-
world missions by selecting a subset of coalition formation algorithms suitable
for the problem at hand [253]. Swarm intelligence was used to search for the
best coalitions to form [254]. Coalition games were generalized to problems with
incomplete information through Bayesian games [255,256].

3.8.3 Intelligent Transport Networks

With the increased awareness on sustainable living, transportation systems are
challenged to endorse cutting edge technology and provide better services, while
keeping an eye on safety and greener emissions. Intelligent transport networks
are formed of autonomous or semi-autonomous communicating vehicles and road
infrastructure such as traffic signals and road sensors. Decisions such as when
to close a road or change a traffic light color to reduce traffic congestion, give
directions to emergency response vehicles to avoid congested roads, improve road
safety based on weather conditions, and others, are critical to make transporta-
tion smarter. To run efficiently, decisions need to be made in real-time on devices
with limited computational resources. POSG modeled directional routing and
scheduling of packet delivery in vehicular ad hoc networks [257]. POMDP was
used to perform automated driving in urban traffic while dealing with sensor un-
certainties [258]. Multi-agent RL has been used for routing algorithms [259–261],
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adaptive broadcasting [262], adaptive data collection [263] and traffic signal con-
trol [264–271]. Intelligent transportation systems have utilized swarm intelli-
gence to control traffic light scheduling [272], model complex transportation sys-
tems [273], develop routing protocols for vehicles [274, 275] and for information
dissemination [276–280].

3.8.4 Wireless Sensor Networks

WSN are a collection of autonomous computing and sensing devices with limited
computational resources. Their presence is ever increasing with the decreasing
cost and size of hardware and emergence of Internet of Things. Integrating de-
cision making in these networks allows us to implement functionality beyond
simple information retrieval, making the integration of WSN with other smart
city MAS, such as autonomous vehicles, electric grids and transport networks,
feasible. The application of MDP was surveyed to model various problems in
WSN including intrusion detection, sensor coverage, object detection, data ex-
change, topology formulation and other problems [281]. POMDP have been used
for performance optimization [282], data and memory access control [283], and
sleep scheduling [284]. IDs were used for lighting control in WSN and provided
robustness to sensor uncertainties [285]. Swarm intelligence has been used for
routing in WSN [286–292], clustering [293], cluster head selection [294], for secu-
rity protocols [293,295] and node positioning and localization [296,297].

3.8.5 Intrusion Detection

An essential component of network security is detecting threats before they can
compromise the network. Since networks are inherently decentralized, detecting
threats can be modeled as a MAS decision-making problem where agents co-
operatively determine whether a threat is present. Intrusion detection systems
monitor activities in network infrastructures such as WSN and mobile ad hoc
networks to identify malicious behavior. It involves detecting malicious packets,
tracking their sources and optimizing performance of networks. These systems
are considered MAS because each node on the network contributes to keeping
the network secure, by making decisions related to the maliciousness of packets.
Intrusion detection is a difficult problem because running the decision making
algorithms should not use up a significant portion of the network nodes’ limited
computational resources while identifying threats as early as possible on a wide
variety of network technologies.

Many models have been adopted in intrusion detection systems, as surveyed
in [298]. MDP identified the network’s most vulnerable nodes based on attack-
ers’ previous behaviors [299, 300]. Bayesian games modeled attacker/defender
games [301]. Multi-agent RL were used to implement distributed intrusion de-
tection systems [302]. Swarm intelligence is a popular approach to intrusion
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detection, evidenced by the recently published surveys [113–115]. PSO has been
widely applied in combination with support vector machines [303–305] and linear
programming [306]. ACO was used in IP traceback problems [307].

3.8.6 Other Applications

Cooperative MAS has been applied to many other fields. Noteworthy applica-
tions, briefly discussed next, are cognitive radios, smart electric grids, resource
allocation, and distributed optimization. Traditional radio paradigms suffer from
spectrum scarcity and usage inefficiency. Cognitive radios have been presented as
one possible solution. A cognitive radio is a smart radio that efficiently utilizes
the available spectrum. MDP and RL were used to model and solve spectrum
sensing and management problem [308–312]. Jamming in networks were modeled
using stochastic games [313] and spectrum sharing was modeled using game the-
ory [314]. Decision making models to cognitive radios reduces the wasted, already
scarce, spectrum resources and improves their efficiency in switching frequencies.

Smart electric grids will be the primary method of power distribution in
smart cities where efficient scheduling, generation and distribution of power
are essential. However, the unpredictability of demand and supply as well as
plant diversity and plant failures are some of the challenges faced in this field.
POSG [315], POMDP [316, 317], multi-agent RL [318, 319] and swarm intelli-
gence [116, 320–322] have been adopted to model and solve power distribution,
scheduling, power flow and load forecasting problems.

Resource allocation aims to distribute heterogeneous resources in a fair and
efficient manner to maximize resource utilization. Resource allocation has many
applications in resource constrained domains where many agents are battling
to gain access to these scarce resources such as robotics and cloud computing.
Decision making models adopted for this problem solve this problem more effi-
ciently than other approaches such as search or constrained optimization meth-
ods. Adopted models include POMDP, used to minimize network bandwidth
congestion and fairly allocate resource [323], Bayesian games [324] and stochastic
games with multi-agent RL used for job and resource scheduling in grid comput-
ing [325].

Distributed optimization, a useful tool in many fields including robotics, elec-
tric grids, and large-scale optimization problems, consists of optimizing an ob-
jective function in a distributed fashion. MAS decision making leveraged con-
sensus and communication rules to model distributed optimization; each agent
optimized part of the objective function before combining their results [326].
For example, game theory has formulated distributed optimization problems as
games [327, 328]. In [329], potential games and cooperative control provided
a theoretical framework to formulate distributed optimization problems. Also,
swarm intelligence including PSO [330,331] and an algorithm that mimics bacte-
rial foraging [332] have been used to solve multi-objective optimization problems.
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Graph theory including time-varying directed graphs [333] and weight-balanced
directed graphs [334] have modeled information exchange in a distributed opti-
mization framework.

3.9 Challenges

Although MAS decision making has seen significant improvements in the past
decade, it is still plagued with many issues. To reap all the benefits of the
Internet of Things boom and improve smart cities and smart living, decision
making systems need to address some of the remaining challenges.

3.9.1 Scalability

Decision making algorithms should be scalable, especially in heterogeneous MAS,
to accomplish more complex tasks. The scalability of current models greatly
relies on agent homogeneity and the level of interaction. Swarm intelligence can
scale to large MAS since agents are homogeneous and interaction is minimal and
restricted to the agent’s neighborhood. MDP variants and game theoretic models
do not scale well since the complexity of the algorithm increases exponentially
due to the model formulation that results in exponentially large state spaces.
Using the graph theoretic formulation for large MAS results in densely connected
graphs which are computationally expensive.

3.9.2 Computational Complexity

Decision making algorithms should be computationally efficient due to the need
for real-time decision making in some applications or the lack of enough computa-
tional resources of agents. Robots generally have limited on board computational
resources due to size and weight constraints and might not be able to offload their
computations to the cloud due to bandwidth scarcity, poor or unreliable connec-
tivity, and minimum latency requirements. Agent interactions MAS increases
the computational cost per agent as the number of agents increases, especially
in methods that extend single agent models to MAS if careful consideration of
interaction cost is not performed. Tightly coordinated tasks also increase the
computational burden due to the large amount of communication and data ex-
change among agents. Decision making algorithms should be designed with all
these constraints in mind to successfully complete complex tasks.

3.9.3 Dynamic Environments

The environment’s dynamic and unpredictable nature makes it difficult to foresee,
design and test an agent that can handle all these situations. Therefore, decision
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making algorithms should generalize well to situations that have not been learned
or tested. They should be able to adapt to the dynamic environment and various
uncertainties it might encounter and should be robust to noisy and incomplete
information generated by sensors, and non-deterministic actions. POMDP, IDs,
POSG and Bayesian games are better suited to handle uncertainties than MDP
and its variants that assume fully observable environments, because they account
for partially observable environments, incomplete and imperfect information in
their algorithms. Agent failures are also a source of uncertainty in MAS that
hinder the completion of tasks. Unlike other models, swarm intelligence models
are better suited to handle agent failures due to the homogeneous nature of agents
and minimal interaction necessary. However, this is still an issue that needs to
be considered whenever MAS are designed.

3.9.4 System Heterogeneity

Heterogeneous MAS can deal with environment diversity and complex tasks.
However, this heterogeneity makes cooperative decision making more complex:
agents need to model other agents when capability uncertainty exists, agent ca-
pabilities should be compatible, and agents should have a common language to
communicate and interact, in addition to other issues. Swarm intelligence simpli-
fies modeling by assuming all agents are homogeneous. Graph theoretic models,
POSG and its sub-classes can handle heterogeneous MAS if the state and obser-
vation spaces are designed appropriately. I-POMDP and I-DID inherently model
other agents, making them better than other graph and game theoretic models
in dealing with MAS heterogeneity.

3.9.5 Big Data

Recent advancements in processing big data has led to significant improvements
in research areas like object recognition, speech recognition and natural language
processing. The next step is to use this information to make better decisions
in MAS and handle more complex tasks. Decision making has yet to maximize
its benefits from big data. Algorithms that model and generate representations
of such data like convolutional neural networks (deep learning) produce com-
putationally expensive models that are not suitable for computationally limited
agents or decision making algorithms whose computational cost grows exponen-
tially with the dimensionality of the data. Yet, allowing agents to access these
models through the cloud has its own complications with respect to cloud accessi-
bility, bandwidth constraints, representation compatibility, privacy and security.
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3.9.6 Evaluation Standards

Evaluation standards are necessary in MAS decision making to compare pro-
posed algorithms and assess the state-of-the-art. General metrics include solution
optimality, algorithm completeness, and algorithm time and space complexity.
However, additional evaluation metrics of MAS decision making are necessary
to enable better comparisons. Some work has developed evaluation metrics and
workflows to quantify the performance of MAS. Braubach et al. developed
abstract metrics that would be specialized for MAS applications, and include
function (e.g. restrictions), usability (e.g. simplicity), operating ability (e.g.
performance) and pragmatic metrics (e.g. installation) [335]. Lass et al. distin-
guished between two metric categories: effectiveness (e.g. success, failure, 90%
accuracy) and performance (e.g. resource consumption, time complexity) [336],
that could be applied to four MAS levels (agent, framework, platform, host).
They presented a framework to select appropriate metrics for a given application
and performed a case study on a distributed constrained optimization problem.
Di et al. developed a hierarchical metric system where both inter (communica-
tion and cooperation) and intra agent metrics measured environment complexity,
agent rationality, autonomy, reactivity, and adaptability [337]. This system was
tested on a knowledge management problem for the automotive industry with
two agents only. Marir et al. proposed an evaluation platform that included
metrics like average of communication load and validated the platform on an
auctioning problem [338]. Nevertheless, standards to evaluate and compare the
performance of MAS on real-world environments are still underdeveloped. Exist-
ing metrics have been tested on a hand-full of narrow-scoped scenarios that did
not necessarily include robot agents.

3.9.7 Other Challenges

Task complexity poses a challenge for decision making algorithms because they
do not have the capability of recognizing what tasks can be decomposed into
simpler tasks that they can complete. Adding this capability to decision making
algorithms in MAS in addition to dynamically recognizing what tasks require
tight coordination and what tasks can be accomplished with minimal interaction
among agents will increase the scope of automated tasks. Learning algorithms
for decision making and perceiving agents should be autonomous. Reducing the
number of manually tunable hyper parameters that require human intervention
will allow algorithms to generalize better to unknown environments.

3.10 Conclusion

This survey discusses decision making models and algorithms to find policies for
cooperative MAS for different applications. MDP and game theoretic models,
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swarm intelligence, and IDs were covered, for which optimal and sub-optimal
policies were obtained using RL, DP, direct policy search, Monte Carlo meth-
ods, linear, quadratic and mixed integer programming, evolutionary computing,
and RNN. MAS applications noted include smart electric grids, WSN, intel-
ligent transportation systems, and robot teams performing search and rescue,
object transport and exploration and mapping. While state of the art meth-
ods within the past five years are significantly better than their predecessors,
research advances in this field are promising but still needs to answer many ques-
tions. Decision making algorithms should leverage big data advancements and
the Internet of Things to obtain better policies, algorithms should be scalable as
more complex tasks require larger MAS, and distributed algorithms should be
adopted to ease the computational burden and run on computationally limited
devices. Furthermore, evaluation standards or benchmarks need to be developed
to enable comparison of algorithms and to facilitate their verification and valida-
tion. These improvements would take us a step closer to effective deployment of
various MAS in smart cities.

Even though this survey focused on positively interacting MAS, MAS with
negative interactions is has many real-world applications. Competitive MAS
in robotics, intelligent transportation systems, smart electric grids, among oth-
ers is an active area of research. Decision making models based on theories in
economics, game theory and psychology have been developed. MAS with con-
flicting interactions is also a prominent area of research especially in robotics and
intelligent transportation systems where mobile vehicles use the same infrastruc-
ture and must co-exist with minimal interference to complete conflicting goals.
Research areas such as conflict management, conflict resolution, and deceptive
behavior modeling have emerged to address these issues.
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Chapter 4

PDP-CF Formulation

In this chapter, we introduce the PDP-CF formulation that allows the formation
of coalitions while determining the delivery schedule of packages. The formula-
tion is based on the PDP optimization formulation, also known as capacitated
vehicle routing problem. While PDP is one of the most popular models of pack-
age delivery, existing formulations in the literature do not support MAS. Al-
lowing heterogeneous MAS to delivery packages would facilitate the automation
of package delivery systems by allowing agents to better handle environmental
stochasticity, variable and task complexity.

Next, we first motivate the proposed formulation in section 4.1. We present a
brief overview of existing PDP formulations and solvers in the literature in section
4.2. Section 4.3 presents an illustrative example to further motivate our proposed
formulation before presenting our PDP-CF formulation in section 4.4. Section 4.5
analyzes the theoretical computational complexity of PDP-CF. Finally, section
4.6 concludes with final remarks before the next chapters present solvers for the
PDP-CF formulation.

4.1 Introduction

The autonomous package delivery problem consists of multiple sub-problems from
different fields including PDP in scheduling, object transport in robotics, coop-
erative robot navigation, and others. While vehicle routing problems and PDP
have been extensively researched in the field of scheduling [339, 340] and to a
certain extent in conjunction with robotics [341], packages are generally assumed
to be transported by one robot. The most basic PDP formulation schedules the
delivery of packages by modeling the problem as a graph and finds the routes
that minimize a cost function. However, allowing MRS to delivery a single pack-
age would increase the number of feasible assignments, especially when capacity
constraints are considered.

In this work, we propose a PDP formulation that allows multiple robots to

38



form a coalition to delivery a package that may exceed their individual payloads.
A coalition is defined to be a group of robots cooperatively transporting one or
more packages simultaneously. Specifically, we develop a 3-index and 2-index
MIP formulation that solves for a delivery schedule that minimizes a certain cost
function. Multiple cost functions are considered and the possibility of overlapping
coalitions is investigated which leads to the possibility of integrating non-robotic
agents into coalitions. Finally, the theoretical computational complexity of both
formulations are compared. Even though the 2-index formulation has a smaller
number of optimization variables to solve for compared to the 3-index formula-
tion, both scale exponentially with the vehicle set cardinality.

4.2 Literature Review

We first present the most common PDP formulations that consider different as-
sumptions and constraints on the system, then discuss algorithms that have been
used to find optimal or sub-optimal delivery schedules.

4.2.1 PDP Formulations

A PDP aims to find a schedule that allows a set of vehicles (or possibly robots) to
execute transportation requests such as delivering a set of packages from source
to destination. To goal is to find a schedule that satisfies various constraints such
as capacity, time window and priority constraints, while minimizing an objective
function such as distance traveled, energy consumed, and delivery time, among
others. A general PDP formulation was proposed in 1995 [342] and many variants
with different constraints have been studied. Some of the main assumptions in a
PDP formulation are:

• Number of vehicles that will deliver items. Single vehicle and multi-
vehicle PDPs have been studied.

• Vehicle start and end locations specify the start location(s) (e.g. ware-
house) and return location(s), if any.

• Item pickup and delivery locations specify whether items are picked
up from a single location or from different locations and whether they will
be delivered to a single location or individual locations.

• Capacities and demands specify a vehicle’s maximum capacity and an
item’s demand or payload.

• Time windows specify the earliest and latest times an item can be picked
up and delivered, respectively.

39



• Maximum route durations specify the amount of time a vehicle may
spend on any given delivery route.

• Maximum transport times specify the amount of time an item can spend
in a vehicle before it is delivered.

• Transfers or transshipments specify whether items can be exchanged
among vehicles at intermediary locations between pickup and delivery.

Static PDPs [343] assume that all delivery requests and vehicles are known
before a schedule is formed while dynamic PDPs [344] allow the addition of
new requests and vehicles as the delivery schedule is being formed. Dynamic
PDP further complicates PDPs since not all the information is available from
the start. Thus, greedy algorithms that reach suboptimal solutions tend to be
adopted. Online PDP algorithms solve the PDP algorithm in an online fashion
as vehicles execute delivery tasks [345].

PDPs have been most commonly formulated as constrained optimization
problems with both continuous and integer variables. The objective function
may consist of multiple criteria including minimizing distance traveled, total du-
ration, completion time, client inconvenience, and delivery cost, to name a few.
Constraints are derived from the initial assumptions of the formulation (e.g. time
windows, capacities) but also includes constraints that ensure the validity of a
schedule such as delivering an item after it has been picked up.

Compact formulations have been proposed to enable more efficient solutions
using general purpose optimization solvers. A 2-index formulation was proposed
in [346] based on solving a PDP with time windows as a Hamiltonian tour prob-
lem. However, this approach did not perform well on large scale PDPs. Another
2-index formulation was derived based on the Vehicle Routing Problem (VRP)
with time windows formulation and explicitly assigning vehicle routes [347].

PDPs have been shown to be NP-hard by reducing them to a traveling sales-
man problem [348], which implies that find an optimal schedule in polynomial
time may not be feasible. Next, we discuss algorithms that attempt to solve
PDPs optimally or sub-optimally.

4.2.2 PDP Solvers

Many heuristics and metaheuristics have been proposed to find delivery schedules
using search-based algorithms. From optimization, branch-and-cut or branch-
and-bound MIP algorithms have been commonly adopted to solve PDP variants
including PDP with time windows (PDPTW) and transfers (PDPTW-T) [349–
351]. Particle swarm optimization [352] and simulated annealing [353] have also
been adopted in large neighborhood PDPTW. A 2-phase heuristic was proposed
in [354]. A branch-and-cut algorithm was proposed for the 2-index PDPTW
formulation [346].
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Table 4.1: Robot Setup

Robot Location (x,y) Payload (units)

R1 (0,1) 2
R2 (0,1) 2
R3 (1,0) 3
R4 (1,0) 1

Table 4.2: Package Setup

Package Source
Lo-
ca-
tion
(x,y)

Destination
Loca-
tion
(x,y)

Mass
(units)

A (0,1) (2,1) 3
B (0,1) (1,2) 1
C (1,0) (2,1) 1
D (1,0) (1,2) 1

4.3 Motivating Illustrative Example

We consider an example to illustrate the benefits of allowing transfers and coali-
tions in the pickup-delivery problem. Given a set of robots and packages, de-
scribed in Tables 4.1 and 4.2 respectively, we need to find the robot-package
assignment that will minimize the total distance traveled by all the robots. In
this example, we simplify the PDP formulation to only consider the source, des-
tination and mass of the packages, in addition to the payloads of robots. The
environment is a simple 3x3 grid, as shown in Figure 4.1. We define transfers as
a package being handed to a different robot at a location other than its final des-
tination. Coalitions are defined as a group of robots collaboratively transporting
a package or multiple package, i.e. the robots share the load of the package(s).
If transfers and coalitions are not allowed, the assignment in Table 4.3 is optimal
and leads to a total distance of 12 units traveled by all robots. The best solution
is obtained when both coalitions and transfers are allowed: a total distance of 5
units is traveled by the robots, as shown in Table 4.4.

When transfers and coalitions are not allowed, R3 must travel a distance of
two units (without any load) to pick up package A. Similarly, R1 must travel a
distance of two units to pickup package C before delivering it. Therefore, the
total distance traveled by all the robots to deliver all packages is 12 units, as
shown in Table 4.3. However, when coalitions can be formed and transferring
packages between robots is allowed, the total distance traveled by all the robots
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Figure 4.1: Illustrative PDP example: (a) Initial map, (b) Solution without
transfers or coalitions, (c) Step 1 of solution with transfers and coalitions, (d)
Step 2 of solution with transfers and coalitions.
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Table 4.3: Solution when transfers and coalition formation are not allowed

Time step Action Distance traveled

1 PICKUP(R1, C) 2
1 PICKUP(R2, B) 0
1 PICKUP(R3, A) 2
1 PICKUP(R4, D) 0
2 DELIVER(R1, C) 2
2 DELIVER(R2, B) 2
2 DELIVER(R3, A) 2
2 DELIVER(R4, D) 2

Total Cost 12

Table 4.4: Solution when transfers and coalitions are allowed

Time step Action Distance traveled

1 PICKUP(R1+R2, A) 0
1 PICKUP(R1+R2, B) 0
1 PICKUP(R3, C) 0
1 PICKUP(R3, D) 0
2 TRANSFER(R1+R2, R3, A) 2
2 TRANSFER(R3, R1, D) 1
3 DELIVER(R1, B)

1
3 DELIVER(R1, D)
3 DELIVER(R3, A)

1
3 DELIVER(R3, C)

Total Cost 5

is reduced to 5 units, as shown in Table 4.4. This is due to the fact that robots R1

and R2 can form a coalition with a combined total payload of 4 units to transport
packages A and B to an intermediary location. At this location, R3 can transfer
package D to one of the other robots and carry package A and C to their final
destination while a second robot (R1 or R2) deliver package B and D to their final
destination. Furthermore, when transfers and coalitions are allowed, only three
robots are necessary to deliver the four packages, as opposed to four robots.

4.4 PDP Formulation

Next, we propose a PDP formulation, hereafter referred to as PDD-CF, which
allows the formation of coalitions among different agents. This would increase
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Table 4.5: Nomenclature

Symbol Definition

V Set of vehicles, v ∈ V
m Number of vehicles
P Set of packages, p ∈ P
n Number of packages

Kv = 2V Set of coalitions, kv = {vi} ∈ Kv

G Graph represented a PDP instance
A Arc in G, (i, j) ∈ A
N Nodes in G
P Pickup nodes
D Delivery nodes
xijk Boolean optimization variable
cijk Arc cost
Qjk Capacity of coalition k at node j
tij Travel time associated with (i, j)
Bjk Time at which coalition k starts servicing node j
M Constant
qi Demand at node i

[ei, `i] Time window
ks Maximum allowable coalition size
dij Distance between nodes i and j
dijk Distance traveled by a coalition k from node i to j
|k| Number of vehicles in coalition k

cap(v) Capacity of a vehicle
dem(p) Payload demanded by a package

the number of feasible assignments, especially when capacity constraints are con-
sidered. Table 4.5 summarize the notation adopted throughout this document.

4.4.1 A 3-index PDP-CF Formulation

PDP are most commonly formulated as a 3-index MIP problem [355]; it is rep-
resented as a complete graph G(N,A), where N = {0, 1, ..., 2n + 1} denotes the
set of nodes in the graph and A the set of arcs or connections between the nodes
in N . We assume n total transportation requests or packages; with each request,
we associate a pickup node i ∈ P and delivery node n + i ∈ D. To simplify
the notation, we define P = {1, ..., n} ⊂ N to be the set of pickup nodes and
D = {n + 1, ..., 2n} ⊂ N to be the set of delivery nodes, with nodes 0 ∈ N and
2n+ 1 ∈ N representing the origin and final depots. The set of available vehicles
is denoted by V = {1, 2, ..., v, ...,m} with cardinality |V | = m and capacity capv.
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Figure 4.2: PDP’s Graphical Representation

Unlike many works in the literature, we do not assume V to be homogeneous,
i.e. the capabilities of the vehicles in V are diverse. Figure 4.2 illustrates this
graphical representation for n = 2.

The objective function in (4.1) minimizes the total routing cost by searching
the space of coalitions instead of the space of vehicles. This leads to an expo-
nentially larger search space since the set of coalitions is the power set of V ,
K = 2V . Furthermore, cijk is the cost of a coalition k traversing arc (i, j) ∈ A.
Existing formulations assumed a routing cost that is independent of the vehicle
traversing the route since homogeneous vehicles were considered. However, this
does not apply to our formulation since the size of the coalition influences this
cost. The routing cost can be one of many functions such as traveled distance,
delivery time, consumed energy or a combination of the three. xijk is a binary
variable that is equal to 1 when coalition k ∈ K traverses arc (i, j) ∈ A.

min
x

∑
k∈2V

∑
i∈N

∑
j∈N

cijkxijk (4.1)

We impose multiple constraints on the optimization problem to obtain a valid
delivery schedule. First, we ensure that a transportation request is assigned to
only one coalition in (4.2) and the corresponding pickup and delivery nodes are
visited by this same coalition in (4.3). Then, we ensure that each route starts at
the origin depot and terminates at the final depot by adding the constraints in
(4.4) and (4.5). The constraint in (4.6) guarantees that each coalition entering
a node will leave this node. Capacity and time constraints are imposed by (4.7)
and (4.8), where Qjk is the capacity of coalition k at node j, tij is the travel time
associated with arc (i, j), Bjk is time at which coalition k starts servicing node j,
and M is a sufficiently large constant. tij includes the service time of each node
and obeys the triangle inequality. qi ≥ 0 is the load associated with a pickup
node i ∈ P ; qn+i = −qi is the load associated with a delivery node n+ i ∈ D.

Unlike VRP, in PDP, we need to ensure that a pickup node is visited before
a delivery node by adding the constraint in (4.9). Since time windows [ei, `i] are
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associated with each node i ∈ N , the constraint in (4.10) ensures the schedule
does not allow coalition k to visit a node i before ei or after `i. To ensure the
maximum capacity of each coalition is never exceeded, the constraint in (4.11) is
imposed. The capacity of a coalition is defined as the sum of the capacities of the
vehicles in the coalition, as shown in (4.12). Finally, the integrality of variables
is satisfied by adding the constraint in (4.13).∑

k∈K

∑
j∈N

xijk = 1 ∀i ∈ P (4.2)

∑
j∈N

xijk −
∑
j∈N

xn+i,j,k = 0 ∀i ∈ P ; k ∈ K (4.3)

∑
j∈N

x0jk = 1 ∀k ∈ K (4.4)

∑
i∈N

xi,2n+1,k = 1 ∀k ∈ K (4.5)

∑
j∈N

xjik −
∑
j∈N

xijk = 0 ∀i ∈ P ∪D; k ∈ K (4.6)

Qjk ≥ Qik + qj −M(1− xijk) ∀i ∈ N ; j ∈ N ; k ∈ K (4.7)

Bjk ≥ Bik + tij −M(1− xijk) ∀i ∈ N ; j ∈ N ; k ∈ K (4.8)

Bik + ti,n+i ≤ Bn+i,k ∀i ∈ P ; k ∈ K (4.9)

ei ≤ Bik ≤ `i ∀i ∈ N ; k ∈ K (4.10)

max{0, qi} ≤ Qik ≤ min{capk, capk + qi} ∀i ∈ N ; k ∈ K (4.11)

capk =
∑
v∈k

capv (4.12)

xijk ∈ {0, 1} ∀i ∈ N ; j ∈ N ; k ∈ K (4.13)

Since we are considering coalitions of cooperating vehicles instead of indepen-
dent vehicles, we add a set of constraints that ensures coalitions do not overlap,
as shown in (4.14). If coalitions k and k′ contain common vehicles (their inter-
section is not empty), then only one of these coalitions can be used. This set
of constraints is proportional to the size of the set of coalitions and equal to
|K|2/2 = 22|V |−1.
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xijk + xijk′ = 1∀k ∩ k′ 6= ∅ (4.14)

To reduce the size of the search space and number of constraints, we limit
the maximum size of a coalition. Instead of considering all subsets of V , we only
consider all subsets with a maximum cardinality ks << m.

In summary, in this formulation, we introduce three main modifications to
the 3-index MIP in [355]:

• The search space of possible solutions is changed from the set of vehicles to
the power set of vehicles (set of all subsets).

• The cost function depends on the coalitions, i.e cij is replaced by cijk.

• A set of constraints was added to ensure that coalitions do not overlap.

4.4.2 A 2-index PDP-CF Formulation

Lu et al. [346] proposed a compact 2-index MIP by mapping a PDP to a Hamil-
tonian tour problem. They achieve this by extending the graph to include m+ 1
artificial nodes, No = 2n+ 1, 2n+ 2, ..., 2n+m+ 1, representing start and return
locations for each vehicle. The extended graph, G̃ = (Ñ , Ã), Ñ = P ∪ D ∪ No,
also includes an extended set of arcs Ã that includes arc connecting all nodes in
the pickup and delivery sets, P ∪D, cycles in No, arcs from nodes in D to nodes
in No, and arcs from No to P . Finding the minimum Hamiltonian tour in G̃ is
equivalent to finding the minimum cost route in G (as defined in the previous
subsection). The objective function is depicted in (4.15) which clearly shows two
indeces for the optimization variable, but on a larger graph.

min
x

∑
i∈Ñ

∑
j∈Ñ

cijxij (4.15)

Multiple constraints are imposed on the objective function and are listed
below. Eq. (4.16) and (4.17) ensure that all nodes are visited.∑

(i,j)∈Ã

xij = 1 ∀i ∈ Ñ {2n+m+ 1} (4.16)

∑
(i,j)∈Ã

xij = 1 ∀j ∈ Ñ {2n+ 1} (4.17)

Eq. (4.18) and (4.19) copy the value bki into bkj when a route goes from node
i to node j.

bki ≤ bkj + (1− xij) ∀(i, j) ∈ Ã {2n+m+ 1, 2n+ 1}; k ∈ Ñ {i} (4.18)
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bkj ≤ bki + (1− xij) ∀(i, j) ∈ Ã {2n+m+ 1, 2n+ 1}; k ∈ Ñ {i} (4.19)

Eq. (4.21) insures that bij = 1 when xij = 1.

xij ≤ bij ∀(i, j) ∈ Ã (4.20)

Eq. (4.21) states that a node can never precede or succeed itself.

bii = 0 ∀i ∈ Ñ (4.21)

Eq. (4.22) and (4.23) insure that a pickup node is visited before its corre-
sponding delivery node.

bn+i,i = 0 ∀i ∈ P̃ (4.22)

bi,n+i = 1 ∀i ∈ P̃ (4.23)

Eq. (4.24) guarantees that the same vehicle visits the pickup and delivery
nodes.

bi,2n+j = bn+i,2n+j ∀i ∈ P̃ ; 2n+ j ∈ No (4.24)

The capacity constraint of each vehicle is imposed by (4.25), where Capj is
the capacity of vehicle j.

qj +
∑
i∈Ñ

qibij ≤ Capj ∀j ∈ P (4.25)

Eq. (4.26) states that node 2n+ 1 is the first node in the Hamiltonian tour.

bi,2n+1 = 1 ∀i ∈ Ñ (4.26)

Eq. (4.27) and (4.28) guarantee that the nodes in the Hamiltonian tour are
visited in the correct order.

b2n+k,2n+j = 1 ∀k < j; 2n+ k ∈ Ñ ; 2n+ j ∈ Ñ (4.27)

b2n+j,2n+k = 0 ∀k < j; 2n+ k ∈ Ñ ; 2n+ j ∈ Ñ (4.28)

Eq. (4.29) states that node 2n + m + 1 is the last node in the Hamiltonian
tour.

bi,2n+m+1 = 1 ∀i ∈ Ñ {2n+m+ 1} (4.29)

Finally, the integrality constraint is imposed by (4.30).
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xij, bij ∈ {0, 1} ∀i, j ∈ Ñ (4.30)

Modifying the presented 2-index MIP formulation to allow coalitions implies
that the subset No contains 2m + 1 artificial nodes and that each occurrence of
m should be replaced by 2m.

4.4.3 Cost Function

cijk represents the cost of a coalition of vehicles k traversing the path from node
i to node j. In this work, we consider three types of cost functions: 1) total
traveled distance, 2) delivery time, and 3) energy consumption.

• Distance traveled by all vehicles to accomplish delivery tasks which de-
pends on the distance between pickup and delivery nodes. Different distance
metrics can be adopted such as Euclidean distance, described by (4.31), or
Manhattan distance, described by (4.32). We denote the distance between
node i and j as dij.

dij = (|xi − xj|2 + |yi − yj|2 + |zi − zj|2)2 (4.31)

dij = (|xi − xj|+ |yi − yj|+ |zi − zj|) (4.32)

• Delivery time accounts for the handling time and the time to travel from
one node to another. It is affected by the maximum speed of a vehicle. Since
we assume heterogeneous vehicles, maximum speeds may vary. Therefore,
the maximum speed of a coalition is equal to the maximum speed of the
slowest vehicle in the coalition.

• Energy consumption computes the energy required to complete a de-
livery task. It includes the energy spent on traveling from one node to
another, communicating with other vehicles, performing computations, ac-
quiring sensory data and others.

Each cost function has its advantages and disadvantages. The distance cost
function is simple to compute given the coordinates of source and destination
locations. In existing PDP formulations, this distance is traveled by a single
vehicle; in PDP-CF, it is traveled by all the vehicles in a coalitions. Therefore, it
also implicitly penalizes large coalitions since the total distance traveled by the
coalition is dijk ≤ |k|dij, where |k| represents the number of vehicles in coalition
k. It is an inequality because we may have vehicles capable of transporting
smaller vehicles. Therefore, the smaller vehicles wouldn’t travel this distance.
However, a distance cost function does not account for communication costs of
adopting a coalition or idle time (i.e. the time required to load/unload packages
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to/from the vehicles). Traveled distance is also independent of the properties of
the vehicle traveling this distance which is disadvantageous in a heterogeneous
MAS setting. Delivery time incorporates idle time which may increase with the
size of coalitions and is dependent on the properties of the vehicles but does not
minimize the communication costs of the coalition.

Energy consumption is the most computationally expensive cost function of
the three but is the most general. It implicitly minimizes distance traveled and
idle time. Communication costs incurred in coalitions are also accounted for.
Furthermore, this cost function allows us to abstract from vehicles or robotic
agents and consider any type of agent that can positively contribute to the com-
pletion of a task. This could be the cloud that allows vehicles to perform more
complex computations or sensors in the intelligent transportation infrastructure
that provide information to road vehicles. It allows us to quantify the cost of
acquiring information to improve cooperation and decision making. Weather
conditions can affect the efficiency of various vehicles: strong winds could signif-
icantly impede quadrotors even if they would travel the least distance. However,
computing the energy consumption is computationally expensive and could signif-
icantly slow down the convergence of the optimization problem and the real-time
responsiveness of dynamic PDP formulations. It also requires the existence of
energy consumption models for all agents (vehicles, sensors, computational re-
sources...). Nevertheless, in this work, we adopt the distance cost function using
the Manhattan distance metric due to its simplicity and widespread use in the
literature.

4.4.4 Coalition Overlap

Throughout this chapter, we have imposed the constraint of not allowing overlap-
ping coalitions. In this subsection, we will consider the implications of relaxing
this condition. However, this would require a slight modification to our definition
of a coalition. Defining a coalition as a group of agents that contribute to the
delivery of one or more packages, opens the door to non-robotic agents whose
contributions enable vehicular agents to physically deliver packages. These con-
tributions could be in the form of sensory information to improve the vehicles’
decision making during task execution, or computational resources to allow the
execution of more sophisticated algorithms for enhanced performance. As a re-
sult, Internet-of-Things and cloud computing technologies can be abstracted to
facilitate integration with MRS. Therefore, the set of agents, V , in the PDP-CF
formulation would be split into two possibly overlapping subsets: the set of load-
bearing agents (or vehicles), V1, and the set of non-load-bearing agents, V2, i.e.
V = V1 ∪ V2 and V1 ∩ V2 6= ∅. The non-overlapping coalitions constraint would
still apply to V1 but not V2.

However, the distance cost function would no longer be suitable since it does
not account for the cost of utilizing non-load-bearing agents. Instead, the energy
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cost function would be more suitable since it can incorporate the work done by
the non-load-bearing agents. The cost of acquiring certain information would
consist of two components: 1) the energy expended by the device acquiring this
information, and 2) the communication cost of acquiring this information from
another agent or the cost of transporting the device (i.e. sensor) on-board the
vehicle. Similarly, the cost of executing a specific algorithm would be equal to the
computational cost, communication cost of connecting to the cloud or the cost
of placing the hardware on-board. Communication costs depend on the medium;
for example, Bluetooth spends less energy per byte of information but is only
suitable for short range communication, compared to WiFi [356].

To obtain an efficient MAS, it is important to quantify the benefits of having
agents join a coalition to execute a task, beyond a simple binary assessment
of whether the task was successfully completed or not. The benefits of load-
bearing agents is straight forward: not incorporating these agents would lead
to a failure in executing a task. The benefits of non-load-bearing agents is not
as evident. The value of information not only depends on the cost of acquiring
this information but also the quality of this information. The more accurate
information an agent has, the better its decision will be. Quantifying quality or
accuracy can be accomplished by estimating the noisiness of this information:
information with more noise is less reliable in decision making. Noise can be
introduced to the system from the sensors, the communication hardware, the
environment, and other agents, to name a few sources. Similarly, the value of an
algorithm’s output depends on the cost of the computational resources and the
accuracy of the output. Therefore, combining the cost and benefit of including
an agent in a coalition by modifying the objective function would lead to a more
faithful representation of the effectiveness of a coalition.

Even though the remainder of this thesis only considers load-bearing agents,
this digression sheds some light on future research directions and the importance
of the proposed formulation in developing a unified MAS framework that incor-
porates MRS, Internet-of-Things, intelligent transportation systems and other
smart city infrastructure for autonomous package delivery.

4.5 Theoretical Analysis

Table 4.6 summarizes the computational complexity of 3-index and 2-index PDP
formulations with and without CF. The graph size is based on the number of
nodes and arcs in the graph. The number of optimization variables determines the
size of the search space and affects how quickly MIP can converge to a solution, if
any. The 2-index MIP formulation is more compact than the 3-index formulation
when coalitions are not allowed since it has less optimization variables at the cost
of a larger graph; the number of nodes and arcs grow linearly and quadratically,
respectively, with the vehicle set cardinality. However, when CF is introduced into
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Table 4.6: Graph Complexity

Without CF With CF

3-index MIP

Optimization
variables

(2n)2m (2n)22m

Nodes 2n 2n
Arcs (2n)2 (2n)2

2-index MIP

Optimization
variables

2(2n+m+ 1)2 2(2n+ 2m + 1)2

Nodes 2n+m+ 1 2n+ 2m + 1
Arcs (2n)2 + 2(m+ 1)n+ (m+ 1)2 (2n)2 + 2(2m + 1)n+ (2m + 1)2

both 2-index and 3-index formulations, the optimization problem and graph grow
exponentially with the vehicle set cardinality. This is problematic because the
search space becomes exponentially larger, making convergence to at least sub-
optimal solutions more challenging. Limiting the maximum size of the coalition
would result in smaller optimization variables (i.e. 2m would be replaced by 2ks

where ks << m) but could still be challenging.

4.6 Conclusion

In this chapter, we introduced the PDP-CF formulation based on optimization
theory. Two MIP formulations were derived and compared from a theoretical
computational complexity perspectively. However, both approaches scaled ex-
ponentially with the number of vehicles leading to convergence problems when
attempting to find an optimal solution. As a result, we opted to investigate
search-based and data driven approaches in the coming chapters.

Nonetheless, it is beneficial to formulate more efficient MIP solutions by im-
posing additional assumptions such as restricting the number of agents per coali-
tion. Future work would also investigate the performance of the system when
allowing coalition overlap while adopting an energy-based cost function. Incor-
porating non-vehicular agents should also be validated on realistic benchmarks.
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Chapter 5

PDP Solver: An Evolutionary
Approach

In this chapter, two evolutionary algorithms, GA and QGA, are proposed as
solvers for the PDP-CF formulation presented in the previous chapter. The
search-based approach attempts to circumvent the exponentially large search
space of PDP-CF. To that end, section 5.1 motivates evolutionary algorithms
as solvers for PDP-CF. A brief overview of existing GA solvers for PDP for-
mulations is presented in section 5.2. Section 5.3 presents the GA and QGA
solver formulations. Finally, section 5.4 reports the empirical performance of
evolutionary solvers on PDP-CF scenarios before section 5.5 concludes with final
remarks.

5.1 Introduction

Evolutionary algorithms have been adopted in many non-convex optimization
problems. Examples of evolutionary algorithms include GA, simulated anneal-
ing, ant colony optimization, and particle swarm optimization, to name a few.
Their popularity in many domains stems from their simplicity and ease of use.
They search the space of solutions using biologically inspired processes such as
evolution, mutation, and cross over. Such processes have been shown to enable
an efficient traversal of the search space while reducing the probability of getting
stuck in local minima. Furthermore, the emergence of quantum computing tech-
nology has enabled the introduction of search algorithms capable of exploring
exponentially large search spaces in polynomial time. Evolutionary algorithms
have been formulated for quantum computer to leverage this exponential speed
up [357]. Quantum mechanics’ mathematical constructs such as the linear su-
perposition of states, state collapse and others have also been incorporated into
these algorithms to further improve performance.

The exponentially large search space of PDP-CF makes it a good candidate to
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leverage QGA’s advantages. QGA’s chromosomes would encode the 3-index MIP
optimization variables. However, imposing the capacity and overlap constraints
becomes more challenging since this encoding does not prevent QGA from ex-
ploring the infeasible region; this hinders QGA’s convergence to a solution in a
reasonable time. To avoid entering the infeasible region, we propose a GA encod-
ing that inherently guarantees that the explored solutions are within the feasible
region; each vehicle in the set is represented by a chromosome with the genes
representing packages that could be delivered by the vehicle. Breaking down the
packages into virtual packages of unit size allows us to create coalitions without
increasing the problem size. Empirical results on multiple PDP scenarios reflect
the merits of the proposed approach.

5.2 Literature Review

Before delving into our proposed encodings, we briefly describe the various evolu-
tionary algorithm formulations developed in the literature to solve vehicle routing
problems including PDP. Wang et al. [358] formulated a MIP model for simulta-
neous PDP with time windows and encoded the optimization variables into GA’s
chromosomes. To solve PDP with time windows, [359] proposed a grouping GA
which implies that genes represent multiple delivery requests as opposed to one
request. Xiao et al. [360] proposed a quantum ant colony optimization algorithm
to solve vehicle routing problems. Zhang et al. [357] formulated a hybrid quan-
tum evolutionary algorithm for PDP and demonstrated its superior exploration
capabilities compared to GA. Dakroub et al. [361] adopted a GA for intelligent
carpooling by adopting multiple population threads with each chromosome in
a population representing a driver and each gene representing passengers with
the driver. Crossover and mutation operations were modified to prevent GA
from exiting the feasible region. Ursani et al. [362] developed a two-phase opti-
mization solver based on GA for vehicle routing problems; the algorithm breaks
down the original optimization problem into smaller problems, optimizes those
smaller problems then combines their solutions and fine tunes the results using
a de-optimization workflow. GA encodes the order of customers. Finally, Jia et
al. [363] encoded target and UAV information into GA’s chromosomes to assign
targets related to flight trajectories to cooperating UAVs.

5.3 Methodology

Due to the larger search space of PDP-CF, we propose a QGA solver to efficiently
traverse this exponentially large search space and possibly converge to a better
solution than MIP. To achieve further improvements, we propose a GA encoding
that does not scales linearly with the vehicle set cardinality while still allowing
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the formation of coalitions.

5.3.1 QGA Solver

QGA adopts multiple mathematical constructs from quantum mechanics, includ-
ing complex probabilities, state superposition and state collapse, to efficiently
explore a search space and converge to a solution. In QGA, the 3-index MIP
optimization variables, encoded in the chromosome, are viewed as existing in a
linear superposition of their basis states, i.e. a binary randomly variable is simul-
taneously in a state of 0 and 1 until it is “observed”. In this context, “observed”
implies that the fitness function is computed; a random collapse is performed
before the fitness of the chromosome can be computed. This collapse is influ-
enced by the probability amplitudes of the state. Specifically, a random number,
r ∈ [0, 1], is generated and compared to α2. If it is larger, then the corresponding
optimization variable is assigned a value of 1; otherwise, it is assigned a value of
0, as shown in (5.1).

xijk =

{
1 if r > α2

ijk

0 if r < α2
ijk

(5.1)

The workflow of QGA is as follows:

1. Initialize the population.

2. Collapse the chromosome to one of the basis states.

3. Compute fitness of the collapsed chromosomes.

4. While we have not converged:

(a) Select the rotation angle using Table 5.1,

(b) Apply the rotation gate to the chromosomes in the population, shown
in (5.2).

(c) Apply the mutation operator.

(d) Apply the crossover operator.

(e) Collapse the chromosome to basis states.

(f) Compute fitness of the collapsed chromosomes.

[
αi+1

βi+1

]
=

[
cos(θi) −sin(θi)
sin(θi) cos(θi)

] [
αi
βi

]
(5.2)

Table 5.1 summarizes the rotation gate’s adjustment strategy. xi denotes the
ith bit in the chromosome and bi denotes the ith bit in the chromosome with
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Table 5.1: Quantum rotation gate angle adjustment strategy [2]

s(αi, βi)
xi bi f(x) > f(b) δθi αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 True/False 0 0 0 0 0
0 1 False ω +1 -1 0 ±1
0 1 True ω -1 +1 ±1 0
1 0 False ω -1 +1 ±1 0
1 0 True ω +1 -1 0 ±1
1 1 True/False 0 0 0 0 0

Figure 5.1: QGA Chromosome Encoding based on 3-index Formulation

the best fitness. δθi denotes the adjustment angle step and s(αi, βi) denotes the
rotating angle direction. f(x) and f(b) denote the fitness of a chromosome and
that of the best chromosome, respectively.

Encoding

Instead of encoding the binary optimization variables xijk, as would be done in
GA (see Figure 5.2), QGA encodes the probability amplitudes of the optimiza-
tion variable’s states, as shown in Figure 5.1. We can view the binary variables
as having one of two states, 0 or 1, with complex probability α and β, respec-
tively, such that α2 + β2 = 1. We view the genes as a 2-dimensional vector with
continuous real values representing the magnitude of the complex probabilities.
The number of genes in the chromosome is equal to the number of optimization
variables.

Initialization

The probability amplitudes are initialized to 1√
2

for all chromosomes in the pop-
ulation. This implies that the probability of collapsing to state 1 or 0 is equal to
0.5. If we have some prior knowledge of which states would be better than others
for each variable, we can initialize α and β accordingly. However, in this work,
we assume no such prior knowledge.
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Mutation Operation

The mutation operation must not violate the α2 + β2 = 1 condition. Therefore,
the mutation operator randomly modifies α only. Then, β is computed to ensure
the squared sum is still equal to 1.

Crossover Operation

The crossover operation is similar to traditional GA where a random cutoff point
is selected, and the genes from two parent chromosomes would be swapped.

Fitness Function

The fitness function adopted in this formulation to evaluate the quality of a solu-
tion is based on the objective function of the PDP-CF formulation. Specifically,
the fitness of a chromosome is inversely proportional to the cost function which
is the total distance traveled to delivery packages. This not only depends on the
locations of the sources and destinations but also on the number of agents in a
coalition. Furthermore, to incorporate environmental characteristics, we modi-
fied the fitness function to include a cost for traveling in difficult conditions. For
example, an aerial vehicle would have a harder time traveling in windy conditions
than a ground vehicle; a biped is prawn to failures on rocky terrains compared
to six-legged vehicles. While some of these additional costs can be reflected in an
energy cost function (as in the former), the increased probability of hardware fail-
ures (as in the latter) are not reflected. Therefore, we adopt a heuristic function
that quantifies the difficulty (denoted by c(x) in (5.3)) a certain agent performing
a task in a given set of conditions. We adopt a categorical function with 5 levels
of difficulty: “very easy”, “easy”, “moderate”, “difficult”, and “very difficult”.
Due to the difference in units between c(x) and the distance cost function (d(x)),
simply adding both cost functions is not suitable. Instead, we convert the 5 levels
of difficulty into 5 values between 0 and 1 and multiply the distance cost function
by the difficulty factor, as shown in (5.3), i.e. we assume the distance is much
larger due to the additional difficult.

f(x) = (1 + c(x))× d(x) (5.3)

Constraints

Since the PDP-CF formulation is a constrained optimization problem, part of
the search space is in the infeasible region. Therefore, we need to insure that
the chromosomes in the population are within the feasible region. To do so, we
couple (or entangle in quantum mechanical terminology) the genes that would
violate the constraints, i.e. if xijk and xijk′ cannot be 1 simultaneously because
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Figure 5.2: GA Chromosome Encoding based on 3-index Formulation

coalitions k and k′ would violate the coalition overlap constraint, then these two
genes are coupled and the collapse of one would affect the value of the other.

5.3.2 GA Solver

The workflow of GA is as follows:

1. Initialize the population.

2. Compute fitness of the chromosomes in the initial population.

3. While we have not converged:

(a) Apply the mutation operator.

(b) Apply the crossover operator.

(c) Compute fitness of the population.

Encoding

One intuitive approach is to encode the binary optimization variables xijk, as
shown in Figure 5.2. However, for a simple PDP with 5 packages and 3 vehicles,
the number of optimization variables is 300; for a PDP-CF of the same size, the
number of variables grows to 900, based on (4.1). Furthermore, feasible regions in
our constrained PDP and PDP-CF formulations are a small portion of the search
space. Therefore, naively traversing this space could result in a large number
of chromosomes in the infeasible region, hindering GA and QGA’s ability to
converge to a solution, let alone an optimal or near-optimal solution. Therefore,
it is important to develop an encoding that incorporates the constraints to avoid
exiting the feasible region.

One such encoding is illustrated in Figure 5.3 where a collection of chro-
mosomes represents a possible solution (e.g. population 1 is one solution and
population 2 is another). The chromosome represents a vehicle; the length of
the chromosome represents the capacity of a vehicle. Since vehicles have unequal
capacities, the lengths of the chromosomes are not uniform. The number of chro-
mosomes in a population is equal to the number of vehicles. Since packages have
unequal demands, we represent a package by multiple virtual packages of uniform
demand, i.e. if a package pi has a demand of three units, we represent it by three
virtual packages of with unit demand (see p3 in Figure 5.3). Therefore, each gene
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Figure 5.3: GA Chromosome Encoding

of the chromosome represents a package with a demand of one unit. If the vir-
tual packages corresponding to a physical package are split over multiple vehicles,
then these vehicles form a coalition. Therefore, we are able to search the space of
vehicle coalitions without significantly increasing the number of variables in the
problem.

However, this encoding does not solve the routing problem. It only solves
the coalition-package assignment problem. Multiple solutions can be adopted
but mainly fall under two categories: extending the encoding to solve the routing
problem or running a separate algorithm to determine the delivery sequence. The
former would expand the search space that GA would traverse by considering the
order of packages in the chromosome as the sequence of delivery, i.e. the package
in gene 1 would be picked up first and dropped off first. However, this may not
result in the most optimal routing solution since all packages are picked up before
any one can be dropped off. The latter implies that a routing problem for each
coalition would be solved to determine the cost of the package-coalition assign-
ment and can be solved using a traveling salesman problem solver such as GA,
particle swarm optimization or other approaches in the literature. However, this
approach is computationally expensive, leading to a computationally expensive
overall PDP-CF solver.

Initialization

Randomly initializing the population does not guarantee that the chromosomes
are in the feasible region. The set of scenarios encountered in PDP can be divided
into three subsets based on the relationship between the set of packages and set
of vehicles:

• Case 1: the total package demands exceeds the total vehicle capacities,

• Case 2: the total vehicle capacities is less than the total package demand

• Case 3: the total package demands is equal to the total vehicle capacity.
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Figure 5.4: GA Initialization

If there are more packages to delivery than vehicles capable of delivering them
(case 1), then we pick a subset of packages that would be delivered in the first
round (based on priority, time windows or other criteria) and the other packages
would be delivered in the second round. On the other hand, if the available
packages to delivery do not require all the available vehicles to deliver them (case
2 or case 3), we keep the vehicles in the population but set their initial assignments
to 0, i.e. they would not deliver any packages.

Multiple deterministic initialization schemes can be adopted. We can sequen-
tially fill the vehicles to capacity with the available virtual packages until all
packages have been assigned to a vehicle (Initialization 2 in Figure 5.4). We can
also attempt to minimize the number of coalitions by first assigning packages to
vehicles that can handle their demands then spread the remaining virtual pack-
ages across multiple vehicles (Initialization 2 in Figure 5.4). A sample delivery
problem and initialization is presented in Figure 5.4: given three packages with
demands of 1,2, and 3 units, there are four vehicles available each with a capac-
ity of 2 units except the one who has a capacity of 3 units. In this work, we
investigate both approaches and study their effect on the convergence of GA.

Crossover Operator

The crossover operation must maintain the validity of the chromosome, i.e. if a
chromosome is in the feasible region, the crossover operation must keep the chro-
mosome in the feasible region. Given two chromosomes in the feasible region, a
crossover point is randomly selected based on the length of the shorter chromo-
some (since the chromosomes do not have a uniform length). Then, the genes to
the left of the crossover point are swapped to maintain the correct chromosome
lengths. Figure 5.5 illustrates this operation.
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Figure 5.5: GA Crossover Operation

Figure 5.6: GA Mutation Operation

Mutation Operator

The mutation operation is slightly different from generic GA since this operation
must insure that the chromosome still satisfies the constraints. In generic GA,
mutation is simply changing the value of a random gene in a chromosome. How-
ever, doing so in our formulation may result in a package being dropped from the
solution or a package being assigned to two vehicles. Therefore, we modify the
mutation operator by defining it as being a gene swap between two chromosomes.
Therefore, we randomly select two genes from two chromosomes and swap their
values, as shown in Figure 5.6. While this may seem very similar to the crossover
operation, we note a crucial difference that justifies keeping both operations: in
certain scenarios, a portion of the genes would never be modified by the crossover
operation. Introducing the mutation operation would allow GA to modify these
genes and hence reach all of the search space. For example, if a problem contains
four vehicles with capacity 5 and one with capacity 8, the last 3 genes in the
vehicle with capacity 8 would never be modified since the crossover operation
will always select a crossover point that is less than 5 (to maintain the vehicle
capacities).

Fitness Function

GA adopts the same fitness function as QGA, described above.

5.4 Empirical Validation

5.4.1 Experimental Setup

The experiments were run on an Intel Core i7 processor with 8 GB of RAM with
a Windows 10 operating system. The code was written in Matlab R2016b. In all
experiments, the evolutionary algorithms were allowed to run for a maximum of
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Table 5.2: Instance Description

Instance Number of
Requests

Demand Range Number of
Vehicles

Capacity Range

ID1 5 {1,2} 5 {1}
ID2 3 {1,2,3,4,5} 5 {1,2,3}
ID3 10 {1,2,3,4,5} 10 {1,2,3,4,5}
ID4 10 {1,2,3,4,5} 10 {1,2,3,4,5}
ID5 10 {1,2,3,4,5} 10 {1,2,3,4,5}
ID6 30 {1,2,3,4,5} 20 {1,2,3,4,5}

100 iterations, unless otherwise specified. Also, Manhattan distances were com-
puted in the cost function. To test the proposed solvers, we randomly generate
PDP scenarios by specifying the number of vehicles and packages, in addition
to their respective capacity and demand ranges. We also specify the size of the
grid that includes the pickup and delivery locations. We assumed all vehicles
are housed in a depot with a fixed location (at the origin of the 2D grid). PDP
scenarios of various sizes were created and summarized in Table 9.3.

5.4.2 QGA Results

Table 5.3 summarizes the performance of QGA with and without CF. We notice
that as the problem size increases, the computational time of QGA increases ex-
ponentially while that of GA increases linearly. For small problem sizes, it is clear
that QGA converges to less costly schedules. For larger problems, QGA strug-
gles to converge to a solution (Inf implies an infinite cost function, i.e. solution
is not in feasible region); this is expected given the exponentially larger search
space. Therefore, it is important to develop a more computationally efficient
search algorithm for PDP-CF.

5.4.3 GA Results

Table 5.4 summarizes the performance of GA. We cannot compare the perfor-
mance of GA and QGA in their current formulations because the latter finds a
static assignment for all packages, whereas the former finds the best packages to
deliver given the available robots (i.e. schedules are build incrementally). We
notice that, for some instances, GA converged to a solution that contained all
vehicles in a single coalition while other instances required multiple coalitions to
delivery the packages. The routing approach did not produce a significant differ-
ence in most cases with brute force and encoded routing approaches converging
to almost the same total distance traveled. Computational costs did not vary
significantly. However, as the problem size increases, the brute force approach
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Table 5.3: QGA Performance

Instance Algorithm With CF Total Distance Running Time (sec)

ID1 QGA Y 768 0.5142
ID1 QGA N 1047 0.2207
ID2 QGA Y 466 0.2930
ID2 QGA N 452 0.1907
ID3 QGA Y 2487 71.3716
ID3 QGA N 2401 0.6433
ID4 QGA Y Inf 69.0503
ID4 QGA N 67329 0.6145
ID5 QGA Y Inf 68.3353
ID5 QGA N 2220 0.5559

becomes more costly.

5.5 Conclusion

In this chapter, we presented two solvers to find schedules for PDP-CF. QGA
attempted to resolve the exponentially large search space of the MIP formulations
by leveraging QGA’s speed and efficient search space exploration, a byproduct
of the chromosomes’ linearly superposed gene states. GA’s encoding bypassed
the exponentially large search space by dividing packages into virtual packages;
chromosomes represented vehicles and genes represented these virtual packages,
with coalitions formed among vehicles with virtual packages corresponding to
the same physical package. Simulations on multiple PDP scenarios exhibited the
effectiveness of the proposed encoding. Future work will investigate a more ef-
ficient encoding for QGA that does not grow exponentially with the number of
vehicles. Applying GA’s encoding to QGA is one approach but would require ex-
tending the collapse procedure to non-binary gene. Formulating an online version
of the algorithm would be beneficial for dynamic CF. Incorporating additional
constraints such as time windows and package priority into the encoding would
allow the application of these solvers to a wider range of PDP scenarios. Finally,
benchmarking QGA and GA on more realistic scenarios would provide a better
idea of their merits.
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Table 5.4: GA Performance

Instance With CF Routing Total
Distance

Running
Time
(sec)

Number of
Coalitions
(size range)

ID1 Y Encoded 18,035 0.21 3 ([1,2])
ID1 Y Brute force 18,035 0.16 3 ([1,2])
ID2 Y Encoded 28,345 0.15 2 ([1,5])
ID2 Y Brute force 28,825 0.14 2 ([1,5])
ID3 Y Encoded 95,448 35.1 1 (8)
ID3 Y Brute force 27,200 35.2 1 (8)
ID4 Y Encoded 35,867 34.9 5 ([1,3])
ID4 Y Brute force 40,686 35.41 5([1,3])
ID5 Y Encoded 63,533 35.1 5([1,3])
ID5 Y Brute force 52,142 35.0 5([1,3])
ID6 Y Encoded 146,728 35.56 10 ([1,3])
ID6 Y Brute force 96,063 35.36 10 ([1,3])

64



Chapter 6

PDP Solver: A Deep Learning
Approach

In this chapter, we present a data driven approach to PDP-CF scheduling by
training an ANN to solve for PDP-CF schedules. Since ANN are most commonly
trained in a supervised framework, a dataset of PDP scenarios and their schedul-
ing solutions must be compiled. Section 6.1 motivates this approach. Section
6.2 summarizes existing work that adopts ANN for decision making problems.
Section 6.3 proposes multiple ANN formulations for PDP-CF, then section 6.4
describes the database that must be compiled to train these models. Finally,
section 6.5 concludes with future work.

6.1 Introduction

ANN have been adopted to solve many problems from classification and regression
to function approximation, optimization and control problems. Their universal
approximation capabilities and their uniform structure make them attractive in
many applications. Their drawbacks include the need to compile a large set
of generally labeled training data, their susceptibility to overfitting and their
computationally expensive training algorithms. Nevertheless, adopting ANN to
find schedules for PDP-CF would shift the burden of modeling this complex
problem from the system designer to the ANN.

Multiple input-output representations can be adopted for the PDP-CF prob-
lem, from images to graphs, that would influence how well ANN will learn a model
and make predictions. Different ANN architectures have been presented in the
literature to optimize the training process for different data types. For example,
Convolutional Neural Networks (CNN) were developed to handle images or 2D
inputs without resorting to flattening the input, whereas RNN could handle time
series data without explicitly representing the time dependencies. Furthermore,
a subset of these architectures has mainly targeted irregularly structured data
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such as graphs and manifolds [364].
In this work, we develop an ANN solver for PDP-CF that can be trained on

a compiled dataset of PDP scenarios. We discuss multiple formulations of ANN
to solve PDP-CF. Specifically, one formulation is to represent PDP scenarios as
graphs (inputted to the network) where nodes represent vehicles, pickup locations
and delivery locations. Arcs represent valid transitions between nodes with arc
weights representing the associated cost. The network output is a graph with the
arcs that are included in the solution, i.e. the network will prune connections in
the graph to obtain a scheduling solution. Another possibility is represent agents,
packages and environments by feature vectors and have an ANN learn a model
to map the input to an agent-package pair. We also discuss the characteristics of
a dataset of PDP scenarios that should be compiled to train the proposed ANN
models.

6.2 Literature Review

ANN have been applied to many control problems, optimization problems, and
decision making models including MDP and POMDP, as discussed in Chapter 3.
In this section, we will focus on ANN applied to graph data.

ANN including feedforward networks, CNN, and RNN have learned from an
array of data types including images, speech, text, seismic and others. This data
can be represented on regular grids (Euclidean spaces), non-Euclidean manifolds,
or graphs. Data represented as graphs includes social networks, brain connectiv-
ity, word embeddings and PDP.

Extensions to non-Euclidean data in the literature include geodesic CNN
which generalize CNN to non-Euclidean manifolds which are locally Euclidean,
based on geodesic or polar coordinate system, that are similar to “patches” in
images [364]. Multiple layers perform various functions such as geodesic con-
volution, Fourier transform [365, 366], linear combination, point-wise and global
shape descriptor extraction [367], and other functions to effectively process non-
Euclidean data. This approach is a natural way of generalizing CNN to manifolds,
where convolutions are fulfilled by sliding a window over the manifold, and local
geodesic coordinates are used in place of image “patches”.

CNN have learned affinity graphs for image segmentation in a supervised
framework by manually creating ground truth affinity graphs for images [368].
Segmentation significantly improved when combining segmentation algorithms
with CNN’s affinity graph on three dimensional segmentation of neuronal pro-
cess reconstruction. [369] adopt spectral graph theory to extend CNN to irregular
representations such as graphs. Spectral graph theory allows the efficient appli-
cation of convolution filters on graphs by focusing on local neighborhoods and
developing a recursive formulation. [370] applied CNN to graph-structured data
by generalizing the convolution operator. Their “edge-conditioned convolution”
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computes the weighted sum of signals between a node and its neighbors, weighted
by the edges, without resorting to spectral graph theory.

Instead of modifying CNN to process graph, [371] preprocessed graphs then
applied generic CNN formulations to the modified input. Local neighborhoods
in graphs were first selected, then the subgraph was normalized to convert the
graph representation to a vector space representation before CNN filters process
the graphs.

6.3 Methodology

In this section, we discuss possible ANN formulations. First, we discuss how
descriptors can be used to represent agents, packages and environments. Then,
we present two possible ANN formulations that will be investigated in future
work.

6.3.1 Agent Descriptors

An intelligent agent, whether virtual or physical, exhibits multiple characteristics
that allow it to operate in its environment. An agent’s cognitive architecture is
the core infrastructure that allows an agent to perceive and act on its environment
to obtain a reward. The level of sophistication of the agent’s perception, reason-
ing, decision making and learning modules, among other factors, determines the
effectiveness of the agent at accomplishing tasks with varying complexities.

Robotic agents capable of delivering packages autonomously consist of mul-
tiple hardware components, as shown in Figure 6.1. Perception and actuation
hardware allow robots to interact with the environment, whereas communication
devices enable robots to communicate with other agents or the cloud. Computa-
tional resources allow robots to process percepts and make decisions, and power
sources provide the necessary energy for the agent to function. Each component
influences the ability of each robot to perform package delivery tasks and should
be considered when forming delivery schedules. While the state component in
Figure 6.2 is not a physical component, it incorporates task dependent features
describing the current state of the robot in the environment and provides crucial
information to the decision making module.

Figure 6.2 represents a hierarchical list of functions a package delivery robot
must possess. A package delivery task consists of two main subtasks: navigation
and package handling. Functionality related to navigation and package handling
are denoted in blue and red, respectively. To successfully navigate from source to
destination, robots should execute multiple lower level functions such as localiza-
tion, path planning, environment mapping and obstacle avoidance. Furthermore,
executing these functions requires motion planning. Handling a package requires
the robot to recognize these packages in the environment and displace them
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Figure 6.1: The main components of a robotic agent.
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Figure 6.2: The main functions of a package delivery agent.

through lower level functionality like lifting, gripping or pushing. Finally, sensors
and actuators provide the physical capabilities that allow robots to perform tasks
in real world environments.

6.3.2 Package Descriptors

Packages must be represented by at least their source and destination locations
and mass or demand (in capacitated problems). Additional properties can be
included in the descriptor vector to create a more realistic representation of
packages. For example, priority of delivery, handling requirements (e.g. fragile,
flammable...) and pickup and delivery time windows can be included. Combin-
ing these features with environmental characteristics would lead to the selection
of a more suitable coalition of robots or agents to deliver packages. Table 6.1
summarizes a descriptor of packages.

6.3.3 Environment Descriptors

Environmental descriptors can be generated from maps of given the source and
destination locations of the packages and Internet of Things devices that can
gather weather, traffic and other relevant information. Describing the environ-
ment would lead to a more suitable choice of agent that can handle a given
situation. This would reduce the uncertainty and improve the probability of an
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Table 6.1: Package Descriptor

Notation Description

(xi, yi, zi) Source or Initial Location
(xf , yf , zf ) Destination or Final Location

m Mass
pr Priority
h Handling requirements

TW time window

Figure 6.3: A feature based ANN formulation.

agent or coalition completing a task. Features that can be included in the de-
scriptor vector can include: visibility, wind, rain, ice, snow, traffic, terrain and
others.

6.3.4 ANN Formulation

Multiple formulation options can be considered when designing ANN. The first
option we consider is shown in Figure 6.3 where the agent, package and envi-
ronmental descriptors are inputted to a network that determines the pickup and
dropoff locations of a subset of packages and assigns a coalition of agents to
complete the task. This formulation allows transfer of packages at intermediary
locations between coalitions. This transfer could result to less costly solutions,
reduces the search space by allowing an incremental scheduling of package deliv-
eries and can tolerate agent failures.

Another formulation represents PDP-CF as a graph. Given a graph describ-
ing the PDP scenario (Figure 4.2), the network must prune connections from
the graph to obtain a cost effective solution that schedules delivery tasks. Re-
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Figure 6.4: A graph based ANN formulation.

Figure 6.5: A GAN formulation.

maining connections represent which vehicles will visit pickup and delivery nodes
associated with specific packages. This formulation is more complex since ANN
models that can handle non-Euclidean data must be formulated. Multiple such
formulations exist in the literature and can be investigated.

Finally, the last possible formulation adopts a generative adversarial network
(GAN) to generate possible solutions to a given PDP scenario. Once a solution is
generated, another network determines whether this solution is a valid schedule,
i.e. it satisfies the constraints. Many such solutions would be generated and the
least costly option would be adopted. However, GANs are challenging to train
since they suffer from convergence issues. Nevertheless, this approach my lead to
a more efficient search of the very large space and is worth investigating.
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6.4 Database Description

6.4.1 Descriptor Representation

Real-world environments present autonomous package delivery systems with many
challenges from environmental stochasticity and diversity to agent uncertainty.
Therefore, validating the algorithms proposed in this work on artificial data does
not guarantee its effective deployment to real-world environments. To validate
these algorithms on more realistic scenarios, a more realistic dataset should be
built, with characteristics that more faithfully model real-world environments.
We identified four main components that should be represented in the database:
1) agent descriptors, 2) package descriptors, 3) delivery routes characteristics,
and 4) delivery schedules.

Agents

We consider two types of agents: robots (UGV and UAV) and non-robotic agents.
Using Figure 6.1 to characterize and represent agents, we created a set of UGV
and UAV based on existing models. Specifically, six UGV models (Pioneer LX,
Pioneer 3, Seekur Jr, AmigoBot, Laser PowerBot, and KUKA KMR iiwa) were
used as the base models, from which 95 variants were created by modifying hard-
ware specs and accessories. The robot data sheets were used to build the feature
vectors for each robot. Multiple features were included based on the six categories
in Figure 6.1.

Similarly, five UAV models (Lockheed Martin, DJI S900 Ready To Fly, AscTec
Pelican, AGRASMG-1, and FREEFLY ALTA 8) were used to create a set of
20 heterogeneous agents with various capabilities. The non-robotic agents such
as cloud resources and Internet-of-Things devices (weather, traffic ...) will be
integrated into the set of agents by creating feature vectors based on their data
sheets.

Packages

Various package delivery companies such as DHL, FedEx and UPS [372] have
made publicly available various datasets about their package delivery activities.
Specifically, they have provided information about packages that go through their
facilities including destination addresses, location type, and pickup/delivery time
windows. Package characteristics such as type, weight and fragility were not
provided. We used these datasets to create our set of packages but made some
modifications. Instead of using the warehouses are source locations for all package
instances, we changed some to other residential or business locations. We added
weight, fragility (handling), and priority as features describing the packages. In
total, approximately 122,000 packages were compiled.
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Delivery Routes

We considered two APIs to retrieve delivery routes and their characteristics: 1)
Google Maps, and 2) open street maps [373]. We adopted the open street maps
API due to its user-friendliness and its popularity in vehicle route planning lit-
erature. Given source and destination locations (their longitudes and latitudes),
we retrieved the intermediary points of the shortest route, as determined by open
street maps. The route is a valid navigation path along existing roads in cities and
urban environments. The distance is computed using the haversine formula [374]
in (6.1) (R is the radius of the sphere or Earth in this case). Given the longitudes
(φ1 and φ2) and latitudes (λ1 and λ2) of two points on the sphere, this formula
computes the circle-distance between these two points. To approximate the dis-
tance of a route, we sum the haversine values of consecutive intermediary points
along the route.

d = 2R. arcsin

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1) cos(φ2) sin2

(
λ2 − λ1

2

))
(6.1)

Some features are missing from this database but will be included in future
versions of this database. Specifically, we did not retrieve any terrain charac-
teristics or weather conditions affecting roads (such as visibility or icy roads).
The considered APIs did not allow 3D route planning either; other APIs will be
considered to obtain valid routes for UAV.

So far, we have collected approximately 3400 routes in the city of Atlanta,
Georgia (USA) by selecting addresses from the DHL dataset []. These addresses
were randomly combined in pairs and routes were retrieved for these pairs.

Delivery Schedules

In a supervised learning framework, we generate delivery schedules for PDP sce-
narios using MIP, GA and QGA solvers. While the solutions may not be optimal,
they are generally good enough. For small scale problems, brute force search could
also be adopted to find the optimal solution if it exists and measure how far from
the optimal is the solution of other solvers. Given the schedules, we can train
ANN in a supervised framework.

It is possible to train ANN for PDP in an RL framework by developing a game-
like simulation environment agents form coalitions and complete delivery tasks in
this environment. Rewards would be awarded to agents based on completing the
task which would allow ANN to learn which agents work well in a coalition and
for what tasks. However, a survey of existing simulators should be performed
to determine the most suitable simulator, if one exists. Otherwise, a simulator
should be designed and implemented for this purpose.
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Figure 6.6: An image of the graphical representation of a PDP scenario.

6.4.2 Graphical Representation

A labeled corpus must be compiled to train ANN in a supervised framework. To
do so, we can rely on the solvers in Chapter 5 to generate acceptable scheduling
solutions to PDP and PDP-CF.

First, we must convert a PDP scenario to its graph theoretical representation
and save the graphs as images, as shown in Figure 6.6. Pickup nodes, delivery
nodes, and vehicle nodes are plotted in the Cartesian coordinate system. Pickup
and delivery nodes represent the packages’ source and destination locations; the
size of the node represents the demand of packages. To simplify the problem,
we bin the demands into three categories: small, medium and large. The vehicle
nodes represent the start location of vehicles and the node sizes represent the
capacity of vehicles which are also quantized into three bins (small, medium,
large).

Arcs between the various nodes are plotted and represent the cost of going
from one node to another. The directed graph is not fully connected: connections
that are not allowed are eliminated. For example, connections from delivery
nodes to pickup nodes corresponding to the same package are not allowed since
a package cannot be delivered before it has been picked up.

Then, solutions to the various scenarios are generated using GA, QGA and
MIP solvers. Since these solvers generally converge to sub-optimal solutions,
we generate multiple acceptable solutions per PDP scenario. We also generate
solutions that are not acceptable (i.e. they violate constraints) and label them as
incorrect. Solutions are represented by the same graph with the arcs traversed
by the vehicles plotted only. A sample solution is shown in Figure 6.7.
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Figure 6.7: An acceptable solution to a PDP scenario.

6.5 Conclusion

In this chapter, ANN models were proposed to determine a suitable package
delivery schedule. The characteristics of training data was also discussed. The
next step for this work is to compile a large enough dataset and train the proposed
ANN models before comparing them to the solvers in Chapter 5. Future work
will also investigate training ANN in an RL framework to reduce the burden of
compiling labeled data. Transfer learning can also be investigated to reduce the
learning overhead before deploying a model by leveraging trained models from
similar domains. Incorporating environmental descriptors can further improve
performance, especially in outdoor package delivery problems by modeling terrain
characteristics, weather conditions and others to form the most suitable coalition
for a given environmental state and delivery task. Other types of ANN, such as
competitive networks and generative adversarial networks, could be investigated
to achieve better performance.
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Chapter 7

ANN Training Algorithm: A
Non-iterative Approach

RNN are a type of ANN that have been successfully applied to many problems
in artificial intelligence. However, they are expensive to train since the num-
ber of learned weights grows exponentially with the number of hidden neurons.
Non-iterative training algorithms have been proposed to reduce the training time,
mainly on feedforward ANN. In this chapter1, the application of non-iterative
randomized training algorithms to various RNN architectures, including Elman
RNN, fully connected RNN, and Long Short-Term Memory (LSTM), are investi-
gated. The mathematical formulation and theoretical computational complexity
of the proposed algorithms are presented. Finally, their performance is empir-
ically compared to other iterative RNN training algorithms on time series pre-
diction and sequential decision-making problems. Non-iteratively-trained RNN
architectures showed promising results as significant training speedup of up to
99%, and improved repeatability were achieved compared to backpropagation-
trained RNN. Although the decrease in prediction accuracy was found to be
statistically significant based on Friedman and ANOVA testing, some applica-
tions like real-time embedded systems can tolerate and make use of that. The
rest of this chapter is organized as follows. Section 7.1 motivates the proposed al-
gorithms. Section 7.2 summarizes related work. Section 7.3 presents the proposed
training algorithms. Section 7.4 presents a theoretical analysis of the proposed
algorithms before discussing the simulation results in section 7.5. Finally, section
7.6 concludes with some final remarks.

1This chapter appears in Rizk, Y., and Awad, M., “On Extreme Learning Machines in
Sequential and Time Series Prediction: A Non-Iterative and Approximate Training Algorithm
for Recurrent Neural Networks,” Elsevier Neurocomputing, 2018 (in press).

76



7.1 Introduction

Sequential decision-making and time series prediction problems are an integral
part of smart cities with applications in smart electric grids, intelligent trans-
portation systems, robotic systems, Internet of things and others. These appli-
cations generally require computationally efficient algorithms that are difficult to
deploy on energy aware and computationally limited platforms.

ANN, and RNN specifically, have been successfully applied to many problems
in artificial intelligence and machine learning including time series prediction
and sequential decision-making problems. While they are the most powerful neu-
ral networks and have exceeded human performance on some applications [375],
RNN training, which mainly relies on iterative optimization, is computationally
expensive and faces difficulty in resource-challenged applications. Thus, non-
iteratively trained ANN such as random weight neural networks (RWNN) [376],
random vector functional link (RVFL) [377], random activation weight network
(RAWN) [378], and ELM [379] have been investigated to reduce training costs.

In this paper, we investigate training various RNN architectures non-iteratively,
to reduce the computational complexity of RNN training. Specifically, we apply
a non-iterative randomized offline training algorithm based on Moore-Penrose
pseudoinverse, which was proposed by Schmidt et al. in 1992 [376], Pao et al.
in 1994 [377], Te Braake and Van Straten in 1995 [378] and Huang et al. in
2004 [379], on a variety of RNN architectures. The following RNN architectures
are considered in this work: Elman [380], Jordan [381], fully connected [382], non-
linear auto regressive moving average with exogenous input (NARMAX) [383],
and LSTM [384]. Networks with and without direct links (DL), connections
between the input and output layer neurons [385], are also considered.

Since learning the weights of the recurrent connections is not a linear problem,
we propose two training algorithms to address this issue: the first, ELM-rand,
randomly assigns values to the recurrent connection weights, while the second,
ELM-lin, linearizes the non-linear activation functions and learns the recurrent
connection weights using one of the non-iterative training algorithms mentioned
above. Table 7.1 summarizes the various network architecture/training algorithm
combinations investigated in this work (denoted by “X”) and those presented in
the literature. In addition, “N” denotes the absence of DL while “Y” denotes
their presence.

The proposed algorithms are validated on the double inverted pendulum
problem modeled as a POMDP and 14 publicly available time series prediction
databases. Compared to RNN trained using the iterative backpropagation al-
gorithm, non-iteratively trained RNN achieved faster training time and better
repeatability while incurring an increase in prediction error.

The contributions of this work include:

1. proposing two non-iterative training algorithms for multiple RNN architec-
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Table 7.1: ANN architecture and training algorithm combinations proposed in
this work (denoted by X)

Network DL Iterative training Non-iterative training

Elman N [380] X
Elman Y - X
Jordan N [381] [386]
Jordan Y [387] X
NARX/NARMAX N [383] X
NARX/NARMAX Y - X
Fully connected RNN N [382] X
Fully connected RNN Y - X
LSTM N [384] X
LSTM Y - X
Feedforward N [388] [376,378,379]
Feedforward Y [385] [377]

tures including fully connected RNN and LSTM,

2. comparing the theoretical computational complexity of various RNN archi-
tectures when trained non-iteratively,

3. and empirically comparing the proposed algorithms to other algorithms in
the literature on multiple publicly available datasets for time series regres-
sion and control problems.

7.2 Literature Review

In this section, we survey existing work on RNN architectures and non-iterative
training algorithms for various applications including classification, regression
and clustering of sequential and non-sequential data.

7.2.1 Recurrent Neural Networks

RNNs are the most powerful ANN and are considered general computers [375];
the network’s weights are its program, and changing them implies changing the
program it runs. The main difference between RNN and ANN is the presence
of recurrent connections that form cyclic graphs. Many RNN architectures and
training algorithms have been proposed in the literature for various applications;
we discuss a few in what follows.
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Network Architectures

Various methods of introducing cycles in a graph yield different types of RNN. In
this work, we consider the six architectures illustrated in Figure 7.1. Some more
complex RNN architectures, which are not within the scope of this work, include
bidirectional RNN which combine the output of two RNN, each processing the
input sequence in a different direction [389], hierarchical RNN which feed the
output of one RNN to another RNN [390], continuous time RNN [382], complex-
valued RNN [391], and time-delayed RNN with reaction-diffusion terms [392,393].

Figure 7.1: Different RNN Architectures

The simplest forms of RNN include Elman [380] and Jordan RNN [381], de-
scribed by (7.1) and (7.2) respectively, which are single hidden layer networks
with context neurons. Context neurons introduce recurrence into the network by
feeding back signals in the network. Jordan networks provide context in terms of
the predicted output. Although simpler to training using traditional backpropa-
gation, Jordan RNN cannot represent an arbitrary dynamical system [394]. On
the other hand, Elman networks provide context in terms of the internal state
of the network which allows them to represent any Qth order dynamical system,
where Q is the number of context neurons [395]. However, these networks are
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difficult to train using backpropagation as the network depth and size increases,
due to the vanishing gradient problem [384].

ŷ(t) =
M∑
i=1

βifi(t)

fi(t) = g

(
wTi x(t) +

Q∑
k=1

αikfi(t− k) + bi

) (7.1)

ŷ(t) =
M∑
i=1

βig

(
wTi x(t) +

Q∑
k=1

αikŷ(t− k) + bi

)
(7.2)

Recurrent NARMAX networks, described by (7.3) where e(t) = y(t) − ŷ(t),
have been proposed for non-linear time series prediction using ANN [383]. They
were trained using BPTT but proven to be special cases of fully connected RNN
architectures [383]. Determining the order of the output and error polynomials is
generally based on a grid search and affects the number of input layer neurons, as
shown in Figure 7.1(c). In a fully connected RNN architecture, which is described
by (7.4), neurons are connected to all other neurons which include neurons in the
same, previous and subsequent layers. A fully connected RNN is the most general
RNN architecture.

ŷ(t) =
M∑
i=1

βig

(
F∑
j=1

wijxj +

F+Q∑
j=F+1

wijy(t− j + F )

+

F+Q+R∑
j=F+Q+1

wije(t− j + F +Q) + bi

) (7.3)

ŷ(t) =
M∑
i=1

βifi(t)

fi(t) = g

(
wTi x(t) +

Q∑
k=1

M∑
l=1

αiklfl(t− k) + bi

) (7.4)

LSTM networks were proposed to solve the vanishing gradient problem, present
when training RNN with backpropagation [384]. LSTM cells replace neurons as
the network’s basic units, as shown in Figure 7.1(e). An LSTM cell consists of a
typical linear neuron and multiplicative gates that feedback outputs and inputs
to the neuron while controlling their effects on the linear unit through forgetting
factors and weights. The output of the LSTM block is described by (7.5), where
◦ represents the Hadamard product of two matrices.
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ŷ(t) =
M∑
i=1

βifi(t)

λ(t) = gλ (Wλx(t) + Uλf(t− 1) + bλ)

in(t) = gin (Winx(t) + Uinf(t− 1) + bin)

o(t) = go (Wox(t) + Uof(t− 1) + bo)

c(t) = λ(t) ◦ c(t− 1) + in(t) ◦ gc (Wcx(t) + Ucf(t− 1) + bc)

f(t) = o(t) ◦ gf (c(t))

(7.5)

Finally, converting RVFL ANN from a feedforward to a recurrent RVFL ar-
chitecture, i.e. RNN with DL, simply requires us to pass the input through a
preprocessing phase before applying it to any one of the RNN architectures. Fig-
ure 7.1(f) depicts a Jordan RNN architecture with DL, which is described by
(7.6). However, similar illustrations can be derived for Elman, fully connected,
NARMAX and LSTM networks.

ŷ(t) =
M∑
i=1

βiφi(t) +

Q∑
k=1

αkŷ(t− k) (7.6)

Training Algorithms

Many training algorithms have been proposed for RNN. Gradient descent based
methods are iterative approaches and include backpropagation through time
(BPTT) [396] and real-time recurrent learning [397]. Given a sequence of input-
output pairs and initial weight values, BPTT unfolds the recurrence in the net-
work through time to transform an RNN to a feedforward network trained using
backpropagation. BPTT performs a forward and backward pass at each time
step. However, this method is susceptible to local minima and suffers from the
vanishing gradient problem when run on a fully connected RNN. Furthermore,
BPTT can only be iteratively applied in batch mode. Therefore, an online alter-
native, real-time recurrent learning, was introduced which performs one forward
pass only and computes RNN’s derivatives with respect to its parameters without
storing hidden states.

Other algorithms that optimally train RNN include a Hessian free optimiza-
tion algorithm which reduces the computational complexity of the optimization
algorithm by avoiding the expensive computation of the Hessian matrix using
the truncated Newton method [398]. [399] adopted the Levenberg-Marquardt
optimization algorithm to learn RNN weights. Bayesian filters including the ex-
tended Kalman filters [400] have been used to compute RNN weights and improve
RNN training convergence. On the other hand, search algorithms have also been
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adopted including particle swarm optimization [401], genetic algorithm [402], ar-
tificial immune system and ant colony optimization [401].

Even though these iterative training algorithms have performed well in many
applications, they remain computationally expensive and require the manual tun-
ing of many hyper-parameters. A non-iteratively trained Jordan RNN was pro-
posed by [386] for electricity load forecasting. The non-iteratively trained network
fed back the output layer values to the input layer and was tested on only one-
time series prediction problem. The approach was only validated on this simple
RNN architecture which cannot learn more complex real-world problems. In our
work, we attempt to generalize this non-iterative approach to more powerful RNN
architectures.

Reservoir Computing

Reservoir computing [403] is a type of RNN with random connections used to
map temporal data to higher dimensions. The readout is then trained using some
machine learning algorithm which is generally iterative. One example is the echo
state machine, a sparsely connected RNN with randomly assigned weights [404].
Liquid state machines are spiking RNNs with random connections that map time-
varying inputs to spatio-temporal neuron activation patterns [405]. Instead, we
investigate the effect of random connections on densely connected RNN with
deterministic neurons using a non-iterative training algorithm.

7.2.2 Non-Iteratively Trained Artificial Neural Networks

Many researchers have attempted to develop computationally less expensive al-
gorithms to train ANN. Randomized training algorithms, surveyed in [406], are
one approach to reduce training complexity, with some references developing non-
iterative training algorithms which improved training time significantly since the
connection weights are computed once. To that end, RWNN in 1992 [376], RVFL
in 1994 [377], RAWN in 1995 [378] and ELM in 2004 [379] were proposed to train
single hidden layer feedforward networks by randomly assigning input weights
and computing output weights using the least squares method.

Random Weight Neural Networks

To reduce the training time of feedforward ANN, Schmidt et al. [376] applied
non-iterative training to the single hidden layer feedforward ANN. This network
architecture, shown in Figure 7.2 (without DL), appended the hidden layer with a
bias neuron to produce the input-output function in (7.7). The predicted output
of the network ŷ is a non-linear function of the input due to the presence of g(.)
which represents the activation function. Hereafter, Schmidt et al.’s approach is
referred to as RWNN.
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Figure 7.2: Single hidden layer feedforward network trained non-iteratively with
randomized input weights

The supervised training of ANN involves minimizing the square of the error
between the expected output y and the predicted output ŷ: min e2 = (y −
ŷ)2. Since the objective function is quadratic, least squares can be used to solve
for these variables in one step when the minimization problem is linear in the
optimization variables.

The algorithm proposed in [376] randomly assigns input weights wi from a uni-
form distribution which leads to a linear optimization problem, as shown in (7.7).
Therefore, the output weights β may be analytically computed. Considering the
single hidden layer feedforward ANN in [376], the output matrix H is computed
using (7.8) where an element of H is hji = g(wTi xj), i = 1, ...,M, j = 1, ..., N , and
the (M+1)th column contains 1 that multiplies the bias neuron. Note that wi has
dimensionality MF , where F is the number of features in the input vector. The
output weights form the parameter vector θ = β with dimension M + 1 and are
learned using the generalized Moore-Penrose pseudoinverse, θ = (HTH)−1HTy,
where y is the target matrix or desired output in a supervised learning paradigm.

ŷ =
M∑
i=1

βig
(
wTi x

)
+ βM+1 (7.7)

H =

g(wT1 x1) . . . g(wTMx1) 1
...

. . .
...

...
g(wT1 xN) . . . g(wTMxN) 1


N×(M+1)

(7.8)
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Random Vector Functional Link Networks

RVFL networks added direct connections from the input to the output layer, as
shown in Figure 7.2 and described by (7.9). It randomly assigned weights to
the input weights and biases from a uniform distribution and learned the output
weights, whose dimension is M + F , using a non-iterative algorithm to reduce
training complexity [377].

ŷ(t) =
M∑
i=1

βig(wTi x(t) + bi) +
M+F∑
i=M+1

βixi−M(t) (7.9)

RVFL, which is based on a functional link ANN architecture results in the
matrix shown in (7.10). The output weights are computed as in the previous
subsection. Therefore, the main differences between RVFL and RWNN are adding
a bias to each hidden neuron and modeling a linear dependence between the input
and output through direct input-output connections.

H =

x
T
1 g(wT1 x1 + b1) . . . g(wTMx1 + bM)
...

...
. . .

...
xTN g(wT1 xN + b1) . . . g(wTMxN + bM)


N×(M+F )

(7.10)

These direct connections have been empirically shown to improve the per-
formance of such networks over networks without these connections. For exam-
ple, [407] showed the significance of the direct input-output connections when
applying an ensemble RVFL learning paradigm, which outperformed ELM net-
works, to the crude oil price prediction problem. [408] reached a similar conclusion
with regard to the effectiveness of DL when they formulated an ensemble method
based on randomized networks including RVFL and ELM with successive projec-
tion for regression. A comprehensive analysis of RVFL was performed in [409],
discussing parameter sensitivity, activation functions and other effects on 121
UCI classification data sets. They demonstrated RVFL’s superior performance
compared to ELM and empirically illustrated the importance of DL between the
input and output, revealing a superposition of linear and non-linear dependence
of the output on the input which is not captured in ELM’s network architecture.
This was also evident [410] who applied RVFL to electricity load prediction.

Random Activation Weight Networks

RAWN, introduced by [378], modified RWNN’s training algorithm by randomly
assigning the activation or input weights of the network in Figure 7.2 (without
the DL), describing the input-output relationship in (7.11), from a normal dis-
tribution and performing regularization to ensure that H, described by (7.12),
was not singular. The hidden neurons have biases, and the output vector β has
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dimension M . As a result, this algorithm was shown to be suitable for control
applications and dynamic systems.

ŷ =
M∑
i=1

βig
(
wTi x+ bi

)
(7.11)

H =

g(wT1 x1 + b1) . . . g(wTMx1 + bM)
...

. . .
...

g(wT1 xN + b1) . . . g(wTMxN + bM)


N×M

(7.12)

Extreme Learning Machines

Huang et al. [379] applied non-iterative training to the single hidden layer feed-
forward ANN shown in Figure 7.2 (without the red arrows), naming the approach
ELM. This single hidden layer architecture relates the input x and output of the
network ŷ by the function in (7.11) where g(.) represents the activation func-
tion, and input weights wi and biases bi are randomly sampled from a uniform
distribution, performing regularization to H in (7.12) when necessary.

The input weights are anMF -dimension vector and the biases anM -dimension
vector. Unlike RWNN, ELM adds a bias term to each hidden neuron. How-
ever, [409,410] have shown through extensive experiments with numerous datasets
that biases do not contribute much to performance. Compared to RAWN [378],
ELM samples the input weights and biases from a uniform distribution as opposed
to a normal distribution as in [378]. In addition, this differs from RVFL’s formu-
lation which is a function of two summations, a non-linear and a linear weighted
sum of the input. These direct input-output connections, omitted in [379], have
been empirically shown to improve performance as RVFL has outperformed ELM
on various applications in [407–410].

ELM has been generalized to regression problems [411] and was adopted in
many applications from modeling ship roll motion [412] to tanker motion dy-
namics [413]. Online variants [414–417] have also been developed for real-time
prediction. ELM has been mainly applied to feedforward ANN, except for [386]
which non-iteratively trained a simple Jordan RNN architecture. However, Jor-
dan RNN cannot handle very complex problems. In this work, we investigate the
effectiveness of training other more complex RNN architectures non-iteratively
that can be applied to a wider range of regression problems.

Instead of performing batch learning, the output weights can be learned in an
online fashion by converting the least squares minimization algorithm to the RLS
algorithm using the matrix inversion lemma to obtain (7.13) [414]. This allows
us to train ANN on real-world problems where data is acquired incrementally.
Incorporating a forgetting factor enables the training algorithm to perform bet-
ter in non-stationary environments and in the presence of slowly varying model
parameters.
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θ(t) = θ(t− 1) +K(t)
(
y(t)−HT θ(t− 1)

)
K(t) = P (t)H(t) = P (t− 1)H(t)

(
I +HT (t)P (t− 1)H(t)

)−1
P (t) =

(
I −K(t)HT (t)

)
P (t− 1)

(7.13)

7.3 Non-Iterative Proximal Randomized Recur-

rent Neural Networks

In this work, we propose to train RNN using a non-iterative training algorithm.
While [386] proposed to apply non-iterative learning to the Jordan RNN archi-
tecture, we extend it to other RNN architectures. Based on (7.1) and the new
output matrix elements in (7.14), it is evident that the problem of learning the
weights of the recurrent connections, α, in Elman RNN is not linear. Similarly,
we can train a fully connected RNN non-iteratively based on (7.4) and obtain the
output matrix elements in (7.15), which is also not linear in α. The output ma-
trix elements of a NARMAX architecture are described by (7.16), and an LSTM
architecture is described by (7.17). As for RVFL networks, a fully connected
RNN with DL is described by (7.18), while a NARMAX and LSTM with DL are
described by (7.19) and (7.20), respectively.

hij(t) = g

(
wTi xj(t) + bi +

Q∑
k=1

αikfi(t− k)

)
(7.14)

hij(t) = g

(
wTi xj(t) + bi +

Q∑
k=1

M∑
l=1

αilkfl(t− k)

)
(7.15)

hij(t) = g
(
wTi
[
xTj (t), yTj (t), eTj (t)

]T
+ bi

)
(7.16)

hij(t) = o(t) ◦ gf (c(t)) (7.17)

hij(t) =

{
g
(
wTi xj + bi

)
if 1 ≤ i ≤M

ŷj(t− i+M) if M < i ≤M +Q
(7.18)

hij(t) =

{
[xTj (t), yTj (t), eTj (t)]T if 1 ≤ i ≤ F

g
(
wTi
[
xTj (t), yTj (t), eTj (t)

]T
+ bi

)
if F < i ≤M + F

(7.19)

hij(t) =

{
xTj (t) if 1 ≤ i ≤ F

o(t) ◦ gf (c(t)) if F < i ≤M + F
(7.20)
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Table 7.2: Pseudocode for ELM-rand training algorithm

1. Randomly assign wi, bi, αi
2. Compute H
3. Perform regularization on H to avoid singular matrices
4. Compute β using the generalized Moore-Penrose pseudoinverse

7.3.1 Randomized Non-iterative RNN Training Algorithm

Our first attempt to resolve this non-linearity is to randomly assign the values
of α, like the input weights and biases. Therefore, the non-iterative training
algorithm can be applied as described in [376–379] with the output matrix ele-
ments as shown in (7.14) for the Elman RNN and (7.15) for the fully connected
RNN architecture, in addition to LSTM and networks with DL, without chang-
ing the parameter vector θ, i.e. θ = β. Hereafter, RNN architectures trained
non-iteratively with randomly assigned α values are referred to as ELM-rand.
Table 7.2 summarizes the ELM-rand algorithm for RNN architectures. Input
weights, biases and recurrent connections are randomly assigned. The output
matrix H corresponding to the network architecture is computed; regularization
is performed if necessary. Finally, the output weights are computed using the
generalized pseudo-inverse.

7.3.2 Linear Approximation of Non-iterative RNN Train-
ing Algorithm

Instead of randomly assigning the recurrent connection weights, these weights can
be learned by approximating the activation function with a linear function. More
specifically, we consider linearizing the sine and sigmoid activation functions as
follows. The sine function is approximated by its Taylor series expansion, shown
in (7.21), and results in the output matrix elements in (7.22), when using a first
order polynomial. The sigmoid function is approximated by a piecewise linear
function using the centered linear approximation method to obtain the function
in (7.23) [418]. In this case, we are estimating both β and α, resulting in a pa-
rameter vector of θ = [β, α]T . Hereafter, ELM-lin represents RNN architectures
trained non-iteratively with a linearized activation function. Table 7.3 summa-
rizes the ELM-lin algorithm for RNN architectures which randomly assigns the
input weights and biases. The output matrix H corresponding to the network ar-
chitecture is computed based on the linearized activation functions. Finally, the
output and recurrent weights are computed using the generalized pseudo-inverse.

g(z) = sin(z) =
∞∑
j=0

(−1)jz2j+1

(2j + 1)!
≈ z (7.21)

87



Table 7.3: Pseudocode for ELM-lin training algorithm

1. Randomly assign wi, bi
2. Compute H with a linearized activation function
3. Perform regularization on H to avoid singular matrices
4. Compute θ = [β, α]T using the generalized Moore-Penrose pseudoinverse

hij(t) = wixj(t) + bi +

Q∑
k=1

M∑
l=1

αilkfl(t− k) (7.22)

g(z) =
1

1 + e−z
≈ 1

2

(
1 +

z

2

)
(7.23)

7.3.3 Kaczmarz’s Projection Algorithm

To further reduce the computational complexity of RNN-NIPR algorithms, we
propose adopting Kaczmarz’s approximation of RLS, shown in (7.24) where γ > 0
and 0 < ξ < 2 are tunable relaxation parameters, to learn the output weights
in an online fashion. Online learning allows us to process data that is obtained
in real-time or pseudo real-time, i.e. it is not available offline to train a learning
algorithm. First proposed by Kaczmarz in 1937, this algorithm finds the solution
of a system of linear equations by iteratively projecting the current estimate
onto the equations’ solution space [419]. This method is also known as algebraic
reconstruction technique, and it is considered a special case of the projection onto
convex sets method [420].

While its convergence is slower than RLS, it is computationally more efficient
because it avoids updating the covariance matrix which can become computa-
tionally expensive as the number of parameters to estimate increases. The com-
putational complexity of this approximation is linear in the number of weights
that are learned, compared to quadratic for RLS. Since the number of weights to
learn in a fully connected RNN architecture grows exponentially with the number
of hidden neurons, training such a network for online applications becomes very
expensive when using RLS. Therefore, adopting Kaczmarz’s approximation could
lead to significant computational savings for energy aware applications.

θ(t) = θ(t− 1) +
γH(t)

ξ +HT (t)H(t)

(
y(t)−HT θ(t− 1)

)
(7.24)

7.4 Theoretical Analysis

In this section, we perform a theoretical comparison of the various non-iteratively-
trained RNN architectures.
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7.4.1 Computational Complexity

The computational complexity of training a network and predicting an output
given an input vector depends on the network architecture and training algorithm.
Therefore, to analyze the computational complexity of various RNN architectures
when trained non-iteratively, we first derive the complexity of the non-iterative
training algorithm for a generic feedforward single hidden layer network then
consider the output matrix dimensions of the different RNNs.

The non-iterative algorithm consists of three main steps: (1) randomly as-
signing values to the input weights and biases, (2) computing the output ma-
trix H and (3) solving for the parameter vector θ which contains the output
weights β, using the Moore-Penrose pseudoinverse. We consider a network with
F input neurons, M hidden neurons and 1 output neuron trained on N input
vectors. Assigning random values requires a constant amount of time and the
memory requirements are linear in the number of assigned values, equal to the
sum of input layer weights and biases. The output matrix H is an N ×M ma-
trix and consists of multiplying F -dimensional input vectors by F -dimensional
input weights and applying an activation function with a constant number of
floating-point computations c. Therefore, computing the H matrix requires a
total of NM(F + c) computations. Finally, calculating the pseudoinverse of H
and multiplying the result by the target output requires O(NM) operations when
M ≤ N and O(NM+N2M) otherwise. Since RNN are trained on a large number
of data points compared to the number of hidden neurons, computing θ requires
O(NM) operations. On the other hand, testing requires computing the H ma-
trix and multiplying it by β, equivalent O(M(F + c) +M) computations for one
test point, to find ŷ. Table 7.4 summarizes the time and space complexity of
the non-iterative training algorithm. The space complexity indicates how many
floating-point numbers are saved in memory.

Table 7.4: Computational complexity of ELM

Time complexity Space complexity

Randomly assign
weights and biases

O(1) O(FM +M)

Compute H O(NM(F + c)) O(NM)
Compute θ O(NM) O(M)

Training Total O(NM(F + c) +NM) O(FM + 2M +NM)

Focusing on the RNN architectures discussed in section 7.3, the number of
input layer weights, biases, hidden layer weights and output layer weights will
vary based on the architecture under consideration. Table 7.5 summarizes the
number of weights for each layer, based on the architecture. When training
Elman, fully connected and LSTM RNN using ELM-rand, the hidden recurrent
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weights will be randomly assigned and will not affect the size of the H matrix or
the number of parameters to estimate. However, for Elman and fully connected
RNN trained using ELM-lin, the parameter vector becomes θ = [β, α]T , and the
size of the H matrix is also affected. The number of input weights is based on the
dimensionality of the feature vector (F ) and the number of hidden layer neurons
(M). Jordan and NARMAX networks increase the dimensionality of the input
vector by feeding back the predicted output which results in a higher number of
input weights, as shown in Table 7.5. The LSTM cell contains four gates that
contain input weights, recurrent connections and biases, as shown in Figure 7.1,
leading to 4MF input weights per cell. The number of biases is equal to the
number of hidden layer neurons (M), except in the LSTM network where the
LSTM cell contains four bias weights. The number of recurrent connections in
the hidden layer depends on the number of hidden layers and number of time
steps fed back into the neuron. For example, it is possible to feedback only the
previous value of the neuron output, which means Q = 1. The number of output
weights depends on the number of direct connections from the hidden and input
layers to the output neurons. Input to output layer connections increase the
dimensionality of the parameter vector by the dimensionality of the input vector,
i.e. the dimensionality of θ becomes M + F .

Finally, the computational complexity of training a network involves com-
bining the number of weights in each architecture to the number of compu-
tations per weight for a given training algorithm. For example, a fully con-
nected RNN has M output weights, MQ recurrent weights, NM input weights
and M bias weights. Therefore, the ELM-rand algorithm requires a total of
O(NM(F +Q2 + c) +NM) computations and O(FM +M +MQ+NM +M)
of space on this network. On the other hand, training an Elman RNN using
ELM-lin would require O(N(MQ+M)) computations to find β, O(NM(F + c))
computations to find H and O(FM +M +NM +M +MQ) of memory.

7.4.2 Model Transformations

In this section, we investigate the relationship between the various RNN archi-
tectures. [383] proved that a non-linear autoregressive moving average(NARMA)
network is a special case of the fully connected RNN architecture; extending it
to NARMAX network simply involves adding the exogenous input to both in-
put layers. Moreover, αikl in (7.4) is set to −αikβi and wij in (7.4) is set to
wij + αij, j ≤ Q or wij, j ≤ F for F > Q. Jordan RNN are also a special case
of fully connected RNN and can be created by setting αikl in (7.4) to αikβi from
(7.2). Fully connected RNN can be converted to Elman RNN by setting αikl = 0
if k 6= 1 and i 6= l. Finally, Elman and Jordan RNN are equivalent when αik in
(7.1) is set to αikβj for i = j where j = [1,M ]. The model equivalences could
help to improve the performance of non-iteratively-trained RNN. For example,
one could train a NARMAX network, then convert it to a fully connected RNN
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Table 7.5: Number of weights per layer for ANN architectures

Network DL Input
Weights:
w

Biases:
b

Recurrent
Weights:
α

Output
Weights:
β

Feedforward N FM M 0 M
Feedforward Y FM M 0 M + F
Elman N FM M MQ M
Elman Y FM M MQ M + F
Jordan N (F +Q)M M 0 M
Jordan Y (F +Q)M M 0 M + F
Fully connected N FM M QM2 M
Fully connected Y FM M QM2 M + F
NARMAX N (F+Q+R)M M 0 M
NARMAX Y (F+Q+R)M M 0 M + F
LSTM N 4MF 4M 4M M
LSTM Y 4MF 4M 4M M + F

based on the weight relationships mentioned above. This would result in faster
training. Similarly, this methodology could be applied to other architectures as
well. However, the empirical performance of these theoretical transformations on
real-world problems should be investigated to confirm their merit.

7.5 Empirical Validation

In this section, we present the simulation results of applying non-iteratively-
trained RNN on multiple benchmarks compared to other ANN algorithms in the
literature, based on prediction accuracy and training time. Before presenting the
results, a brief description of the benchmarks and experimental setup is presented.

7.5.1 Experimental Setup

The experiments were run in Matlab R2016b on an Intel Xeon 64-bit proces-
sor with 12 cores, 2.0 GHz clock speed and 24 GB of RAM. Matlab’s neural
networks toolbox was used to train NARMAX-BPTT while the statistics and
machine learning toolbox was used to train support vector regression (SVR).
The SVR hyperparameters were obtained using Matlab’s built-in automatic hy-
perparameter optimization which search for the optimal kernel, box constraint,
epsilon value and other hyperparameters using Bayesian optimization. The ELM
code was downloaded from [421], and all other algorithms were written in Maltab
R2016b. Hereafter, ELM is referred to as feedforward network without DL trained
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using ELM-rand, and RVFL is referred to as feedforward network with DL trained
using ELM-rand or simply feedforward networks when no confusion is possible.

Multiple error measures were used to compare the performance of the var-
ious algorithms including mean square error (MSE), E[(y − ŷ)2], root MSE
(RMSE),

√
E[(y − ŷ)2], normalized RMSE (nRMSE), 1

ymax−ymin

√
E[(y − ŷ)2],

mean absolute error (MAE), E[|y − ŷ|], and normalized MAE (nMAE),
1

ymax−ymin

√
E[|y − ŷ|]. Furthermore, the training time and error measures of each

algorithm were averaged over 5 independent runs to assess repeatability since the
considered algorithms possess random characteristics. A repeatability analysis al-
lows us to determine how sensitive the algorithms’ performance is to the random
number generator.

Time Series Prediction

The proposed methodology was validated on time series prediction problems. Ta-
ble 7.6 summarizes the characteristics of the publicly available databases, sorted
in ascending order of total database size. The Sante Fe Laser data is station-
ary [422], while Quebec Births is non-stationary [423]. The data in Sante Fe Laser
was normalized to improve the condition number of the input matrix and avoid
matrix inversion singularities. For the electricity load balance data set [424],
the MT166 substation of the electricity load balance data set was selected for
training and MT257 for testing, and the input vector consists of the day of the
measurement after normalizing the data. AEMO data [425] reports the electric-
ity load demand in Australia; the first 70% of the data was used for training and
the remaining 30% for testing. The same was done for the Atmosfera Tempera-
ture, Atmosfera Humidity, Bebida, Consumo, Fortaleza, Ipi, and Lavras, obtained
from [426]. Deep tesla is an autonomous driving database whose purpose is to
predict the steering angle of the steering wheel given an image of the road ahead
as seen from the front window shield of a car [427]. The first 1,500 frames of
the database are used in our experiments since they correspond to the a single
driving simulation. Japan population tracks the population of various Japanese
regions [428]. The SP 500 database records the stock prices since 1950 [429].

POMDP-modeled Decision-Making

The inverted double pendulum on a sliding cart benchmark, also referred to
as the double pole balancing problem, is a continuous sequential decision-making
problem. The benchmark was run using the Simulink model of an inverted double
pendulum on a sliding cart in Matlab R2015b, on an Intel Core i7, 64-bit machine
with 2.4 GHz clock speed and 12 GB of RAM. The networks were trained on 1200
data points, then they were tested on 300 data points. Usually, the feature vector
contained the cart’s position and velocity in addition to the poles’ angles and
their velocities. The force applied to the cart was predicted. Excluding the cart
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Table 7.6: Description of the time series benchmarks

Database Number of
Training
Instances

Number of
Testing In-
stances

Exogenous
Input
Dimen-
sion

Output
Mean

Output
Standard
Deviation

Output
Min

Output
Max

Fortaleza 104 45 0 1445.0 496.95 468.0 2836.0
Consumo 108 46 0 120.90 27.24 75.39 232.0
Bebida 130 57 0 92.66 20.35 75.39 232.0
Ipi 130 57 0 103.60 18.28 65.81 148.3
Atmosfera
Tempera-
ture

255 110 0 15.35 3.16 5.6 21.6

Atmosfera
Humidity

255 110 0 81.15 7.95 53.34 95.79

Lavras 268 116 0 127.60 122.06 0 718
Santa Fe
Laser

700 300 0 59.9 46.9 2 255

Quebec
Births

1000 4113 0 250.8 41.9 -23.08 366.0

Deep
Tesla

1050 450 240 0.8523 3.2355 -6 6

Japan
popula-
tion

1778 762 0 0.1399×
107

0.1384 ×
107

0.0123×
107

1.3514×
107

SP500 12053 5165 1 0.0899×
1010

0.1533 ×
1010

0.0001×
1010

1.1456×
1010

AEMO 12264 5256 0 7981.57 1190.91 5113.03 13787.85
Electricity
Load Bal-
ance

140257 140257 1 2.7 ×
1014

2.6× 1014 0 9.9 ×
1014

and poles’ velocities makes the problem partially observable and can be modeled
using POMDP, which was considered in this work. The data was collected by
saving the input and output values of a PID controller designed to control the
plant. The controller was run for 10 seconds sampled at approximately 6.67ms.
Performance was measured by computing the MSE of the predicted force that
should be applied to the cart and the actual force that was applied by a PID
controller.

7.5.2 Non-iteratively-trained RNN Performance Analysis

A grid search was performed over the number of hidden neurons and types of
activation functions (sigmoid and sine) to find the best architecture. Figure 7.3
plots the predicted output values for ELM-lin trained fully connected RNN on
the AEMO database, which shows that the algorithms could learn the trend in
the data relatively well. Tables 7.7-7.17 summarize average (avg) and standard
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deviation (std) of the MSE, RMSE, MAE and training time of the various RNN
architectures for both ELM-rand and ELM-lin on some of the databases, when
sampling the random weights from a uniform distribution. Results of BPTT-
trained RNN and SVR are also included. The hyperparameter column reports
the number of hidden neurons for ANN algorithms and (kernel,box constraint)
for SVR.

Figure 7.3: Predicted output for AEMO of a fully connected RNN (without DL)
trained using ELM-lin

Sampling the random weights from a normal distribution was tested and the
results showed either almost identical MSE to uniform distribution or significantly
worse values. We also compared the RNN variants derived from the feedforward
network in [376] and [379], where the difference was the bias terms. The results
showed that the latter performed as well as the former on all RNN variants and
databases, which is consistent with [410] who concluded that the bias term was
irrelevant.

ELM-lin generally achieved lower MSE but required more time to train than
ELM-rand. For example, for the Santa Fe database, ELM-lin had a lower MSE
than ELM-rand on almost all RNN architectures. Fully connected RNN with DL
was an exception. A similar pattern was observed for other databases as well
with some exceptions.

Furthermore, non-iteratively-trained fully connected RNN performed better
than non-iteratively-trained Elman RNN but was also more computationally ex-
pensive. For example, the inverted pendulum problem experienced a 56% im-
provement in MSE with the Elman RNN with ELM-lin and fully connected
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Table 7.7: Performance on Atmosphere Humidity Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 45 3.12E-3±6.98E-3 4.95E+1±4.03E-
12

7.04E+0±2.86E-
13

5.86E+0±2.54E-
13

Elman N ELM-
rand

10 3.1E-1±9.0E-2 5.01E+1±2.3E+0 7.08E+0±1.62E-
1

5.85E+0±8.62E-
2

Elman N BPTT 10 2.18E-1±2.70E-2 7.61E+1±1.86E+1 8.67E+0±1.06E+0 7.21E+0±7.90E-
1

Elman Y ELM-lin 25 1.88E-1±6.3E-2 4.95E+1±4.00E-
12

7.04E+0±2.84E-
13

5.86E+0±2.49E-
13

Elman Y ELM-
rand

10 3.9E-1±7.8E-2 5.12E+1±6.87E+0 7.14E+0±4.62E-
1

5.82E+0±1.55E-
1

Fully
con-
nected

N ELM-lin 45 1.50E-1±8.54E-3 4.95E+1±6.93E-
12

7.04E+0±4.92E-
13

6.0E+0±3.5E-1

Fully
con-
nected

N ELM-
rand

10 3.12E-3±6.98E-3 5.2E+1±5.6E+0 7.2E+0±3.7E-1 3.70E+1±6.90E+1

Fully
con-
nected

Y ELM-lin 45 1.50E-1±8.54E-3 4.95E+1±7.23E-
12

7.04E+0±5.13E-
13

5.86E+0±4.37E-
13

Fully
con-
nected

Y ELM-
rand

10 2.6E-1±7.0E-2 5.34E+1±1.17E+1 7.28E+0±7.55E-
1

5.84E+0±1.87E-
1

Jordan N ELM-
rand

20 9.36E-3±8.54E-3 6.83E+1±1.41E+1 8.23E+0±8.20E-
1

6.61E+0±4.68E-
1

Jordan Y ELM-
rand

50 9.36E-3±8.54E-3 6.35E+1±4.40E-2 7.97E+0±2.76E-
3

6.39E+0±1.94E-
3

NARMAX N ELM-
rand

15 9.36E-3±8.54E-3 5.83E+1±1.06E+1 7.61E+0±6.64E-
1

6.31E+0±5.83E-
1

NARMAX Y ELM-
rand

50 2.34E-1±9.06E-2 1.54E+2±1.37E-1 1.24E+1±5.54E-
3

1.05E+1±5.48E-
3

NARX N BPTT 15 1.99E-1±1.30E-2 9.71E+1±2.30E+1 9.79E+0±1.21E+0 7.73E+0±8.20E-
1

Feedforward
[379]

N ELM-
rand

20 3.9E-1±7.8E-2 6.18E+1±2.87E+0 7.86E+0±1.82E-
1

6.6E+0±1.85E-1

Feedforward
[376]

N ELM-
rand

15 6.25E-3±1.40E-2 6.28E+1±3.99E+0 7.92E+0±2.55E-
1

6.66E+0±2.16E-
1

Feedforward
[377]

Y ELM-
rand

10 3.6E-1±1.1E-1 4.75E+1±6.69E-
1

6.89E+0±4.8E-
2

5.73E+0±4.4E-
2

SVR - - Linear,
593

7.71E-2±0.0E+0 4.99E+1±0.0E+0 7.07E+0±0.0E+0 5.83E+0±0.0E+0
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Table 7.8: Performance on Atmosphere Temperature Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 35 3.1E-1±5.9E-2 2.48E+0±3.50E-
14

1.58E+0±1.11E-
14

1.27E+0±1.28E-
14

Elman N ELM-
rand

10 1.56E-2±2.70E-2 9.17E+0±8.15E+0 2.81E+0±1.26E+0 1.42E+0±1.57E-
1

Elman N BPTT 20 2.65E-1±7.26E-2 1.18E+1±6.93E+0 3.3E+0±1.06E+0 2.63E+0±9.75E-
1

Elman Y ELM-lin 10 6.24E-3±8.54E-3 2.48E+0±4.74E-
14

1.58E+0±1.51E-
14

1.27E+0±1.82E-
14

Elman Y ELM-
rand

10 3.2E-1±0.0E+0 5.05E+0±2.03E+0 2.21E+0±4.63E-
1

1.39E+0±8.28E-
2

Fully
con-
nected

N ELM-lin 25 5.62E-2±8.54E-3 2.48E+0±1.32E-
13

1.58E+0±4.20E-
14

1.27E+0±4.75E-
14

Fully
con-
nected

N ELM-
rand

10 3.12E-3±6.98E-3 3.47E+0±2.49E+0 1.79E+0±5.73E-
1

1.27E+0±1.20E-
1

Fully
con-
nected

Y ELM-lin 45 2.15E-1±2.56E-2 2.48E+0±1.35E-
13

1.58E+0±4.30E-
14

1.27E+0±6.41E-
14

Fully
con-
nected

Y ELM-
rand

10 2.7E-1±6.8E-2 6.95E+1±1.49E+2 5.05E+0±7.42E+0 1.63E+0±7.49E-
1

Jordan N ELM-
rand

40 9.36E-3±8.54E-3 1.69E+1±3.32E+0 4.1E+0±4.11E-1 3.58E+0±3.77E-
1

Jordan Y ELM-
rand

10 6.24E-3±8.54E-3 4.37E+0±8.45E-2 2.09E+0±2.02E-
2

1.78E+0±2.18E-
2

LSTM N ELM-
rand

10 3.74E-2±8.54E-3 1.27E+2±1.29E+2 9.9E+0±6.04E+0 9.53E+0±6.23E+0

LSTM Y ELM-
rand

25 1.66E-1±1.59E-2 4.31E+0±7.33E-2 2.08E+0±1.77E-
2

1.77E+0±1.83E-
2

NARMAX N ELM-
rand

15 1.25E-2±6.98E-3 3.28E+1±6.19E+0 5.71E+0±5.43E-
1

5.23E+0±5.82E-
1

NARMAX Y ELM-
rand

10 1.78E-1±1.25E-2 8.19E+0±2.66E-2 2.86E+0±4.64E-
3

2.54E+0±4.31E-
3

NARX N BPTT 10 1.05E+0±1.74E+0 6.75E+0±9.66E-1 2.59E+0±1.83E-
1

1.97E+0±6.01E-
2

Feedforward
[379]

N ELM-
rand

50 3.0E-1±1.2E-1 5.05E+0±1.27E+0 2.23E+0±2.76E-
1

1.74E+0±1.61E-
1

Feedforward
[376]

N ELM-
rand

50 6.25E-3±1.40E-2 5.01E+0±8.81E-1 2.23E+0±1.99E-
1

1.73E+0±1.30E-
1

Feedforward
[377]

Y ELM-
rand

10 3.1E-1±1.1E-1 2.74E+0±1.87E-3 1.66E+0±5.64E-
4

1.31E+0±1.79E-
3

SVR - - Linear,
0.26927

1.65E+0±0.0E+0 2.15E+0±0.0E+0 1.47E+0±0.0E+0 1.19E+0±0.0E+0
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Table 7.9: Performance on Bebida Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 30 3.12E-3±6.98E-3 1.93E+2±2.11E-
12

1.39E+1±7.60E-
14

1.04E+1±9.87E-
14

Elman N ELM-
rand

20 2.6E-1±7.4E-2 1.71E+2±1.06E+1 1.31E+1±4.05E-
1 9.6E+0±2.71E-

1
Elman N BPTT 10 8.94E-1±1.34E+0 6.71E+2±5.46E+2 2.46E+1±9.04E+0 2.02E+1±8.52E+0
Elman Y ELM-lin 10 2.8E-1±6.3E-2 1.93E+2±3.27E-

12
1.39E+1±1.18E-
13

1.04E+1±1.72E-
13

Elman Y ELM-
rand

20 3.20E-1±0.0E+0 1.85E+2±6.11E+0 1.36E+1±2.24E-
1

9.91E+0±1.49E-
1

Fully
con-
nected

N ELM-lin 45 7.49E-2±6.98E-3 1.93E+2±7.21E-
12

1.39E+1±2.60E-
13

1.04E+1±1.40E-
13

Fully
con-
nected

N ELM-
rand

10 3.20E-1±0.0E+0 2.57E+2±1.36E+2 1.57E+1±3.79E+0 1.26E+1±3.88E+0

Fully
con-
nected

Y ELM-lin 35 4.37E-2±1.31E-2 1.93E+2±1.29E-
11

1.39E+1±4.65E-
13

1.04E+1±1.10E-
13

Fully
con-
nected

Y ELM-
rand

10 2.9E-1±5.8E-2 2.01E+2±1.24E+0 1.42E+1±4.38E-
2

1.03E+1±2.46E-
2

Jordan N ELM-
rand

45 6.24E-3±8.54E-3 2.29E+2±4.47E+1 1.51E+1±1.46E+0 1.17E+1±7.57E-
1

Jordan Y ELM-
rand

45 6.24E-3±8.54E-3 2.24E+2±1.63E-1 1.50E+1±5.46E-
3

1.06E+1±4.96E-
3

LSTM N ELM-
rand

10 1.56E-2±1.10E-2 3.46E+3±6.25E+3 4.34E+1±4.44E+1 4.09E+1±4.42E+1

LSTM Y ELM-
rand

45 1.69E-1±1.53E-2 2.25E+2±9.35E-2 1.50E+1±3.12E-
3

1.06E+1±1.94E-
3

NARMAX N ELM-
rand

25 6.24E-3±8.54E-3 2.35E+2±1.13E+2 1.50E+1±3.62E+0 1.24E+1±2.67E+0

NARMAX Y ELM-
rand

45 1.13E-1± 9.19E-2 2.37E+2±1.98E-1 1.54E+1±6.44E-
3

1.20E+1± 5.45E-
3

NARX N BPTT 15 1.22E+0±2.26E+0 4.27E+2±9.03E+1 2.06E+1±2.08E+0 1.67E+1±1.85E+0
Feedforward
[379]

N ELM-
rand

10 2.8E-1±6.3E-2 8.29E+2±8.36E+1 2.88E+1±1.40E+0 2.57E+1±2.25E-
1

Feedforward
[376]

N ELM-
rand

20 3.0E-1±8.4E-2 9.02E+2±1.03E+2 3.00E+1±1.70E+0 2.67E+1±1.04E+0

Feedforward
[377]

Y ELM-
rand

15 3.6E-1±7.4E-2 1.78E+2±3.51E+0 1.33E+1±1.31E-
1

9.67E+0±1.03E-
1

SVR - - Linear,
1.0514

5.33E-2±0.0E+0 2.03E+2±0.0E+0 1.42E+1±0.0E+0 1.11E+1±0.0E+0
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Table 7.10: Performance on Consumo Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 10 3.12E-3±6.98E-3 2.0E+2±3.4E-11 1.4E+1±1.2E-12 1.05E+1±1.52E-
12

Elman N ELM-
rand

20 2.7E-1±1.3E-1 2.47E+2±7.43E+1 1.55E+1±2.29E+0 1.24E+1±2.33E+0

Elman N BPTT 10 2.37E-1±1.27E-1 1.37E+3±9.76E+2 3.49E+1±1.38E+1 2.85E+1±1.06E+1
Elman Y ELM-lin 20 1.8E-1±5.2E-2 2.01E+2±4.26E-

11
1.42E+1±1.50E-
12

1.05E+1±1.90E-
12

Elman Y ELM-
rand

30 2.3E-1±7.8E-2 2.01E+2±2.87E+0 1.42E+1±1.01E-
1

1.03E+1±5.83E-
2

Fully
con-
nected

N ELM-lin 10 3.12E-3±6.98E-3 2.0E+2±2.3E-11 1.4E+1±8.1E-13 1.05E+1±1.14E-
12

Fully
con-
nected

N ELM-
rand

10 1.6E-1±0.0E+0 4.74E+2±1.33E+2 2.15E+1±3.36E+0 1.49E+1±2.44E+0

Fully
con-
nected

Y ELM-lin 40 4.37E-2±6.98E-3 2.0E+2±2.8E-10 1.4E+1±9.8E-12 1.05E+1±1.22E-
11

Fully
con-
nected

Y ELM-
rand

15 1.9E-1±5.1E-2 1.99E+2±2.83E+0 1.41E+1±1.0E-
1

1.03E+1±5.9E-
2

Jordan N ELM-
rand

45 3.1E-1±5.1E-2 3.74E+2±6.44E+1 1.93E+1±1.69E+0 1.33E+1±1.35E+0

Jordan Y ELM-
rand

50 1.25E-2±6.98E-3 5.12E+2±2.19E-1 2.26E+1±4.84E-
3

1.71E+1±3.97E-
3

LSTM N ELM-
rand

30 1.87E-2±6.98E-3 5.14E+3±4.21E+3 6.62E+1±3.07E+1 6.43E+1±3.15E+1

LSTM Y ELM-
rand

35 1.06E-1±8.75E-2 5.13E+2±1.42E-1 2.27E+1±3.12E-
3

1.71E+1±2.42E-
3

NARMAX N ELM-
rand

10 3.12E-3±6.98E-3 2.74E+2±5.66E+1 1.65E+1±1.64E+0 1.32E+1±1.57E+0

NARMAX Y ELM-
rand

50 2.59E-1±8.82E-2 3.63E+2±1.11E-1 1.90E+1±2.92E-
3

1.62E+1±2.98E-
3

NARX N BPTT 10 9.64E-1±1.77E+0 9.46E+2±7.36E+2 2.88E+1±1.20E+1 1.95E+1±6.12E+0
Feedforward
[379]

N ELM-
rand

20 2.7E-1±6.7E-2 7.98E+2±3.13E+1 2.82E+1±5.53E-
1

2.54E+1±4.81E-
1

Feedforward
[376]

N ELM-
rand

30 2.6E-1±7.0E-2 8.57E+2±1.09E+2 2.92E+1±1.80E+0 2.57E+01±1.31E+0

Feedforward
[377]

Y ELM-
rand

10 3.2E-1±1.5E-1 7.56E+2±6.32E+2 2.55E+1±1.14E+1 1.43E+1±3.02E+0

SVR - - Linear,
2.1304

1.62E+0±0.0E+0 2.01E+2±0.0E+0 1.42E+1±0.0E+0 8.84E+0±0.0E+0
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Table 7.11: Performance on IPI Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 20 3.0E-1±4.9E-2 1.21E+2±2.93E-
11

1.10E+1±1.33E-
12

8.9E+0±1.0E-
12

Elman N ELM-
rand

20 2.9E-1±5.4E-2 1.76E+2±4.38E+1 1.32E+1±1.75E+0 1.11E+1±1.66E+0

Elman N BPTT 10 3.06E-1±1.16E-1 5.00E+2±3.92E+2 2.10E+1±8.44E+0 1.81E+1±7.79E+0
Elman Y ELM-lin 20 3.1E-1±0.0E+0 1.21E+2±2.18E-

11
1.10E+1±9.90E-
13

8.9E+0±7.6E-
13

Elman Y ELM-
rand

10 2.6E-1±7.3E-2 1.14E+2±2.49E+0 1.1E+1±1.16E-
1

9.15E+0±1.79E-
1

Fully
con-
nected

N ELM-lin 45 8.42E-2±8.54E-3 1.21E+2±1.88E-
10

1.10E+1±8.53E-
12

8.92E+0±6.43E-
12

Fully
con-
nected

N ELM-
rand

10 3.2E+0±0.0E+0 5.49E+2±8.10E+1 2.34E+1±1.73E+0 1.88E+1±1.57E+0

Fully
con-
nected

Y ELM-lin 50 1.34E-1±1.40E-2 1.21E+2±2.17E-
10

1.10E+1±9.88E-
12

8.9E+0±8.0E-
12

Fully
con-
nected

Y ELM-
rand

10 2.7E-1±6.8E-2 1.14E+2±1.94E+0 1.07E+1±9.08E-
2

9.12E+0±1.34E-
1

Jordan N ELM-
rand

45 3.12E-3±6.98E-3 2.37E+2±5.81E+1 1.53E+1±1.92E+0 1.24E+1±1.55E+0

Jordan Y ELM-
rand

50 3.0E-1±5.4E-2 1.57E+2±1.39E-1 1.25E+1±5.55E-
3

1.02E+1±4.30E-
3

LSTM N ELM-
rand

15 1.56E-2±1.10E-2 6.29E+3±6.87E+3 6.81E+1±4.54E+1 6.60E+1±4.62E+1

LSTM Y ELM-
rand

25 2.81E-2±5.63E-2 1.57E+2±5.15E-2 1.25E+1±2.06E-
3

1.02E+1±1.44E-
3

NARMAX N ELM-
rand

45 9.36E-3±8.54E-3 5.17E+2±2.13E+2 2.24E+1±4.36E+0 1.90E+1±3.5E+0

NARMAX Y ELM-
rand

50 1.91E-1±4.57E-2 6.76E+2±1.53E-1 2.60E+1±2.95E-
3

2.05E+1±2.21E-
3

NARX N BPTT 10 1.02E+0±1.8E+0 7.69E+2±5.10E+2 2.65E+1±9.29E+0 2.22E+1±8.15E+0
Feedforward
[379]

N ELM-
rand

45 3.0E-1±1.1E-1 4.75E+2±4.96E+1 2.18E+1±1.11E+0 2.03E+1±9.53E-
1

Feedforward
[376]

N ELM-
rand

40 6.25E-03±1.40E-2 4.58E+2±3.32E+1 2.14E+1±7.70E-
1

1.96E+1±5.60E-
1

Feedforward
[377]

Y ELM-
rand

10 3.12E-3±6.98E-3 1.34E+2±2.85E+1 1.15E+1±1.18E+0 9.76E+0±9.99E-
1

SVR - - Linear,
897.3

1.6E+0±0.0E+0 2.90E+2±0.0E+0 1.70E+1±0.0E+0 1.58E+1±0.0E+0
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Table 7.12: Performance on Inverted Pendulum Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 35 6.24E-3±8.54E-3 1.30E-1±4.34E-16 3.61E-1±6.05E-
16

2.60E-1±3.02E-
16

Elman N ELM-
rand

10 9.36E-3±2.09E-2 1.08E-1±1.00E-2 3.28E-1±1.52E-2 2.32E-1±5.34E-3

Elman N BPTT 10 5.00E-1±1.30E-1 1.41E-1±2.33E-2 3.74E-1±3.00E-2 2.73E-1±2.44E-2
Elman Y ELM-lin 15 2.5E-1±9.1E-2 1.30E-1±9.83E-16 3.61E-1±1.35E-

15
2.60E-1±5.54E-
16

Elman Y ELM-
rand

10 3.12E-3±6.98E-3 1.03E-1±6.44E-3 3.21E-1±9.90E-3 2.31E-1±3.15E-3

Fully
con-
nected

N ELM-lin 25 2.84E-1±3.00E-2 1.30E-1±8.15E-15 3.61E-1±1.13E-
14

2.60E-1±8.06E-
15

Fully
con-
nected

N ELM-
rand

30 3.12E-3±6.98E-3 1.01E-1±7.12E-3 3.18E-1±1.11E-2 2.30E-1±7.44E-3

Fully
con-
nected

Y ELM-lin 45 4.39E+0±3.80E-1 1.30E-1±1.09E-14 3.61E-1±1.51E-
14

2.60E-1±9.42E-
15

Fully
con-
nected

Y ELM-
rand

40 6.24E-3±8.54E-3 1.04E-1±5.43E-3 3.23E-1±8.44E-3 2.33E-1±5.79E-3

Jordan N ELM-
rand

35 5.93E-2±1.31E-2 1.45E-1±5.80E-4 3.80E-1±7.62E-4 2.77E-1±4.72E-4

Jordan Y ELM-
rand

10 3.74E-2±1.40E-2 9.96E-2±1.11E-3 3.16E-1±1.75E-3 2.31E-1±1.08E-3

LSTM N ELM-
rand

45 3.34E-1±3.92E-2 1.45E-1±6.97E-3 3.81E-1±9.30E-3 2.76E-1±7.02E-3

LSTM Y ELM-
rand

40 3.70E+1±1.11E+0 1.88E-2±4.35E-5 1.37E-1±1.59E-4 7.65E-2±5.23E-4

NARMAX N ELM-
rand

35 6.55E-2±1.71E-2 1.45E-1±2.05E-3 3.81E-1±2.69E-3 2.77E-1±1.82E-3

NARMAX Y ELM-
rand

10 7.63E-1±8.64E-2 1.93E-2±7.60E-5 1.39E-1±2.74E-4 7.84E-2±9.40E-4

NARX N BPTT 10 1.27E+0±1.97E+0 7.04E-3±7.82E-3 7.61E-2±3.94E-2 4.57E-2±1.33E-2
Feedforward
[379]

N ELM-
rand

20 3.5E-1±7.9E-2 4.24E-3±3.36E-3 6.09E-2±2.55E-2 3.16E-2±1.26E-2

Feedforward
[376]

N ELM-
rand

20 9.38E-3±2.10E-2 8.64E-3±9.23E-3 7.91E-2±5.46E-2 3.40E-2±1.97E-2

Feedforward
[377]

Y ELM-
rand

15 3.12E-3±6.98E-3 9.51E-2±1.11E-3 3.08E-1±1.80E-3 2.25E-1±1.45E-3

SVR - - Gaussian,
7.3806

2.57E+0±0.0E+0 2.63E-4±0.0E+0 1.62E-
2±0.0E+0

1.16E-
2±0.0E+0
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Table 7.13: Performance on Quebec Births Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 40 5.20E-3±9.01E-3 1.15E-2±3.25E-16 1.07E-1±1.51E-
15

8.43E-2±1.32E-
15

Elman N ELM-
rand

10 3.12E-3±6.98E-3 2.15E-2±1.17E-2 1.42E-1±3.91E-2 8.55E-2±8.01E-4

Elman N BPTT 20 6.55E-1±3.15E-1 1.07E-2±2.99E-3 1.03E-1±1.38E-2 8.18E-2±9.63E-3
Elman Y ELM-lin 35 9.36E-3±8.54E-3 1.15E-2±2.69E-16 1.07E-1±1.25E-

15
8.43E-2±1.04E-
15

Elman Y ELM-
rand

10 3.12E-3±6.98E-3 1.39E-2±2.25E-3 1.17E-1±9.50E-3 8.50E-2±5.67E-4

Fully
con-
nected

N ELM-lin 15 4.37E-2±6.98E-3 1.15E-2±1.75E-15 1.07E-1±8.16E-
15

8.43E-2±6.40E-
15

Fully
con-
nected

N ELM-
rand

40 1.04E-2±9.01E-3 1.57E-2±2.33E-3 1.25E-1±9.44E-3 9.50E-2±5.08E-3

Fully
con-
nected

Y ELM-lin 25 2.00E-1±1.31E-2 1.15E-2±6.84E-16 1.07E-1±3.19E-
15

8.43E-2±2.54E-
15

Fully
con-
nected

Y ELM-
rand

10 2.7E-1±7.1E-2 1.65E-2±7.15E-3 1.26E-1±2.52E-2 8.10E-2±1.10E-3

Jordan N ELM-
rand

20 3.43E-2±6.98E-3 4.37E-2±2.05E-2 2.05E-1±4.72E-2 1.75E-1±5.07E-2

Jordan Y ELM-
rand

15 4.06E-2±1.40E-2 3.04E-2±6.17E-3 1.74E-1±1.80E-2 1.42E-1±1.91E-2

LSTM N ELM-
rand

20 1.37E-1±6.98E-3 1.63E-1±1.25E-1 3.73E-1±1.71E-1 3.51E-1±1.78E-1

LSTM Y ELM-
rand

20 2.59E-1±5.64E-2 3.22E-2±1.40E-2 1.75E-1±3.87E-2 1.48E-1±4.02E-2

NARMAX N ELM-
rand

10 3.12E-2±1.59E-15 4.27E-2±2.42E-2 2.00E-1±5.66E-2 1.74E-1±6.07E-2

NARMAX Y ELM-
rand

10 2.75E-1± 6.96E-2 3.08E-2±2.46E-3 1.75E-1±7.09E-3 1.42E-1±8.53E-3

NARX N BPTT 20 6.35E-1±4.22E-2 1.29E-2±1.74E-3 1.14E-1±7.89E-3 8.89E-2±5.07E-3
Feedforward
[379]

N ELM-
rand

25 3.1E-1±8.3E-2 3.89E-3±9.84E-5 6.23E-2±7.88E-4 4.86E-2±6.44E-4

Feedforward
[376]

N ELM-
rand

35 3.5E-1±1.2E-1 3.88E-3±6.17E-
5

6.23E-2±4.97E-
4

4.85E-2±3.10E-
4

Feedforward
[377]

Y ELM-
rand

20 3.9E-1±7.8E-2 1.14E-2±4.74E-08 1.07E-1±2.22E-
07

8.37E-2±3.65E-
07

SVR - - Polynomial,
0.16565

3.12E-2±0.0E+0 2.06E-1±0.0E+0 4.54E-1±0.0E+0 4.28E-1±0.0E+0
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Table 7.14: Performance on Santa Fe Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 40 3.12E-3±6.98E-3 2.38E-2±5.30E-16 1.54E-1±1.72E-
15

1.20E-1±1.84E-
15

Elman N ELM-
rand

10 9.36E-3±2.09E-2 5.73E-2±5.10E-2 2.23E-1±9.65E-2 1.05E-1±1.14E-2

Elman N BPTT 15 5.10E-1±1.28E-1 4.86E-2±3.11E-2 2.10E-1±7.51E-2 1.57E-1±4.71E-2
Elman Y ELM-lin 45 3.12E-3±6.98E-3 2.38E-2±2.44E-16 1.54E-1±7.90E-

16
1.20E-1±8.38E-
16

Elman Y ELM-
rand

15 3.12E-3±6.98E-3 1.28E-1±7.39E-2 3.46E-1±1.04E-1 1.73E-1±2.13E-2

Fully
con-
nected

N ELM-lin 15 3.43E-2±6.98E-3 2.38E-2±2.80E-15 1.54E-1±9.08E-
15

1.20E-1±9.30E-
15

Fully
con-
nected

N ELM-
rand

45 3.2E-1±7.5E-2 2.92E-2±1.65E-2 1.63E-1±5.10E- 2 1.11E-1±4.50E-2

Fully
con-
nected

Y ELM-lin 30 4.49E-1±9.95E-2 2.38E-2±3.39E-15 1.54E-1±1.10E-
14

1.20E-1±1.28E-
14

Fully
con-
nected

Y ELM-
rand

50 3.12E-3±6.98E-3 1.26E-2±2.58E-3 1.11E-1±1.12E-2 7.46E-2±8.87E-3

Jordan N ELM-
rand

15 2.50E-2±8.54E-3 6.08E-2±6.12E-3 2.46E-1±1.26E-2 1.78E-1±6.51E-3

Jordan Y ELM-
rand

10 2.81E-2±6.98E-3 6.01E-2±6.03E-3 2.45E-1±1.24E-2 1.77E-1±6.05E-3

LSTM N ELM-
rand

35 1.40E-1±1.56E-2 7.57E-2±4.01E-2 2.69E-1±6.66E-2 2.23E-1±5.83E-2

LSTM Y ELM-
rand

10 4.38E-1±3.31E-1 5.01E-2±1.35E-3 2.24E-1±3.03E-3 1.51E-1±2.72E-3

NARMAX N ELM-
rand

20 2.18E-2±8.54E-3 6.16E-2±6.41E-3 2.48E-1±1.29E-2 1.80E-1±6.53E-3

NARMAX Y ELM-
rand

25 2.84E-1±7.49E-2 5.24E-2±1.01E-3 2.29E-1±2.21E-3 1.57E-1±1.66E-3

NARX N BPTT 15 5.63E-1±3.37E-1 5.03E-2±6.49E-3 2.24E-1±1.41E-2 1.75E-1±1.13E-2
Feedforward
[379]

N ELM-
rand

10 3.1E-1±1.3E-1 1.41E-2±2.52E-
3

1.18E-1±1.10E-
2

1.03E-1±1.29E-
2

Feedforward
[376]

N ELM-
rand

10 2.9E-1±1.1E-1 2.34E-2±1.71E-2 1.46E-1±5.11E-2 1.29E-1±5.43E-2

Feedforward
[377]

Y ELM-
rand

15 3.6E-1±7.4E-2 3.42E-2±1.97E-4 1.85E-1±5.32E-4 1.40E-1±6.68E-4

SVR - - Polynomial,
2.949

1.77E+0±0.0E+0 1.69E-2±0.0E+0 1.30E-1±0.0E+0 1.22E-1±0.0E+0
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Table 7.15: Performance on Deep Tesla Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 10 6.6E-28±4.9E-28 6.3E-3±1.3E-2 1.0E-1±2.2E-14 1.0E-1±2.2E-14
Elman N ELM-

rand
15 1.0E-4±1.1E-4 3.1E-3±6.3E-3 1.0E-1±2.1E-3 9.9E-2±1.3E-3

Elman N BPTT 15 1.1E-2±1.2E-2 1.8E-2±1.5E-3 1.5E-1±4.7E-2 1.4E-1±4.3E-2
Elman Y ELM-lin 10 8.6E-28±8.3E-28 6.3E-3±1.3E-2 1.0E-1±2.7E-14 1.0E-1±2.7E-14
Elman Y ELM-

rand
10 2.1E-12±4.0E-12 1.0E-2±2.0E-12 1.0E-1±1.4E-6 1.0E-1±1.4E-6

Fully
con-
nected

N ELM-lin 10 1.2E-27±2.0E-27 1.0E-2±8.4E-28 1.0E-1±2.9E-14 1.0E-1±2.9E-14

Fully
con-
nected

N ELM-
rand

10 1.9E-3±1.2E-3 6.3E-3±1.3E-2 1.4E-1±5.5E-2 1.1E-1±1.2E-2

Fully
con-
nected

Y ELM-lin 15 2.3E-28±1.8E-28 6.3E-3±1.3E-2 1.0E-1±1.6E-14 1.0E-1±1.6E-14

Fully
con-
nected

Y ELM-
rand

10 1.6E-12±3.1E-12 1.0E-2±1.4E-12 1.0E-1±1.2E-6 1.0E-1±1.2E-6

Jordan N ELM-
rand

10 2.3E-2±4.6E-4 1.9E-2±1.5E-2 1.2E-1±7.7E-4 1.1E-1±5.0E-4

Jordan Y ELM-
rand

45 3.4E-7±8.0E-8 3.1E-3±6.3E-3 1.0E-1±2.6E-5 1.0E-1±3.2E-5

LSTM N ELM-
rand

20 3.8E-1±1.6E-1 3.1E-3±6.3E-3 4.7E-1±3.4E-1 4.5E-1±3.5E-1

LSTM Y ELM-
rand

15 1.1E-8±7.3E-9 3.1E-3±6.3E-3 1.0E-1±6.9E-5 1.0E-1±6.8E-5

NARMAX N ELM-
rand

10 2.3E-2±2.4E-4 3.1E-3±6.3E-3 1.2E-1±2.4E-4 1.1E-1±2.4E-4

NARMAX Y ELM-
rand

10 1.5E-8±8.0E-9 1.6E-2±2.0E-2 1.0E-1±1.0E-5 1.0E-1±1.3E-5

NARX N BPTT 30 3.3E-4±1.4E-5 4.7E-2±3.2E-3 2.5E-1±7.7E-2 2.3E-1±7.3E-2
Feedforward
[379]

N ELM-
rand

15 6.7E-5±1.0E-4 1.6E-2±2.0E-2 9.9E-2±1.7E-3 9.9E-2±1.8E-3

Feedforward
[377]

Y ELM-
rand

10 1.5E-12±1.5E-12 1.0E-2±6.6E-13 1.0E-1±8.1E-7 1.0E-1±8.2E-7

SVR - - Linear,
41.44

6.2E-7±0.0E+0 6.9E-4±0.0E+0 1.0E-1±0.0E+0 1.0E-1±0.0E+0
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Table 7.16: Performance on Japan Population Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 10 1.8E-3±4.0E-18 1.3E-2±1.5E-2 4.8E-2±2.9E-16 1.3E-2±1.9E-15
Elman N ELM-

rand
10 1.6E-3±2.4E-5 9.0E-3±3.4E-3 9.5E-2±5.8E-2 1.5E-2±3.8E-3

Elman N BPTT 30 1.3E-2±1.4E-2 2.5E-2±4.7E-3 1.1E-1±6.4E-2 6.7E-2±5.4E-2
Elman Y ELM-lin 10 1.8E-3±0.0E+0 6.3E-3±1.3E-2 4.8E-2±0.0E+0 1.3E-2±2.0E-16
Elman Y ELM-

rand
10 1.4E-3±9.0E-5 3.2E+2±1.2E+3 1.8E+1±3.4E+1 7.3E-1±1.3E+0

Fully
con-
nected

N ELM-lin 10 1.6E-3±1.9E-5 7.9E-3±1.4E-3 8.9E-2±3.7E-2 1.4E-2±2.0E-3

Fully
con-
nected

N ELM-
rand

10 1.8E-3±4.0E-18 6.3E-3±1.3E-2 4.8E-2±1.6E-15 1.3E-2±1.2E-14

Fully
con-
nected

Y ELM-lin 10 1.8E-3±4.0E-18 1.3E-2±1.5E-2 4.8E-2±6.7E-16 1.3E-2±4.8E-15

Fully
con-
nected

Y ELM-
rand

35 1.1E-3±1.2E-4 1.3E-2±1.5E-2 2.4E-1±3.2E-1 2.3E-2±1.6E-2

Jordan N ELM-
rand

15 1.6E-1±3.9E-3 6.3E-3±7.7E-3 4.5E-1±6.0E-2 4.4E-1±5.9E-2

Jordan Y ELM-
rand

10 1.5E-1±8.1E-3 1.6E-2±9.9E-3 3.7E-1±6.8E-2 3.6E-1±6.7E-2

LSTM N ELM-
rand

10 8.7E-2±9.5E-2 1.3E-2±6.3E-3 3.2E-1±1.0E-1 3.1E-1±1.0E-1

LSTM Y ELM-
rand

10 1.3E-1±3.2E-2 1.6E-2±0.0E+0 4.0E-1±4.3E-2 3.9E-1±4.2E-2

NARMAX N ELM-
rand

15 1.5E-1±1.0E-2 1.6E-2±0.0E+0 4.3E-1±3.3E-2 4.2E-1±3.3E-2

NARMAX Y ELM-
rand

15 1.5E-1±6.2E-3 1.6E-2±1.7E-2 3.9E-1±2.3E-2 3.8E-1±2.2E-2

NARX N BPTT 20 2.1E-3±7.8E-4 6.7E-2±3.4E-3 7.1E-2±5.9E-3 2.5E-2±4.9E-3
Feedforward
[379]

N ELM-
rand

10 1.6E-3±8.9E-6 3.1E-3±6.3E-3 3.9E-2±3.2E-4 8.7E-3±2.9E-4

Feedforward
[377]

Y ELM-
rand

20 1.5E-3±2.2E-5 1.3E-3±2.7E-7 3.7E-2±5.2E-4 9.2E-3±4.8E-5

SVR - - Linear,
0.0010492

1.9E-3±0.0E+0 1.5E-3±0.0E+0 5.0E-2±0.0E+0 8.1E-3±0.0E+0
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Table 7.17: Performance on SP500 Data Set
ArchitectureDL Training

Algo-
rithm

Hyper-
parameters

Training Time (avg
± std)

Testing MSE (avg
± std)

Testing RMSE
(avg ± std)

Testing MAE
(avg ± std)

Elman N ELM-lin 10 2.0E-6±0.0E+0 1.3E-2±1.2E-2 1.0E+0±3.6E-14 9.7E-1±3.4E-14
Elman N ELM-

rand
45 7.7E-3±1.6E-3 1.6E-2±1.4E-2 1.7E-1±8.7E-3 1.2E-1±3.6E-3

Elman N BPTT 50 5.8E-4±2.7E-4 1.2E-1±1.1E-2 6.9E-1±3.3E-1 6.2E-1±3.1E-1
Elman Y ELM-lin 10 2.0E-6±4.1E-21 6.3E-3±7.7E-3 1.0E+0±6.8E-14 9.7E-1±6.4E-14
Elman Y ELM-

rand
10 2.0E-6±1.4E-8 1.0E+0±2.6E-6 1.0E+0±1.6E-3 9.7E-1±1.4E-3

Fully
con-
nected

N ELM-lin 10 2.0E-6±0.0E+0 2.8E-2±6.3E-3 1.0E+0±7.8E-14 9.7E-1±7.3E-14

Fully
con-
nected

N ELM-
rand

10 2.3E-2±4.5E-3 1.6E-2±0.0E+0 2.9E-1±3.8E-2 2.4E-1±4.4E-2

Fully
con-
nected

Y ELM-lin 10 2.0E-6±4.1E-21 5.9E-2±1.8E-2 1.0E+0±1.8E-13 9.7E-1±1.8E-13

Fully
con-
nected

Y ELM-
rand

10 2.0E-6±1.4E-8 1.6E-2±9.9E-3 1.0E+0±9.6E-4 9.7E-1±7.3E-4

Jordan N ELM-
rand

35 6.7E-1±3.7E-3 7.2E-2±1.6E-2 5.0E-1±1.3E-3 4.7E-1±1.1E-3

Jordan Y ELM-
rand

15 3.5E-6±8.9E-8 9.1E-2±1.8E-2 1.0E+0±7.7E-5 9.6E-1±6.2E-5

LSTM N ELM-
rand

10 7.0E-2±3.5E-2 3.0E-1±2.5E-2 5.8E-1±2.9E-1 5.5E-1±3.0E-1

LSTM Y ELM-
rand

10 3.8E-6±7.4E-8 2.8E-1±3.2E-2 1.0E+0±4.2E-5 9.6E-1±3.5E-5

NARMAX N ELM-
rand

30 6.7E-1±9.6E-3 1.0E-1±1.6E-2 5.0E-1±2.3E-4 4.7E-1±2.4E-4

NARMAX Y ELM-
rand

25 3.3E-6±1.3E-8 8.4E-2±1.3E-2 1.0E+0±5.2E-5 9.6E-1±4.2E-5

NARX N BPTT 20 3.2E-6±2.2E-8 3.7E-1±3.7E-2 1.0E+0±1.5E-1 9.8E-1±1.5E-1
Feedforward
[379]

N ELM-
rand

20 9.2E-3±1.6E-3 3.2E-2±1.4E-4 1.8E-1±1.2E-2 1.2E-1±9.7E-3

Feedforward
[377]

Y ELM-
rand

10 1.9E-6±4.1E-8 1.0E+0±8.4E-6 1.0E+0±2.9E-3 9.7E-1±2.5E-3

SVR - - Polynomial,
0.15218

1.0E+4±0.0E+0 1.1E+0±0.0E+0 1.0E+0±0.0E+0 9.9E-1±0.0E+0
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RNN with ELM-lin but required 87% more time to train. Comparing non-
iteratively-trained Elman and fully connected RNN on the Santa Fe laser data
set, non-iteratively-trained fully connected RNN achieved 77% improvement in
MSE but resulted in a slight increase in MSE, 1.6%, for the Electricity load bal-
ance data set. The training time varied based on the database size but generally
reflected an increase in training time for non-iteratively-trained fully connected
RNN compared to non-iteratively-trained Elman RNN. Non-iteratively-trained
LSTM did not perform well in general on the smaller databases due to the curse
of dimensionality. Larger databases are required to learn a better model. Con-
sidering the electricity load database, a 3.5× increase in MSE was experienced
compared to non-iteratively-trained feedforward networks. Therefore, additional
research should be performed to assess the merit of training an LSTM network
non-iteratively.

Next, we compared the performance of non-iteratively-trained Elman and
fully connected RNN to the Jordan RNN architecture proposed in [386] and non-
iteratively-trained feedforward networks based on [376, 377, 379]. Note that the
difference between [376] and [379] is the presence of a bias neuron in the hidden
layer as opposed to the input layer. Considering the inverted pendulum problem,
the feedforward network trained using ELM had the best performance with an
MSE of 0.0168 only 4.8% better than the best non-iteratively-trained RNN al-
gorithm which was fully connected RNN trained with ELM-rand. However, the
disadvantage of using feedforward networks is that the best autoregressive model
with exogenous input, i.e. the order of the autoregressive output, must be ob-
tained by trial and error. Non-iteratively-trained RNN does not require this grid
search. In addition, learning the additional weights did not cause a significant
reduction in training speed.

Focusing on architectures with and without DL, a consistent pattern was not
observed, i.e. RNN architectures with DL sometimes performed better than their
counterparts without DL and vice versa. For example, a fully connected RNN
trained using ELM-rand performed better without DL on the Atmosphere Tem-
perature database but much worse on the Consumo database. However, ELM-
rand trained LSTM networks with DL consistently outperformed LSTM without
DL on all the mentioned databases. Therefore, adding DL to non-iteratively-
trained RNN architectures should be investigated on a case by case basis.

Compared to NARX network trained using BPTT, a speedup of 69% in train-
ing time of non-iteratively-trained RNN was achieved with only a 4.3% degrada-
tion in prediction accuracy. NARMAX with ELM achieved faster training time
than NARX with BPTT but resulted in larger MSE. In addition, non-iteratively-
trained RNN achieved better repeatability given their lower standard deviations
compared to BPTT-trained networks. This is due to the lower dimensional search
spaces of non-iterative training algorithms compared to iterative algorithms, since
the input weights are not learned. Similar results were obtained on the larger
data sets where significant speedups, up to 99% for Electricity load balance, were
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achieved but at the cost of an increase in MSE.
Compared to SVR, non-iteratively-trained RNN are approximately 7.7×

faster than SVR, when averaging across all databases; the speed up was more
significant as the size of the database increased and reached almost 37× on the
Electricity load database. However, feedforward networks’ MSE and MAE were
on average 2.2× and 1.03× larger than SVR’s MSE and MAE, respectively.

ELM have been known to overfit, especially as the number of hidden layer
neurons increases. To minimize the possibility of choosing models that were over-
fitting, we penalized networks with a large number of hidden layers by choosing
less complex models when the performance of both models was arbitrarily close.
In future work, we will also investigate incorporating a regularization term in the
objective function that has been shown to avoid overfitting [430].

Finally, we note that some data sets resulted in large prediction errors due to
data ill conditioning and random initialization. Since the network architecture
contains recurrent connections, unsuitable initial conditions can cause the error
to increase dramatically and the network is unable to correct it. Therefore,
for recurrent architectures, non-iterative training techniques should take certain
measures to insure a good initialization and matrix conditioning, which will be
investigated in future work.

7.5.3 Non-iteratively-trained RNN Statistical Analysis

We performed a statistical analysis to compare the performance of the variants
on all the databases in this work. The tests were performed on 16 non-iteratively-
trained RNN variants considered in this work. Specifically, the Friedman ranking
and ANOVA tests resulted in p-values equal to 0 and 0.0086, respectively. Both
values are less than the significance level set to α = 0.05, which implies the
presence of a significant difference between the algorithms. Furthermore, the
Nemenyi post-hoc was performed once a significant difference was observed, to
rank the algorithms. The rankings are shown in Figure 7.4. The critical distance
was found to be equal to 0.2.

Based on Nemenyi’s ranking algorithm, LSTM trained using ELM-rand with-
out DL was the highest ranked algorithm, even though it did not always have
the lowest error measure (as observed in Tables 7.7-7.17). LSTM trained using
ELM-rand with DL came in second place. However, NARMAX trained using
ELM-rand without DL was the worst algorithm. Furthermore, the difference be-
tween Elman trained using ELM-lin with DL and fully connected RNN trained
using ELM-rand with DL was less than the critical distance which implies that
difference is insignificant. Feedforward networks ranked fourth and ninth which
implies that RNN architectures were more suitable for the databases given their
time series properties. All algorithms joined by vertical lines in Figure 7.4 were
not significantly better than each other. Furthermore, we notice that the fully
connected RNN, which is the most general architecture (as discussed in section
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Figure 7.4: Non-iteratively-trained RNN variants ranking based on Nemenyi post-
hoc test

7.4.2), is the most difficult to train since it ranked in the bottom half. Its spe-
cial cases, obtained from fully connected RNN by pruning some connections, had
smaller search spaces that allowed the convergence to better solutions on the given
datasets. The rankings were based on the databases used in this work which may
not have been suitable for the lower ranked architectures. One should keep in
mind that these architectures may still be beneficial for other applications since
research has shown that the optimal network architecture is data dependent.

7.5.4 Parameter Sensitivity Analysis

Table 7.18 compares the performance of non-iteratively-trained RNN when dif-
ferent activation functions are used. The number of hidden neurons was fixed to
20 for this analysis. We notice that the sine activation function produced less
ill-conditioned problems. Fully connected RNN trained using ELM-rand with a
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sigmoid activation function would sometimes lead to an ill-conditioned H matrix,
resulting in very large MSE. This problem was also aggravated when the number
of hidden neurons increased. In addition, the linearized sigmoid activation func-
tion resulted in better RNN models than ELM-rand. The sine activation function
exhibited the opposite behavior for some data sets. This could be due to the low
order approximation and could be remedied by adopting higher order approxi-
mations. Furthermore, the approximation might not be valid for certain data
distributions. This should also be considered in the approximation procedure.

Table 7.18: Effect of kernel choice on nRMSE, nMAE and
training time

Training Time (sec) nRMSE nMAE
Architecture DL Training

Algo-
rithm

Sigmoid Sine Sigmoid Sine Sigmoid Sine

Bebida
Elman N ELM-lin 0.003 0.012 0.301 0.375 0.225 0.314
Elman N ELM-rand 0.045 0.030 0.283 1.959 0.208 1.730
Elman N BPTT 0.220 0.185 0.794 0.750 0.631 0.632
Elman Y ELM-lin 0.018 0.013 0.301 0.375 0.225 0.314
Elman Y ELM-rand 0.032 0.012 0.295 0.337 0.215 0.251
Fully connected N ELM-lin 0.009 0.037 0.301 0.375 0.225 0.314
Fully connected N ELM-rand 0.029 0.030 3.457 2.544 0.768 2.398
Fully connected Y ELM-lin 0.022 0.050 0.301 0.375 0.225 0.314
Fully connected Y ELM-rand 0.007 0.003 0.372 0.348 0.242 0.252
Jordan N ELM-rand 0.006 0.009 0.419 2.461 0.315 2.430
Jordan Y ELM-rand 0.006 0.013 0.325 0.325 0.229 0.229
LSTM N ELM-rand 0.016 0.044 2.667 2.037 2.655 2.017
NARMAX N ELM-rand 0.003 0.012 0.513 2.436 0.442 2.392
NARX N BPTT 0.254 0.186 0.796 0.732 0.572 0.567
Feedforward [379] N ELM-rand 0.031 0.031 1.4441 2.585 0.8304 2.453
Feedforward [377] Y ELM-rand 0.030 0.046 0.311 0.434 0.226 0.294

IPI
Elman N ELM-lin 0.047 0.046 0.183 0.436 0.148 0.388
Elman N ELM-rand 0.032 0.032 0.219 1.067 0.185 0.810
Elman N BPTT 0.285 0.205 0.489 0.417 0.377 0.342
Elman Y ELM-lin 0.030 0.032 0.183 0.436 0.148 0.388
Elman Y ELM-rand 0.015 0.012 0.185 0.227 0.156 0.188
Fully connected N ELM-lin 0.016 0.050 0.183 0.436 0.148 0.388
Fully connected N ELM-rand 0.015 0.012 0.3775 2.207 2.608 2.026
Fully connected Y ELM-lin 0.016 0.062 0.183 0.436 0.148 0.388
Fully connected Y ELM-rand 0.031 0.012 0.1974 0.192 1.930 0.159
Jordan N ELM-rand 0.010 0.012 0.342 2.002 0.273 1.975
Jordan Y ELM-rand 0.006 0.010 0.208 0.208 0.170 0.170
LSTM N ELM-rand 0.016 0.041 1.728 1.699 1.703 1.675
NARMAX N ELM-rand 0.006 0.012 0.379 2.019 0.311 1.961
NARX N BPTT 0.212 0.186 0.606 0.570 0.513 0.458
Feedforward [379] N ELM-rand 0.016 0.012 0.402 0.3875 0.356 1.964
Feedforward [377] Y ELM-rand 0.050 0.047 0.240 0.4037 0.194 6.653

Lavras
Elman N ELM-lin 0.016 0.012 0.158 0.152 0.114 0.108
Elman N ELM-rand 0.031 0.047 0.176 0.254 0.122 0.182
Elman N BPTT 0.432 0.267 0.543 0.178 0.443 0.125
Elman Y ELM-lin 0.015 0.047 0.158 0.152 0.114 0.108
Elman Y ELM-rand 0.016 0.031 0.152 0.179 0.110 0.121
Fully connected N ELM-lin 0.034 0.037 0.158 0.152 0.114 0.108
Fully connected N ELM-rand 0.031 0.015 0.1604 0.264 0.117 0.191
Fully connected Y ELM-lin 0.037 0.050 0.158 0.152 0.114 0.108
Fully connected Y ELM-rand 0.031 0.012 0.237 0.180 0.126 0.124
Jordan N ELM-rand 0.009 0.031 0.166 0.250 0.118 0.180
Jordan Y ELM-rand 0.012 0.037 0.174 0.174 0.114 0.114
LSTM N ELM-rand 0.034 0.078 0.232 0.213 0.170 0.151
NARMAX N ELM-rand 0.009 0.053 0.197 0.251 0.152 0.181
NARX N BPTT 1.617 0.208 0.152 0.150 0.111 0.110
Feedforward [379] N ELM-rand 0.047 0.012 0.1345 0.257 0.0910 0.189
Feedforward [377] Y ELM-rand 0.0469 0.031 0.189 0.184 0.119 0.127

Inverted Pendulum
Elman N ELM-lin 0.016 0.019 0.074 0.075 0.044 0.046
Elman N ELM-rand 0.003 0.003 0.065 0.070 0.038 0.040
Elman N BPTT 1.788 1.780 0.083 0.117 0.047 0.068
Elman Y ELM-lin 0.025 0.016 0.074 0.075 0.044 0.046
Elman Y ELM-rand 0.009 0.003 0.066 0.067 0.039 0.039
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Fully connected N ELM-lin 0.568 0.512 0.074 0.075 0.044 0.046
Fully connected N ELM-rand 0.016 0.019 0.684 0.122 0.071 0.064
Fully connected Y ELM-lin 0.580 0.484 0.074 0.075 0.044 0.046
Fully connected Y ELM-rand 0.022 0.019 0.071 0.078 0.041 0.044
Jordan N ELM-rand 0.296 0.306 0.097 0.100 0.063 0.062
Jordan Y ELM-rand 0.321 0.312 0.078 0.083 0.047 0.043
LSTM N ELM-rand 1.822 2.065 0.099 0.096 0.064 0.059
NARMAX N ELM-rand 0.293 0.312 0.096 0.098 0.062 0.063
NARX N BPTT 1.837 2.012 0.013 0.014 0.005 0.005
Feedforward [379] N ELM-rand 0.006 0.003 0.008 0.033 0.003 0.012
Feedforward [377] Y ELM-rand 0.006 0.003 0.085 0.0801 0.041 0.502

Focusing on the effect of the number of hidden neurons on non-iteratively-
trained RNN, Table 7.19 summarizes the obtained results for the inverted pen-
dulum and electricity load data sets. A sigmoid activation function was adopted
for this analysis. As expected, the computational cost of non-iteratively-trained
fully connected RNN is greater than Elman RNN, especially as the number of
hidden neurons increases. As previously mentioned, fully connected RNN with
ELM-rand can result in ill-conditioned models that get worse as the network
size increases. Comparing ELM-rand to ELM-lin, the former is less computa-
tionally expensive than the latter, since the output matrix and parameter vector
are smaller in size. For example, considering the Electricity load balance data
set, fully connected RNN with ELM-rand is 15% to 49% times faster than fully
connected RNN with ELM-lin.

7.5.5 Online Learning: RLS versus Kaczmarz’s Approxi-
mation

For online learning applications, ELM networks are trained using RLS which up-
dates the weights as input data is received in real-time or pseudo real-time. To
compare the performance of RLS based ELM training and Kaczmarz’s approx-
imation based training, we fixed the network architecture where the number of
hidden neurons was set to 30 and a sigmoid activation function was adopted. The
same initial random values were used for both RLS and Kaczmarz’s algorithm to
have a fairer comparison.

As expected, the latter reduces the training time but at the cost of prediction
accuracy. Table 7.20 reports on the average reduction in training time and aver-
age increase in MSE when using Kaczmarz’s approximation as opposed to RLS
for our proposed RNN-NIPR architectures, in addition to feedforward ELM and
JRNN-NIPR. For example, FRNN-NIPR-lin greatly benefited from this approxi-
mation, since it averaged 98% reduction in training time when using Kaczmarz’s
approximation instead of RLS. For some problems, a negative increase in MSE
was observed, i.e. Kaczmarz’s approximation returned a lower MSE than RLS
which could be a result of the data distribution or initial conditions. Similarly, a
negative decrease in training time implies that Kaczmarz’s approximation train-
ing algorithm had a larger running time than the RLS algorithm. However, the
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Table 7.19: Effect of number of hidden neurons on MSE and training time

Architecture DL Training
Algo-
rithm

Number
of Hid-
den
Neu-
rons

Test
Set
MSE

Training
Time
(sec)

Test
Set
MSE

Training
Time
(sec)

Electricity Load Balance Inverted Pendulum

Elman N ELM-lin

15 0.0686 0.720 0.0175 0.002
20 0.0686 1.092 0.0175 0.004
25 0.0686 1.320 0.0175 0.004
30 0.0686 1.660 0.0175 0.008

Elman N ELM-rand

15 0.0694 0.204 0.0135 0.002
20 0.0700 0.318 0.0135 0.016
25 0.0700 0.492 0.0138 0.002
30 0.0695 0.790 0.0132 0.006

Fully connected N ELM-lin

15 0.0686 14.258 0.0175 0.072
20 0.0686 33.346 0.0175 0.258
25 0.0686 59.298 0.0175 0.702
30 0.0686 83.766 0.0175 2.646

Fully connected N ELM-rand

15 0.0691 1.056 0.0699 0.010
20 0.0679 1.262 0.0141 0.010
25 0.0686 1.476 0.0485 0.010
30 0.0755 1.706 0.0167 0.014

LSTM N ELM-rand

15 2.0650 6.879 0.0314 1.323
20 0.2729 13.167 0.0293 1.822
25 0.1438 15.025 0.0318 2.493
30 0.6983 18.798 0.0293 3.179
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difference was not large (−1.123% for ERNN-NIPR-rand) and could be attributed
to the random values chosen in the initialization. Despite the increase in MSE,
Kaczmarz’s approximation may be beneficial when it is not feasible to compute
the Hessian matrix due to computational resources or time constraints such as
in real-time decision-making. Applications such as anytime control that only
require an approximate solution can also benefit from this approach.

Table 7.21 summarizes the p-values and CDs of the statistical tests performed
to compare RLS to Kaczmarz’s training algorithms. The results are averaged over
all the databases included in this work. The results show that there is a statistical
difference in the prediction values when using RLS and Kaczmarz, as expected,
since p < 0.05. LSTM-NIPR and FF-ELM were exceptions where the Friedman
test resulted in a p-value greater than 0.05 but the ANOVA test resulted in p-
value less than 0.05. On the other hand, RVFL and some of its RNN variants did
not show any statistical difference between RLS and its approximation. Further-
more, the p-values are less than the CDs on most tests. However, a statistical
difference does not always imply a practical difference; Kaczmarz’s approximation
can be used in applications where the discrepancy in accuracy can be tolerated
to achieved reduced computational complexity.

7.6 Conclusion

In this paper, we proposed to train RNN using a non-iterative randomized al-
gorithm for time series prediction and sequential decision-making problems, to
reduce training time. We focused on Elman, Jordan, fully connected RNN, NAR-
MAX and LSTM RNN architectures with and without DL. Since learning the re-
current connections for these architectures is a non-linear problem, we proposed
two approaches to train RNN non-iteratively. The first approach randomly as-
signs the values of the recurrent connections while the second approach linearizes
the activation function and learns these weights.

In addition to performing a theoretical computational complexity of vari-
ous non-iteratively trained RNN architectures, experimental validation was per-
formed on 14 publicly available time series prediction data sets and the double
inverted pendulum POMDP sequential decision-making problem. Multiple error
measures, training time and repeatability were compared to other methods in the
literature including non-iteratively-trained Jordan RNN and feedforward ANN,
BPTT trained RNN and SVR. Results showed that even though RNN trained
using BPTT and SVR achieve lower MSE, non-iteratively-trained RNN require
significantly less time to train. This tradeoff is especially beneficial in real-time
decision-making problems on computationally challenged platforms such as in
communication challenged robotics, i.e. robots in environments that prevent
them from offloading their computations to the cloud. While the Nemenyi post
hoc test showed the superiority of the proposed approaches compared to other
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Table 7.20: RLS versus Kaczmarz’s approximation

Algorithm Increase in
Testing MSE
(%)

Decrease in
Training Time
(%)

Inverted Pendulum
Elman RELM-lin 45.648 57.143
Elman RELM-rand 1.641 35.556
Fully connected RELM-lin 114.065 99.488
Fully connected RELM-rand 1.249 39.216
Jordan RELM 1.024 31.481
NARMAX RELM 0.419 33.929
FF-ELM 0.037 35.417

Quebec Births
Elman RELM-lin 66.162 57.143
Elman RELM-rand 102.171 45.946
Fully connected RELM-lin 30.105 99.500
Fully connected RELM-rand 486.494 33.333
Jordan RELM 123.489 29.545
NARMAX RELM -16.977 36.957
FF-ELM 50.235 29.730

Santa Fe Laser
Elman RELM-lin 43.656 60.000
Elman RELM-rand 102.363 92.718
Fully connected RELM-lin -9.142 99.386
Fully connected RELM-rand -23.129 48.485
Jordan RELM 744.342 39.394
NARMAX RELM 54.420 47.368
FF-ELM -67.924 46.667

Electricity Load Balance
Elman RELM-lin -5.029 4.838
Elman RELM-rand 71.463 -1.123
Fully connected RELM-lin 15.863 97.481
Fully connected RELM-rand 12307.925 1.111
Jordan RELM 12.477 2.065
NARMAX RELM 1162.280 1.754
FF-ELM 480.007 5.847

113



Table 7.21: Statistical comparison of RLS and Kaczmarz’s approximation

Friedman Test ANOVA Test
Algorithm p-value CD p-value CD

Elman RELM-rand 6.65E-26 2.13E-02 2.89E-14 3.95E-01
Elman RELM-lin 1.57E-25 1.19E-02 4.68E-02 2.31E+01
Fully connected RELM-rand 1.27E-17 2.04E-02 7.03E-02 4.76E+02
Fully connected RELM-lin 9.42E-35 1.40E-02 5.03E-05 2.81E+01
LSTM RELM 1.54E-80 4.06E-03 9.35E-159 2.56E-01
NARMAX RELM 6.86E-02 4.55E-02 2.97E-02 9.49E+00
Jordan RELM 4.64E-03 6.86E-02 1.66E-05 9.73E+00
FF-ELM 5.34E-20 4.93E-02 1.72E-20 3.57E+00
RVFL 4.37E-02 2.03E-02 1.37E-01 2.83E+01
Jordan Recurrent RVFL 1.09E-01 7.48E-02 1.06E-01 7.12E+02
Fully connected Recurrent
RVFL-rand

8.12E-02 8.02E-02 2.01E-01 3.14E+111

Fully connected Recurrent
RVFL-lin

1.27E-24 1.46E-02 1.06E-01 2.15E+01

Elman Recurrent RVFL-rand 1.04E-02 7.66E-02 9.13E-02 1.15E+01
Elman Recurrent RVFL-lin 2.11E-27 2.28E-02 1.40E-01 2.36E+01

work in the literature, the proposed algorithms can be further improved to avoid
diverging solutions when recurrent weights are badly initialized and assess its per-
formance on deeper networks which will be subject of future work. Furthermore,
future work will investigate the proposed algorithms in anytime control problems
where the computationally efficient learner is used to provide a quick first guess
and a more accurate learner enhances this guess.

In addition, non-iteratively-trained Elman RNN required less time to train
than non-iteratively-trained fully connected RNN even though it performed
worse. ELM-lin performed better than ELM-rand on most databases. This
prompts the investigation of higher order approximations of the activation func-
tion which will be the subject of future work. Finally, LSTM did not perform well
compared to other network architectures. This could be due to the size of the
training data and high non-linearity of LSTM cells. Therefore, further research
is necessary to optimize the non-iterative training algorithm for LSTM networks.

Furthermore, future work will also include the investigation of other activation
functions and the practical implications of the theoretical model transformations
on real-world problems. Methods to reduce the incurred loss of accuracy while
maintaining the computational gains and LSTM with linearized activation func-
tions will also be investigated.
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Chapter 8

ANN Initialization: A Data
Dependent Approach for
Regression

The training algorithm proposed in Chapter 7 was sensitive to the random ini-
tialization that caused it to diverge for some databases. In this chapter1, we
investigate an initialization approach that depends on the training data, in an
attempt to reduce ELM’s sensitivity to random initialization.

Specifically, we propose a context dependent input weight selection for re-
gression ELM (CDR-ELM), which is a non-iterative training algorithm for offline
supervised regression that computes the input weights and biases by clustering
the training data and computing cluster head differences. CDR-ELM is compared
to ELM and other algorithms on multiple publicly available regression databases.
Experimental results show that the proposed algorithm produced comparable re-
sults to existing algorithms while outperforming ELM on some databases.

Next, section 8.1 presents the motivation and overview of the proposed al-
gorithm before section 8.2 presents a survey of existing work on non-iterative
training algorithms for ANN. Section 8.3 discusses the proposed methodology.
Section 8.5 presents the experimental results before concluding in section 8.6.

8.1 Introduction

ANN have been applied to many artificial intelligence problems such as com-
puter vision, speech recognition, and natural language processing, among others.
However, they are mainly trained using iterative algorithms, resulting in slow
training. ELM train feedforward ANN non-iteratively by randomly assigning in-

1Rizk, Y., and Awad, M., “Context Dependent Input Weight Selection for Regression
Extreme Learning Machines,” Int. Conf. Artificial Neural Networks (ICANN) Proceedings
(Vol. 10614), Springer, 2017.
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put weights and biases, then solving a convex optimization function to find the
output weights [379]. Their efficient training and good generalization has resulted
in the application of ELM to many problems including feature extraction, time
series prediction, classification, and regression [431]. However, randomly assign-
ing weights without any considering the training data could result in sub-par
performance. Exploiting the characteristics of the available data would produce
a more specialized model for the current problem instead of a “one size fits all”
approach. Therefore, it is worth investigating methods to extract additional in-
formation from this data to influence the choice of input weights and bias and
improve ELM’s performance.

In this work, we propose a context dependent input weight selection for regres-
sion ELM (CDR-ELM) [432], which is a non-iterative training algorithm based on
ELM for regression problems that computes the input weights and biases from
the training data, instead of randomly assigning these values. While existing
work has investigated explicitly computing these weights [433], [434], their algo-
rithms mainly targeted supervised classification problem. The focus of this work
is offline, supervised regression problems. First, the input data is clustered, then
the difference between cluster heads is used as input weights. Biases are com-
puted based on the size of the clusters. CDR-ELM’s training time and prediction
error are compared to the performance of standard ELM [379], backpropagation
trained ANN and Support Vector Regression (SVR) on multiple publicly available
regression databases. Furthermore, we extended some of the existing algorithms
that target classification problems to regression and compared to our proposed al-
gorithm. Results showed that CDR-ELM outperformed ELM on some databases
and achieved comparable results to other algorithms. Therefore, CDR-ELM is
not suitable for very noisy data since the lack of randomness can lead to over-
fitting or for data that is sparsely distributed since the cluster heads will not
faithfully represent the data.

8.2 Literature Review

To reduce the computational complexity of training ANN, randomized algorithms
have been developed [406]. A subset of these randomized algorithms is non-
iterative training algorithms that achieve significant speedups by computing net-
work weights once. More specifically, Schmidt et al. [376] and Huang et al. [379]
randomly assigned the input weights and biases and solving for the output weights
in a single hidden layer feedforward network using Linear Least Squares (LLS).
RVFL applied the same algorithm to a functional link network, a flattened ANN
that allowed connections from the input layer to the output layer [377,409]. While
initially formulated for offline, supervised, single hidden layer ANN learning, the
LLS-based algorithm has been extended to semi-supervised and unsupervised
learning [435,436], online learning [414] and deep learning [437–439], among oth-
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ers. However, the input weights and biases are randomly sampled from a uniform
distribution.

Some work has investigated constraining the sample space from which ran-
dom weight vectors are selected to improve generalization while maintaining fast
training. Zhu et al. randomly selected the input weight and bias vectors from
a set of the normalized, pair-wise inter-class differences of training vectors [440].
This algorithm, termed constrained ELM (C-ELM), outperformed normalized
ELM, deep ELM and Support Vector Machines (SVM) on multiple classification
data sets. While training times were not reported, the authors noted that gener-
ating the input weight vectors was time consuming, especially as the number of
hidden neurons increases. Liu et al. proposed a class-constrained ELM (C2ELM)
which computed the input weight vectors using and ELM auto encoder (ELM-
AE) [441]. An ELM-AE was trained for each class to learn the variance in the
training data. The output layer weights of the ELM-AE were used as input layer
weights for the ELM that will learn the classification model. The bias vectors
were randomly assigned, as in ELM. The performance of C2ELM was compared
to ELM, ELM-AE, CIW-ELM, C-ELM and receptive field ELM (RF-ELM). Re-
sults showed that C2ELM generally outperformed all the methods on MNIST and
CIFAR-10 but achieved a slightly higher training time than ELM and C-ELM.

On the other hand, Tapson et al. proposed computed input weights ELM
(CIW-ELM), where the input weights and biases were equal to a randomly
weighted sum of training samples [433]. The output weights of the single hidden
layer network were computed using the Moore-Penrose pseudoinverse. Training
samples were normalized to have zero mean and unity standard deviation and
the weights of the weighted sum were normalized to unity magnitude. CIW-ELM
outperformed ELM on most classification databases and was significantly faster
than MLP. The proposed algorithm was derived for classification problems but
could be extended to regression by binning all samples into one class. However,
the authors noted that this approach may not improve performance on regres-
sion problems. McDonnell et al. proposed multiple algorithms based on C-ELM
and CIW-ELM for classification, namely receptive field ELM (RF-ELM) and 2-
layered ELM [434]. Tissera et al. extended these algorithms presented in [434] to
deep networks [439]. They proposed stacked auto encoders with a smaller number
of hidden neurons [439]. Input weights were selected using C-ELM and trained
each auto encoder separately. Cervellera et al. proposed to compute ELM’s input
weights and biases from low-discrepancy sequences (LDS) [442]. Henriquez et al.
applied this method to parallel layer ELM (PL-ELM) [443]. These deterministic
sequences cover a space without clustering or gaps. Figure 8.1 summarizes the
presented literature.
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Figure 8.1: Summary of works in the literature

8.3 Proposed Methodology

8.3.1 Extreme Learning Machines Overview

ELM [379], shown in Figure 8.2, are single hidden layer feedforward neural net-
works trained in one step by randomly assigning input weights, wi, and biases, bi
in (8.1) from a uniform distribution. This converts the problem of learning the
output weights, β, to a linear problem since the output matrix, H, which contains
the non-linear activation function no longer contains optimization variables and
can be computed using (8.2) when the input, x, is available.

ŷ = Hβ =
M∑
i=1

βig
(
wTi x+ bi

)
(8.1)

H =

g(wT1 x1 + b1) . . . g(wTMx1 + bM)
...

. . .
...

g(wT1 xN + b1) . . . g(wTMxN + bM)

 (8.2)

The generalized Moore-Penrose pseudoinverse is used to compute the output
weights, β = (HTH)−1HTy, where y is the target matrix or desired output in a
supervised learning paradigm. Therefore, the ELM training algorithm performs
the following steps:

1. Randomly assign values to the input weights and biases.

2. Compute the H matrix using (7.12).
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Figure 8.2: ELM Architecture

3. Compute the β vector: β = (HTH)−1HTy.

Table 8.1 summarizes the nomenclature adopted in this paper.

8.3.2 Context Dependent ELM

Since it is not possible in regression to sample the space of inter-class difference
vectors and assign input weight vectors, we propose to cluster the training data
into a finite number of clusters based on the number of hidden neurons to deter-
mine the input weights and biases. Specifically, input weights are computed by
taking the pair-wise difference of cluster heads. Biases are proportional to the
cluster size.

1. Compute the number of clusters, P , such that M = P 2−P
2

.

2. Cluster the training data using k-means into P clusters.

3. Compute the cluster head of each cluster.

4. Compute the input weights using (8.3).

5. Compute the hidden neuron biases, bi =
Nj

Nk
.

6. Train ELM.

wi =
|E[x∈clusteri ]− E[x∈clusterj ]|
|E[y∈clusteri ]− E[y∈clusterj ]|

(8.3)
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Table 8.1: Nomenclature

Variable Definition

x Input matrix
y Expected output
ŷ Predicted output
g(.) Activation function
wi Input weights vector
Nj Number of training samples in cluster j
bi Neuron bias
M Number of hidden layer neurons
β Output weights vector
N Number of training samples
H Output matrix
F Number of features in input vector
P Number of clusters

8.4 Theoretical Computational Complexity

Next, we discuss the computational complexity of determining the input weights
and biases, summarized in Table 8.2. We do not derive the computational com-
plexity of the remaining steps in the ELM algorithm since they are the same for
all the ELM variants we are comparing.

The computational complexity of the proposed algorithm is based on the
complexity of k-means, averaging cluster points and computing cluster head dif-
ferences. The computational complexity of k-means is O(NmaxNP ) where Nmax
is the number of iterations for k-means to converge. Computing the cluster heads
requires computing P averages of F ×1 vectors and M pair-wise differences. Av-
eraging training samples in the cluster and computing differences to obtain the
input weights requires O(3MF ), whereas computing the biases requires O(2M)
operations. Therefore, the total time complexity is O(O(NmaxNP+3MF+2M)).
The space complexity of the algorithm is O(M(F + 1) + P (N + 1)) to save the
input layer weights, biases and cluster points and heads. Selecting a random
value from a uniform distribution requires O(1) computations and O(1) memory.
Considering a network with M hidden neurons and F -dimension input vectors, a
total of MF input weights and M biases should be assigned leading to M(F + 1)
time and space complexity.

CIW-ELM computes the input weights and biases from the weighted sum of
the training samples. A total of M2F (2N − 1) + 3F operations are required to
compute the weighted sum (WM×F = RM×NXN×F ) and normalize the result-
ing weights. For regression problems, we assume all points belong to one class.
Furthermore, the algorithm formulation assumes the biases are part of the input
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Table 8.2: Computational Complexity of the considered ELM variants

Algorithm Time Complexity Space Complexity

CDR-ELM O(NmaxNP + 3MF + 2M) O(M(F + 1) + P (N + 1))
ELM O(MF ) O(MF )
CIW-ELM O(M2FN + F ) O(MF )
C-ELM O(MF ) O(MF )
C2-ELM O(NMF (F + c) +NMF ) O(F 2M + 2MF +NMF )
LDS-Halton-ELM O(MF ) O(MF )
LDS-Sobol-ELM O(F dlog2(M)e) O(MF )

matrix.

C-ELM requires the computation of M differences between two vectors of di-
mension Fx1. Each difference requires F floating point operations. Furthermore,
the resulting difference vectors are normalized by the magnitude of the difference
which requires ((F +1)+(F −1)) operations. Computing the bias consists of the
difference the norms of two training vectors divided by the norm of the hidden
neuron’s input weight vector; this results in 3(F + 1 + F − 1) + F operations.
Therefore, a total of 9FM operations are required by C-ELM to assign input
weight and bias values for a single hidden layer network with M hidden neurons.
The space complexity equal to the number of weights and biases that should be
computed.

C2ELM assigns the output weights of an ELM-AE to the input weights of an
another ELM network. In the regression formulation, we assume only one ELM-
AE is trained with M hidden neurons which requires O(NM(F + c) + NMF )
operations and O(2FM +M +NM) of memory.

The computational complexity of PL-ELM depends on the computational
complexity of the LDS generator. In this derivation, we assume that a PL-ELM
network has a total of M hidden neurons per subnetwork. Therefore, a PL-
ELM network contains 2MF input weights and 2M biases. A Sobol sequence
generator requires O(F dlog2(M)e) to generate and M × F matrix [444], while a
Halton sequence generator requires O(MF ) operations [445].

8.5 Empirical Validation

8.5.1 Experimental Setup

Multiple publicly available databases from the UCI machine learning repository
[424], summarized in Table 8.3, were used to benchmark CDR-ELM in MATLAB
2016b on Intel Core i7 processor. Four-fold cross validation was adopted and the
results of randomized algorithms were averaged over five independent runs. Mean
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Table 8.3: Database Characteristics

Database Number of
Instances

Number of
Features

Output
Mean

Output
Standard
Deviation

Output
Range

CASP 45730 9 7.749 6.118 [0, 20.9]
Concrete
Compress

1030 8 35.818 16.706 [2.3, 82.6]

Housing 506 13 22.533 9.197 [5, 50]
Istanbul
Stock

536 8 0.0016 0.016 [-0.06,
0.07]

Servo 167 4 1.3897 1.559 [0.13, 7.1]
Slump 103 9 36.039 7.838 [17.2, 58.5]

square error (MSE), E[(y− ŷ)2], and mean absolute error (MAE), E[|y− ŷ|], were
used to compare the performance of the various algorithms.

8.5.2 Regression Performance Analysis

CDR-ELM [432] is compared to backpropagation trained ANN (ANN-BP), LLS,
SVR, standard ELM [379], and LDS-based ELM [442]. C-ELM [440], C2ELM
[441], CIW-ELM [433] were extended to regression by considering that all train-
ing point belong to one class. A summary of the results is presented in Table
8.4. CDR-ELM achieved a lower testing MSE than ELM on the concrete com-
press, housing and slump data sets. For example, CDR-ELM achieved a 19.4%
reduction in MSE compared to ELM but required twice as long to train the
model. CDR-ELM also achieved 11% reduction in MAE compared to ELM on
the housing data and was 1.23 times slower.

On the other hand, it did not perform well on Istanbul stock or CASP. For
example, CDR-ELM resulted in a 5.8% MAE increase and 2.3 times slower than
ELM. ANN-BP achieved the lowest MSE but was 107 times slower than CDR-
ELM. While C2ELM achieved 28% decrease in MSE compared to CDR-ELM on
the servo data set, it also required 2.4 times longer to train the model. In general,
the additional computations required by CDR-ELM slowed down training but still
resulted in faster training time than SVR, ANN-BP and CIW-ELM, especially
on larger data sets.

Considering the repeatability of the various algorithms, we notice that CDR-
ELM had a high variance, meaning it was sensitive to the initial conditions of
the k-means algorithm. While it had the lowest variance on the slump data
(25% lower than C-ELM and 50% lower than ELM), it had higher variances on
the remaining data sets. For example, it had 60% higher variance than ELM.
Note that the variance of CIW-ELM, LDS-Halton-ELM, LDS-Sobol-ELM, LLS
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and SVR stems from averaging over the multiple folds. They were not run 5
independent times since they are not inherently randomized algorithms.

Table 8.4: Summary of results

Algorithm Hidden
Neurons

Training Time
(avg±std) (in
seconds)

Testing MSE
(avg±std)

Testing MAE
(avg±std)

CASP
CDR-
ELM [432]

90 2.1305±0.3128 24.8556±0.6097 4.0432±0.0324

ELM [379] 150 0.9242±0.0579 22.7199±0.3307 3.8223±0.0264
C2ELM [441] 70 1.0148±0.0720 25.1677±0.6189 4.0694±0.0395
C-ELM [440] 150 0.4102±0.0336 24.5077±0.2850 4.0338±0.0277
CIW-
ELM [433]

70 9.3461±2.9974 24.8624±0.5008 4.0604±0.0388

LDS-Halton-
ELM [442]

150 0.9883±0.0896 24.5895±0.3285 4.0319±0.0257

LDS-Sobol-
ELM [442]

150 0.9648±0.0430 24.2259±0.2626 4.0027±0.0253

ANN-BP 70 228.666±98.64 20.0305±0.5991 3.4002±0.0980
LLS 0 0.0097±0.0002 86.9483±0.7996 7.8451±0.0541
SVR 0 65.4661±2.738 28.0038±0.3460 4.2246±0.0282

Concrete Compress
CDR-
ELM [432]

130 0.0563±0.0199 41.9042±6.7595 4.6234±0.3062

ELM [379] 130 0.0203±0.0203 51.7742±5.8053 5.4326±0.2202
C2ELM [441] 150 0.0914±0.0239 41.4455±5.7780 4.6178±0.2103
C-ELM [440] 150 0.0219±0.0179 69.7120±12.9374 6.5284±0.6144
CIW-
ELM [433]

70 0.0164±0.0193 73.4289±3.3873 6.6319±0.1741

LDS-Halton-
ELM [442]

130 0.0234±0.0156 46.4158±5.0346 5.0230±0.1089

LDS-Sobol-
ELM [442]

110 0.0078±0.0156 53.6112±4.9201 5.4114±0.1445

ANN-BP 30 0.3256±0.0421 41.5115±14.3298 4.4741±0.2693
LLS 0 0.0017±0.0024 1426.128±27.77 36.1824±0.299
SVR 0 0.0431±0.0075 114.60±11.56 8.2306±0.2728

Housing
CDR-
ELM [432]

50 0.0203±0.0210 18.4246±7.3442 2.7149±0.2620

ELM [379] 110 0.0164±0.0172 19.6721±5.1287 3.0349±0.2091
C2ELM [441] 30 0.0328±0.0123 21.7419±4.6381 3.1992±0.1843
C-ELM [440] 150 0.0164±0.0172 18.0919±5.4313 2.8219±0.2333
CIW-
ELM [433]

70 0.0125±0.0180 22.0912±6.4946 3.0561±0.2640
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Algorithm Hidden
Neurons

Training Time
(avg±std) (in
seconds)

Testing MSE
(avg±std)

Testing MAE
(avg±std)

LDS-Halton-
ELM [442]

110 0.0273±0.0197 20.6313±1.6359 3.1805±0.1576

LDS-Sobol-
ELM [442]

30 0.0273±0.0197 29.1856±9.0897 3.5612±0.2833

ANN-BP 30 0.3897±0.0786 24.2276±9.2753 3.2496±0.4588
LLS 0 0.0005±0.0001 562.913±18.51 23.0678±0.3198
SVR 0 0.0222±0.0077 26.1085±7.1033 3.2581±0.2992

Istanbul Stock
CDR-
ELM [432]

30 0.0281±0.0207 0.0002±3.23E-5 0.0094±0.0008

ELM [379] 50 0.0086±0.0186 3.29E-5±8.25E-6 0.0043±0.0005
C2ELM [441] 30 0.0555±0.0266 2.73E-5±5.34E-6 0.0040±0.0004
C-ELM [440] 150 0.0172±0.0202 2.8E-5±6.65E-6 0.0040±0.0005
CIW-
ELM [433]

30 0.0063±0.0155 0.0001±4.63E-5 0.0065±0.0017

LDS-Halton-
ELM [442]

30 0.0391±0.0271 4.71E-5±2.15E-5 0.0050±0.0008

LDS-Sobol-
ELM [442]

70 0.0000±0.0000 7.36E-5±2.35E-5 0.0061±0.0006

ANN-BP 30 0.2451±0.0413 3.56E-5±9.56E-6 0.0044±0.0004
LLS 0 0.0003±0.0001 2.79E-5±5.63E-6 0.0040±0.0003
SVR 0 4.9083±0.4293 2.52E-

5±5.27E-6
0.0038±0.0003

Servo
CDR-
ELM [432]

50 0.0125±0.0180 0.7058±0.2495 0.5932±0.0942

ELM [379] 50 0.0055±0.0170 0.6053±0.1557 0.5186±0.0669
C2ELM [441] 30 0.0297±0.0086 0.5024±0.1656 0.4870±0.0584
C-ELM [440] 130 0.0125±0.0165 0.7106±0.2014 0.6008±0.0815
CIW-
ELM [433]

30 0.0000±0.0000 3.0099±1.9306 1.1602±0.1719

LDS-Halton-
ELM [442]

30 0.0156±0.0180 0.9054±0.2479 0.7113±0.0847

LDS-Sobol-
ELM [442]

30 0.0133±0.0198 1.0155±0.4015 0.7254±0.1471

ANN-BP 30 0.1695±0.0143 1.0309±0.3729 0.7044±0.1777
LLS 0 0.0044±0.0046 3.4718±0.2580 1.4536±0.1045
SVR 0 0.0125±0.0018 1.8725±0.4575 0.7644±0.1016

Slump
CDR-
ELM [432]

30 0.0102±0.0170 6.0396±1.9512 1.8471±0.3334

ELM [379] 150 0.0047±0.0144 7.4950±3.9178 1.8282±0.4218
C2ELM [441] 150 0.0375±0.0147 7.6987±4.5734 1.8769±0.3966
C-ELM [440] 150 0.0094±0.0147 8.1308±2.6088 2.1849±0.2985
CIW-
ELM [433]

30 0.0047±0.0144 10.1248±4.0657 2.3593±0.5033
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Figure 8.3: Deep Tesla Data Sample (adapted from [1])

Algorithm Hidden
Neurons

Training Time
(avg±std) (in
seconds)

Testing MSE
(avg±std)

Testing MAE
(avg±std)

LDS-Halton-
ELM [442]

30 0.0078±0.0156 9.4276±2.2604 2.3424±0.3589

LDS-Sobol-
ELM [442]

150 0.0117±0.0234 12.6901±2.5740 2.4416±0.1993

ANN-BP 30 0.1639±0.0066 20.7354±8.4033 3.2563±0.7767
LLS 0 0.0335±0.0566 1800.08±160.86 41.1354±1.6454
SVR 0 0.0101±0.0017 7.1495±1.8567 2.1505±0.2915

8.5.3 Autonomous Car Steering Wheel Controller

Autonomous driving requires real-time decision making based on sensory input
to avoid car accidents with potentially catastrophic consequences. Steering is
one task of autonomous driving systems; the system takes as input an image of
the road ahead, paying particular attention to its curvature, and determines the
most appropriate steering wheel angle to avoid driving off the road or colliding
with other vehicles on a multi-lane road.

Instead of designing a steering angle controller using traditional control theory
approaches, we train ELM on the DeepTesla dataset [1] which provides the op-
timal input-output pairs. An example of the input and output of the DeepTesla
data is shown in Figure 8.3. The steering angles ranged from -6 to 6 in increments
0.5. The input was RGB (red-green-blue) images with dimensions 1280×720 but
their resolution was reduced by a factor of 64 to obtain 240 features. We took
the first 1500 frames from the DeepTesla recordings. 80% of the data was used
for training and 20% for testing.

The best algorithm was CDR-ELM which outperformed ELM by 43%, ANN
by 23% and SVR by 85% while taking significantly less time to make a decision
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Table 8.5: Deep Tesla Results

Algorithm Hidden
Neurons

Training
Time (in
seconds)

Testing
MSE

Testing
MAE

CDR-ELM [432] 30 0.1594 10.9218 3.1950
ELM [379] 130 1.7899 15.5676 3.7846
C-ELM [440] 30 1.1936 11.9129 3.2962
LDS-Halton-ELM [442] 30 3.2966 10.9219 3.1950
LDS-Sobol-ELM [442] 30 3.2966 10.9219 3.1950
ANN-BP 30 467.00 13.4700 3.2100
LLS 0 0.0380 11.8000 2.7900
SVR 0 40.730 20.2200 3.6900

(11×, 2930×, 256×, less than ELM, ANN, and SVM, respectively). However, if
we use the same number of neurons for both ELM and CDR-ELM, ELM is about
10 times faster. ANNs required approximately 25 epochs to converge.

8.6 Conclusion

In this paper, we presented a non-iterative training algorithm for supervised re-
gression where input weights and biases are computed from clustered the training
data instead of random assignment. Experimental results show that CDR-ELM
outperforms ELM and other algorithms in the literature on some databases while
slightly under performing on other databases. Even though the proposed algo-
rithm achieved fast training and low error rates, it exhibited sensitivity to initial
conditions of the clustering algorithm due to the high standard deviation when
performing the repeatability analysis. Therefore, future work will investigate
methods to reduce the its sensitivity to the initial conditions of the cluster algo-
rithms.
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Chapter 9

ANN Initialization: A Least
Squares Approach

In Chapter 8, we proposed a data dependent initialization algorithm for non-
iteratively trained ANN. Iteratively-trained ANN have outperformed their non-
iteratively trained counterparts but have also been sensitive to initialization con-
ditions. In this chapter, we propose to combine both training approaches by
replacing random initialization in iteratively-trained ANN by the weights of a
non-iteratively trained ANN.

Specifically, we investigate initializing iteratively-trained ANN using the non-
iteratively trained ELM autoencoder algorithm, then train using backpropaga-
tion. Tested on multiple publicly available classification and regression datasets,
we observed improvements in generalization error and training convergence.
Next, section 9.1 motivates the proposed algorithm. Section 9.2 briefly sum-
marizes work in the literature on initializing ANN, before section 9.3 introduces
our proposed methodology. Sections 9.4 and 9.5 analyze the proposed approach
from a theoretical and empirical perspective, respectively. Finally, section 9.6
concludes with some final remarks.

9.1 Introduction

ANN have been successfully applied to many pattern recognition, function es-
timation, control and optimization problems. Shallow beginnings morphed into
deep architectures with millions of parameters that required hours of training
on powerful clusters of GPUs and millions of training samples. Various train-
ing algorithms have been proposed to improve training efficiency; they consist
of three main components: initialization, weight update rule and termination
conditions. At one end of the spectrum is the backpropagation training algo-
rithm [446] which iteratively learns randomly initialized weights. At the other
end of the spectrum are non-iterative training algorithms such as randomized
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ANN [376] and ELM [379] that learn network weights in one step. The former
approach is most suitable for problems that require an accuracy prediction model
and have the time and resources to train this model, while the latter is suitable
for problems that require approximate solutions in at least pseudo-real time with
minimal computational resources. An integral aspect of efficient training is good
initialization that allows algorithms to converge faster to better models.

In this work, we investigate combining both ends of the spectrum by ini-
tializing the weights using a non-iterative training algorithm, then applying a
few iterations of backpropagation to obtain a final model. Specifically, multi-
layer ANN are initialized by applying the ELM autoencoders based on least-
squares [447], [438] to compute the initial weight values of all layers. Then, a
traditional backpropagation algorithm updates the weights. The proposed al-
gorithm is compared to iterative and non-iterative training algorithms from the
literature on multiple publicly available classification and regression datasets.
Experiments show that the proposed algorithm achieved comparable accuracies
while converging faster.

9.2 Related Work

The many ANN generations, from the shallow beginnings to the current deep
architectures, have been mainly initialized by randomly sampling from the weight
space. With the large influence of initialization on convergence, many researchers
have investigated methods to initialization ANN which can be mainly categorized
into two bins: 1) computing the weights or pretraining, and 2) randomly sampling
weights from a constrained space.

Jammett et al. [448] used interval arithmetic to find the best interval for
each weight instead of solving for the weight value. Le et al. [449] initialized the
recurrent connections using a scaled identity matrix. Chen et al. [450] pretrained
deep conditional random fields by first training restricted Boltzmann machines.
Pretraining is a common initialization method adopted in deep learning where the
network is first trained from scratch before network parameters are fine-tuned.
Pretraining is generally done in an unsupervised fashion and has been proven
effective in efficiently training deep networks [451].

Input weights have been selected from a constrained weight space that con-
sists of the set of the normalized, pair-wise inter-class differences of training vec-
tors [440] or using ELM autoencoders when training ANN non-iteratively. Such
networks have been also initialized by computing the weights using various meth-
ods such as setting the input weights equal to the random weighted sum of the
training samples [433]. Input weights were also sampled from low-discrepancy
sequences, which are deterministic sequences that sample a space without clus-
tering or gaps [442]. The difference between cluster heads was used in [432] to
initialize the input layer weights for regression problems.
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Figure 9.1: ELM Architecture

9.3 Methodology

Before discussing the details of the proposed algorithm, we briefly present an
overview of ELM and backpropagation.

9.3.1 Extreme Learning Machines Overview

ELM are single hidden layer feedforward neural networks, as shown in Figure
9.1, trained in one step by randomly assigning input weights, wi, and biases, bi in
(9.1) from a uniform distribution [379]. As a result, learning the output weights,
β, becomes a linear and convex optimization problem. This is due to the fact
that the non-linear output matrix, H, does not contain optimization variables
(wi and bi are randomly assigned) and can be computed using (9.2) when the
input, x, is available.

ŷ = Hβ =
M∑
i=1

βig
(
wTi x+ bi

)
(9.1)

H =

g(wT1 x1 + b1) . . . g(wTMx1 + bM)
...

. . .
...

g(wT1 xN + b1) . . . g(wTMxN + bM)

 (9.2)

The output weights are computed using the generalized Moore-Penrose pseu-
doinverse, β = (HTH)−1HTy, where y is the true output or target for supervised
learning. Therefore, the ELM training algorithm performs the following steps:

1. Randomly assign values to the input weights and biases.

2. Compute H using (7.12).
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Figure 9.2: ELM Autoencoder Architecture

3. Compute β.

ELM were extended to multi-layer ANN by using ELM autoencoders that
computed the weights of the hidden layers, then the output layer weights were
computed using the single hidden layer approach described above [447], [438]. An
ELM autoencoder is defined as a single hidden layer feedforward network that
reconstructs the input, as shown in Figure 9.2. It randomly initializes the input
layer weights and solves a least squares problem to find the output layer weights
that minimize the error between the actual input,x, and the reconstructed input,
x̂. Each autoencoder extracts features from the input before the last layer learns
a classification model in a supervised framework.

9.3.2 Backpropagation Overview

Backpropagation (hereafter referred to as BP-rand), the most common ANN
training algorithm, was first proposed by Werbos (1974) [452], then further de-
veloped by Rumelhart, Hinton, and Williams (1986) [446]. It iteratively learns
the network weights by minimizing the prediction error, which is shown in (9.3)
and defined as the difference between the predicted and desired outputs. The
algorithm relies on gradient descent (GD) to find the network weights that mini-
mize this error measure. First, training data is propagated through the network
to compute the predicted output, in what is called the feedforward phase. Then,
in the feedback phase, the gradient of the error function is used to update the
network weights, using the weight update rule in (9.4).

E =
∑
i

e(n)2 =
∑
i

(ŷ(n)− y(n))2 (9.3)
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wij(t+ 1) = wij(t)− α
∂E

∂wij
(9.4)

In summary, the backpropagation training algorithm performs the following
steps:

1. Randomly initialize all the weights.

2. While termination condition has not been met

(a) Feedforward phase: compute the predicted output by propagating the
input through the network.

(b) Feedback phase: update the weights, using the weight update rule,
based on the prediction error.

9.3.3 Least Squares Initialized Backpropagation Training
Algorithm

While training ANN non-iteratively produces significant computational gains,
such models still lag behind their iteratively trained counterparts when consid-
ering prediction accuracy. Therefore, we propose to initialize ANN using ELM’s
non-iterative training algorithm, then fine-tune the network weights using back-
propagation. This allows us to leverage both algorithms’ strengths: fast training
time and good generalization performance.

If the ANN has multiple hidden layers, we initialize it using the multi-layer
ELM algorithm [438]. First, the weights of each hidden layer are computed using
an autoencoder trained using least squares. Next, the weights of the output layer
are learned in a supervised fashion using least squares, as described in section
9.3.1. Finally, backpropagation is used to fine-tune the weights in the entire
network. The workflow of the proposed algorithm, hereafter referred to as least
squares backpropagation (BP-LS), is summarized in Table 9.1.

9.4 Theoretical Computational Complexity

Analysis

The non-iterative algorithm consists of three main steps: (1) randomly assigning
values to the input weights and biases, (2) computing the output matrix H and
(3) solving for the output weights β, using the Moore-Penrose pseudoinverse.
We consider a network with F input neurons, M hidden neurons and C output
neurons trained on N input vectors.

Assigning random values requires a constant amount of time and the memory
requirements are linear in the number of assigned values, equal to the sum of input
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Table 9.1: BP–LS

1. For each hidden layer
a. Randomly initialize input weights of autoencoder
b. Compute the output weights of the autoencoder
c. Set the weights of the hidden layer equal to the output weights of

the autoencoder
2. Compute H
3. Compute β
4. While termination condition has not been met

a. Feedforward phase
b. Feedback phase

layer weights and biases. The output matrix H is an N ×M matrix and consists
of multiplying F -dimensional input vectors by F -dimensional input weights and
applying an activation function with a constant number of floating-point compu-
tations k. Therefore, computing the H matrix requires a total of NM(F + k)
computations. Finally, calculating the pseudoinverse of H and multiplying the
result by the target output requires O(N3) operations when M,C ≤ N .

On the other hand, testing requires computing the H matrix and multiplying
it by β, equivalent O(MC(F+k)+MC) computations for one test point, to find ŷ.
Table 9.2 summarizes the time and space complexity of the non-iterative training
algorithm. The space complexity indicates how many floating-point numbers are
saved in memory.

Table 9.2: Computational complexity of a single hidden layer ELM

Time complexity Space complexity

Randomly assign
weights and biases

O(FM +M) O(FM +M)

Compute H O(NM(F + k)) O(NM)
Compute β O(N3) O(MC)

Training Total O(NM(F + k) +N3) O(FM +M +NM +MC)

Initializing a single hidden layer network with random numbers requires
O(FM + M + MC) time and space complexity. If we consider a multi-layer
ANN with L layers and M neurons per layer, L ELM autoencoders are needed
and one supervised ELM. The computational complexity of an ELM autoencoder
is the same as derived above, except that we replace C output neurons by F . The
time complexity is O((L + 1)(NM(F + k) + N3)) and the space complexity is
O(L(2FM +M +NM)+FM +M +NM +MC). Therefore, it is computational
more expensive to initialize the network using ELM. However, with computa-
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tions performed on GPUs, significant speedups can be achieved in future work to
reduce the additional overhead of initializing ANN using ELM.

9.5 Empirical Validation

9.5.1 Experimental Setup

In this section, we evaluate BP-LS and compare it to its randomly initialized
counterpart BP-rand. Experiments were run on a machine equipped with an
Intel Xeon 64-bit 12-core processor, an NVIDIA GTX 1080 GPU and NVIDIA
Tesla K20m GPU, with Windows 10 and RedHat 6.5 operating systems, re-
spectively. The algorithms were written in Python based on the Tensorflow 1.3
package. Table 9.3 summarizes the properties of the adopted databases publicly
available on the UCI Machine Learning Repository [424] and Kaggle [453]. We
report the mean absolute error (MAE) and the testing accuracy for regression
and classification datasets, respectively.

9.5.2 Performance Evaluation

Table 9.4 and 9.5 report on the performance of BP-LS compared to BP-rand,
and ELM. Due to the random nature of the algorithms, we performed a re-
peatability analysis, where each experiment was repeated 5 times while fixing
all hyperparameters. The average and standard deviations are reported. The
termination condition stated that if the validation error did not vary for more
than 5 epochs, the training terminated. We trained multiple network architec-
tures and reported results of the best architecture. BP-LS converged to lower
MAE and higher testing accuracies on most datasets but generally required more
epochs to converge. This prevented BP-LS’s initialization from getting stuck in
local minima. For example, on Boston housing, BP-LS achieved an MAE 400
times better than BP-rand but required 11 times more epochs to converge. For
the Combined cycle power plant dataset, BP-LS achieved an MAE that was 98%
lower than BP-rand and only required one additional epoch. On average, for all
the regression datasets, BP-LS achieved 98% reduction in MAE while requiring
almost 4 times more epochs to converge. Considering the classification datasets,
BP-LS achieved 13% higher accuracy while taking approximately twice as many
epochs to converge as BP-rand. Compared to ELM, BP-LS achieved 30% lower
MAE and 14% higher accuracy. As for the repeatability analysis, the standard
deviation of BP-LS was generally lower than BP-rand, which implies that a good
initialization helped ANN be less sensitive to randomly initialized weights.
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Table 9.3: Database Description

Database Type Number
of In-
stances

Number
of Fea-
tures

Number
of
Classes

Output
Range

Sports Articles
for Objectivity
Analysis [454]

Classification 1000 59 2 -

Diabetic
Retinopathy
Debrecen [424]

Classification 1151 19 2 -

Banknote
Authentica-
tion [424]

Classification 1372 4 2 -

EEG Eye State
[424]

Classification 14980 14 2 -

HTRU2 [424] Classification 17898 8 2 -
Boston Housing
[424]

Regression 506 13 - [5, 50]

Airfoil Self-
Noise [424]

Regression 1503 5 - [103, 141]

Combined
Cycle Power
Plant [424]

Regression 9568 3 - [420,496]

Appliances En-
ergy Prediction
[424]

Regression 19735 27 - [10, 1080]

California Hous-
ing Prices [453]

Regression 20640 8 - [14999,
500001]
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9.5.3 Hyperparameter Sensitivity Analysis

In this section, we consider the effect of the maximum number of epochs and the
activation functions on the performance of the various algorithms. Tables 9.6
and 9.7 report the performance on some datasets when varying the activation
functions of the various hidden layers. We notice that changing the activation
function did not significantly affect the performance of BP-LS, especially for the
classification dataset.

Next, instead of adopting a stopping criterion based on the validation error,
we allow training to run for a pre-determined number of epochs. This allows
us to study whether BP-rand and BP-LS can escape a local minimum if given
enough time. Table 9.8 reports the results for two datasets using the best network
architecture for each dataset (reported in Tables 9.4 and 9.5). Focusing on the
classification dataset, we notice that BP-LS starts with an accuracy of 62.7% after
5 epochs of training and reaches 80% when trained for 100 epochs. However, BP-
rand performs worse than BP-LS; it achieves 52.7% accuracy within 5 epochs,
improves to 58.2% after 20 epochs, then begins to overfit after 100 epochs of
training. For the regression dataset, BP-LS begins to overfit after 5 epochs but
still outperforms BP-rand.

9.5.4 Training Error Convergence Analysis

Plotting the training error values as they change through the epochs allows us
to see the effect of initialization on the speed of convergence and overall perfor-
mance. Figure 9.3 plots the error curve, averaged over 50 iterations, for the best
BP-LS and BP-rand models, for the Sports Articles for Objectivity Analysis clas-
sification database. We notice that, on average, both approach start with an error
that is almost equal. Both algorithms exhibit approximately the same standard
deviation (approximately equal to 0.15). The error decreases faster in BP-LS
compared to BP-rand, emphasizing the importance of a good initialization.

9.5.5 Weight Distribution Analysis

Next, we compare the network weight distribution of BP-rand and BP-LS. For
this analysis, we train a network with 3 hidden layers and 10, 20, and 5 neurons
per hidden layer on the Sports Articles for Objectivity Analysis classification
database. Figure 9.4 and 9.5 plot the histograms of the network weights at
initialization and after training the networks for 100 epochs, respectively. BP-LS’s
initial weights were slightly skewed towards negative values while the randomly
initialized weights in BP-rand were skewed towards positive values. After 100
epochs of training, the distribution for both algorithms became centered around
0. BP-rand converged to a larger number of negative weights (less than -0.5)
compared to BP-LS. Therefore, the initialization affected the evolution of the
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Figure 9.3: Training Error as a Function of Training Epochs for Sports Classifi-
cation

network weights which led to a difference in performance, in favor of BP-LS.

9.6 Conclusion

The success of ANN led to its application in a large set of problems with a
wide spectrum of computational resources. Since initialization greatly affects the
quality of the prediction model, we propose, in this work, to initialize the multi-
layer ANN using ELM’s non-iterative least squares training algorithm. Then,
we fine-tuned the network parameters using backpropagation. The theoretical
computational complexity of the proposed algorithm was compared to that of
randomly initialized backpropagation. Experiments on multiple classification
datasets showed promising results that motivate further investigation. Future
work will apply the proposed initialization algorithm to other types of ANN
architectures such as recurrent neural networks and validate the approach on
additional benchmarks.
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Figure 9.4: Weight Distribution of BP-rand and BP-LS after Initialization

Figure 9.5: Weight Distribution of BP-rand and BP-LS after Training
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Table 9.4: Performance of BP-rand and BP-LS on Regression Datasets

Database Algorithm MAE (avg ±
std)

Epochs (avg ±
std)

Network Ar-
chitecture

Boston ELM 0.74±0.69 - [10, 10, 10]
Housing BP-LS 0.09±0.006 93.2 ± 30.9 [10, 10, 10]

BP-rand 36.10±6.6 8.4 ± 1.36 [50, 10]
Airfoil ELM 0.70±0.71 - [10, 10, 10]
Self-Noise BP-LS 1.4±0.84 16 ± 11.78 [10, 10, 10]

BP-rand 38.0±23.08 10.2 ± 2.64 [10, 10, 10]
Combined ELM 2.46±3.08 - [10, 10, 10]
Cycle BP-LS 1.1±0.89 9.6±3.77 [10, 10, 10]
Power Plant BP-rand 73.3±48.07 8.8±2.86 [10, 10, 10]
Appliances ELM 0.97±0.86 - [10, 20, 5]
Energy BP-LS 0.05±0.004 26±20.76 [10, 10, 10]
Prediction BP-rand 20.41±12.38 10.4±4.13 [10, 10, 10]
California ELM 0.64±0.94 - [10, 20, 5]
Housing BP-LS 0.6±0.67 9.2±4.45 [10, 10, 10]
Prices BP-rand 23.32±13.35 7.8±2.32 [10, 10, 10]

Table 9.5: Performance of BP-rand and BP-LS on Classification Datasets
Database Algorithm Accuracy

(avg ± std)
Epochs (avg
± std)

Network Ar-
chitecture

Sports Articles ELM 77.63±0.85 - [200, 50]
for Objectivity BP-LS 81.66±0.60 33 ± 7.29 [10, 50, 100]
Analysis BP-rand 61.96±2.09 18 ± 12.85 [10, 10, 10]
Diabetic Retinopathy ELM 53.97±3.81 - [10, 10, 10]
Debrecen BP-LS 70.23±1.15 1 ± 0 [10, 20, 5]

BP-rand 51.42±2.27 10.8 ± 5.3 [10, 10, 10]
Banknote ELM 61.86±8.15 - [10, 10, 10]
Authentication BP-LS 99.95±0.097 252.8 ±

212.71
[10, 20, 5]

BP-rand 100±0 77.2 ± 154.4 [10, 20, 5]
EEG Eye ELM 53.84±4.11 - [50, 10, 50,

15]
Statey BP-LS 55.13±8.9E-

05
13.8 ± 4.79 [50, 10, 50,

15]
BP-rand 52.05±4.11 8.6 ± 3.14 [10, 10, 10]

HTRU2 ELM 94.01±2.91 - [10, 10, 10]
BP-LS 96.48±2.86 37.6 ± 17.23 [10, 20, 5]

BP-rand 90.76±0 9.8 ± 2.48 [50, 10, 50,
15]
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Table 9.6: Performance of BP-rand and BP-LS on Regression Datasets with
Different Activation Functions

Database Activation
function

Algorithm MAE (avg ± std) Epochs (avg ± std)

Boston elu-elu-lin BP-LS 0.41±0.8 100± 67
Housing elu-elu-lin BP-rand 1870±1176 10.8± 6.4

tanh-elu-lin BP-LS 0.38±0.74 92± 43
tanh-elu-lin BP-rand 769±164 98± 1.6

Airfoil elu-elu-lin BP-LS 3.67±4.54 21± 15
Self-Noise elu-elu-lin BP-rand 2105±2168 9.4± 3.6

tanh-elu-lin BP-LS 1.97±1.82 1± 0
tanh-elu-lin BP-rand 769±758 8.8± 3.4

Power Plant elu-elu-lin BP-LS 1.84±2.59 10.6± 2.8
Appliances elu-elu-lin BP-rand 6441±3482 8.8± 2.1
Energy tanh-elu-lin BP-LS 1.17±1.26 9± 4.24

tanh-elu-lin BP-rand 1487±825 11.2± 3.18
Energy elu-elu-lin BP-LS 1.84±2.59 10.6± 2.8
Prediction elu-elu-lin BP-rand 577±538 9.4± 3.2

tanh-elu-lin BP-LS 0.008±0.0006 56.2± 43.9
tanh-elu-lin BP-rand 12.57±10.03 11± 5.25

Table 9.7: Performance of BP-rand and BP-LS on Classification Datasets with
Different Activation Functions

Network Ar-
chitecture

Activation
function

Algorithm Accuracy (avg
± std)

Epochs (avg ±
std)

EEG Eye State
[10, 20, 5] soft-sig-soft BP-LS 55.1±0.0001 1± 0
[50, 10, 50, 15] soft-sig-soft BP-rand 53.7±0.025 1± 0
[10, 20, 5] elu-elu-sig BP-LS 55.1±0.0001 1± 0
[50, 10, 50, 15] elu-elu-sig BP-rand 53.7±0.025 1± 0

HTRU2
[10, 20, 5] soft-sig-soft BP-LS 97.8±0.0002 59.8± 31.9
[10, 20, 5] soft-sig-soft BP-rand 97.8±0.0001 66± 34.3
[10, 20, 5] elu-elu-sig BP-LS 97.8±0.0006 48± 16
[50, 10, 50, 15] elu-elu-sig BP-rand 90.7±0 8.2± 3.3
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Table 9.8: Effect of Epochs on Performance

Database Number of Epochs BP-rand BP-LS

Accuracy (avg ± std))(%)
Sports Articles 5 52.7 ± 13.4 62.7 ± 17.8
for Objectivity 10 52.7 ± 13.4 67.2 ± 16.9
Classification 20 58.2 ± 10.9 81.6 ± 1.0

50 52.7 ± 13.4 58.8 ± 19.2
100 52.7 ± 13.4 80.3 ± 0.3

MAE (avg ± std)
Boston 5 61.081 ± 21.411 0.170 ± 0.053
Housing 10 58.758 ± 21.276 0.840 ± 1.234

20 59.206 ± 30.148 0.471 ± 0.437
50 55.990 ± 16.736 0.595 ± 0.590
100 59.322 ± 22.800 0.893 ± 0.755
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Chapter 10

ANN Regularization: An
Information Theoretic Approach

Deep neural networks, like other machine learning algorithms, have suffered from
overfitting. This causes reduced performance at testing time and wasted resources
during training. In this work, we aim to reduce the probability of overfitting by
pruning a trained fully connected network using information theoretic approaches
including transfer entropy, Kullback-Leibler divergence and correlation. A two
phase training approach is adopted. Once a dense network is trained using tradi-
tional methods, one of the aforementioned pruning criteria is computed for each
pair of connected neurons in the network. Connections with a metric value below
a predefined threshold are pruned. Then, the pruned network is trained to fine
tune the remaining weights. The metrics are compared on multiple classification
benchmarks from the literature that motivated follow on research. Next, we mo-
tivate our approach in section 10.1. Then, we briefly present existing work on DL
regularization in section 10.2 before discussing our proposed approach in section
10.3. An empirical evaluation of this approach is discussed in section 10.4, before
we conclude with some final remarks in section 10.5.

10.1 Introduction

DL has achieved remarkable results in many applications such as object recogni-
tion, image captioning and automatic speech recognition due to the abundance
of training data and computational resources. However, these Deep Neural Net-
works (DNN) are vulnerable to overfitting. Many regularization techniques for
machine learning algorithms have been proposed to reduce the likelihood of over-
fitting and improve performance from penalizing complex models to stopping
training early. Determining the best model complexity of DNN is still an open
research problem, ensemble learning is expensive and monitoring validation set
accuracy has not been enough to avoid overfitting. Two methods that have found
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success in DL have been dropout which is essentially averaging multiple network
models while training [455] and batch normalization which normalizes layer in-
puts [456].

In this work, we adopt a two-phase training approach. Instead of sparsifying
the network based on the connection weights as in [457], we compare multiple
information theoretic metrics to eliminate paths with low information propaga-
tion. Specifically, we greedily prune individual connections along a path with
low transfer entropy, low correlation or low Kullback-Leibler (KL) divergence.
Reducing the complexity of the model by pruning connections help the network
avoid overfitting and hence has a regularizing effect. Empirical results on classi-
fication datasets showed that our proposed approach outperformed dropout [458]
and batch normalization [456] regularization techniques while exhibiting similar
performance to [457].

10.2 Literature Review

Overfitting severely undermines the exerted effort on training by preventing mod-
els to perform well on unseen data. DNN are especially vulnerable to overfitting
because of the large number of parameters that is learned. One common approach
to overcome overfitting in DL is dropout [455, 458]; during training, neurons are
randomly (with a probability of 0.5) eliminated from the network at each iteration
when a training sample is passed through the network. Such a training approach
prevents neurons from co-adapting since a subset of the networks overall neurons
are trained on a given input.

Many variants of dropout have been proposed in the literature. Instead of ran-
domly selecting neurons to drop out of the network, [459] proposed to dropout
individual connections, outperforming it on some datasets. Fraternal dropout
apply the dropout approach to recurrent neural network to improve their perfor-
mance by training two RNNs, each using a different dropout mask [460]. [461]
adaptively modified the dropout hyper-parameter using the Rademacher com-
plexity value. This approach outperformed the fix-valued dropout on MNIST,
CIFAR-10 and text classification.

Dense-sparse-dense (DSD) neural networks [457] were trained using a three
phase training algorithm where a dense network is trained first, then pruned based
on weight values to produce a sparse network. This sparse network is further
training before the network is made dense again and trained to obtain the final
model. Tested image classification, caption generation and speech recognition
using CNN, LSTM and RNN, DSD improved on state of the art results in all
domains.

Another common approach is batch normalization which removes the mean
and standard deviation of random batches of data from the input [456]. Fur-
thermore, the inputs to the hidden layers were also normalized and improved

142



generalization performance. Batch normalization improved the generalization
accuracy while reducing the number of iterations till convergence for feedforward
networks. However, this approach did not result in similar gains for RNNs [462].
Furthermore, batch normalization was counterproductive when combined with
weight decay (L2 regularization) [463].

10.3 Methodology

We first present a brief overview of some information theoretic concepts used in
this work, before presenting the proposed regularization algorithm.

10.3.1 Transfer Entropy Overview

In information theory, entropy is viewed as a measure of the amount of infor-
mation conveyed by a discrete random variable and computed by (10.1) [464].
A larger entropy implies larger information content. When considering the re-
lationship between two random variables, mutual information (MI) quantifies
the mutual dependence between these random variables, using (10.2) for discrete
cases. Correlation is also a measure of dependence but is considered a special
case of MI that only applies to continuous random variables. The correlation is
computed using (10.3).

H(X) = −
∑
x∈X

p(x)log(p(x)) (10.1)

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log(
p(x, y)

p(x)p(y)
) (10.2)

ρX,Y = corr(X, Y ) =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(10.3)

Knowing one random variable (X), we sometimes want to quantify the in-
formation that can be inferred about a second random variable (Y ). In such
cases, conditional entropy is adopted and is based on the conditional probabil-
ity distribution, as shown in (10.4). Similarly, the conditional MI quantifies the
dependence between two random variables (X and Y ) knowing a third (Z), as
shown in (10.5). When considering time series random variables, transfer en-
tropy denotes the amount of information transferred from one to another. More
formally, transfer entropy measures information inferred about the time series
random variable Y at time t (Yt) knowing previous values of the Y (Yt−1:t−T ) and
knowing the values of a second time series random variable X (Xt−1:t−T ). As
shown in (10.6), transfer entropy is equal to the conditional MI. Transfer entropy
has been used in neuroscience to characterize the functional connectivity of the
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brain [465], in artificial neural networks to insert feedback connections in the
network [466] and other complex systems to estimate information flow [467].

H(Y |X) = −
∑

x∈X,y∈Y

p(y, x)log(
p(y, x)

p(x))
) (10.4)

I(X;Y |Z) =
∑
z∈Z

p(z)
∑
x∈X

∑
y∈Y

p(x, y|z)log(
p(x, y|z)

p(x|z)p(y|z)
) (10.5)

TX→Y = H(Yt|Yt−1:t−T )−H(Yt|Yt−1:t−T , Xt−1:t−T ) = I(Yt;Xt−1:t−T |Yt−1:t−T )
(10.6)

The KL divergence between two distributions X and Y is an asymmetric
probability distance measure computed using (10.7).

DKL(X||Y ) = −
∑
i

X(i) log
Y (i)

X(i)
(10.7)

10.3.2 Artificial Neural Network Model

We consider a fully connected multi-hidden layer feedforward artificial neural
network (ANN) where the weights, wij, and biases, bij are learned, as shown
in Figure 10.1. We assume L − 1 hidden layers (i = 1, ..., L with the i = L
representing the output layer) and each hidden layer contains Mi hidden neurons.
The F -dimensional input to the network is denoted by (10.8) and the output of
the intermediate hidden layers is denoted by (10.9). The output of the network,
shown in (10.10), is assumed to belong to one of C labels.

We assume the output of each neuron in the network, excluding input and
output layer neurons, is a random variable X that depends on the input to the
network. For example, the output of neuron j in layer i is represented by the
random variable hij; we have N samples of this random variable: hij1 to hijN .
Therefore, for a given set of inputs X , the matrix H holds the values of the Mi

random variables corresponding to the neurons in hidden layer i.

X =

x11 . . . xiF
...

. . .
...

xN1 . . . xNF

 (10.8)

H i =

h
i
11 . . . hi1Mi
...

. . .
...

hiN1 . . . hiNMi

 (10.9)
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Figure 10.1: ANN Architecture

Y =

y11 . . . yiC
...

. . .
...

yN1 . . . yNC

 (10.10)

10.3.3 Two-phase Training Algorithm

Many training algorithms have been proposed to train DNN while minimizing
overfitting. One class of algorithms trains DNN in one phase where supervised
or unsupervised learning is adopted. Another class of algorithms adopt a two-
phase approach where pre-training is performed first then fine-tuning improves
the network parameters. Recently, a three-phase approach was proposed by [457]
where a dense, sparse then dense networks are trained sequentially. In our work,
we propose a two-phase training algorithm that prunes network connections based
on information theoretic metrics instead of the absolute values of the weights, as
in [457]. Specifically, the steps in Table 10.1 are performed.

The value of n that determines the degree of sparsification is a hyper-
parameter than can be tuned based on the prediction performance-computational
complexity trade-off. If the network is overfitting, eliminating some connections
would reduce the model complexity and help the network avoid overfitting while
reducing the computational complexity. More details on the transfer entropy
computations are presented in the next section.

Instead of deterministically pruning connections in the bottom nth percentile,
we also consider a pseudo-random pruning approach. Connections in the bottom
nth percentile are eliminated with a certain probability p > 0.5, i.e. a biased coin
is flipped and the connection is eliminated with a probability p.
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Table 10.1: Workflow of the Proposed Algorithm

1. Train a dense (fully connected) network.
2. Create a sparse network:

a. Randomly sample a subset of the training data.
b. Extract the intermediary layer outputs for this subset to form the

random variables associated with each neuron in the hidden layers.
c. Compute the transfer entropy, KL divergence or correlation of each

pair of consecutive neurons.
d. Eliminate connections between neuron pairs with an information

theoretic metric value in the bottom nth percentile.
3. Train the sparse network.

10.3.4 Information Theoretic Sparsification

Instead of pruning the network based on the values of the network weights [457],
we compare multiple information theoretic metrics: 1) transfer entropy, 2) corre-
lation, and 3) KL divergence.

Transfer entropy allows us to identify the network pathways with a high trans-
fer of information. Computing the transfer entropy of all possible paths in the
network by considering the non-consecutive source and destination neurons is
computationally expensive, especially in deep networks with millions of network
connections. Therefore, we approximate the transfer entropy of each path by the
sum of transfer entropy of consecutive neurons. Therefore, if a network contains a
total of M =

∑L
i=1Mi neurons, we are only required to compute

∑L
i=1Mi×Mi+1

instead of M ×M values.

However, the computation of the transfer entropy for one neuron pair is com-
putationally expensive since it requires the computation of the joint entropy and
MI over multiple layers L. One approximation is to assume the Markov property
where Yi only depends on Yi−1 instead of Yi−1:i−L and Xt−1 instead of Xi−1:i−L,
as shown in (10.11) [468]. i represents the layer in which the neuron belongs to,
i.e. the output (Yi) of a neuron in layer i only depends on the output of a neuron
in the previous layer (i − 1) and not all previous layers. Furthermore, since our
random variables are continuous with unknown distributions, we need to approx-
imate their transfer entropy using the kernel density estimation method [469].

TX→Y = HYi,Yi+1
+HYi,Xi

−HYi −HYi,Yi+1,Xi
(10.11)

Nevertheless, this is still computationally expensive. Therefore, we investigate
adopting the correlation as a measure of dependency between two neurons instead
of the transfer entropy. Computing the correlation is equivalent to the matrix dot
product of the intermediate layer outputs, as shown in (10.12). H i represents
the output of hidden layer i, as shown in Figure 10.1.
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Cor(H i,H i+1) = (H i)T (H i+1) (10.12)

Finally, we also consider KL divergence since it is a non-symmetrical (directed)
distance metric which may be a more accurate reflection of directed information
flow in networks. We adopt the same workflow as for transfer entropy but com-
pute KL divergence using (10.13).

DKL(Yi+1||Xi) = −Yi+1 log
Xi

Yi+1

(10.13)

10.4 Empirical Validation

10.4.1 Experimental Setup

The algorithms, written in Python 2.7 using the Keras, Tensorflow and Java
Information Dynamics Toolkit (JIDT) packages, were run on a machine with an
Intel Xeon 64-bit 12-core processor and a Quadro K2000 NVIDIA GPU. Transfer
entropy was computing using the kernel estimators implementation in Python
[469].

The proposed algorithm is compared to other regularization techniques on
multi-layer perceptrons (MLP) for supervised classification tasks. Specifically,
the MNIST dataset with 60,000 training samples and 10,000 testing samples
was adopted. The data consisted of feature vectors with a dimension of 784
that could belong to one of 10 possible classes. The skin segmentation dataset
contains 245,057 samples represented by 4 features and belong to one of two
classes. The Higgs Boson dataset contains 250,000 training instances, represented
by 30 features, and 550,000 testing instances. Unless specified otherwise, a 4-
hidden layer network architecture is adopted with 512 neurons per layer. In
pseudo-random pruning, connections in the bottom nth percentile are eliminated
with a probability of p = 0.85.

10.4.2 Performance Analysis

Table 10.2 summarizes the performance of the pseudo-random pruning approach
with the various pruning metrics. Our pruning metrics all lead to an improved
prediction accuracy before (untrained sparse network) and after fine-tuning the
weights while reducing the number of connections by an average of almost 50%
across databases. While the accuracy increase for skin segmentation and MNIST
were minor (0.18% and 0.5%, respectively), Higgs boson benefited from KL di-
vergence with an 2.84% improvement in prediction accuracy.

Even though DSD achieved slightly higher accuracies (less than 0.3%), the re-
duction in network complexity was consistently lower than our proposed metrics.
However, its computational complexity was significantly less than our proposed
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Table 10.2: Pseudo-random Pruning Results
Network Training Pruning Sparsity Epoch Accuracy (%) Training

Time
(sec)

Pruning
Time
(sec)

Connectivity
Reduction
(%)

Skin Segmentation

Dense Batch Nor-
malization

- 20 10 99.04 277.84 0.00 0.00

Dense Dropout - 20 10 99.75 195.18 0.00 0.00
Sparse - Transfer Entropy 20 10 99.78 0.00 314.19 48.76
Sparse Dropout Transfer Entropy 20 10 99.93 191.45 0.00 48.76
Sparse - KL Divergence 20 10 99.78 0.00 16532.61 43.74
Sparse Dropout KL Divergence 20 10 99.88 190.62 0.00 43.74
Sparse - Correlation 20 10 99.78 0.00 15.39 48.17
Sparse Dropout Correlation 20 10 99.89 192.07 0.00 48.17
Sparse - Weights [457] 20 10 99.78 0.00 0.02 20.00
Sparse Dropout Weights [457] 20 10 99.94 192.67 0.00 20.00
Redense Dropout Weights [457] 20 10 99.87 177.53 0.00 12.40

Higgs Boson

Dense Batch Nor-
malization

- 20 10 93.03 287.27 0.00 0.00

Dense Dropout - 20 10 95.50 203.49 0.00 0.00
Sparse - Transfer Entropy 20 10 95.52 0.00 313.53 73.45
Sparse Dropout Transfer Entropy 20 10 97.56 199.04 0.00 73.45
Sparse - KL Divergence 20 10 95.52 0.00 16063.55 64.44
Sparse Dropout KL Divergence 20 10 98.34 198.31 0.00 64.44
Sparse - Correlation 20 10 95.52 0.00 15.86 67.33
Sparse Dropout Correlation 20 10 95.55 200.34 0.00 67.33
Sparse - Weights [457] 20 10 95.52 0.00 0.02 20.00
Sparse Dropout Weights [457] 20 10 98.63 200.55 0.00 20.00
Redense Dropout Weights [457] 20 10 98.39 184.87 0.00 15.09

MNIST

Dense Batch Nor-
malization

- 20 10 97.22 108.67 0.00 0

Dense Dropout - 20 10 98.15 80.66 0.00 0
Sparse - Transfer Entropy 20 10 98.28 0.00 295.44 19.18
Sparse Dropout Transfer Entropy 20 10 98.61 83.68 0.00 19.18
Sparse - KL Divergence 20 10 98.28 0.00 17479.56 19.33
Sparse Dropout KL Divergence 20 10 98.6 83.49 0.00 19.33
Sparse - Correlation 20 10 98.28 0.00 8.91 19.21
Sparse Dropout Correlation 20 10 98.57 84.07 0.00 19.21
Sparse - Weights [457] 20 10 98.28 0.00 0.02 20
Sparse Dropout Weights [457] 20 10 98.59 84.27 0.00 20
Redense Dropout Weights [457] 20 10 98.16 75.34 0.00 1.86

metrics. The pruning time represents the amount of time required to determine
which connections should be eliminated. KL divergence was the most expensive,
requiring on average approximately 16,700 seconds, 55× more time than transfer
entropy. Correlation was the least computationally expensive information theo-
retic metric, requiring tens of seconds compared to transfer entropy’s hundreds
of seconds, but needed 1000× longer than pruning based on weight values as
in [457].

Table 10.3 summarizes the results of varying the number of epochs used to
train the networks. We notice that the pruning algorithms’ performance was
mainly affected by the dense model than by the number of epochs it was trained
for. For example, fine-tuned sparse networks based on transfer entropy improved
on the dense networks’ prediction by 0.96% when trained for 60 epochs but con-
verged to the lowest accuracy compared to corresponding sparse networks trained
for 10 and 200 epochs. This is due to its corresponding dense network converging
to the lowest accuracy among the three networks. All proposed pruning ap-
proaches improved on the dense network by an average of 0.93% for all epochs
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values.

Table 10.3: Varying the number of epochs on MNIST
Network Training Pruning Sparsity Epoch Accuracy (%) Training

Time
(sec)

Pruning
Time
(sec)

Connectivity
Reduction
(%)

Dense Batch
Normal-
ization

- 30 10 97.25 57.97 0.00 0

Dense Dropout - 30 10 97.23 42.71 0.00 0
Sparse - Transfer Entropy 30 10 97.66 0.00 20.61 10.03
Sparse Dropout Transfer Entropy 30 10 98.03 12.10 0.00 10.03
Sparse - KL Divergence 30 10 97.66 0.00 1084.17 10.03
Sparse Dropout KL Divergence 30 10 98.03 23.71 0.00 10.03
Sparse - Correlation 30 10 97.66 0.00 4.25 10.03
Sparse Dropout Correlation 30 10 97.93 12.30 0.00 10.03
Sparse - Weights [457] 30 10 97.66 0.00 0.01 29.99
Sparse Dropout Weights [457] 30 10 98.08 18.32 0.00 29.99
Redense Dropout Weights [457] 30 10 97.54 23.02 0.00 3.99
Dense Batch

Normal-
ization

- 30 60 97.38 39.30 0.00 0

Dense Dropout - 30 60 96.09 19.07 0.00 0
Sparse - Transfer Entropy 30 60 96.71 0.00 20.80 10.03
Sparse Dropout Transfer Entropy 30 60 97.50 12.28 0.00 10.03
Sparse - KL Divergence 30 60 96.71 0.00 1066.47 10.03
Sparse Dropout KL Divergence 30 60 97.71 23.68 0.00 10.03
Sparse - Correlation 30 60 96.71 0.00 4.34 10.03
Sparse Dropout Correlation 30 60 97.87 23.95 0.00 10.03
Sparse - Weights [457] 30 60 96.71 0.00 0.01 29.69
Sparse Dropout Weights [457] 30 60 97.72 18.37 0.00 29.69
Redense Dropout Weights [457] 30 60 97.51 17.47 0.00 14.59

Dense Batch
Normal-
ization

- 30 200 95.77 39.13 0.00 0.00

Dense Dropout - 30 200 97.52 54.90 0.00 0.00
Sparse - Transfer Entropy 30 200 97.84 0.00 20.66 10.03
Sparse Dropout Transfer Entropy 30 200 98.08 41.27 0.00 10.03
Sparse - KL Divergence 30 200 97.84 0.00 1102.75 10.03
Sparse Dropout KL Divergence 30 200 98.10 23.85 0.00 10.03
Sparse - Correlation 30 200 97.84 0.00 3.75 10.03
Sparse Dropout Correlation 30 200 98.14 23.82 0.00 10.03
Sparse - Weights [457] 30 200 97.84 0.00 0.01 29.99
Sparse Dropout Weights [457] 30 200 98.26 18.27 0.00 29.99
Redense Dropout Weights [457] 30 200 97.75 11.99 0.00 3.99

10.4.3 Repeatability Analysis

Since the proposed algorithm samples the input space to reduce the computa-
tional complexity, we perform a repeatability study to assess how this sampling
affects the algorithm’s performance. Figure 10.2 plots the accuracy for each rep-
etition, in addition to the mean and standard deviation over five repetitions. We
notice that adopting transfer entropy has a low standard deviation (in the order
of 10−4) and hence is repeatable. It was not significantly affected by the input
subsampling step when computing the transfer entropy.

10.5 Conclusion

With many deep networks suffering from overfitting, regularization techniques
have abound in the literature. In this work, we compare multiple information
theoretic metrics to perform regularization by eliminating paths in the network
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Figure 10.2: Repeatability Analysis on MNIST for n = 30

with low information transfer. This helps the network avoid overfitting by reduc-
ing its model complexity. Approximations of transfer entropy and KL divergence
were adopted to reduce the computational complexity overhead incurred by the
algorithm and compared to correlation-based pruning. Empirical results on multi-
ple classification datasets showed that our proposed approach outperformed some
regularization techniques in the literature and achieved comparable performance
to others. Future work will investigate more accurate approximates of transfer
entropy and KL divergence. The regularization technique will be applied to other
network architectures such as convolutional neural networks and recurrent neural
networks on larger datasets. We will also investigate deeper pre-trained networks
such as VGG, Inception and GoogLeNet.

150



Chapter 11

Conclusion

In this chapter, we summarize the main contributions of this work and briefly
discuss future research directions.

11.1 Summary

In this thesis, we investigated the possibility of incorporating MAS into the au-
tonomous package delivery problem, modeled as a PDP. CF was incorporated
into the optimization formulation for PDP by modifying the objective function
and constraints. Multiple cost functions were investigated including distance,
time and energy. The possibility of allowing overlapping coalitions was also dis-
cussed. A 3-index and 2-index MIP were derived for PDP-CF and were shown
to grow exponentially with the linear increase in vehicle fleet. Since this is not
scalable, we investigated search based approaches such as GA and QGA to im-
prove the formulation’s scalability. Introducing the concept of virtual packages,
we were able to create a GA encoding that allowed the chromosome population to
grow linearly with the vehicle fleet size, rendering the formulation more scalable.
Furthermore, we investigated a data-driven approach which adopted ANN as a
PDP-CF solver. Since the ANN was trained in a supervised fashion, we compiled
a corpus for autonomous package delivery to train the ANN.

Even though existing ANN training algorithms have been effective in many
applications, we looked to further improve their performance on our applica-
tion by proposing a more computationally efficient training algorithm for RNN.
Specifically, we proposed a non-iterative training algorithm (R-ELM) based on
least squares and a computationally efficient approximation of RLS, known as
Kaczmarz’s approximation. Furthermore, we proposed two context-dependent
initialization algorithms for non-iteratively and iteratively trained ANN, CDR-
ELM and BP-LS, respectively. Finally, we investigated an information theoretic
pruning approach to help DL avoid overfitting. Once dense networks are trained,
the transfer entropy of network connections are computed to prune connections
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with low transfer entropy.

11.2 Future Research Directions

Many research directions can be investigated based on the work presented. We
briefly discuss a few next.

• Other domains: While we focused on autonomous package delivery, it is
possible to apply the proposed algorithms to other applications. For exam-
ple, PDP-CF can be applied to the resource allocation problem in heteroge-
neous cloud computing services; heterogeneous cloud computing resources,
which include CPUs, GPUs, FPGAs, and other computing devices with
different capabilities, must be assigned to various jobs dynamically to max-
imize the utility of the hardware. Smart farming can also benefit from MAS
to reduce the effects of soil compaction by heavy machinery which would
be replaced by cooperating light-weight autonomous vehicles.

• PDP-CF with time windows: Our PDP-CF was derived from the sim-
plest PDP formulation that did not assign time windows for package deliv-
ery. Extending PDP-CF to include time windows would make the formu-
lation applicable to a wider set of real-world delivery problems.

• Repeated CF: The proposed formulation did not improve its choice of
coalition based on the performance of coalitions in previously assigned
tasks. Since the nature of our case study (and other real-world problems)
is inherently repeated, learning from previous coalition assignments could
significantly improve the performance of PDP-CF by reducing the search
space (eliminating weak coalitions from consideration) and converging to
better coalitions. However, this would require the quantification of synergy
within a coalition, trust and reliability of agents within a coalition.

• Decentralized solvers: The solvers in this work were mainly centralized,
with access to knowledge about all agents and tasks in the system. However,
developing a decentralized PDP-CF solver could improve scalability issues
and allow agents to join or leave coalitions on the fly. Disconnecting from
a centralized source would also allow the application of this formulation to
communication constrained problems (e.g. search and rescue in disaster-
stricken environments), where only peer-to-peer communication is possible.

• RL-based solvers: With a decentralized formulation, lifelong learning be-
comes possible when a RL framework is considered. Agents can improve
their decision making through experience by obtaining rewards or punish-
ments from the environment. Furthermore, this would reduce the need to
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create a labeled database for supervised learning and facilitate the deploy-
ment of PDP-CF to other domains. Deep RL and deep Q-learning are fields
that can investigated to train the ANN solver in a RL domain. Further-
more, transfer learning can be incorporated to reduce the learning overhead
in new domains.

• Real-world simulations: The experiments in this work were performed
on synthetic benchmarks that did not incorporate many of the real-world
constraints such as environmental stochasticity, terrain characteristics, ve-
hicle or robot failures, and others. To that end, environmental descriptors
can be included in the dataset to influence decision making. Furthermore,
environmental stochasticity can be modeled by noise in the system to make
simulations more realistic and study the robustness of the proposed algo-
rithms.

• Non-vehicle agent incorporation: The introduction of the descriptors
and energy cost function (including information acquisition costs) allow the
abstraction of vehicles or robots to agents and the incorporation of non-
vehicle agents that can contribute information to improve task execution
beyond aiding in the physical transportation of packages. However, the
experiments in this work did not consider such as scenario. Therefore, the
dataset could be extended to allow for such scenarios to investigate the
effectiveness of our proposed framework in such domains.
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Appendix A

Abbreviations

ANN Artificial Neural Networks

CF Coalition Formation

CNN Convolutional Neural Networks

DL Deep Learning

DNN Deep Neural Networks

ELM Extreme Learning Machines

GA Genetic Algorithm

LLS Linear Least Squares

LSTM Long Short-Term Memory

MAS Multi-Agent System

MDP Markov Decision Process

MIP Mixed Integer Programming

MRS Multi-Robot System

PDP Pickup and Delivery Problem

PDP-CF Pickup and Delivery Problem with Coalition Formation

POMDP Partially Observable Markov Decision Process

QGA Quantum Genetic Algorithm

RL Reinforcement Learning
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RLS Recursive Least Squares

RNN Recurrent Neural Networks

SLAM Simultaneous Localization and Mapping

SVM Support Vector Machines

SVR Support Vector Regression

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UUV Unmanned Underwater Vehicle

VRP Vehicle Routing Problem
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Appendix B

Heterogeneous MAS Workflow
Literature Review

The main components of the workflow to automate MRS (in Figure 2.2) are:
task decomposition, coalition formation, task allocation, perception, and MAS
planning and control. We survey existing work in each of these areas in sections
B.1 to B.4, then identify some remaining challenges and possible future research
directions in section B.5.

B.1 Task Decomposition

Task decomposition, the first step in the MAS workflow for complex task automa-
tion, divides a complex task into a set of simpler or more primitive sub-tasks that
are either independent or sequentially dependent on each other. For example,
mapping a building can be divided into mapping of individual floors and rooms
in the building.

Planners for task decomposition problems can be general [470] or domain
specific [471, 472]. An example of the latter is soccer task decomposition where
covering the playing field is divided among robots based on relative position of
the ball and players [472]. The ball, viewed as a gravitational source, creates a
gravitational field around it and affects the sub-task assignments. While many
systems require the designer to manually decompose complex tasks to a sequence
of simpler sub-tasks [32,52], some work have attempted to automate this process
and can be divided into three main categories: decompose-then-allocate, allocate-
then-decompose and simultaneous decomposition and allocation [473].

Decompose-then-allocate algorithms first decompose a complex task into a list
of sub-tasks in a centralized fashion then allocate the various sub-tasks to avail-
able agents. Task tree decomposition divided tasks based on logistic relationships
in the battlefield [474]. Automatic decomposition and abstraction learned to di-
vide complex decision making tasks into sub-tasks from human demonstrations,
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using mutual information measures [475]. Tracking people in an environment
was dynamically divided among robots based on geographical proximity [476].
Allocate-then-decompose algorithms, such as the M+ algorithm [470], first al-
locate a list of tasks to agents and then each agent divides this task to more
primitive sub-tasks. Finally, simultaneous task decomposition and allocation al-
gorithms opted not to decouple the task decomposition and allocation steps and
proposed a solution based on task trees and auctioning [471,477].

B.2 Coalition Formation and Task Allocation

After decomposing a complex task into a list of sub-tasks, these sub-tasks should
be allocated to a robot or group of robots for execution. Since some of the sub-
tasks are multi-robot tasks, they should be assigned to groups of cooperating
robots. Next, we discuss research on forming coalitions of robots (coalition for-
mation) and assigning to them sub-tasks (task allocation) before task execution
can be performed.

B.2.1 Coalition Formation

Coalition or team formation divides agents into coalitions or groups. These agents
may be non-cooperative [478] or cooperative. In this work, we focus on cooper-
ative coalition formation. Coalition formation can be performed offline to form
static coalitions or online to form dynamic teams that can adjust to the environ-
ment [479]. Agents are categorized into single-task and multi-task agents [30], i.e.
agents that can perform a single task versus those that can perform multiple tasks.
As mentioned previously, tasks are either single-robot or multi-robot tasks. Fi-
nally, the task to agent mapping or assignment is categorized into instantaneous
and time-extended [30]. Architectures to represent agent capabilities and task
requirements have been developed including numeric representations [480] and
behavior based representations like schema theory [481]. Many search algorithms
have been adopted to find the best robot teams including ant colony optimiza-
tion [482], particle swarm optimization [483], and evolutionary algorithms [484].

Repeated coalition formation under uncertainty deals with forming time vary-
ing team when agents have partial information about other agents’ capabilities,
resulting in uncertainty. Furthermore, information can be heterogeneous, i.e.
from different sources [485]. Dynamic, repeated coalition formation with robot
type and other uncertainties was performed by incorporating an agent modeling
algorithm with game theory [486]. Bayesian reinforcement learning (RL) allowed
agents to learn other agents’ capabilities through their interactions and trans-
formed the repeated coalition formation problem into a sequential decision mak-
ing problem [252]. This approach was validated on a football team formation
problem [250]. Dynamic robot coalition formation for area coverage problems
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was modeled using weighted voting games and Q-learning [487], and extended
to formation-based navigation problems [488]. Coalition structures were pruned
using the Shapley value and marginal contributions and the transition of agents
from one coalition to another was represented by a Markov process [251]. This
model searched the coalitions space for the best structure using Markov probabil-
ity distributions. Self-adapting coalition formation dynamically changed coalition
memberships using electric grid specific heuristics [489].

Focusing on MRS coalition formation, ASyMTRE facilitated coalition forma-
tion for tightly-coupled tasks [490] where time and space constraints were added
to coalition formation formulations [491]. Other approaches include swarm in-
telligence in RoboCup Rescue [44], ant colony optimization and genetic algo-
rithm [492], decentralized ant colony optimization for modular robotics [493],
and greedy approximate algorithms that converged in polynomial time [494].
Furthermore, the MuRoCo algorithm used market-based optimization to return
optimal coalition formation for MRS, validated on a drink serving scenario [495].
Coalition pruning was proposed to form approximate coalitions in real-time [46].
Modeling MRS coalition formation as a multi-objective optimization problem
allowed the development of CUDA algorithms to speed up processing and was
validated on navigation and box pushing tasks [496]. Decentralized optimal and
sub-optimal coalition formation algorithms were also developed for UAVs based
on particle swarm optimization and validated on UAV search and prosecute mis-
sion simulations [45]. Hierarchical optimization solvers searched for sub-optimal,
computationally efficient coalitions to improve UAV search and prosecute [47]. Fi-
nally, a multi-criteria decision making algorithm was proposed based on influence
diagrams to select the best coalition formation algorithm for a given real world
scenario [253]. Coalition formation algorithms were classified using domain and
mission dependent features. Over 100,000 mission scenarios were developed under
various conditions including coalition overlap and communication constraints.

B.2.2 Task Allocation

Task allocation assigns tasks to an agent or a group of agents, i.e. it aims to find
an optimal or near-optimal mapping between agents and tasks. A comprehensive
taxonomy for task allocation can be found in [497]. Many approaches have been
adopted to produce such a mapping in MRS and have been surveyed in [498,499].
Auctioning or market-based approaches, common in multi-robot task allocation
problems, [111, 112] include ASyMTRE-D [490], Murdoch [500], M+ [470] and
TraderBots [501].

Since MRS face additional constraints compared to MAS including spatial,
temporal, sensing and actuation constraints, MRS specific task allocation algo-
rithms have been developed. Examples include swarm intelligence [502], par-
ticle swarm optimization with graph theory for UAV military [503], Sandholm
algorithm with K-means clustering [504], utility-based task allocation [41], max-
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sum [42], resource welfare [43] and semantic maps [505].
Auctioning algorithms are another class of algorithm popularly adopted in

task allocation problems applied in health care facility scenarios capable of han-
dling heterogeneous tasks and robots and task priorities [38], multi-robot trav-
eling, UUV cooperation and object construction [39], and patrolling tasks [506].
Since environments are dynamic and partially observable, task allocation algo-
rithms should preempt and re-allocate tasks. Dynamical re-planning in MAS
was achieved using an auction-based decentralized method [507]. Single-robot
task preemption while minimizing unnecessary reallocation was developed using
simultaneous descending auctioning [508].

B.2.3 Simultaneous Coalition Formation and Task Allo-
cation

Performing coalition formation and task allocation simultaneously has been pro-
posed to improve performance in MRS. IQ-ASyMTRE interleaved both problems
to solve a broader range of complex tasks using MRS [509]. Combining task prior-
ity ranking and resource constraints improved coalition formation for UAVs [510].
Multi-robot task assignments in UAV search tasks were performed by combin-
ing dynamic ANT coalition formation and memetic local search task allocation
algorithms based on robot, task and environment information [35].

Auctioning algorithms were also adopted in simultaneous decentralized coali-
tion formation and task allocation. Applications included 2-robot box pushing
and transportation, obstacle avoidance and surveillance [511]. Auctioning allowed
heterogeneous coalition formation with coalition re-adjustment before task com-
pletion to improve performance [512]. Constrained coalition formation and task
allocation problems could also be solved using auction algorithms to minimize
the time to complete tasks and the distance traveled by robot [513]. Such algo-
rithms have been applied to reconfigurable robot coalition formation by splitting
or merging robots while distributing tasks related to navigation, exploration and
surveillance sensors’ placement [514].

B.3 MAS Planning and Control

MAS planning and control or decision making, is a main module in MAS. It
determines the sequence of actions, or policy, that agents should perform to
complete their assigned task, once the complex tasks have been decomposed to
sub-tasks and allocated to cooperating groups of agents. Decision making models
have been applied to a wide spectrum of fields including robotics [118], wireless
sensor networks [295], cognitive radio networks [312], intelligent transportation
systems [271] and electric grids [319]. Decision making algorithms are generally
evaluated based on policy optimality and their time and space complexity [15].
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Multiple frameworks have been proposed to model and solve decision making
problems including RL, game theory, swarm intelligence and graph theoretic mod-
els. While more detailed surveys on multi-agent decision making models can be
found in [25,95], we will briefly cover some of the models mentioned above.

Swarm intelligence, inspired by social animals, models the behavior of many
decentralized cooperative autonomous agents [200]. Such models are mainly char-
acterized by self-organized and distributed behavior of locally aware and locally
interacting agents [18]. Particle swarm optimization [203] is inspired by flocks
of birds and schools of fish. Pigeon inspired optimization algorithm rely on the
magnetic field, sun and landmarks to achieve path planning [204]. Bee colony
optimization is based on the behavior of bees and relies on direct communication
between agents [201]. While swarm based systems are robust, flexible, scalable,
computationally inexpensive and fault tolerant [52, 99], robots are generally ho-
mogeneous or can be divided into a small number of clusters of homogeneous
robots which greatly restricts MRS applications [52]. More details on swarm
robotics can be found in these recent surveys [99,101,102,118].

Game theoretic models include partially observable stochastic games which
are sequential probabilistic games where payoffs are unknown to players and de-
pend on their actions, and the game’s state depends on the previous state and the
players’ actions [188]. Their sub-classes include MDPs and partially observable
MDPs (POMDPs). MDPs assume that decisions satisfy the Markov property,
i.e. decisions at the current time step only depend on decisions of the previous
time step. They are described by a set of environment states which are fully ob-
servable, actions, transition probabilities, reward and discount factor. A policy
maps states to actions by maximizing the total reward, measured by a value func-
tion. Multi-agent MDP and decentralized MDP extended MDP to MAS, which
assumes jointly fully observable environments [515]. POMDPs extend MDPs to
partially observable environments by adding a set of observations and an observa-
tion function to the model representation. MAS extensions include decentralized
POMDP [97], multi-agent POMDP [179] and interactive POMDP [183]. Recent
work on decentralized POMDP focused on the sub-classes of MDP models and
their computational complexity, briefly mentioned existing solutions [97].

RL allows agents to learn a policy by rewarding “good” behavior and punish-
ing “bad” behavior through a reward signal. RL is one approach to find optimal
or sub-optimal policies for game theoretic models. Multi-agent RL allows cooper-
ative MAS to complete tasks with minimal communication overhead by using the
global immediate reward instead of the individual agent immediate reward in the
Q-learning algorithm to solve repeated games [516]. Validation on box pushing
and sensor distribution demonstrated the superior performance of this algorithm
compared to other approached. Sparse interaction to negotiate equilibrium sets
and transfer knowledge in multi-agent RL reduced computational complexity and
led to better coordination and scalability, as shown by simulations on grid world
games and robots shelving items in a warehouse [517]. Information sharing has
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been modeled as a MDP to reduce communication overhead without affecting
performance [518].

Sub-optimal policies for decentralized POMDP were computed using a fac-
tored forward-sweep policy computation algorithm that reduced computational
complexity and improved scalability [176]. Simulations on hundreds of agents
showed the improved scalability with minimal loss in accuracy. An RL inference
model that learned MRS configurations and allowed robot systems to complete
a task knowing the intermediary robot states and transitions was also devel-
oped [519]. Other approaches include dynamic programming [515], expecta-
tion maximization [520], heuristic search algorithms [521], temporal difference
learning [130], policy search [131], evolutionary computing [137], genetic algo-
rithms [162], neural networks [143], optimization algorithms [133], Monte Carlo
methods [158] and deep RL approaches [145].

B.4 Perception

Perception is a crucial component of successful MRS deployment that allows
robots to model their environment from sensory information and obtain knowl-
edge of how their actions are affecting the environment and whether they are
successfully completing their tasks; it is a sub-block of task execution in Fig-
ure 2.2. Without this capability, task execution would be near impossible in
real-world environments. Sensors measure variables in the environment, allowing
robots to observe how their actions have affected the environment, which leads
to more effective task execution. From the low level sensory information, robots
need to learn higher level information such as the location obstacles, their loca-
tions within a map, and the types of objects in an environment, among others.

SLAM allows robots to simultaneously generate a map of the environment
and localize themselves within this map, a vital aspect of any task that involves
navigation [522, 523]. Many algorithms have been proposed with varying de-
grees of computational complexity [524], using a wide range of sensors including
cameras [525], acoustic sensors [526], structured light [527] and electromagnetic
signals [528]. SLAM has also adopted sensor fusion [529] to benefit from diverse
signals such sonars with laser range finders [530], WiFi, Bluetooth, LTE and
magnetic signals [528]. Distributed, decentralized, cooperative or multi-robot
SLAM has been developed to leverage multi-robot cooperation and tackle com-
plex environments [531], in communication constrained environments [532], or
where direct communication is not possible [533]. Distributed SLAM with sparse
robot networks [534] and decentralized active SLAM that forced robot teams to
efficiently traverse and map the environment [535] were also investigated.

Scene understanding allows robots to extract general principles from visual
cues [536]. It includes computer vision problems of image segmentation, object
recognition, event recognition, human activity and behavior recognition [537],
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semantic annotation [538], and others. Scene understanding has been applied to
pedestrian [539], traffic [540], urban [541], video surveillance [542] and underwater
scenes [543]. Multi-agent or distributed computer vision algorithms have been de-
veloped to improve scene understanding in MAS applications [544]. Deep neural
networks performed multi-object classification and scene understanding by ex-
tracting features from raw images and incorporating context through conditional
latent tree probability models [545]. Markov random fields performed modeling,
inference and learning tasks on visual inputs by representing the inputs’ condi-
tional probabilistic dependence with undirected graphs [546]. Time-dependent
correlation rules were adopted for dynamic scene understanding in traffic surveil-
lance problems where motion patterns were detected using object tracking, spec-
tral clustering and Allen’s interval-based temporal logic [547]. Traffic patterns
were learned using hierarchical pattern mining based on latent Dirichlet alloca-
tion; traffic states were learned from activities which were modeled from spatial
location and velocity [540].

Object motion tracking is another important aspect of scene understanding
that helps robots achieve their goals by tracking objects of interest. Developed
systems were based on received signal strength variations on wireless links [548],
and Kalman filter based SLAM with laser-based occupancy grids [549], to name
a few. Multi-robot or cooperative tracking [550] has been developed to track
pedestrians [551] and other objects, using particle filters [552], RL [553] and least
squares minimization [554]. More information can be found in the recent survey
on MRS object detection and tracking [555].

Automatic speech recognition is important in human-robot interactions [556].
Approaches include Hidden Markov models [557], deep neural networks [558] and
support vector machines [559]. While deep neural networks have had the best
performance to date, they are computationally expensive and require many data
points to achieve good performance, making integration with robotic systems
for real-time applications a challenge. Some work has attempted to address the
computational complexity of automatic speech recognition [560], but there is still
a lot of room for improvement. Algorithms that are robust to noise have been
proposed to handle noisy environments [561]. In addition, distant talking [562]
and the noise from a robot’s hardware [563] add to the difficulty of deploying
speech recognition algorithms in MRS.

B.5 Challenges and Insights

Allowing heterogeneous agents to cooperate increases the scope of solvable tasks.
It introduces parallelism and robustness, leading to better performance with sim-
pler agents than having a single powerful but complex agent performing the same
task [26]. However, it also increases the complexity of the design process. Many
challenges still face the research community before effective deployment of MRS
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performing complex tasks can be achieved. In this section, we discuss some chal-
lenges faced in designing MRS and some insights on each of the research areas
identified in Figure 2.2.

B.5.1 Big Data

Perception problems, including object recognition, speech recognition and natu-
ral language processing, have greatly benefited from hardware advancements that
allowed machine learning algorithms to develop models from big data. However,
perception algorithms deployed on robot platform do not have the computational
resources to leverage these advancements and improve the robots’ models of their
environments and cloud accessibility is an issue is some robotics applications. In
addition, decision making algorithms would greatly benefit from the developed
models to improve decisions. However, these models are computationally ex-
pensive for robotics applications even if they are trained offline since the most
successful models derived from deep neural networks. Therefore, future research
should investigate methods to incorporate big data models into computationally
constrained MRS applications to improve task planning and execution.

B.5.2 Internet of Things

While state of the art algorithms in perception and scene understanding have seen
significant improvements, out-performing humans in some scenarios, integration
with robotics applications is still in its early stages. Furthermore, there is still
plenty of information to extract from the environment, especially in this era of
IoT. Sensor fusion and distributed sensing from heterogeneous sources is one area
that can help improve perception for robotics applications.

B.5.3 Task Complexity

As tasks become more complex, decision making algorithms struggle to recog-
nize their complexity and decompose them to simpler tasks that can be solved
efficiently. To aid MRS in completing complex tasks in uncertain environments,
the task decomposition step should be automated to allow re-planning as con-
ditions change. Furthermore, automated task decomposition could make use of
existing ontology and domain specific dictionaries in natural language processing
to decompose tasks to sub-tasks. The decomposition could consider the avail-
able agents’ capabilities and the model of the environment, beyond the workflow
depicted in Figure 2.2.
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B.5.4 Autonomous Machine Learning

Many machine learning algorithms still rely on human intervention to manually
tune algorithm parameters. Autonomous machine learning is a machine learning
sub-field striving to develop learning algorithms that do not require a human
expert to select a learning algorithm, manually tune parameters and select data
for training [564–566]. Incorporating such algorithms into MRS would result in
general agents that can better handle dynamic environments.

B.5.5 Scalability and Heterogeneity Trade off

To effectively operate in smart cities, MRS need to be scalable, adaptable and
generalizable to successfully cope with the dynamic environment and complexity
of their tasks. Having multiple robots act on the environment simultaneously fur-
ther increases the uncertainty in the system. Many decentralized MRS planning
and control algorithms have been proposed but still face challenges when dealing
with the tradeoff between scalability and robot heterogeneity in highly dynamic
environments. Therefore, developing efficient planning algorithms that strikes a
task appropriate balance between scalability and heterogeneity will take MRS a
step closer to more ubiquitous existence in smart cities.

B.5.6 Coalition Formation and Task Allocation

Simultaneous coalition formation and task allocation could lead to more optimal
mappings and should be investigated further; only a few works have considered
this approach but obtained promising results [509]. The coalition and task assign-
ments should be dynamic and time variant to better cope with task complexity
and environment variability. Therefore, coalitions might have to be dynamically
altered and assigned new tasks before the completion of their assigned tasks to
achieve successful task execution. Coalition formation and task allocation al-
gorithms that allow repeated, dynamic coalition formation and task exemption
have been developed but still face limitations especially in highly dynamic en-
vironments. They should also consider the tradeoff between agent capabilities’
redundancy within a coalition and fault tolerance or robustness to agent failures.

B.5.7 Other Challenges

Communication constraints and connectivity uncertainty further complicate
things for cooperative MRS, especially for tightly coordinated problems. While
connecting MRS to the cloud also allows us to reduce the computational load
on these mobile devices and improve their performance [567], the existence and
stability of this connection is uncertain and may sometimes cripple the system in-
stead of improving its performance. The time sensitivity of certain tasks and lim-
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ited hardware resources of robots requires the development of efficient algorithms
for decision making, perception, coalition formation and task decomposition and
allocation. Finally, evaluation standards are needed to effectively compare the
performance of MRS, as they are still underdeveloped.
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Appendix C

ANN History

In this chapter1, we will go over the evolution of neural networks from their
shallow beginnings to the complex structures that have recently become popular.

C.1 Concepts from Neuroscience

Despite the advances in neuroscience and technology that have allowed for a
detailed description of the structure of the brain, the learning process in the
brain is yet to be completely understood. Biologically, the brain mainly consists
of the cerebrum, the cerebellum, and the brain stem [568].

The cerebral cortex, biologically defined as the outer layer of tissue in the
cerebrum and believed to be responsible for higher order functioning, is an as-
sociation of an estimated 25 billion neurons interconnected through thousands
of kilometers of axons propagating and spreading about 1014 synapses simulta-
neously [569], arranged in six layers and divided into regions, each performing a
specific task [570].

Though it is not very clear how certain areas in the brain become specialized,
it is known that multiple factors affect the functional specialization of the brain
areas such as structure, connectivity, physiology, development and evolution [571].
Neurons, considered the basic element in the brain, have different shapes and
sizes but are all variations of the same underlying scheme, i.e. they start the
same general-purpose function but become specialized with training [572]. While
dendrites are the site of reception of synaptic inputs, axons convey electrical
signals over long distances. Inputs to neurons cause a slow potential change
in the state of the neuron; its characteristics are determined by the membrane
capacitance and resistance allowing temporal summation [573].

Studies showed that the organization of the cortex can be regarded as an

1The contents of this chapter appear in section 2 of Rizk, Y., Hajj, N., Mitri, N., and
Awad, M., “A comparative study between Deep Neural Networks and Cortical Algorithms,”
Elsevier Applied Computing & Informatics, 2018 (in press).
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association of columnar units [574], [575], each column being a group of nodes
sharing the same properties. Learning in the human brain is mainly performed
using plastic connections, repeated exposures and firing and inhibition of neurons.
In a simplified manner, information flowing in the cortex causes connections in the
brain to become active, over time, with repeated exposures these connections are
strengthened creating a representation of the information processed in the brain.
Moreover, inhibition of neurons - physically defined as prohibiting neurons from
firing - partly account for the forgetting process [576].

C.2 Shallow Beginnings

At a nodal level, ANN started with the simplified McCulloch-Pitts neural model
(1943) [577], which was composed of a basic summation unit with a deterministic
binary activation function. Successors added complexity with every iteration. At
the level of activation functions, linear, sigmoid, and Gaussian functions came
into use. Outputs were no longer restricted to real values and extended to the
complex domain. Deterministic models gave way to stochastic neurons and spik-
ing neurons which simulated ionic exchanges. All these additions were made to
achieve more sophisticated learning models.

At the network level, topologies started out with single layered architectures
such as Rosenblatt’s perceptron (1957) [578], Widrow and Hoff’s ADALINE net-
work (1960) [579] and Aizerman’s kernel perceptron (1964) [580]. These architec-
tures suffered from poor performance and could not learn the XOR problem, a
simple but non-linear binary classification problem. This led to the introduction
of more complex networks starting with the multilayer perceptron (Rumelhart,
1986) [581], self-recurrent Hopfield networks (1986) [582], self-organizing maps
(SOM or Kohonen networks, 1986) [583], adaptive resonance theory (ART) net-
works (1980s) [584] and various others which are considered shallow architectures
due to the small number of hidden layers.

Successive iterations incrementally improved on their predecessors’ shortcom-
ings and promised higher levels of intelligence, a claim that was made partially
feasible due to the hardware’s improved computational capabilities [585] and
due to the development of faster and more efficient training and learning algo-
rithms. Learning mechanics, whether supervised (back propagation) or unsu-
pervised (feed forward algorithms), matured in parallel and allowed for better
performance in a varied set of specific tasks. Nonetheless, the compound effect
of the innovation targeting all aspects of these shallow networks was not enough
to capture true human intelligence while large computational needs throttled the
progress of deeper networks.
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C.3 Shallow Networks’ Limitations

Supervised learning presents many challenges including the curse of dimension-
ality [586] where the increase in the number of features and training samples
makes learning more computationally demanding. Furthermore, non-linear data
is more difficult to divide into classes due to the inherent feature overlap. Unable
to position themselves as strong AI models - general intelligent acts as defined by
Kurzweil - which can faithfully emulate human intelligence, ANN lagged Support
Vector Machines (SVM) [587] in the 1990s-2000s.

C.4 Deep Architectures

The early 2000s saw a resurgence in ANN research due to increased processing
power and the introduction of more efficient training algorithms which made
training deep architectures feasible. Hinton et al.’s greedy training algorithm
[588] simplified the training procedure of Boltzmann machines while deep stacking
networks broke down training to the constituting blocks of the deep network
to reduce the computational burden. Furthermore, Schmidhuber’s long short-
term memory architecture [589] allowed the training of deeper recurrent neural
networks. While these architectures do not borrow biological properties from the
brain beyond the neuron, deep architectures with neural network topologies that
adhere more faithfully to neuro-scientific theories of the human brain’s topology
are gaining traction in the connectionist community due in part to the momentum
achieved in computational neuroscience.

One of the major and most relevant contributions in that field was made by
Edelman and Mountcastle [590]. Their findings lead to a shift from positioning
simplified neuron models as fundamental functional units of an architecture to el-
evating that role to cortical columns, collections of cells characterized by common
feed-forward connections and strong inhibitory inter connections. This provided a
biologically feasible mechanism for learning and forming invariant representations
of sensory patterns that earlier ANN did not.

Additionally, two supplementary discoveries were believed to be key in em-
ulating human intelligence. The first was the suspected existence of a common
computational algorithm in the neocortex [572]. This algorithm is pervasive
throughout these regions irrespective of the underlying mental faculty. Whether
the task is visual, auditory, olfactory, or other, the brain seems to deal with sen-
sory information in very similar ways. The second was the hierarchical structure
of the human neocortex [572]. The brain’s regions are hierarchically connected
so that the bidirectional flow of information merges into more complex represen-
tations with every layer, further abstracting the sensory stimuli.

The combination of these two findings forms potential grounds for building a
framework that replicates human intelligence; a hierarchy of biologically inspired
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functional units that implement a common algorithm. These novel insights from
neuroscience have been reflected in the machine learning (ML) and AI fields and
have been implemented to varying layers in several algorithms.

While CA restructured the neurons and their connections as well as the learn-
ing algorithm [591] based on Edelman and Mountcastle’s finding [590], other al-
gorithms modeled other biological theories of the brain’s workings. Symbolic
architectures such as Adaptive Character of Thought (ACT-R) [592] modeled
working memory coupled with centralized control that refers to long term mem-
ory when needed. Emergentist architectures such as Hierarchical Temporal Mem-
ory (HTM) [593] are based on globalist memory models and use reinforcement or
competitive learning schemes to generate their models. Integrating both classes
of architectures to form hybrid architectures also exist and include Learning In-
telligent Distribution Agent (LIDA) [594].
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Ramon, and F. Diaz-de Maria, “Real-time robust automatic speech recogni-
tion using compact support vector machines,” IEEE Trans. Audio, Speech,
& Language Process., vol. 20, no. 4, pp. 1347–1361, 2012.

[560] Z.-H. Tan and B. Lindberg, “Low-complexity variable frame rate analysis
for speech recognition and voice activity detection,” IEEE J. Sel. Topics
Signal Process., vol. 4, no. 5, pp. 798–807, 2010.

[561] J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, “An overview of noise-
robust automatic speech recognition,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 22, no. 4, pp. 745–777, 2014.

[562] R. Gomez, T. Kawahara, K. Nakamura, and K. Nakadai, “Multi-party
human-robot interaction with distant-talking speech recognition,” in Proc.
7th Annu. ACM/IEEE Int. Conf. Human-Robot Interaction, pp. 439–446,
2012.

[563] G. Ince, K. Nakadai, T. Rodemann, H. Tsujino, and J.-I. Imura, “Whole
body motion noise cancellation of a robot for improved automatic speech
recognition,” Advanced Robotics, vol. 25, no. 11-12, pp. 1405–1426, 2011.

[564] A. Roy, “Connectionism, controllers, and a brain theory,” IEEE Trans.
Syst. Man Cybern. A., Syst. Humans, vol. 38, no. 6, pp. 1434–1441, 2008.

[565] T. Tabuchi, S. Ozawa, and A. Roy, “An autonomous learning algorithm of
resource allocating network,” in Int. Conf. Intell. Data Eng. & Automated
Learning, pp. 134–141, Springer, 2009.

[566] A. Roy, “On nsf “open questions,” some external properties of the brain
as a learning system and an architecture for autonomous learning,” in Int.
Joint Conf. Neural Networks, pp. 1–8, IEEE, 2010.

[567] L. Wang, M. Liu, and M. Meng, “A hierarchical auction-based mechanism
for real-time resource allocation in cloud robotic systems,” IEEE Trans.
Cybern., 2016.

[568] R. J. Baron, The cerebral computer: An introduction to the computational
structure of the human brain. Psychology Press, 2013.

216



[569] J. Nolte, “The human brain: An introduction to its functional anatomy,”
2002.

[570] J. M. DeSesso, “Functional anatomy of the brain,” in Metabolic En-
cephalopathy, pp. 1–14, Springer, 2009.

[571] N. Geschwind, “Specializations of the human brain,” Scientific American,
vol. 241, no. 3, pp. 180–201, 1979.

[572] R. C. O’Reilly and Y. Munakata, Computational explorations in cognitive
neuroscience: Understanding the mind by simulating the brain. MIT press,
2000.

[573] M. Catani, D. K. Jones, R. Donato, et al., “Occipito-temporal connections
in the human brain,” Brain, vol. 126, no. 9, pp. 2093–2107, 2003.

[574] J. Szentagothai, “The ferrier lecture, 1977: the neuron network of the cere-
bral cortex: a functional interpretation,” Proc. Royal Society of London.
Series B. Biological Sciences, vol. 201, no. 1144, pp. 219–248, 1978.

[575] V. B. Mountcastle, “The columnar organization of the neocortex,” Brain,
vol. 120, no. 4, pp. 701–722, 1997.

[576] A. S. Benjamin, J. S. de Belle, B. Etnyre, and T. A. Polk, “The role of in-
hibition in learning,” Human Learning: Biology, Brain, and Neuroscience:
Biology, Brain, and Neuroscience, vol. 139, p. 7, 2008.

[577] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[578] F. Rosenblatt, “The perceptron: a probabilistic model for information stor-
age and organization in the brain,” Psychological review, vol. 65, no. 6,
p. 386, 1958.

[579] B. Widrow et al., Adaptive adaline Neuron Using Chemical memistors.
1960.

[580] A. Aizerman, E. M. Braverman, and L. Rozoner, “Theoretical foundations
of the potential function method in pattern recognition learning,” Automa-
tion and remote control, vol. 25, pp. 821–837, 1964.

[581] J. L. McClelland, D. E. Rumelhart, P. R. Group, et al., “Parallel distributed
processing,” Explorations in the microstructure of cognition, vol. 2, p. 184,
1986.

217



[582] J. J. Hopfield, “Neural networks and physical systems with emergent collec-
tive computational abilities,” Proc. National Academy of Sciences, vol. 79,
no. 8, pp. 2554–2558, 1982.

[583] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[584] S. Grossberg, “Competitive learning: From interactive activation to adap-
tive resonance,” Cognitive science, vol. 11, no. 1, pp. 23–63, 1987.

[585] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey
of two decades of progress,” Neurocomputing, vol. 74, no. 1, pp. 239–255,
2010.

[586] L. Arnold, S. Rebecchi, S. Chevallier, and H. Paugam-Moisy, “An intro-
duction to deep learning,” in ESANN, 2011.

[587] V. Vapnik, The nature of statistical learning theory. Springer Science &
Business Media, 2000.

[588] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[589] J. Schmidhuber, “Learning complex, extended sequences using the principle
of history compression,” Neural Computation, vol. 4, no. 2, pp. 234–242,
1992.

[590] G. M. Edelman and V. B. Mountcastle, The mindful brain: Cortical or-
ganization and the group-selective theory of higher brain function. Mas-
sachusetts Inst of Technology Pr, 1978.

[591] A. G. Hashmi and M. H. Lipasti, “Cortical columns: Building blocks for
intelligent systems,” in IEEE Symposium on Computational Intelligence for
Multimedia Signal and Vision Processing, pp. 21–28, IEEE, 2009.

[592] J. R. Anderson, “Act: A simple theory of complex cognition,” American
Psychologist, vol. 51, no. 4, p. 355, 1996.

[593] J. Hawkins and S. Blakeslee, On intelligence. Macmillan, 2007.

[594] S. Franklin and F. Patterson Jr, “The lida architecture: Adding new modes
of learning to an intelligent, autonomous, software agent,” pat, vol. 703,
pp. 764–1004, 2006.

218


