

AMERICAN UNIVERSITY OF BEIRUT

Crowdsourcing for Mobile Security: Modelling,
Psychological Bias, and Performance of

Aggregation Methods

by

FARAH WALID SAAB

A dissertation
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
December 2018

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Imad El-
hajj and my co-advisors Prof. Ayman Kayssi and Prof. Ali Chehab for their con-
tinuous support and motivation, their patience, and immense knowledge. Their
guidance helped during my studies and in writing of this dissertation. I could
not have imagined having better mentors throughout my graduate years.

I would also like to thank the rest of my committee: Prof. Wissam Fawaz
and Prof. Wassim Itani, for their insightful comments and hard questions which
led me to examine my research topic from many perspectives.

I thank my colleague and friend, Georgi Ajaeiya, for our research discussions
and his tremendous help during the system implementation phase.

To my friends, thank you for listening, offering me advice, and supporting me
throughout this entire process. Special thanks to Chadi Trad and Sarah Abdal-
lah. Thank you for your thoughts and for being there whenever I needed a friend.
And most importantly, thank you for all the editing advice .

Last but not least, I would like to thank my family especially my parents
and my sister for supporting me in any way they could throughout writing my
dissertation. Finally, I thank my grandmother for always believing in me and
inspiring me to be the best version of myself. Whatever I am today is due to the
values she instilled in me.

v

An Abstract of the Dissertation of

Farah Walid Saab for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Crowdsourcing for Mobile Security: Modelling, Psychological Bias, and
Performance of Aggregation Methods

Since the introduction of the Android platform in October 2003, mobile de-
velopers have been creating apps for different purposes. This large variety of
apps brought along considerable malware that has infected millions of Android
devices throughout the years. Trojans, worms, viruses, and spyware have found
their way onto user devices through mobile apps. In addition to possible malware
infection, a good percentage of these apps have low utility and are generally not
desirable by users. The first line of defense against malware was app store vet-
ting. Then came user ratings and reviews which provided a better understanding
of the general effectiveness of these mobile apps. The problem, however, is that
reviews are not reliable and numerical ratings do not really describe the exact
shortcomings, if any, within an app. A low app rating could be attributed to
a variety of different reasons such as low utility or high resource consumption.
Some users are interested in knowing whether an app is malicious. Others are
interested in detecting poor app designs that reduce app utility. Therefore, de-
pending on their expectations, users’ numerical ratings will be different. In this
dissertation, we provide a fine-grained analysis of apps that is not offered on app
stores nowadays. We develop a system for composite rating for apps that in-
cludes an objective and a subjective score. The objective score does not depend
on input from device users and only measures the utility and performance of an
app. The subjective score, on the other hand, aggregates collected input from
the crowd in an attempt to measure an app’s suspiciousness level. Human input
is central to assessing an app since the challenge in rating is in capturing context
and user perspective. For example, when an app consumes a large amount of
bandwidth, this could be due to malicious behavior or simply as a result of user

vi

activities on the device (viewing a video, downloading a file, etc.). This “context”
is very challenging to capture without user input. It is this input that we are
crowdsourcing in order to transform subjective input into a subject-independent
score. Of course, the employed aggregation technique when crowdsourcing user
input has a major effect on the resulting score. To this end, we develop formal
mathematical models for some of the most popular crowdsourcing aggregation
techniques.

One of the challenges of aggregation is accounting for considerable bias ema-
nating from human factors. One of the most critical human factors to consider
when collecting input from a crowd is referred to as the Dunning-Kruger effect. It
states that low-ability individuals suffer from the illusion that their abilities are
higher than what they really are. This psychological bias has a significant effect
on the performance of confidence-related aggregation techniques which are mod-
elled in this dissertation. To this end, we formally model the Dunning-Kruger
bias and study its effect on the confidence-weighted and the maximum confidence
aggregation techniques as compared to plurality voting. The resulting modelled
app rating system is implemented and tested on real user devices for a period of
six months during which different aggregation techniques are employed and gen-
eral trends in app and device usage are studied. Our main contributions in this
dissertation are: (1) Designing and implementing a system that can provide users
with a composite app score that is based on both utility of an app and malicious-
ness level, (2) Modelling the Dunning-Kruger psychological bias, (3) Modelling
and comparing the performance of some of the most popular aggregation tech-
niques (plurality, confidence-weighted, maximum confidence, and a newly derived
competence-weighted approach) while taking into consideration the effect of the
demonstrated Dunning-Kruger bias on output performance, (4) Studying general
trends in app and device usage on both mobile phones and tablets at different
times of the day and different days of the week.

Contents

Acknowledgements v

Abstract vi

1 Introduction 1

1.1 Contributions . 8

1.2 Dissertation Structure . 9

2 Literature Survey 11

2.1 Crowdsourcing Applications . 11

2.1.1 Crowdsourcing Location 13

2.1.2 Crowdsourcing for Network Mapping 16

2.1.3 Crowdsourcing Health Care 17

2.2 Different Crowdsourcing Task Types 19

2.3 Crowdsourcing for Security . 22

2.4 Crowdsourcing-Based IDS with Game Theory 28

2.5 Crowdsourcing for Recommender Systems with Expert Detection

Techniques . 34

2.6 Quality Assurance in Crowdsourcing Systems 43

2.7 Modeling Cognitive Biases in Crowdsourcing Systems 46

viii

2.8 Comparative Analysis . 49

3 Crowdsourced Game-Theoretic Rating System 54

3.1 Methodology . 57

3.1.1 Utility Score Computation 58

3.1.2 Behavior Score Computation 61

3.2 Mathematical Model . 71

3.3 Simulation Setup . 74

3.3.1 Utility Score Setup . 75

3.4 Design Results and Analysis . 90

3.4.1 Utility Score Results . 90

3.4.2 Behavior Score Results . 95

4 Probabilistic Models for Aggregation in Voting Systems 112

4.1 Modeling the Dunning-Kruger Effect 113

4.1.1 Function Constraints . 115

4.1.2 Competence Model . 116

4.1.3 Notes . 118

4.2 Modeling Aggregation . 119

4.2.1 Plurality . 119

4.2.2 Confidence-Weighted . 122

4.2.3 Maximum Confidence . 124

4.2.4 Competence-Weighted . 128

4.3 Numerical Analysis . 130

4.3.1 Dataset . 130

4.3.2 Results and Discussions 131

4.3.3 The Irregular Crowd . 137

4.4 Discussion . 139

5 System Design and Implementation 142

5.1 General Overview . 143

5.2 Client Side . 144

5.2.1 Method of Collecting and Storing Logs 144

5.2.2 Method of Detecting Events 147

5.2.3 Querying Process . 152

5.2.4 Implementing Feature Collection 162

5.2.5 App Permissions . 165

5.3 Server Side . 166

5.3.1 MySQL Database . 166

5.4 System Performance . 168

6 Results and Analysis 170

6.1 Institutional Review Board . 171

6.2 Experiment Overview . 174

6.3 Collected Data . 175

6.4 Results of Aggregation Performance and App Classification 179

6.4.1 Utility Scores . 179

6.4.2 Behavior Scores . 181

6.5 Discussion . 201

7 Conclusions and Future Directions 202

7.1 Conclusions Related to the Game-Theoretic Composite App Rat-

ing System . 203

7.2 Conclusions Related to Modelling of Aggregation Methods 204

7.3 Conclusions Related to CrowdApp Rating Scores and Performance 206

7.4 Future Directions . 209

A Proofs of Theorems 214

A.1 Theorem I - Plurality vs. Confidence-Weighting 214

A.1.1 Case 1: ∆k = 0.5 . 215

A.1.2 Case 2: ∆k > 0.5 . 215

A.2 Theorem II - Plurality vs. Maximum Confidence 216

A.3 Theorem III - Maximum Confidence vs. P 219

A.4 Theorem IV - Confidence-Weighting vs. Maximum Confidence . . 219

A.4.1 Case 1: ∆k = 0 . 221

A.4.2 Case 2: ∆k = 0.5 . 221

A.4.3 Case 3: ∆k = 1 . 222

B Device and App Usage Stats 223

B.1 Users and Device Type Detection 224

B.2 Statistics Related to Apps and App Categories 227

B.2.1 Categories Usage Statistics 232

B.3 Discussion and Conclusions Related to Device and App Usage . . 241

Bibliography 243

List of Figures

3.1 System overview showing the crowd, CrowdApp on their devices,

and the different engines on the server side 56

3.2 App rating process describing how the overall rating of an app is

based on utility and behavior scores 58

3.3 Payoff matrix showing the gains, losses, and costs of both players

for each of their actions . 67

3.4 The expected payoffs of SYS when its actions are to defend or not

to defend . 69

3.5 Usage.txt and Period.txt sample output 78

3.6 Pseudo-code of described method 89

3.7 Running time . 97

3.8 The change in output values as the total number of users in the

system increases . 98

3.9 The change in output values as the crowd expertise increases from

0.1 to 1 in steps of 0.1 . 101

3.10 The change in output values as the fraction of malicious apps in-

creases from 0.1 to 1 . 103

3.11 The change in output values given selected differences between

malicious and normal event rates 104

xii

3.12 The change in output values as SYS’s defense cost increases from

0 to 6 in steps of 0.1 . 106

3.13 ROC curves of app and user classification 108

4.1 Four sample DK plots . 114

4.2 Difference between success probability of plurality and confidence-

weighted voting across all difficulty levels and for different values

of a and b . 123

4.3 Success probabilities of plurality, confidence-weighted, and three

maximum confidence approaches with different percentage values . 127

4.4 Success probabilities of different aggregation methods based on

data from WWTBAM dataset . 132

4.5 Performance of different aggregation methods based on data from

WWTBAM dataset . 133

5.1 Client-server architecture . 143

5.2 Sample CrowdApp v2.0 push notification 158

5.3 Sample output of Linux top command 163

5.4 Sample output of Linux netstat command 164

6.1 Rates of Plurality experiment . 176

6.2 Rates of Confidence-Weighted experiment 177

6.3 Rates of Maximum Confidence experiment 177

6.4 Rates of Competence-Weighted experiment 178

6.5 Rates of Surprisingly Popular experiment 178

6.6 Behavior score convergence for selected apps given Plurality ag-

gregation technique . 186

6.7 Behavior score convergence for selected apps given Confidence-

Weighted aggregation technique 187

6.8 Behavior score convergence for selected apps given Maximum Con-

fidence aggregation technique . 187

6.9 Behavior score convergence for selected apps given Competence-

Weighted aggregation technique 188

6.10 Behavior score convergence for selected apps given Surprisingly

Popular aggregation technique . 188

6.11 Percentage change in app reputation in the False Event Rate ex-

periment . 192

6.12 Cumulative change in app reputation in the False Event Rate ex-

periment . 193

6.13 Mirrored confidence-competence plot 193

6.14 Main activity of MalApp . 196

6.15 CPU and memory consumption of MalApp - part 1 197

6.16 CPU and memory consumption of MalApp - part 2 197

6.17 CPU and memory consumption of MalApp - part 3 197

6.18 Generated memory-related question for MalApp 198

6.19 Generated down bandwidth question for MalApp 199

6.20 Generated up bandwidth question for MalApp 200

B.1 A histogram of app download distribution 228

B.2 Daily usage time of popular apps 229

B.3 Hourly usage time of popular apps 229

B.4 Average daily opening frequency of popular apps 231

B.5 Normalized daily opening frequencies of popular apps 231

B.6 Average values different features of popular apps 232

B.7 Average daily usage time of phones versus tablets 233

B.8 Daily usage time of selected categories on all devices 234

B.9 Daily usage time of selected categories in phones 234

B.10 Daily usage time of selected categories on tablets 234

B.11 Average daily opening frequency on all devices 236

B.12 Normalized average opening frequencies of selected categories on

phones versus tablets . 238

B.13 Normalized daily opening frequencies of selected categories on all

devices . 238

B.14 Average values of different features for selected categories on all

devices . 239

B.15 Average values of different features for selected categories on phones240

B.16 Average values of different features for selected categories on tablets240

List of Tables

3.1 Variables used in mathematical model 71

3.2 User devices . 78

3.3 Base values . 79

3.4 Android download distribution . 80

3.5 Optimal weights . 90

3.6 User 1 collected data . 90

3.7 User 1 Google Play scores . 91

3.8 User 2 scores . 91

3.9 User 3 scores . 91

3.10 User 4 scores . 92

3.11 Correlation with Google Play . 92

3.12 User 2 scores . 93

3.13 User 3 scores . 94

3.14 User 4 scores . 94

3.15 Correlation with user ratings . 94

3.16 Suggested values for gains, costs, and losses 96

3.17 Convergence rates . 100

3.18 Malicious and normal app event rates 104

xvi

4.1 Error rate of competence-detection approach compared with ap-

proaches in the literature . 136

5.1 CrowdApp v2.0 performance specs 169

6.1 Computed utility scores using CrowdApp v2.0 181

6.2 Average of traffic-related alarms 183

6.3 Average of connection-related alarms 183

6.4 CPU-related alarms . 184

6.5 Memory-related alarms . 185

6.6 Final app reputations given different aggregation techniques . . . 189

To my grandma.

Chapter 1

Introduction

Nowadays, 30 million mobile apps are downloaded every day and this trend is

on the rise. These downloads do not include updates, but rather new apps by

users [1]. This large variety of apps brought along considerable malware that

has infected millions of Android devices throughout the years. Trojans, worms,

viruses and spyware have found their way onto user devices through mobile apps

[2]. For example, Brain Test is a malware that was masquerading as an Android

app that supposedly tests users’ IQ. It was available on Google Play until it was

discovered in September 2015 [3]. In addition to possible malware infection, a

good percentage of these apps have low utility and are generally not desirable

by users. This large app count makes it increasingly difficult to keep track of all

malicious apps, or simply provide a proper rating of all apps based on the level

of user satisfaction.

In terms of malware, the first line of defense was app store vetting. Then came

user ratings and reviews which provided a better understanding of the general

effectiveness of mobile apps. The problem, however, is that written reviews on

app markets are relatively limited and are not always reliable. On the other

1

hand, numerical ratings are easier to examine, but they do not really describe

the shortcomings, if any, within an app. A low app rating could be attributed

to a variety of different reasons such as low utility, too many crashes, or high

resource consumption. Some users are interested in knowing whether an app is

malicious. Others are interested in detecting poor app designs that reduce app

utility. Therefore, depending on their expectations, users’ provided numerical

ratings for apps will be different. For example, if an app deals with monetary

transactions, it is critical to have very high security levels. In this case, the

user might be indifferent regarding the utility of the app assuming it is highly

secure. On the other hand, if the app is a calorie counter, the user would be more

interested in its utility since he or she might open it frequently. In this case, data

security is of lower importance.

This fine-grained analysis of apps is not found on app stores nowadays. Also,

based on our review, no one has attempted to provide a rating of mobile applica-

tions that is based on two separate measures which capture security and utility

of apps. This was the initial motivation behind our research. Our system is

designed to compute two sets of scores for every app on a user device. The first

score measures the utility of an app, how easy and practical it is to use. This

score is called the objective score since it does not depend on subjective input

from the users, but rather on data collected from the devices that are related to

the usage of the app itself (time it remains open, crash frequency, etc.). The sec-

ond score measures the suspiciousness of an app, whether it is accessing sensitive

data, sending data online to servers, or designed to consume CPU, bandwidth,

or battery resources, etc. This score is called the subjective score since in some

cases it depends on subjective input from the users. Human input is central in

subjective score computation since the challenge is capturing context and user

2

perspective. For example, consider the case where an app is using a large amount

of bandwidth. This can be considered suspicious but might also be due to user

activities (e.g. watching a video). This “context” is not possible to capture with-

out user input. It is this input that we are crowdsourcing in order to transform

subjective input into a subject-independent score.

The concept of crowdsourcing is becoming common practice and it is an active

research topic. The term was coined in 2005 by Jeff Howe and Mark Robinson

from Wired magazine [4]. Simply stated, crowdsourcing is the process of enlisting

the services of a crowd of people with the aim of reaching a solution to a proposed

problem. In other words, it is a way of utilizing the unused processing power of

human brains or skills. Its applications are endless. Some examples are Amazon’s

Mechanical Turk (MTurk), an online market place for getting tasks done by

workers [5], iStockPhoto that crowdsources stock photographs from amateurs and

sells them at very competitive prices [6], InnoCentive that provides a framework

for solving research problems [7], TopCoder that offers a platform for developers

to build software [8], and GoFundMe that allows people to raise money for events

through a crowdfunding platform [9].

Still, despite its many applications, crowdsourcing has not yet entirely pen-

etrated the mobile space. However, it is evident that the wide use of always-

connected smartphones will soon expose the full potential of crowdsourcing as a

new problem-solving approach. Smartphones enable us to reach a large crowd

of contributors, much larger than web-based crowdsourcing applications. In ad-

dition, they have plenty of sensing capabilities such as location, light, audio,

vibration, etc. These capabilities offer new effective means to passively collect

data from devices, resulting in a wide variety of new applications. Our approach

is a step in this direction. We introduce crowdsourcing into the mobile space

3

in an attempt to deliver a system that is capable of objectively evaluating apps

based on utility as well as providing a subjective rating that indicates their sus-

piciousness level.

Even though crowdsourcing is still on the rise and the term was only recently

introduced, human beings have been working in crowds since the beginning of

civilization. Man is a social being. He dislikes solitude and has always longed for

a society beyond that of his own family. His evolutionary success is mainly due

to his social nature and his tendency to collaborate with his tribe [10]. Human

beings have collaborated to build asylums for the maimed and create vaccines

for the sick. They have collectively exerted their skills to ensure the continua-

tion of their species. Their propensity to collaborate is instinctive. Spikins et

al. from the University of York discuss how a subtle change in our evolutionary

history, thousands of years ago, has allowed individuals with autism to be inte-

grated into society due to the emergence of a collaborative morality [11]. On the

other hand, evolution has also brought upon selfish and spiteful behavior, which

is manifested through an individual’s occasional preference to work alone as op-

posed to working within a group [12]. This trade-off between collectivism and

individualism in crowdsourcing was modeled by Guazzini et al. who show how

dividing a population into subgroups influences the ability of these subgroups to

solve problems of varying levels of difficulty. They show both computationally

and analytically how smaller groups tend to collaborate more intensely whereas

larger groups create a niche for free riders who selfishly withdraw from sharing

their acquired knowledge [13].

Guazzini’s model of collectivism versus individualism assumes one type of

crowdsourcing tasks, mainly those that can be solved by an expert in the field.

These are collaborative crowdsourcing tasks where consensus is achieved when the

4

crowd converges to an individual solution. The larger a random crowd, the higher

the probability that one individual will provide a high quality solution to the

proposed task. Collectivism in this case refers to utilizing the joint intelligence of

a subgroup of individuals to develop one solution provided that the contributions

of the participating individuals complement rather than possibly conflict with

one another. The other category of crowdsourcing tasks includes those with a

collective solution which is derived by means of aggregating the input of every

individual in the crowd, whether this input is in agreement or disagreement with

one another. Our focus in this dissertation is on the second type of crowdsourcing

tasks, which are usually referred to as micro-tasks; those with a collective solution.

Also, we do not assume a reward factor in our work. Financial rewards are

the simplest ways to attract workers [14]. However, once monetary rewards are

included, workers have more incentives to cheat to increase their overall pay.

Removing the reward factor thereby rids our system of the notion of free riders.

Crowdsourcing tasks with a collective solution are similar in nature to the

voting process in electoral systems. As mentioned by Conitzer et al., voting is a

method of preference aggregation over a set of alternatives that can range from

potential presidents to a ranked list of popular songs [15]. Every vote in a voting

scheme corresponds to a noisy perception of the correct outcome. The aggrega-

tion technique employed by the voting platform should be carefully crafted to find

a compromise candidate that maximizes the voters’ combined well-being while

inferring their reliability based on their noisy votes [16]. A good aggregation

technique manages to extract a hidden objective ground truth that is external

to human judgment given many problems such as varying expertise and task dif-

ficulty levels [17]. It can intelligently process crowdsourced data with the goal

of returning maximum benefit to the crowd [18]. We focus on four of the most

5

popular voting methods. The difference among these methods is in the utilized

aggregation technique. We begin with the simplest aggregation method which is

based on plurality voting where the most voted for choice by the crowd is selected

as the final solution to a task. Besides its simplicity, another advantage of plural-

ity voting is its elimination of random and incompetent replies from users much

like its exclusion of extremist party representation in electoral systems. However,

this exclusion is a two-edged sword. Plurality voting systems suffer from the

tyranny of the majority. They have strong disincentive to the emergence of a

new party or idea. This means that experts in the field, if not in majority, will

not have decisive influence on the final output of the crowdsourcing process [19].

To alleviate the disadvantage of unfair representation, weighted algorithms were

introduced. One such example is the competence-weighted approach where more

weight is given to replies from individuals with higher capabilities than others

in the crowd. Giving more “competent” individuals an advantage in voting goes

back to the first form of “democracy” in Athens around the sixth century B.C.

[20]. Even though participatory democracy was practiced to broaden participa-

tion, only citizens, as defined by the state, had the right to vote. This naturally

meant excluding women, slaves, convicts, foreigners, and children. It was com-

monly known that the Athenian assembly must be a sample of the citizenship.

However, this sample was not even a random one [21]. Only individuals who

were deemed worthy or competent enough were allowed to vote. Further evi-

dence was given by Mogens Hansen who calculated the seating capacity of the

Pnyx and estimated the space taken by an adult Athenian male to conclude that

the Pnyx was able to hold at most 6,000 people which is not even close to a fair

representation as defined by our modern standards of democracy [22].

The main limitation in competence-weighted approaches is the accuracy of the

6

competence detection method that is employed in the system. In many crowd-

sourcing frameworks, the competence or expertise of the participants is based on

a detection algorithm whose results may not be accurate as it provides in most

cases a mere estimate of the actual competence of the participants, which may

never be known. In some cases, the competence of a participant is based on

the agreement of his reply with the “correct” reply, which raises the question of

detection accuracy in cases where the ground truth is not known a priori. This

variation between the estimated and true competence of participants is largely re-

sponsible for the success or failure of competence-weighted approaches in crowd-

sourcing systems. To this end, another weighting approach surfaced, which is

based on ground truth information collected from the participants themselves.

Confidence-weighted aggregation techniques are very popular and are in some

cases considered an adjusted approach to plurality voting. The idea is to give

higher weights to the answers of participants who are more confident and lower

weights otherwise. Another variation is to apply plurality voting on a subset

of participants with maximum reported confidence. We argue that introducing

confidence into the aggregation method should be studied more carefully. In

most cases, people tend to overestimate or underestimate their mental capabili-

ties and this might affect their perception of their own knowledge when answering

a question or solving a task. This psychological phenomenon was in fact intro-

duced in a very famous study by David Dunning and Justin Kruger in 1999 [23].

Modeling this psychological bias and incorporating the result into confidence-

related aggregation methods is a major part of this dissertation. In a sense, we

can draw an analogy between the error in competence detection in competence-

weighted approaches and the psychological bias in assessing one’s own abilities

in confidence-weighted approaches. The success or failure of each approach in

7

giving the correct answer depends on the error or bias size. According to [24],

there are over 100 identified biases in human decision-making. If crowdsourcing

systems do not begin to take these biases into consideration, results from these

systems are bound to be sub-optimal.

Our work in modelling the Dunning-Kruger effect and incorporating this

model in the evaluation of different aggregation methods is a step in the right

direction. Our application of choice for verifying these developed models is the

discussed composite app rating system for enhanced mobile security. We imple-

mented and ran this system for a period of six months during which we collected

data related to app usage trends and queried users regarding their usage behav-

iors. In terms of the described objective measure, we computed scores for all apps

based on usage patterns and resource consumption. As for the subjective mea-

sure, we monitored abnormalities on devices and referred to users when needed.

We tested the subjective score computation with each of the different aggregation

techniques and compared our system’s performance in each case while relating

the results to the derived models.

1.1 Contributions

Our contributions in this dissertation can be summarized as follows:

• Designing and implementing an app-rating system that can provide users

with a composite app score that is based on both an objective measure

(utility of an app) and a subjective measure (maliciousness level). Our

system is based on a game-theoretic approach.

• Modelling the Dunning-Kruger psychological bias that affects crowdsourcing-

based systems where people of low ability have illusory superiority and

8

mistakenly assess their cognitive ability as greater than it is.

• Modelling and comparing the performance of some of the most popular

aggregation techniques in crowdsourcing systems such as plurality voting,

confidence-weighted voting, maximum confidence voting, and a newly de-

rived competence-weighted approach. The model takes into consideration

the effect of the demonstrated Dunning-Kruger bias on output performance

and is applicable to any crowdsourcing system that employs one of the men-

tioned aggregation approaches.

• Studying general trends in app and device usage on both mobile phones

and tablets at different times of the day and different days of the week.

1.2 Dissertation Structure

The rest of the dissertation is organized as follows: In Chapter 2, we present a

literature survey on several of the topics in this document. We discuss types of

crowdsourcing applications and services, quality assurance techniques in crowd-

sourcing systems, different cognitive biases, and so on. Then in Chapter 3, we

describe our first goal in this work which is to model the interaction between

our system and apps on user devices using concepts from game theory so as to

maximize our system’s profit regardless of the action chosen by the app in ques-

tion. We also present a mathematical model of the objective and subjective score

computation. In Chapter 4, we study four of the most basic and popular aggre-

gation techniques that are used in crowdsourcing systems. We also shed light

on one of the most well-known psychological biases related to human cognition

and that is the Dunning-Kruger effect. We describe how this bias can affect the

9

performance of certain aggregation techniques in crowdsourcing systems and we

present theorems to back our claim. In Chapter 5, the design of our crowdsourc-

ing mobile app and the back-end server is described in detail. This is followed by

a description of the experiment process and the results that we collected over a

period of six months in Chapter 6. Finally, we present our conclusions and shed

light on future directions in Chapter 7.

10

Chapter 2

Literature Survey

We divide our literature survey into several subsections. We begin with a study

of the different crowdsourcing applications in the literature and the different task

types in crowdsourcing systems on the market nowadays. We discuss crowd-

sourcing for location, health care, security, intrusion detection systems, and rec-

ommender systems. This is followed by a review of quality assurance methods

in the literature along with some of the work already done in the area of cogni-

tive biases and human factors in crowdsourcing. Finally, we give a comparative

analysis between our approach and discussed approaches.

2.1 Crowdsourcing Applications

The classification of crowdsourcing apps based on passive and active contribu-

tion is part of the taxonomy given by the authors in [25] in the field of mobile

crowdsourcing. They discuss the difference between participatory crowdsourcing

where users are actively participating in the process of data collection, and op-

portunistic crowdsourcing where the tasks are transparent to users and the apps

11

are usually running in the background collecting data from mobile sensors such as

location, camera, audio, vibration, and so on. They further classify applications

based on human skills in the case of participatory involvement and incentives be

it monetary, ethical, entertainment, service, etc. An example of a passive crowd-

sourcing scheme is the popular app Duolingo [26] which provides users with a free

language-learning service. While users practice new languages, their feedback is

used to create a translation engine for these languages. The app is in the form of

a game where users collect points every time they properly translate a sentence.

When the creators came up with the idea at first, their vision was that if one

million users use the app, the entire Spanish Wikipedia could be translated in

80 hours. Today, there are more than 10 million downloads of the app. The

developers provided the users with a free service, and without knowing it, the

users’ feedback resulted in a translation engine for many languages. DuoLingo

is an example of a successful passive crowdsourcing scheme that managed to

accomplish what it was designed for. Users are actively providing information,

yet passively contributing to a larger cause. LogicCrowd, on the other hand, is

an active crowdsourcing approach that integrates logic programming into crowd-

sourcing middle-ware to offer a declarative programming paradigm for improving

the knowledge of people through crowdsourcing [27]. It was designed with the

intention to give recommendations to users based on datasets, rank the quality of

products, and get feedback from the crowd. It combines the power of the crowd

in social media networks with conventional machine computation. A prototype

of LogicCrowd was executed on an Android platform. It is composed of a Prolog

system that contains an interpreter and a knowledge base for user profiles, a social

API to interact with the social media network, and a mediator between Prolog

and the API to register and execute queries and handle results from the crowd.

12

Three scenarios were studied in [27]. In the first one, a user is looking for the

best Thai restaurant in a chosen location. In the second scenario, a user is asking

the crowd to rank handbag brands based on their popularity. And in the third

scenario, a user is requesting the name of a place in a posted image. The three

tasks were posted on Facebook and results from the crowd were returned to the

main program after the expiration time that was set by the users. The prototype

allowed programmers to create their rules through an event-driven approach that

is combined with social media networks for the use of crowdsourced data from

within logic programs.

2.1.1 Crowdsourcing Location

Several crowdsourcing applications have been designed to address the issue of

location. An example is SmartTrace+ [28], a crowdsourcing app that asks smart-

phone users to classify given trajectories based on their popularities. This app

proves to be useful, for example, when determining bus routes that are usually

chosen based on the number of users that take the routes at a certain time of

day. Users passively participate in the service without any privacy concerns. A

similar location-based passive crowdsourcing app is Crowdcast proposed in [29].

This app allows its users to continuously find their real-time k-nearest neighbors.

The obtained information can be used to save people’s lives in life-threatening

situations by sending SOS signals to them. It can also be used to improve the

efficiency of public emergency services. SmartP2P is another app that uses users’

locations to provide them with a search service [30]. When a user issues a query

to search for a location, possibly through an image, SmartP2P sends the query to

another user who is currently living in the indicated location, rather than send-

ing it to someone who lives far away from it, thus increasing the probability of

13

getting directions to the specified location. In addition, if two users live in the

indicated location, the app will choose to query the one who is spatially closer to

the querying user in order to save on resources. PotHole is a crowdsourcing app

that helps users to identify holes in streets by collecting vibration and location

data from mobile sensors [31]. Waze [32] and Vtrack [33] are two crowdsourcing

apps that handle traffic monitoring and delay estimation. CrowdOut [34] is an

Android crowdsourcing application that allows users to report traffic offenses in

their cities with the aim of improving road safety. The app benefits citizens who

will be able to identify dangerous locations near them and adjust their trajecto-

ries accordingly. It can also be used by urban designers to enhance infrastructures

and improve city roads. An offense reported by a user will be shared to the com-

munity in real time. The user can specify the offense type, take a picture, and

add a short description of the violation. CrowdOut uses GPS coordinates of users

to indicate the events on a map. The Android app displays a non-exhaustive list

of icons that represent possible infractions as witnessed by citizens (traffic light

problem, damaged road, illegal parking, etc.). In addition to the type of infrac-

tion, every time an event is reported by a citizen, other information such as date,

time, user ID, photo, etc. is sent to the server. On the sever side, a histogram

shows which infractions are the most frequent and where they are located in order

for admins and urban planners to properly deal with them. Some experiments

were conducted in the urban community of Grand Nancy in France and Crowd-

Out was found beneficial to users and offered satisfying results. However, some

issues need to be addressed such as user privacy and anonymity, reliability of

user reporting, and the scalability of the provided service. The location of lost

objects was also addressed in SecureFind [35]. The loss and recovery of objects

around the world is significant. An object can refer to anything valuable or a

14

person. It could be a phone, a child, an elderly, etc. The most common recovery

method for lost objects is the lost-and-found service. Aside from the fact that it

is a slow process that is not practical, most lost objects are not found or turned

in and sometimes the object owner does not know in which lost-and-found place

to look. With the very low cost of Bluetooth tags especially compared to the

value of the lost object, their ability to communicate with mobile devices, and

their long communication range and battery life, they can be very useful in rev-

olutionizing the lost-and-found service. When an owner loses an object, he can

use his mobile device to search for it. When the object tag is queried, it can

report back its location. There are commercial products that use Bluetooth tags

to find lost objects but their main drawback is that the searching device must be

close enough to the lost object to be able to locate it. This proves to be useless

in most scenarios. SecureFind offered a solution to this limited range problem

by incorporating crowdsourcing into its functionality. Such a solution is feasible

due to the huge number of mobile devices in the world. When an object is lost,

its owner can issue a request in the form of a tag query to the proposed service,

which will in turn, forward the query to a set of mobile devices. Every device then

broadcasts the query until the tag on the lost object responds with its location,

which gets sent back to the object owner. Every mobile detector can be slightly

rewarded and the object owner will pay a small amount, but in return, will get

back the location of his lost object with very high probability. To provide object

security in SecureFind, some mobile detectors issue dummy tags that are indis-

tinguishable from the real tag response so that only the object owner can identify

it. Moreover, to ensure location privacy, only the object owner is informed of the

location under a dynamic pseudonym. SecureFind depends on a framed slotted

ALOHA protocol which is assumed to support Bluetooth tags. The basic scheme

15

will guarantee that the owner gets an approximate location as long as there is

at least one mobile detector in the range of the object. Simulations showed that

SecureFind was efficiently locating lost objects while protecting their security as

well as the privacy of the mobile detectors.

2.1.2 Crowdsourcing for Network Mapping

In addition to location, crowdsourcing can be used to collect other types of infor-

mation. Portolan in [36] is a crowdsourcing-based system that uses smartphones

as mobile measuring elements. It is able to build signal coverage maps and gen-

erate a graph of the Internet at the AS level. Measuring large networks has many

challenges. Due to their size, collecting information about networks requires a

lot of effort and resources and is beyond the possibilities of a single institution.

A possible solution is crowdsourcing using many devices scattered over a large

geographic area. End users who install Portolan collect local measures and the

aggregated results are assembled to build a detailed map of the network. In

order to achieve scalability, there are proxies in Portolan. Every proxy receives

micro-tasks from the server as well as information from smartphones (location

coordinates, IP address, sensing capabilities, etc.) based on which it assigns the

suitable devices for every micro-task. The authors tested the effectiveness of Por-

tolan. Their results showed that if a user changes his position by only a few dozen

meters, the signal quality might change significantly. This can be very beneficial

to network operators who can then fine-tune their infrastructure. The results also

showed how the RSS changes with different operators. This can be useful for users

of the app who will then choose their operator based on where they spend most

of their time. At the AS abstraction level, Portolan’s performance was shown

to exceed that of CAIDA [37]. Another work that tackles mobile-based crowd-

16

sourcing of network properties was introduced in [38]. The measuring technique

introduced follows a bottom-up approach by using smartphones as monitoring

nodes in order to obtain maps through crowdsourcing. The authors envisioned

a system whereby mobile nodes inject a tiny quantity of traffic into the network

which represents small-range measurements out of which the final Internet graph

is obtained. On the telecom level, Nokia Siemens Networks in cooperation with

Ciqual announced four years ago that they are working on the Mobile Qual-

ity Analyzer [39], a client that users download to their devices. It continuously

checks network connectivity and sends feedback to operators who will then have

a real-time overview of the network status. The client also periodically asks the

user some questions related to the quality of service.

2.1.3 Crowdsourcing Health Care

The area of health care has its share of crowdsourcing applications as well. The

authors in [40] demonstrate how crowdsourcing can be used to distribute health

care support for patients by creating a service for prospective donors to con-

tribute. They discuss some of the main issues faced by the health care system in

the Philippines, mainly distribution, availability, and accessibility. They argue

that a crowdsourcing platform can be used to connect between people in need of

proper health care and people who are willing to donate to help others. They

point out two basic mechanisms that can be used in a crowdfunding system which

are return rule and direct donations, how each one works, and in which projects

it should be applied. They present some ways in which the crowd can be mo-

tivated to donate to a crowdfunding project, for example, advertising causes on

social media, emphasizing the importance of helping others and the satisfaction

of being part of a group. In terms of donations, they analyze donor behavior and

17

how the social status of people tends to affect their donation preferences. They

emphasize the importance of a clear donation management scheme for proper

resource allocation and the importance of micro-donations where small amounts

add up and make a difference. In terms of security, they argue that in a crowd-

sourcing platform, privacy and confidentiality must be protected just like in any

patient-doctor relationship. However, sometimes there is a tradeoff between this

security and the number of donors or amount of donations. All of these crowd-

funding design problems were addressed in WeSave where the crowdsourcer is

a group of social workers who search for donations from the crowd which is a

group of prospective donors. Their ideas to attract donors include promoting

causes on social media and emphasizing the importance of communal unity and

cooperation. In WeSave, beneficiaries are assessed by social workers in order to

receive proper care. As for donors, they have the option to register as individu-

als or groups, or even donate without registration. When it comes to monetary

donations, PayPal, or any other electronic money transfer system can be used.

WeSave also allows general donations that are not for a specific cause. These

donations might be given to causes that still do not have donors or they can be

used to help maintain and develop the service. The service supports the use of

passwords and certificates to assure donors that it is a legitimate crowdsourcing

service. WeSave suffers from some drawbacks such as possible security breaches,

the possibility of unfunded campaigns, and the abuse of the system by users.

The authors suggest possible mitigation techniques for each drawback. Crowd-

Help is another health care crowdsourcing application presented by the authors

in [41]. It provides real-time patient assessment through mobile triaging. The

application can be installed on computers, as well as smartphones and tablets. It

collects information related to the medical condition of the user along with other

18

data emanating from the device’s sensors. Based on the collected data, Crowd-

Help aids emergency personnel in responding to users who are in need of help.

Emergency responses are based on a medical triage scheme which categorizes

users based on the severity of their conditions and divides resources accordingly.

CrowdHelp can be used by several users when reporting an event (natural disas-

ter, terrorist attack, etc.) or by a single user to give information related to his

medical condition (symptoms, injured areas, etc.). It provides users with causes

for their reported symptoms along with a list of possible locations that are ca-

pable of treating these symptoms. This information is stored as part of a user’s

profile on the server side where data analysis and machine learning are used to

cluster all user inputs based on medical urgency, physical proximity to dangerous

events, or proximity to neighboring entries. Security is achieved by separating

users into guests, operators, and administrators who are the only ones capable

of performing advanced managerial functions. Numerous tests of different sizes

were performed, all of which displayed a clear mapping of users’ reported entries,

thus leading to a fast understanding and visualization of large amounts of data

by emergency experts.

2.2 Different Crowdsourcing Task Types

In our model, we only consider crowdsourcing tasks with a collective solution

derived by means of aggregating the input of all individuals in the crowd. These

tasks are similar to voting schemes where a relatively large number of workers

have to participate simultaneously. Also, they are not open-ended in nature but

rather have a definite answer that a group of individuals can agree on. It is worth

noting, however, that there are other crowdsourcing tasks that do not fall under

19

the model presented in this work but are worthy of mention. One example is

the classical ROVER algorithm proposed in [42]. The NIST Recognizer Output

Voting Error Reduction system combines the output generated by multiple Auto-

matic Speech Recognition systems resulting in a lower error rate than any of the

individual systems. First, the outputs from multiple ASR systems are aligned to

generate a single word transition network. Then a voting scheme is applied to

select the highest scoring word. Three benchmark evaluation submissions were

used to test ROVER. Each output word was provided along with a confidence

score ranging from 0 to 1. The authors investigated three voting schemes: ma-

jority, confidence-weighted, and maximum confidence. The best error reduction

was achieved with the maximum confidence approach followed by the confidence-

weighted approach and finally the majority approach. Of course this does not

agree with the results in our work. ROVER combines system outputs of multiple

recognition systems. The difference between ROVER’s voting scheme and that in

crowdsourcing systems is that in the latter, the miscalibration in self-assessment

that leads to inaccurate confidence scores is a result of human factors and it

renders the majority score superior to confidence-weighted scores. The human

factor does not apply in the ROVER case.

The authors in [43] use the ROVER tool to address the problem of cross-

language transfer of domain-specific semantic annotation. There are several is-

sues to address. The language of interest might be under-represented. This was

addressed by using targeted crowdsourcing. Also, domain-specificity of the re-

quired annotation increases complexity of the task. This was coped with via

priming with a list of source language concepts. Another issue is the evaluation

of crowd-annotated data without reference target language annotation which was

coped with by applying inter-annotator agreement. It considers both segmenta-

20

tion and labeling agreement measures meaning that annotators have to agree on

both the label and its span. The authors apply the ROVER technique with a

majority voting scheme to decide on the label and its span. Their results show

acceptable annotation quality. In a more recent work, they study selection and

aggregation techniques for this semantic annotation task [44]. Their goal is to

select a word mapping that is closest to the source language or to aggregate all

mappings into a single one that best represents the meaning of an utterance. The

baseline for selection is randomly picking one of the mappings whereas that for

aggregation is using majority voting while randomly breaking ties. Both these

approaches are not a good choice considering the varying expertise levels of crowd

annotators. Language Models (LM) based on the maximum likelihood were used

to estimate the reliability of crowd annotators. Their results show that majority-

voted ROVER provides a strong baseline. However, weighing each hypothesis

with respect to other annotations proves to be the best weighing scheme with

an increase of 0.4 in the F-measure. The authors’ baseline evaluation in [45] is

the random re-sampling approach where the precision of one randomly selected

judgment is computed and results are averaged after repeating the procedure

1000 times. Their results show that the performance of majority voting is higher

than the baseline thus proving how combining the “power of the crowd” with

computational methods improves annotation quality.

In addition to what was mentioned, there are crowdsourcing tasks that have

one solution only and these are modeled differently than tasks that aggregate

worker solutions. In these types of tasks, it is up to the requester to determine

the winning solution based on the amount of money he is willing to pay and

the minimum required solution quality. In addition, there are crowdsourcing

tasks with open-ended questions. For example, Wikipedia [46] is a crowdsourced

21

encyclopedia. Several contributors can participate in creating Wiki pages and

there is no one solution or output format for the pages. These types of tasks are

modeled differently and are beyond the scope of this dissertation.

2.3 Crowdsourcing for Security

The main issue in crowdsourcing is how we are expected to trust data contributed

by a crowd of anonymous users. The authors in [47] give several examples of

challenges in crowdsourcing systems. For example, self-policing is not applica-

ble in many crowdsourcing services such as social media where news is instantly

acted on. Made-up stories still make it to the media via dishonest journalists.

Anonymity in several crowdsourcing systems can result in Sybil attacks. These

are only a few examples of the issues faced in such systems. There are pos-

sible solutions to these issues; some are already implemented, while others are

approaches that are worth looking into. For example, statistical analysis can

be applied to a data stream to separate the good data from the bad. However,

this technique’s effectiveness depends on the type of collected data and the kind

of service collecting it. The authors give examples of other approaches along

with their limitations. In [48], the authors discuss the main challenges in mobile

crowdsourcing networks (MCNs) where human involvement offers unprecedented

sensing and transmission opportunities. However, security and privacy issues

are more critical in MCNs than in traditional networks due to several consider-

ations. First, due to the fact that humans are involved in crowdsourcing sensing

and computing, there is a risk of exposing sensitive information on the devices

or even private information related to the user himself. In addition, the device

could be controlled by a malicious human to launch an attack. The second con-

22

sideration is task crowdsourcing, which raises a big security question since tasks

themselves might contain sensitive information. In addition, MCNs have a dy-

namic topology since new users might join or others might leave the network

and since users choose tasks based on their device capabilities and their inter-

ests and they are mobile most of the time. All of this makes addressing security

and privacy concerns even more challenging. There is also the fact that these

networks can be heterogeneous in nature (WLANs, Bluetooth, WiFi, VANETs,

etc.) and mobile devices are heterogeneous as well. This complicates the process

of securing MCNs. And if there is no guarantee of security and privacy in MCNs,

users will have no incentive to participate. All these threats were summarized

by the authors into privacy, reliability, and availability threats. To deal with

reliability and availability threats, crowdsourcing participants must be authen-

ticated before they join the MCN. A threshold-based distributed authentication

mechanism is desirable where group authentication of a new mobile device is re-

quired. To protect the task privacy of end users and the subscription privacy of

mobile users, attribute-based encryption can be used where the ciphertext can

be decrypted only with specific attributes of the decryptor. As for computing re-

sults, a trusted third party can be assigned to verify the integrity of these results.

The authors formulated many other research problems that might lead to future

research directions in the area of security and privacy in MCNs.

Crowdsourcing in itself can be used to improve the security of systems. Tal

Eisner from cVidya talks about crowdsourcing in telecom fraud and security man-

agement through a mobile app for Android called FraudView CyberHub [49]. Its

purpose is to detect, block, and report premium rate fraud numbers that are of-

ten the result of malware and malicious app infection to the mobile device. The

crowd intelligence is supplied by the mobile users themselves who report actual

23

and suspected malicious numbers and apps. Their reports go to a cloud-based

server in which automatic algorithms backed up by experts analyze reports and

distribute the info to all FraudView CyberHub users. They completed most of

the research needed to launch it and many operators are intrigued with the idea

including AT&T and Telstra. Peer production was combined with crowdsourcing

in [50] in order to improve network security. Instead of relying on the software

adoption of individual users, the authors argue that a better approach would be

to focus on the community as a whole. The premise was that peer production

could address incentives such that participating individuals value contribution

and hence improve the level of security for the entire community. As a proof of

their concept, they provided a high-level instantiation on mitigating the insider

threat. They presented the system design conditions and provided an example

that still needs to be tested. Crowdroid [51] is a downloadable client for Android

devices that uses collected information from a crowd to detect malware. The

framework relies on three components. The first is data acquisition where Crow-

droid uses Strace to monitor applications on users’ devices. The second is data

manipulation where information from Strace is collected, analyzed, and system

call traces are processed to produce the feature vectors that will be used for clus-

tering. The third is malware analysis and detection where the feature vectors are

clustered using k-means clustering in order to create the normality model and

detect anomalous behavior in apps. The authors mainly targeted Trojan appli-

cations. They tested Crowdroid on self-written malware and real malware. For

the real malware, they used normal and infected versions of the Steamy Window

and Monkey Jump 2 apps. For the first app, they got a detection rate of 100%

and for the second 85%. The authors in [52] argue that there are thousands of

mobile apps that are being downloaded on a daily basis and most of them use

24

sensitive information such as addresses or credit card numbers. According to

them, previous methods were able to detect that sensitive information was being

used, but could not tell whether this use of information was legitimate. That is

why human expert intervention is required. However, with the large number of

apps in markets nowadays, manual inspection is no longer feasible. Hence, they

propose AppScanner, which builds on crowdsourcing, automation and virtualiza-

tion to enable large-scale analysis of mobile apps. It provides end-users with more

understandable information regarding what mobile apps are really doing on their

devices. It relies on the use of automation and traditional security techniques to

learn application behavior with fine granularity.

Gander et al. argue that in recent years, the spreading of malware has changed

from traditional channels such as E-mail to a new channel which is websites [53].

They propose Croft, a monitoring tool that gathers data related to users and

visited websites in a crowdsourcing fashion. Their goal is to decrease the risk

of malware infection while increasing the awareness of users on the Internet.

Users who install Croft are fully aware of how the monitoring method works. In

addition, their data is not made available to third parties. This is ensured by

applying end-to-end encryption on the data. Croft was designed with three goals

in mind: studying the probability model of users getting infected, studying the

spreading characteristics of malware, and studying the performance of antivirus

software. It is constantly running in the background. When a user visits a

website, the tuple (URL, timestamp) is stored in Croft. Meanwhile, the antivirus

software is trying to detect if the URL is malicious. If it is not, then after a

certain threshold, the tuple is replaced with new entries. However, if the activity

is malicious, then the antivirus will detect a malware. In that case, data is

forwarded from Croft to the back-end which includes a timestamp, the list of

25

URLs from open tabs, a keyword check (e.g. AVG Malware Alert), the OS

configuration, and the user’s information. This data is encoded as JSON and

the transmission channel uses SSL/TLS. A MySQL database is used and all the

information on the database is moved twice every day to a local storage that is

not connected to the Internet and the database is wiped. This will add extra

protection to the users’ collected information. Croft is implemented using C#

and the .NET framework since it targets windows users. Its components are

Croft client and Croft Web application. After the data is sent by Croft, the next

step is false-positive reduction. This is still a work in progress. However, expert

information in the form of manual analysis may be used to detect these Type

I errors. After false-positive reduction, three forms of statistical analyses are

performed. In malware statistics, malicious URLs are ranked based on several

categories (number and type of malware, rate of infection, etc.). User statistics

include information related to user status and behavior (browsing profiles, number

of infected users, etc.). In antivirus statistics, information will mostly relate

to the performance of different antivirus software. The authors performed an

experiment in cooperation with a European antivirus product. Twenty-nine users

were asked to volunteer in the experiment with the incentive of receiving free

licenses of the product. The experiment was conducted over a period of one

month. Evaluation showed that Croft works as expected. In addition, feedback

from the users showed that they trust that the system cares for the privacy

and confidentiality of their submitted information, and that they believe in the

usability and reliability of the tool. In [54], the authors discuss the problem with

worms and how easily targets can get infected. They propose crowdsourcing

as a possible solution to identify attacks and act accordingly. Internet worms

have had an intense impact over the last few years and the currently offered

26

solutions lack in several areas such as scalability and flexibility in handling new

threats. To solve this problem, the authors developed NetBuckler, a Microsoft

windows application based on the JXTA framework that employs the collective

intelligence of a crowd to detect and avoid worms by monitoring the change

in traffic in a P2P network. The designed application builds visual graphs to

identify variations in traffic and provides security measures to protect the host it

is installed on. These variations in traffic rates are collected locally by making

decisions based on two threshold values. If the average rate is below the lower

threshold, the security level is decreased. If it is anywhere between the lower

and upper thresholds, no action is taken. And if it is above the upper threshold,

the security level is increased. The resulting information is exchanged between

peers in the network. NetBuckler is based on Java programming language which

means it can be easily modified to make it compatible with operating systems

other than Microsoft. The authors simulated attacks to test their application.

These attacks triggered the response of the system. However, the experiments do

not result in False Positives which means that a more advanced testing approach

is needed. Although NetBuckler tackles many drawbacks in existing IDSs such as

efficiency, scalability, and single point of failure, it suffers from drawbacks itself.

The authors plan to build a secure environment that provides authentication,

non-repudiation, privacy, integrity, and solves the peer dishonesty problem.

The above was an example on crowdsourcing with intrusion detection systems

which is currently an active research topic. In what follows, we present a sample

of the work on crowdsourcing-based game-theoretic IDSs.

27

2.4 Crowdsourcing-Based IDS with Game The-

ory

Most of the work in the area of network security focuses on improving intru-

sion prevention and detection techniques. Intrusion response remains a manual

process performed by an administrator in response to an alert from a detection

system. This manual process introduces a delay during which an attacker can

cause serious damage to the system. This raises the need for an automated intru-

sion response scheme and it was the motivation behind the authors’ Response and

Recovery Engine (RRE) in [55]. RRE models the interactions between itself and

an attacker as a two-player nonzero-sum sequential Stackelberg stochastic game

where RRE is the leader and the attacker is the follower. The authors introduce

the attack-response tree (ART) structure to describe the security of a system

based on possible intrusions for the attacker and responses for the engine. RRE

automatically transforms ARTs into observable competitive Markov decision pro-

cesses (POCMDP). Once solved, the optimal response against an attacker can be

found such that the damage caused to the system later in the game is minimized.

RRE has a two-layer architecture composed of local and global engines. Local

engines are found on host computers whereas the global engine is on the RRE

server. When the system is not recoverable by the local engines, the global engine

selects an appropriate global action. This architecture enhances the scalability

and performance of RRE so that it can be applied in large-scale networks. The

authors implemented RRE on top of Snort 2.7 [56]. Their results showed that for

large-scale networks with 330,000 hosts, RRE was able to generate the Markov

model within 24 ms only and it was able to generate optimal actions for ARTs

with more than 900 nodes in less than 40 seconds which means that it can protect

28

large-scale computer networks.

In [57], the authors study the security of mobile AdHoc networks. Due to

the characteristics of MANETs such as frequent changes in network topology

along with many system constraints, they are inherently vulnerable to security

attacks. In addition, these networks have no centralized management unit, no

certification authority, and connectivity within them is intermittent. All of these

reasons make it difficult to secure MANETs and motivate the need for an IDS.

A node in the network with an IDS deployed on it will constantly monitor and

evaluate neighboring nodes, based on which it will cooperate with neighbors

that it trusts and dismiss any requests from suspicious neighbors. The authors

use game theory to model the interaction between a node in a MANET and its

neighbor. The aim of their work is to provide optimal strategies for both malicious

and regular nodes using a game-theoretic approach. They model their problem

as a dynamic two-player non-cooperative game with incomplete information. In

an interaction between a node and its neighbor, the node does not know the type

of its neighbor which could be regular or malicious. Nonetheless, it has a belief

regarding the type. Nodes in the network are divided into clusters. Every cluster

will elect a leader using some clustering algorithm. The leader uses a hierarchical

IDS whereas the cluster members use a standalone IDS. There are three modules

in the IDS deployed on regular nodes: The monitoring unit, the decision-making

unit, and the secure communication unit. The monitoring unit uses game theory

to compute thresholds that will be used to update the belief of a neighbor’s type.

If the belief is that the neighbor is regular, the packet is accepted and sent to

the secure communication unit where it is encrypted before being forwarded.

Otherwise, the node will accept its neighbor with a certain probability. If an

intrusion is detected, the decision-making unit will request the cluster head to

29

further analyze the data. The cluster head will then consult all the cluster heads.

If more than half of them agree that the node is malicious, an alert will be

raised. Otherwise, the neighboring node will be trusted. The difference between a

cluster member and a cluster head is that the former uses an independent decision

making system while the latter uses a collaborative decision making system by

forwarding messages to other nodes and waiting for their replies. Payoffs are

awarded based on the actions chosen by the two players. The authors analyzed

the Bayesian Nash equilibrium of the game and computed the probabilities of

both a node to accept its neighbor and an attacker to attack that are required to

maintain this equilibrium. They conducted simulations on a randomly generated

MANET with 100 nodes in a 1500m×1500m region that is evenly divided into 15

clusters. They studied three parameters: The percentage of detected attacks, the

percentage of false alerts, and the throughput. As the number of malicious nodes

in the network increased, both the throughput and percentage of detected attacks

decreased while the percentage of false alerts increased. Their proposed method

was found to perform better than existing methods in the case of throughput and

attacks detected, but slightly worse in the case of false alerts.

In [58], the authors study the trade off between the level of security enforced

by an IDS and system performance. Network assets as well as the overall per-

formance of an IDS should be optimized. This was addressed by the authors

using game theory. They modeled the problem as a stochastic multi-player non-

cooperative non-zero-sum game and demonstrated the existence of a stationary

Nash equilibrium. In the basic formulation of the game, the network is composed

of defending machines connected by a graph, and malicious attackers. Every ma-

chine can be in a finite number of states and can have a finite number of detection

libraries. On the other hand, every attacker can be in a finite number of states

30

which reflect the energy level of the attacker. It can choose its action from a set

of actions where each one denotes a different type of attack which causes damage

to the machine and costs to the attacker. For every library, there is a scope of

detection which comprises the types of attacks that can be detected by it. Also,

every machine has a coverage factor which represents the set of attacks that will

surely be detected by this machine. In every time instance, the action of the

defender is to configure a set of libraries. The action of the attacker is to choose

its attacks from its available attack types. The authors extended this model to

take into consideration heterogeneous networks. They assumed that every ma-

chine protects a network asset and every asset has a security asset value which

denotes the importance of the node to the network. Since assets in a network

are inter-connected, when one asset is attacked, other assets might be compro-

mised. This is referred to as asset inter-dependency. They categorized the assets

in a heterogeneous network based on the CIA triad (confidentiality, integrity, and

availability). They also defined an impact factor for each attack type on each

asset. A defender will attempt to maximize its utility function which takes into

consideration both direct and indirect (incurred by adjacent compromised nodes)

damages to a machine. Similarly, a rational attacker will attempt to maximize its

utility by maximizing the damage it inflicts on its targets. The authors proved

the existence of a stationary Nash equilibrium for their game based on the theo-

rem which states that every non-zero-sum finite discounted stochastic game will

have at least one stationary equilibrium point. This equilibrium can be used

by defenders to find their optimal library configuration in different states. The

tradeoff between security and performance was also studied by the authors in [59]

for Host Intrusion Detection Systems (HIDS). They argue that appropriate opti-

mization is required for efficient detection and suggest game theory as a technique

31

for optimization and efficiency in HIDS. They begin by modeling the network as

a graph where the nodes are HIDS (defender nodes) and attacker nodes. They

present a three-step proposal. In the first step, the local reputation between every

two defending nodes in the network is calculated. This is the direct evaluation

of behaviors. A trust algorithm based on the Perron-Frobenius theorem is then

applied to compute the global reputation vector. The algorithm keeps on iterat-

ing until the difference between two consecutive trust values becomes less than a

predefined threshold. This threshold is set by the leader node and can be adapted

depending on the precision required by the application. In the second step, the

leader is elected. The election is based on two factors: The leader must have a

high trust value and the minimum resources required to monitor. The elected

leader will calculate global reputations, play the game, and decide when to acti-

vate HIDS. In the third step, a two-player non-zero-sum non-cooperative iterated

game is played between an attacker and HIDS. The authors give the payoff ma-

trix of the attacker and defender in strategic form. Then they define the utility

functions of both players. The solution to their game is a mixed strategy Nash

equilibrium where the best response of HIDS is to monitor when the belief that

a node is attacking is higher than a computed threshold, and the best response

of the attacker is to attack when its belief that HIDS is defending is lower than a

computed threshold. The authors simulated their experiments using MATLAB.

They studied two scenarios. In the first one, higher priority is placed on trust

(e.g. cloud computing). In the second one, higher priority is placed on monitor-

ing and attack costs (e.g. WLAN where defenders have limited resources). Their

results showed major improvements in both resource consumption and detection

rate when game theory was introduced into their detection system.

Game theory is also used when designing reputation protocols and incentive

32

mechanisms. The authors in [60] study a typical crowdsourcing system where

requesters post tasks with rewards and workers solve these tasks and provide

their solutions to the requesters, who in turn select the best solution and grant

the rewards to the respective workers. Requesters are motivated to use the sys-

tem when the provided solutions by the workers are of high quality and when

the reward they have to pay is as small as possible. On the other hand, the

larger the reward, the higher is the incentive for workers to join and provide

good solutions. This tradeoff is one of the challenges when designing reputation

and incentive mechanisms. The authors use a probabilistic model to describe the

interaction between a worker and a task. They begin by proposing an incentive

mechanism to make sure that experts will join the system and will provide high

quality solutions. They describe their binary rating system where a requester cat-

egorizes every provided solution as satisfactory or not satisfactory. The reward

is then divided by the administrator over all the workers whose solutions were

satisfactory. If there are no satisfactory solutions, then the requester’s reward is

divided evenly over all workers. This is done to prevent denial of payment by

the requester where he benefits from one of the solutions but provides a false

rating. Since it is possible for all workers to earn rewards even when their efforts

are low, the authors formulated their incentive model as a game. They showed

that when there is only one worker in the system, it is impossible to give him

the incentive to provide a high quality solution. The solution to this problem

is simple: Always make sure that there are at least two workers for every pro-

posed task. With more than two workers in the system, the authors prove that

their incentive mechanism can guarantee that expert workers provide high effort

solutions. On the other hand, it was shown that regardless of the reward size,

novice workers will always free ride. The authors derived the minimum number

33

of workers and the corresponding required reward that will ensure that at least

one high quality solution provided by an expert is returned to the requester with

very high probability. They proposed a reputation system in order to prevent the

problem of novice free riding by penalizing workers when their reputation is poor.

They showed that their repeated game has a unique sub-game perfect equilibrium

where the novices refuse tasks voluntarily and the experts provide high quality

solutions. A byproduct of their proposed reputation scheme was that it reduced

reward payments for requesters.

2.5 Crowdsourcing for Recommender Systems

with Expert Detection Techniques

The authors in [61] study several online recommender systems by analyzing their

input parameters, effectiveness, and drawbacks so that they can assess how they

can be used in crowdsourcing systems. Their aim was to derive the best practices

from existing recommendation systems in order to model an effective system.

To this end, they presented a critical review of existing works. The papers they

reviewed covered recommender systems and crowdsourcing in these systems. The

review describes the methodology as well as the technological aspect of the works.

In addition to their provided summaries of every work, they evaluated how it

addresses some questions that they formulated (how the problem is solved, how

scalable it is, what parameters are used in the problem formulation, what are

some limitations of the work, etc.).

In the Android framework, the resources given to an app are isolated from

those given to all other apps. Upon installation of an app from the market, a user

has to accept all the resource access requests before he is allowed to use the app.

34

However, it was found that more than 70% of smartphone apps request access to

resources that are irrelevant to the main function of the app [62]. In addition, only

3% of users pay attention to these requests and make correct judgments regarding

whether or not to grant permission [63]. To this end, the authors in [64] propose

RecDroid. A crowdsourcing-based participatory framework gives recommenda-

tions to its users on how to control their privacy and respond to these permission

requests. RecDroid gives users the option to install an app in two modes. The

first is a trusted mode where all requested resources are granted to the app. The

second is a probation mode where real-time resource granting is implemented

while the apps are running. RecDroid also gives recommendations to the user

regarding the type of installation to choose based on previous selections made by

experts for this particular app. It starts with a set of seed expert users and re-

turns its initial recommendations based on their responses. The authors propose

a spanning algorithm to identify external expert users based on the similarity of

their responses to those of the seed experts whose responses are taken as ground

truth. RecDroid collects responses to resource requests from users, analyzes them

to remove any biases, and infers the security and privacy risk levels of apps based

on its collected data. When an app in probation mode requests a resource, Rec-

Droid will provide the user with a recommended response. If the app was covered

by seed experts, their response is suggested to the user. Otherwise, an aggregated

response from other users based on weighted voting is recommended provided its

confidence level is high. Simulations were conducted to measure RecDroid’s ac-

curacy and effectiveness. The authors set up 100 RecDroid user profiles with

expertise levels varying between low, medium, and high. They ran their sim-

ulations on MATLAB and repeated every experiment 100 times with different

random seeds. Their results showed that the accuracy of the system decreases as

35

the coverage increases which is expected since higher accuracy means less votes

will be qualified for recommendation. However, when parameters were carefully

set, RecDroid was shown to achieve high accuracy with good coverage. Results

also showed that RecDroid only needs a small seed value of experts to bootstrap

the system, and it was shown to be effective and feasible when implemented on

Android phones.

The authors in [65] study expert detection and motivation techniques in

knowledge sharing sites which depend on human expertise. They focus on the

case of StackOverflow where participation requires a high level of understanding

of the specific domain. The site uses a detailed reputation system that rewards

users who ask good questions, give good answers, or rate the quality of other

questions and answers. This reputation scheme can be used to easily recognize

experts in the system. It proves to be beneficial since there is a need to dif-

ferentiate between different levels of users and to motivate and reward experts.

The authors used data from the StackOverflow website which included around 3

million questions and 7 million answers from over 1 million users. They proposed

that early participation can indicate which users might end up giving helpful

answers in the end since new users to the system tend to follow different activity

patterns which lead to a change in the reputation gain patterns. They plotted

the mean cumulative user contribution in several measures from both high and

low reputation users. The results agreed with their proposal that the activity of

a new user is indicative of his long-term contribution. They performed SVD and

PageRank analysis and concluded that they are both useful in detecting extreme

cases of influential users. To try to recognize the experts based on their early

activity on the site, the authors modeled this issue as a classification problem

where users are classified into one of two classes: experts or non-experts. They

36

compared the performance of their classifier to that of Pal et al. [66]. Their clas-

sifier was shown to have lower precision than Pal but higher recall and F-measure.

In addition, their classifier results showed that one month of site usage is enough

for reliable identification of experts in the system.

In [67], the authors discuss the importance of user modeling in recommender

systems, which allows to link users with common interests. Their proposal was to

model the network of rating users as a graph that changes with time. New users

can join at any time and existing ones can rate new items. The aim behind their

work was to find out whether regardless of the network size, it will always reach

a stable form and whether there is a pattern in the network. They formulated

the recommendation problem using usefulness matrices which have users as rows

and rated items as columns. In collaborative filtering, recommendation was for-

mulated using similarity matrices. Since the authors represented their network

as a graph, the nodes are the users and an edge between any two users is an

indication of enough similarity between them. This means that the degree of a

node will represent the number of its similar users. The Hamming distance was

used to calculate the similarity between two users. The data set they used was

MovieLens. In the first data set, there were 100,000 evaluations on 1,682 movies

by 943 users. In the second data set, there were 1,000,000 evaluations on 3,952

movies by 6,040 users. In order to observe the time evolution of the network,

the data was split into four time periods. Evaluations of movies were normalized

to 0 or 1 to represent approval or disapproval of a movie by a user. Contrary

to what they expected, the authors did not discover a power-law. Instead, they

discovered a decreasing linear relationship between a node’s ranking and degree.

The authors in [68] discuss Question Answering (QA) communities where

social interactions between users enable sharing of knowledge in different fields.

37

In these communities, some users are generally more knowledgeable than others

are. This core group of users is referred to as experts who constitute a small

percentage of the overall community, but are responsible for a large percentage of

the answers. They are the drivers of such communities and it is very important to

detect them at an early stage. The authors used a dataset from the TurboTax Live

Community (TTLC) from July 2006 until April 2009. This dataset has 83 users

that were explicitly categorized by Intuit [69] employees as super-users or experts.

This human evaluation process has two main limitations. The first is that humans

usually evaluate the expertise of users based on long-time contribution which

means that users with high potential that have just joined the community are

not taken into consideration. The second is that an evaluation process of this

kind generally takes a long time which is a problem since there is a risk of high-

potential users choosing to opt out of the community due to the lack of credit for

their efforts. These limitations emphasized the importance of designing a tool

that is capable of quickly going through thousands of users and recommending

high-potential ones to human evaluators. According to the authors, a potential

expert must be highly motivated to help others and should have the ability to

answer questions correctly. Based on these two properties, the authors came

up with a list of user qualities that could be used to identify potential experts.

They used both SVM and DTree over these features to try to find the potential

experts in their selected dataset. Performance was measured using precision,

recall, and f-measure. SVM was shown to have better precision than DTree but

a lower recall and f-measure. The lower precision of the DTree could indicate

that it recognizes more potential experts. This made it a good method of choice

for further analysis. In one of their experiments, their DTree model detected 75

potential experts out of which 40 were actually categorized by Intuit as super-

38

users. The remaining 35 were then recommended to Intuit and it was found that

27 out of them were almost ready to be promoted to super-user. The purpose

behind this early detection of experts is to encourage and mentor them in order to

improve the quality of answers in the community. However, due to cost and time

constraints, this mentoring cannot be provided to all users. It would be desirable

to provide it to the top ranked users only. To this end, the authors proposed

a ranking mechanism in order to rank users based on their potential. Their

ranking algorithm found several potential experts which were missed by the DTree

algorithm. The authors concluded that a combination of the two algorithms is

the most effective way to find the potential experts in a QA community. These

identified users could be upgraded to an intermediate status to give them an

incentive to continue to participate in the community while Intuit employees take

their time in evaluating their potential. The case of identifying authoritative

users in Yahoo! Answers was studied in [70]. In such a QA community, an

asker prefers to get answers from users who are considered experts on the specific

subject. That is why, it is very important to be able to identify these authoritative

actors. The authors propose to discriminate authoritative and non-authoritative

users. They represent the interaction between the asker and the best answerer

as a weighted directed graph where the link magnitude between any two users

corresponds to how often one of them chooses the other as the best answerer. To

provide authority scores for the nodes in the graph, link analysis can be applied.

The authors discussed some of the most common link analysis techniques and

concluded that PageRank, HITS, and Z-score are all not appropriate for their

application. They adopted the simple InDegree technique where the authority

of a node is measured based on the sum of the weights of the links that point

to it. They propose a probabilistic method based on a mixture model. The

39

normalized InDegree values of all users in every category were first estimated

and after analyzing them, the authors found that they are well fitted by two

gamma components, one of which contains large InDegree values and therefore

represents authoritative users. They performed experiments on datasets from

Yahoo! Answers for six different categories over one year. They first attempted

to manually evaluate the answers of the authoritative users that were identified

by their approach. They found that these users always provided detailed answers

with good quality, and some of them were even teachers, graduate students,

engineers, etc. Then, they used the approach proposed in [71] to identify high-

quality content. The experiments showed that the average quality score of the

identified authoritative users was above 0.7 which shows that their approach

significantly results in high-quality content in Yahoo! Answers.

Similar to QA communities, in personalized learning, students benefit from

the shared knowledge of users. The aim of personalized learning is to adapt

the learning process to the knowledge and preferences of every student. The

problem is that traditional personalized learning is not scalable. As the number

of students and the variability in their preferences and backgrounds increases,

it becomes more difficult to establish effective personalization schemes. That

is why the authors in [72] describe a new approach to combine crowdsourcing

with social networks to improve personalized learning. They develop SALT (Self-

Adaptive Learning through Teaching) where students participate by both learning

and teaching through social interactions. SALT was implemented as a large-

scale Online Social Network (OSN) similar to Facebook. It achieves its goal of

personalized educational knowledge by exploiting the combined intelligence of

its users who can take the role of both students and teachers and interact by

sharing learning ideas in the form of small lessons (lesslets). Each lesslet has a

40

name, a small explanation of the concept, an example, and a test to evaluate a

student’s understanding of the concept explained in the lesslet. When more than

one lesslet are used together, the result is a learning pathway that is carried out

by a student. Creating lesslets will result in students being more involved in the

work and gaining a deeper learning experience. SALT was designed as an adaptive

system. It automatically orders lesslets based on their estimated difficulty. It also

keeps a profile for every user based on his performance. It recommends pathways

to users based on similarities with other users. This adaptive approach gives the

most productive pathways and results in a positive experience for users. SALT

was implemented as a web application. It is currently available for registration

by invitation only. When users enter the system, they can click on a lesslet name

which gives them access to the different components of the lesslet. After users

learn a lesslet and take the test, they are given a score along with recommended

lesslets that they can take. A user also has the option to request a lesslet by

posting a wish (similar to QA systems) and when the requested lesslet is created,

the user will be notified. Users on SALT can friend each other and participate

in online chats. SALT was evaluated in undergraduate and graduate classes

where 260 students created around 300 lesslets. Results suggested that users

with similar learning patterns can be identified and their intra-group similarities

used to achieve personalization. Evaluations also studied how different groups of

users follow different pathways and how collaborative filtering algorithms perform

in SALT.

Another work that discusses the problem of qualifying workers in a crowd-

sourcing project was presented in [73]. The aim of the work was to find skilled

workers on Amazon’s Mechanical Turk. The crowdsourcing task that the au-

thors considered was determining the geolocation of videos on social media. The

41

difficulty of this task is in selecting the workers who would execute it reliably.

Workers were asked to look for traces in the videos that will help them make

a decision regarding the location. However, this task depends on the workers’

personal judgment which raises the issue of dishonest workers who attempt to

fool the system for rewards. In the experiments, a dataset of Creative-Commons

licensed Flickr videos was used. The designed web interface had a set of instruc-

tions, a progress bar, and an instance of Google Maps for users to geo-locate

the videos. After workers tag their locations, the Haversine formula is used to

compare the distance between the workers’ estimated coordinates and the true

ones. In the next phase of the experiment, workers were provided with a tutorial

explaining how to find clues and geo-locate videos. After the addition of the

tutorial, qualified workers gave better results than both internal testers and ma-

chines. The work was summarized with a list of steps to follow to properly qualify

workers. These steps include testing with trusted experts, obtaining feedback,

and developing and refining tutorials until the results of workers match those of

predefined experts.

In [74], the authors discuss Tourist Spot Recommender Systems (TSRS) and

the possibility of enriching their recommended locations by providing extra fea-

tures that will benefit users who are requesting information from the service.

Earlier research in TSRS does not focus on conditions that should be updated in

real time. The authors suggest gathering updated contextual information about

any location from users who are currently in that location for improving the qual-

ity of recommendations. This information enrichment can include safety alerts,

traffic and weather conditions, crowdedness, construction in progress, etc. Their

designed system consists of four parts. The first part is the mobile client which

sends the current user location to the TSRS either manually or by GPS and gets

42

back a list of recommended spots with the extra information. The second part

is the TSRS that takes the location of the user and gets a list of recommended

spots that are nearest to it. It sends this list to the third part of the system, the

crowdsourcing platform, which in turn sends an aggregated result to the user.

The fourth part of the system is the crowd resources which is the set of users

registered on the system. The authors implemented a prototype of the system

with client-server architecture. The crowdsourcing platform was simulated using

Android apps. In their experiments, the crowd resource was composed of 76 reg-

istered users who were randomly divided into smaller sets with each set located in

a popular tourist spot in Delhi. For every user request, responses from volunteers

were stored in the platform database. At the end of their experiments, feedback

from 29 users of the service was recorded. 19 users labeled the service useful, 6

labeled it very useful, 3 labeled it somewhat useful, and only 1 user considered it

not useful.

2.6 Quality Assurance in Crowdsourcing Sys-

tems

The benefits of crowdsourcing are realized when a large number of workers par-

ticipate in solving small tasks. However, these contributing workers may try

to cheat the system especially in the presence of monetary reward or they may

make mistakes due to personal bias or different experience levels with the subject

matter. One approach to detect such workers would be to manually verify the

output quality. The only problem is that manually verifying the quality of the

submitted results is hard and negates many of the advantages of crowdsourcing.

Verifying every submitted solution has the same cost and time as performing the

43

task itself. We need algorithms that will accurately estimate the quality of the

submitted work for maximum benefit.

There is a plethora of quality assurance (QA) techniques designed for crowd-

sourcing systems that can be categorized along two main dimensions: design-time

and runtime approaches [75]. Worker selection based on pre-specified reputation

levels or pre-specified credentials are two examples of design-time approaches.

The authors in [76] estimate reputations of experts based on link structure and

periodically updated trust relations that capture any changes in preferences and

maintain skill evolvement. In some cases, domain experts check the contribu-

tion quality. The Wikipedia encyclopedia employs an expert review approach for

quality control [14].

Dawid and Skene use the expectation maximization algorithm to estimate

both the quality of the workers and the correct answers for each task [77]. The

authors in [78] argue that the inherent value of a worker cannot be measured from

the error rate alone. Workers may be careful to avoid error but their solutions

might suffer from bias, the effects of which can be reversed. They expand on

the work of Dawid and Skene and present an algorithm that separates this bias

of potential high-quality workers from other unrecoverable errors of low-quality

workers. Their approach leads to better treatment of workers and allows for

better quality estimation.

Amazon’s Mechanical Turk is an example of a crowdsourcing marketplace

that incorporates several QA methods such as reputation systems, majority con-

sensus, contributor evaluation [79, 80], and ground truth where a small number

of tasks with an available gold standard are mixed in with other tasks so as to

identify malicious workers who are deliberately attempting to sabotage the sys-

tem [79, 81]. Requesters on MTurk can also design defensive tasks which are

44

more difficult to cheat on than properly solve. Another QA method it provides is

based on redundancy where each task is performed by several workers and high-

quality solutions are identified based on some voting scheme. The redundancy

QA approach is also incorporated in the famous reCAPTCHA protection service

[82]. In case of any discrepancy among received answers, a word is sent to several

other workers and the answer that has the highest votes is selected.

Two popular and somewhat similar approaches to QA are output agreement

and input agreement [83]. They are commonly used for task labelling. In output

agreement, two or more randomly chosen workers are given the same input and

are required to produce output based on this input. Matching output is selected

as the winning label. Since workers are chosen randomly, the quality of the output

is verified considering that it is based on agreement from two largely independent

sources. One very popular example of a game that uses this approach is the

ESP game [84]. In input agreement, the two or more randomly selected workers

are given input. The workers do not know if they are given the same or different

input. They provide labels and can observe other player’s labels as well. Based on

all labels, the workers decide if they have the same input or not. If they correctly

determine whether or not they have the same input, their labels are taken into

consideration. Quality of labels is maintained by discouraging random guesses via

strong penalties. A popular example is another Game With A Purpose (GWAP)

which is TagATune [85]. Similar to output agreement, another QA approach

is the multilevel review. However, unlike in output agreement, the work is not

done in parallel. A group of workers first perform a task. Then a different group

assesses its quality. An example of this approach is the Find-Fix-Verify crowd

programming pattern proposed by the authors in [86].

45

2.7 Modeling Cognitive Biases in Crowdsourc-

ing Systems

The Dunning-Kruger effect is one of the many cognitive biases that human beings

tend to fall prey to. Eric Bonabeau points out to several human biases that can be

observed while making decisions. Examples of biases while generating solutions

are the self-serving bias where humans tend to search for information that con-

firms their existing assumptions, anchoring where they tend to heavily rely on one

piece of information, and stimulation bias where they only recognize a solution

when they see it. Examples of biases in the evaluation phase of potential solu-

tions are pattern obsession where humans realize patterns that do not exist, and

framing where evaluation is influenced by how the solution is presented [87]. In

[24], the authors discuss how the phenomenon of cognitive bias has been explored

in psychology since the mid-seventies, but has only recently gained attention in

the area of information systems. According to them, interest in cognitive bias

research is increasing in information systems considering how it revolves around

human decision-making. They define cognitive biases in humans as systematic

errors in the decision making process that result in suboptimal outcomes. They

identify 120 cognitive biases in their analysis which was larger than the number

of relevant papers at the time (84). They categorize the biases into perception

(e.g. negativity bias), pattern recognition (e.g. confirmation bias), memory (e.g.

reference point dependency), decision (e.g. cognitive dissonance), action-oriented

(e.g. overconfidence), stability (e.g. anchoring), social (e.g. cultural bias), and

interest (e.g. self-justification).

In [88], the authors discuss a main limitation in crowdsourcing systems nowa-

days where inadequate representation of the uncertainty resulting from human

46

factors results in suboptimal system design. The human factors that they discuss

are mainly related to the availability of workers (workers may leave unexpect-

edly), the wage that they may request at any point in time, and their varying

skill levels. They propose SmartCrowd, an interactive crowdsourcing system

that takes into account the dynamic and uncertain nature of crowdsourcing en-

vironments. The authors in [89] discuss how human computation is susceptible

to systematic biases that cannot be corrected by simply aggregating multiple

answers. They study the case of Amazon’s Mechanical Turk. The difference be-

tween an error and a bias is that the latter can be mistaken for the true value

and is therefore harder to detect and cannot be treated similarly. Their exam-

ples include the anchoring effect, common beliefs, and recurring answer bias, all

of which cannot be eliminated by simply increasing worker count or any of the

common methods for quality control. To this end, they propose the Peer Truth

Serum, a game-theoretic incentive scheme that evaluates how scaling bonuses can

overcome biases in worker answers resulting in significant improvement in system

accuracy. Eickhoff studies the effect of several cognitive biases in document rel-

evance assessment tasks in [90]. He demonstrates how the literature commonly

assumes that noisy label submissions are due to three main reasons: unethical

spammers, unqualified workers, and malicious workers. There is no consideration

to cognitive biases that are systematic deviation patterns from the ground truth.

The first step in countering the effects of such biases in crowdsourcing systems is

to recognize them. He demonstrates how common QA methods are not enough

to overcome this source of noise. To prove the effect of cognitive biases on a

system, he studies the ambiguity effect which occurs when missing information

in a question makes it appear more difficult and ultimately less desirable to solve.

The missing information was chosen so as to have very little relevance with the

47

document to be labelled. He showed that even when the missing information

was not informative, it negatively affected workers’ outcome. He then designed a

two-phase experiment. In the first phase, workers are presented with information

not relevant to the document, and then at a later stage, relevant information

becomes available. This is known as the anchoring effect and he shows how it

considerably reduced label accuracy. To study the bandwagon effect in another

experiment, he discloses to the workers the prior vote statistics resulting in a

drop in accuracy. Finally, he looks into the decoy effect, which is a very popular

effect in the advertisement discipline where a worker’s preference between two

options changes with the introduction of a third option (the decoy). He shows

the high risk of unintentionally suffering from this effect when several options are

provided for relative ranking resulting in degraded label quality.

Gadiraju et al. present a similar work to ours in [91]. They demonstrate

how to use worker self-assessments to derive competence levels that can be used

along with their performance in the pre-screening phase to achieve better results

in crowdsourcing micro-tasks. They start off by describing the Dunning-Kruger

effect and investigating through several studies whether it can be observed in

paid micro-task crowdsourcing systems which are different in many ways when

compared to the controlled experiments performed in the original study by Dun-

ning and Kruger. In their first experiment, they wanted to study crowd workers’

self-assessment. They deployed eight tasks on CrowdFlower with varying diffi-

culty levels. After solving the tasks, workers are asked questions related to their

perceived test scores and those of others as well as their perceived abilities. They

observe that across all tasks of varying difficulty levels, least-competent work-

ers were the ones to significantly overestimate their abilities and scores whereas

competent workers underestimate their abilities. In addition, competent work-

48

ers overestimate other workers’ performances more than incompetent workers do.

In another experiment, the authors wanted to study the effects of competence

on a crowdsourcing task such as tagging images. They were able to show that

competent workers outperformed least-competent ones by providing better qual-

ity tags that are more diverse. Based on the results from this experiment, they

suggested to employ worker self-assessments in the pre-screening phase for better

worker selection. They performed another experiment where one group of workers

was pre-screened in the traditional manner that considers only their performance

whereas another group was pre-screened based on both worker performance and

self-assessment. The crowdsourcing task for both groups was sentiment analy-

sis. Their results show that including self-assessment in the pre-screening phase

provides a better representation of actual worker competence which results in im-

proved output quality. This work represents a starting point for research related

to worker self-assessment in crowdsourcing tasks.

2.8 Comparative Analysis

Different methods have been used to classify mobile apps into malware and benign

ones. In [92] the authors propose Drebin which extracts permissions, APIs and IP

addresses and uses SVM to detect malware. However, due to its large number of

extracted features (545,000), the classifier needs a lot of time to be built. Another

classifier, DroidMat, uses kNN instead [93]. The problem with this classifier is

that its recall value is significantly lower than its precision value. DroidAPIMiner

in [94] uses several classifiers based on API features. Its accuracy is high but this

might be due to the fact that the testing data used has far more benign than

malicious apps. Keeping efficiency in mind, the authors in [95] use an SVM-

49

based approach to detect Android malware. They use similarity scores (based

on suspicious API calls) between benign and malicious apps as features in their

feature vector. They additionally train their classifier based on risky permission

requests. Using only dangerous API calls, their classifier’s accuracy reached 81%

and increased to 86% when adding risky permission requests to the feature vector.

Compared to other works however, the accuracy is not very good.

In [96], the authors propose a system to detect Android malware using static

analysis, but they focus on a type of attack known as SMiShing where SMS or

MMS messages are sent including a URL that prompts users to install a mali-

cious app through some form of social engineering. The work is limited to one

type of attack and one type of analysis (static). In their system, a decision is

made after parsing messages, comparing against an ID/URL blacklist, collecting

the APK, comparing against known APK black and whitelists, analyzing APKs,

and comparing against a database of signatures. They perform experiments on

several APK families and reach 100% detection. In [97], the authors argue that

conventional machine learning classifiers are prone to countermeasures by attack-

ers who are aware of their use. A classifier can be reverse-engineered and training

data can be polluted with well-crafted data. To this end, they propose the self-

adaptive learning enhancing system, KuafuDet, which includes an offline and an

online training phase, that when acting together, improve the detection of adver-

sarial attackers. They evaluated three types of attackers with varying levels of

knowledge and influence on the classifiers’ (SVM, RF, and kNN) training data.

They show that KuafuDet reduces false negatives and boosts accuracy by 15%

with respect to each of the classifiers.

In many cases, decompiling an APK file does not give any useful information.

To solve this problem, the authors in [98] propose a hybrid malware detecting

50

scheme for Android apps. If an app can be decompiled, its API and required

permissions can be extracted through static analysis to create a feature vector

of 3413 dimensions. Otherwise, the app’s system calls will be extracted through

dynamic analysis. In static analysis, SVM gave the best results with an accuracy

of 99.28%. As for dynamic analysis, Näıve Bayes gave the best results with an

accuracy of 90%. The advantage of their approach is that a hybrid scheme of

detecting malware works whether or not an app can be decompiled. However,

the FPR rate in the dynamic scheme was relatively high (10.85%). The authors

in [99] also employ static and dynamic analyses to extract 202 features from

every app. Required permissions and sensitive APIs are extracted through static

analysis while dynamic behavior is extracted through dynamic analysis. They

used a deep learning approach for malware detection, which resulted in 96.5%

accuracy and was shown to be better than other machine learning models such

as SVM and Näıve Bayes.

In [100], the authors propose DroidClone which exposes code clones to detect

Android malware. Their work is extended to detect malware based on Android

native code clones as well. They use control flow with patterns to reduce obfus-

cation effects. They compare their work against NiCad [101] which works at the

Java source code level and DroidSim [102] which uses component-based control

flow graphs of Android APIs to detect code reuse in malware variants. The accu-

racy of NiCad, DroidSim, and DroidClone was found to be 83.11%, 89.62%, and

97.85% respectively. Even though the accuracy of DroidClone is superior when

compared to other clone detection techniques, the approach is quite complex.

Machine learning was used in [103] to detect mobile malware by classifying

images instead of apps. As a first step, every APK file is converted to four selected

image formats (Greyscale, RGB, CMYK, and HSL) based on its byte stream. The

51

GIST feature is then extracted for each image format. Three machine learning

algorithms were used (DT, RF, and kNN). RF with the Greyscale format gave

the best results with 91% accuracy in detecting malware.

A major drawback in many of the mentioned approaches has to do with

decompiling every app’s APK file in order to extract the required permissions

and generate Smali code for feature vectors. Another drawback is testing every

app centrally, which is complicated and not scalable. Finally, all of the stated

methods classify apps based on maliciousness and do not study utility. In our

work, crowdsourcing was the chosen method to classify apps. Rather than using

machine intelligence to classify apps as malicious or not, our system uses the

intelligence of the crowd to reach the ground truth regarding the status of an app

(high utility, low utility, suspicious, etc.). This detailed app rating along with

direct observation from users is what sets our system apart from other classi-

fiers and results in very high classification accuracy of apps as the discrimination

threshold increases. Game theory was introduced to model the interaction be-

tween our system and apps on user devices. The decision of whether or not to

use crowdsourcing which is at the core of our system is based on maximizing

our system’s profit according to the devised game model.

In terms of quality assurance, most QA methods attempted to correctly iden-

tify worker characteristics for better solution quality. Even in the absence of

the ground truth, these mechanisms can be used to estimate the competence of

workers to a very good degree. We develop a novel approach to detect compe-

tence based on reported worker confidence. This approach complements the work

in the literature on quality control via proper user identification. In a sense, it

can be categorized as a QA method that can be applied with other QA methods

(ground truth seeding, contributor evaluation, etc.) for a better representation of

52

user abilities that takes into consideration incentives, technical skills, experience

with a topic, along with any personal and cognitive biases.

Finally, our work in this dissertation complements that of Gadiraju et al. In

terms of detecting worker competence through self-assessment, we show similar

results. In addition to the common pre-screening method, we also provide a for-

mal model of this cognitive bias which allows us to study several self-assessment-

related aggregation techniques. Correctly estimating workers’ actual competence

levels is one of the several methods to perform quality control in crowdsourcing

systems as described before. The problem is that most of these methods do not

focus on the human factor in crowdsourcing, and those that do, focus on trying to

detect personal bias patterns and reversing their effects on the overall system out-

put. The number of biases, however, is not small, and there is definitely plenty

of room for research in this area. In the specific case of the Dunning-Kruger

psychological bias, our work and that of Gadiraju et al. provide a starting point.

53

Chapter 3

Crowdsourced Game-Theoretic

Rating System

We begin this section with a high-level overview of our system while introducing

the general idea behind our composite app rating mechanism. We then proceed to

formally define the two rating components and describe the different experiments

and simulations that we performed to examine their benefits when compared to

a traditional app rating system.

Our system consists of several components as illustrated in Figure 3.1.

• CrowdApp is installed on users’ devices to collect objective measures and

user input.

• The Utility Score Engine manages extracted features from devices such as

crash and pop-up frequencies to compute a utility score for every app.

• The Behavior Score Engine tracks events issued from users’ devices. An

event is defined as a suspicious incident that takes place on a device while a

user is using one of his installed apps. Example events are calls to unknown

54

phone numbers, sudden increase in CPU usage or bandwidth, etc. Both

normal and malicious apps can issue events.

• The User Status Engine separates the crowd into “honest” users and “dis-

honest” ones and then further sorts the honest ones into “authoritative”

and “unreliable”. The importance of this last step is to guarantee that

the subjective input provided to our system is coming from users that are

well aware of how their devices operate and how their installed apps should

function. Such an input is therefore considered accurate.

• The App Reputation Engine continuously updates app reputations.

• The Overall Score Engine presents for every app a detailed score or rating

that is composed of two parts: A utility score and a behavior score. The

two scores are offered separately since they represent different views of the

ratings, and so merging them will hide the insight provided.

The steps of the app rating process are detailed below:

1. CrowdApp extracts features and monitors events issued by apps on all user

devices. These datasets are continuously updated and sent to the server

that manages incoming data from user devices.

2. The Utility Score Engine obtains a copy of the extracted features and uses

it to compute a utility score for all user-installed apps. The Behavior Score

Engine obtains a copy of the recorded events and uses it to compute a

behavior score for a portion of user-installed apps.

3. The Behavior Score Engine refers to the User Status Engine and the App

Reputation Engine for fresh copies of user and app reputations that will

55

Figure 3.1: System overview showing the crowd, CrowdApp on their devices, and
the different engines on the server side

56

be needed when querying users and updating app reputations. When this

engine updates the status of an app, for example by flagging it, the reputa-

tions of this app and of the users whose feedback was used in the querying

process, are both updated.

4. Utility and Behavior Score Engines send their lists of updated scores to the

Overall Score Engine, which will prepare a detailed score for every user-

installed app.

5. Upon request, the Overall Score Engine sends a copy of the updated detailed

scores to a user via CrowdApp.

CrowdApp records the events issued from every app on all devices and sends

this information to the server. When the events counter of an app exceeds its

threshold, a game (in a game-theoretic sense) is played between our system and

the app that resulted in the irregularity. Our system considers the app’s repu-

tation as well as the overall expertise of the crowd. Based on these values, it

decides whether or not to refer to the crowd for their subjective input. Based on

the input from the crowd, the system will categorize the app as malicious or nor-

mal. This, in turn, will result in updating the users’ categorization which affects

the overall crowd expertise. It will also result in updating the app’s reputation.

If the app is normal, its reputation is slightly improved. If it is malicious, its

reputation is decreased.

3.1 Methodology

As shown in Figure 3.2, the overall rating of an app is a combination of two

scores. The first is a utility score that measures the annoyance level versus the

57

Figure 3.2: App rating process describing how the overall rating of an app is
based on utility and behavior scores

utility of an installed app. This score is computed for all apps installed on user

devices and is constantly updated. The second is a behavior score that provides

a measure of the maliciousness/suspiciousness of an app. Depending on several

factors, most important of which being the average rate of events issued by an

app, this score is computed. This means that the behavior score is not necessarily

computed for all apps. An app that issues a low number of events will only have

its utility score in its final rating.

3.1.1 Utility Score Computation

The utility score of any app will be based on a set of non-private data that

is collected transparently from users’ devices. For every user, information is

recorded for every app installed on the device. The data collected is: (1) the

install period which is the time an app remains on a user’s device, (2) the usage

time of the app, (3) the number of times an app was opened, (4) its crash record,

and (5) the frequency of pop-ups it generates. To collect these records, no explicit

participation from the user is required. Nevertheless, in a realistic setup, all

58

information must be obtained with the users’ consent.

Install Period

This is the amount of time that a user keeps an application installed before

removing it. The number of installs that is usually shown on the market does

not specify how many times the app is instantly removed from the device. If one

million users download an app and nearly half of them remove it after a couple

of minutes, what is interesting to us is not the one million downloads, but the

average install time on the device. In this example, the app clearly should have

a low rating; however, seeing that one million users have downloaded it might

give a wrong impression. In our scheme, we assume that any app which lasts on

a device for more than a month is generally satisfying. Apps that are uninstalled

after periods of less than a month are generally assumed to be of low quality.

The utility score of these apps is directly proportional to the install period.

Average Usage Time

This feature monitors the time that an app remains open on a device. Same

as before, if an app has one million downloads as shown on the market, but on

average, the amount of time that it is opened by users is less than a couple of

minutes per week, this means that the app, even though it is popular, has a

low utility. Of course, the usage time depends on the app itself. The messaging

app WhatsApp, for example, is opened several times per day; however, a trip

advisor app is probably opened once or a few times per year when the user is

planning a trip. This feature alone does not give us clear information regarding

the usability of the app, but when combined with other features, it is very useful

in determining the usability of the app and it helps in determining the app’s final

59

score. The utility score is directly proportional to the average usage time.

Opening Frequency

This feature records the number of times that a user opens an app. In some

cases, a user might open an app very frequently and only use it for few seconds

each time. Instant messaging apps are an example. The utility score is directly

proportional to this feature.

Crash Records

This feature stores the number of times that an app is force-closed or crashes.

This is a clear sign that an app is not reliable and is disruptive to the user. The

utility score is inversely proportional to the number of times an app crashes or is

force-closed.

Pop-Up Frequency

The frequency of pop ups in an app affects its overall score. An app that features

an ad popping up every couple of minutes is generally annoying. And the higher

the frequency of the pop ups, the more likely a user will eventually stop using

the app. The utility score is inversely proportional to the frequency of pop ups.

Of course, sometimes pop ups within an app are legitimate, for example, a pop

up that asks the user whether or not he really wants to delete something or exit

from the app. It is crucial to differentiate between legitimate pop ups and ads.

The former should not reduce an app’s utility score.

60

Rating Algorithm

After gathering the data from the devices, the recorded values (RV) are normal-

ized to numbers between 1 and 5 which is the typical app rating range.

Let UL be the largest number in the set of values and let US be the smallest

number in the set of values, then the normalized value is defined as:

RV =
(5 − 1)× (OldValue−US)

(UL −US)
+ 1 (3.1)

The utility score is defined as:

US = a×UT + b× IP + c×OF+ d× CF+ e× PF (3.2)

Where UT , IP, OF, CF, and PF stand for normalized usage time, install

period, opening frequency, crash frequency, and pop-up frequency, respectively.

The coefficients a, b, c, d, and e are scaling factors, which are determined using

data from the most active users. The most active users are those who rank in

the top 25% in terms of overall activity rate. We calculate the optimal values of

the feature weights that will result in the highest correlation between CrowdApp

utility scores and Google Play scores, by using the least squares method to solve

the over-determined system with N equations and five unknowns, where N is the

number of different apps of the most active users.

3.1.2 Behavior Score Computation

In addition to the utility measure indicated by an apps’ utility score, our system

also computes a behavior score that reflects the level of suspiciousness of apps. A

suspicious app is defined as one that results in specific events that might be affil-

61

iated with malicious behavior. CrowdApp is constantly monitoring these events

and reporting back to the server as shown in Figure 3.1. Here, average values

that indicate satisfaction levels are of no interest. What matters is suspicious

behavior that indicates malicious implementations.

Some of the recorded events by CrowdApp are:

• Calls and text messages made to phone numbers that are not stored in the

address book

• Unidentified increase in the average CPU and RAM usage

• Unidentified increase in bytes of data received by and transmitted from the

device

• The screen status at the time of feature collection

Examples of events that are instantly recorded are unknown calls or unknown

text messages while the screen is off. Such a behavior is suspicious. Once it

happens, it is recorded by CrowdApp with a timestamp. On the other hand,

bytes sent and received while the screen is off, are not as indicative of malicious

behavior. For example, PopcornTime is an app where users can stream or down-

load movies and TV shows. The device can be in sleep mode while a movie is

being downloaded. But this does not mean that all apps that send or receive a

significant number of bytes have the consent of the user.

Records of events with timestamps are stored per app. Unlike the utility

score case where features are continuously updated and sent only periodically or

upon request to the server, in the behavior score computation, events are sent to

the server immediately. Every user-installed app will have two values stored on

the server, an Event Counter which gets incremented every time an app issues

62

an event on any user device, and an Event Threshold which gets updated after

every interaction between our system and the app. When the Event Counter of

an app exceeds its respective Event Threshold, an alarm is fired and a game (in

a game-theoretic sense) is played between the system and the app that fired the

alarm.

Events issued are not indicative of an attack. Normal apps might also issue

events and that does not mean they are “attacking” the system. Hence, Event

Counters and Event Thresholds are not used by our system to decide if an app

is normal or malicious. They are used to decide whether or not to play the game

against the app. If a game is played, this means that events issued by the app in

question had to be many, but this app can be normal or malicious with a certain

belief value that is reflected as an app reputation.

The Behavior Score Engine gets the app’s reputation from the App Reputation

Engine. If the app has a very high reputation, the system does not defend against

it. It also raises the event threshold of this app slightly since it assumes that this

number of events is considered normal behavior for this app. However, if the

reputation is not high, then the system’s best action will be to defend against the

app that fired the alarm. To do this, it needs to query users. The Behavior Score

Engine gets the list of users whose devices have issued events for this specific

app. It then gets the status of these users from the User Status Engine. From

this data, it can then choose from the set of users those that were categorized

as experts. However, it does not choose all experts, only a small fraction from

them. The Behavior Score Engine then contacts CrowdApp on the selected user

devices only. Based on the type of event, CrowdApp then queries the device’s

owner. The query is a Yes/No/I Don’t Know question. After getting replies back

from the users, CrowdApp sends them to the server. Based on these replies, the

63

Behavior Score Engine will determine whether or not this large number of events

was in fact indicative of malicious behavior. Accordingly, the status of the app

is set, its reputation is updated, and the status of the users who were queried is

also updated.

In terms of the behavior score, there are three possible outcomes: (1) An

app that never issues enough events for it to fire an alarm and will therefore not

have a behavior score, (2) an app that issues enough events and fires an alarm,

however, when choosing the number of users to query with the requirement that

these users’ devices issued events for this particular app, this number turns out

to be small. For user replies to be accurate and for us to consider that the system

is based on crowdsourcing, we require a statistically significant number of users

to query in every game round. This app will also not have a behavior score but

is classified differently than the first category, and (3) an app that issues a lot of

events, fires an alarm, and has a statistically significant number of devices that

have issued these events. It will have a behavior score that clearly indicates its

maliciousness level.

Game Model

In our game model, the players are our system (SYS) and an app (APP) that can

belong to one of two types, normal or malicious. Our system’s goal is to detect

malicious apps and blacklist them so as to ensure accurate ratings throughout

the platform. Since the system is unaware of the type of app it is interacting

with in every round, our game is one of incomplete information where players do

not know some information about the other players such as their type, strategies,

payoffs, or preferences. The game is defined as follows:

• Players - There are two players in every game round. Player 1 is SYS.

64

Player 2 is APP.

• States - There are two possible states for the players, normal (N) and ma-

licious (M). Player 1 can only be normal, while Player 2 can be both.

• Actions - The actions available to Player 1 are to defend by referring to

the crowd for their subjective input U, or not to defend by accepting the

app’s utility score as is U. The actions available to Player 2 are to attack

by being a malicious app A, or not to attack by being a normal app A.

• Signals - Player 1 has the same signal for both states of Player 2 (τ1(NM) =

τ1(NN) = N1). Player 2 has different signals for the same state of Player

1. Its issued signal when it is normal is (τ2(NN) = N2) and when it is

malicious is (τ2(NM) =M2).

• Beliefs - Given the reputation, Ω, of Player 2, when Player 1 receives the

signal N1, it believes with probability Ω that Player 2 is malicious and

probability (1 − Ω) that Player 2 is normal. On the other hand, when

Player 2 receives the signal N2, it believes with probability 0 that Player 1

is normal and Player 2 is malicious, and with probability 1 that Player 1 is

normal and Player 2 is normal. When Player 2 receives the signal M2, it

believes with probability 1 that Player 1 is normal and Player 2 is malicious,

and with probability 0 that Player 1 is normal and Player 2 is normal.

• Payoffs - They are updated in every game round depending on actions of

both players.

The game described is an example of a game with incomplete information

since the system does not know the type of app it is interacting with in every

round of the game. SYS will refer to the app’s reputation, Ω (that is initially

65

assumed to be neutral at 0.5), to decide whether or not to defend against this

app. If the reputation is lower than a threshold, SYS’s best action is to defend

and it does so by referring to a fraction of the crowd. If this fraction categorizes

the app as normal, SYS will improve the app’s reputation. If it categorizes the

app as malicious, SYS will decrease the reputation and eventually flag the app.

If Player 2 is a malicious app that is attacking and SYS is defending by refer-

ring to the users, then the profits of both players will depend on the probability

of correct user detection, β, which is related to the overall expertise of the crowd.

Assuming correct detection, the gain incurred by SYS (GM) represents the gain

from decreasing the reputation of a malicious app and the loss incurred by the

malicious app (LA) is the loss from having its reputation decreased. Assuming

incorrect detection, the loss incurred by SYS (LM) is the loss from increasing the

reputation of a malicious app and the gain incurred by the malicious app (GA)

is the gain from having its reputation increased. Both players incur a cost, one

for defending (CD) and one for attacking (CA).

If Player 2 is a malicious app that is attacking and SYS is not defending by

referring to the users, then SYS will incur a small loss (`m). Since the main goal

behind playing the game is flagging suspicious apps, then any round against a

malicious app that does not result in decreasing the reputation of the app will

result in a loss to the system. The value of this loss will vary depending on

whether the app’s reputation remains unchanged or it is actually increased. In

this case, the reputation remained the same when it should have decreased, so

the loss incurred by SYS is minor (`m 6 LM). On the other hand, the malicious

app will gain since its reputation remained the same when ideally it should have

decreased. The gain (ga) is less than the gain of a malicious app when its

reputation increases instead of being decreased (ga 6 GA). Since SYS did not

66

Figure 3.3: Payoff matrix showing the gains, losses, and costs of both players for
each of their actions

defend, it has no costs. The attacking app suffers the attacking cost (CA).

If Player 2 is a normal app that is not attacking and SYS is defending, then the

profits of both players will depend on the probability of correct user detection, β,

which is related to the overall crowd expertise. Assuming correct detection, the

gains incurred by SYS (GN) and the app (GA) represent the gains from increasing

the reputation of a normal app. Assuming incorrect detection, the losses incurred

by SYS (LN) and the app (LA) represent the losses from decreasing the reputation

of a normal app. SYS also suffers the cost of defending (CD).

If Player 2 is a normal app that is not attacking and SYS is not defending,

both players will incur small gains. Since SYS did not defend, its belief of the

normal app is that it is in fact normal (the normal app already has a high enough

reputation). By keeping the high reputation as is, both players gain. The gains

incurred here are smaller than those incurred when SYS increases the reputation

of a normal app (gn 6 GN and ga 6 GA). The payoff matrix is shown in

Figure 3.3.

Regardless of its type, an app will gain when its reputation is increased or

remains unchanged. When an app attacks, its cost must be lower than its gain

when its reputation increases, otherwise it will have no incentive to attack.

67

When SYS decreases the reputation of a malicious app, it gains GM. However,

the value it gains is significantly smaller than the value that a malicious app gains

when its reputation is wrongfully increased. This is because SYS requires several

instances of a reputation change to benefit as much as one app benefits from an

increase in reputation (GM 6 GA). Similarly, when SYS increases the reputation

of a normal app, it gains GN which has a smaller value than what a normal app

gains when its reputation is increased (GN 6 GA). It is worth noting that SYS’s

gain when decreasing the reputation of a malicious app is slightly higher than its

gain when increasing the reputation of a normal app (GN 6 GM). This is because

SYS’s main aim is to flag malicious apps, so more weight is given to identifying

malicious rather than normal apps. When SYS defends, its cost must be lower

than its gain when it decreases the reputation of a malicious app, otherwise it

will have no incentive to defend.

Best Response Analysis

Defending is SYS’s best response when its expected payoff is higher than that of

not defending. The expected payoffs of SYS are shown in Figure 3.4. Setting the

upper value higher than the lower value results in a lower limit on the belief as

illustrated in equation 3.3. The value of this lower limit will be defined as the

Reputation Threshold based on which SYS forms its decision. When SYS’s belief

of an app being malicious is high (app has low reputation), its best response is to

defend. When this belief is low (app has high reputation), its best response is not

to defend. The value of this belief above which SYS should defend depends on the

probability of correct user detection (crowd expertise) as shown in equation 3.3.

68

Figure 3.4: The expected payoffs of SYS when its actions are to defend or not to
defend

Ω >
(gn + LN + CD) − β(GN + LN)

(gn + LN + `m − LM) − β(GN + LN −GM − LM)
(3.3)

Reputation Updates

When an app fires an alarm, the Behavior Score Engine gets the app’s reputation

from the App Reputation Engine. If the app’s reputation is higher than the

computed Reputation Threshold, SYS does not defend against it. It also raises

the Event Threshold of this app slightly since it assumes that this number of

events is considered normal behavior for this app. However, if the reputation

is lower than the Reputation Threshold, then SYS’s best action is to defend

against this app by referring to the crowd. As such, the Behavior Score Engine

requests the list of users who have the app installed and whose devices have issued

events for this app. Also, it gets the status of these users from the User Status

Engine. Then, it can choose from the set of users those that were categorized

as authoritative by SYS. However, it only chooses a small random fraction of

these users. The size of the chosen fraction depends on how long CrowdApp

has been installed on devices. At the beginning, the information available to

69

SYS regarding the status of users is still not very accurate and so the larger the

fraction of users to query, the more accurate the joint replies. After a while,

the user status information becomes more accurate, which allows SYS to query

a smaller number of users most of which are authoritative with high confidence.

The Behavior Score Engine then informs the admin to contact CrowdApp on the

selected user devices only. Based on the type of event, CrowdApp queries the

device’s owner. The query is a “Yes/No/I don’t know” question. For example,

if the issued events are related to a sudden increase in bytes received by the

device, CrowdApp asks the user whether or not she is aware that this app is

consuming bandwidth. After getting replies from the crowd, CrowdApp sends

them to the server. Based on these replies, SYS determines whether the selected

app is malicious or normal based on an aggregated vote. If the resulting vote

agrees that the app is suspicious, it is flagged. Otherwise, it is classified as

normal. If an app is flagged, its reputation is reduced by a ratio equal to the

difference in replies (Users classifying app as suspicious - Users classifying app as

normal) divided by the total number of queried users. If an app is classified as

normal, its reputation is increased by that same ratio and its Event Threshold is

increased by a product equal to this ratio plus one.

Accordingly, the reputations of both the queried users and the app are up-

dated and sent to the User Status and App Reputation Engines, respectively.

Reputations of users whose replies agree with the aggregated vote will increase,

whereas reputations of users whose replies don’t agree with the aggregated vote

will decrease.

70

Symbol Description
US(i,j) Utility score of app i in round j
BS(i) Behavior score of app i
γ1(i) Binary value for 1st game condition
γ2(i) Binary value for 2nd game condition
γ3(i) Binary value for 3rd game condition
ET Base value of Event Threshold
ET(i,j) Event Threshold of app i in round j
E(i) Events issued from app i
R(i,j) Reputation of app i in round j
Ω(i) Belief of maliciousness of app i
β(j) Probability of correct user detection in round j
UQ(i) Users available to query regarding app i
CSmin Minimum crowd size required to query
ctrN Number of replies indicating normal app behavior
ctrM Number of replies indicating malicious app behavior
U Total number of users with CrowdApp
Ψ Fraction of malicious apps
δM Event rate of malicious apps
δN Event rate of normal apps
∆(i) Devices with extracted features associated with app i

Table 3.1: Variables used in mathematical model

3.2 Mathematical Model

Three conditions are defined for an app to be subjectively tested by SYS:

• The app issues a number of events larger than its Event Threshold value.

• The belief of maliciousness of the app is larger than the threshold in equa-

tion 3.3.

• The number of users available to be queried by SYS is larger than the min-

imum required number of users for the replies to be statistically significant.

Table 3.1 shows all the variables used in our proposed mathematical model

along with a description of each term.

71

Equation 3.4 defines the minimum allowed number of users that are provid-

ing their subjective input for these replies to be considered statistically reliable.

The minimum number is 10% of the total number of users who have CrowdApp

installed or 50 if the total number of users is small. If the number of users who

have replied to a query is less than CSmin, then the app will have no reputation.

CSmin = max
(
50, round(0.1×U)

)
(3.4)

Equation 3.5 represents the first condition for the app to be subjectively tested

by SYS which is related to the number of events issued by an app from the start

of the event timeout for event k, (tETO(k)), up until the current time, (tC).

γ1(i) =
⌊sgn(∑tC

t=tETO(k)
E(i) − ET (i,j)

)
+ 1

2

⌋
(3.5)

Equation 3.6 represents the second condition for the app to be subjectively

tested by SYS which is related to the app’s reputation versus the Reputation

Threshold.

γ2(i) =

⌊sgn(Ω(i) −
(

(gn+LN+CD)−β(j)×(GN+LN)

(gn+LN+`m−LM)−β(j)×(GN+LN−GM−LM)

))
+ 1

2

⌋
(3.6)

Equation 3.7 represents the third condition for the app to be subjectively

tested by SYS. It is related to the minimum available users to query which was

defined in equation 3.4.

72

γ3(i) =
⌊sgn(UQ(i) − CSmin) + 1

2

⌋
(3.7)

Equation 3.8 combines the three conditions (binary values) for an app to

be subjectively tested. If only one of these conditions is not satisfied, the new

reputation (behavior score) is the same as the previous value of the reputation.

Otherwise, the reputation is updated.

BS(i) = 1+ 4×
{
R(i,j−1) +

[
γ1(i) × γ2(i) × γ3(i) ×

(ctrN − ctrM
UQ(i)

)]}
(3.8)

Equation 3.9 defines the initial value of the Event Threshold that is common

for all apps. Equation 3.10 shows how this threshold is updated every time an

app is subjectively tested, in a manner similar to the update of an apps’ behavior

score.

ET =
(Ψ× δM) +

(
(1 − Ψ)× δN

)
100

(3.9)

ET (i,j) = ET (i,j−1) ×
(

1 +
[
γ1(i) × γ2(i) × γ3(i) ×

(ctrN − ctrM
UQ(i)

)])
(3.10)

Equations 3.11 and 3.12 describe the utility score computation. The format

is similar to the rating function in 3.2. The difference is that 3.11 defines an old

value of the utility score and 3.12 defines the new computed value.

73

US(i,j−1) = (0.246×UT (i,j−1)) + (0.239× IP(i,j−1)) + (0.362×OF(i,j−1))

+ (0.155× CF(i,j−1)) + (0.286× PF(i,j−1))

(3.11)

US(i,j) = (0.246×UT (i,j)) + (0.239× IP(i,j)) + (0.362×OF(i,j))

+ (0.155× CF(i,j)) + (0.286× PF(i,j))
(3.12)

Equation 3.13 shows how the previous and current values of the utility score

are combined. A higher weight is given to the score value that resulted from data

emanating from a larger number of devices since it is a better depiction of the

app’s utility. tR(j) is the time at the start of round j.

US(i,j) =

(
1 −

∑tC
t=tR(j)

∆(i)∑tC
t=tR(j−1)

∆(i)

)
×US(i,j−1)+

(∑tC
t=tR(j)

∆(i)∑tC
t=tR(j−1)

∆(i)

)
×US(i,j) (3.13)

3.3 Simulation Setup

We now describe the setups for both the utility score and the behavior score

computation. Validation of the utility score was carried out via our first imple-

mented design of CrowdApp (version 1.0), and the experiment was carried out

with four users. As for the behavior score, the design was validated via MATLAB

simulations as shown in the following sections. The adopted aggregation method

is a variant of plurality voting.

74

3.3.1 Utility Score Setup

To collect the required data, we implemented CrowdApp v1.0, which is a client

that runs on rooted Android devices. It has four services that are constantly

running in the background and collecting user data.

The first service calculates the install period for every user-installed app on

the device. When a user uninstalls an app from his device, the install period is

calculated. Once and if an app is uninstalled, all its records are sent to the server

and are deleted from local storage. The install periods for all apps are stored in

a file called “Period.txt” on the device.

The second service calculates the number of times an app is opened by the

user. A messaging app such as WhatsApp is typically opened several times during

the day. Another app such as Duolingo is opened several times a week. A constant

opening frequency might be a good sign of user satisfaction whereas a decrease

in frequency might suggest a decrease in satisfaction. In order to differentiate

between different types of apps that are used differently by users, one approach

would be to consider the fluctuation of the frequency rather than its absolute

value. The opening frequency per app is recorded for a long period of time up

until we reach a constant average over a predetermined timespan. For example,

WhatsApp’s opening frequency is recorded over an entire month during which

averages are taken over different timespans (one hour, one day, one week, etc.).

An app such as WhatsApp will have a constant average if the chosen timespan is

a day but a fluctuating one if it is an hour. The app is likely to be opened more

at noon than after midnight. Some apps on the other hand such as TripAdvisor

are opened several times per year when the user is planning a trip. Such apps

would have to be monitored for a longer period of time in order to determine

their average opening frequency. Consider the following scenario: A user installs

75

two new apps on his device. The first one is a Sudoku game and the other a

TripAdvisor app. The user plays Sudoku the first two days and then gets bored

and stops playing the game without uninstalling it from the device. He also uses

the TripAdvisor app to plan a trip. Throughout the year, he is no longer playing

the game and has no other trips to plan. The following year, he does not play

the game but plans two trips. In this case, we cannot deduce a lot of information

from the first year since both apps showed similar opening frequency. However,

the second year tells us that the TripAdvisor app is still being used and a proper

timespan to consider for an average value of its opening frequency is one year.

Whereas the game was only opened once at the beginning and throughout the

next couple of years, was left installed on the phone without being used.

The third service calculates the average usage time for every user-installed app

on the device and takes into consideration apps that are installed after the service

has started. This feature depends on the opening frequency of the app. With

time, the timespan to consider for computing an average usage time is defined

based on which the average value can be constantly updated. Upon initiating

our app on a user device and until the proper timespan for the app-under-test

is detected, the total usage time is logged with timestamps of when an app is

opened. The recorded usage times are stored in a file called “Usage.txt” on the

device.

The fourth service calculates the number of times an app crashes based on the

onCreate, onPause, onResume, and onDestroy events called by an activity. Apps

that crash or are forcefully closed by the user do not call the onDestroy method

after being created or resumed. On the other hand, apps that exit normally call

onDestroy. In order to intercept these methods, this service was implemented as

an Xposed module which is a framework for modules that can change the behavior

76

of the system and apps without modifying APKs. The created Xposed module

runs like any Android service but requires a rooted device. Upon initiating our

app and until detecting the proper timespan for an app-under-test, crash records

are stored in absolute value along with timestamps of the logged crash. When

a timespan is set, an average value can be used. The timespans for the average

opening frequency and average usage time do not necessarily have to be the

same as the timespan for crash records. For example, for WhatsApp it would

make sense to compute the average times it is opened by a user per day and the

average number of times it crashes per month. Again with crash/forceful closing,

all records are stored in a separate file called “Crash.txt” on the device.

The fifth service is also implemented as an Xposed module. It monitors the

onCreate of alert dialog boxes inside every installed app on the device. By keeping

track of opened dialog boxes for apps, the relative frequency of pop-ups per app

can be estimated. This feature also requires a separate timespan. For example,

WhatsApp’s pop-up frequency could be averaged over a week. The recorded

features from this service are stored in a file called “Popup.txt” on the device.

In order to detect the proper timespan for every feature, CrowdApp has to

monitor all other apps for a significant period of time. In order to get more

accurate results regarding the types of apps installed on each device, we need to

consider the change in app statistics over long periods of time. The recommended

period is one year. An app that is used once per year only is still considered a

satisfactory app as long as it is used at least once every year. Another upside of

having our client on several devices is that after monitoring an app on a portion

of devices and inferring its proper timespans, it can use these values on other

devices.

In Figure 3.5, we show a sample output from the two text files, “Usage.txt”

77

Figure 3.5: Usage.txt and Period.txt sample output

User User 1 User 2 User 3 User 4
Device Samsung

Galaxy S4
Samsung
Galaxy S3

Samsung
Galaxy S3

Samsung
Galaxy S3

OS version 4.4.2 4.3 4.3 4.1.2

Table 3.2: User devices

and “Period.txt”. In the first file, Usage.txt, every user-installed application is

shown and its usage time in milliseconds is recorded next to it. In the second file,

Period.txt, every application that was removed from the device is listed and the

time it remained on the device is shown next to it in minutes. The application

Mirror was uninstalled after only two minutes of being installed, Dialog after six,

and Click Counter Free after 17,380 minutes (about twelve days).

CrowdApp was installed on four rooted Android phones, with their specifica-

tions shown in Table 3.2.

78

Variable Description Base Value
T Total rounds in simulation 1440

TB Duration of one round in seconds 30
TNA Total number of apps 1000
FMA Fraction of malicious apps 0.25
MER Malicious event rate 50
NER Normal event rate 50
TNU Total number of users 200
AR Activity rate of users 13

APU Number of apps on user device 27
CE Crowd expertise 0.7

Table 3.3: Base values

The four users that installed CrowdApp were aware that it is a service that

will be running in the background at all times while collecting and logging data.

However, they were not told why this data was being collected so as not to affect

their usage patterns. The testing was carried out over a period of one week.

Behavior Score Setup

The Behavior Score Engine was simulated in MATLAB. The aim was to show

the performance of the engine in classifying apps and users in different scenarios.

These scenarios are defined by the inputs to every experiment. Table 3.3 lists the

different input variables that were varied in the experiments with base values for

every variable. Unless otherwise stated, base values were used.

Table 3.4 shows the Android app distribution up until 2016 [104]. A simi-

lar app distribution was adopted in our experiments. The malicious apps were

assigned disregarding the popularity of apps, meaning that any malicious app

had the same probability of belonging to any one of the seven app categories.

After randomly assigning apps to their respective download categories based on

the below percentages, the apps installed by users on their devices were assigned.

The choice of apps is not entirely random; it takes into account the popularity

79

Times downloaded Number of apps % of total app count
< 100 679, 887 35

100 − 1, 000 539, 731 28
1, 000 − 10, 000 386, 975 20

10, 000 − 100, 000 223, 739 12
100, 000 − 500, 000 61, 623 3

500, 000 − 1, 000, 000 12, 391 1
> 1, 000, 000 17, 139 1

Total 1, 921, 485 100

Table 3.4: Android download distribution

of the chosen apps. Apps from the category in row six are more likely to be

chosen than those from the category in row one. Popular apps are chosen more

frequently than others.

According to [105], the fraction of malicious Android apps currently in the

market is around 0.25. Accordingly, the base value of FMA was set to 0.25. The

base value of the timeout is 1,440. This means that simulations stop after iterating

for 1,440 rounds. Since the base value of a round is 30 seconds, every simulation

will represent 12 hours in real life. According to [106], U.S. smartphone users

accessed 26.7 apps per month in the fourth quarter of 2014. In our experiments,

this value is the App Count per User. The number of apps installed on devices

is then defined per user based on a normal distribution with a rounded mean of

27.

According to [107], in 2015, U.S. smartphone and tablet users used mobile

apps for around three hours and five minutes every day. This means that at any

time during the day, the probability of a user being active is
(3× 60 + 5

2460

)
×

100% ≈ 13%. So the base value of the Activity Rate was set to 13.

The process proceeds as a Time Block of 30 seconds whereby a user uses

his device according to a probability based on a normal distribution around the

Activity Rate. If a user is using his device in this time block, it is assumed that

80

on average, he will be using one app. A random app from his set of installed apps

is chosen. This app will then issue events according to a probability based on

the Malicious/Normal Event Rate. The Event Counters of apps are constantly

updated and at any point where the Event Counter of an app exceeds its personal

Event Threshold, a game is played. CrowdApp checks the reputation of the app

based on which it chooses its best action.

In all game rounds, profits of SYS, normal, and malicious apps are updated

based on actions chosen by players. The system converges once all malicious apps

are detected and flagged.

For different ranges of input values, two receiver operating characteristic

(ROC) curves are of interest, one for classifying apps and one for classifying

users. The ROC curve is a plot that shows the performance of a binary classifier

as its discrimination threshold is varied. It is a plot of the true positive rate

(TPR), also known as the sensitivity index, against the false positive rate (FPR),

which can be calculated as (1 - specificity), at different thresholds. ROC curves

are plotted to select optimal threshold values and discard sub-optimal ones. In

the case of apps, our population is the set of rated apps, i.e. category 3 in sub-

section 3.1.2. From the set of rated apps, the total number of normal apps is

Apps Total Negatives, and the total number of malicious apps is Apps Total Pos-

itives. In the case of users, the population is the set of users that were queried at

least once. From this set, the total number of authoritative users is Users Total

Positives, and the total number of unreliable users is Users Total Negatives.

An experiment proceeds as a Time Block of 30 seconds. In this block, a user

uses his device according to a probability based on a normal distribution around

the Activity Rate with the base value 13. If a user is using his device in a block,

we assume that on average, he will be using one app. A random app from his

81

set of installed apps is chosen. If the chosen app is normal, it will issue events

according to a probability based on the Normal Event Rate with base value 50. If

the chosen app is malicious, it will issue events according to a probability based

on the Malicious Event Rate with base value 50. The event counters of apps are

constantly updated and at any point where the event counter of an app exceeds

its personal event threshold, a game is played. The system checks the reputation

of the app based on which it chooses its best action. If the reputation is lower

than a computed Reputation Threshold, then SYS’s best response is to defend.

It will defend by referring to a fraction of the users. This fraction of users is

equal to the product of Fraction Users Query and the number of users who have

the app and whose devices issued events for this app. The fraction will be chosen

randomly from this subset. The variable Fraction Users Query depends on where

we are in the running experiment. It is equal to max(0.1,1-Counter/Timeout)

where Counter indicates in which iteration of the experiment we are and Timeout

is the total length of the experiment which is set at the beginning. This means

that when we first start the experiment, the Counter value is still very small,

so Fraction Users Query is large. As the experiment proceeds, this value keeps

on decreasing until it reaches its minimum value of 0.1. This is because at the

beginning of an experiment, the information available to our system regarding

that status of users is still not very accurate and so the larger the fraction of users

to query, the more accurate the joint replies. As the experiment proceeds, the

user status information becomes more and more accurate. This better accuracy

allows the system to query a smaller number of users most of which are experts

with high confidence.

Based on the replies from the chosen users, SYS determines whether the

selected app is malicious or normal. If more queried users agree that the app

82

is malicious, then it is flagged. Otherwise, it is classified as normal. If an app

is flagged, its reputation is reduced by a ratio equal to the difference in replies

(Users classifying app as malicious - Users classifying app as normal) divided by

the total number of queried users. If an app is classified as normal, its reputation

is increased by that same ratio. The event threshold of an app classified as normal

is also increased by a product equal to this ratio plus one.

Every app has an Event Timeout which is the time that an event issued by

the app continues to take place. For example, an event issued by app 230 might

last for one hour on all user devices whereas an event issued by app 10 might

last for an entire day. All users are queried about events that were issued on

their devices no longer than 30 seconds ago (assuming the chosen Time Block is

30 seconds). However, all user replies within an event’s timeout are aggregated

to get the result. The Event Timeout of apps is a random number between ten

minutes and one day.

Based on the Crowd Expertise value, experts are chosen randomly from the set

of all users. When assigning expertise values for users, we first start by assigning

a value of 50 for all users. This means that all their replies will be ‘correct’ 50%

of the times. In other words, their replies are always random. Then the chosen

experts are assigned an expertise value ranging between 90 and 100. In other

words, replies of randomly chosen experts will be ‘correct’ 90% to 100% of the

times and only rarely are they ‘incorrect’.

These assigned expertise values are the ‘actual’ expertise levels of the users

in any chosen scenario. In reality, our system does not have access to this in-

formation at first. It tries to learn the expertise of users with time. We define

Users Detected Expertise, to represent the detected expertise values by SYS. It

is constantly updated for every user.

83

Users Correct Detection Counter is the number of times every user’s reply

agrees with the crowd’s reply which we assume to be the ‘correct’ reply if we are

to trust the wisdom of the crowd. The value Users InCorrect Detection Counter,

on the other hand, is the number of times every user’s reply does not agree with

the crowd’s reply.

Every user’s rating of every app he has installed is computed taking into

consideration his expertise and the type of the app (normal/malicious). We span

all the users and for each one we get the list of apps downloaded on his device.

Then each app from this list is assigned a rating as given by the user. If an app is

normal (or malicious) and the user is an expert then there is a very high chance

that he will rate it as normal (or malicious). If, on the other hand, the user is a

non-expert meaning that his expertise is always 50, then it is equivalent to saying

that regardless of the type of app, his rating is always random. Here when we

say rating, we do not actually mean a rating between 1 and 5 that is provided by

users. It is only a term used in the simulations. It is actually a representation of

the correctness of the replies when the admin informs CrowdApp to query users

based on specific events.

Every round in our experiments is set to the defined Time Block variable.

For every user, we first check to see whether or not he is active and this is based

on his Activity Rate. If the user is in fact active then one of his apps is chosen

randomly as the app being used in this Time Block. Then we check whether or

not this chosen app issued any events in the Time Block and this is based on

the Event Rate of the app. If an event was issued by this app during this Time

Block on this user’s device then we increment Apps Event Counter per Round

matrix for this specific user and this app. This inner loop ends after spanning

all users once. After spanning all the users once, we get the total events per app

84

by adding the new values from Apps Event Counter per Round matrix to the

Apps Event Counter Total array. At the start of every round the Apps Event

Counter per Round matrix is reset to zero and recalculated. The Apps Event

Counter Average array stores the average Event Rate of every app which is the

Apps Event Counter Total array divided by the Apps Number Times Opened

array. Apps that fire an alarm are those whose average Event Rate is larger than

their Events Threshold. They are stored in the Apps Check array in order to be

verified separately.

All the apps that issued events at any point will have their value of Events

Boolean set to 1. In every round every app with this value set to 1 will have its

Events Timeout InProgress decreased by 30 which is the duration of the round.

The Events Timeout InProgress value is the value which is changed between the

rounds. Once this value reaches 0, the Events Boolean value of the app is set back

to zero, its entry in Users Events is cleared and its Events Timeout InProgress

is set back to its initial value of Events Timeout. Also, the app’s two values of

event counters (total and average), are set back to 0. Basically, for the app in

question, everything is set back to its initial value. Even if an app did not fire an

alarm in the round we are currently in, if its Events Boolean value is 1, then 30

seconds must be removed from its Events Timeout InProgress value.

For the apps stored in the Apps Check array, there are two cases to consider:

(1) In the first case, the app’s Events Timeout InProgress value is still greater

than 0 which means that replies from users with events in the last 30 seconds

still count and they have to be considered. So, these new users must be added

to the crowd, and this is done by calling the function Get Users with Events

which updates the Users Events matrix, after which the game is played by calling

the Game function, and (2) in the second case, the Events Timeout InProgress

85

value has reached 0 which means that the new replies from users with events

from the last 30 seconds do not count since this event’s timeout has ended. The

new users are not taken into consideration, and the previous value of the Users

Events matrix is used as an input in the Game function.

After going through the apps that fired an alarm in the current round and

getting the updated Apps and Users matrices, the expertise levels of all the

users are updated based on a normalized formula that takes into consideration

the answer that resulted from the crowd as well as the number of ‘correct’ and

‘incorrect’ replies by all users.

If an app hasn’t been rated before, or there was an attempt to rate it but the

number of users was less than the minimum crowd size, or if it is any number lower

than the Reputation Threshold, then the game will take place. Replies from all

users in Users Events are considered. These replies are used to determine Count

Normal and Count Malicious. For every app, the larger value between the two

will determine whether the app is normal or malicious. The crowd’s answer is

assumed correct. Individual replies from users are then compared against this

‘correct’ answer.

In addition to updating the reputations of the apps, the Events Threshold

values of the apps that were checked and found to be normal are increased by a

value that depends on Change which in turn depends on the difference between

the malicious and normal votes of the app in question. Also, depending on the

answer of every user, his Users Correct Detection Counter and Users InCorrect

Detection Counter values are updated. Finally, if the minimum crowd size is not

satisfied, an app’s reputation is set to X so as to differentiate between different

cases.

App reputations at the end of an experiment are divided into four categories:

86

• NaN - There were no events (or a small number of events) issued by the

app which means that it wasn’t subjectively tested. In this case, our system

will only return the utility score of this app.

• X - These are the apps that issued a significant number of events but

there weren’t enough users to query for a statistically significant result.

The minimum crowd size defined by our system is min
(
50, round(0.1 ×

TotalUserCount)
)
. This means that unless the number of users whose

devices issued events for this specific app is at least equal to 10% of the

total number of users (or 50 if the number of users its relatively small),

then the minimum crowd size requirement is not achieved. In this case, our

system will only return the utility score to users but will also notify them

of potential malicious behavior due to an unknown behavior score value.

• Reputation < 0.5 - Apps with a reputation below 0.5 are those that issued

enough events, fired an alarm, fulfilled the minimum crowd size requirement,

were behaviorally tested by our system, and were found to be malicious to

a certain extent.

• Reputation > 0.5 - Apps with a reputation above 0.5 are those that issued

enough events, fired an alarm, fulfilled the minimum crowd size requirement,

were behaviorally tested by our system, and were found to be normal to a

certain extent.

After classifying an app, the users whose replies agree with the combined

result will have their Correct Detection Counter incremented by 1 and those

whose replies do not agree with the combined result will have their InCorrect

Detection Counter incremented by 1. These counters are used by the system

when updating the expertise of queried users.

87

The value of β in Figure 3.3 is defined as the probability of correct user

detection. In our case, if the users categorize an app correctly, then β is 1, and

if they don’t then β is 0. We know whether or not the categorization is correct

because we know the list of ‘true’ malicious apps (the ground truth).

In all iterations of the game, the profits of SYS, a normal app, and a malicious

app are being updated based on the actions chosen by the two players. The system

converges when all the malicious apps have been flagged by SYS.

The ROC curve of app classification is affected as follows: If an app is in

fact normal and SYS classifies it as malicious, the Apps False Positives value is

incremented. On the other hand, if an app is in fact malicious, and SYS classifies

it as malicious, the Apps True Positives value is incremented. True positive and

false positive rates of apps are computed in equations (14) respectively.

The ROC curve of user classification is affected as follows: If a user is in fact

an expert and SYS categorizes him as an expert, the Users True Positives value

is incremented. On the other hand, if a user is in fact a non-expert and SYS cat-

egorizes him as an expert, the Users False Positives value is incremented. True

positive and false positive rates of users are computed in equations 3.14 respec-

tively. Additionally, pseudo-code of the described method is given in Figure 3.6.

TPRApps =
TruePositivesApps

TotalPositivesApps

FPRApps =
FalsePositivesApps

TotalNegativesApps

TPRUsers =
TruePositivesUsers

TotalPositivesUsers

FPRUsers =
FalsePositivesUsers

TotalNegativesUsers

(3.14)

88

Figure 3.6: Pseudo-code of described method

89

Feature UT IP OF CF PF
Weight 0.246 0.0239 0.362 0.155 0.286

Table 3.5: Optimal weights

App UT IP OF CF PF
Smart Voice Recorder 1.01 2.23 1 5 5

Facebook 5 5 2.25 1 4.95
InBrowser 1.87 4.74 1.35 5 4.59

Smurfs’ Village 3.9 4.89 1.27 5 4.73
Duolingo 1.5 2.56 1.06 5 5
Shazam 1 2.79 1 5 5

Goal.com 1.21 1.01 1.05 5 5
WhatsApp 4.61 5 5 3.74 4.69

Viber 2.04 5 1.2 5 4.97
PowerTutor 1.02 1 1.02 5 1

Table 3.6: User 1 collected data

3.4 Design Results and Analysis

In this section, we first present the results of the utility score experiment with

CrowdApp v1.0 with a brief discussion of the implications behind these results.

In the following subsection, we show the results of the MATLAB simulations and

discuss what these results mean in the context of a behavior score rating system.

3.4.1 Utility Score Results

Using the data from the most active user (User 1), we calculated the optimal

values of the feature weights as described previously. The weights are shown in

Table 3.5. The normalized data from User 1’s device is shown in Table 3.6.

For the above set of user-installed apps for User 1, the Google Play scores are

shown in Table 3.7. A Google Play score is computed based on both the rating

and the number of downloads of an app. The number of downloads for the set

of apps per user is normalized to a range between 1 and 5 as described above.

90

App Google Play Score
Smart Voice Recorder 2.8

Facebook 4.5
InBrowser 2.6

Smurfs’ Village 2.85
Duolingo 2.9
Shazam 3.7

Goal.com 2.51
WhatsApp 4.7

Viber 3.65
PowerTutor 2.5

Table 3.7: User 1 Google Play scores

App CrowdApp Score Google Play Score
Clash of Clans 3.60 3

Lebfiles 2.10 2.4
Metro 2.44 2.1

No Emoji Ninja Dies 1.77 2.4
WhatsApp 4.20 4.7

Table 3.8: User 2 scores

A Google Play score is then computed by averaging the download score with an

app’s market rating.

In order to test if the rest of the collected data show correlation with Google

Play scores, we used the above weights to calculate the CrowdApp score per user

per app. CrowdApp and Google Play scores are listed per app for each user in

Tables 3.8, 3.9, and 3.10.

Let n be the number of apps per user, and vectors X and Y be the CrowdApp

App CrowdApp Score Google Play Score
Instagram 3.04 2.8
Facebook 3.57 4.5

WhatsApp 3.60 4.7
Messenger 2.60 2.6

Table 3.9: User 3 scores

91

App CrowdApp Score Google Play Score
Alfa 1.79 2.55

Viber 4.15 3.65
WhatsApp 4.03 4.7
Opera Mini 2.99 3.7

Table 3.10: User 4 scores

User Correlation Coefficient - r
User 2 0.87
User 3 0.95
User 4 0.83

Table 3.11: Correlation with Google Play

scores and the Google Play scores of the users’ apps, respectively. The correlation

coefficient is then defined as:

r =
n(ΣXY) − (ΣX)(ΣY)√[

nΣX2 − (ΣX)2
][
nΣY2 − (ΣY)2

] (3.15)

For every user, we calculated the correlation coefficient based on their scores.

The results are shown in Table 3.11.

The correlation coefficient is at least 0.83 in all cases, which means that there

is a very strong positive relationship between CrowdApp scores and Google Play

scores.

Interviews were conducted after collecting the data from the users. Users

were asked to rate their apps on a scale from 1 to 5. User 2 did not provide

a rating for Lebfiles stating that he rarely uses it so it wouldn’t be fair to rate

it. This shows the importance of CrowdApp in that it takes the usage time of

an application into consideration when determining its overall score. So in this

case, even though User 2 was not able to provide what he believed was a proper

92

App CrowdApp Score Subjective Rating
Clash of Clans 3.60 5

Lebfiles 2.10 -
Metro 2.44 5

No Emoji Ninja Dies 1.77 2
WhatsApp 4.20 5

Table 3.12: User 2 scores

rating for Lebfiles, CrowdApp managed to do so. The user was pleased with all

the other apps except with No Emoji Ninja Dies. According to him, it is a very

nice app, however, there are plenty of ads that keep popping, and this worsened

his experience with the app. He said a proper rating would be 2 out of 5 in the

best case. CrowdApp gave No Emoji Ninja Dies a score of 1.77.

User 1 commented that WhatsApp crashed twice while he was using it. User

3 also said that Facebook Messenger crashed once, and in general, he was not

pleased with the app. He therefore gave it a rating of 1 out of 5. In this case,

both Users 1 and 3 happened to be experts in this field. However, in most

cases, users don’t recognize when an app crashes, especially when it is not clearly

mentioned in a dialog box that says: “Unfortunately, the app has stopped”. In

these two cases, CrowdApp detected that WhatsApp crashed twice with User 1

and Messenger crashed once with User 3.

As for User 4, he said that he would give all his apps 5 stars except for Alfa

because it is “very bad”. He only uses it to send free SMS messages, and that is

why he opens it occasionally.

In Tables 3.12, 3.13, and 3.14 we show CrowdApp scores along with the users’

subjective ratings for each of their apps.

For every user, we calculated a correlation coefficient again, this time between

CrowdApp scores and the user’s subjective opinions. Results are in Table 3.15.

93

App CrowdApp Score Subjective Rating
Instagram 3.04 3
Facebook 3.57 4

WhatsApp 3.60 2.5
Messenger 2.60 1

Table 3.13: User 3 scores

App CrowdApp Score Subjective Rating
Alfa 1.79 2

Viber 4.15 5
WhatsApp 4.03 5
Opera Mini 2.99 5

Table 3.14: User 4 scores

The correlation coefficient is at least 0.75 in all three cases. This means that

there is also a very strong positive relationship between CrowdApp scores and

users’ own subjective opinions.

Discussion

When downloading an app from the market, the first thing that most users con-

sider is the app’s rating, and some of them even check the reviews. However, for

these ratings and reviews to be fair and accurate, they must be numerous for sta-

tistical significance, and they both require user input. CrowdApp’s utility score,

on the other hand, does not involve user input and can be computed quickly. We

have shown that with only a few data points, we are able to get utility scores

that correlate highly with the market ratings and number of downloads. This

User Correlation Coefficient - r
User 2 0.75
User 3 0.77
User 4 0.88

Table 3.15: Correlation with user ratings

94

objective rating can be continuously updated, and the more users use an app or

the more time it is used, the more accurate is the given rating. In a sense, what

CrowdApp is doing is crowdsourcing the “opinions” of the different users without

their direct participation.

The results that we obtained are promising. After using the optimal weights

calculated from the data of User 1, the CrowdApp utility scores of the three other

users showed a correlation with Google Play scores that is higher than 83%. This

means that there is a very strong positive relationship between the two sets of

scores. In addition to these results, the users who installed CrowdApp on their

devices were interviewed at the end of the experiment period. Their comments

on the performance of the apps installed on their phones agreed with the results

that we collected using CrowdApp. The correlation in this case was higher than

75%. In conclusion, CrowdApp v1.0 was shown to rate apps based on actual user

experience without any direct participation from the users themselves.

3.4.2 Behavior Score Results

In all iterations of the game, the profits of SYS, a normal app, and a malicious

app are updated based on actions chosen by players. For different ranges in input

values, the below output values are of interest:

• Percentage of convergence of apps that were correctly flagged by SYS in a

specific period (PCA)

• Percentage of convergence of authoritative users that were correctly identi-

fied by SYS in a specific period (PCU)

• Average profit of SYS per round (ΛS)

95

Variable CA ga GA LA CD gn GN LN `m GM LM
Suggested Value 4 5 10 10 2 6 6 6 8 8 8

Table 3.16: Suggested values for gains, costs, and losses

• Average profit of a normal app per round (ΛN)

• Average profit of a malicious app per round (ΛM)

• Percentage of apps that were tested (PA)

• Percentage of users that were queried (PU)

• ROC curves for app and user classification

In all the experiments that follow, the base values from Table 3.3 are used.

Any use of values other than the base values is clearly stated in each section.

In addition, the values for the gains, costs, and losses that were used in the

simulations are shown in Table 3.16. These values abide by the conditions defined

in the game model in subsection 3.1.2. Unless otherwise stated, every experiment

was repeated 50 times and the results were averaged over the repetitions.

Running Time

In this experiment, we wanted to study the relationship between the number

of rounds and the output values. We varied the number of rounds from 10 (5

minutes) to 2880 (24 hours) in steps of 10. The rest of the variables were kept

at their base values in Table 3.3. The experiment was performed only once. The

results are shown in Figure 3.7.

We notice that the average profits of SYS and normal apps are positive. The

profit of a normal app is stable at 3 and that of SYS stabilizes at around 1.4.

96

Figure 3.7: Running time

The average profit of malicious apps is less than that of SYS and normal

apps. It stabilizes at around 0.4. Slightly more than two hours (250 rounds)

were enough for the average profit of a malicious app to become smaller than

that of SYS. This tells us that from the first couple of hours after installing

CrowdApp and starting the system, on average, malicious apps are benefiting

less than normal apps and the system. It is worth noting that these profit values

are not indicative in the absolute but their relation to one another is important.

As for convergence values, they both stabilize after almost 150 rounds (1+

hour). The percentage convergence of apps stabilizes at 100% whereas that of

users stabilizes at around 95%. This tells us that about an hour is enough for our

system to correctly detect the malicious apps it checks and accurately identify

users it queries based on their input.

Apps vs. Users

In this experiment, we wanted to study the effect of increasing the number of

users relative to the total number of apps. We varied the number of users with

CrowdApp on their devices from 10 to 500. The number of apps was set to 1000.

Other variables were also kept at their base values in Table 3.3. Results are

shown in Figure 3.8.

97

Figure 3.8: The change in output values as the total number of users in the
system increases

First, we notice that for all values of the total number of users less than 50,

there are no values of PCA and PCU. This is because of the minimum crowd

size limit that we imposed on the system. For values less than 50, we notice

that the average profit of SYS and that of a malicious app are almost the same

which is not desirable. As the total number of users increases, we notice that this

difference between the average profits of SYS and a malicious app is continuously

increasing. For a total number of users greater than 200, the average profit of a

malicious app decreases to the extent that it becomes negative. For our chosen

base value of 200, the average profit of SYS and a normal app is much higher

than that of a malicious app. This tells us that the system does not require a

very large number of users to ensure that malicious apps are not gaining as much

as the system and normal apps.

As for the convergence values, starting from 50 users only, PCA stabilizes at

100% and PCU stabilizes at around 85%. The results from this experiment show

that the system does not require a very large number of users that are giving

their input in order for it to properly detect apps. This is a promising result. It

98

means that our system can be applied in many scenarios with a small number

of participants. For example, it can be applied in a small company with 200

employees and still be expected to give good results.

It is clear that as TNU increases, PA increases as well. It eventually reaches

around 2.7%. Even though PA is very small, as shown in Table 3.4, the per-

centage of apps downloaded more than 500,000 times on Google Play is only 2%.

Assuming that these apps are the ones that are being tested by our system every

time, which is a very reasonable assumption, then even though a large percentage

of apps is not being tested, however these apps are found on a small number of

user devices and therefore their damage (if it exists) will not be as significant as

the small portion of apps in the higher 2%. This increase in PA is expected since

as TNU increases, the number of downloaded apps will increase and these apps

will issue events and when they do, more of them will fire an alarm and end up

being tested since there are more users who have installed them. As for PU, it

instantly stabilizes at around 98% starting from TNU greater than 50 which is

the CSmin value.

The above results are for 1000 apps. We cannot assume that if 50 users are

enough to reach convergence in the case of 1000 apps, then they will be enough to

reach convergence when the number of apps increases to 10,000 for example. We

performed another experiment. Our aim in it was to obtain the needed number

of users in order to reach stability in both app and user convergence for a varying

number of apps. The number of apps was varied from 1000 to 10,000. The

number of users was varied from 50 to 10,000. The experiment was repeated

5 times. Average results are shown in Table 3.17. The second column shows

the average required user count (RUC) to reach high convergence rates for apps

(> 95%).

99

Apps RUC Users/Apps Ratio
1000 60 0.06
2000 60 0.03
4000 80 0.02
6000 110 0.02
8000 150 0.02
10000 180 0.02
Apps EUC RUC Error
20000 314 320 2%

Table 3.17: Convergence rates

The trend line based on the computed values from the top half of the table is

RUC = 0.014×Apps+34. If this value is used to estimate RUC when the number

of apps doubles (20,000), the estimated user count (EUC) will be 314 as shown

in the second column. In the second phase of this simulation, the experiment was

repeated for 20,000 apps to validate the extrapolated result. The result is shown

in the third column. The fourth column shows the percentage error between the

extrapolated and computed values of the required number of users for 20,000

apps. It is around 2% which is reasonable. We notice that as TNA increases, the

number of required users to reach convergence increases. In general, the number

of users needed to converge is relatively small. And based on the trend line, it

can be assumed that the ratio of users to apps is usually around 0.02. So given

100,000 apps, 2,000 users should be enough to reach convergence. This supports

our conclusion that our system can be used in small settings irrespective of app

count.

Crowd Expertise

In this experiment, we wanted to study the relationship between crowd expertise

and the output values. We varied the expertise from 0 to 1 in steps of 0.1. Other

variables were kept at their base values in Table 3.3. Results are in Figure 3.9.

100

Figure 3.9: The change in output values as the crowd expertise increases from
0.1 to 1 in steps of 0.1

We notice that for very low values of the crowd expertise, the average profits

of SYS and a malicious app are very close in value which is not desirable. But as

the crowd expertise increases, the difference between the average profit values of

SYS and a malicious app increases as well. This result is expected of course. The

higher the number of experts in the crowd, the better is the performance of our

system and the lower the profits of a malicious app. For all values of the crowd

expertise that are higher than 0.1, the average profits of SYS and a normal app

are higher than that of a malicious app.

We notice a similar pattern in the convergence plots. Both app and user con-

vergence values increase with the increase in crowd expertise. For expertise val-

ues of 0.4 or higher, app convergence reaches 100% and user convergence reaches

around 70% and this has a very good indication. It shows that our system can be

deployed in many settings even with low expertise levels of the crowd. In reality,

we expect the crowd expertise to be higher than 0.5 since the entire idea behind

our system is that it can trust the wisdom of the crowd when collecting their

input. A crowd where more than half of the participants are providing random

101

input is not the standard case. If we are to trust the wisdom of the crowd, we

can safely assume that the expertise value is at least 0.7 which is the base value

that we chose in Table 3.3.

PA is not changing with the change in expertise. It is stable at around 1.2%.

PU on the other hand is slightly decreasing with the increase in crowd expertise.

This agrees with our design requirement which states that when expertise values

are still unknown, the system queries a larger portion of users. When expertise

levels become known, the system will query a smaller portion of selected author-

itative users. What the above plot shows is somewhat similar. When the crowd

expertise is small, the system will have to query a larger portion of the crowd for

it to trust their aggregated reply. When the overall expertise is high, it is suffi-

cient for the system to query a smaller portion of the crowd (the authoritative

users). This is reflected in the slight decrease in PU. Of course for all values of

the crowd expertise, PU is very high (> 90%).

Fraction of Malicious Apps

In this experiment, we wanted to study the relationship between the fraction of

malicious apps and the output values. We varied the fraction from 0 to 1 in steps

of 0.05. Other variables were kept at their base values in Table 3.3. Results are

shown in Figure 3.10.

We notice that as the fraction of malicious apps increases, the percentage

convergence of users increases significantly. It eventually reaches 99% which is

very close to the stabilized convergence value of apps. This is because as the

number of malicious apps increases, the probability of defending against an app

also increases. This means that more users are being queried throughout the ex-

periment. The more our system queries users, the more accurate is their identifi-

102

Figure 3.10: The change in output values as the fraction of malicious apps in-
creases from 0.1 to 1

cation. However, for all values of the fraction of malicious apps, the convergence

of both apps and users is very high.

This increase in the percentage convergence of users is also reflected in the

average profit of a malicious app. As more experts are identified, the probability

of detecting malicious apps increases which means that the losses of malicious

apps increase as well. This can be seen in the plot. We notice that as the fraction

of malicious apps increases, the average profit of a malicious app decreases until it

stabilizes at 0. The average profit of the system also decreases with the increase

in the fraction of malicious apps. However, for all values of the fraction, the

average profits of both SYS and a normal app are always higher than that of a

malicious app.

103

Figure 3.11: The change in output values given selected differences between ma-
licious and normal event rates

MER 50 50 50 60 60 65 65 70 70 75 75
NER 50 45 40 45 40 40 35 35 30 30 25

Difference 0 5 10 15 20 25 30 35 40 45 50

Table 3.18: Malicious and normal app event rates

Event Rate Analysis

In this experiment, we wanted to study the effect of changing the normal and

malicious event rates on the output values. In the other experiments, we were

giving both normal and malicious apps the same event rate so as not to differ-

entiate between the two types of apps. This choice of event rates is considered

a worst case scenario where normal apps issue events with the same frequency

as malicious ones. The difference between malicious and normal event rates was

increased from 0 to 50. The chosen rate values are shown in Table 3.18. The

rest of the variables were kept at their base values in Table 3.3. The results are

shown in Figure 3.11.

104

We notice that as the difference between the event rates of malicious and

normal apps increases, the identification of users based on their expertise levels

is slightly improved. The percentage convergence of users stabilizes at around

96%. This result is of course expected since when this difference increases, it

means that malicious apps are on average issuing more events than normal apps.

This means that our system will defend against them more often and will end

up querying more users in the process. The percentage convergence of apps also

stabilizes here at 100%.

The increase in the percentage convergence of users is also reflected here in

the decrease in the average profit of a malicious app which stabilizes at 0. We

notice that regardless of the difference in event rates, the average profits of SYS

and a normal app are always higher than that of a malicious app. The plots of

SYS and a malicious app are almost opposites. This is expected. We notice that

with the increase in difference in event rates, the difference between these two

plots slightly increases as well.

This is a very important result. It means that even if all the normal apps in

the system issue the same number of events on average as the malicious apps,

most of them will still not be misclassified. In all other experiments, we assumed

both event rates to be equal so as to study the worst case scenario. Identification

of both apps and users remains very good even in the worst case.

System Defense Cost

The relationship between SYS’s defense cost (CD) and the output values was also

analyzed. CD was varied from 0 to 6 (which is the base value of the gain from

increasing the reputation of a normal app, GN) in steps of 0.1. The remaining

variables were kept at their base values. Results are shown in Figure 3.12. We

105

Figure 3.12: The change in output values as SYS’s defense cost increases from 0
to 6 in steps of 0.1

notice that for all values of CD, PA is around 1.2%, PU around 97%, PCA

around 100%, PCU around 85%, and ΛN is around 5. The output values that

are changing with the change in cost are ΛS and ΛM. The profits of both SYS

and a malicious app are decreasing. The rate of decrease of ΛS however is larger

than the rate of decrease of ΛM as illustrated by the slopes of the trend lines

shown in the figure.

If we consider the profit of SYS alone, it will become zero at the cost value

where the trend line intersects with the x-axis (−0.0688 × CD + 2.6906 = 0 ⇒

CD ≈ 39). Given the restriction that CD should always be less than GM for SYS

to have an incentive to defend, we know that the case where SYS’s profit becomes

zero will not occur. To find the value of CD at which the profits of SYS and a

malicious app become equal, we simply set the equations of the trend lines for ΛS

and ΛM equal to each other (−0.0688× CD + 2.6906 = −0.0047× CD − 3.1⇒

CD ≈ 90). Similarly, with the constraint on CD being at most equal to GM, the

above case where the profits of SYS and a malicious app become equal will not

occur.

106

These results tell us that regardless of the value of our system’s defense cost,

as long as it is kept lower than the gain that it achieves when it decreases the

reputation of a malicious app (GM), then its profit will always be larger than

that of a malicious app given the rest of the base values that were considered in

the experiments.

ROC Curve Analysis

ROC curves of app and user classification are shown in Figure 3.13. The dis-

crimination threshold is the crowd expertise, CE, which was varied from 0.05 to

0.95 in steps of 0.05. The circled values for apps are those farthest away from

the random guess. We notice that for values of CE larger than 0.35, the classifi-

cation of apps as normal and malicious becomes very good. In the case of user

detection, the results are not similar. We notice that for values of CE around

0.6, the TPR of users increases and the FPR is still relatively small. However, as

we further increase CE, the FPR of user detection starts to increase significantly.

This result is reasonable. As CE increases, the number of unreliable users in the

system decreases. A decrease in the total number of negatives will increase the

value of FPR. For a very large value of CE (0.95), the total negatives become

very small to the extent that FPR reaches around 0.62 which is quite large. It

is worth noting that this large value of FPR does not necessarily imply a large

value of false positives but rather a very small number of total negatives. In terms

of user detection, our previous experiments have shown that the percentage of

convergence of users reaches around 85% when the base values are used. This is

an acceptable result keeping in mind that the aim behind the system is to classify

apps rather than users. The detection of users is a by-product of the system. The

results from this experiment agree with previous results where it was shown that

107

Figure 3.13: ROC curves of app and user classification

the classification of apps by our system is slightly better than that of users.

Real-Life Scenario

According to [104], Android apps that have been downloaded over 50,000 times

amount to 120,000+. The number of high-speed Internet subscribers of the Cana-

dian operator TELUS is 1.5 million [108]. If only 1% of these subscribers install

CrowdApp on their devices, TNU in this scenario will be 15,000 (more than

TNA). As our results show in Table 17, a maximum ratio of 0.02 users per apps

108

is enough to reach PCA and PCU stabilization and to ensure that profits of SYS

and normal apps are higher than those of malicious apps. Based on the com-

puted trend line, required users are 0.014× 120000 + 34 ≈ 1714. It is hence safe

to assume that 15,000 users are enough to classify 120,000+ apps.

As for CE, our assumption is that our system can trust the wisdom of the

crowd, otherwise, the concept of crowdsourcing wouldn’t have proven to be useful

in other applications. This means that the CE value of 0.7 that was used in the

simulations holds in this scenario. Our system can be employed in small settings

such as within a portion of an operator subscriber base where a relatively small

crowd size is enough for it to detect malicious apps, flag them, and classify users

as authoritative and unreliable, thus leading to better system performance.

Discussion

The base value of the number of rounds was set to 1,440 which are around 12

hours. However, our results show that in only a few hours, our system was able

to detect most apps as well as most users that it queried. The base value we

chose for the crowd expertise was 0.7. Our assumption is that we should be able

to trust the wisdom of the crowd. A higher expertise value will give better and

faster results as was shown in previous sections. If, for example, TELUS has its

40,000 employees install CrowdApp on their devices and chooses only 5,000 users

from its subscriber base, then it can reach a very high overall expertise value

(close to the chosen base value) assuming all of its employees are considered to

be authoritative. This improves system performance significantly. Also, 45,000

users will be more than enough for the system of 120,000+ apps to converge.

The fraction of malicious apps was set to 0.25, which according to the litera-

ture is a correct estimation of malicious app distribution in the Android market.

109

In reality, this value is not an input that is controlled by an operator such as

TELUS. A similar thing can be said regarding malicious and normal event rates.

In our experiments, on average, both types of apps were issuing events once

every minute. This high rate of events might not be realistic but was set in order

to speed up our simulations. In reality, an app might issue an event once every

hour. If our results showed that our system converges after 12 hours, in reality

it might reach convergence after a few days. Detecting all malicious apps after

one month is still considered a very good achievement.

Generally, in all of our experiments, PA averaged around 1.2% whereas PU

averaged around 97%. A small number of apps are tested in every experiment

as a result of the download distribution of apps from the Android market. The

most popular apps downloaded by users (> 500, 000 times) constitute only 2% of

the total number of apps on the market as was discussed before. Therefore, an

average PA around 1.2% is reasonable. PU on the other hand was always high.

And from the queried users, the majority of them are being correctly classified

by our system.

Our ROC curve analysis for both app and user classification supported the

rest of the results by showing for what values of the crowd expertise our system

achieves its best classification results. In the case of user detection, there is a

trade-off when choosing the optimal value of crowd expertise. For higher values,

the FPR of user detection increases. But since app classification is the main goal

behind our system, we can conclude that our base value of 0.7 will result in very

good app and user classification.

Having modeled the interaction between our system and a target app using a

game-theoretic approach, we shift our focus to the process of aggregating received

replies from users for the purpose of computing the behavior score. There are

110

several techniques that can be used to aggregate user replies and we discuss some

of the most common ones in the following chapter. We also provide mathematical

models for these techniques with the aim to compare their performance given

different system variables.

111

Chapter 4

Probabilistic Models for

Aggregation in Voting Systems

There is a large number of techniques that can be used to aggregate replies from

users in the behavior score computation process. Some of these techniques involve

reported user confidence. Such techniques cannot be modeled without consider-

ing the effect of the Dunning-Kruger bias on user replies. Therefore, we begin this

chapter by modelling the Dunning-Kruger psychological bias that will be used

throughout the rest of this dissertation. We then model the aggregation methods

that were mentioned earlier: Plurality Voting (PR), Confidence-Weighted (CF),

Maximum Confidence (MC), and Competence-Weighted (CP). Our main objec-

tive in this chapter is to provide the necessary conditions for the input variables

in our system that will render one method superior to the others. We test our

findings on a crowdsourced dataset and present a discussion of the main results

and conclusions that can be drawn from this work.

112

4.1 Modeling the Dunning-Kruger Effect

The DunningKruger effect is a cognitive bias in which low-ability individuals

suffer from the illusion that their abilities are higher than what they really are.

This effect was presented in a renowned study in 1999 by psychologists David

Dunning and Justin Kruger who attributed this illusion of superiority in low-

ability individuals to their meta-cognitive weakness in accurately evaluating their

own competence. In other words, they have the propensity to overvalue their

abilities when solving a task or answering a question. The study also shows how

high-ability individuals generally underestimate their competence [23].

With this idea in mind, we modeled the relationship between competence and

confidence, as presented in their study entitled “Unskilled and Unaware of It:

How Difficulties in Recognizing One’s Own Incompetence Lead to Inflated Self-

Assessments”, as a continuous function. To the best of our knowledge, modelling

this psychological effect has not been done before. The function is estimated by a

quadratic equation that is concaved upwards. The choice of an upward concaved

function matches properly the decrease-increase pattern in confidence levels as a

respondent’s competence increases.

yr = ax
2
r + bxr + c (4.1)

The subscript r refers to the respondent, yr represents the respondent’s con-

fidence level, xr represents his competence level, and the coefficients a, b, and c

determine the resulting shape of the competence-confidence plot, which we will

refer to from now on as the DK plot or DK function after Dunning and Kruger.

Figure 4.1 shows several samples of the DK plot. Depending on the type of crowd,

113

Figure 4.1: Four sample DK plots

one DK plot might be a better representation than another. Note that DK 4 is

different from the other plots in that it starts with a straight line and continues

with a parabola. This is another possible representation of the Dunning-Kruger

effect. It shows how when a respondent knows nothing about a topic, his confi-

dence level is very low. However, upon basic introduction to it, for example after

skimming through a Wiki page, his competence increases slightly while his confi-

dence explodes. Intuitively speaking, representing the Dunning Kruger effect as

a piecewise function as in DK 4 is a more general representation. However, it

complicates the mathematical analysis significantly and has minor effect on the

obtained results. We choose to adopt a simplified general model of this effect as

represented in DK 1, DK 2, and DK 3.

Choosing to model the DK effect with a polynomial function serves two pur-

poses. First, as will be seen throughout the work, it will help us formally prove

the superiority of certain aggregation techniques over others for different task

difficulty levels. Second, it allows us to model a wide variety of crowd types. The

DK effect was studied in settings where both competent and incompetent workers

exist. There are scenarios where the crowd is mostly competent or mostly incom-

114

petent and in those cases, the shape of the polynomial will differ. Throughout

this work, we will follow the assumption of a general crowd that has workers of

all competence levels. However, it is important to keep in mind that DK1, DK2,

and DK3 shown below do not accurately represent crowds in every case. That is

where the role of the coefficients a, b, and c comes into play.

It is worth noting that the Dunning-Kruger effect is at the heart of many

studies on illusory superiority. People who noticeably lack in areas of logical

reasoning, emotional intelligence, grammar, financial knowledge, math, chess,

fairness, job skills, driving abilities and other disciplines have the tendency to

rate their expertise almost as favorably as actual experts do [23, 109, 110, 111,

112, 113]. It is the prevalence of this effect throughout various disciplines that

motivated us to formally model it in our work.

4.1.1 Function Constraints

We define constraints on the shape of the DK function that are derived from

characteristics of this psychological effect as described by Dunning and Kruger.

Both confidence and competence values are in the range [0,1]:

• Respondents with the lowest competence have maximum confidence in their

abilities, which means that the function starts at the point (0, 1). From here

on out, we will set the value of the coefficient c to 1.

• Confidence levels decrease then increase as competence levels become higher,

which means that the function is concaved upwards. From now on, we note

that the coefficient a should be positive.

• Confidence levels cannot be lower than 0, which means that the point of

minimum confidence either lies on the x-axis or is above it. This is achieved

115

by setting a constraint on the function to have at most one real root.

b2 − 4a 6 0⇒ −2
√
a 6 b 6 2

√
a

• On the other extremity of the function, we note that respondents with max-

imum competence should also have a confidence value anywhere between 0

and 1.

xr = 1⇒ 0 6 yr 6 1⇒ −a− 1 6 b 6 −a

Combining the last two conditions gives us the range of allowed values for b

given a, which only applies for 0 6 a 6 4:

−2
√
a 6 b 6 −a

Dunning-Kruger psychological effect model . A quadratic function rep-

resenting the relationship between a participant’s confidence (yr) and competence

(xr) where yr = ax
2
r + bxr + 1 given that 0 6 a 6 4 and −2

√
a 6 b 6 −a.

4.1.2 Competence Model

We define respondent r’s competence as the likelihood of him or her solving a task

k correctly. It is given by the Rasch psychometric measurement model, which

states that the competence xkr of a respondent r solving a task k is a function of

the respondent’s ability θr and the task difficulty ∆k [114, 115].

xkr = f(θr) =
θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
(4.2)

116

The competence increases with the increase in the respondent’s ability and

decreases with the increase in task difficulty. The ability θr is a value between 0

and 1. We define this value to be normally distributed with mean µ and standard

deviation σ. The task difficulty ∆k is also a value between 0 and 1. However, in

our model, we do not consider tasks with zero difficulty levels. We assume that

even the easiest task will require some time to complete, i.e. ∆k ∈ (0, 1].

Taking the Rasch competence model into account, the DK function can then

be defined in terms of respondent’s ability, task difficulty, and the two coefficients

a and b.

DK = ykr = a
(θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)

)2
+b
(θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)

)
+1

(4.3)

Expected Competence. The expected value of a respondent’s ability (θr)

is the ability mean µ. To get the expected value of the competence
(
xkr = f(θr)

)
,

we first refer to Jensen’s inequality, which states that for a convex function f(θr),

E
[
f(θr)

]
> f
(
E[θr]

)
, and for a concave function, E

[
f(θr)

]
6 f
(
E[θr]

)
. As defined

above, the shape of the competence function according to the Rasch measurement

model depends on the value of the task difficulty (∆k). For 0 < ∆k 6 0.5, f(θr)

is concave, which gives us an upper limit f(E[θr]) on the competence expected

value. For 0.5 6 ∆k 6 1, f(θr) is convex, which gives us a lower limit f
(
E[θr]

)
on the competence expected value.

f
(
E[θr]

)
=

µ(1 − ∆k)

µ(1 − ∆k) + ∆k(1 − µ)
(4.4)

117

0 < ∆k 6 0.5 E

[
f(θr)

]
6 f
(
E[θr]

)
0.5 6 ∆k 6 1 E

[
f(θr)

]
> f
(
E[θr]

)
The probability of one participant choosing the best option among several

options is equal to the expected value of the competence. In a crowdsourcing

context however, there are many participants. The probability of their aggre-

gate answer being correct depends on the aggregation method. Modeling this

probability is one of the main contributions in this dissertation.

4.1.3 Notes

Given the modelling constraints presented above, there are some observations

that are worth mentioning:

• Setting both coefficients in the DK function equal to 0 is equivalent to

aggregating by plurality.

a = b = 0⇒ yp = 1 ∀ xp

• An extreme case is when the confidence level strictly decreases as the com-

petence increases.

a = 1 and b = −2
√
a or a = 0 and b = −1

• When the two coefficients a and b are equal in absolute value to m, the

confidence (yr) starts at 1 for minimum competence (xr = 0) and ends at

1 for maximum competence (xr = 1) i.e., the plot is symmetric about the

vertical line xr = 0.5. In addition, as m increases, the point of minimum

118

confidence on the plot shifts downwards.

• For the same values of a and b, as ∆k increases, the point of minimum

confidence shifts towards the right.

• Increasing a has the effect of increasing the confidence faster for respondents

of higher competence.

• Decreasing b has the effect of decreasing the confidence faster for respon-

dents of lower competence.

4.2 Modeling Aggregation

In any crowdsourcing system, the method used to combine the large number of

collected replies into a single output is crucial in determining the success of the

crowdsourcing process. Depending on many factors, most notable of which are

related to the size and characteristics of the crowd, one approach may perform

better than the others. In this section of the chapter, we provide a general

model for the most popular aggregation methods focusing on how aggregation is

performed and how the probability of reaching a correct answer changes with the

change in the defined system properties.

4.2.1 Plurality

In PR voting, one of the most popular and simplest aggregation methods is used.

The method selects the most voted for choice by the crowd as the final answer.

The aggregated reply äPRq → argmaxä∈A
∑
r∈Rq

δärqä for a question q is the one that

agrees most with replies given by all participating respondents where ä is each

of the possible answers from the set of answers A, ärq the answer for question q

119

given by respondent r, and δärqä is the Kronecker delta which returns 1 when ärq

matches ä and 0 otherwise.

In a crowdsourcing scenario with Nq participating respondents, the probabil-

ity of success of more than half of them is equivalent to independently repeating

the experiment Nq number of times. PR with Nq independent respondent de-

cisions gives an overall correct answer that follows the binomial formula (equa-

tion 4.5) where ä∗q is the correct answer to question q and P(δärqä∗q = 1) =

E
[
f(θr)

]
.

PPRq = P
(
äPRq = ä∗q

)
=

Nq∑
i=Nq/2

(
Nq

i

)(
P
(
δärqä∗q = 1

))i(
1−P

(
δärqä∗q = 1

))Nq−i
(4.5)

For a large Nq, as is the case in most crowdsourcing systems, we can use the

Chernoff bound to get a sharp bound. Let X be the number of respondents who

answer correctly, we obtain a lower bound on PPRq shown in equation 4.6 that

is only valid for P(δärqä∗q = 1) greater than 0.5
(
E
[
f(θr)

]
> 0.5

)
.

PPRq = P
(
X >

Nq

2

)
= 1−P

(
X 6

Nq

2

)
> 1−e

−

(
Nq

2P

(
δärqä

∗
q
=1

))(P(δärqä∗q=1
)
− 1

2

)2

(4.6)

Requiring the success probability of an average respondent to be greater than

0.5 reminds us of Condorcet’s Jury Theorem on voter competence; a very popular

theorem in the field of social choice theory despite its limitations which include

120

respondents facing a binary choice. Condorcet, who was an enthusiastic supporter

of democracy, believed that having an independent probability of voting for the

correct decision greater than 0.5 was sufficient for majority voting to succeed,

and that adding more voters will increase the probability of reaching the correct

decision [116].

Combining the constraints for low difficulty tasks where 0 < ∆k < 0.5:

0.5 < E
[
f(θr)

]
6

µ(1 − ∆k)

(µ(1 − ∆k) + ∆k(1 − µ)

⇒ 0.5 6
µ(1 − ∆k)

(µ(1 − ∆k) + ∆k(1 − µ)
⇒ µ > ∆k

(4.7)

Combining the constraints for higher difficulty tasks where 0.5 < ∆k < 1:

E
[
f(θr)

]
>
{ µ(1 − ∆k)

(µ(1 − ∆k) + ∆k(1 − µ)

∣∣∣0.5
}
⇒ µ > ∆k (4.8)

To summarize, for aggregation in PR to work, the expected value of the

crowd’s ability should be at least equal to the difficulty of the proposed task. This

constraint on the ability mean ensures that the expected value of the competence

is at least equal to half, which agrees with the assumption of voter competence.

If so, the probability of success in PR will have a lower bound and will depend

on the number of respondents who attempt to solve the task. As the number of

respondents grows in size, the probability of success converges at a faster rate.

In order to compute the average probability of success versus task difficulty

in PR, we take the integral of the competence function over the entire range of

crowd ability resulting in equation 4.9. The result is in terms of task difficulty.

121

PPR =

∫ 1
0

θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
dθr = F(∆k)

=
(∆k − 1)(2∆k + 2∆ktanh

−1[1 − 2∆k] − 1)

(1 − 2∆k)2

(4.9)

4.2.2 Confidence-Weighted

In the CF method, the notion is to give higher weights to the replies of respon-

dents who are more confident and lower weights otherwise.

äCFq → argmax
ä∈A

∑
r∈Rq

ykr · δärqä

The weights are the reported confidence values per respondent ykr → a(xkr)
2 +

b(xkr) + 1 which are modeled based on our proposed DK function.

We compute the expected probability of success in CF by taking the integral

of the confidence-weighted competence over the range of ability values as shown

in equation 4.10. The result is in terms of task difficulty and the coefficients a and

b of our modeled DK function. The full equation is provided in the Appendix.

PCF =

∫1
0

((
a(xkr)

2 + b(xkr) + 1
)(
xkr
))

dθr∫1
0

(
a(xkr)

2 + b(xkr) + 1
)

dθr
= F(∆k,a,b) (4.10)

We define a general crowd as one that includes all classes of respondents from

the low end of the spectrum (non-experts) to the high end (experts). Assuming

we have a general crowd, and taking into consideration the psychological bias that

accompanies respondents, which is represented in the modeled Dunning-Kruger

122

Figure 4.2: Difference between success probability of plurality and confidence-
weighted voting across all difficulty levels and for different values of a and b

function as a generally decreasing relationship between reported confidence and

competence, confidence-weighted approaches will in most cases perform worse

than the simple plurality approach. If the least competent are reporting the

highest confidence and the most competent are not, then weighing by the re-

ported confidence values will negatively affect the aggregation outcome.

Theorem I Given any DK plot, PR will perform better than CF for tasks

of higher difficulty (∆k > 0.5).

The full proof of Theorem I is found in Appendix A.

For different samples of the DK plot as shown by the values of the coefficients a

and b in Figure 4.2, we computed the difference between the probability of success

of PR and that of CF. As expected, based on the model alone, PR outperforms

CF for a wide range of possible DK plots. The difference between the two success

probabilities is never below zero. What is interesting however, is the relationship

between this difference and the coefficients a and b.

As the value of a increases, the difference is decreasing, which means that

CF’s performance is improving compared to PR. This agrees with our previous

123

note on how increasing a increases the confidence faster for respondents of higher

competence. The result of increasing a is an increased confidence value for the

more competent.

As the value of b decreases, we notice a similar pattern; the difference de-

creases in value for all values of a. This observation agrees with another previous

note on how decreasing b has the effect of decreasing the confidence faster for

respondents of lower competence. The result of decreasing b is a decreased con-

fidence values for the less competent.

4.2.3 Maximum Confidence

In this approach, PR is applied to a subset of the population with maximum

confidence.

äMCq = argmax
ä∈A

∑
r∈RMCq

δärqä (4.11)

We compute the expected probability of success in MC similarly to that in

PR but by taking different integral boundaries, which depend on the number

of defined confidence levels. Or, if the confidence is a continuous value, the

choice of respondents is those in the top P percentage in terms of confidence

level. Given a DK plot and a percentage P, boundary competence values are

computed as follows. A horizontal line based on the selected P is drawn on the

DK plot. The line will intersect the DK function at two points. The x-values of

these two intersection points are the resulting competence values that are used as

boundaries for the integral that is used to compute the MC success probability.

We define xPmin and xPmax as the intersection points between our modeled DK

function and the horizontal line drawn at yP = 1 − P
100

.

124

The minimum point on the DK plot is defined as the point where the first

derivative equals 0. Let ∇ denote the point of minimum confidence. Its coordi-

nates are shown below.

∇ = (∇x,∇y) =
(
−
b

2a
, 1 −

b2

4a

)

There are two cases to consider; in the first case, the point yP = 1− P
100
6 ∇y,

which means that the percentage covers the entire range of confidence values. In

this case, applying MC has the same effect as applying PR and the two boundary

points are in fact one point.

yP 6 ∇y ⇒ xPmin = xPmax

In the second case, the point yP = 1 − P
100

> ∇y, which means that if we

are to apply the MC method, then we should only consider the answers of the

respondents whose competence levels are less than xPmin or greater than xPmax

where xPmin and xPmax are computed as shown below.

yP > ∇ ⇒ P <
25b2

a
and xPmin =

−b−
√
b2 − aP

25

2a
and xPmax =

−b+
√
b2 − aP

25

2a

We compute the expected probability of success in MC by taking the integral

of the competence over the range of ability values as shown in equation 4.12. The

result is in terms of the boundary points and the task difficulty. The full equation

125

of PMC is provided in the Appendix.

PMC =

∫xPmin
0

θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
dθr +

∫ 1
xPmax

θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
dθr

= F
(
∆k, xPmin, xPmax

)
(4.12)

Assuming we have a general crowd and taking into consideration the psycho-

logical bias that accompanies respondents, which is represented in the modeled

Dunning-Kruger function as a generally decreasing relationship between reported

confidence and competence, selecting the most confident replies only will affect

the aggregation outcome negatively. If the least competent respondents are re-

porting the highest confidence values, a maximum confidence approach will result

in selecting a majority composed of the least competent individuals in the crowd.

The outcome in MC is affected more severely than that in CF. In this method,

we are considering a sub-crowd of respondents who were the most extreme when

reporting their confidence levels. The MC method focuses on the least competent

respondents and disregards respondents whose reported confidence values were

moderate, which we argue are the majority of the most competent respondents.

Accordingly, the higher the value of P, the better the performance of MC when

compared to CF and PR. For a value of P = 100, the MC approach is the same

as PR voting.

Theorem II Given any DK plot, any task difficulty, and any value of the

percentage P, PR performs better than MC.

Theorem III The probability function based on MC is increasing in P.

Theorem IV At ∆k = 0.5, CF performs better than MC for all values of

126

Figure 4.3: Success probabilities of plurality, confidence-weighted, and three max-
imum confidence approaches with different percentage values

P 6 25b2

a
− 10. As P decreases, the point at which MC outperforms CF shifts

further to the right at higher difficulty levels.

Proofs of Theorems II, III, and IV are found in the Appendix.

We show a sample DK plot for a general crowd where a = 2 and b = −2.5 in

the top right corner of Figure 4.3. Using this DK function, we plot the success

probabilities of PR, CF, and MC for three values of P (20, 30, and 75) and for

values of task difficulty ranging from 0.1 to 1. These plots are based on our

modeled values of PR, CF, and MC.

A first look at the figure shows how PR outperforms all other methods for

difficulty levels higher than 0.5. However, for smaller values of the task difficulty,

the performances of PR and CF are comparable. For the smaller values of P (20

and 30), the performance of MC is very poor. For a higher value of P (75), the

performance of MC becomes comparable to that of CF when task difficulty is

around 0.7 and even surpasses it for the harder tasks. However, its performance

127

remains worse than PR throughout.

Note that for the chosen a and b of 2 and -2.5, the percentage limit that

was defined in Theorem IV evaluates to
(
25b2

a
− 10

)
≈ 68. Based on Theorem

IV, this means that for P = 20 and P = 30, at ∆k = 0.5, PCF > PMC which is

true. And as P decreases, PCF and PMC intersect further to the right at values

of ∆k > 0.5 which is shown. At P = 75, the two curves intersect at ∆k ≈ 0.7 and

as P decreases to 20% and 30%, the intersection takes place at ∆k = 1.

4.2.4 Competence-Weighted

Another weighted approach worth discussing is the competence-weighted ap-

proach. In CP, rather than weighing the replies by the reported confidence of

the respondents, the method weighs them by the estimated competence of the

respondents. The real competence of a respondent is an unknown value. Addi-

tionally, it is affected by many factors such as his well-being and ability to focus at

the time of solving the task. Instead of getting the real competence values of re-

spondents, CP methods try to estimate these values. The literature is filled with

findings related to competence detection techniques [117, 118, 119, 120, 121, 122].

Some techniques are a function of the time it takes a respondent to solve a task

[123]. Some are based on the performance of a respondent in previous tasks

[124]. A wide variety of techniques even make use of Bayes’ theorem to try to

detect the competence of respondents when the ground truth of the proposed

questions is not available a priori [125, 126, 127]. Even though our focus in this

work is not on the deployed competence detection method, we stress that it is

one of the most important steps when designing a crowdsourcing platform. Many

techniques have been derived with the aim to estimate workers’ competence and

reliability when attempting to solve a task. The better the detection technique,

128

the higher the chances of reaching a correct aggregate answer. In fact, detecting

the competence or reliability of workers is one of the many techniques of quality

control that are employed by the system to improve performance. We provided

a survey of quality control mechanisms in the literature review section where we

showed that estimating the real competence of respondents is not a trivial task.

If the estimated and the real values of the competence are very far off indicating a

primitive detection method, then naturally, a competence-weighted aggregation

approach will perform poorly.

Instead of focusing on detecting the competence, we make use of our modeled

DK function to derive the competence of respondents based on their reported

confidence values. Getting the reported confidence from a respondent is a very

easy task. And this reported confidence value is an actual value rather than an

estimated one. Assuming a general crowd, we can give lower competence values

for highly confident respondents and higher competence values for the moderately

confident ones. In other words, we can use our model of the DK function as a

competence detection technique. The performance of this detection technique can

be evaluated based on the performance of the competence-weighted aggregation

method when using the estimated competence values derived from our model of

the DK function.

Hypothesis I Given a general crowd, competence-weighted approaches us-

ing competence values estimated from the modeled DK function will outperform

approaches based on plurality voting.

We argue that the choice of the DK function coefficients does not significantly

affect the performance of the competence detection method. This, of course, only

holds in the case of a general crowd where the overall confidence level decreases

as the competence increases and where more competent individuals are never as

129

confident as the least competent ones.

4.3 Numerical Analysis

To validate our model of the different aggregation techniques, we performed nu-

merical analyses on crowdsourced data. We begin by describing the dataset that

was used. Then, we discuss the two main experiments that we performed and

the results that were drawn from each experiment.

4.3.1 Dataset

Aydin et al. developed and deployed a crowdsourcing system for playing the

popular “Who Wants to Be a Millionaire?” television game show [128]. They

created an Android app that allowed respondents to play the game at the same

time as the show was being broadcasted. The app was downloaded over 300,000

times over a period of 9 months. The data in it is based on 1908 live game show

questions from a total of 80 broadcasted episodes. Respondents gave a total of

214,658 answers to these questions. Every game show had an average respondent

count of 733. The average number of answers per question was around 100. On

the server side, project administrators instantly type the questions and answers as

they appear on the game show. On the respondent side, every participant selects

his answer to each question along with his confidence for every submitted answer.

The confidence values to choose from are 1 for “no idea”, 2 for “guessing”, and

3 for “certain”. Every game has 12 questions ranked by increasing difficulty.

Questions 11 and 12 are the most difficult questions. Consequently, the number

of times these questions were asked was of no statistical significance and so we

do not include them in our analysis. Taking into consideration the large number

130

of respondents who are fans of the “Who Wants to Be a Millionaire?” game show

and who can lie anywhere on the spectrum of respondent competence, we assume

a general crowd.

4.3.2 Results and Discussions

In the first experiment, we started by ranking the questions based on their dif-

ficulty level. The aggregated answer for every question in the case of PR was

the most voted for choice. In the case of CF, the aggregated answer was the

most voted for choice after weighing all the choices by their respective confidence

values. In the case of MC, we considered two cases. In the first case, we applied

plurality voting on the subset of respondents whose reported confidence was 3.

In the second case, the subset of respondents included those whose reported con-

fidence was either 2 or 3. Then, we compared all the aggregated answers to the

gold label of every question. A question whose aggregated answer matches with

the gold label gets a score of 1, otherwise, it gets a score 0. After getting the

total scores for every method, we computed the average score per difficulty level

and plotted the results, as shown in Figure 4.4.

The first observation is related to PR. It outperforms the confidence-weighted

approach (p − value < 0.0005) and the maximum confidence approach (p −

value < 0.0001). This validates Theorem I which states that plurality outper-

forms confidence-weighted approaches for tasks with difficulty higher than 0.5.

It also validates Theorem II which states that PR will always outperform MC

aggregation approaches. Also note that for the easier tasks, the performance of

CF is better than that of plurality voting. The point at which PR outperforms

CF depends on the values of the coefficients a and b of the DK plot.

These results agree with the conclusions of Li et al. who study an M-ary clas-

131

Figure 4.4: Success probabilities of different aggregation methods based on data
from WWTBAM dataset

sification task via crowdsourcing where the workers report quantized confidence

scores [129]. They consider a crowd that is only composed of honest workers who

answer questions and report confidence in good faith. Their simulation results

demonstrate how the performance of the crowdsourcing task does not improve

when incorporating workers’ confidence scores.

The second observation is that PMC decreases with the decrease in P except

for the point at question 10, the reason of which could be due to data that is

insignificant for this question. We notice that when only replies with confidence

level 3 where considered, the probability of success was lower than that when

confidence levels 2 and 3 where considered (p− value < 0.0001). This validates

Theorem III. CF outperforms both instances of MC regardless of the task diffi-

culty. This does not contradict with Theorem IV since there is no intersection

whatsoever. The theorem would be contradicted had there been an intersection

at a relatively small difficulty level.

The aim of the second experiment was to test our competence detection idea

132

Figure 4.5: Performance of different aggregation methods based on data from
WWTBAM dataset

based on our modeled DK function. We selected three random DK functions

(a = 2 and b = −2.75 | a = 2.55 and b = −3.15 | a = 3 and b = −3.45).

We derived the competence value for every user from his reported confidence

using each of the three DK functions. For some confidence values however, there

are two possible competence values considering the general shape of our modeled

DK plot. For these cases, we generated two sets of weights. In the first set, we

selected the lower competence value (CP-L) and in the second, we selected the

higher one (CP-H). We then weighed the answers using the derived competence

values and computed the scores of CP-L and CP-H after comparing each set of

aggregated answers to the gold label and taking an average score over the 3 DK

functions. We present the results in terms of a bar chart in Figure 4.5. Inside the

bars, we show the percentage of questions out of the total questions that were

correctly aggregated by each method.

Our first observation is that, as in the previous experiment, MC (3) performed

worse than MC (2 and 3) and both performed worse than CF which in turn lagged

behind PR. What is interesting in this experiment, however, is that both CP-

133

L and CP-H performed better than PR (p − value < 0.01). This indicates

that the competence values that we derived using our DK model were in fact

good estimates of the real competence values. This validates Hypothesis I above,

which states that given a general crowd, competence-weighted approaches using

competence values estimated from the modeled DK function will outperform

approaches based on PR.

Another interesting observation is that CP-H performed slightly better than

CP-L, which is expected. For high values of the reported confidence, there is

only one value of the competence based on the general shape of the DK func-

tion. It is for the lower confidence values that we encounter two competence

values, a low one and a high one. One of the main conclusions given by Dunning

and Kruger is that the more competent individuals are those who report lower

confidence values as they generally underestimate their competence. This means

that giving a higher competence value to these low-confidence respondents will

result in a better overall competence estimation and therefore better aggregation

performance.

Note that the CP scores before averaging across the three different DK func-

tions were very close and surpassed all other approaches. This validates how the

choice of the DK coefficients a and b does not significantly affect the performance

of the competence detection method. The chosen DK plots in this example re-

vealed a pattern where the most incompetent respondents showed the greatest

miscalibration in assessing their skills.

Qi et al. discuss the issue of long-tail phenomenon in crowdsourcing tasks

where most workers only provide answers to a few tasks and only a few workers

provide answers to plenty of tasks [130]. They argue that existing crowdsourcing

approaches clearly overlook this phenomenon which causes problems in estimat-

134

ing worker reliability. They propose to consider both the estimate of worker

reliability along with its confidence interval in order to accurately reflect reli-

ability levels of workers with different degrees of participation. This results in

reducing the effect of less active workers who do not solve many tasks. They

perform experiments on four real world crowdsourcing tasks, one of which is the

previously described “Who Wants to Be a Millionaire” dataset. Results demon-

strate how their proposed Confidence-Aware Truth Discovery (CATD) method,

which takes into consideration the long-tail phenomenon, outperforms existing

approaches [131, 132, 133, 134, 135].

More recently, Fenglong et al. addressed the issue of topic diversity in crowd-

sourcing systems [136]. They argue that most existing systems assume that a

worker will have the same reliability when answering any question. Existing

approaches ignore the fact that a worker’s reliability may vary significantly de-

pending on the topic. To this end, they propose FaitCrowd which probabilis-

tically models question content and answer generation in an attempt to assign

topics to questions, learn the ground truth, and estimate workers’ topic-specific

expertise simultaneously. They test their method on real world datasets includ-

ing the “Who Wants to Be a Millionaire” dataset. Their results demonstrate

how FaitCrowd reduces the error rate when compared with other approaches

[137, 130, 131, 132, 133, 134, 135, 138].

Table 4.1 compares our competence-weighted aggregation technique (CWAT)

to CATD and FaitCrowd, among other methods, in terms of the Error Rate.

We computed the error rate per task difficulty as well as the overall error rate.

The highlighted cells are the ones that have a lower error rate than our proposed

method. CWAT outperforms TruthFinder and Investment across all difficulty

levels. For the more challenging tasks, it outperforms all methods except CATD

135

Level 1 2 3 4 5 6 7 8 9 10 Overall
CWAT 0.0161 0.0341 0.0346 0.0434 0.0442 0.0585 0.0343 0.2124 0.2472 0.3 0.0641
CATD 0.0132 0.0271 0.0276 0.029 0.0435 0.0596 0.0481 0.1304 0.1414 0.2045 0.0485

FaitCrowd 0.0132 0.0271 0.0241 0.0254 0.0395 0.055 0.0481 0.087 0.101 0.1136 0.0399
TruthFinder 0.0693 0.0915 0.1241 0.0942 0.1581 0.2294 0.2674 0.3913 0.5455 0.5455 0.1816

AccuSim 0.0264 0.0305 0.0345 0.0507 0.0632 0.0963 0.0909 0.2826 0.3636 0.5 0.0913
Investment 0.033 0.0407 0.0586 0.0761 0.087 0.1239 0.1283 0.3406 0.3838 0.5455 0.1151
3-Estimates 0.0264 0.0305 0.031 0.0507 0.0672 0.1055 0.0963 0.2971 0.3737 0.5 0.0942

CRH 0.0264 0.0271 0.0345 0.0435 0.0593 0.0872 0.0856 0.2609 0.3535 0.4545 0.0866
D&S 0.0297 0.0305 0.0483 0.0507 0.0672 0.1101 0.0963 0.2971 0.3636 0.5227 0.0975

ZenCrowd 0.033 0.0305 0.0345 0.0471 0.0593 0.0872 0.0856 0.2754 0.3636 0.5227 0.0899

Table 4.1: Error rate of competence-detection approach compared with ap-
proaches in the literature

and FaitCrowd. The overall performance of CATD and FaitCrowd is better than

that of our method except in tasks of difficulty levels 6 and 7 where our method

performs better. It is worth mentioning that the error rates of the other methods

are based on the results presented by Qi and Fenglong in their papers and are

not based on our own simulations of these methods.

Even though the performance of CATD was better than ours given the “Who

Wants to Be a Millionaire” dataset, it suffers from a major drawback. The

approach by Qi et al. offers no advantage over existing approaches in crowd-

sourcing tasks where the long-tail phenomenon is not present. Even though this

phenomenon should not be overlooked when estimating worker reliability, how-

ever it is not always present in crowdsourcing systems. For example, workers

might not have the option of solving a subset of the questions even if they do

not know the answer to some questions. Moreover, there are cases where there is

only one question that workers attempt to answer. These are two crowdsourcing

examples where the long-tail phenomenon does not exist and will have no effect

on the overall performance of the system. This renders other methods such as

ours that work regardless of the participation level to be more useful for better

system performance. Of course in specific cases where the long-tail phenomenon

is present, the estimation of worker reliability will be affected by the total num-

136

ber of claims that he or she makes. A worker that makes one claim to one task

will either be categorized as extremely reliable or highly unreliable based on the

correctness of his single claim. We believe that this negatively affects worker re-

liability estimation as well as confidence reporting. Addressing this phenomenon

in both reliability detection and confidence reporting is a necessary step that we

believe will result in error rates lower than both our approach and CATD.

FaitCrowd by Fenglong et al. suffers from a similar drawback. Even though

the approach detects per-topic expertise of workers for better system performance,

the assumption of different topics in proposed questions is not always valid. There

are many examples where all proposed questions fall into the same area. When

this is the case, FaitCrowd will show no advantage over other approaches. This

also applies in cases where the crowd is voting for the best answer for a single

question. Even though our overall error rate is slightly higher than FaitCrowd’s,

our method is more versatile in that it considers all types of crowds and any

blend of question topics. FaitCrowd is superior only in cases where the topics of

proposed questions vary which is not always the case.

We believe that an aggregation technique that aims to estimate topic-specific

worker expertise (when applicable) taking into consideration the effects of the

long-tail phenomenon (if present) and the cognitive biases of the workers in-

volved in the crowdsourcing process should improve the truth discovery process

considerably.

4.3.3 The Irregular Crowd

If we do not consider a general crowd, the relationship between confidence and

competence will no longer abide by the characteristics of the DK plot. For exam-

ple, if we have a crowd of experts in the field, a sample competence-confidence

137

relationship might be a straight line starting from 0 with a slope of 1. This is,

by far, the best representation of confidence versus competence since the crowd

consists of experts who have the ability to correctly estimate their cognitive skills

on either side of the spectrum. In this case, CF approaches will perform better

than simple PR voting due to the fact that the reported confidence values are

not biased.

In fact, this is illustrated in one of the experiments by Prelec et al. who

describe a new and interesting aggregation method commonly referred to as the

Surprisingly Popular algorithm [139]. The authors argue that this algorithm can

help extract the correct answer from a crowd even when the majority replies

incorrectly. To accomplish this, participants are queried twice. They are asked

to answer the question and to predict what the majority will answer as well.

The “correct” answer is based on the variation between the given answers and

the predicted ones. In their paper, they describe how they performed the same

crowdsourcing experiment twice. The experiment asked respondents to judge the

price of 90 reproductions of modern 20th century artwork. In the first part of

the experiment, the crowd was composed of people working with art in galleries

or museums. In the second part, the crowd was composed of MIT master’s and

doctoral students who have not taken any courses on art or art history. What

is interesting is that both the confidence-weighted and the maximum confidence

approaches outperformed the majority vote in the case of the art professionals.

On the other hand, they both performed worse than the majority vote in the case

of the MIT students who fit the description of a general crowd. The maximum

confidence in the second part even performed worse than the confidence-weighted

approach, which agrees with our results in this dissertation. The surprisingly

popular algorithm has received considerable attention recently and is already

138

referenced in works related to voting and crowdsourcing [140, 141]. We did not

include this algorithm in our “Who Wants to Be a Millionaire” study due to the

lack of data. However, we compare its performance with other approaches in the

experiment phase of the work that is described in Chapters 5 and 6.

4.4 Discussion

There are many factors that affect the choice of the aggregation method to adopt

in crowdsourcing. Our conclusion is that the type of crowd is the most important

of these factors. In the case of an incompetent crowd, no aggregation method

will have a good performance. This includes simple methods such as plurality

voting which requires an average respondent to have a success probability above

0.5 in accordance with Condorcet’s jury theorem of voter competence. When

knowledge within a crowd surpasses a given threshold, the choice of aggregation

technique matters as we have shown.

The main finding in this chapter is related to the Dunning-Kruger effect.

We presented a formal model of this psychological bias in terms of a quadratic

relationship between respondent competence and confidence. Constraints related

to our modeled function were derived from the characteristics of this effect as

described by Dunning and Kruger.

Using our model of the Dunning-Kruger effect as the core of our work, we then

went on to model the performance of different aggregation methods. Due to the

general shape of the DK function, we were able to validate that for a general crowd

of respondents, a plurality aggregation method will, in most cases, outperform

methods based on the confidence of respondents such as the confidence-weighted

and maximum confidence approaches. We also showed that the maximum con-

139

fidence approach generally lags behind the confidence-weighted approach since

it focuses on the least competent respondents and disregards respondents whose

reported confidence values were moderate, which we argue are the majority of

the most competent respondents. We also showed how the size of the subgroup of

respondents in the maximum confidence approach affects the overall performance

of the method for a general crowd.

We then went on to use the modeled DK function as a competence detection

technique. There are many detection techniques in the literature that attempt

to estimate the competence of respondents in a crowdsourcing system with or

without the presence of the ground truth. These techniques are complicated

and in some cases, they do not give a good estimate of the real competence

values of respondents. Our argument is that it is fairly easy to get the reported

confidence of respondents when solving a task and we showed how we were able

to use these reported values to estimate, to a good degree, the competence of

respondents. Using our estimated values of the competence, we managed to get

the best performance using a competence-weighted approach compared to other

approaches.

According to Dunning and Kruger, perhaps the best illustration of inflated

self-appraisals of the incompetent is the tendency of the average person to rate

her skills as above average, which defies the logic of statistics. On the other hand,

the most competent individuals usually suffer from the false-consensus effect [142]

where they assume that because they have performed well on a task, then others

must have performed well likewise, which results in these individuals underes-

timating their relative abilities. These two findings validate the general shape

of the DK function that we adopted in our model. Dunning and Kruger also

observed that it was the most incompetent individuals who showed the greatest

140

miscalibration in assessing their skills, which validates our choice of having the

DK function start at the point (0, 1) indicating the highest confidence miscali-

bration for the least competent.

141

Chapter 5

System Design and

Implementation

Having represented the interaction between our system and a target app and

modelled several aggregation methods that can be used when computing the

behavior score while accounting for possible biases in user replies, we proceed

to implement an app rating system that will allow us to verify our developed

models. We present the overall design and implementation of both the backend

server and the updated version of CrowdApp (version 2.0). We describe the

process of storing feature logs that are used for utility score computation, and

the process of detecting events that are used for behavior score computation. We

discuss concepts of user selection and reputation threshold and describe how the

aforementioned aggregation methods were implemented. Backend specifications

along with performance results are also provided.

142

Figure 5.1: Client-server architecture

5.1 General Overview

The general client-server architecture is shown in Figure 5.1. The client is Crow-

dApp v2.0 which is installed on Android devices running API 21, 22, and 23.

CrowdApp v2.0 collects different types of data from a device and sends it to the

server that manages this incoming data and responds accordingly. The figure

also shows Google’s Firebase Server [143]. We use Firebase for crash reporting

and notification services. Upon installing CrowdApp on a device, a user is au-

tomatically registered. A unique Google Firebase token is generated for every

user. The hash of this token is the username that will be stored on the server.

The token is also used to send push notifications to users. This process ensures

the anonymity of users in our system. CrowdApp v2.0 also uses a hard coded

password along with the username to insert and update logs on the server. The

client-server link is encrypted using Public Key Infrastructure (PKI). We used a

certificate signed by Comodo [144]. The certificate uses RSA with a 2048 bit key.

It is included in the Assets folder of CrowdApp v2.0.

143

5.2 Client Side

CrowdApp v2.0 collects two types of data from every device: logs and events.

Logs are basically statistics of all the monitored activities that are taking place

on the device. These dumps are first stored in log files on the device’s external

storage and are later uploaded to the server. Events are certain actions that

take place on the device. Once these events take place, they are instantly sent

to the server side. In the following, we will discuss, in detail, the differences

between stored logs and detected events. In the first subsection, we describe the

method used to collect and store logs for utility score computation. In the second

subsection, we describe the method of behavior score computation which includes

the game process, querying process, and rating process.

5.2.1 Method of Collecting and Storing Logs

The stored data in these log files is categorized into:

• Connection Stats (CxN) - These logs contain information related to all

types of connections that are opened by all third-party apps on the device.

The information per app Â is stored as follows:

– Number of connections made by Â at each TCxN seconds

– Age of every connection made by Â at each TCxN seconds

– Destination IP and port number, source IP and port number, and

protocol, all combined as one HEX string

– Timestamp for every stored log entry

• Traffic Stats (TR) - These logs contain information related to the traffic sent

144

and received by all third-party apps on the device. The traffic is stored in

bytes as well as in packets. The information per app Â is stored as follows:

– Sent bytes from Â at each TTR seconds - TxBytes

– Received bytes by Â at each TTR seconds - RxBytes

– Sent packets from Â at each TTR seconds - TxPackets

– Received packets by Â at each TTR seconds - RxPackets

– Timestamp for every stored log entry

• CPU and Memory Stats (CM) - These logs contain information related to

the CPU and memory consumption of all third-party apps on the device.

The memory consumption is given in terms of the Resident Set Size (RSS)

memory consumption. The information per app Â is stored as follows:

– The percentage of CPU time of Â at each TCM seconds

– The RSS memory consumption of Â at each TCM seconds

– Timestamp for every stored log entry

• App Usage Stats (AUsg) - These logs contain information related to the

usage of all third-party apps on the device. The information per app Â is

stored as follows:

– Average time Â is used on the device

– Number of times Â is opened on the device

– The overall install period of Â on the device

The above logs are collected at their respective collection intervals (every

TCxN, TTR, TCM seconds) and the log files are constantly updated on the device’s

145

storage. Once the size of the log files reaches a set limit, CrowdApp will attempt

to upload the log files to the server. The limits for the log files depend on

the type of log. For the connection stats, traffic stats, and CPU and memory

stats, the limit for the log file size is set to LL. For the app usage stats, the

limit for the log file size is set to LS. Before beginning the uploading process,

CrowdApp will check the type of connection on the device. If the user is using

his mobile data, the upload will not take place to ensure that the data plan

of the user is not affected. Once the user switches from mobile data to WiFi,

CrowdApp will detect the change in network type and will start (or resume if

it had already started) the uploading process. When a log file reaches its limit

and is set to be uploaded to the server, a new log file is automatically created

in the device’s external storage and new logs are inserted in the new log file.

Assuming the server was reachable, after it successfully receives an uploaded file

from CrowdApp, it sends an acknowledgement back to the user’s device. Upon

receiving this acknowledgement, the uploaded log file is deleted from external

storage.

All log files are stored on the device encrypted using AES 128. Before up-

loading to the server, they are decrypted and converted to JSON strings. The

resulting data is very small which means that the time to upload a log file will

be insignificant and the resulting bandwidth consumption by CrowdApp v2.0 in

the process is minor. On the server side, the JSON strings are processed to ex-

tract the necessary information which are inserted in their respective tables in a

database.

146

5.2.2 Method of Detecting Events

An event is defined as any behavior of a third-party app on the device that is

considered suspicious. The types of events that can be issued by a third-party

app Â on a device are those related to:

• Â has high CPU usage - ECPU

• Â has high RAM usage - ERAM

• Â has high bandwidth consumption - ETR

• Â is opening long-term connections - ECA

• Â is opening a relatively large number of connections - ECC

As previously discussed, readings take place on the device at specific time

intervals (TCxN, TTR, and TCM) where each interval is related to one of the mon-

itored features on the device. Every reading for app Â that is collected by Crow-

dApp v2.0 at any time is compared to a feature threshold. The defined feature

thresholds are:

• CPU feature threshold - FThCPU

• RSS feature threshold - FThRSS

• Bytes sent feature threshold - FThTxB

• Bytes received feature threshold - FThRxB

• Packets sent feature threshold - FThTxP

• Packets received feature threshold - FThRxP

147

• Connection age feature threshold - FThCA

• Connection count feature threshold - FThCC

The above feature thresholds are computed by the server based on incoming

data from all user devices. They are stored in the database. A feature threshold

is computed as a tuple: [average value per feature per app which is then averaged

over all apps, standard deviation over all apps]. It is updated on a regular basis.

The computation takes place as follows. The server is constantly receiving logs

of different categories for all third-party apps on all user devices. It will compute

a feature threshold for each category of collected data for each third-party app.

For example, to compute the average value of FThCPU for WhatsApp, it takes

the average value of the CPU readings of WhatsApp from all user devices. This

average reading per feature (e.g. CPU) per app (e.g. WhatsApp) is averaged with

other readings for the same feature (CPU), but for different apps (e.g. Facebook,

Dailymotion). The resulting average is the first tuple in the feature threshold.

Of course, since data related to the CPU consumption of apps is constantly being

sent from user devices, the value of this average will keep changing in the database

on the server side. To make sure that all CrowdApp clients have an updated value

of this feature threshold as well as all other feature thresholds, a control bit is

added to CrowdApp v2.0. This control bit is read every time CrowdApp uploads

data to the server. If the values of the feature thresholds have been updated

since the last time CrowdApp uploaded data to the server, the new values will be

downloaded to the user’s device. This process ensures that at any point in time,

all CrowdApp users have updated values of the feature thresholds stored on their

devices. And they receive the updated values when a connection has already

been set up with the server to upload logs. This way, there is no need to open

148

a connection specifically for the purpose of downloading new feature threshold

values, and thus saving the lifetime of the device’s battery.

Having updated feature threshold values, every time CrowdApp collects a

new reading for one of the features of third-party apps, it compares this reading

to the respective feature threshold at a specific time interval TComparison. The

comparison is done by calculating the z-score, REV, of the reading with respect

to the average and standard deviation of the feature threshold. A pseudoran-

dom number is generated in Python using the basic random() function which

generates a random float uniformly in the semi-open range [0.0, 1.0). Python

uses the Mersenne Twister as the core pseudorandom number generator which

produces 53-bit precision floats and has a period of 219937 − 1. It is one of the

most extensively tested random number generators [145]. The resulting random

number is compared against REV. If REV is higher than the generated random

number, an event is triggered on the device. The event is defined by the ID of

the third-party app that triggered it, the feature being considered (CPU, RSS,

TxBytes, etc.), the ID of the user whose device issued the event, and a timestamp

of when the event was triggered. When an event is triggered, CrowdApp v2.0 will

instantly attempt to send it to the server regardless of the network type. Sending

an event to the server has low bandwidth consumption. Since it is a JSON string

with 4 fields, the event payload is less than 1 KB which means that there is no

need to set the constraint that events can only be sent when the network type is

WiFi. Also, events are indicative of suspicious behavior on the device and should

therefore be sent directly to the server assuming that the server is reachable. A

flag that the server is reachable is set at each connection change.

The process of comparing new readings to feature thresholds is handled using

a flag which is controlled by the server. The server can start or stop the process

149

of feature comparison by CrowdApp at any time by simply setting this flag which

will, in turn, get automatically updated at the client side whenever an upload

process is started.

On the server side, an event rate per feature per app is computed and updated

every time a new event is triggered. The event rate is computed as the ratio of the

total number of events received per feature per app divided by the total possible

number of events that can be received in a specific time. There are two cases

to consider. The first case is when an app has not been rated before. The time

period to consider is the difference between the time when the last event was

received and the time when the first event was received. The second case is when

an app has been rated before. In that case, the time period to consider is the

difference between the time when the last event was received and the time when

the first event after the last rating of the app was received. After computing the

time period, the total possible number of events is defined as follows:

∑
EventsPossible =

∑
UsersÂ ×

TTotal

TComparison
(5.1)

The time period is divided by the comparison interval for the feature in con-

sideration. This interval is set to be same for all apps. Assuming an event is

triggered every time a comparison takes place, then this ratio will give us the

total possible events that can take place on one user device. If we multiply this

value by the total number of users who have the app in consideration installed

on their device, the result will be the total possible events that can be issued in

the computed time period. The event rate is then computed as follows:

150

EventRate =

∑
Events∑

EventsPossible
(5.2)

After computing the Event Rate, another pseudorandom number is generated

using Python’s random() function. If the value of the computed Event Rate is

higher than the value of the random number, an alarm will be fired and the game

process will be triggered by the server. In the next subsection, we describe the

game process.

Game Process

When playing a game versus app Â, the reputation of Â and the variables of the

game model are first fetched from the database. Then, the average reputation of

all the users who issued events for Â is computed from the database and stored

as β. The reputation threshold is then defined as in Chapter 3 as follows:

RT =
(gn + LN + CD) − β(GN + LN)

(gn + LN + `m − LM) − β(GN + LN −GM − LM)
(5.3)

The server compares Â’s reputation to its reputation threshold. If Â was not

rated before or if Â’s reputation is lower than its reputation threshold, the system

defends against it. It selects from the database the particular question that is

related to the feature which raised the alarm. The Start Asking Questions flag is

checked. If it is 1, the Questions table in the database is updated by inserting the

Question ID, App ID, Feature ID, and a timestamp, and the querying process is

triggered.

On the other hand, if Â was rated before and its reputation is higher than

151

its reputation threshold, its Reputation Counter value is incremented. The Rep-

utation Counter is a value that is stored in the database for every application.

When an app fires an alarm but its reputation is higher than its threshold, the

value of this counter increases. The ratio of the Reputation Counter to the max-

imum allowable counter value (which is also stored in the database) is computed.

A pseudorandom number is generated again using the random() function in

Python. If the resulting value is lower than the computed ratio, the system will

defend against the app even though its reputation is high enough (the same pro-

cess takes place as in the case when the reputation is lower than the reputation

threshold). After defending against it, it will reset its Reputation Counter value

back to 0. This is to ensure that if an app is behaving suspiciously on the device

and it just happens that its reputation was wrongfully increased at some point

in time, there is a chance for it to be detected later on. If we don’t include this

counter value, then it will be impossible to detect a suspicious app once and if

its reputation increases to a certain value.

In the next subsection, we will discuss the querying process in detail which

is the system’s approach of defending against a suspicious app by referring to a

group of respondents from the crowd.

5.2.3 Querying Process

When the rating process is triggered on the server side, the first action that takes

place is selecting the users to query. The selection process is based on many

factors. First, only the users who have the app installed on their devices are

taken into consideration. From this subset of users, those whose devices did not

issue events related to the app and feature in question are filtered out. From the

remaining subset of users, a user is chosen to be queried if he meets the below

152

conditions:

• The user should be active. If, at any point, a notification is sent to a user’s

device and the Firebase server indicated that the user token is inactive, the

user is considered no longer active.

• The user hasn’t been asked the same question regarding the same feature

for the same app in the past 24 hours.

• The user hasn’t been asked any question in the past hour.

• The total number of times that the user has been asked during that day

does not exceed the maximum allowable number of times that a user may

be asked in one day which is a value that is stored in the database and

updated as desired.

Another condition to consider before querying users is that the current time

should be between 10 am and 8 pm. This last condition was added to ensure that

CrowdApp does not send notifications to users during times which are considered

inappropriate for it will affect the quality of experience of CrowdApp v2.0 itself.

Note that if the app has not been rated before, then the initial set of users

includes all users who have the app installed and whose devices issued events.

However, if the app has been rated before, then the initial set of users will include

the users who have the app installed and whose devices issued events that took

place after the timestamp of the last time the app was rated.

After selecting the users to query, the server sends a push notification to their

devices. This push notification will contain three simple questions related to the

usage of the app when the event was triggered. The first question is related to the

behavior of this app on a user’s device. The second question asks for the user’s

153

confidence in the answer he gave to the first question. This reported confidence

is needed for the confidence-related aggregation techniques. Finally, the third

question asks the user what he believes the majority of users will reply to the

first question. The answer to this question is needed to apply the Surprisingly

Popular aggregation approach that was proposed by the authors in [139]. In

summary, the types of questions related to app Â that might be included in the

notification are:

• Â has relatively high CPU usage. The average value of its CPU time

consumption on your device is X which is Y times the norm. Is this behavior

considered normal? How confident are you of this answer? What do you

think the majority will reply?

• Â has relatively high RAM usage. The average value of its RAM con-

sumption on your device is X which is Y times the norm. Is this behavior

considered normal? How confident are you of this answer? What do you

think the majority will reply?

• Â is consuming a lot of down bandwidth. The average value of its band-

width consumption on your device is X which is Y times the norm. Is this

behavior considered normal? How confident are you of this answer? What

do you think the majority will reply?

• Â is consuming lot of up bandwidth. The average value of its bandwidth

consumption on your device is X which is Y times the norm. Is this behavior

considered normal? How confident are you of this answer? What do you

think the majority will reply?

• Â is opening long-term connections. The average value of the connection

154

age opened by Â on your device is X which is Y times the norm. Is this

behavior considered normal? How confident are you of this answer? What

do you think the majority will reply?

• Â is opening a relatively large number of connections. The average value

of the number of connections opening by Â on your device is X which is

Y times the norm. Is this behavior considered normal? How confident are

you of this answer? What do you think the majority will reply?

The average value of the feature in the above six questions is the mean of

all the readings recorded by CrowdApp related to this feature and this app in

the time period considered for the targeted user. The norm is the mean of all

the readings recorded by CrowdApp related to this feature and this app on all

user devices. Thus, in addition to providing the user with his average value of

the recorded feature that triggered the event, CrowdApp v2.0 will also display

the average value across all user devices so that the user is more informed before

replying.

An example of the push notification that is sent to selected users is shown in

Figure 5.2. The user’s reply to the first question is Yes, No, or I don’t know. His

reply to the confidence question is any value between 0 and 5 in steps of 0.25.

And his reply to the third question is Yes, No, The majority will reply with “I

don’t know”, or I don’t know what the majority will reply. In addition, another

link button labeled “I don’t understand the question” will provide the users with

detailed explanations in case they do not understand the question. Explanations

for the possible questions regarding app Â are:

• The CPU (Core Processing Unit) is the brain of your device. CPU usage

refers to your device’s processor and how much work it is doing. Every

155

app on your device will use a percentage of your CPU for a period of time.

Some apps can use up a large amount of CPU without you even knowing it.

This usually results in slow performance, freezing, and sudden shutdowns

of your device. CrowdApp detected that Â is consuming a relatively large

amount of your device’s CPU. If you believe this is a normal behavior for

Â, click on ‘Yes’. Otherwise, click on ‘No’. If you still don’t understand the

question or you’re simply not sure of the answer, click on ‘I don’t know’.

• When your device runs any application, it stores temporary files in RAM

(Random Access Memory). All running applications on your device con-

sume varying quantities of RAM. Clearing the RAM on a device improves

performance by freeing up space so that the device can run faster. Â has a

relatively high memory usage meaning that it is taking up a large portion

of your device’s RAM. This means that Â might be responsible in part for

degrading the performance of your device and causing it to run slower. If

you believe this is a normal behavior for Â, click on ‘Yes’. Otherwise, click

on ‘No’. If you still don’t understand the question or you’re simply not sure

of the answer, click on ‘I don’t know’.

• Â is receiving a suspiciously large number of packets/bytes. This means

that data is being downloaded to your device. By data, we mean images,

videos, music files, programs, etc. This may result in draining your data

plan. If you believe this is a normal behavior for Â, click on ‘Yes’. Oth-

erwise, click on ‘No’. If you still don’t understand the question or you’re

simply not sure of the answer, click on ‘I don’t know’.

• Â is sending a suspiciously large number of packets/bytes over the Internet.

This means that data is being uploaded from your device. By data, we mean

156

images, videos, music files, etc. This may result in draining your data plan.

If you believe this is a normal behavior for Â, click on ‘Yes’. Otherwise,

click on ‘No’. If you still don’t understand the question or you’re simply

not sure of the answer, click on ‘I don’t know’.

• Apps running on your device can open connections with several IP addresses

at a time. CrowdApp is constantly monitoring these opened network con-

nections for every app. This is useful to detect when hidden apps are

connecting to remote servers or when an app has a suspiciously large num-

ber of opened connections. We have detected that Â is one of those apps

with a large number of opened connections. If you believe this is a normal

behavior for Â, click on ‘Yes’. Otherwise, click on ‘No’. If you still don’t

understand the question or you’re simply not sure of the answer, click on

‘I don’t know’.

• Apps running on your device can open connections with several IP addresses

at a time. CrowdApp is constantly monitoring these opened network con-

nections for every app. This is useful to detect when hidden apps are

connecting to remote servers or when an app has suspiciously long-term

opened connections. We have detected that Â is one of those apps with

long-term opened connections. If you believe this is a normal behavior for

Â, click on ‘Yes’. Otherwise, click on ‘No’. If you still don’t understand the

question or you’re simply not sure of the answer, click on ‘I don’t know’.

When the user provides a reply, it will be sent directly to the server. If no

Internet connection is available, the answer will be saved locally and sent once

an Internet connection becomes available.

157

Figure 5.2: Sample CrowdApp v2.0 push notification

158

Rating Process

After sending push notifications to the selected users, the server waits for a sleep

period which is stored in the database. This sleep period (e.g. one hour) is set

to give a chance for most users to send their reply back to the server. At the end

of the sleep period, the rating process of app Â takes place.

The server selects all the user replies that were collected during the sleep

period. It computes the number of users who replied No, CNo, and the number

of users who replied Yes, CYes. The server discards all “I don’t know” answers

which relate to the current asked question. It also computes average weights of

the users who answered No in this round, AWNo, and average weights of the

users who answered Yes in this round, AWYes. These values are stored in a

specific table in the database. Depending on the aggregation technique that will

be employed by the server, these weight values will differ.

In the case of Plurality, the weights of all users will be set to 1 giving the

same advantage to all user replies.

In the case of the Confidence-Weighted approach, the weights will be the

reported confidence scores of the users whose replies we are taking into consid-

eration. In this case, we are weighing the reply of every user by the normalized

value of his reported confidence score thus giving higher weights to users who are

more confident in their replies.

In the case of the Maximum Confidence approach, the weights of the selected

users will be set to one. However, the selected users will be those who reported

a maximum confidence value. In this case, we are selecting a subset of users who

are most confident of their replies and aggregating the replies from this subset in

the same way as in Plurality voting.

In the case of the Competence-Weighted approach, the weights will be the

159

derived competence scores from an assumed pre-selected Dunning-Kruger curve

that represents our crowd as was described in Chapter 4. Based on the reported

confidence score of every user, we derive his competence score from the DK plot

and then use this competence value to weigh his reply thus giving more competent

users higher weights.

To compute the new value of Â’s reputation, the following takes place:

•
∑
CY is computed - This is the summation of the multiplication of the

number of users who replied Yes by their average weights in all previous

rounds from the beginning of time.

∑
CY =

∑
(CYes ×AWYes) (5.4)

•
∑
CN is computed - This is the summation of the multiplication of the

number of users who replied No by their average weights in all previous

rounds from the beginning of time.

∑
CN =

∑
(CNo ×AWNo) (5.5)

• RÂ is computed - This is the updated value of Â’s reputation for a selected

feature. It is based on all previous rounds where user replies where collected.

This value is not normalized.

RÂ =

∑
CY −

∑
CN∑

CY +
∑
CN

(5.6)

• RÂ is stored in the database as the reputation of the app for the selected

feature.

160

• An overall reputation, ORÂ, is computed as the average reputation of the

app over all its feature reputations.

• Normalized reputations for all apps in the database are updated every time

an app’s reputation is updated. The normalization takes place as shown

in the equation below where NRÂ is the normalized reputation of app Â.

Rmin is the smallest reputation value in the database, and Rmax is the

largest reputation value in the database.

NRÂ =
ORÂ − Rmin
Rmax − Rmin

(5.7)

• Normalized reputations are updated in the database Apps table.

The expertise of the users who sent replies to the server is also updated. Users

whose replies agree with the global majority will have their Correct Detection Counter

(CDC) incremented. And users whose replies did not agree with the global ma-

jority will have their InCorrect Detection Counter (IDC) incremented. When the

CDC or IDC value of any user is updated, normalized values of all user expertise

are updated as well. First, we compute the sum of CDC and IDC for all the users

and record it as total DIFF. DIFF per user is then calculated as follows:

DIFF =
(
CDCÛ − IDCÛ

)
×
CDCÛ + IDCÛ
totalDIFF

(5.8)

DIFFmax and DIFFmin are selected from the resulting DIFF values of all

users. The normalized user expertise of user Û is computed as shown below and

stored in the database:

161

NCEÛ =
DIFFÛ −DIFFmin
DIFFmax −DIFFmin

(5.9)

5.2.4 Implementing Feature Collection

In the following subsections, we describe the process of collecting different features

that are related to specifications of third-party apps on devices as well as their

usage statistics.

CPU, RAM, and Usage Stats

To collect CPU and RSS readings, the Linux top command is run on a user’s

device every TCM seconds. A sample output is shown in Figure 5.3. The output

is then parsed as follows. Only the tasks that are owned by the effective user

(UIDs that begin with -u0 in the figure) are considered since our concern is

with third-party applications installed by the user. The values for CPU and

RSS are extracted for each running task (identified by the value under Name in

Figure 5.3) and stored in the respective log files on the device. PCY is either fg

(task is in foreground) or bg (task is in background). If one of the third-party

apps is running in the foreground, its usage time value is updated by adding

TCM seconds to it. Additionally, if this third-party app wasn’t previously in the

foreground, its opening frequency value is incremented by 1.

Traffic Stats

The TrafficStats class in Android is used to collect TxBytes, RxBytes, TxPackets,

and RxPackets for every third-party app (defined by its UID) on a user’s device.

Since traffic stats are cumulative, every TTR seconds, the four previous traffic

162

Figure 5.3: Sample output of Linux top command

values of every app are subtracted from the four newly collected traffic values.

The differences in TxBytes, RxBytes, TxPackets, and RxPackets are logged in

their respective binary files on the device.

Connection Stats

To collect connection stats, the Linux netstat command is run every TCxN sec-

onds. A sample output is shown in Figure 5.4. The output is then parsed to get

the list of protocols that are being used. In the example shown in Figure 5.4,

tcp and tcp6 are used. Then for each available protocol in the netstat output,

CrowdApp v2.0 reads the corresponding file at /proc/net and extracts connec-

tion information. The result is further parsed to get the source IP, source port

number, destination IP, and destination port number. The UID is also extracted

which gives us the corresponding app name. This process repeats every TCxN

seconds. If the same connection (defined by the app name, source IP, source

port number, destination IP, and destination port number) persists after TCxN

163

Figure 5.4: Sample output of Linux netstat command

seconds, its Age value is updated by adding TCxN seconds to it. Only when a

connection ends, it is logged in the proper binary file on the device to ensure that

there is no redundancy in logging the connection stats. For every third-party

app, the total number of opened connections is counted where two different con-

nections will differ in at least one of the defining elements (source IP, source port

number, destination IP, destination port number, and protocol).

Screen Activity

To monitor the screen activity, a broadcast receiver is used to detect when the

screen is switched on or off. The receiver calls a method to log the screen activity

to binary backup files.

Install Period

Upon installation of CrowdApp v2.0, the install time of all currently installed

third-party apps is collected using the PackageManager class in Android which

164

retrieves information related to packages on the device. Additionally, a broadcast

receiver is used to detect when a new package is installed on the device and

record the time it was added. Another broadcast receiver is used to detect when

a package is uninstalled and record the time it was removed. The install and

uninstall time (if any) of all third-party apps are sent to the server. The install

period of every app on a user device can then be computed as the difference

between these two values.

Even though reading stats from the device takes place every TCM, TTR, or

TCxN seconds, however, the process includes running Linux commands and pars-

ing their outputs, reading stats from files on the device, and listening to broadcast

receivers. The resulting processing is minimal and this is shown in CrowdApp’s

power consumption results in a following subsection.

5.2.5 App Permissions

To achieve the above functionalities, the permissions that are requested by Crow-

dApp are:

• WRITE EXTERNAL STORAGE to store collected logs on the device

• READ EXTERNAL STORAGE to read logs stored on the device

• MODIFY EXTERNAL STORAGE to modify logs stored on the device

• RECEIVE BOOT COMPLETED to restart the service whenever the de-

vice is booted

• BATTERY STATS to hold off sending logs when the device’s battery is low

• INTERNET to receive questions and send replies and log files to the server

165

• ACCESS NETWORK STATE to detect when the connection on the device

changes

• ACCESS WIFI STATE to send log files only when the device is connected

to WiFi

5.3 Server Side

For testing purposes, the backend was operating on a virtual machine with the

following specifications:

• OS - Ubuntu 14.04 64-bit

• RAM - 2048 MB

• CPU - Single Thread Core i5 @ 2.67 GHz

• Web Server - Apache 2.4.7

• PHP Version - 5.5.49

• MySQL Version - 5.5.52

5.3.1 MySQL Database

Every user’s ID, his generated username and Firebase token, his device’s OS

version, reported IT knowledge, his computed reputation, along with other entries

related to threshold and interval updates are all stored in Users table.

Apps’ names, package names, final reputation, final normalized reputation

(which is shown to users of CrowdApp v2.0), and the reputation counter are

stored in Apps table in the database. In app ratings table, we store every instance

166

of an app rating, that eventually averages out to the final reputation, along with

a timestamp of when the rating took place. Every instance is in fact the result of

aggregating user replies to a question. Note that every app will have a separate

app rating per feature and the final app reputation is the average of the final

values of the per-feature app ratings.

The table user apps stores the ID of every user along with the IDs of all of his

installed third-party apps. In addition, every app is stored with two timestamps,

one for its installation data, and another for its uninstallation data, if any.

The table app usage stores features related to the usage time and opening

frequency of all third-party apps. The table connection count stats stores con-

nection count per app and connection stats stores the age. CPU and memory

stats are stored in cpu memory stats. Every entry in the above tables is stored

with a timestamp. All entries related to traffic are stored in the table traf-

fic stats along with their respective timestamps. Finally, every time the screen

on a user device changes its status between ON and OFF, an entry is added in

the screen activity table along with the user id and a timestamp.

Feature thresholds are stored in the features table and the different intervals

(when to collect data, when to upload files, etc.) are stored in the intervals table.

Every fired alarm along with user id, app id, feature id, timestamp, difference

between current time and previous alarm, value of the feature that triggered the

alarm, and its relation to the norm are stored as entries in the alarms table. The

table questions stores every question that is sent out to the users along with the

respective app id of the app that originally fired the alarm and the feature id

of the feature under consideration. Every question is stored with a timestamp.

Another table called user questions stores in every entry the question id and the

user id of every user that the question was sent to along with a timestamp of

167

when the user question was sent. Replies from users are stored in user replies

along with the user id, the question id, the ID of the reply (Yes, No, etc.), the ID

of the aggregated reply, the reported confidence of the user, the user’s answer to

the surprisingly popular question, and a timestamp of when the user submitted

his reply.

5.4 System Performance

After monitoring the machine for an hour, for a single user communicating with

the system, the backend process was consuming around 0.46% of CPU and 2.9%

of RAM. Measurements were taken using the top command where we monitored

both the Apache server user ‘www-data’ and the MySQL user “mysql”.

As for CrowdApp v2.0, we conducted an experiment where it was installed

on 4 devices (Samsung Galaxy S5, Samsung Galaxy S7, Samsung Galaxy Tab

A, and Sony Xperia Z3) for a period of 3 hours. Logs were collected from the

devices, notifications sent, and replies gathered from the users. At the end of

the experiment, average values related to the performance of CrowdApp were

computed and are shown in Table 5.1. The power usage over 3 hours averaged

around 14 mAh (which is less than 1% of battery capacity on modern devices).

Average RAM usage was 32 MB, average data usage was 0.325 MB, the app’s

average storage size was around 30 MB, and its average file size was around 375

KB. These values demonstrate the feasibility of our approach in collecting data

from devices and gathering input from the crowd which will ensure that users

will not be discouraged to install the app on their devices.

168

Device Model Number Average RAM Usage (MB) Maximum RAM Usage (MB) Data Usage (MB) File Size (KB) Storage (MB) Consumed Battery % Power Used (mAh)
Samsung Galaxy S7 SM-G935FD 54 107 0 807 31.98 1 22

Samsung Galaxy Tab A SM-P550 6.6 26 0.39 126 29.02 0 6
Sony Xperia Z3 D6633 32 62 0 155.3 29.09 0 9

Samsung Galaxy S5 SM-G900F 36 66 0.91 412 29.02 1 19
Average 32 65.25 0.325 375 30 0.5 14

Table 5.1: CrowdApp v2.0 performance specs

169

Chapter 6

Results and Analysis

Once CrowdApp v2.0 was implemented, we were ready to begin the experiment

and have users download the application to their devices. However, considering

that the application asks users questions related to the behavior of apps on their

devices, our experiment is considered one which involves human subject testing.

In addition, CrowdApp v2.0 collects user data from devices. Even if the collected

data does not violate any privacy requirements, it is still a major concern to

users. Before contacting possible participants, we had to get approval from the

Institutional Review Board at AUB.

The approval process is described in the following section. Then, we briefly

describe the experiment and present a list of the collected data. Finally, we

present our results related to CrowdApp’s performance in classifying apps given

different aggregation techniques.

170

6.1 Institutional Review Board

The role of the Institutional Review Board at AUB is to safeguard the rights

and welfare of human subjects who participate in research activities conducted

under the support of AUB and AUBMC. Since our designed application queries

participants regarding apps on their devices, we submitted a request to IRB to

be able to proceed with our experiment. We requested approval to send an email

to the student body in the Faculty of Engineering and Architecture. The email

invitation script is shown below:

I am inviting you to participate in a research study about detecting mobile

malware on Android phones through crowdsourcing.

You will be asked to install an app on your Android device. The app will

be running transparently in the background. Throughout the period of the

experiment, you will occasionally receive notifications from the app in the

form of Yes/No questions. These questions will be related to the behavior

of other apps that are installed on your device and whether or not you

think this behavior is considered normal for the app in question. Note that

if your device is not compatible, you will be notified upon installation and

would not be able to be part of the study.

Your participation should take approximately two months. Please under-

stand your participation is entirely on a voluntary basis and you have the

right to withdraw your consent or discontinue participation at any time

without penalty. You are eligible for this study if you are aged over 18.

The research is conducted online and is hosted on an AUB server.

A draw on a smartphone will be performed at the end of the experiment.

171

If you would like to participate, please follow this link before November 3

and fill it out accordingly.

If you have any questions about this study, you may contact:

Farah Saab fws02@mail.aub.edu +961 70 904231

Prof. Imad Elhajj ie05@aub.edu.lb

In addition, we were required by the IRB to submit a consent form that users

have to agree to before participating in the experiment. The consent form should

clearly explain to users what the experiment is intended for and how results from

it will be used. The body of the consent form is shown next:

Hello. My name is Farah Saab. I am a graduate student in the Department

of Electrical and Computer Engineering at AUB. I would like to invite

you to participate in a research study about detecting mobile malware

on Android phones through crowdsourcing. The recruitment of research

participants will be done via an email sent by the research team through

the ACPS. Our targeted sample size is around 200 participants. Only

students aged 18 and above are eligible for this study.

Before we begin, I would like to take a few minutes to explain why I am

inviting you to participate and what will be done with the information

you provide. You will be asked to install an app on your Android device.

The app will be running transparently in the background. Throughout the

period of the experiment, you will occasionally receive notifications from

the app in the form of Yes/No questions. These questions will be related

to the behavior of other apps that are installed on your device and whether

or not you think this behavior is considered normal for the app in question.

You are free to send us any questions about the experiment.

172

I am doing this experiment as part of my studies at AUB. The application

that you will install will be collecting non-private data from your devices

such as the CPU and memory consumption of your third-party apps. The

collected data will be used to monitor and detect abnormal app behavior on

Android devices. The results from this experiment will constitute a major

part of my dissertation. I may also use this information in articles that

might be published, as well as in academic presentations. Your individual

privacy and confidentiality of the information you provide will be main-

tained in all published and written data analysis resulting from the study.

Please note that our developed app does not have access to any private

data on your device (e.g. messages, media files, etc.). It does not collect

any private information related to the user of the device. When you install

the app, you will be registered on our server using the hash of a generated

Google Firebase token to ensure your anonymity. We will not even know

to whom the data on our server belongs to. Users who opt to participate

in our experiment will be anonymous to us as well. We do not get their

names, age, gender, or any other identification information related to them.

The non-private data that we collect will also be encrypted before being

uploaded to the server. Also note that all collected data will be hosted on

an AUB server.

Your participation should take approximately two months. Please under-

stand your participation is entirely on a voluntary basis and you have the

right to withdraw your consent or discontinue participation at any time

without penalty. Refusal to participate or deciding to withdraw from the

study will involve no penalty or loss of benefits to which you are otherwise

173

entitled and neither will it affect your relationship with AUB. Also note that

the app was designed to consume an insignificant amount of your device’s

resources. Its CPU, memory, battery consumption, data consumption, and

file storage size are minimal. As payment for your participation, a draw on

a smartphone will be performed at the end of the experiment period.

Please note that we will only keep the provided phone numbers till the

end of the experiment period, after which they will be deleted. During

the experiment period, we will only use the phone numbers for occasional

notifications related to updating the app or uninstalling it from your device.

The draw on the smartphone will be done using your phone numbers. The

participant of the selected number will then be contacted to receive the

phone.

If you have any questions regarding the Android application or the study

in general, you may contact me at fws02@mail.aub.edu or by telephone

(70-904231). You may also contact Prof. Imad Elhajj at ie05@aub.edu.lb

for any of your concerns.

If you have questions about your rights as a participant in this research,

you can contact the IRB office at AUB at irb@aub.edu.lb, by telephone

(01-350000 - 5445) or by fax (000961 1 738025).

6.2 Experiment Overview

After getting approval from the Institutional Review Board, an invitation email

was set to around 1,400 students from the Faculty of Engineering and Architec-

ture. Fifty participants signed up to participate in the experiment by agreeing to

174

the consent form and providing their phone numbers. After distributing Crow-

dApp v2.0 via WhatsApp, 33 users out of 50 installed it on their devices. The

server specs are shown below:

• VMware Virtual Platform

• OS - Ubuntu Linux 16.04 kernel: 4.4.0

• CPU - x64 Intel(R) Xeon(R) CPU X5650 @ 2.67GHz

• Memory - 4GiB

• Disk - SCSI Disk 110GiB

We ran the experiment for a period of six months during which CrowdApp

v2.0 was collecting all features related to app and device usage while monitor-

ing events generated by apps, asking questions, gathering replies and confidence

scores, and computing app reputations based on five different aggregation tech-

niques. During this six-month period, each process corresponding to one of five

aggregation techniques was kept running for around ten days which was enough

for most app reputations to converge.

6.3 Collected Data

Throughout the ten days of every process, the number of events varied and the re-

sulting questions asked varied as well. The average event count per day across the

five aggregation techniques was around 8,000. The average number of questions

asked was around 70 and the average reply count was 40 giving an overall reply

rate of slightly over 50%. We show the resulting event count, question count,

175

Figure 6.1: Rates of Plurality experiment

reply count, and rating count in each of the five experiments for the different

aggregation techniques in Figures 6.1, 6.2, 6.3, 6.4, and 6.5, respectively.

In addition, all other app features were collected throughout the entire six-

month experiment period. These features included traffic stats, CPU and memory

stats, usage time and opening frequency of apps, the screen activity of a user’s

device, etc. The size of the resulting database was over 2.5 gigabytes. Some

of the tables were kept throughout the experiment period. Others were reset

every time a new aggregation technique was tested. Tables that were reset at

the beginning of every process’s experiment were Apps that has the final apps’

reputations relative to the current process, Users that has user’s reputations,

alarms, questions, and replies tables.

176

Figure 6.2: Rates of Confidence-Weighted experiment

Figure 6.3: Rates of Maximum Confidence experiment

177

Figure 6.4: Rates of Competence-Weighted experiment

Figure 6.5: Rates of Surprisingly Popular experiment

178

6.4 Results of Aggregation Performance and App

Classification

The two main objectives behind our experiment are related to the rating process.

First, we want to study the performance of the different aggregation techniques

when used in our system and compare the results to those in Chapter 4. Second,

we want to study the composite ratings of apps that are provided by CrowdApp

v2.0 at the end of the experiment period. We begin this section by describing how

we computed the utility scores of apps offline and discussing what more needs to

be done in this area. We then discuss the computed behavior scores of apps and

compare the different scores resulting from each of the aggregation techniques.

We further analyze the performance of these techniques with another controlled

experiment in a following subsection.

6.4.1 Utility Scores

We computed the utility scores for apps that have been installed on at least four

devices. We excluded apps that are from unknown sources since they do not have

Google Play scores that we can use for comparison with our method’s scores. We

were left with 29 apps in total. For each app, we computed five scores.

The first score is the average opening frequency. It is computed by taking

the total opening frequency per app per user and dividing it by the installation

period of this app on this user’s device. The result is then averaged over all users

who have this app. After getting this score for all apps, we normalize it to the

range [0 5].

The second score is the average usage time per opening frequency which is

computed by simply dividing the total usage time per user per app over the total

179

opening frequency per user per app and then finally averaging over all users who

have this app. After getting this score for all apps, we normalize to the range [0

5].

The third score is the install count per app which is simply the number of

users in our experiment who have this app installed on their device. After getting

this score for all apps, we normalize to the range [0 5].

The fourth score is the utility score of the app which is the average value of the

first three scores. It is a score in the range of [0 5] that takes into consideration

the average opening frequency of the app, the average usage time per opening fre-

quency, and the relative install count on user devices. It is a good representation

of the overall utility of the apps given the information at our disposal.

The fifth score is the Google Play score of all apps. To get this score, we first

get the ratings of apps as shown on Google PlayStore. Then for every app, we

also get the number of reviews that resulted in its rating. The review count for

apps is then normalized to the range [0 1] and the resulting values are added to

the rating of the app. The resulting value is the Google Play score. This is done

as a means of weighing this app rating by considering the strength of the rating,

i.e. how many users agree on the overall rating of this app.

In Table 6.1, we show the five computed scores for the 29 apps. The first

four scores were computed from data collected in our experiment and the fifth

score was computed based on data collected from Google PlayStore. The Pearson

correlation between the utility scores and the Google Play scores is 0.72 which

means there is a strong positive correlation and our technique can be used to

infer the general utility of apps based on data collected from the devices related

to app usage. It is worth noting that the data for utility score computation that

was used here with CrowdApp v2.0 is different than the data used in Chapter 3

180

App Score 1 Score 2 Score 3 Utility Score Google Play Score
WhatsApp 2.65 0.11 5 2.59 5.28546

Clash of Clans 0.22 5 0.83 2.02 5.17438
DU Recorder 5 0.02 0.83 1.95 4.83331

Facebook 2.21 0.19 3.33 1.91 5.1
Anghami 1.2 1.82 2.08 1.7 4.50938

Candy Crush Saga 0.1 3.64 1.46 1.73 4.68706
Messenger 1.24 0.09 3.33 1.55 4.72533
Truecaller 2 0.2 2.29 1.5 4.60018
Instagram 0.09 0.09 2.5 0.89 5.35229
Telegram 0.98 0.05 0.83 0.62 4.43998

Skype 0 0.04 1.67 0.57 4.23406
Translate 0 0.04 1.46 0.5 4.47344
Zomato 0 0.26 1.25 0.5 4.30653
Dropbox 0 0.46 1.04 0.5 4.42374

Telly 0 0 1.25 0.42 4.00043
HP Print Service Plugin 0 0 1.25 0.42 4.41876

OLX Arabia 0 0.07 1.25 0.44 4.50268
Touch 0 0.12 1.04 0.39 4.3

Google Play Games 0 0 1.04 0.35 4.39171
Outlook 0.02 0.05 1.04 0.37 4.34155

AliExpress 0.14 0.05 0.83 0.34 4.67573
Perfect Piano 0 0.09 0.83 0.31 4.21053

Twitter 0.03 0.02 0.83 0.29 4.4492
Photos 0.09 0.02 0.83 0.31 4.63897
Sheets 0 0.05 0.83 0.29 4.30628

Pinterest 0.08 0.01 0.83 0.31 4.65506
Viber 0 0.02 0.83 0.28 4.44502

Adobe Acrobat 0 0.01 0.83 0.28 4.33852
Snapchat 0 0 0.83 0.28 4.21772

Table 6.1: Computed utility scores using CrowdApp v2.0

with CrowdApp v1.0. The previous version of CrowdApp was designed for rooted

Android devices and therefore had access to several other app behaviors that are

not accessible with CrowdApp v2.0 that was not designed with the requirement

of a rooted device in mind. To this end, the utility score computation differed

slightly, however the approach is similar to what was done before.

6.4.2 Behavior Scores

In this section, we focus our attention on apps that were rated by CrowdApp v2.0

ten times or more. We do not show results for apps that were rated less than

181

that. Our assumption is that if we are to consider the resulting rating accurate, it

needs to be rated by a crowd of people. In this case, we consider rating instances

equivalent to crowd members and proceed accordingly. First, we show the alarm

distribution of some of the highest rated apps and comment on that. Then,

we consider 8 of these apps that were rated in the five different processes with

different aggregation techniques. We show their reputation convergence results

in each process.

Since it is not possible for us to know which aggregation method is giving the

most accurate results in the absence of the ground truth, we need to consider

other approaches. To this end, we describe the False Event Rate controlled ex-

periment that we performed in order to measure the performance of the different

aggregation techniques.

Alarm Type Distribution

In this section, we look at 9 of the highest rated apps throughout the entire ex-

periment process. These apps are WhatsApp, Facebook, Messenger, Telegram,

Pedometer, Candy Crush Saga, Clash of Clans, MiFit, and Popcorn Time. As

mentioned previously, alarms that can be generated are those related to connec-

tion age and connection count, high CPU and memory consumption, and a high

number of transmitted and received packets and bytes of data. We present the

results in four tables.

In the first table, we get the average of all the alarms that are related to traffic

(transmitted packets, received packets, transmitted bytes, and received bytes).

We sort the apps in order of decreasing traffic alarm count as shown in Table 6.2.

We notice that the three COMMUNICATION apps, Telegram, WhatsApp,

and Messenger, are resulting in the highest traffic alarm count. This is an

182

Sort by Traffic
Application Average
Telegram 546

WhatsApp 516
Messenger 380
Facebook 341

Clash of Clans 148
Candy Crush Saga 41

Popcorn Time 26
Pedometer 9

MiFit 0

Table 6.2: Average of traffic-related alarms

Sort by CxN
Application Average

Popcorn Time 8061
WhatsApp 3677

MiFit 3550
Messenger 3451
Facebook 2325

Candy Crush Saga 1404
Telegram 1121

Clash of Clans 763
Pedometer 333

Table 6.3: Average of connection-related alarms

expected result considering that these apps are also used for media sharing.

HEALTH AND FITNESS apps such as Pedometer and MiFit have the lowest

rate of traffic alarms. Clash of Clans has more traffic alarms than Candy Crush

Saga since the game can only be played online versus Candy Crush Saga which

has an offline option.

In the second table, we get the average of all the alarms that are related to

connections (connection age and connection count). We sort the apps in order of

decreasing connection alarm count as shown in Table 6.3.

We notice that Popcorn Time has the highest share of connection alarms.

183

Sort by CPU
Application Average

Candy Crush Saga 681
Clash of Clans 351

WhatsApp 267
Facebook 149
Messenger 98
Telegram 90

Pedometer 12
Popcorn Time 4

MiFit 1

Table 6.4: CPU-related alarms

This is expected since it is an app for P2P streaming and downloading of movies

and series and so it will open connections with several IP addresses at a time and

possibly for long periods. WhatsApp and Messenger have a higher connection

alarm rate than Telegram and MiFit has a higher rate than Pedometer which

might be due to issues such as syncing.

In the third table, we list alarms that are related to high CPU consumption

and sort the apps in order of decreasing CPU alarm count as shown in Table 6.4.

It is not surprising that the two games in our list are on top of the chart in

terms of CPU alarm count. Games are known to have high CPU consumption

and result in quick battery drainage. Pedometer and MiFit have the lowest rate.

WhatsApp has a higher rate when compared with Telegram and Messenger.

Finally, in the fourth table, we list alarms that are related to high memory

consumption and sort the apps in order of decreasing alarm count as shown in

Table 6.5.

As shown in the table, communication apps are generally consuming large

portions of devices’ RAMs which explains their high alarm rate. WhatsApp has

the highest share of these alarms. These apps are usually opened frequently

184

Sort by RAM
Application Average
WhatsApp 4052
Messenger 3165
Facebook 2382
Telegram 1436

Pedometer 1393
Candy Crush Saga 1250

Clash of Clans 922
MiFit 794

Popcorn Time 580

Table 6.5: Memory-related alarms

throughout the day and when the user exists, they remain opened in the back-

ground. Unless the user explicitly frees up memory on his device by forcefully

exiting, they will remain open.

Given these alarms and the replies that were collected from the users, we

present different rating scores in the next section.

Behavior Scores and Reputation Convergence

We provide five different behavior scores for every app from the list of high-

est rated apps. Each score is equivalent to one of five aggregation techniques.

App reputations and alarm rates were reset in the database at the end of every

experiment and they were recomputed every time. The results from the five ex-

periments are completely independent. We kept every experiment running until

app reputations stopped changing significantly (percentage change between con-

secutive rating instances ranged between 1% and 3%). The period was around 7

weeks on average for all experiments. The DK plot that was used to derive the

competence scores of the users in our experiment from their reported confidence

scores is y = 2x2 − 2.5x+ 1. We assumed a general crowd.

185

Figure 6.6: Behavior score convergence for selected apps given Plurality aggre-
gation technique

The behavior score is a value between -1 and 1 for every app. We present in

Figures 6.6, 6.7, 6.8, 6.9, and 6.10 five different behavior score results for each of

the five experiments and for the highest rated and most popular apps. In every

plot, the y-axis shows the reputation of the app and the x-axis shows the rating

attempt number.

We can see how at the end of every experiment, most app reputations have

converged to a certain value beyond which we expect it remains constant. How-

ever, the main result that we can take out from these figures is that every ag-

gregation technique results in a different rating for some or all of the apps. If

we consider Facebook for example, its resulting behavior score was 0.386 when

the aggregation technique was plurality, 0.694 when it was confidence-weighted,

0.451 when it was maximum confidence, 0.167 when it was competence-weighted,

and 0.196 when it was surprisingly popular. Note that not all apps have the same

number of rating instances within each process and among different processes.

The number of times an app gets rated depends on several factors, most impor-

tant of which being the event rate which in turn is affected by the usage time on

186

Figure 6.7: Behavior score convergence for selected apps given Confidence-
Weighted aggregation technique

Figure 6.8: Behavior score convergence for selected apps given Maximum Confi-
dence aggregation technique

187

Figure 6.9: Behavior score convergence for selected apps given Competence-
Weighted aggregation technique

Figure 6.10: Behavior score convergence for selected apps given Surprisingly Pop-
ular aggregation technique

188

WhatsApp Telegram Messenger Facebook Clash of Clans Popcorn Time MiFit Pedometer
PR 0.284 0.514 0.106 0.386 -0.636 -1 -1 -0.286
CF 0.499 0.365 0.861 0.694 -0.942 -1 -0.219 -0.529
MC 0.538 0.247 0.299 0.451 -0.829 -0.526 -0.657 -0.455
CP -0.213 -0.034 0.395 0.167 -0.84 -0.909 0 0
SP 0.909 0.757 0.628 0.196 -1 -1 -1 0

Table 6.6: Final app reputations given different aggregation techniques

every device. Final reputations of the rest of the apps are shown in Table 6.6 for

reference.

There is some agreement between the five techniques in certain cases. For

example, using any of the five aggregation techniques will result in a negative

rating for PopcornTime. However, in most cases, there is no agreement. What

we can conclude from this is that the aggregation technique that is used will have

a major effect on the resulting behavior scores of the apps being rated. And given

that the ground truth is not available in our scenario, what we have available up

to this point is not enough to assess the performance of the different methods.

We provide a solution to this issue in the following subsections.

False Event Rate Analysis

The objective behind our second experiment was two-fold. First, we wanted to

test whether or not our system is able to detect a sudden increase in event rate

which can result in cases where apps suddenly start to behave abnormally. In

case our system detects this change, we are also interested to measure how long

before such an app is detected. Second, we wanted to come up with a metric that

will allow us to judge which aggregation technique had a better performance.

The False Event Rate experiment was designed as follows: Alarms and app

reputations were once again reset in the database. For each aggregation tech-

nique, we chose one of the apps that it previously rated whose behavior score

189

was relatively high. The chosen apps were Airdroid which was given a score of

0.895 in the case of aggregating by plurality, Facebook which was given a score

of 0.694 in the case of confidence-weighted aggregation, WhatsApp which was

given a score of 0.538 in the case of maximum confidence aggregation, Messenger

which was given a score of 0.395 in the case of competence-weighted aggregation,

and Telegram which was given a score of 0.757 in the case of aggregating by the

surprisingly popular approach.

We repeated the five experiments, this time only for a period of two days.

We chose this small period of time because ideally we wanted to test whether

our system will be able to quickly detect any abnormal behavior. In every exper-

iment, we submitted false events for the app in question. To test the plurality

aggregation technique, we repeated the experiment exactly as the first time, but

we started submitting false events for the Airdroid app. We computed its average

event rate per hour from the previous experiment. We began the second exper-

iment with this average event rate as a base value and then doubled the false

events every hour. This resulted in an exponentially increasing event rate for the

Airdroid app under the plurality aggregation technique. The other experiments

were repeated similarly, but for every experiment, we only faked event rates of

the app that was chosen with an initial high reputation and the event rates of

other apps were left as they are.

In an ideal scenario, given that the user is using an app in the same man-

ner, these fake events are indicative of malicious behavior and should therefore

alarm our system and the user. We expect that by increasing this event rate, the

behavior scores resulting from a “good” aggregation technique should decrease

tremendously. It is worth noting that the generated false events in each exper-

iment were chosen randomly among the list of possible generated events (CPU,

190

memory, traffic, etc.).

We show in Figures 6.11 and 6.12 the change in the reputations of the five

target apps, both in percentage and absolute format. The x-axis represents rat-

ing attempts with time. Our first observation is that the competence-weighted

approach did not result in a steady decrease in the reputation of the apps as

should be the ideal case. One possible reasoning behind this is that the DK plot

that we chose to model our crowd is that of a general crowd. However, in our

case, the crowd is mostly comprised of students from the faculty of engineering at

AUB. This means that the majority of our users have the necessary background

in order to properly assess app behavior on mobile devices. Representing our

crowd with the assumption that most users will overestimate their competence

might not have been the best approach and this resulted in sub-optimal perfor-

mance of the competence-weighted approach. In order to study this effect on

the performance of our CP method, we went back to the “Who Wants to Be a

Millionaire?” dataset and repeated the competence-weighted approach, but this

time with a different competence-confidence plot. Our chosen plot is shown in

Figure 6.13. It is the mirrored function of the original DK plot that was used to

compute the competence scores in Chapter 4. It is clear that this plot does not

represent a general crowd whose members exhibit signs of the Dunning-Kruger

bias. After computing competence scores based on this plot, and weighing user

replies with these scores, the performance of this new competence-weighted ap-

proach was 85% (1591 correctly detected answers out of a total of 1881). This

performance is worse than both plurality at 90% and confidence-weighted aggre-

gation at 87% which agrees with the results in our CrowdApp v2.0 experiment.

In the case of the “Who Wants to Be a Millionaire?” dataset, the users were

from diverse backgrounds, and therefore, the crowd can be considered a general

191

Figure 6.11: Percentage change in app reputation in the False Event Rate exper-
iment

crowd. In our case, most users have a similar background that makes them good

candidates to answer the questions asked by CrowdApp v2.0, and therefore, they

cannot be considered a general crowd. A competence-confidence plot that works

for one type of crowd does not have to work for other types.

Another observation is related to the surprisingly popular approach. Not only

did the reputation not decrease, in later rating attempts, there is an increase in

the reputation of the target app. Another conclusion that can be made is that

the surprisingly popular aggregation approach does not have a good performance

compared to other approaches.

The best performance was that of the plurality aggregation technique. It

shows the largest decrease in the behavior score of its target app. The decrease

even follows an exponential trend similar to the trend in submitting false events

for the target app.

Next in line after the plurality approach is the confidence-weighted approach

which also gave good results. However, its performance lags behind that of plural-

ity aggregation. Similarly, the performance of the maximum confidence approach

192

Figure 6.12: Cumulative change in app reputation in the False Event Rate ex-
periment

Figure 6.13: Mirrored confidence-competence plot

193

lags behind the performance of both plurality and confidence-weighted. These

results agree with theorems in Chapter 4. We elaborate more on these results in

the discussion section.

Designed Malware App

Another experiment that we performed was to test whether our system can de-

tect a newly introduced malicious app after all feature thresholds and reputa-

tions have converged. We designed and implemented a malware app, MalApp,

and performed a controlled experiment where only a portion of the crowd (4

users) installed this app on their devices. MalApp generates abnormal activity in

terms of CPU usage, memory consumption, network connections, and bandwidth

consumption as follows:

• CPU stressing - We run 10 threads for 120 seconds. The threads are created

and called by the main thread on MalApp. During this 120-second period,

each thread keeps compiling a long regular expression.

• Memory stressing - We run a background service called by MalApp’s main

thread. The background service creates a new byte array [1024×1024×5]

and fills it with random values. For each creation of a new byte array, the

service allocates a memory block for the array. The service keeps allocating

new blocks as long as there is available memory. The allocation repeats

every 500 milliseconds until the memory is filled with random bytes.

• Network connections stressing - MalApp runs an AsyncTask to open N

connections to a predefined IP and keeps them open. The connections are

simple HTTP connections with a GET command. The number of connec-

tions is defined by the tester.

194

• Upload bandwidth stressing - In an AsyncTask, MalApp creates a text file

with random strings. The text file size is around 10 MB. Then, MalApp

uploads this file N number of times to a predefined IP. The number of

uploads is set by the tester.

• Download bandwidth stressing - MalApp runs an AsyncTask to download

a dummy file from a predefined IP. The file size is set by the tester. In our

experiment, it was around 100 MB.

The main activity of MalApp is shown in Figure 6.14. In Figures 6.15, 6.16,

and 6.17, we show the CPU and memory consumption of MalApp as monitored

on one of the user devices during the experiment.

After running the experiment for only a couple of hours on four randomly se-

lected user devices, several events were submitted by MalApp and questions were

sent to these four devices. Users of these devices were asked to participate in this

experiment over a period of a few hours and the employed aggregation technique

was plurality voting. We show in Figures 6.18, 6.19, and 6.20 screenshots of some

of the questions that were sent.

Users were asked to reply to these questions with the assumption that MalApp

was a flashlight app instead of a designed malware app. Our main objective from

this experiment was to check whether our system will manage to detect newly

introduced malicious apps that are installed on a portion of the devices. We were

able to show this through the questions that were being asked. However, we were

also interested in the users’ input to these questions assuming that this app was

not a controlled app designed by us, but rather a normal app that is supposed to

have a very basic functionality on their device such as a flashlight app. Of course,

all users agreed that such a behavior demonstrated by the questions that were

195

Figure 6.14: Main activity of MalApp
196

Figure 6.15: CPU and memory consumption of MalApp - part 1

Figure 6.16: CPU and memory consumption of MalApp - part 2

Figure 6.17: CPU and memory consumption of MalApp - part 3

197

Figure 6.18: Generated memory-related question for MalApp

198

Figure 6.19: Generated down bandwidth question for MalApp

199

Figure 6.20: Generated up bandwidth question for MalApp

200

received was not a normal behavior for a basic app. The resulting reputation of

MalApp decreased to -1.

6.5 Discussion

In terms of the behavior score, a major result that can be drawn from the ex-

periment with CrowdApp v2.0 is related to the performance of plurality voting

compared to other aggregation techniques. Plurality was shown to perform better

than confidence-weighted and maximum confidence which agrees with the results

in Chapter 4. We also reached a similar conclusion here concerning the better per-

formance of confidence-weighted techniques compared to maximum confidence.

In terms of the competence-weighted approach, our main conclusion is that

the representation of the crowd is one of the main issues that needs careful con-

sideration. A competence-confidence plot that works for one crowd does not

necessarily work for other types of crowds as was shown in the simulations in

Chapter 4 versus the experiment results in this chapter. A proper crowd repre-

sentation is one of the major requirements when using our competence-weighted

technique.

Our system was shown to detect abnormal app behavior in a small amount

of time. Plurality, confidence-weighted, and maximum confidence approaches

resulted in decreased app reputations after only two days. This means that our

system is able to detect abnormalities in the network. It also reflects how users in

our crowd are aware of the functionality of their apps and are rating accordingly

rather than just answering questions randomly.

201

Chapter 7

Conclusions and Future

Directions

The large variety of mobile apps brought along considerable malware that has

infected millions of Android devices throughout the years. Moreover, the number

of written reviews which convey useful information regarding both utility and

maliciousness of apps is fairly limited. And for these reviews to be reliable, a

user will have to read a large number of them in order to form a basic idea

regarding the status of an app. This, of course, is time-consuming and still not

very reliable considering that users who write these reviews are not necessarily

objective or experts. On the other hand, high or low numerical ratings of apps

are easier to examine and are provided by a large number of users. However,

they do not really describe the shortcomings, if any, within an app. A low app

rating could be attributed to a variety of different reasons. And depending on

user expectations, their rating of an app will be different.

There is no fine-grained analysis of apps on app stores nowadays. To the best

of our knowledge, no one has attempted to provide a composite rating of mobile

202

applications which captures both security and utility. In this dissertation, we

designed and implemented a system to compute such a composite score for every

app on a user device. The challenge in our work was capturing context and user

perspective which is not possible without crowdsourcing input from app users.

In the process of designing our system, we came across several other issues

related to aggregation techniques and modelling the human factor in crowdsourc-

ing systems. We summarize the contributions of this dissertation in the following

subsections.

7.1 Conclusions Related to the Game-Theoretic

Composite App Rating System

We modeled the interaction between our system and abnormally behaving apps

using concepts from game theory. The derived model maximizes the profits of

both our system and benign apps while minimizing the profits of detected mali-

cious apps. Through several real-life scenarios, we showed how our game-theoretic

system manages to detect most malicious apps it plays against, flag them, and

identify authoritative users from the set of queried users in order to ensure accu-

rate app ratings for increased system security.

Our system was shown to classify apps based on two sets of scores. The first

is a utility score that reflects utility and is derived from collected features related

to app usage. Our computed utility scores showed a correlation with Google Play

scores that is higher than 83% which demonstrates the fact that our system is

able to rate apps based on actual user experience without any direct participation

from the users themselves.

The second derived score is a behavior score that reflects suspiciousness and is

203

computed based on event rates of apps where an event is defined as any suspicious

incident that takes place on a device while a user is using the app in question.

Our simulation results showed that our system was able to detect most apps

and classify most users in only a few hours. Having a crowd with an average

expertise value of 0.7 was shown to have good effects on system performance and

the higher this value, the faster the system converges. On average, the system

was converging after 12 hours with the percentage of tested apps being around

1.2% and that of users around 97%.

Finally, ROC curve analysis for both app and user classification supported the

rest of the results by showing for what values of the crowd expertise our system

achieves its best classification results. In the case of user detection, there is a

tradeoff when choosing the optimal value of crowd expertise. For higher values,

the FPR of user detection increases. But since app classification is the main goal

behind our system, we can conclude that our base value of 0.7 will result in very

good app and user classification.

7.2 Conclusions Related to Modelling of Aggre-

gation Methods

Aggregating replies from users in the case of behavior score computation is a

major research problem that we have attempted to study. There are many factors

that affect the choice of the aggregation method to adopt in crowdsourcing. Our

conclusion is that the type of crowd is the most important of these factors. When

knowledge within a crowd surpasses a given threshold, the choice of aggregation

technique matters as we have shown in this dissertation.

Our main finding in the area of aggregation modelling is related to the Dunning-

204

Kruger effect. We modeled this psychological bias as a quadratic relationship

between respondent competence and confidence. We then incorporated this ef-

fect into the model of different aggregation algorithms. Due to the general

shape of the derived Dunning-Kruger function, we were able to validate that

for a general crowd of respondents, a plurality aggregation method will, in most

cases, outperform methods based on the confidence of respondents such as the

confidence-weighted and maximum confidence approaches. We also showed that

the maximum confidence approach generally lags behind the confidence-weighted

approach since it focuses on the least competent respondents and disregards re-

spondents whose reported confidence values were moderate, which we argue are

the majority of the most competent respondents. We also showed how the size

of the subgroup of respondents in the maximum confidence approach affects the

overall performance of the method for a general crowd.

Using our competence-confidence function, we derived a competence-detection

algorithm for input aggregation. Detecting voter competence is not an easy task

especially in the absence of a ground truth. On the other hand, deriving voter

competence from his reported confidence is fairly easy. Our detected competence-

weighted algorithm had the best performance compared to other approaches when

applied to the “Who Wants to Be a Millionaire?” dataset. However, when we

considered a general crowd in our app rating experiment, the performance of the

competence-weighted approach was poor. The main conclusion that can be drawn

from this result is related to the knowledge available to us regarding the crowd.

If we are able to correctly model a crowd’s competence-confidence plot based

on known information related to the users in the crowd, we would expect good

results when applying this competence-weighted aggregation method. Having no

information about the crowd, however, renders this approach a suboptimal one.

205

7.3 Conclusions Related to CrowdApp Rating

Scores and Performance

With CrowdApp v2.0, utility scores were computed using only some of the fea-

tures that were used with CrowdApp v1.0 considering our removed restriction

of having only rooted devices in the crowd, which is not a very a reasonable as-

sumption in reality. Features were mostly related to app popularity, usage time,

and opening frequency. Results showed high correlation with Google Play scores

which validate, once again, the ability of our system to detect app utility without

the crowd’s explicit participation.

We repeated the process of behavior score computation five times. The result

was five sets of scores for every app, each score based on one of five discussed

aggregation techniques. The scores of each technique were different with some

similarities for certain apps. Considering that the ground truth was not available,

we performed several experiments to validate the performance of each technique.

One of the experiments was the false event rate experiment where we intention-

ally manipulated the event rates of selected apps that originally scored well in

the first experiment. Ideally, this should decrease the reputation considering that

the behavior of these selected apps on the devices did not change to explain this

increase in event count. Out of the tested techniques, plurality voting resulted

in the highest decrease in reputation for its selected app, followed by confidence-

weighted then maximum confidence. This validated our theorems concerning the

performance of plurality voting when compared to confidence-related approaches.

The surprisingly popular approach performed poorly, sometimes resulting in an

increase in app reputation. The competence-weighted approach that was im-

plemented using a DK plot for a general crowd also performed poorly. One

206

possible explanation was the poor representation of the competence-confidence

plot considering that our crowd does not have the qualities of a general crowd.

Our main conclusion is again related to the importance of properly modeling

the competence-confidence plot of our crowd before attempting to vote using the

derived competence-weighted approach. A poor model of the crowd will result in

a performance that is worse than confidence-related approaches as was shown in

both our simulations and a real-life experiment.

In terms of system reliability, we argue that our system is more immune to

possible attempts by users to tamper with app scores than is the case with tradi-

tional rating systems. There are several approaches with which users can cheat

the system and they are different depending on the type of score. We consider

our two scores separately. The utility score is computed based on data collected

from devices and without reference to the users themselves. Deciding not to in-

clude users in the utility score computation has its pros and cons. Getting input

from users regarding their apps’ utility levels can prove to be beneficial in terms

of improving the accuracy of these reported scores. Rather than just inferring

the utility by analyzing collected features, we can refer to the ultimate utility

judge (the user). On the other hand, deciding not to include the crowd in the

utility score computation actually diminishes the likelihood of users attempting

to wrongfully affect the resulting utility score of a target app. Additionally, col-

lected features are encrypted on user devices and only decrypted before sending

them to the server side in a secure manner. This ensures that all collected data

cannot be manipulated by users and thus guarantees the accuracy of our reported

utility score. In terms of the behavior score, a possible approach could be to esti-

mate the event rate of other apps on the network so as to ensure that submitted

events by a target app do not exceed the resulting event threshold and ultimately

207

fire an alarm. However, this information is difficult if not impossible to obtain.

Still, users are able to cheat our system much like in the case of traditional rating

systems. When asked a question regarding a target app, a group of users can

agree that its behavior is normal even if that is not the case. This is similar

to when users give an app a high rating on a store even though it suffers from

several drawbacks. The advantage of our system, however, is that the effect of

this type of “attack” is less severe since it only affects a part of the final score of

an app. Having a composite score is one of the ways to diminish the effects of

possible cheating attempts and is a benefit of our composite rating system when

compared to traditional systems.

In summary, there are several contributions in this dissertation. We start off

with the designed and implemented composite app-rating system that provides

users with a score based on a utility and a behavior measure. Traditional app rat-

ing systems provide users with one score that does not really reflect the strengths

or shortcomings within an app. They also provide written reviews submitted by

other app users. However, a user will have to read many reviews to gain insight

regarding an app, and this, of course, is time-consuming. Our app rating sys-

tem solves this issue by providing users with more detailed information regarding

their apps than any other system on the market. By transparently crowdsourcing

data from devices, it provides users with a utility score that is representative of

the utility and ease of use of an app. Similarly, by crowdsourcing input from

users regarding abnormal behavior on their devices, it manages to provide them

with a score that is representative of the suspiciousness level of the app. Then,

depending on the type of app, the two scores, and the user’s personal preferences,

the app can be judged accordingly. To our knowledge, no one has attempted to

do this before.

208

Another main contribution in this dissertation is related to the derived model

of the Dunning-Kruger psychological bias which is one of the most critical hu-

man factors that affect the performance of crowdsourcing systems. We modelled

this bias so as to better understand its effect on confidence-related aggregation

techniques. We went on to model and compare the performance of some of the

most popular aggregation techniques in crowdsourcing systems such as plural-

ity voting, confidence-weighted voting, maximum confidence voting, and a newly

derived competence-weighted approach. The modelling took into consideration

the effect of the demonstrated Dunning-Kruger bias on output performance. We

showed how this general modelling can be applied to improve the performance of

any crowdsourcing system that employs one of the aforementioned aggregation

approaches.

7.4 Future Directions

In terms of utility score computation, several improvements can be made. In order

to differentiate between different types of apps that are used differently by users,

one approach would be to consider the fluctuation of the frequency of recorded

features rather than its absolute value. For example, an app such as WhatsApp

will have a constant Opening Frequency if the chosen timespan is a day but a

fluctuating one if it is an hour. The app is likely to be opened more at noon than

after midnight. Some apps on the other hand, such as TripAdvisor, are opened a

few times per year. They would have to be monitored for a longer period of time in

order to determine an average Opening Frequency. This example illustrates how

our system’s performance can be greatly improved when it manages to identify

different app types. A survey can be conducted on the different types of apps

209

on the market (social media, video conferencing, messaging, gaming, etc.) and

the suitable timespan for each combination of app type and extracted feature.

Identifying the app type can be done in two methods. One approach would be

to add a questionnaire where the user is asked to categorize her apps into a set

of provided categories. Another approach can be to employ an app identification

technique that is based on transparently monitoring patterns in network traffic.

In terms of behavior score computation, the list of events that was presented

here is not exhaustive. Only a few examples were provided to give an idea of

what is meant by an event. Further research is needed to identify all types of

events that might be issued by apps on a device, how each event type relates to

every app category, and how each event can be detected.

In terms of aggregation techniques, the number of techniques that can be

modeled is extensive. The studied aggregation techniques in this dissertation are

some of the most popular and basic techniques. There is a lot of work that can

be done in the area of modeling cognitive biases in state-of-the-art crowdsourcing

systems that use aggregation techniques other than the ones presented in this

dissertation. Our work on modelling aggregation techniques will pave the way for

better understanding of the psychological biases that accompany metacognitive

skills of respondents in crowdsourcing systems and eventually lead to a more

productive utilization of the wisdom of the crowd.

Techniques for accurately deriving a crowd’s competence-confidence plot should

also be studied. A possible approach is to request additional information from

users of our system, such as educational background and experience in the topic at

hand. In the behavior score computation with CrowdApp v2.0, the competence-

weighted approach performed poorly since we did not consider that our crowd

does not fit into the category of a general crowd. An inaccurate crowd model

210

will have drastic negative effects on overall performance. To this end, design-

ing a well-crafted set of questions that can be used to better infer competence

levels of users is one possible approach. Replies to these questions along with

reported confidence values, provided context, and replies to queries related to

app behavior can then be used to train an AI engine to learn this context at a

later stage. Given a fixed number of app categories and an expected behavior

for each category, we can use all collected data from the crowd to improve our

engine’s accuracy and attempt to guess whether or not a crowd believes an app’s

behavior is normal later on. As the accuracy of this engine improves with time,

our system will choose to crowdsource less often. This hybrid approach that uses

both crowdsourcing and artificial intelligence might prove to be most optimal

since it has the advantages of both learning from users when no decision can be

made while also decreasing the likelihood of possible cheating attempts later on

or suffering from other biases resulting from human judgment.

A better understanding of the crowd will render crowdsourcing systems more

optimal. However, understanding a crowd means tapping into their way of

thought and assessing their several biases. Traditional crowdsourcing systems are

assessed without any consideration to human factors and this ultimately leads to

suboptimal results that we are still unaware of. A variant of our work with mod-

elling bias can be applied in electoral systems. A majority of voters suffer from

many personal biases that render their decision of a representative a poor one

when it comes to the overall benefit of their state or country. Even though these

biases can vary depending on many factors such as race or region, their effect on

the election process is significant and they should be accounted for. Another ex-

ample is testing students in exams with multiple-choice questions. The reported

confidence of a student can play a major role when evaluating his understanding

211

of the topic. Incorporating confidence scores in multiple-choice exams is already

in its experimental phase in certain schools and universities and should provide

more insight regarding proper question format and overall student understand-

ing. Another possible application of our system is rating different cloud services

by having CrowdApp deployed as a service on the cloud. Cloud computing is no

longer only limited to storage or emails. It is used for development of software

as well as testing and deployment. Examples of cloud services that can be rated

are intelligent chatbots (Siri [146], Alexa [147], Google Assistant [148], etc.) that

provide personalized context-relevant interactions with customers by leveraging

the abilities of the cloud. In terms of productivity, tools such as Google Docs

[149] and Microsoft Office 365 [150] use cloud computing to allow users to work

on their documents from anywhere at any time. Microsoft Azure [151], Google

Cloud Platform [152], iCloud [153], and CloudSim [154] are other examples of

cloud-based platforms and services. Enterprises are moving rapidly to the cloud.

Almost everything nowadays is stored and managed by cloud computing. And

since the cloud can affect the performance of an app, we can easily deploy our

system to assess different cloud platforms by using CrowdApp itself as a service

on the cloud.

In terms of app rating, our developed composite score system is a step in the

right direction. Scores offered on app stores nowadays are no longer representative

of an app’s general performance. With the large number of apps, users are

becoming more and more selective when it comes to downloading a new app on

their device. A number between 1 and 5 does not begin to convey the necessary

information regarding an app. We have provided one alternative where an app is

assessed based on both utility and suspiciousness level. In the future, we envision

app rating systems that assess applications based on three or more scores, each

212

representing a different aspect that might be of interest to the user.

Given these user interests and our collected data related to how users believe

apps should behave on their devices, our system will be able to learn the proper

behavior per category. It can learn the expected rate of submitted events for any

app in a certain category. Based on this acquired knowledge, many lessons can

be learned and recommendations can be offered to app developers. For example,

it was shown that most games issue many events related to traffic, CPU, and

memory. However, they were shown to issue very few events related to opened

connections. If a game issues many events related to connections, this will result

in many fired alarms when comparing its event rate for this feature to the overall

event threshold. What this means is that this particular game is more likely

to get rated frequently due to its suspicious activity and this might result in a

decreased behavior score. This insight can be conveyed to developers of this app

who can then enhance the game’s design. A high event rate does not necessarily

convey maliciousness. It can also be the result of poor app design. Sharing our

gained insight with app developers is a step in solving this issue.

213

Appendix A

Proofs of Theorems

A.1 Theorem I - Plurality vs. Confidence-Weighting

Given any DK plot, plurality voting will perform better than confidence-weighted

voting for tasks of higher difficulty.

∀(a,b) ∆k > 0.5⇒ PPR > PCF

Evaluations of the formulas for the success probability of both plurality and

confidence-weighted voting are given below.

PPR =

∫ 1
0

θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
dθr

=
(∆k − 1)(2∆k + 2∆ktanh

−1[1 − 2∆k] − 1)

(1 − 2∆k)2
= F(∆k)

214

PCF =

∫1
0

((
a(xkr)

2 + b(xkr) + 1
)(
xkr
))

dθr∫1
0

(
a(xkr)

2 + b(xkr) + 1
)
dθr

=

∫1
0

(
a
(θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

)2
+ b
(θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

)
+ 1
)
·
(

θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

)
dθr∫1

0

(
a
(θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

)2
+ b
(θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

)
+ 1
)
dθr

=
((∆k−1)(2∆k−1)3(−(2∆k−1)(−2(a+b+1)+∆k(8−a+4b)+4∆2

k(a−2))+4∆k(3a(∆k−1)2+(2∆k−1)(−1+2b(∆k−1)+2∆k)) tanh
−1 [1−2∆k]))

(2(1−2∆k)4((2∆k−1)(1+a+b−∆k(4+a+3b)+2∆2
k(2+b))+2∆k(∆k−1)(−2a−b+2∆k(a+b)) tanh

−1 [1−2∆k]))

A.1.1 Case 1: ∆k = 0.5

The limit of PCF as ∆k tends to 0.5 is P0.5CF =
6+3a+4b
12+4a+6b

The value of PPR at ∆k = 0.5 is P0.5PR = 0.5

Note that for b = −a, the two probabilities are equal at ∆k = 0.5 (PCF = PPR =

0.5). As b tends to −2
√
a, the two functions intersect further to the left at a

smaller value of ∆k.

Proof by contradiction.

P0.5PR < P
0.5
CF ⇔ 0.5 <

6 + 3a+ 4b

12 + 4a+ 6b
⇔ a+ b > 0⇔ b > −a

Given that −2
√
a 6 b 6 −a, the condition that b > −a is a contradiction. This

implies that the above condition is false for all a and b proving that for ∆k = 0.5,

P0.5PR is larger than P0.5CF. �

A.1.2 Case 2: ∆k > 0.5

Rewriting the numerator and denominator in the function PCF as polynomials

in a and b, the coefficients of the DK function, we get the below simplified

expression.

PCF =
m1 +m2b+m3a

m4 +m5b+m2a

215

Where m1,m2,m3,m4, and m5 are functions of the task difficulty, ∆k:

m1(∆k) = 2(1 − 2∆k)
2(∆k − 1)(2∆k + 2∆k tanh−1 [1 − 2∆k] − 1)

m2(∆k) = 2(∆k − 1)(2∆k − 1)(1 − 2∆k + 4(∆k − 1)∆k tanh−1 [1 − 2∆k])

m3(∆k) = (∆k − 1)(−2 + 3∆k + 6∆2
k − 8∆3

k + 12(∆k − 1)2∆k tanh−1 [1 − 2∆k])

m4(∆k) = 2(1 − 2∆k)
4

m5(∆k) = 2(2∆k − 1)(1 − 3∆k + 2∆2
k)(2∆k + 2∆k tanh−1 [1 − 2∆k] − 1)

Proof.

PCF > PPR

⇔ m1 +m2b+m3a

m4 +m5b+m2a
> PPR

⇔ m1 +m2b+m3a > m4PPR +m5bPPR +m2aPPR

⇔ b(m2 −m5PPR) > a(m2PPR −m3)

⇔ b >
(m2PPR −m3

m2 −m5PPR

)
a = ξa

Given the previous condition of b < −a, we conclude that PCF > PPR ⇔ ξ < −1

which is true for values of the task difficulty, ∆k, that are strictly between 0 and

0.5. �

A.2 Theorem II - Plurality vs. Maximum Con-

fidence

Given any DK plot, any task difficulty, and any value of the percentage P, plu-

rality voting will always perform better than maximum confidence voting. Put

differently, the best possible performance of the maximum confidence approach

216

at any difficulty level is equal to that of plurality voting.

∀ (a,b,∆k,P) PPR > PMC

Proof. Evaluations of the formulas for the success probability of both plurality

and maximum confidence voting are given below.

PPR =

∫ 1
0

θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
dθr =

(∆k − 1)(2∆k + 2∆ktanh
−1[1 − 2∆k] − 1)

(1 − 2∆k)2

PMC =

∫xPmin
0

θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
dθr +

∫ 1
xPmax

θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
dθr

=

(
∆k − 1

)(
xPmin(2∆k − 1) + ∆k log

[
1+ xPmin(

1
∆k

− 2)
])

(1− ∆k)2
−

(
∆k − 1

)(
(xPmax − 1)(2∆k − 1) + ∆k log

[xPmax+∆k−2xPmax∆k
1−∆k

])
(1− ∆k)2

Note that for xPmin = xPmax, the two probabilities are the same for all values of

∆k. When the boundary points are equal, the selected percentage of the crowd

is 100% which is equivalent to selecting the entire crowd. This is validated in the

probability formulas which become equal when xPmin = xPmax.

The difference between the two probability functions is a product of two terms

as shown below.

Λ = PPR − PMC

=
1 − ∆k

(1 − 2∆k)2

(
(2∆k − 1)(xPmin − xPmax) + ∆k log

[xPmin + ∆k − 2xPmin∆k
xPmax + ∆k − 2xPmax∆k

])
= Ωγ

217

The first term Ω = 1−∆k
(1−2∆k)2

is positive for all values of 0 6 ∆k 6 1. Accordingly,

the sign of Λ depends on the sign of γ.

PPR > PMC

⇔ Λ > 0⇔ γ > 0

⇔ (2∆k − 1)(xPmin − xPmax) + ∆k log
[xPmin + ∆k − 2xPmin∆k
xPmax + ∆k − 2xPmax∆k

]
> 0

⇔ log
[
xPmin(1 − 2∆k) + ∆k

]
− log

[
xPmax(1 − 2∆k) + ∆k

]
>
(2∆k − 1

∆k

)
(xPmax − x

P
min)

⇔ log
[
xPmin(1 − 2∆k) + ∆k

]
+
(

2∆k−1
∆k

)
(xPmin) > log

[
xPmax(1 − 2∆k) + ∆k

]
+
(

2∆k−1
∆k

)
(xPmax)

⇔ J(xPmin) > J(xPmax)

Given that xPmin < x
P
max, this means that for Λ to be positive, the function J(x)

must be decreasing in x. The first derivative of J(x) is shown below.

J
′
(x) =

1 − 2∆k
∆k + (1 − 2∆k)x

−
1 − 2∆k
∆k

Given: 0 6 ∆k 6 1

0 6 ∆k 6 1⇒ J
′
(x) < 0⇒ J(x) is strictly decreasing with x

⇒ γ > 0⇒ Λ > 0⇒ ∀ ∆k, PPR > PMC.�

218

A.3 Theorem III - Maximum Confidence vs. P

The probability function based on maximum confidence voting is increasing in P.

PMC is increasing in P

Proof.

Evaluation of the formula for the success probability of maximum confidence

voting is given below.

PMC =

∫xPmin
0

θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
dθr+

∫ 1
xPmax

θr(1 − ∆k)

θr(1 − ∆k) + ∆k(1 − θr)
dθr

=
(∆k − 1)

(
xPmin(2∆k − 1) + ∆k log

[
1+ xPmin

(
1
∆k

− 2
)])

(1− ∆k)2
−
(∆k − 1)

(
(xPmax − 1)(2∆k − 1) + ∆k log

[
xPmax+∆k−2xPmax∆k

1−∆k

])
(1− ∆k)2

xPmin =
−b−

√
b2 − aP

25

2a
and xPmax =

−b+
√
b2 − aP

25

2a

As P increases, the lower integration bound xPmin increases and the upper inte-

gration bound xPmax decreases. This causes the integration limits to tend closer

to each other until eventually P reaches 100% and the two boundary points join

resulting in PMC = PPR.�

A.4 Theorem IV - Confidence-Weighting vs. Max-

imum Confidence

At ∆k = 0, confidence-weighted voting performs better than maximum confi-

dence voting for all values of P < 25b2

a
. For P = 25b2

a
, xPmin = xPmax and

219

maximum confidence voting becomes equivalent to plurality voting resulting in

P0MC = P0PR = P0CF = 1.

At ∆k = 0.5, confidence-weighted voting performs better than maximum con-

fidence voting for all values of P 6 25b2

a
− 10. As P decreases in value, PMC

decreases based on Theorem III above whereas PCF stays the same. This shifts

the point at which PMC out performs PCF further to the right.

At ∆k = 1, probabilities of both confidence-weighted and maximum confidence

voting converge to 0.

Evaluations of the formulas for the success probability of both confidence-weighted

and maximum confidence voting are given below.

PCF =

∫1
0

([
a(xkr)

2 + b(xkr) + 1
]
·
[
xkr
])

dθr∫1
0

(
a(xkr)

2 + b(xkr) + 1
)
dθr

=

∫1
0

([
a
(θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

)2
+ b
(θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

)
+ 1
]
·
[

θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

])
dθr∫1

0

(
a
(θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

)2
+ b
(θr(1−∆k)
θr(1−∆k)+∆k(1−θr)

)
+ 1

)
dθr

=
((∆k−1)(2∆k−1)3(−(2∆k−1)(−2(a+b+1)+∆k(8−a+4b)+4∆2

k(a−2))+4∆k(3a(∆k−1)2+(2∆k−1)(−1+2b(∆k−1)+2∆k)) tanh
−1 [1−2∆k]))

(2(1−2∆k)4((2∆k−1)(1+a+b−∆k(4+a+3b)+2∆2
k(2+b))+2∆k(∆k−1)(−2a−b+2∆k(a+b)) tanh

−1 [1−2∆k]))

PMC =

∫xPmin

0

θr(1− ∆k)

θr(1− ∆k) + ∆k(1− θr)
dθr +

∫1
xPmax

θr(1− ∆k)

θr(1− ∆k) + ∆k(1− θr)
dθr

=
(∆k − 1)

(
xPmin(2∆k − 1) + ∆k log

[
1+ xPmin

(
1
∆k

− 2
)])

(1− ∆k)2
−

(∆k − 1)
(
(xPmax − 1)(2∆k − 1) + ∆k log

[
xPmax+∆k−2xPmax∆k

1−∆k

])
(1− ∆k)2

xPmin =
−b−

√
b2 − aP

25

2a
and xPmax =

−b+
√
b2 − aP

25

2a

220

A.4.1 Case 1: ∆k = 0

The limit of PCF as ∆k tends to 0 is P0CF = 1

The limit of PMC as ∆k tends to 0 is P0MC = 1 − (xPmax − x
P
min)

Proof by contradiction.

P0MC > P
0
CF ⇔ 1 − (xPmax − x

P
min) > 1⇔ xPmax − x

P
min < 0⇔ xPmax < x

P
min

Given that xPmax > xPmin, the above condition is false. This proves that at

∆k = 0, P0CF > P0MC. The two probabilities are equal when xPmax = xPmin in

which case PMC becomes the same as PPR.�

A.4.2 Case 2: ∆k = 0.5

The limit of PCF as ∆k tends to 0.5 is P0.5CF =
6+3a+4b
12+4a+6b

where max (P0.5CF) = 0.5.

The limit of PMC as ∆k tends to 0.5 is P0.5MC = 0.5+b
√
25b2−aP
10a2 where max (P0.5MC) =

0.5.

Proof by contradiction.

P0.5CF < P
0.5
MC

⇔ 6 + 3a+ 4b

12 + 4a+ 6b
< 0.5 +

b
√

25b2 − aP

10a2

⇔ b
√

25b2 − aP >
10a3 + 10ba2

12 + 4a+ 6b

⇔
√

25b2 − aP <
10a3 + 10ba2

12b+ 4ab+ 6b2

⇔ P >
25b2

a
−

1

a

(10a3 + 10ba2

12b+ 4ab+ 6b2

)2
=

25b2

a
− G(a,b)

221

Given 0 6 a 6 4 and −2
√
a 6 b 6 −a, the function G(a,b) is never greater

than 10 for all values of a and b. This proves that for P 6 25b2

a
− 10, P0.5MC is

never greater than P0.5CF.�

A.4.3 Case 3: ∆k = 1

The limit of PCF as ∆k tends to 1 is P1CF = 0

The limit of PMC as ∆k tends to 1 is P1MC = 0

For all values of P, the two probabilities converge to 0 at maximum task difficulty.�

222

Appendix B

Device and App Usage Stats

A byproduct of our experiment is related to app and device usage. We were

interested in collecting statistics related to how users use their devices in general

and how different apps and app categories are used at certain times of the day and

certain days of the week. However, this was not an easy problem considering how

usage statistics differ considerably between users on a primary device (which in

most cases is a phone) and users on a secondary device (which in most cases is a

tablet but can also sometimes be a phone). In our experiment, around 27% of the

users had tablets and the remaining 73% were using their mobile phones. To this

end, results in the following subsections are separated in terms of primary and

secondary devices as well as results that were computed for all devices in general

assuming that our distribution of devices is a fair representation of devices in the

real world.

223

B.1 Users and Device Type Detection

In the case of phones versus tablets, we already have the ground truth. We

know which users were on a mobile phone and which were on tablets. Still, we

approached this problem of device type classification with the assumption that we

do not have the ground truth for the purpose of gaining insight into the different

attributes.

As a first step, we created a table of all users. For each user, we inserted

every possible attribute that was collected throughout the experiment process.

Examples of attributes are the average usage time of apps in category GAMES

in hour 16 of the day, or the average number of times the screen is turned on in

day 6 of the week, or the average memory consumption of the apps in category

COMMUNICATION, or the number of apps in category TOOLS, etc. Given the

variety of both app categories and collected features, we ended up gathering over

200 distinct attributes per user.

We filtered this table by first removing all users whose average ON frequency

(average number of times they turn on their device screen per day) was zero. We

also removed all users who were active for less than 1 month. We were left with

21 users in total.

We used the Weka software to analyze these attributes. Weka is a suite

of machine learning software written in Java. It contains algorithms for data

analysis and modelling. We started out by including all initial attributes and

applying random forest classification with 10-fold cross validation. We got a

device type classification accuracy of 80% which is acceptable. However, we were

more interested in the insight regarding the most frequently used attributes.

We studied different attribute selection techniques that are found within

224

Weka. There is correlation-based attribute selection which calculates the Pearson

correlation between each attribute and the output variable and selects only those

attributes that have a moderate-to-high positive or negative correlation. There is

attribute selection based on entropy which selects attributes that contribute more

information gain. Another approach is a learner-based attribute selection which

evaluates classification performance based on different subsets of attributes and

selects the subset that results in the best performance. Applying each of these

methods gave us a different set of selected attributes with some intersections

among the sets. We tried several combinations of the resulting attributes from

the attribute selection phase before attempting to classify our data using the J48

decision tree. We noticed that the accuracy was always 75% to 80%.

The second approach used was filtering out the initial set of 200+ attributes

into around 20 attributes which we believe conveyed the most information related

to the device type. Examples of the filtered attributes are avg ON 16 (the average

number of times a user turns on his device at 4 pm everyday), UT OF (the average

usage time per opening frequency), UT ON (the average usage time per device

screen turn on), etc. After reducing the attribute set, we ran random forest again

while printing out the resulting decision trees. We then got the number of times

each attribute occurred in the set of decision trees.

We were interested in the attributes that occurred in 10+ decision trees in

the random forest output. We selected these attributes and viewed their values.

We noticed that if we can somehow combine only two attributes, we can reach

very good classification results. These values were avg ON 16 and avg RSS (the

average memory consumption of apps on the device). The attribute avg ON 16

has relatively high values on phones and low values on tablets. This is the average

number of times that a user switches his device screen on at 4 pm every day. One

225

possible explanation as to why this attribute has high values on phones is that

this is most likely an hour where users are leaving work (commuting home) which

means that they are more likely to be carrying a phone versus a tablet. On the

other hand, the attribute avg RSS has relatively high values on tablets and low

values on phones. This is because users tend to install more games and other

memory-consuming applications on their tablets and they tend to use them more

often considering the longer battery life of tablets versus phones.

After gaining this insight regarding these two features, we decided to generate

a new attribute that is a combination of the above two attributes: new ATT =

(1 avg ON 16) + avg RSS. We computed the values of this attribute for all users

and updated the user table. Using this attribute alone and using a Näıve Bayes

classifier, we managed to reach 100% device detection accuracy.

Of course, this classification result is not important to us but rather the insight

that we gained from it. We learned that from over 200 attributes, a combination

of only two of them was enough to separate devices into different types. This

information can be used later on to aid in classifying new devices that install

CrowdApp v2.0.

Another attribute that clearly separates phone users from tablet users that

we decided not to include in our classification is related to the average time a

user takes to reply to questions sent by CrowdApp v2.0. The reason we did not

include it is because we wanted to study how other features that are not related

to the rating process can be used to help classify device types.

It is worth noting that after splitting the data into data from phones and data

from tablets, we noticed a very strong negative correlation between the average

reply rate of users on tablets with their average reported confidence values which

means that least confident users take their time before answering questions. We

226

also noticed a very strong positive correlation between the average reply rate

and the number of apps in the SOCIAL category. This might be due to users

constantly checking their device for notifications from social media platforms

while answering any CrowdApp questions at the same time.

B.2 Statistics Related to Apps and App Cate-

gories

We begin this section with an analysis of app distribution on user devices. Usage

statistics of some of the most popular apps are studied. In addition to how users

use their apps, we are interested in app categories in general. To this end, we

categorized all the apps in our experiment into a set of categories as proposed

on the Google PlayStore. In analyzing the usage statistics of app categories,

we pay attention to the difference between mobile phones and tablets and how

usage patterns and app downloads differ between the two types. We present our

analyses accordingly.

Apps Usage Statistics

Out of the 486 apps that the users in our experiment have installed on their

devices, 365 apps are only installed on one device followed by 65 apps that are

only installed on two devices. A very small number of apps can be found on

the majority of user devices (7+ devices) as is shown in the histogram shown in

Figure B.1. This agrees with the result in Table 3.4 which shows how apps that

have been downloaded over 50,000 times constitute a minor percentage of the

total number of apps on the market.

When analyzing the usage statistics of apps separately, we were only interested

227

Figure B.1: A histogram of app download distribution

in the apps that are installed on at least 30% of the user devices. These apps

are WhatsApp which was installed on 24 devices, Messenger and Facebook which

were both installed on 16 devices, Instagram which was installed on 12 devices, a

dialer app, Truecaller, which was installed on 11 devices, and a music-streaming

app, Anghami, which was installed on 10 devices. We present results for selected

apps in Figure B.2.

In terms of usage time, we notice that Anghami is used more during the

weekends and less often in the middle of the week, especially on the first day after

the weekend where it is barely used. Facebook is used least frequently on Fridays

and Saturdays. We believe this is related to the fact that most people go out on

these days and therefore spend less time on social media. Both Facebook and

Instagram are mostly used on Wednesdays. This result agrees with the discussion

in [155] where the author of the article advises his readers to post on these social

media platforms on Wednesdays due to the significant activity on these days.

Another observation is that WhatsApp is used more in the beginning of the

228

Figure B.2: Daily usage time of popular apps

Figure B.3: Hourly usage time of popular apps

week versus Messenger which is used more towards the end of the week. Even

though both applications fall under the COMMUNICATION category, however

Messenger is used more frequently to send images, videos, and share Facebook

links in general, which would probably explain its higher usage time closer to the

weekend rather than at the start of a week.

When looking at Figure B.3, the first observation is that the overall usage

time of these apps starts decreasing gradually after midnight and then increases

again after 6 am. This result is expected of course, since most users are sleeping

between these times and so they will be using their devices less.

229

Another observation is that the music-streaming app, Anghami, is used more

at 4 and 5 in the afternoon which we suspect to be the times when many users

are listening to music in their cars while commuting back home from work. In

general, we notice that most apps are used more often at these times (between 4

and 5 pm) which is when most users get off work. Then at around 7 pm, there is

a sudden drop in the overall usage time which could be when most users arrive

home and are too busy to check their devices. However, the usage time gradually

increases during the later hours of the night until midnight. Facebook is used

mostly after working hours and before bedtime, whereas WhatsApp is used more

constantly throughout.

In terms of opening frequency, the app with the highest value is WhatsApp.

This result is expected since it is a communication app and these apps are usually

used in short bursts rather than for longer periods of time. Even though Messen-

ger is a communication app as well, however, given that it is mostly used to share

Facebook posts in private, it is opened less frequently than both WhatsApp and

Facebook as shown in Figure B.4.

We can also consider the daily opening frequency after normalizing it per

app. The opening frequencies of every app over the seven days of the week were

normalized to values between 0 and 1 as shown in Figure B.5. We notice that Mes-

senger is opened most frequently on the weekend whereas WhatsApp is opened

most frequently in the beginning of the week on Monday. Its frequency decreases

gradually throughout the week. Anghami is also opened more frequently on the

weekends. As for Facebook and Instagram, they are opened mostly in the middle

of the week which agrees with [155]. In fact, if posting pictures on Instagram

and Facebook on a Wednesday is known to result in more social interaction, then

most users will post on these days and after posting will frequently open these

230

Figure B.4: Average daily opening frequency of popular apps

apps to check for any updates or notifications. This is one possible explanation

for the popularity of these two apps on specific days of the week.

As for the other features, we present the results normalized per app as shown

in Figure B.6. We notice that both Truecaller and Messenger have the largest

share in terms of connection age. Considering that both apps can be used to

make phone calls, this result is expected. WhatsApp and Instagram consume the

Figure B.5: Normalized daily opening frequencies of popular apps

231

Figure B.6: Average values different features of popular apps

most CPU time, followed by Anghami and Facebook, which also consumes most

memory. And finally, in terms of traffic, Instagram has the highest share consid-

ering that it is a social media platform specifically for sharing images and videos

which means that opening the app is enough to download relatively significant

data.

Some other results not shown in the plots are also worth noting. The Viber

app was opened only once and used for one minute by one of the users in our

crowd. The resulting total number of connections opened by this app was 928

ranging across the entire period of the experiment. Another application is the

movie-streaming app, PopcornTime. The average number of opened connections

per one minute of usage time was 5542. Clearly, both these apps are opening

connections to IP addresses while in the background without users’ knowledge.

B.2.1 Categories Usage Statistics

We display three major results in this section which are the usage time, opening

frequency, and results related to other app characteristics such as CPU, RAM, etc.

In each case, the results are three-fold: Given that the percentage of tablets to the

232

Figure B.7: Average daily usage time of phones versus tablets

total number of devices is a close estimate to that in a wider population, we first

present in what follows statistical analyses related to app categories considering

the entire set of devices in the experiment (both primary and secondary devices).

We then present separate analyses related to phones and tablets.

Figure B.7 shows the distribution of the daily usage between phones and

tablets. Phones are used more often than tablets since they are always carried

with the user. However, on the weekends, the usage of phones and tablets becomes

somewhat close since users might be home more often allowing them to be more

active on their tablets.

Usage Time

We begin with the daily usage time of a selection of app categories. We show in

Figure B.8 the daily usage time of categories when combining both phones and

tablets, in Figure B.9, the daily usage time is plotted considering phones only,

and in Figure B.10, it is plotted considering tablets only.

233

Figure B.8: Daily usage time of selected categories on all devices

Figure B.9: Daily usage time of selected categories in phones

Figure B.10: Daily usage time of selected categories on tablets

234

Our first comment in Figure B.8 is related to the difference in usage time be-

tween all app categories and the HEALTH AND FITNESS, MUSIC AND AUDIO,

and GAMES categories. One of the apps in the HEALTH AND FITNESS cate-

gory is the pedometer which is used frequently and on a daily basis. GAMES and

MUSIC AND AUDIO are also used for longer periods of time when compared to

other categories such as COMMUNICATION. Apps in this category are usually

opened a lot but used for shorter periods of time thus resulting in a lower overall

usage time value. We also notice that apps in the COMMUNICATION category

are used more often towards the end of the week than at the beginning.

Apps in the BUSINESS category are rarely used on the weekends (mainly on

Fridays and Saturdays). As for apps in the SOCIAL category, they are most fre-

quently used in the middle of the week and less frequently used on the weekends.

This agrees with the discussion in [155].

PHOTOGRAPHY apps are mostly used in the middle of the week as well.

This result is expected considering the correlation between PHOTOGRAPHY

apps and SOCIAL apps. They are also used frequently on Sundays which could

be explained given the amount of free time available to a device user on a Sunday.

Going now into the differences between phone and tablet usage, one major

difference which can be observed in Figures B.9 and B.10 is related to the usage

of apps in the MUSIC AND AUDIO category. These apps are used much more

on phones in an almost consistent fashion (maybe more during the middle of the

week). They are used less often on tablets and it can also be seen that if used

on tablets, it is usually during the weekends. This is reasonable considering that

phones are always with users even when they are commuting to and from work

and listening to music in their cars. Tablets on the other hand are not always with

users. They are sometimes kept at home and used more often on the weekends.

235

Figure B.11: Average daily opening frequency on all devices

Another observation is that apps in the TOOLS category (translate, ruler,

file manager, QR reader, text converter, etc.) are used on phones more often

during workdays than on the weekend, which is reasonable. However, these apps

are used more often on tablets than they are on phones. This might be due to

the larger memory size and the longer battery life on tablets which give users the

luxury of downloading and using more of these apps more frequently.

Opening Frequency

In terms of the average daily opening frequency, we begin by considering all

devices in our experiment as shown in Figure B.11. We notice that apps in the

PERSONALIZATION category have the highest share. One of the apps in this

category is the Nova Launcher; a highly customizable home screen for Android

devices that has over fifty million downloads on Google Play. Given that this app

is for customizing the screen on a user device every time it launches, this very

high opening frequency is expected.

236

Next, there is the HEALTH AND FITNESS category with its most common

app which is the Pedometer. Users who have this app tend to open it frequently

to check on the status of their step count. It is opened much more frequently

than apps in the COMMUNICATION category for example.

Apps from unknown sources are also opened frequently. This result is expected

considering that this category (NaN) includes apps from all categories such as

music, games, personalization, social, etc.

Figure B.12 shows the distribution of the opening frequency of apps in dif-

ferent categories between phones and tablets. The general observation is that

apps are opened more frequently on phones than on tablets. This is expected

considering phones are always close to the user whereas it is not always practical

to carry a tablet around. However, there are categories where apps are opened

more frequently on tablets than on phones. One such example is SOCIAL apps.

A possible explanation could be that these apps usually consume a lot of CPU,

memory, and bandwidth. Considering the higher battery life and larger memory

on tablets, users are more encouraged to check their SOCIAL apps on them. In

addition, phones usually have a limited data plan unlike tablets which are in most

cases connected to a WiFi network.

We also show the daily opening frequency of different categories normalized

per category in Figure B.13. These results are combined for both phones and

tablets. Apps in COMMUNICATION are opened most frequently on Thursdays

and least frequently on Sundays. Apps in EDUCATION are opened mostly on

Wednesdays and less frequently on other days of the week. An interesting result is

for the apps in the HEALTH AND FITNESS category. They are used more often

before the weekend and barely opened on Sundays. On the other hand, apps in

MUSIC AND AUDIO are mostly opened on the weekends (Saturdays and Sun-

237

Figure B.12: Normalized average opening frequencies of selected categories on
phones versus tablets

Figure B.13: Normalized daily opening frequencies of selected categories on all
devices

days). PHOTOGRAPHY and SOCIAL apps are mostly opened on Wednesdays

and SHOPPING apps on Mondays.

Other Features

For the rest of the features, we present the results normalized per category. Fig-

ure B.14 shows the results combined for both phones and tablets. We notice

that the highest connection count per usage time and the longest connections

are generated by apps from an unknown source which is an expected result. One

such app is PopcornTime which generates over 5,000 different connections per

238

Figure B.14: Average values of different features for selected categories on all
devices

minute.

Apps in the GAMES category have the highest CPU and memory consump-

tion as well as the highest generated traffic both uploaded and downloaded. SO-

CIAL apps consume significant CPU time and HEALTH AND FITNESS apps

open very long connections which is expected considering constantly having to

sync data with servers.

When analyzing phones and tablets separately, the results are different. On

phones, we notice that most categories have similar CPU consumption with SO-

CIAL taking a slightly bigger share than the rest of the categories as shown in

Figure B.15. The highest CPU consumption on tablets, as shown in Figure B.16,

is for apps of unknown sources which seem to be more common on tablets than

on phones.

We notice a general trend in these results. Phones have an almost consistent

consumption throughout different categories compared to tablets. This is due

to the design of apps. Apps for phones are carefully designed to consume very

little CPU, memory, and bandwidth. This requirement is relaxed when consid-

ering tablets due to their higher specs. This can also be due to a user’s usage

preferences especially considering a possible data plan. For example, apps in

239

Figure B.15: Average values of different features for selected categories on phones

Figure B.16: Average values of different features for selected categories on tablets

240

MUSIC AND AUDIO consume more traffic on tablets than on phones which is

expected since tablets are connected to WiFi more often than phones, and there-

fore, a user will be more encouraged to stream music on them than when on his

phone.

B.3 Discussion and Conclusions Related to De-

vice and App Usage

App and device usage results can be helpful to detect proper timespans for utility

score computations later on. We showed how different apps and app categories

are used throughout hours of the day and days of the week. We also showed

consumption trends of apps and categories on different device types as well as

the insight given when attempting to classify devices into phones and tablets.

Users tend to be more aggressive in terms of using memory and CPU consuming

apps when on their tablets versus when on their phones. This comes as a result

of generally better device specs and longer battery lives of tablets. On the other

hand, a defining feature for phones was found to be related to the average number

of times that a user switches his device on per hour. Tablets are not as easy to

carry along at all times. During hours of the day when most users are assumed

to be commuting back from work, the switching frequency on phones is much

higher than that on tablets.

In addition to device defining features, another discovery was related to the

usage of some of the most popular apps and app categories among our crowd.

Games were shown to consume the highest CPU and memory. Messaging apps

open long-term connections. Peer-to-peer apps such as PopcornTime open many

connections. Social media apps are mostly used in the middle of the week versus

241

on the weekend. We also saw some correlation between the usage of Music apps

on phones and the hours of the day when users are generally assumed to be off

work and are commuting back home. General usage trends of different categories

were highlighted throughout the Appendix.

242

Bibliography

[1] Bryan Wolfe, “The number of apps downloaded each day reaches 30 mil-

lion.” http://appadvice.com/appnn/2011/01/number-apps-downloaded-

day-reaches-30-million, 2011.

[2] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey

of mobile malware in the wild,” in Proceedings of the 1st ACM Workshop

on Security and Privacy in Smartphones and Mobile Devices, SPSM ’11,

(Chicago, Illinois, USA), pp. 3–14, 2011.

[3] “Brain test.” Web Page, 2016. Accessed: 2017-02-10.

[4] J. Howe, “The rise of crowdsourcing,” Wired, 2006.

[5] M. Buhrmester, T. Kwang, and S. Gosling, “Amazon’s mechanical turk: A

new source of inexpensive, yet high-quality, data?,” Perspectives on Psy-

chological Science, vol. 6, pp. 3–5, Feb 2011.

[6] K. McCurdy, “Crowdsourcing & istockphoto.”

[7] A. K. Singh, “Innocentive for crowdsourcing,” International Journal of Ad-

vanced Research in Computer Science & Technology, vol. 2, no. 2, p. 303305,

2014.

243

[8] K. R. Lakhani, D. A. Garvin, and E. Lonstein, “Topcoder (a): Developing

software through crowdsourcing,” Harvard Business School, Jan 2010.

[9] P. Belleflamme, T. Lambert, and A. Schwienbacher, “Crowdfunding: Tap-

ping the right crowd,” Journal of Business Venturing, vol. 29, p. 585609,

Jul 2013.

[10] C. Darwin, The Descent of Man. John Murray, 1871.

[11] P. Spikins, B. Wright, and D. Hodgson, “Are there alternative adaptive

strategies to human pro-sociality? the role of collaborative morality in the

emergence of personality variation and autistic traits,” Time and Mind,

vol. 9, no. 4, pp. 289–313, 2016.

[12] W. D. Hamilton, “Selfish and spiteful behaviour in an evolutionary model,”

Nature, vol. 228, p. 12181220, Dec 1970.

[13] A. Guazzini, D. Vilone, C. Donati, A. Nardi, and Z. Levnaji, “Modeling

crowdsourcing as collective problem solving,” Scientific Reports, vol. 5, Nov

2015.

[14] A. J. Quinn and B. B. Bederson, “Human computation: A survey and

taxonomy of a growing field,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, CHI ’11, (New York, NY, USA),

pp. 1403–1412, ACM, 2011.

[15] V. Conitzer and T. Sandholm, “Common voting rules as maximum likeli-

hood estimators,” CoRR, vol. abs/1207.1368, 2012.

[16] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, “Rank aggregation

methods for the web,” in Proceedings of the 10th International Conference

244

on World Wide Web, WWW ’01, (New York, NY, USA), pp. 613–622,

ACM, 2001.

[17] N. Quoc Viet Hung, N. T. Tam, L. N. Tran, and K. Aberer, “An evaluation

of aggregation techniques in crowdsourcing,” in Web Information Systems

Engineering – WISE 2013 (X. Lin, Y. Manolopoulos, D. Srivastava, and

G. Huang, eds.), (Berlin, Heidelberg), pp. 1–15, Springer Berlin Heidelberg,

2013.

[18] G. Barbier, R. Zafarani, H. Gao, G. Fung, and H. Liu, “Maximizing benefits

from crowdsourced data,” Computational and Mathematical Organization

Theory, vol. 18, pp. 257–279, Sep 2012.

[19] A. Lijphart, “Constitutional choices for new democracies,” Journal of

Democracy, vol. 2, no. 1, p. 7284, 1991.

[20] A. W. Saxonhouse, “Athenian democracy: Modern mythmakers and an-

cient theorists,” American Political Science Association, vol. 26, p. 486490,

Sep 1993.

[21] L. B. Carter, The quiet Athenian. Clarendon Press, 1986.

[22] M. H. Hansen, The Athenian Ecclesia. Museum Tusculanum Press, 1983.

[23] J. Kruger and D. Dunning, “Unskilled and unaware of it: How difficulties

in recognizing ones own incompetence lead to inflated self-assessments.,”

Journal of Personality and Social Psychology, vol. 77, no. 6, p. 11211134,

1999.

[24] M. Fleischmann, M. Amirpur, A. Benlian, and T. Hess, “Cognitive biases

in information systems research: a scientometric analysis,” in ECIS, 2014.

245

[25] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-

Yazti, “Crowdsourcing with smartphones,” IEEE Internet Computing,

vol. 16, pp. 36–44, June 2012.

[26] “Duolingo.” https://www.duolingo.com/.

[27] J. Phuttharak and S. W. Loke, “Logiccrowd: a declarative programming

platform for mobile crowdsourcing,” in 12th IEEE International Confer-

ence on Trust, Security and Privacy in Computing and Communications

(TrustCom 2013), pp. 1323–1330, July 2013.

[28] C. Costa, C. Laoudias, D. Zeinalipour-Yazti, and D. Gunopulos, “Smart-

trace: Finding similar trajectories in smartphone networks without disclos-

ing the traces,” in IEEE 27th International Conference on Data Engineer-

ing (ICDE 2011), pp. 1288–1291, April 2011.

[29] M. Constantinides, G. Constantinou, A. Panteli, T. Phokas, G. Chatzimil-

ioudis, and D. Zeinalipour-Yazti, “Proximity interactions with crowdcast,”

in The 11th Hellenic Data Management Symposium, 2012.

[30] A. Konstantinidis, C. Aplitsiotis, and D. Zeinalipour-Yazti, “Smartp2p:

A multiobjective framework for finding social content in p2p smartphone

networks,” in IEEE 13th International Conference on Mobile Data Man-

agement (MDM 2012), pp. 324–327, July 2012.

[31] J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan,

“The pothole patrol: Using a mobile sensor network for road surface mon-

itoring,” in The Sixth Annual International conference on Mobile Systems,

Applications and Services (MobiSys 2008), June 2008.

246

[32] “Waze.” https://www.waze.com/.

[33] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrish-

nan, S. Toledo, and J. Eriksson, “Vtrack: Accurate, energy-aware road

traffic delay estimation using mobile phones,” in Proceedings of the 7th

ACM Conference on Embedded Networked Sensor Systems (SenSys 2009),

pp. 85–98, 2009.

[34] E. Aubry, T. Silverston, A. Lahmadi, and O. Festor, “Crowdout: a mo-

bile crowdsourcing service for road safety in digital cities,” in IEEE Inter-

national Conference on Pervasive Computing and Communications Work-

shops (PERCOM Workshops 2014), pp. 86–91, March 2014.

[35] J. Sun, R. Zhang, X. Jin, and Y. Zhang, “Securefind: Secure and privacy-

preserving object finding via mobile crowdsourcing,” IEEE Transactions

on Wireless Communications, vol. PP, pp. 1–1, October 2015.

[36] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio,

“Smartphone-based crowdsourcing for network monitoring: Opportunities,

challenges, and a case study,” IEEE Communications Magazine, vol. 52,

pp. 106–113, January 2014.

[37] “Caida.” http://www.caida.org/home/.

[38] A. Faggiani, E. Gregori, L. Lenzini, S. Mainardi, and A. Vecchio, “On

the feasibility of measuring the internet through smartphone-based crowd-

sourcing,” in 10th International Symposium on Modeling and Optimization

in Mobile, Ad Hoc and Wireless Networks (WiOpt 2012), pp. 318–323, May

2012.

247

[39] “Operators can now crowdsource data on mobile broadband qual-

ity.” http://networks.nokia.com/news-events/press-room/press-

releases/operators-can-now-crowdsource-data-on-mobile-broadband-

quality, November 2010.

[40] H. M. V. Go, J. C. B. Pabico, J. D. Caro, and M. L. Tee, “Crowdsourc-

ing for healthcare resource allocation,” in 6th International Conference on

Information, Intelligence, Systems and Applications (IISA 2015), pp. 1–6,

July 2015.

[41] L. I. Besaleva and A. C. Weaver, “Crowdhelp: m-health application

for emergency response improvement through crowdsourced and sensor-

detected information,” in Wireless Telecommunications Symposium (WTS

2014), pp. 1–5, April 2014.

[42] J. G. Fiscus, “A post-processing system to yield reduced word error rates:

Recognizer output voting error reduction (rover),” in 1997 IEEE Workshop

on Automatic Speech Recognition and Understanding Proceedings, pp. 347–

354, Dec 1997.

[43] S. Chowdhury, A. Ghosh, E. Stepanov, A. Orkan Bayer, G. Riccardi, and

I. Klasinas, “Cross-language transfer of semantic annotation via targeted

crowdsourcing,” in Proceedings of the Annual Conference of the Interna-

tional Speech Communication Association, INTERSPEECH, 09 2014.

[44] S. A. Chowdhury, M. C. Lafarga, A. Ghosh, E. A. Stepanov, A. O. Bayer,

G. Riccardi, F. Garćıa, and E. S. Arnal, “Selection and aggregation tech-

niques for crowdsourced semantic annotation task,” in INTERSPEECH,

2015.

248

[45] E. A. Stepanov, S. A. Chowdhury, A. O. Bayer, A. Ghosh, I. Klasinas,

M. Calvo, E. Sanchis, and G. Riccardi, “Cross-language transfer of semantic

annotation via targeted crowdsourcing: Task design and evaluation,” Lang.

Resour. Eval., vol. 52, pp. 341–364, Mar. 2018.

[46] “Wikipedia.” https://www.wikipedia.org/.

[47] L. P. Cox, “Truth in crowdsourcing,” IEEE Security & Privacy, vol. 9,

pp. 74–76, September 2011.

[48] K. Yang, K. Zhang, J. Ren, and X. Shen, “Security and privacy in mobile

crowdsourcing networks: Challenges and opportunities,” IEEE Communi-

cations Magazine, vol. 53, pp. 75–81, August 2015.

[49] T. Eisner, “Recruiting smartphone users as partners in telecom fraud &

security control,” July 2013.

[50] Z. Dong and L. J. Camp, “Peersec: Towards peer production and crowd-

sourcing for enhanced security,” in Proceedings of the 7th USENIX Confer-

ence on Hot Topics in Security (HotSec 2012), 2012.

[51] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-

based malware detection system for android,” in Proceedings of the 1st ACM

Workshop on Security and Privacy in Smartphones and Mobile Devices

(SPSM 2011), pp. 15–26, 2011.

[52] S. Amini, J. Lin, J. Hong, J. Lindqvist, and J. Zhan, “Towards scalable

evaluation of mobile applications through crowdsourcing and automation,”

technical report, Carnegie Mellon CyLab, February 2012.

249

[53] M. Gander, C. Sauerwein, and R. Breu, “Assessing real-time malware

threats,” in IEEE International Conference on Software Quality, Reliability

and Security - Companion (QRS-C 2015), pp. 6–13, August 2015.

[54] C. Christoforidis, V. Vlachos, and I. Androulidakis, “A crowdsourcing ap-

proach to protect against novel malware threats,” in 22nd Telecommunica-

tions Forum Telfor (TELFOR 2014), pp. 1063–1066, November 2014.

[55] S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “Rre: A

game-theoretic intrusion response and recovery engine,” IEEE Transactions

on Parallel and Distributed Systems, vol. 25, pp. 395–406, February 2014.

[56] R. U. Rehman, Intrusion Detection Systems with Snort: Advanced IDS

Techniques Using Snort, Apache, MySQL, PHP, and ACID. Prentice Hall

PTR, 2003.

[57] B. Paramasiva and K. M. Pitchai, “Modeling intrusion detection in mobile

ad hoc networks as a non cooperative game,” in International Conference on

Pattern Recognition, Informatics and Mobile Engineering (PRIME 2013),

pp. 300–306, February 2013.

[58] M. Ghorbani and M. R. Hashemi, “Networked ids configuration in hetero-

geneous networks - a game theory approach,” in 23rd Iranian Conference

on Electrical Engineering (ICEE 2015), pp. 1000–1005, May 2015.

[59] A. Bradai and H. Afifi, “Game theoretic framework for reputation-based

distributed intrusion detection,” in International Conference on Social

Computing (SocialCom 2013), pp. 558–563, September 2013.

[60] H. Xie, J. C. Lui, J. W. Jiang, and W. Chen, “Incentive mechanism and pro-

tocol design for crowdsourcing systems,” in 52nd Annual Allerton Confer-

250

ence on Communication, Control, and Computing (Allerton 2014), pp. 140–

147, September 2014.

[61] E. Aldhahri, V. Shandilya, and S. Shiva, “Towards an effective crowd-

sourcing recommendation system: A survey of the state-of-the-art,” in

IEEE Symposium on Service-Oriented System Engineering (SOSE 2015),

pp. 372–377, March 2015.

[62] “What is the price of free?.” http://www.cam.ac.uk/research/news/what-

is-the-price-of-free.

[63] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, “Android

permissions: User attention, comprehension, and behavior,” in Proceedings

of the Eighth Symposium on Usable Privacy and Security (SOUPS 2012),

pp. 1–14, July 2012.

[64] B. Rashidi and C. Fung, “A game-theoretic model for defending against

malicious users in recdroid,” in IFIP/IEEE International Symposium on

Integrated Network Management (IM 2015), pp. 1339–1344, May 2015.

[65] D. Movshovitz-Attias, Y. Movshovitz-Attias, P. Steenkiste, and C. Falout-

sos, “Analysis of the reputation system and user contributions on a ques-

tion answering website: Stackoverflow,” in IEEE/ACM International Con-

ference on Advances in Social Networks Analysis and Mining (ASONAM

2013), pp. 886–893, August 2013.

[66] A. Pal, F. M. Harper, and J. A. Konstan, “Exploring question selection bias

to identify experts and potential experts in community question answering,”

ACM Transactions on Information Systems (TOIS 2012), vol. 30, pp. 1–28,

May 2012.

251

[67] D. Vogiatzis and N. Tsapatsoulis, “Modeling user networks in recommender

systems,” in Third International Workshop on Semantic Media Adaptation

and Personalization (SMAP 2008), pp. 106–111, December 2008.

[68] A. Pal, R. Farzan, J. A. Konstan, and R. E. Kraut, “Early detection of po-

tential experts in question answering communities,” in Proceedings of the

19th International Conference on User Modeling, Adaption, and Personal-

ization (UMAP 2011), pp. 231–242, July 2011.

[69] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation

ranking: Bringing order to the web.,” technical report, Stanford InfoLab,

November 1999.

[70] M. Bouguessa, B. Dumoulin, and S. Wang, “Identifying authoritative actors

in question-answering forums - the case of yahoo! answers,” in Proceedings

of the 14th ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining (KDD 2008), pp. 866–874, August 2008.

[71] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and G. Mishne, “Find-

ing high-quality content in social media,” in Proceedings of the 2008 In-

ternational Conference on Web Search and Data Mining (WSDM 2008),

pp. 183–194, February 2008.

[72] E. Karataev and V. Zadorozhny, “Adaptive social learning based on crowd-

sourcing,” IEEE Transactions on Learning Technologies, vol. PP, pp. 1–1,

January 2016.

[73] L. Gottlieb, G. Friedland, J. Choi, P. Kelm, and T. Sikora, “Creating ex-

perts from the crowd: Techniques for finding workers for difficult tasks,”

IEEE Transactions on Multimedia, vol. 16, pp. 2075–2079, November 2014.

252

[74] S. Tiwari and S. Kaushik, “Information enrichment for tourist spot rec-

ommender system using location aware crowdsourcing,” in IEEE 15th In-

ternational Conference on Mobile Data Management (MDM 2014), vol. 2,

pp. 11–14, July 2014.

[75] M. Allahbakhsh, B. Benatallah, A. Ignjatovic, H. R. Motahari-Nezhad,

E. Bertino, and S. Dustdar, “Quality control in crowdsourcing systems:

Issues and directions,” IEEE Internet Computing, vol. 17, pp. 76–81, Mar.

2013.

[76] D. Schall, F. Skopik, and S. Dustdar, “Expert discovery and interactions

in mixed service-oriented systems,” IEEE Trans. Serv. Comput., vol. 5,

pp. 233–245, Jan. 2012.

[77] A. P. Dawid and A. M. Skene, “Maximum likelihood estimation of observer

error-rates using the em algorithm,” Journal of the Royal Statistical Society.

Series C (Applied Statistics), vol. 28, no. 1, pp. 20–28, 1979.

[78] P. G. Ipeirotis, F. Provost, and J. Wang, “Quality management on amazon

mechanical turk,” in Proceedings of the ACM SIGKDD Workshop on Hu-

man Computation, HCOMP ’10, (New York, NY, USA), pp. 64–67, ACM,

2010.

[79] A. Sorokin and D. Forsyth, “Utility data annotation with amazon mechani-

cal turk,” in 2008 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition Workshops, pp. 1–8, June 2008.

[80] A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user studies with me-

chanical turk,” in Proceedings of the SIGCHI Conference on Human Factors

253

in Computing Systems, CHI ’08, (New York, NY, USA), pp. 453–456, ACM,

2008.

[81] “Crowdflower.” Web Page. Accessed: 2018-08-18.

[82] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum, “re-

captcha: Human-based character recognition via web security measures,”

Science, vol. 321, no. 5895, pp. 1465–1468, 2008.

[83] L. von Ahn and L. Dabbish, “Designing games with a purpose,” Commun.

ACM, vol. 51, pp. 58–67, Aug. 2008.

[84] L. von Ahn and L. Dabbish, “Labeling images with a computer game,” in

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’04, (New York, NY, USA), pp. 319–326, ACM, 2004.

[85] E. Law and L. von Ahn, “Input-agreement: A new mechanism for collect-

ing data using human computation games,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’09, (New York,

NY, USA), pp. 1197–1206, ACM, 2009.

[86] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman,

D. R. Karger, D. Crowell, and K. Panovich, “Soylent: A word processor

with a crowd inside,” in Proceedings of the 23Nd Annual ACM Symposium

on User Interface Software and Technology, UIST ’10, (New York, NY,

USA), pp. 313–322, ACM, 2010.

[87] E. Bonabeau, “Decisions 2.0: The power of collective intelligence,” MIT

Sloan Management Review, vol. 50, pp. 45–52, 12 2009.

254

[88] S. Basu Roy, I. Lykourentzou, S. Thirumuruganathan, S. Amer-Yahia, and

G. Das, “Crowds, not drones: Modeling human factors in interactive crowd-

sourcing,” in DBCrowd 2013 - VLDB Workshop on Databases and Crowd-

sourcing (R. Cheng, A. D. Sarma, S. Maniu, and P. Senellart, eds.), CEUR

Workshop Proceedings, (Riva del Garda, Trento, Italy), pp. 39–42, CEUR-

WS, Aug. 2013.

[89] B. Faltings, R. Jurca, P. Pu, and B. D. Tran, “Incentives to counter bias

in human computation,” in HCOMP, 2014.

[90] C. Eickhoff, “Cognitive biases in crowdsourcing,” in Proceedings of the

Eleventh ACM International Conference on Web Search and Data Mining,

WSDM ’18, (New York, NY, USA), pp. 162–170, ACM, 2018.

[91] U. Gadiraju, B. Fetahu, R. Kawase, P. Siehndel, and S. Dietze, “Using

worker self-assessments for competence-based pre-selection in crowdsourc-

ing microtasks,” ACM Trans. Comput.-Hum. Interact., vol. 24, pp. 30:1–

30:26, Aug. 2017.

[92] D. Arp, M. Spreitzenbarth, H. Gascon, and K. Rieck, “Drebin: Effective

and explainable detection of android malware in your pocket,” in 2014 Net-

work and Distributed System Security Symposium, NDSS ’14, (San Diego,

CA, USA), February 2014.

[93] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, “Droidmat: An-

droid malware detection through manifest and api calls tracing,” in Proceed-

ings of the 2012 Seventh Asia Joint Conference on Information Security,

ASIAJCIS ’12, (Washington, DC, USA), pp. 62–69, 2012.

255

[94] Y. Aafer, W. Du, and H. Yin, DroidAPIMiner: Mining API-Level Fea-

tures for Robust Malware Detection in Android, pp. 86–103. SecureComm

’13, Sydney, NSW, Australia: Springer International Publishing, Septem-

ber 2013.

[95] W. Li, J. Ge, and G. Dai, “Detecting malware for android platform: An

svm-based approach,” in 2nd IEEE International Conference on Cyber Se-

curity and Cloud Computing, CSCloud ’15, (New York, USA), pp. 464–469,

November 2015.

[96] W. Park, S. joong Kim, and W. Ryu, “Detecting malware with similarity to

android applications,” in 6th International Conference on Information and

Communication Technology Convergence, ICTC ’15, (Jeju Island, Korea),

pp. 1249–1251, October 2015.

[97] S. Chen, M. Xue, and L. Xu, “Towards adversarial detection of mobile

malware: Poster,” in Proceedings of the 22Nd Annual International Con-

ference on Mobile Computing and Networking, MobiCom ’16, (New York,

NY, USA), pp. 415–416, 2016.

[98] Y. Liu, Y. Zhang, H. Li, and X. Chen, “A hybrid malware detecting scheme

for mobile android applications,” in IEEE International Conference on

Consumer Electronics, ICCE ’16, (Las Vegas, Nev, USA), pp. 155–156,

January 2016.

[99] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: Deep learning in an-

droid malware detection,” in Proceedings of the 2014 ACM Conference on

SIGCOMM, SIGCOMM ’14, (Chicago, Illinois, USA), pp. 371–372, August

2014.

256

[100] S. Alam, R. Riley, I. Sogukpinar, and N. Carkaci, “Droidclone: Detecting

android malware variants by exposing code clones,” in 6th International

Conference on Digital Information and Communication Technology and its

Applications, DICTAP ’16, (Konya, Turkey), pp. 79–84, July 2016.

[101] J. R. Cordy and C. K. Roy, “The nicad clone detector,” in Proceedings of

the 2011 IEEE 19th International Conference on Program Comprehension,

ICPC ’11, (Washington, DC, USA), pp. 219–220, June 2011.

[102] X. Sun, Y. Zhongyang, Z. Xin, B. Mao, and L. Xie, “Detecting code reuse

in android applications using component-based control flow graph,” in Pro-

ceedings of 29th International Conference on Systems Security and Privacy

Protection, SEC ’14, (Marrakech, Morocco), pp. 142–155, June 2014.

[103] A. Kumar, K. P. Sagar, K. S. Kuppusamy, and G. Aghila, “Machine learn-

ing based malware classification for android applications using multimodal

image representations,” in 10th International Conference on Intelligent Sys-

tems and Control, ISCO ’16, (Coimbatore, Tamilnadu, India), pp. 1–6,

January 2016.

[104] “Download distribution of android apps.”

http://www.appbrain.com/stats/android-app-downloads.

[105] “Google play.” https://en.wikipedia.org/wiki/Google Play.

[106] “So many apps, so much more time for entertainment.”

http://www.nielsen.com/us/en/insights/news/2015/so-many-apps-so-

much-more-time-for-entertainment.html.

257

[107] “Growth of time spent on mobile devices slows.”

http://www.emarketer.com/Article/Growth-of-Time-Spent-on-Mobile-

Devices-Slows/1013072, Oct. 2015.

[108] “Telus at a glance.” https://about.telus.com/community/english/news cen

tre/company overview/telus at a glance.

[109] Y.-H. Kim, C.-Y. Chiu, and Z. Zou, “Know thyself: Misperceptions of ac-

tual performance undermine achievement motivation, future performance,

and subjective well-being.,” Journal of Personality and Social Psychology,

vol. 99, p. 395409, Sep 2010.

[110] Y. J. Park and L. Santos-Pinto, “Overconfidence in tournaments: evidence

from the field,” Theory and Decision, vol. 69, pp. 143–166, Jul 2010.

[111] W. B. Liebrand, D. M. Messick, and F. J. Wolters, “Why we are fairer than

others: A cross-cultural replication and extension,” Journal of Experimen-

tal Social Psychology, vol. 22, no. 6, p. 590604, 1986.

[112] W. Poundstone, “”the dunning-kruger president”,” Jan 2017.

[113] M. M. Roy and M. J. Liersch, “I am a better driver than you think: ex-

amining self-enhancement for driving ability,” Journal of Applied Social

Psychology, vol. 43, p. 16481659, Aug 2013.

[114] G. Rasch, On General Laws and the Meaning of Measurement in Psychol-

ogy. Danmarks pdagogiske Institut, 1961.

[115] J. McCoy and D. Prelec, “A statistical model for aggregating judgments

by incorporating peer predictions,” ArXiv e-prints, Mar 2017.

258

[116] D. Berend and J. Paroush, “When is condorcet’s jury theorem valid?,”

Social Choice and Welfare, vol. 15, no. 4, pp. 481–488, 1998.

[117] A. Pal, R. Farzan, J. A. Konstan, and R. E. Kraut, “Early detection of po-

tential experts in question answering communities,” in Proceedings of the

19th International Conference on User Modeling, Adaption, and Person-

alization, UMAP’11, (Berlin, Heidelberg), pp. 231–242, Springer-Verlag,

2011.

[118] J. Zhang, M. S. Ackerman, and L. Adamic, “Expertise networks in online

communities: Structure and algorithms,” in Proceedings of the 16th Inter-

national Conference on World Wide Web, WWW ’07, (New York, NY,

USA), pp. 221–230, ACM, 2007.

[119] M. Bouguessa, B. Dumoulin, and S. Wang, “Identifying authoritative actors

in question-answering forums: The case of yahoo! answers,” in Proceedings

of the 14th ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, KDD ’08, (New York, NY, USA), pp. 866–874,

ACM, 2008.

[120] D. Attiaoui, A. Martin, and B. Ben Yaghlane, “Belief measure of expertise

for experts detection in question answering communities: case study stack

overflow,” Procedia Computer Science, vol. 112, pp. 622–631, 2017.

[121] P. Welinder and P. Perona, “Online crowdsourcing: Rating annotators and

obtaining cost-effective labels,” in 2010 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pp. 25–32, Jun 2010.

[122] J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo,

“Whose vote should count more: Optimal integration of labels from label-

259

ers of unknown expertise,” in Advances in Neural Information Processing

Systems 22, pp. 2035–2043, Curran Associates, Inc., 2009.

[123] P. C. Kyllonen and J. Zu, “Use of response time for measuring cognitive

ability,” Journal of Intelligence, vol. 4, no. 4, 2016.

[124] M. D. Lee, M. Steyvers, M. De Young, and B. Miller, “Inferring expertise

in knowledge and prediction ranking tasks,” Topics in Cognitive Science,

vol. 4, no. 1, p. 151163, 2012.

[125] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H. Valadez,

L. Bogoni, and L. Moy, “Supervised learning from multiple experts: Whom

to trust when everyone lies a bit,” in Proceedings of the 26th Annual In-

ternational Conference on Machine Learning, ICML ’09, (New York, NY,

USA), pp. 889–896, ACM, 2009.

[126] Y. Bachrach, T. Graepel, T. Minka, and J. Guiver, “How to grade a test

without knowing the answers - a bayesian graphical model for adaptive

crowdsourcing and aptitude testing,” in Proceedings of the 29th Interna-

tional Conference on Machine Learning, ICML 2012, vol. 2, June 2012.

[127] B. Lakshminarayanan and Y. Whye Teh, “Inferring ground truth from

multi-annotator ordinal data: a probabilistic approach,” Apr 2013.

[128] B. I. Aydin, Y. S. Yilmaz, and M. Demirbas, “A crowdsourced who wants

to be a millionaire? player,” Concurrency and Computation: Practice and

Experience.

[129] Q. Li and P. K. Varshney, “Does confidence reporting from the crowd ben-

efit crowdsourcing performance?,” CoRR, vol. abs/1704.00768, 2017.

260

[130] Q. Li, Y. Li, J. Gao, L. Su, B. Zhao, M. Demirbas, W. Fan, and J. Han,

“A confidence-aware approach for truth discovery on long-tail data,” Proc.

VLDB Endow., vol. 8, pp. 425–436, December 2014.

[131] X. Yin, J. Han, and P. S. Yu, “Truth discovery with multiple conflicting

information providers on the web,” IEEE Transactions on Knowledge and

Data Engineering, vol. 20, pp. 796–808, June 2008.

[132] X. L. Dong, B. Saha, and D. Srivastava, “Less is more: selecting sources

wisely for integration,” in Proceedings of the 39th international conference

on Very Large Data Bases, PVLDB’13, pp. 37–48, VLDB Endowment,

2013.

[133] J. Pasternack and D. Roth, “Knowing what to believe (when you al-

ready know something),” in Proceedings of the 23rd International Confer-

ence on Computational Linguistics, COLING ’10, (Stroudsburg, PA, USA),

pp. 877–885, Association for Computational Linguistics, 2010.

[134] A. Galland, S. Abiteboul, A. Marian, and P. Senellart, “Corroborating

information from disagreeing views,” in Proceedings of the Third ACM In-

ternational Conference on Web Search and Data Mining, WSDM ’10, (New

York, NY, USA), pp. 131–140, ACM, 2010.

[135] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resolving conflicts in

heterogeneous data by truth discovery and source reliability estimation,”

in Proceedings of the 2014 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’14, (New York, NY, USA), pp. 1187–1198,

ACM, 2014.

261

[136] F. Ma, Y. Li, Q. Li, M. Qiu, J. Gao, S. Zhi, L. Su, B. Zhao, H. Ji, and

J. Han, “Faitcrowd: Fine grained truth discovery for crowdsourced data

aggregation,” in Proceedings of the 21th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, KDD ’15, (New York,

NY, USA), pp. 745–754, ACM, 2015.

[137] A. P. Dawid and A. M. Skene, “Maximum likelihood estimation of observer

error-rates using the em algorithm,” Journal of the Royal Statistical Society.

Series C (Applied Statistics), vol. 28, no. 1, pp. 20–28, 1979.

[138] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux, “Zencrowd: Leverag-

ing probabilistic reasoning and crowdsourcing techniques for large-scale en-

tity linking,” in Proceedings of the 21st International Conference on World

Wide Web, WWW ’12, (New York, NY, USA), pp. 469–478, ACM, 2012.

[139] D. Prelec, H. S. Seung, and J. McCoy, “A solution to the single-question

crowd wisdom problem,” Nature, vol. 541.

[140] A. Laan, G. Madirolas, and G. Polavieja, “Rescuing collective wisdom when

the average group opinion is wrong,” Frontiers in Robotics and AI, vol. 4,

Nov 2017.

[141] D. Bang and C. D. Frith, “Making better decisions in groups,” Royal Society

Open Science, vol. 4, no. 8, 2017.

[142] L. Ross, D. Greene, and P. House, “The false consensus effect: An egocen-

tric bias in social perception and attribution processes,” Journal of Exper-

imental Social Psychology, vol. 13, no. 3, p. 279301, 1977.

[143] “Firebase.” https://firebase.google.com/.

262

[144] “Comodo: Global leader in cyber security solutions.”

https://www.comodo.com/.

[145] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally

equidistributed uniform pseudo-random number generator,” ACM Trans-

actions on Modeling and Computer Simulation, vol. 8, pp. 3–30, Jan 1998.

[146] “Siri.” https://www.apple.com/siri/.

[147] “Alexa.” https://alexa.amazon.com/.

[148] “Google assistant.” https://assistant.google.com/.

[149] “Google docs.” https://www.google.com/docs/about/.

[150] “Microsoft office 365.” https://www.office.com/.

[151] “Microsoft azure.” https://azure.microsoft.com/en-us/.

[152] “Google cloud.” https://cloud.google.com/.

[153] “icloud.” https://www.icloud.com/.

[154] “Cloudsim.” https://www.cloudsimapp.com/.

[155] A. York, “Best times to post on social media: 2018 industry research,” Jun

2018.

263

