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An Abstract of the Dissertation
of

Noel J. Maalouf for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Biomimetic Humanoid Gait Design and Push Recovery

Humanoid robots are among the most recognizable robotic systems in explo-
ration, industrial applications, and personal assistance. However, like all bipedal
systems, the main challenge that faces humanoid locomotion is stability. Hu-
manoids are vulnerable to balance disturbances. The risks of humanoid falling
are not limited to the robots but also affect the humans around them. The re-
search efforts in humanoid stability in the past few decades have been far from shy,
but there is still a long path before full stability is reached. This thesis presents
biomimetic techniques for humanoid fall avoidance and gait design. The main
two problems addressed in this thesis are push recovery during quiet standing
and stability during walking. The proposed push recovery strategy is inspired
by human reliance on three main sensory information to assess their posture:
visual, vestibular, and somatosensory. Fusing sensory inputs enables the robot
to adapt to different environmental changes during locomotion. Experimental
results show improvements in maximum joint-torque exertion of up to 17.5%
and response time by 9.3%. Inspired by excessive human reliance on somatosen-
sory information, a model-free push recovery strategy is also developed enabling
small-scale commercial humanoids to make use of foot pressure sensors to reject
disturbances from any direction and at any location on the body. The proposed
strategy withstands around 8.0% higher magnitude push disturbances compared
to standard control methods. On a related note, kinesiologists define the energy-
exchange theory as the main guidance for human walking. In this thesis, an
energy-exchange gait generation technique is developed through formulating an
optimization problem capable of maintaining this human-inspired property. Ad-
ditionally, a new Energy-Based Controller is developed to drive the generated
energy-exchange gait. The new controller not only maintains the desired gait an-
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gles but also is more efficient in terms of energy expenditure and torque exertion
on the joint motors. The proposed gait improves total mechanical energy needed
by 4.9% in simulations and 1.8% in experiments. The proposed algorithms are
simulated on two commercial humanoids, the Hoap2 and Nao in Webots. Experi-
ments are also performed on the Nao humanoid in order to validate the proposed
hypotheses. The strategies developed in this thesis contribute to safer humanoid
locomotion by providing human-like pose estimation, sensory integration, and
maneuverability. The biomimetic framework aids in reducing the gap between
humans and humanoids and improves the integration of robots into the society.
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Chapter 1

Introduction

Bipedal systems are mechanisms that move using the help of two rear limbs or
legs [4]. The dependence on two legs for support renders them more vulnerable
to balance disturbances such as trips and push forces. Humans perform robust
and efficient gaits, however it is challenging to apply human-like gait on bipedal
robots. In this thesis, new methods of bipedal stability and gait design are
presented. These methods are biomimetic in nature and they are inspired by
human posture assessment, push recovery strategies and motion characteristics.

1.1 Motivation

Bipedal stability is an ongoing area of research that has been widely visited
especially in the past couple of decades. The challenge behind this research
topic is that bipedal systems are by nature more prone to instabilities than other
systems such as quadrupeds. The 2-legged support creates an unstable system
which is vulnerable under external disturbances as well as ego motion.

By investigating the problems in using bipedal robots one might question the
need to use them in the first place. A main advantage which bipedal robots
hold over other types of robots is the ability to traverse various types of terrains
including stairs and uneven floors with pits and cavities. Moreover, bipeds also
are more efficient in traversing confined areas as they have a smaller footprint
than wheeled robots.

While bipedal systems are essential for several tasks, ensuring their safe and
efficient operation is a challenge that still faces researchers in this domain. The
main challenge lies in maintaining bipedal stability without restricting maneu-
verability and limiting the tasks that the robot can perform. One of the main
disturbances that the robot might encounter during its operation is a push force
that disrupts its balance and thus requires a reaction from the robot to maintain
stability.

Humanoid push recovery could be divided into two main categories. The first
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is push recovery during quiet standing. This problem has been investigated by
several researchers and various methods have been developed to ensure humanoid
balance against external disturbances. The other category of humanoid push
recovery is during gait. While both areas have been tackled by researchers, there
is still significant room for improvement which lies in the strategies followed for
push recovery and fall avoidance.

1.2 Objectives

While reviewing the current and past research on humanoid push recovery and
fall avoidance, several areas for improvements can be found which are summarized
in the points below.

• The strategies applied during quiet standing are model-dependent and thus
have to be tailored differently when applied on different humanoids.

• The approach is in most cases taking a pure mechanical aspect which makes
it harder to introduce a more human-like fall avoidance approach for small-
scale commercial humanoids. This approach would render humanoid push
recovery and fall avoidance smoother and more energy-efficient since the
humans hold exemplary behavior which should be targeted.

• The existing work that implements human-like walking for small-scale hu-
manoids still lacks depth and needs to be investigated more thoroughly.

The aim of the thesis is to implement strategies for humanoid fall avoidance
and gait design considering the following points:

• Obj. 1: Humanoid fall avoidance during quiet standing that follows human-
like strategies while considering dynamic changes in the environment.

• Obj. 2: Humanoid fall avoidance during quiet standing that could be im-
plemented on different humanoids, i.e. model-independent.

• Obj. 3: Humanoid gait design that applies human-inspired strategies.

• Obj. 4: Humanoid gait design that is energy-efficient.

• Obj. 5: Humanoid gait design that is robust against external push distur-
bances.

3



Figure 1.1: Nao H25 V3.3 by Aldebaran [1]

1.3 Humanoids used in Simulations and Exper-

iments

The humanoids used in this thesis are the Nao H25 robot (Fig. 1.1) developed
by Aldebaran and Hoap2 developed by Fujitsu [5]. Nao’s height is 57.3 cm and
it weighs 5.4 kg. It has 25 degrees of freedom and various types of sensors for
perceiving the environment, measuring ego motion and interacting with other
robots or operators. Hoap2 is 48 cm tall, weighs 7.03 kg, and has 25 degrees of
freedom.

The simulator used to test the algorithms is the Webots simulator devel-
oped by Cyberbotics (Fig. 1.2). Webots provides an environment to test the
fall avoidance and push recovery strategies under various conditions. The robot
properties and the physical properties of the environment can be set by the user
and changed for testing different scenarios. This allows testing for different push
force magnitudes and directions.

1.4 Contributions

This thesis holds contributions in the area of humanoid push recovery and stable
gait design. The main contributions are listed below.
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Figure 1.2: Webots Simulator by Cyberbotics

1. Human-like humanoid posture estimation through the integration of Visual
MonoSLAM and gyroscope measurements. This helps in overcoming the
limitation of a predetermined distance between the humanoid and the visual
scene. While the integration of Visual MonoSLAM has been widely used in
the literature, to the best of our knowledge it has not been used in humanoid
posture assessment.

2. Visual sensory input assessment through the introduction of blur and bright-
ness factors to accurately evaluate the quality of the acquired visual pose
estimation. These factors are used to decide the degree of reliance on each
of the camera and the gyroscope information during quiet standing posture
assessment.

3. High-magnitude disturbance rejection against sudden impacts for small-
scale commercial humanoid platforms. This improves robot maneuverabil-
ity as compared to the small-angle swaying disturbance rejection found in
the literature.

4. A model-free control algorithm, which can be applied on any humanoid
having foot pressure sensors without any prior knowledge of the robot’s
parameters. This simplifies and generalizes the application of the presented
algorithm.

5. The model-free system is more robust to unexpected changes in the hu-
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manoid’s interaction with the environment. For example, a model-based
algorithm would perform poorly in cases where there is a change in the
location of the humanoid’s Center of Mass (CoM). However, in the model-
free algorithm the change is directly reflected by the foot pressure sensors
readings.

6. The introduction of a new Energy-Based Controller (EBC) for humanoid
joint control during both quiet standing and gait. The new controller is
more energy-efficient than standard control methods and provides human-
like motion.

7. Novel humanoid gait synthesis based on the human-inspired energy-exchange
theory. The designed humanoid gait is more energy-efficient and stable
against push disturbances. Combined with the EBC, the proposed gait
produces human-like locomotion and push recovery.

1.5 Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2, a brief overview
of human posture assessment and fall avoidance strategies is given. This lays the
ground for the biomimetic gait design and push recovery techniques developed
for small-scale humanoid robots.

Chapter 3 covers the state of the art humanoid balance techniques found in
the literature and highlights the areas of contribution that this thesis focuses on
to improve push recovery and achieve stable human-like gait design.

In Chapter 4, a new sensory reweighting algorithm for humanoid push recovery
during quiet standing is introduced. This algorithm mimics the human posture
assessment by modifying the reliance on different sensors in accordance with the
environment the robot is operating in. The visual sensory input is also improved
with the integration of blur and brightness evaluation techniques to evaluate the
credibility of the visual information.

A model-free push recovery algorithm is presented in Chapter 5 where the
humanoid’s proprioceptive sensors are used to estimate its posture and recover
from push disturbances using the human-inspired ankle strategy. The significance
of this method lies in the ability to reject disturbances from any direction and at
any part of the humanoid’s body, not necessarily its Center of Mass.

Chapter 6 covers energy minimization techniques found in the literature that
are used for humanoid gait design and control. This chapter highlights the weak-
nesses of the currently used techniques and paves the way for the human-inspired
gait synthesis presented in this thesis.

The new gait design algorithm is presented in Chapter 7. This design is
inspired by the energy-exchange theory that guides human gait. Also, in this
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chapter, a new Energy-Based Controller is developed and employed in the energy-
exchange gait to replace the standard PID controller in achieving the desired joint
angles during humanoid walking.

Chapter 8 presents concluding thoughts about this thesis and provides areas
of possible future work.
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Chapter 2

Human Fall Avoidance and Gait

The objective of this chapter is to give a general overview about important con-
cepts related to the strategies of human posture assessment, fall avoidance and
walking. First, an overview is given of the different sensory information involved
in human posture assessment. Then, the three main push recovery strategies dur-
ing quiet standing are covered. The mechanics behind human motion are then
analysed from the viewpoint of Kinesiology.

2.1 Human Posture Estimation

The approach for humanoid fall avoidance in this thesis is biomimetic in nature.
In fact, humans possess superior balance capabilities and mimicking them would
help devise a more robust fall avoidance system. During quiet standing, hu-
mans tend to rely on three sensor information: visual sensors, vestibular sensors
(otolith and semi-circular canals), and somatosensory/proprioceptive information
(coming from muscles and joints) [6].

Vision plays an important role in human balance recovery, while it contributes
to approximately 10% of the control, it is found to be the most critical in the
decision making [7]. Vision describes the relative motion to the environment
[6]. The brain processes visual information in order to differentiate between ego-
motion and object motion in the environment. The vestibular system is reported
to contribute 20% of the human balance control [8], sensing both angular velocity
and linear acceleration of the head [9]. The angular velocity is provided by semi-
circular canals, while the otolith organs measure the linear acceleration. Both of
these organs lie in the human’s inner ear. The vestibular system can be thought
of as a level sensor; as the sensor is tilted the fluid inside the sensor (inside the ear
of a human) reaches its edge, thereby triggering a feeling that one is falling. As
for the somatosensory or proprioceptive information, it includes joint positions
as well as muscle activity which are valid indicators of the human posture [10].
This system contributes to 70% of the posture control since it needs the least
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processing. Given the information from the different sensory inputs and the
current postural state, the role of the balance control strategy is to find the best
path to reach the target posture [11, 12]. It is important to note that the role of
vision is not restricted to the differentiation between ego-motion and the moving
environment. The visual information is used to perceive the environment, thus
affecting the choice of recovery strategies to regain balance [13]. Another factor
affecting the sensor fusion is the processing time of information coming from
the different sensors [14]. The visual information take longer processing time
than vestibular and proprioceptive sensory inputs [15]. Event-Related Potential
(ERP) readings reveal that a demanding visual processing task can take between
150 and 300 ms to be processed [15], while vestibular and proprioceptive inputs
require around 90 to 100 ms of processing [16, 17]. The different response rates
affect reweighting and that is why the percentage of reliance on visual inputs is
relatively lower than vestibular and proprioceptive information.

2.2 Human Push Recovery Strategies

After assessing their posture, humans apply three main strategies to overcome
external disturbances. The first strategy that humans follow is the ankle strat-
egy [18]. Torque is applied at the ankle joints opposite to the direction of the
disturbance. When the magnitude of the disturbance grows, the ankle strategy is
no longer capable of preventing a fall and humans tend to apply the hip strategy,
where the hip rotates along the direction of the disturbance in such a manner
to absorb the disturbance, then it stops and returns to the equilibrium position
using the hip and ankles [19]. When subjected to yet a higher magnitude dis-
turbance, it is only through stepping that humans can avoid falling. This may
be accomplished by taking one or more steps depending on the magnitude of the
disturbance. A demonstration of the three aforementioned strategies is shown in
Fig. 2.1, 2.2, and Fig. 2.3. In humanoid fall avoidance, the stepping strategy is
usually considered as a last resort when the ankle and hip are no longer sufficient.
However, humans deal with this problem in a different way. Evidence from the
literature in Kinesiology [20] indicates that humans tend to take a step way before
the magnitude of the disturbance reaches the ankle and hip thresholds. The key
difference lies in the information processing and decision-making strategies that
the human body uses to keep its balance. This lies in environment perception
which guides human interaction with the surroundings to maintain balance.

When studying human posture, kinesiologists differentiate between ideal pos-
ture and normal posture [21]. Ideal posture requires the least amount of muscular
support and minimizes the stresses on the joints. In other words, it is a hypotheti-
cal term that represents the posture which minimizes the loads in the supporting
ligaments [21]. Normal posture however, presents the actual joint angles and
torques that result from extensive experiments on human subjects with no im-
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(a) (b) (c) (d) (e)

Figure 2.1: Demonstration of the ankle strategy.

(a) (b) (c) (d) (e)

Figure 2.2: Demonstration of the hip strategy.

pairments. The experiments focus on the line of gravity, which is the vertical
projection of the Center of Gravity [22]. Experiments show that during quiet
standing, the line of gravity must lie within the border of the supporting feet in
order to maintain equilibrium. Therefore, the ideal posture is when the Line of
Gravity passes through the axes of rotation of the related joints [22]. However, in
reality there is no perfect posture, so the line of gravity tends to pass anteriorly
or posteriorly to the affected joint axes. This is the normal posture. As the dis-
tance separating the line of gravity from the joint axis increases, the gravitational
moment increases, and thus a counter torque is needed to decrease the distance
[22].

The arms play a key role in human balancing and even in fall management [23].
They are usually used to absorb the fall in the absence of a possibility to recover.
However, this thesis focuses on the role of the lower body in fall avoidance, push
recovery and gait design without accounting for the arms because including the
arms would require working with models of high degrees of freedom.
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(a) (b) (c) (d) (e)

Figure 2.3: Demonstration of the stepping strategy.

2.3 Human Walking from the Viewpoint of Ki-

nesiology

The complexity of human movement has taken years of research in the fields of
biomechanics as well as psychology [24]. Each motion is guided by the assessment
of the environment, awareness of the body’s ego-motion, and planning of the next
step [25]. The focus in this thesis is on finding human motion characteristics
capable of being utilized in humanoid gait planning and fall avoidance.

2.3.1 Mechanics of Human Walking

Human gait is a cyclic motion consisting of repetitive events or phases [26]. The
stance phase of human gait represents the time when the reference foot is placed
on the ground, thus it is called the stance foot [21]. While the stance phase makes
up around 60% of the gait cycle, the remaining 40% are covered by the swing
phase during which the leg swings to reach the next contact point with the floor.

Examining the significance of the swing and stance phase of gait provides a
framework for characterizing the movements in each phase of gait. While the
ultimate goal of locomotion is the movement from one position to another, the
stance and swing phases contribute to that goal in different ways. The stance
phase has three tasks in locomotion: providing adequate support to avoid a fall,
absorbing the shock of impact between the limb and the ground, and providing
adequate forward and backward force for forward progress [27].

In brief, human walking can be visualized as a double inverted pendulum
where each foot is a pendulum pivot [28]. While walking at a constant preferred
speed, an asymmetrical motion between the right and left halves of the body
guides the gait.
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2.3.2 Equilibrium Point Hypothesis

The Equilibrium Point (EP) hypothesis was introduced in 1959 by a group of
researchers at the Russian School of Physiology [29]. The main purpose behind
EP hypothesis is to study the relationship between involuntary and voluntary
movements through Neurology and Physiology. If a person is carrying an object
with one arm and the object is suddenly removed, the arm undergoes an involun-
tary motion to return to equilibrium. However, if the same person is reaching for
an object, the arm undergoes a voluntary movement to complete the task [30].
While both movements may not seem visibly different, they generate different
EMG signals and involve the release of different motor-neurons.

In the context of postural stability and gait, the EP hypothesis can be used to
give a more general definition to these phenomena. Contrary to traditional views,
the EP hypothesis considers posture stability and locomotion as a homogeneous
problem where stability during locomotion is a result of an intentional reset of
the equilibrium point by the nervous system [31].

While having a unified framework for stability during both quiet standing
and gait is desirable, there remains the issue of choosing which muscles/joints
to activate for achieving this stability. According to the EP hypothesis, this
choice is guided by the goal of energy minimization [30]. This transforms the
problem of motor redundancy to a luxury of motor abundance [31, 32]. The
EP hypothesis has put several aspects of human posture and locomotion into
perspective, however the concept of energy minimization raised a question which
created a turning point in this thesis: What if there is a higher characteristic that
guides human walking and all other properties are just subsets of it? Fortunately,
the answer was found in the Energy-Exchange theory.

2.3.3 Energy-Exchange Theory

Human movement consists of three hierarchical levels: strategic, tactical, and ex-
ecutive [33]. The strategic level is represented by the cerebellum, the neurons
are involved at the tactical level, and the executive level is mostly managed by
the muscles and joints. While most approaches in robotics focus on the execu-
tive level, the focus in this thesis is on finding a characteristic embedded at the
strategic level of human locomotion and that could be mapped to humanoid robot
motion.

Although the concept of energy minimization is inspired by human Kinesi-
ology, the methods applied to obtain this minimization in small-scale humanoid
gait are still far from the way humans behave. This is due to the fact that the
energy minimization is a very broad theory that applies to many systems, not
only biological ones.

In order to reach a more human-like gait, a special characteristic, exclusive
to human locomotion must be found. Once this feature is set as a reference, a
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Figure 2.4: Mechanical energy fluctuations showing kinetic energy (KE) and
potential energy (PE) out-of-phase [2]

model following approach can be utilized to obtain human-like walking. Luckily,
Cavagna et al. [34] has pinpointed this characteristic around forty years ago.
However, it remained in the field of kinesiology and hasn’t been applied yet in
the field of humanoid locomotion. The theory states that in order to minimize
energy during gait, humans make use of the imperfect linear inverted pendulum
mechanism of energy-exchange [34]. This means that during gait at constant
(preferred) speed, KE and PE of the human’s CoM oscillate in a perfect out-
of-phase fashion which allows energy-exchange to occur. The out-of-phase KE
and PE oscillations are seen in Fig. 2.4 [2]. The exchange between KE and PE
conserves energy expenditure during walking and complies with human tendency
to minimize energy as demonstrated by Kinesiologists [34].

The total amount of positive muscle work done during human gait is divided
into two main categories; internal and external work [2]. Internal work is the
work done by the muscles and tendons of the body that doesn’t result in the
displacement of the body’s CoM. External work on the other hand, is the work
that accelerates and elevates the body’s CoM. Therefore, the energy minimiza-
tion lies in minimizing the external work. When KE and PE are oscillating in
an out-of-phase manner, around 70% of the external mechanical energy can be
recovered [2, 34]. The remaining energy must be supplied by the muscles and
tendons.

This realization opens new horizons in the design and control of humanoid
gait. It narrows down the target of minimizing mechanical energy to keeping KE
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Gait Parameter Parameter Value
Average step width 11.88 cm
Right stride length 133.489 cm
Left stride length 132.427 cm
Right step length 66.393 cm
Left step length 67.096 cm
Average speed 128.67 cm/s

Table 2.1: Gait Parameters for Constant Speed Forward Walking

and PE out-of-phase throughout the constant speed gait cycle.
The theory of imperfect inverted pendulum energy-exchange highlights the

importance of the 3D inverted pendulum developed by Kajita et al. [35]. The
use of this model with the energy-exchange theory as a reference leads to a more
human-like gait.

In order to further understand the human gait, data is obtained online from
Limb Fitting Centre in Scotland [36]. Experiments consist of 25 trials done on 5
young adults. The subjects were told to walk at their preferred constant speed
in the forward direction. Angle values of different joints were captured using
the Vicon motion capture system and published online available for research
purposes. The parameters of the gait experiments are summarized in Table 2.1.

The sample oscillations of the joint angles during human gait are shown in
Fig. 2.5 and Fig. 2.6. The right and left joint angle oscillations are plotted
together for comparison purposes. It is clear from the above plots that there also
exists an out-of-phase pattern between the right and left sides of the body. For
example, the right and left elbow oscillations in the third plot of Fig. 2.6 are
clearly out-of-phase. Right and left hip pitch variations are also out-of-phase as
can be seen in the third plot of Fig. 2.5. This realization backs the theory of
inverted pendulum energy-exchange.
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Figure 2.5: Joint angle variations during gait-part1

Figure 2.6: Joint angle variations during gait-part2
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Chapter 3

State of the Art Humanoid
Balance Techniques

Most humanoid balance systems to date focus on Zero Moment Point (ZMP)
control [37]. ZMP is the contact point of the foot with the ground where the sum
of horizontal inertia and gravity forces is zero [38]. This concept also applies to
human behavior, however the difference lies in how posture is sensed.

3.1 Sensor Fusion

Few attempts have been made to take measurement noise into consideration while
assessing balance. Mahboobin et al. [39] introduced a sensory reweighting mecha-
nism in order to fuse vestibular and proprioceptive information. The reweighting
scheme consists of two Kalman filters, each giving more preference to one sensor
over the other (through Kalman gain changing).

Another work on sensory reweighting in humanoid fall avoidance involves
the fusion of the gyro and accelerometer sensors which together constitute the
vestibular system [9]. However, none of the previously mentioned systems in-
cludes vision. In fact, the first system that applies sensory reweighting of visual,
vestibular and proprioceptive information was recently introduced by Klein et
al. [40]. The visual information is obtained from optical flow analysis, while an
adaptive Kalman filter calculates three gains depending on the noise covariance
of each sensor [40]. Although vision is included in posture estimation, its role is
limited to the distance separating the robot from the visual environment. Any
change in this distance causes inaccurate posture estimation and thus a faulty
control strategy. So, the system only functions in a predetermined environment.
Another limitation lies in the fact that the system is not designed to cope with
unpredicted visual changes such as blurriness or poor lighting conditions. An-
other approach that uses vision but without sensory reweighting is introduced
by Mahani et al. [41], where stereovision is used to estimate the humanoid’s
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Center of Mass pose and the knee/knee-hip strategies are used for push recovery.
This approach fully relies on vision, which makes it non-reliable in poor lighting
conditions and in environments with blurry scenes.

The sensory reweighting systems mentioned above are all tested for small-
angle swaying disturbances applied to the platform on which the humanoid is
standing on. However, push disturbances differ from pure swaying in their mag-
nitude and impulse-like behavior. In this thesis, the fall avoidance strategy is
tested by applying a push force to the humanoid robot and recording its response
in terms of ankle torques in addition to the swaying angles.

3.2 Model-Based vs. Model-Free

The basic approach to solve the humanoid fall avoidance problem is through
modeling the humanoid as a linear inverted pendulum and controlling the ankle
torque to maintain the upright standing position. The humanoid posture is es-
timated by the ankle displacement angle and angular velocity [3, 42, 43]. The
control algorithm is based on a Virtual Model Control strategy that calculates
the appropriate ankle torque needed to be applied after a disturbance. The main
limitation of this approach is that it only allows fall avoidance in the sagittal
plane and against low magnitude disturbances.

Humanoid quiet stance could also be maintained using the Capture Point
technique, as illustrated by Pratt et al. [44]. The algorithm is based on the Zero
Moment Point (ZMP), which is the location inside the support polygon where
the applied moments are balanced by the ground reaction force and where the
horizontal moments at the ground reaction point are zero [38]. In cases where
the ZMP is a fictitious one (i.e., it lies outside the humanoid’s support polygon),
a step is taken by the humanoid to avoid falling. The Capture Point strategy can
be applied for disturbances in differently-oriented directions but its complexity
lies in the modeling process of the humanoid and in the control of the stepping
action when applied.

Humanoid fall avoidance is not always purely related to modeling. In recent
years, compliant humanoids have been utilized to recover from disturbances and
comply with voluntary movements [45]. Compliant humanoids have their joints
specially manufactured to act in accordance with the disturbance instead of coun-
teracting it as in traditional humanoids. The advantage of compliant humanoids
is that it reduces calculation and modeling complexities as the joints absorb the
external disturbances; however, it poses manufacturing difficulties [45]. In addi-
tion, this approach only solves the fall avoidance problem for a specific type of
humanoids, thus making it inapplicable to a generic humanoid robot.

Literature in Kinesiology emphasizes the importance of proprioceptive infor-
mation in evaluating posture and achieving balance [10]. Somatosensory informa-
tion includes muscle activity, joint positions, and contact with the environment.

17



It is established [10] that proprioceptive information is responsible for roughly
seventy percent of the balance control in humans. The proprioceptive sensors used
in humanoid fall avoidance are the foot reaction force sensors. Traditionally, these
sensors are used to detect foot rotation in tilt in order to adjust the ankle torques
[46]. Byuon and Shon [46] use foot pressure sensors to help imitate the control of
humanoid gait by tracing the Center of Pressure of the operator. However, the
authors state that the linear inverted pendulum model is used to maintain bal-
ance in cases of unexpected instability. Another model-free approach is presented
in the work of Grimes et al. [47] where mathematical and dynamic modeling are
replaced by Bayesian learning networks. These networks estimate the proper
joint positions and torques for maintaining stability by referring to experimental
data obtained from tests done on human subjects performing similar tasks as the
ones being done by the humanoid. This introduces two main limitations: the first
one lies in the need to set up the learning network through significant experimen-
tation prior to the application on the humanoid robot. In addition, the dynamic
nature of the environments in which humanoids usually operate makes it difficult
to cover all types of external disturbances while maintaining a balanced posture.
This shows in the experimentation where the humanoid only performs predefined
motion behaviors without applying any unexpected disturbances, which are not
covered in the learning stage [47]. If machine learning techniques were to be
used in changing environments and in the presence of disturbances, numerous
scenarios should be accounted for. These cases include terrain types, possible
loads carried by the robot, disturbance magnitude and point of application on
the robot’s body.

In order to mimic the human behavior in maintaining balance, a review of the
proprioceptive role in human balance is presented next. Tanaka et al. [48] high-
light the importance of foot pressure in evaluating human posture by showing the
change in human swaying patterns with ageing [8]. As humans age, they tend to
lose control of the toe muscle activity. This is directly correlated to inferior bal-
ance capability compared to young subjects especially during posterior swaying.
On the other hand, elderly subjects were found to perform as well as younger
ones in swaying activities involving the heel sensation and heel muscle activation,
knowing that the heel area is not greatly affected by age. Kavounoudias et al.
[49] argue that erect stance is a result of a co-processed input from the tactile and
proprioceptive information in the foot sole and ankle muscles. Their experiments
show that the location of the pressure peak on the foot sole is a direct indication
of the stance state. The visual and vestibular roles are considered to be auxiliary
to the proprioceptive role but the latter is understood to be the most substan-
tial. The aim is to make use of the dominant characteristic of the proprioceptive
sensors in balance control by applying it on a humanoid undergoing push force
disturbances.
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3.3 Humanoid Gait and Energy Minimization

Humanoid gait has been the subject of research over the past few decades. Ki-
nesiology studies indicate that the human learns how to walk progressively until
the age of 5 to 7 years [2]. A similar pattern can be seen in the field of robotics
nowadays, as gait design is being developed and improved, yet at a relatively
slow pace [2]. In their search for bipedal gait design, researchers find two main
paradigms for bipedal walking. The first paradigm dates back to 1990, where T.
McGeer introduced the idea of passive walking which relies solely on the body
dynamics [50]. According to McGeer, a steady walking cycle can be sustained
by a passive interaction of gravity and inertia [50]. The second paradigm is that
of powered walking which is governed by the use of actuators. This paradigm is
broader and could be branched into several sub-paradigms as will be described
later. Bipedal balance is also essential in humanoid operation. Balance during
quiet standing is achieved through multiple strategies [51, 3, 42, 43].

There are several approaches for bipedal gait in the field of robotics varying
from pure kinematic and dynamic design to biomimetic and human inspired gait
design. Harada et al. [52] use online planning of the humanoid’s Center of Gravity
(CoG) and Zero Moment Point (ZMP) to ensure a stable bipedal gait. The gait
plan is done through finding the next CoG and ZMP position and calculating the
proper humanoid joint angles to move the feet to the desired positions. Another
approach relies on feedback control for angular momentum compensation during
bipedal gait. However, this approach is directed more towards gait stability
than gait design [53]. Moreover, capture points are also utilized for planning the
humanoid’s footsteps during gait in order to ensure balanced walking [54, 55]. The
3D linear inverted pendulum model is also widely used in bipedal gait design [35].
The gait cycle is categorized by two main phases which are the single support
phase and the double support phase. So each cycle starts with a single support
phase, followed by a double support phase and then another single support phase.

The previously mentioned approaches treat the bipedal system as a pure me-
chanical body, and the control strategies followed are low-level (at the actuator
level). However, it is always useful to be inspired by a biological system that is
close to the mechanical or robotic system that is to be controlled. In the case
of bipedal gait, the biological reference is the human gait. The inspiration by
humans is twofold. The first inspiration is at the anatomy level. This is shown in
the compliant humanoid design, where the joints are built to mimic the human
muscles and tendons. Compliant humanoids have their joints specially manufac-
tured to be more flexible and act along disturbances as opposed to traditional
humanoids. The advantage of compliant humanoids is that it reduces process-
ing and modeling complexities as the joints absorb the external disturbances;
however, it poses manufacturing difficulties [45, 56]. In addition, this approach
introduces a new type of humanoid design without considering the fact that most
commercial humanoids do not have compliant joints. Therefore, a more generic
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approach for humanoid gait and balance control is still needed.
This leads to the second form of inspiration by the human body, which is

the cognitive one. This approach is more of a bird’s eye view of the hierarchy
in human posture and movement control. According to the cognitivism theory,
human posture and movement are a problem of information processing [57]. Ac-
cording to Collins and De Luca, movement and postural regulation consists of
two mechanisms; open-loop and closed-loop. The open-loop mechanism applies
for short term regulation of movements while the closed-loop is for planned long
term movement regulations relative to a reference value. In contradiction to the
linear inverted pendulum theory, the cognitivism theory states that each body
segment is controlled relative to its own position in space and relative to the adja-
cent segments (limbs) [57]. Understanding human posture and movement control
is essential for achieving better humanoid gait and posture. However, not all
kinesiology concepts could be directly mapped and programmed on a humanoid.

In the search for theories in kinesiology that could guide the approach for
humanoid gait, the concept of energy minimization strikes as a cornerstone for
bipedal gait design. Carol Oatis, in the book on human movements, states that
human motion is driven by the concept of energy minimization [58]. The theory
states that whether in quiet standing or while walking, the human body tends
to apply the least muscular effort and joint torques in order to save energy. This
concept could be deployed in humanoid movement.

The concept of energy minimization is widely used for humanoid posture and
movement control [59]. In this thesis, the use of energy-based control will guide
the human-inspired bipedal locomotion synthesis.

3.4 Energy-Based Control Applied to Humanoids

Energy-based control is used in a wide range of applications ranging from power,
to mechanical systems [60, 61, 62]. The main objective in these control strategies
is to reach the target with minimum energy expenditure.

In the work of Howlett et al. [63], optimal speed control is applied on train
trajectories; the energy cost function was designed to reduce fuel consumption.
Optimal energy reduction was also implemented in [64] for speed control of a wind
generation system, and in [65] for the problem of home automation and building
environments, where the smart building is guided by a multi-agent control system
to ensure user preferences with minimized energy expenditure.

Mechanical system control also relies on energy-based strategies as in [66],
where the locomotion of a hexapod is controlled based on kinetic energy control.
The energy function consists of the difference between the hexapod’s actual ki-
netic energy and the desired kinetic energy. The focus on kinetic energy alone is
motivated by the assumption that potential energy varies minimally during lo-
comotion on a flat terrain. Energy-efficient control strategies also apply to other
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real-time systems such as Dynamic Voltage Scaling systems [67] and autonomous
flying quadrotors [68]. Manipulator control also benefits from energy-based con-
trol algorithms, where learning techniques are used to find the optimal joint
configuration for specific tasks [69, 70, 71].

On the other hand, many studies exist in the field of Kinesiology on the
characteristics of human gaits; drawing from these studies should provide insight
for the design of controllers for humanoid robots. In [72] a hill-type human-like
musculoskeletal model is used to control reaching positions and simple tasks by
reducing muscular effort. The energy minimization in this case is focused on the
muscular effort exerted during motion.

Energy-based control is not foreign to humanoid robotics: in the work of
Nansai et al. [73], the Jansen walking robot used an energy function that served
as a cost metric, and guided the robot’s gait to enable energy-efficient locomotion.

3.5 Small-Scale Humanoid Gait

While the ZMP concept is the main framework that guides humanoid gait [54, 74],
there has been an increased interest in energy-efficient bipedal gait generation
during the past years [75, 76, 77]. The approaches range from energy-based con-
trol of simplified compass bipeds [78] to more complex seven-link models [79]
including upper limb motion planning as described in previous sections. Con-
sidering the fact that the height of the biped’s CoM undergoes small variations
during locomotion, it is sometimes assumed to be constant. In this approach,
the energy minimization is focused on shaping the biped’s kinetic energy during
gaits [80]. The fixed CoM height has led to the conventional bent-knee humanoid
gait; however, a more comprehensive energy minimization technique includes the
total mechanical energy of the bipedal system in motion planning [81] leading to
optimal gaits in terms of energy expenditure [82, 83].

The main framework for bipedal locomotion has always been centered around
mimicking the human walk [84, 85, 86]. The Linear Inverted Pendulum Model
(LIPM) is the most utilized model to characterize the human walk, with the
system being considered as a series of linear inverted pendulums with moving
bases. Here, the tip of the stance foot is considered as the pendulum pivot [35].
More complicated models have been developed over the years to better represent
the human walk, and map it to humanoid locomotion [87, 88]; however, the LIPM
remains integral in characterizing bipedal walking, especially in the context of
energy expenditure. Mimicking human walking is not limited to the choice of an
appropriate model; instead, it could lie in the control strategy applied to achieve
the planned motion [89, 90] or in the biped’s mechanical design, such as in the
use of compliant joints for disturbance absorption [86, 45].

The methods mentioned above have often led to stable bipedal gaits; however,
a more energy-efficient behavior is yet to be achieved especially in small-scale
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Figure 3.1: Hoap2 and Nao original gaits showing overbent knees and large lateral
deviation during single stance

commercial humanoids with low degrees of freedom (DoFs). Fig. 3.1 shows Nao
and Hoap2 humanoids during single stance of their walking cycle. These low-
knee gait types apply the ZMP concept to ensure stability, but do not resemble
human walking, neither visually nor mechanically. Low-knee gait applies exces-
sive strain on the knee joints and extends the time of single stance, thus making
the humanoid more vulnerable to disturbances during this part of the gait cycle.
Moreover, the single stance phase involves large angle deviations in the lateral
plane as depicted in the angle formed between the dashed and straight lines in
Fig. 3.1. This increases the biped’s vulnerability during single stance and raises
the need for developing a human-like energy-efficient gait synthesis technique
which can be applied to small-scale bipedal humanoid models to recover from
external disturbances.
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Chapter 4

Humanoid Push Recovery using
Sensory Reweighting

4.1 Robot Model

In this section, the analysis is limited to the fall avoidance in the sagittal plane
alone, accordingly, the humanoid is modeled as an inverted pendulum where the
angle difference at the ankles is the control input and the ankle torque is the
output. The robot model is shown in Fig. 4.1, where CoM is the humanoid’s
Center of Mass, a is the angular displacement of the ankle, L0 is the distance
from the foot to the ankle, LL is the distance from the ankle joint to the CoM,
D+ is the distance from the foot base to the front tip, while D− is the distance
from the foot base to the foot’s rear end, and β is the foot rotation angle.

In order to model the humanoid as a linear inverted pendulum, the following
assumptions are made:

• The body is considered as a point mass located at the humanoid’s center
of mass (CoM).

• The focus is on the humanoid’s motion in the sagittal plane.

• The humanoid’s foot rotation angle with respect to the ground is β.

• The length from the humanoid’s feet to its CoM is constant.

• The hip and knees are locked and the only torque applied is at the ankles.

4.2 Torque Control

The ankle strategy implemented on the humanoid is inspired by Jalgha et al. [3]
whose work is an extension of the ankle strategy developed by Stephens [91]. The
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Figure 4.1: Humanoid robot modeled as a Linear Inverted Pendulum.

aim of our work is to improve the ankle strategy by following a more human-like
assessment of the humanoid posture through sensor fusion. The control algorithm
is that of a Virtual Model Control (VMC) which is based on attaching virtual
components to a robot in order to control its behavior. The forces created by
these mechanical components affect the torques applied on the corresponding
actuators and in turn control the robot’s movements. The VMC implemented
on our humanoid consists of a virtual spring and dashpot system (connected in
parallel) attached to the humanoid’s CoM on one side and to a roller on the
other as shown in Fig. 4.2. The parameters discussed in this section are defined
in Table 4.1.

The transformation matrix that relates the world frame to the CoM frame of
the humanoid is shown in (4.1), where D is either D+, 0, or D− depending on the
position of the humanoid’s foot [3]:

T =


sβ+a −cβ+a 0 D − (Dcβ + L0sβ + LLsβ+a)
−cβ+a −sβ+a 0 −Dsβ + L0sβ + LLcβ+a

0 0 −1 0
0 0 0 1

 (4.1)

Since the humanoid is modeled as a linear inverted pendulum, a single in-
clination angle (θ) is considered which is the inclination of the CoM from the
vertical line. The work is focused on the robot’s motion in the sagittal plane, so
θ could be derived from the x-y position of the robot’s CoM taken from the last
column of T in (4.1):

θ = arctan
x

y
= arctan

D − (Dcβ + L0sβ + LLsβ+a)

−Dsβ + L0sβ + LLcβ+a
(4.2)

The Jacobian relating the joint torques to the virtual forces is found in (4.3):
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Table 4.1: VMC parameters and their significance.

β humanoid foot rotation angle

a displacement angle at the ankles

D+ distance between ankle and front tip of the foot

D− distance between ankle and back of the foot

L0 distance between foot and ankle actuator

LL distance between ankle actuator and CoM

FS spring force

FD dashpot force

FY vertual vertical force opposite to the gravitational force

K spring constant

B damping constant

LC L0 + LL

Figure 4.2: Humanoid robot model with virtual forces. [3]
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J =

(
δx/δa
δy/δa

)
=

(
−LLca+β
−LLsa+β

)
(4.3)

Define the virtual spring and damper forces represented by FS and FD respec-
tively. Both act in the x-direction and are summed up in FX . Let the force FY
cancel the effect of gravity. The virtual forces FS, FD, FX , and FY are expressed
in (4.4):

FS = Kx = K(D − (Dcβ + L0sβ + LLsβ+a))

FD = Bẋ = B(β̇(Dsβ − L0cβ)− (ȧ+ β̇)LLcβ+a)

FX = FS + FD

FY = mg

F =

(
FX
FY

) (4.4)

The torque applied at the ankle joints is calculated using the Jacobian prop-
erty where the actuator torque is the product of the transpose Jacobian and the
forces acting on the end effector, being the humanoid’s center of mass in this
case.

τ = JTF = −FX(LLca+β)− FY (LLsa+β) (4.5)

The torque in (4.5) is passed to the ankle joints to maintain stability. The
presented approach only accounts for forces acting in the sagittal plane. The
push recovery is therefore applicable in the sagittal plane against disturbances
at the humanoid’s CoM. In addition, the initial velocity of the CoM is not taken
into consideration since the push recovery takes place at a uniform even terrain.
In case the recovery is to be applied on changing terrains the initial velocity needs
to be accounted for in relation to the push disturbance magnitude [92].

4.3 Pose Estimation using Monocular SLAM

In order to acquire visual information, a single camera is used to apply a Monoc-
ular SLAM (Simultaneous Localization and Mapping) algorithm developed by
Davison et al. [93] in order to estimate the robot pose and angular velocity. The
MonoSLAM algorithm consists of selecting landmarks from the visual scene of
the robot and extracting features in the image. Tracking these features during
camera movement, allows for motion estimation. The feature position and ori-
entation estimation is calculated through an Extended Kalman Filter [93]. The
feature detection is based on 1-point RANSAC (RANdom SAmple Consensus).
The algorithm consists of detecting corners and following their motion between
image frames. In addition, the uncertainty surrounding each estimated point is
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calculated and considered when solving for the new state. According to [93], the
camera state vector (x ) is:

x = [r q v w] (4.6)

where r is the orientation vector, q is the orientation quaternion, v is the velocity
vector, and ω is the angular velocity. The noise is assumed to be zero-mean
Gaussian and applied as an acceleration noise. This leads to an impulse change
in velocities. The noise vector is shown in (4.7):

n = [nlinear nangular]
T = [γ∆t α∆t] (4.7)

where γ and α are the unknown linear and angular acceleration respectively. The
updated elements of the camera state vector are shown in (4.8-4.11):

rupdated = r + (v + nlinear)∆t (4.8)

qupdated = q× q((ω + nangular))∆t (4.9)

vupdated = v + nlinear (4.10)

ωupdated = ω + nangular (4.11)

Using the above values, the robot’s change in angular position and velocity are
deduced in order to estimate its posture. Therefore, vision is used as a position
and velocity estimator independent of the environment in which the robot is
operating. It is important to note that poor lighting conditions and blurriness
will affect the estimation. However, those two factors are taken into consideration
in the final system.

The MonoSLAM code returns the robot’s state as a quaternion; however this
application requires the humanoid’s pitch angle only since the focus is on the
sagittal plane. Given a rotation matrix R, the pitch angle (θ) in radians is
calculated using (4.12) [93]:

θ = arctan
−R(2, 0)√

R2(2, 1) + R2(2, 2)
(4.12)

While visual feedback enhances the fall avoidance strategy, the quality of
the acquired images has an effect on the pose estimation. For this reason it is
important to take image quality into consideration. Two metrics are assessed at
each frame and their values affect the error covariance of the Kalman Filter. The
blur metric is calculated by blurring the image both horizontally and vertically
followed by calculating the difference between the blurred image and the original
one [94]. The horizontal and vertical filters used to blur the image frames are
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shown in (4.13). The idea behind this algorithm is that when starting with a
blurry image, adding blurriness will not have a difference between the original
and the updated one [94]. This way the blur factor of the visual scene can be
determined. The blur metric is a value between 0 and 1, where 0 indicates a
perfectly sharp image and 1 indicates a fully blurred image [94].

Another important factor that affects image quality is the brightness metric.
This is analogical to the human case where the dependency on vision decreases in
dark environments. The brightness is calculated by taking the mean of the Value
matrix1 of the image in HSV (Hue-Saturation-Value) format. The brightness
metric is also normalized where 0 means totally dark and 1 means fully bright.
The desired blur factor is a value close to 0, while the optimum brightness factor
is around 0.5 (midway):

Hhor = 1/9
(
1 1 1 1 1 1 1 1 1

)
Hver = Hhor

T (4.13)

4.4 Sensory Reweighting System

The overall system consists of three main blocks; robot angle and angular rate
estimation (using vision and gyroscope), Kalman filter, and torque controller
(see Fig. 4.3). The vision pose estimation was discussed in the previous section
and the angular velocity is directly measured using the gyroscope of the Nao
humanoid robot.

The Kalman Filter is used to fuse the camera and gyroscope measurements
and come up with a better estimate of the humanoid’s pose. The state space
model of the system is presented in (4.14):

xn = Axn−1 + Bun + ωn

yn = Cxn + vn (4.14)

xn =

(
θ

θ̇

)
A =

(
1 ∆t
g
L

∆t

)
B =

(
1

1
mL2 ∆t

)
C =

(
1 0
0 1

)
where xn is the current state vector, un is the input vector, and yn is the mea-
surement vector. The process and measurement noise vectors are represented
by wn and vn respectively. The process noise covariance matrix (Q) and the

1The Value matrix represents the intensity (brightness) of each pixel in the image.
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Figure 4.3: Control Loop of the overall system. The visual and gyro measure-
ments are subjected to noise. The Kalman Filter fuses the measurements along
with the blur and brightness metric and sends the predicted angular position
and velocity to the Virtual Model Controller which in turn sends the appropriate
ankle torque (τ) in order to maintain postural balance.
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measurement noise covariance matrix (R) are shown below:

Q =

(
0 0
0 σω

2

)
R =

(
σ2

θ 0
0 σ2

θ̇

)
The process noise standard deviation is σω, while the visual and gyro mea-

surement noise standard deviations are σθ and σθ̇ respectively. The blur and
brightness factors introduced in the previous section, are integrated into the
measurement noise covariance update as shown in (4.15). Since the blur and
brightness factors are only related to the visual information, their values are used
to update the first element of the measurement noise covariance matrix R. The
idea behind this equation is that the worse the brightness or the blur metric is
the more weight is given to the difference between the old and the new covariance
matrices. In the ideal case, where bl = 0 and br=0.5, no weight is given to the
difference as the measurements are considered to be reliable:

Rn(1,1) = R(1,1) + (bl + |br− 0.5|/2) ∗ (R(1,1)−Rn−1(1,1)) (4.15)

In order to give time for the sensor information to be reliable, R is initialized
to be R0 = 5R.

4.5 Experimental Setup

The MonoSLAM algorithm is tested alone prior to conducting the seven exper-
iments. The MonoSLAM demonstration is shown in Fig. 4.4. The four frames
are part of a robot’s pitch motion from 0◦ to 9.4◦ with a velocity of about 1.5◦/s.
The estimated pitch angle using MonoSLAM was correct to within an error 0.03◦.

It is noticeable in Fig. 4.4 that in the first frames, few features are detected
and most of them represent corners in the scene. The corners are usually the most
reliable features in an image, since tracking them is much easier than tracking
edges [95]. The humanoid used for experimenting is the Nao H25 V3.3, a product
of Aldebaran Robotics (see Fig. 4.5). Nao is 57.3 cm tall and weighs 5.4 kg. The
robot is equipped with a 2-axis gyroscope with 5% precision [96], which is used
to measure the angular velocity. Although Nao is equipped with two cameras,
there is no common field of view between them and thus no stereo vision can be
done. A Microsoft LifeCam HD (mounted on the head of the robot) is used to
get better image quality. The Nao robot doesn’t permit torque control natively,
so the calculated torque was used to control the ankle motors’ stiffness which is
feasible on Nao.

The push recovery algorithm is written in C++ running on Ubuntu 12.04.
The humanoid robot is set to stand in an upright position with the webcam
strapped to its face. The Nao robot is also tied to a linear guide for safety. This
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Figure 4.4: Frames from a camera with MonoSLAM run on MATLAB. The
detected features increase with the number of frames; however some of the new
features are not very certain (triangles and squares).

guide is frictionless and doesn’t affect the humanoid’s movement. It only protects
the robot in case the fall avoidance algorithm fails. The reason behind resorting
directly to experiments instead of simulation is due to the difficulty in simulating
the MonoSLAM algorithm in Webots.

In order to get a consistent push force for all trials the humanoid is hit by a ball
hanging from a rope and released at a predetermined angle. The experimental
parameters are listed below.

• rope length is 76 cm

• distance between robot’s back and projection of the ball is 40 cm

• height at rest (between bottom of the ball and ground) is 23 cm

• angle of release (with respect to the normal) is 45◦

• ball weight is 425.85 g

• ball diameter is 21.804 cm

After 100 trials using the above mentioned setup, the average force (measured
using the OMEGA digital force sensor) at the back of the Nao robot is 56.095N
with a standard deviation of 2.697N. The 95% confidence interval for the applied
force is in the range of 52.0 and 61.2N. The statistical data is obtained by placing
the force sensor at the impact point and repeating the trials. The system is shown
in Fig. 4.5.
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Figure 4.5: The whole system is shown in this figure. The humanoid and camera
are connected to the laptop running C++ and python code.

4.6 Results and Analysis

The experiment is conducted in seven different scenarios each repeated ten times,
in order to test the robustness and improvement the sensory reweighting gives in
push recovery. The scenarios are:

1. Gyro and camera integrated for push recovery under normal conditions

2. Gyro alone for push recovery under normal conditions

3. Noisy gyro measurements integrated with camera

4. Noisy gyro without camera integration (no reweighting)

5. Camera only under normal conditions

6. Camera and gyro in a dark environment (lights out)

7. Camera only in a dark environment (no reweighting)

The following sections present comparisons between the different scenarios
which highlighting the superiority of the sensory reweighting system. The average
angle displacements (obtained from Nao’s IMU) and ankle torques taken across
trials are compared for the seven scenarios. It is important to note that the
recovery algorithm is applied on Nao’s ankle joints and that all of its other joints
are locked. In fact, since the algorithm is only applied in the sagittal plane, only
Nao’s pitch ankle motors are controlled.
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Figure 4.6: Angle displacement plots using Sensory reweighting (red) and Camera
alone (blue) for a 56 N push force under normal conditions.

4.6.1 Sensory reweighting vs vision alone (under normal
conditions)

The experiment described above is conducted both when sensory reweighting is
applied and when the camera is used alone. The tests are done under normal
conditions. The angle displacement and ankle torque plots are shown in Fig. 4.6
and Fig. 4.7 respectively. It is clear that sensory reweighting leads to a lower
angle displacement (peak of 0.33 rad.) compared to 0.42 rad when only vision is
used. In addition, sensory reweighting improves the settling time by 9.3% (1.17
sec. compared to 1.29 sec.). As for the applied ankle torque during the fall
avoidance strategy, sensory reweighting requires the application of 1.5 N while
vision alone requires a peak of 2.14 N. The results show the superiority of sensory
reweighting over using vision alone.

4.6.2 Sensory reweighting vs gyro alone (under normal
conditions)

In this section, the sensory reweighting results are compared to the case where
the gyro is used alone. The angle displacement and ankle torque plots are shown
in Fig. 4.8 and Fig. 4.9 respectively. Although using gyro alone leads to a lower
angle displacement (peak of 0.17 rad.), this method has a poor settling time (1.95
sec.) compared to the sensory reweighting method. Sensory reweighting is also
superior in terms of the maximum applied torque (1.5 N) compared to 3.75 N
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Figure 4.7: Ankle torque plots using Sensory reweighting (red) and Camera alone
(blue) for a 56 N push force under normal conditions.

applied when gyro is used alone. This comparison also indicates the improvement
introduced by relying on both gyro and camera measurements.

4.6.3 Sensory reweighting vs vision alone (lights out)

The sensory reweighting system is tested against a scenario where only the camera
is used to estimate the humanoid’s posture. This test is performed in a dark
environment. The angle displacement and torque plots are shown in Fig. 4.10
and Fig. 4.11 respectively. It is clear that using a camera alone to assess posture
is problematic. This is shown in the angle displacement plot where the estimated
angle is zero during to the whole strategy which leads to a negligible torque
applied at the ankle joints. As a result, the humanoid is unable to recover from
the push and falls down. On the other hand, when sensory reweighting is used,
the humanoid relies more on the gyro measurement and is able to successfully
recover from the push.

4.6.4 Sensory reweighting vs gyro alone (with added gyro
noise)

In this comparison, a zero-mean Gaussian noise with a unit standard deviation is
applied to the gyro measurements and the performance of the sensory reweighting
system is tested against a gyro-only system. The angle displacement and torque
plots are shown in Fig. 4.12 and Fig. 4.13 respectively. The sensory reweighting
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Figure 4.8: Angle displacement plots using Sensory reweighting (red) and Gyro
alone (blue) for a 56 N push force under normal conditions.
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Figure 4.9: Ankle torque plots using Sensory reweighting (red) and Gyro alone
(blue) for a 56 N push force under normal conditions.
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Figure 4.10: Angle displacement plots using Sensory reweighting (red) and Cam-
era alone (blue) for a 56 N push force in a dark environment.
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Figure 4.11: Ankle torque plots using (red) Sensory reweighting and Camera
(blue) alone for a 56 N push force in a dark environment.
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Figure 4.12: Angle displacement plots using Sensory reweighting (red) and Gyro
alone (blue) for a 56 N push force when gyro noise is added.

system proves superior in terms of settling time (0.36 sec.) compared to 1.98
sec. when using gyro alone. However, the gyro-only method leads to smaller
angle displacement (a peak of 0.17 rad.) while the sensory reweighting system
requires a greater angle (0.39 rad.). The sensory reweighting system proves to be
more energy-efficient since it requires the application of an ankle torque only for
a short period of time, while in the gyro-only system a torque is always applied
at the ankle joints which might lead to overheating if the strategy is applied for
long periods of time. The average values of the performance parameters (across
the 10 repetitions) of the different scenarios are summarized in Table 4.2.

In order to test the robustness of the sensory reweighting algorithm against
gyroscope noise, the experiment is also conducted with double the magnitude
of the Gaussian noise (with zero-mean) added to the gyroscope measurements.
Under high magnitude noise sensory reweighting improves the maximum sway-
ing angle by 17.47% and requires less overall torque than when the gyroscope
measurements are used alone (see Fig. 4.14). Despite the fact that when the
gyroscope measurements are used alone 60.96% less maximum torque is required
to recover, the peak torque is only applied for 0.18 seconds while ankle torque is
always applied in the ’gyro alone’ approach (see Fig. 4.15).

Sensory reweighting improves fall avoidance in terms of applied ankle torque,
angle displacement, and settling time. Referring to Table 4.2, it is clear that
sensory reweighting ensures lower settling time when compared to the same sce-
nario without reweighting. In Scenario 4, the maximum ankle torque applied is
6.44N while in Scenario 5, the value is 2N. These values may lead us to think

37



0 0.5 1 1.5 2 2.5 3 3.5

Time (sec.)

-3

-2

-1

0

1

2

3

4

5

6

7

A
nk

le
 T

or
qu

e 
(N

)

Ankle torque vs. Time

Sensory reweighting-with gyro noise
Gyro alone-with gyro noise

Figure 4.13: Ankle torque plots using Sensory reweighting (red) and Gyro alone
(blue) for a 56 N push force when gyro noise is added.
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Figure 4.14: Angle displacement plots using Sensory reweighting (red) and Gyro
alone (blue) for a 56 N push force when a double magnitude gyro noise is added.
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Figure 4.15: Ankle torque plots using Sensory reweighting (red) and Gyro alone
(blue) for a 56 N push force when a double magnitude gyro noise is added.

that using gyro alone might be more efficient. However, sensory reweighting ap-
plies the torque for a short period of time (just after the push force is applied),
but when gyro is used alone the torque is applied during the whole experiment
time. This proves, that despite applying a higher torque, the sensory reweight-
ing algorithm proves to be more efficient. The same reasoning applies for the
angle displacement, where in some scenarios the maximum angle displacement is
higher when using sensory reweighting. The higher angular displacement leads to
a faster recovery which is shown in the low settling time in the sensory reweight-
ing scenarios. Therefore, sensory reweighting leads to a faster, more robust, and
more efficient humanoid fall avoidance.

When compared to the results in [3], the perturbations applied to Nao are of
higher magnitude than the ones in [3]. However, the robot model is of different
dimensions and the recovery assessment is of different nature. Also, the push
recovery assessment metrics are of a different nature. The metrics used are based
on the angle variation per second, while in this approach the impulse force is
measured at the moment of impact.
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Table 4.2: Performance parameters for the 7 scenarios (maximum torque, maxi-
mum displacement angle, and settling time)-Values are averages of the 10 repe-
titions

Scenario Max. Max. Angle Settling
Number Torque (N) Displacement (rad.) Time (sec.)

(1) Sensory Reweighting
(normal conditions) 1.50 0.33 1.17

(2) Gyro alone
(normal conditions) 3.75 0.17 1.95

(3) Camera alone
(normal conditions) 2.14 0.42 1.29

(4) Sensory Reweighting
(noisy gyro) 6.44 0.39 0.36

(5) Gyro alone
(noisy gyro) 2.00 0.17 1.98

(6) Sensory Reweighting
(lights out) 2.24 0.16 2.41

(7) Camera alone
(lights out) 0.06 No recovery No recovery
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Chapter 5

Model-Free Humanoid Push
Recovery

In this chapter, a model-free system for humanoid push recovery is presented.
The concept is inspired by human proprioceptive sensory input used for detecting
balance disturbances.

5.1 Humanoid Posture Estimation

The sensors used to measure foot pressure are Force Sensitive Resistors (FSRs).
Each foot has two front and two rear sensors as can be seen in Fig. 5.1. The
eight FSRs have a working range from 0N to 25N. Since the proposed algorithm
is model free, the posture estimation is calculated solely through the difference
between the front and rear sensors (for balance in the sagittal plane) and between
the right and left sensors of each foot (for balance in the lateral plane).

For each foot, the equivalent FSR values in the sagittal and the lateral planes
at iteration i are calculated by summing the front/back and right/left FSR values
respectively for each foot. In order to minimize the effect of noise, a weight is
given to the readings of the previous iterations by using a low pass filter.

The model-free approach presented in this section provides the humanoid
with increased versatility and adaptability to changes in terrain inclination. It
also aids in maintaining balance under the effect of external disturbances even
when the humanoid carries a load.

5.2 Controller Design

The controllers used to maintain the humanoid’s upright posture are two indepen-
dent Proportional Integral Derivative (PID) controllers at the humanoid’s ankle
joint. One controller maintains balance in the sagittal plane by controlling the
ankles’ pitch angles, while the other maintains balance in the lateral plane by
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Figure 5.1: Force Sensitive Resistors.

controlling the roll angles. The errors fed to the sagittal and lateral PID Con-
trollers are the difference between the front and back FSR values and the right
and left FSR values respectively.

As a result, the proportional, integral, and differential terms for the pitch and
roll ankle controllers are shown in (5.1)-(5.3) and (5.4)-(5.6) respectively, where
Kp is the proportional gain, Ki is the integral gain, and Kd is the differential
gain. The error between the FSR readings in the sagittal and lateral planes
at iteration i are represented by e(i)sagittal and e(i)lateral respectively and ∆t is
the time step. The PID controller gains are obtained in simulation using the
Ziegler-Nichols method as a starting point. The gains are then tuned manually
to improve performance.

Psagittal = Kp ∗ e(i)sagittal (5.1)

Isagittal = Ki ∗ Σe(i)sagittal ∗∆t (5.2)

Dsagittal = Kd ∗ (e(i)sagittal − e(i− 1)sagittal)/∆t (5.3)

Plateral = Kp ∗ e(i)lateral (5.4)

42



Figure 5.2: Summary of simulation scenarios

Ilateral = Ki ∗ Σe(i)lateral ∗∆t (5.5)

Dlateral = Kd ∗ (e(i)lateral − e(i− 1)lateral)/∆t (5.6)

The pitch and roll control inputs are calculated for each time step as shown
in (5.7) and (5.8).

Pitch = (Psagittal + Isagittal +Dsagittal) ∗∆t (5.7)

Roll = (Plateral + Ilateral +Dlateral) ∗∆t (5.8)

5.3 Simulation and Experiments

In order to compare the model-free and model-based approaches, a unified setup
was developed in Webots. The Nao humanoid is subjected to push forces from
different directions and at different locations of its body (see Fig. 5.2). The
performance is evaluated by measuring the swaying angle of the Nao in response
to the push.

Before comparing the results under the different scenarios it is important to
describe the model-based strategy to which the proposed method is compared.
The ankle strategy developed by Stephens [91] and then expanded by Jalgha for
rotational state variables in [3] models the humanoid as a linear inverted pen-
dulum and assumes that the disturbances are always applied at the humanoid’s
center of mass. The model is shown in Fig. 5.3, where CoM is the humanoid’s
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Figure 5.3: Humanoid modeled as a linear inverted pendulum

Center of Mass, θ is the angular displacement of the ankle, L is the distance from
the foot to the CoM, and β is the foot rotation angle. In order to apply this
model to the humanoid, the following assumptions are made:

• The body is considered as a point mass located at the humanoid’s center
of mass.

• The humanoid’s foot rotation angle with respect to the ground is β.

• The length from the humanoid’s feet to its CoM is constant.

• The hip and knees are locked and the only torque applied is at the ankles.

Therefore, the posture is assessed by measuring the angular displacement and
velocity of the humanoid’s CoM, and applying the appropriate torque at the
ankles to counteract this displacement. The control approach is based on the
Virtual Model Control concept in which the humanoid’s CoM is considered to
be attached to a virtual spring and damper. The controller parameters for the
model-based approach are the spring and damper gains as opposed to the PID
controller in the model-free approach.

In the Webots simulator, the angular displacement and velocity of the CoM
are measured using an Inertial Measurement Unit (IMU) which is also found on
the actual Nao humanoid. However, applying the torque directly to the ankle
motors is only possible in the simulator whereas this element can’t be controlled in
the actual humanoid. This introduces a key advantage of our model-free approach
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since the control is on the angular displacement of the ankles instead of torques;
a feature available in the simulator as well as in the actual implementation.
However, in the experiments shown in the following section a workaround was
used in order to implement the model-based approach. The torque is transformed
to stiffness which is an input that could be controlled on the actual Nao.

One solution that might be suggested for push recovery during quiet standing
is to set all joints to maximum stiffness at all times. However, this solution
has two main disadvantages that render it inapplicable. The first and most
important limitation is that setting the joint motors at full stiffness leads to
overheating and permanent damage when applied for long periods of time. The
second disadvantage is that full stiffness eliminates any degree of compliance to
absorb push disturbances and leads to rotation around the feet edges specially
when the push is applied in the direction facing the humanoid. This decreases
the degree of tolerance to high disturbance magnitudes.

The simulation consists of a Nao humanoid standing in the upright position
and experiencing a push from different directions with different magnitudes. The
push force is created using a physics plugin in Webots and is analogous to an
actual push or bump that the humanoid may encounter during its normal oper-
ation. The scenarios used as a benchmark to compare the model-free approach
against the model-based one can be distinguished into four categories (see Fig.
5.2).

• Push at CoM in the sagittal plane

• Push at CoM in the lateral plane

• Push at CoM with two components (in both planes)

• Push not at CoM with two components (in both planes)

5.3.1 Simulation Results and Analysis

The previously mentioned scenarios are tested in Webots and the compared re-
sults are analyzed in the following subsections. It is important to note that the
controller parameters for the model-based approach are tuned to get the least
displacement and fastest settling time.

Push at CoM in the Sagittal Plane

In the sagittal plane, the model-based control was able to withstand a push force
of magnitude 24N, beyond which the humanoid would fall down. However, the
model-free approach enabled the humanoid to withstand a push of magnitude
25N. Although a 1N improvement seems small, the disturbance rejection range
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Figure 5.4: Pitch angle variation under 24N push in the sagittal plane - simulation

of the ankle strategy is limited so any improvement in this area is considered
significant.

In order to compare the two approaches, a plot showing the pitch angle vari-
ation during and after the disturbance was applied is shown in Fig. 5.4. It
is clear that the response in the model-free approach is faster than that in the
model-based controller. The peak swaying angle of the model-free approach is
greater by 0.0025 rad than that of the model-based. However, the model-free
approach provides an improved undershoot by 0.04568 rad and a reduced sway-
ing interval. Although, the model-free approach shows perturbations, these are
limited between 0.0058 and 0.0436 rad between simulation steps 20 and 50, the
model-based approach shows a large sway during the same interval.

The roll angle swaying under the influence of the same disturbance is shown
in Fig. 5.5. It is expected that the model-based approach doesn’t experience any
swaying in the roll angle because no torque is applied to that motor. However,
this is only the case when the disturbance is applied perfectly in the sagittal
plane. Examining the model-free behavior, the swaying ranges between 0.01 and
-0.01 rad that could be traced back to noise in the FSR readings and that the
humanoid’s feet are not well settled on the ground. In fact, these steady state
oscillations don’t exist in the experimental testing.
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Figure 5.5: Roll angle variation under 24N push in the sagittal plane - simulation

Push at CoM in the Lateral Plane

In this scenario, the push force is applied in the lateral plane to test the roll
angle sway in response to the disturbance. The maximum magnitude that the
model-based controller is able to handle is 24N while the model-free handles 26N
push forces. The two approaches under study are tested against a 24N push to
compare their responses. In order to check the maximum angle sways that could
be handled by both methods, the roll angle variations are shown in Fig. 5.6. It is
shown that the model-free controller undergoes a peak sway of 0.11 rad compared
to 0.14 rad in the model-based approach.

As for the pitch angle swaying (see Fig. 5.7), the values for both approaches
are negligible which is logical since the disturbance is acting purely in the sagittal
plane.

Push at CoM with Two Components (one in each plane)

The humanoid is subjected to a push having two components, one along each
plane. The model-based can withstand up to 20N (in both planes) while the
model-free resists a maximum of 24N (in both planes). The resulting pitch and
roll angle swaying are shown in Fig. 5.8 and Fig. 5.9 respectively. The pitch
angle variation in the model-free approach has a peak of 0.09 rad while the model-
based approach has a peak pitch sway of 0.14 rad under the same disturbance
magnitude of 20N.

As for the roll angle variation, the peak sway angle in the model-free approach
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Figure 5.6: Roll angle variation under 24N push in the sagittal plane - simulation

Figure 5.7: Pitch angle variation under 24N push in the lateral plane - simulation
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Figure 5.8: Pitch angle variation under 20N pushes in both planes - simulation

is 0.12 rad compared to 0.14 rad in the model-based approach, while the response
time remains faster for the model-free case. This difference, despite being small,
is still significant considering the limited range of the ankle strategy as discussed
earlier.

Push not at CoM with Two Components (one in each plane)

The humanoid is subjected to the same push disturbance stated in the previous
subsection but this time not at its CoM. The forces are applied at the head area.
This presents a violation of the assumption that the push is applied at the CoM
in the model-based case. This is reflected in the low resistance of the model-based
approach which is able to handle only 15N push along both planes, compared to
19N in the model-free approach.

Figures 5.10 and 5.11 show the pitch and roll angle variations in response to
a 15N push along both planes. The model-free approach improves the peak pitch
angle sway by 0.04 rad and the peak roll angle sway by 0.01 rad compared to the
model-based approach.

5.3.2 Experimental Results and Analysis

The model-free fall avoidance algorithm is tested on the actual Nao H25 V3.3
under the influence of push forces in the sagittal and lateral planes. The results
are compared to those of the linear inverted pendulum model-based approach.
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Figure 5.9: Roll angle variation under 20N pushes in both planes - simulation

Figure 5.10: Pitch angle under 15N pushes in both planes (not at CoM) - simu-
lation

50



Figure 5.11: Roll angle under 15N pushes in both planes (not at CoM) - simula-
tion

The model-based control parameters are tuned to obtain the best performance
in terms of swaying angle and settling time.

The humanoid is set in quiet standing mode and the push force is applied using
a suspended ball released at a predefined angle in order to ensure a consistent
force. For each testing scenario, the experiment is repeated ten times and the
results shown are the averages.

Push at CoM in the Sagittal Plane

The humanoid is subjected to a push force in the sagittal plane applied at its
CoM. The model-free controller is able to recover form push forces up to 95N,
while the model-based controller couldn’t handle more than an 88N push force.
Fig. 5.12 shows the response for an 88N sagittal push applied on the Nao while
running model-free and model-based algorithms. In the model-free approach, the
peak swaying angle is reduced by 0.26 rad and the settling time is reduced by 35
steps. The roll angle displacements are shown in Fig. 5.13 and are very minimal
which is expected since the push is applied in the sagittal plane. The excessive
swaying in the model-based approach is related to the reliance on stiffness control.
The low stiffness allows for excessive swaying before the posture is corrected.
However, when model-free control is used the position control driven by the
change in proprioceptive sensor readings allows faster correction and thus involves
less swaying.
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Figure 5.12: Pitch angle variation under 88N push in the sagittal plane - experi-
ment

Figure 5.13: Roll angle variation under 88N push in the sagittal plane - experi-
ment
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Figure 5.14: Pitch angle variation under 32N push in both planes - experiment

Push at CoM in Both Planes

In order to compare the two approaches under a multidirectional push, Nao is
rotated by 45 degrees from the previous position. This way the released ball will
apply a force with components in the sagittal and lateral planes. In this setup,
the ability of the model-based approach is very limited and the maximum force
beyond which it is impossible to recover is around 32N. However, the model-
free approach maintained its ability to recover from the 95N push force. The
comparison between the two approaches is done at a 32N push after averaging
the results of ten trials. The model-free approach improves the peak pitch angle
displacement by 0.22 rad and the settling time by 18 steps (Fig. 5.14). As for the
roll angle displacement, the model-free approach improves the maximum angle
displacement by 0.13 rad and the settling time by 18 steps (Fig. 5.15).

The experimental results on Nao show more substantial advantages of the
model-free approach in swaying angle and settling time. The steady state per-
turbations present in the simulations are negligible in the experimental testing.
This is due to the fact that in the simulation, Nao’s feet are not well settled
on the ground surface which maintains a difference between the front/back and
right/left FSRs.

The proposed model-free posture control could be enhanced further by making
it adaptable to different terrain types. This can be done by adding a calibration
stage to identify the terrain before starting the operation. The proposed enhance-
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Figure 5.15: Roll angle variation under 32N push in both planes - experiment

ment would allow for push recovery on uneven terrains.
There is no clear choice between model-free and model-based control for hu-

manoid push recovery. The preference is driven by the constraints placed on the
system and the environment in which the humanoid is operating. The more flex-
ible the constraints are, the choice of model-free control becomes more dominant.
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Chapter 6

Energy-Minimization in
Humanoid Gait

The concept of energy minimization is widely used for humanoid posture and
movement control. The focus here is on the application of this concept in hu-
manoid gait. In this section, the different approaches are categorized to models,
types of energy, and types of controllers used to minimize energy in humanoid
gait.

6.1 Biped Models an Types of Energy

The type and complexity of the models used differ from one work to another
based on the parameters monitored and type of control. The compass model
(two-link model) is widely used in the literature. It consists of two sticks and
a Center of Mass (CoM). The feet, knees and trunk are not represented in this
model. Asano et al. [75] use the compass model in designing walking gait cycles
based on Mechanical Energy (ME) restoration. The claim is that the Potential
Energy (PE) of the CoM is constant at the instant of heel strike, while there
occurs a loss in the Kinetic Energy (KE). Therefore, restoring this lost energy
creates a stable dynamic gait.

Another use of the compass gait model is found in the work of Holm and
Spong [80], where they focus on the speed control of gait using the ankle torques
only. Speed control is achieved by KE shaping by solving partial differential
equations representing the biped’s equations of motion. A typical representation
of the biped’s equation of motion is shown in (6.1), where M is the mass matrix
equation, C is the centrifugal and Coriolis terms matrix, G is the vector of
potential dependent terms, B is the matrix of actuators, and u is the vector of
input forces.

M(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u (6.1)
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The compass model is also used in optimal energy gait planning. The KE is
considered to be constant along the geodesics of the CoM path [82]. It can be
seen that when the compass model is used for gait design, the focus is always
on the KE. This is logical since in this specific model, the CoM is always at a
constant height which indicates a constant PE throughout the whole gait cycle.
However; this is not the case in human gait.

The four-link model, also known as the kneed compass model allows the varia-
tion of the CoM height during gait. This gives an important role for the PE factor
as it is now considered to be varying throughout the gait cycle. In [97], a kneed
compass gait is designed based on minimizing the total ME rate. The author’s
experiments however show the fragility of this design especially against external
disturbances. Compliant design is also integrated into the compass model for
ankle joint activation to minimize KE [78].

Another 4-link model approach is used in [98], where the gait is designed
through multi virtual gravity forces to minimize actuator torque energy. The
humanoid is moved as if it is pulled through by virtual forces in order to perform
the gait cycle [98].

The hip role in humanoid gait is highlighted in the use of the three-link model
which consists of two legs and a torso. In [76], only the hip joint is actuated.
This is claimed to increase energy-efficiency due to under-actuation. However,
this claim is not verified in experiments or by comparing with other approaches.
Compliance is also integrated into the three-link model in order to study the
effect of stiffness optimization on energy consumption [99].

The knee is considered by some as the main source of energy consumption [77].
This is due to the fact that in humanoids the main source of PE change is the knee
flexion and extension which varies the height of the CoM. This is not the case in
humans since they have the ability to bend their foot soles during gait. Sun and
Roos [77] use the five-link model but focus on minimizing the energy consumption
at the knee level by monitoring the current passing through it. Other researchers
claim that although the peak power and torque are at the knee level, the most
work is done at the level of the hip joint [100].

A more complex model is the seven-link model which is the same as the
five-link model but with feet. In [79], the minimization of energy is targeted
by minimizing ankle jerk and trajectory planning. This is done by monitoring
KE. In applications where the focus is limited to monitoring energy liberation
during gait, the 3D model is often used to take every joint into account [101,
102]. However, few other approaches consider 3D models for gait modification
accompanied with ZMP adjustment [103].
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6.2 State of the Art Controllers

The control methods used in gait design through energy minimization can be
divided into two main approaches; deterministic and learning-based.

6.2.1 Deterministic Control Methods

The deterministic control approaches usually rely on the humanoid’s equations
of motion at each of the three phases; first single support, double support, and
second single support.

In [83], the energy cost function based on impulse factor of heel strike is used
for energy minimization based gait. The cost function shown in (6.2) is for one
gait cycle between 0 and T. It is divided into the single support and double
support phases, where uss is the input torque vector during single support phase
and uds is for the double support phase, Icont is the impulse of the impact force
which is active during the contact phase, and Itop is during the non-contact phase.

J =

∫ T1

0

uTssussdt+ ITcontIcont +

∫ T

T1

uTdsudsdt+ ITtopItop (6.2)

Another deterministic control approach is zeroing the total mechanical energy
in addition to applying ZMP control [97]. The energy function that is being
minimized in this work is shown in (6.3), where θ is the joint velocity vector, M
is the mass matrix, and P is the PE matrix.

E =
1

2
θ̇TM(θ)θ̇ + P (θ) (6.3)

The most common approach of the deterministic control methods is the
torque control which takes various forms and might be performed at various
levels. As stated previously, different models lead to different actuated joints.
Torque control is thus performed on the actuated joints in order to ensure stable
gait [80, 98, 76, 100]. Therefore, torque control is applied on either some or all
of the following joints:

• Ankle joints (with foot strike correction to avoid premature heel/toe strike)

• Knee joints (to minimize PE)

• Hip joints (to control the torso momentum)

Another type of torque control is the stiffness control which is applied in
robots that don’t support input torques on their joints.
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6.2.2 Learning-based Control Methods

The main objective in the learning-based methods is to find the most energy-
efficient gait parameters that ensure a stable gait. Such parameters include:

• Step length

• Step height

• Step duration

• Bending angle

• Bending time

• Torso pitch inclination

In [77], gradient parameter learning is used to find the above mentioned pa-
rameters that best suit the Nao humanoid. The experiments show that the op-
timized gait has less energy consumption than the standard Nao gait. Another
learning-based approach is in the application of the multi virtual gravity forces
discussed in the previous section [98]. While machine learning is a possible ap-
proach for humanoid gait design, it cannot be considered biomimetic. Since it
doesn’t adopt human characteristics, a high number of trials is needed to teach
the robot a proper gait.
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Chapter 7

Stable Humanoid Gait Design
based on Energy-Exchange

This chapter covers the new energy-exchange gait design for humanoid robots.
An Energy-Based Controller is also proposed to drive the joint motors to the
desired gait angles.

7.1 Gait Design Outline

The first step in the proposed gait synthesis technique is to mathematically ex-
press the out-of-phase oscillation between the kinetic and potential energies at
the humanoid’s CoM. This is presented in (7.1) and (7.2), where f(t) and g(t)
represent kinetic and potential energies, respectively. When (7.1) is true at a
certain time t, then (7.2) should be applied as well.

df(t)

dt
=
dg(t)

dt
= 0 (7.1)

d2f(t)

dt2
.
d2g(t)

dt2
< 0 (7.2)

Using the above constraints to design gaits renders the gait generation prob-
lem more flexible and applicable to different models. A flowchart of the gait
synthesis steps is shown in Fig. 7.1.

The gait design starts with the choice of a biped model in the sagittal plane.
Next, the inter-link angle of each actuated joint is represented by a sum of sines
expression. This model for joint angles is inspired and derived from human
motion capture data and additionally, it defines a parameter search space for the
optimization problem.

Then, the kinetic and potential energies at the biped’s CoM are computed in
terms of joint angles. Once the energy expressions are obtained, an optimization
problem is formed to solve for the parameters of joint angles. The optimization
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Figure 7.1: Gait generation algorithm based on the human-inspired energy ex-
change theory

objective function aims at maintaining the energy-exchange property. Once the
resulting joint angles are solved for, the gaits are written to a motion file which is
then fed to the robot’s model for simulation. This proposed roadmap is applicable
to any humanoid model.

The five-link model representing the torso, thighs, and knees is used and is
depicted in Fig 7.2. Finally, the kinetic and potential energy expressions at the
CoM are recomputed to validate the exchange of energies.

7.2 Humanoid Model and Energy Expressions

The five-link model is used to represent a simplified Hoap2 model with five DoFs
shown in Fig. 7.2, where (x0, y0) is the CoM position. Hence, for the five links in

the model, with positions (xi, yi) and masses, mi, where (x, y) = (
∑
mixi∑
mi

,
∑
miyi∑
mi

)
The model parameters are listed in Table 7.1.

The generalized coordinates are given in (7.3), whereas the expressions of the
kinetic and potential energies of the CoM are shown in (7.5) and (7.6), respec-
tively. Here M(q) is the mass matrix and g is the gravitational acceleration.

q = (x0, y0, α, βl, βr, γl, γr)
T (7.3)

H(q) =

[
y0 − L1

2
cosα− L2

2
cos(α− βl) y0 − L1

2
cosα− L2

2
cos(α− βr)

y0 − L1(cosα + cos(α− βl))− L2

2
cos(α− βl + γl) y0 − L1(cosα cos(α− βr))− L2

2
cos(α− βr + γr)

]
(7.4)
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Figure 7.2: 5-link humanoid model chosen to simulate the new gait synthesis

Table 7.1: List of symbols and their corresponding parameters.
Model Parameters

Symbol Parameter
m1 Torso mass
m2 Thigh mass
m3 Shank mass
L1 Toso length
L2 Thigh, shank length
α Torso angle
βl/r Knee angle (left/right)
γl/r Ankle angle (left/right)
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KE =
1

2
q̇TM(q)q̇ (7.5)

PE = m1g(y0 −
L1

2
cosα) + (m2m3)gH(q) (7.6)

7.3 Gait Motion Generation - An Optimization

Problem

The joint angles are obtained by solving an optimization problem with energy
exchange as its objective function. Before solving for the gait angles, they are
represented as sum of sinusoids as shown in the following study done on human
gait. Data analysis of human gait is done using Motive motion capture system
done on three subjects during forward walking at subjects’ preferred speed.The
markers are placed on the ankles, knees, hips, and CoM to capture the posi-
tion and orientation of the links of the five-link model adopted in this thesis.
The respective joint angles are fitted with sum-of-sines functions with different
degrees.

7.3.1 Joint Angle Expressions

Human gait is studied using the Motive motion capture software. The joint angles
which correspond to the ones on the five-link model are analyzed in order to find
a general form of each angle. Joint angles during constant speed gaits are known
to be of sinusoidal nature.

In this section, the number of dominant frequencies for each angle is deter-
mined in order to find a general sum-of-sines representation. Fig. 7.3 shows the
power spectrum of the torso oscillations. There is clearly one dominant frequency
and therefore α in the five-link model can be represented as a simple sinusoidal
function, as in (7.7):

α = aα0 + aα1 sin(bαt+ φα) (7.7)

The power spectrum of the left thigh oscillations is plotted in Fig. 7.4, showing
two dominant frequencies. As a result, βl/r are expressed using a sum of two sines:

βl = aβl1 sin(bβlt+ φβl1) + aβl2 sin(bβlt+ φβl2) (7.8)

The knee oscillations (γl/r) are more complex as can be seen in the power
spectrum of Fig. 7.5 and the expression:

γl =aγl0 + aγl1 sin(bγlt+ φγl1) + aγl2 sin(bγlt+ φγl2)

+ aγl3 sin(bγlt+ φγl3)
(7.9)
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Figure 7.3: Power Spectral Density of torso oscillations (α)

Figure 7.4: Power Spectral Density of thigh oscillations (βl)
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Figure 7.5: Power Spectral Density of thigh oscillations (γl)

The left and right joint angles have the same representation but with a phase
shift of π rad, to ensure symmetry during gaits.

The obtained joint angle representations are used to provide a parameter
search space for the optimization problem. The frequencies of the angle repre-
sentations, bα, bβl/r , bγl/r, are used to set the speed of the gait so they could be
predetermined before the optimization process. Therefore, one has to solve for
the a and φ parameters. There are 3 parameters for α, 5 parameters for each β,
and 7 parameters for each γ , making a total of 27 parameters.

7.3.2 Optimization problem

With the joint angles formulations derived above, the optimization problem is
formalized as follows:

Objective function:

minQ =
(
dKE
dt

)2
+
(
dPE
dt

)2
Subject to:

•
(
d2KE
dt2

)
·
(
d2PE
dt2

)
< 0

• joint angle limit constraints (set based on the physical limitations of the
humanoid joints)

−0.0524 < α < 1.5708rad.
−1.4312 < βl/r < 1.2392rad.
−0.0175 < γl/r < 2.2689rad.
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• footstep duration constraint within which the peak exchange must occur

Solving for: 27 parameters (only a’s and φ’s) that constitute the joint angles
(except the frequencies which are set to determine the gait speed).

The optimization problem is solved in Wolfram Mathematica using the Dif-
ferential Evolution method with an Accuracy Goal of 20 and Precision Goal of
18. The objective function takes the sum of squares of the first derivative of KE
and PE in order to force a non-negative solution. This could be also ensured
through adding constraints on each of the KE and PE. Future work may include

studying the effect of changing n while using minQ =
(
dKE
dt

)n
+
(
dPE
dt

)n
as an

objective function.

7.3.3 Simulation Results and Analysis

In this section, the energy-exchange gait generation algorithm is simulated on
Hoap2 using the standard PID controller found in Webots. The generated walk
is compared to the off-the-shelf one found in Webots in terms of energy analysis
and joint-torque exertion.

Energy Analysis

The generated gaits were simulated on Hoap2 (parameters in Table 7.1) in We-
bots. Fig. 7.6 shows the simulation model and main specifications.

The proposed energy-exchange gait is simulated using the standard PID con-
troller in Webots and compared to the off-the-shelf gait of Hoap2 provided by the
simulator with the same controller. For all simulations Hoap2 walks at a speed
of 0.025 m/s during both standard and energy-exchange gait. The new energy-
exchange gait is evaluated by the generated energy patterns and compared to the
original gait used for Hoap2.

Torque patterns of the actuated joints are also compared to show improvement
in the new generated gait. Snapshots of the new gait and the standard walk are
shown in Fig. 7.7 and Fig. 7.8 respectively. The kinetic and potential energies
at the humanoid’s CoM during the new gait are shown in Fig. 7.9 to validate the
energy-exchange property. The peak exchange of the energy patterns resembles
the behavior during human gait in Fig. 2.4 The proposed energy-exchange exerts
less torque at the torso compared to that needed in the standard gait (Fig. 7.10).
Similar improvements are evident on the thighs and shanks as shown in Fig. 7.11
and Fig. 7.12, provided that both gaits have the same speed and the standard
controller in Webots is used to drive both gaits.

Averages of the absolute values of torques exerted at each link in both stan-
dard and proposed gait are summarized in Table 7.2. The average torque can
be used as an indicator since both gaits are applied at the same constant speed.
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Figure 7.6: Hoap2 simulation model and specifications

Figure 7.7: Snapshots of gait simulations with energy-exchange

Figure 7.8: Snapshots of gait simulations with standard gait
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Figure 7.9: KE and PE patterns of Hoap2 CoM during new energy-exchange gait

Figure 7.10: Torque exerted at the torso during standard gait (blue) and energy-
exchange gait (red dashed)
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Figure 7.11: Torque exerted at the left thigh during standard gait (blue) and
energy-exchange gait (red dashed)

Figure 7.12: Torque exerted at the left shank during standard gait (blue) and
energy-exchange gait (red dashed)
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Table 7.2: Average torque exerted at each link during standard and energy-
exchange gaits.

Gait Type
Average Torque (absolute values) N rad

Torso Thigh Shank
Standard gait 0.56 7.76 4.89
Energy-exchange gait 0.48 0.47 1.15
% Improvement 14.3% 93.9% 76.5%

Figure 7.13: Overall Absolute Lagrangian during standard gait (blue) and energy-
exchange gait (red dashed)

The new gait shows 14.3% improvement in torque exerted at the torso, 93.9%
less torque at the thighs, and 76.5% improvement at the shanks.

In order to compare the overall energy-efficiency, the total mechanical energy
during the two gaits is evaluated. The new proposed gait has an average me-
chanical energy of 19 J as compared to 19.98 J in the standard gait showing
an improvement of 4.9%. The overall Lagrangian of the new proposed gait is
plotted and compared to the standard gait Lagrangian as shown in Fig. 7.13.
The improvement in energy-efficiency of the proposed gait is evident in the small
variations of the Lagrangian (maximum difference between peaks is 0.06) as com-
pared to the larger variations in the standard gait (maximum difference is 0.88).
This highlights the energy-exchange in the proposed gait where the kinetic energy
is being transformed to potential energy and backwards.

Gait Stability Against Push Disturbances

The proposed energy-exchange gait is tested against push disturbances in the
sagittal and lateral planes as shown in Fig. 7.14. The push disturbances are
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Figure 7.14: Push disturbances (sagittal and lateral) in Webots represented by
red arrows

applied during single stance, which is the most vulnerable phase during gait.
The new energy-exchange gait withstands a push force up to a magnitude of

15 N.m in the sagittal plane and 10 N.m, in the lateral plane. This result presents
a 36.4% improvement in the sagittal plane and 25% in the lateral plane compared
to the standard Hoap2 gait.

Given the improvements introduced by the new gait generation technique,
there remained an area for improvement in the control method used to achieve
this gait. Since our biomimetic approach is centred on energy-exchange, a gen-
eral purpose Energy-Based Controller was developed and used for humanoid gait
control.

7.3.4 Experimental Results and Analysis

The energy-exchange gait generation algorithm is tested on the Nao humanoid.
The generated walk is compared to the off-the-shelf one found in Webots in terms
of energy analysis and joint-torque exertion.

Energy Analysis

The proposed energy-exchange gait is tested using the standard PID controller
available with Nao and compared to the off-the-shelf gait angles found in th built-
in Nao walk (with the same controller). For all experiments Nao walks at a speed
of 0.03 m/s during both standard and energy-exchange gait. The new energy-
exchange gait is evaluated by the generated energy patterns and compared to the
original gait used for Nao.

Torque patterns of the actuated joints are also compared to show improvement
in the new generated gait. The kinetic and potential energies at the humanoid’s
CoM during the new gait are shown in Fig. 7.15 to validate the energy-exchange
property. The peak exchange of the energy patterns resembles the behavior
during human gait in Fig. 2.4. The proposed energy-exchange exerts less torque
at the torso compared to that needed in the standard gait (Fig. 7.16). The thighs
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Figure 7.15: KE and PE patterns of Nao CoM during new energy- exchange gait

Table 7.3: Average torque exerted at each link during standard and energy-
exchange gaits on Nao.

Gait Type
Average Torque (absolute values) N rad

Torso Thigh Shank
Standard gait 3.39 4.20 2.76
Energy-exchange gait 1.36 3.81 2.63
% Improvement 59.9% 9.3% 4.7%

and shanks experience similar improvements as shown in Fig. 7.17 and Fig. 7.18,
given that both gaits have the same speed and same controller.

Averages of the absolute values of torques exerted at each link in both stan-
dard and proposed gait are summarized in Table 7.3. The average torque can
be used as an indicator since both gaits are applied at the same constant speed.
The new gait shows 59.9% improvement in torque exerted at the torso, 9.3% less
torque at the thighs, and 4.7% improvement at the shanks.

In order to compare the overall energy-efficiency, the total mechanical energy
during the two Nao gaits is evaluated. The new proposed gait has an average
mechanical energy of 21.6 J as compared to 22.0 J in the standard gait showing
an improvement of 1.8%. The overall Lagrangian of the new proposed gait is
plotted and compared to the standard gait Lagrangian as shown in Fig. 7.19.
The improvement in energy-efficiency of the proposed gait is evident in the small
variations of the Lagrangian (maximum difference between peaks is 0.6) as com-
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Figure 7.16: Torque exerted at the torso during standard gait (blue) and energy-
exchange gait (red dashed)

Figure 7.17: Torque exerted at the left thigh during standard gait (blue) and
energy-exchange gait (red dashed)
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Figure 7.18: Torque exerted at the left shank during standard gait (blue) and
energy-exchange gait (red dashed)

pared to the larger variations in the standard gait (maximum difference is 1.3).
This highlights the energy-exchange in the proposed gait where the kinetic energy
is being transformed to potential energy and backwards.

7.4 Energy-Based Control

In this section, the concept of Energy-Based Control (EBC) is introduced, and
applied to the problem of an inverted pendulum with both, a fixed, and moving
pivot.

7.4.1 Controller Design

The first step in the proposed energy-based controller is defining the system’s
vector of generalized coordinates q, and its derivative with respect to time q̇. The
vector q consists of the actuated and non-actuated coordinates qact and qnonact,
respectively. The kinetic and potential (P(q)) energy expressions are derived
in terms the aforementioned vectors and used to derive the Euler-Lagrangian
equations of motion:

L = 1/2q̇TMq̇ − P (q)

d

dt

(
∂L

∂q̇act

)
− ∂L

∂qact
= u,

d

dt

(
∂L

∂q̇nonact

)
− ∂L

∂qnonact
= 0.

(7.10)
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Figure 7.19: Overall Absolute Lagrangian during standard gait (blue) and energy-
exchange gait (red dashed)

The equations of motion are derived from (7.10), where u is the control input,
and used to find an expression for q̈act.

A candidate Lyapunov function (V ) is chosen to be a function of the system’s
total mechanical energy (E ) the actuated portion of the generalized coordinates
(qact) and their derivative (q̇act) such that

V =
1

2
k1E

2 +
1

2
k2q

2
act +

1

2
k3q̇

2
act, (7.11)

where k1, k2, and k3 are tunable weights. In order for V to be a valid Lyapunov
function and to ensure the system’s stability, V̇ must be negative semi-definite.

V̇ = k1EĖ + k2qactq̇act + k3q̇actq̈act. (7.12)

The work W, which is equivalent to the change in energy E can be expressed
as [34]:

∆E =W =

∫
u dqact,

Ė = uq̇act.

(7.13)

Equation (7.13) allows us to rewrite V̇ in a factorized form:

V̇ = q̇act(k1Eu+ k2qact + k3q̈act) (7.14)

This makes it easier to find the appropriate control input, which maintains V̇
as negative semi-definite. Enforcing the stability criterion as it pertains to the
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Lyapunov analysis, V̇ = −k4q̇2act is set in (7.14), and used to solve for the control
input function u, to arrive at (7.15), where k1E 6= 0:

u = − 1

k1E
(k4 + k2qact + k3q̈act). (7.15)

Using the expression of q̈act obtained from the Euler-Lagrangian equations of
motion, when plugged into (7.15) the final expression of the control input u is
obtained, as will be done in the sections below.

Fixed Inverted Pendulum

Applying the above strategy to a fixed inverted pendulum, the Euler-Lagrangian
equations of motion are derived from the system’s kinetic and potential energies

KE =
1

2
ml2θ̇2, (7.16)

PE = −mgl cos θ, (7.17)

L =
1

2
ml2θ̇2 +mgl cos θ, (7.18)

mgl sin θ +ml2θ̈ = ufixed, (7.19)

where m is the pendulum’s mass, l is its length, θ is the angle, g is the
gravitational acceleration, and ufixed is the control input which is the torque at
the pivot in this particular system.

From (7.19) the expression of the actuated coordinate acceleration is obtained,
which will be used in deriving the control law:

θ̈ =
ufixed −mgl sin θ

ml2
. (7.20)

The candidate Lyapunov function is chosen as described in (7.11) to include
the total mechanical energy in addition to the actuated coordinates and their
velocities.

V =
1

2
k1E

2 +
1

2
k2θ

2 +
1

2
k3θ̇

2. (7.21)

Ensuring stability by keeping V̇ ≤ 0, the following control law is obtained:

ufixed = − 2lm(−gk3 sin θ + k2lθ + k4lθ̇)

2k3 − 2gk1l3m2 cos θ + k1l4m2θ̇2
. (7.22)
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Figure 7.20: Inverted pendulum on a cart

In order to make our controller adaptive to changing desired references, θref
is added to the Lyapunov function as seen in (7.23), which in turn leads to a
more adaptive control law in (7.24).

V =
1

2
k1E

2 +
1

2
k2(θ − θref )2 +

1

2
k3θ̇

2, (7.23)

ufixed,ref =
2lm(gk3sθ + k2lθref − l(k2θ +K4θ̇))

2k3 − 2gk1l3m2cθ + k1l4m2θ̇2
. (7.24)

The inverted pendulum can thus be driven to any desired angle during oper-
ation. This is important when the energy-based controller is applied to a robotic
system such as a humanoid. During humanoid gait, the desired joint angles
change throughout the gait cycles, and thus an adaptive controller will help in
following the planned motion.

Inverted Pendulum on a Cart

The procedure is similar to that of the fixed inverted pendulum. The system is
shown in Fig. 7.20, where m and M are the pendulum and cart masses respec-
tively, l is the pendulum length, x is the linear displacement of the cart, θ is
the pendulum angle, and ucart is the control input force (in this case the force
pushing the cart).

The vector of generalized coordinates is shown in (7.25). Kinetic and potential
energies of the system are presented in (7.26) and (7.27) respectively, where g is
the gravitational acceleration. The Lagrangian, L, is used to derive the equations
of motion shown in (7.29).

q =

(
x
θ

)
, (7.25)
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KE =
1

2
Mẋ2 +

1

2
mẋ2 +

1

2
ml2θ̇2 +ml(cos θ)θ̇ẋ, (7.26)

PE = −mgl(cos θ), (7.27)

L =
1

2
Mẋ2 +

1

2
m

(
ẋ2 +

1

2
l2θ̇2 + lcθθ̇ẋ

)
+mglcθ, (7.28)

(M +m)ẍ+ml(cos θ)θ̈ −ml(sin θ)θ̇2 = ucart,

lθ̈ + (cos θ)ẍ+ g(sin θ) = 0,
(7.29)

Solving (7.29) gives the expression of the linear acceleration.

ẍ =
ucart +m sin θ(g cos θ + lθ̇2)

m+M −m(cos θ)2
. (7.30)

The chosen Lyapunov function to control the pendulum on a cart is shown
in (7.31), where E is the total mechanical energy. It is clear that V is positive
semi-definite as long as the gains k1, k2, and k3 are non-negative.

V =
k1
2
E2 +

k2
2
x2 +

k3
2
ẋ2. (7.31)

For V to be a proper candidate Lyapunov function and in order to ensure
stability, V̇ (shown in (7.32)) must be negative semi-definite.

V̇ = k1EĖ + k2xẋ+ k3ẋẍ. (7.32)

Taking advantage of the fact that Ė = ẋu the expression of V̇ can be simplified
as:

V̇ = ẋ(k1Eucart + k2x+ k3ẍ). (7.33)

In order to make sure that V̇ ≤ 0 choose:

k1Eucart + k2x+ k3ẍ = −k4ẋ, (7.34)

where k4 ≥ 0. Solving (7.34) and replacing ẍ with its expression in (7.30)
results in the following input:

uinitial =
2(mc2θ −m− 2M)(k2x+ k4ẋ)− 2gk3ms2θ − k3lmsθθ̇2

4k3 − (m+ 2M −mc2θ)D
(7.35)

where D = 2gk1lmcθ − k1
(

(m+M)ẋ2 − 2lmcθẋθ̇ − l2mθ̇2
)

.
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Figure 7.21: Generic block diagram for the three controllers

Table 7.4: Control Input Expressions for the Three Controllers
Controller

(C)
Control input u of the Inverted Pendulum

Fixed On a Cart

CL

(
κβ sin θ(αθ̇2+D cos θ)−c

(
α−
(
β2

γ

)
cos θ

)2
)

((λ(κ+1)+1)β cos θθ̇)

α−β2

γ
(1+κ)(cos θ)2

κβ sin θ(αθ̇2+D cos θ)−c
(
α−
(
β2

γ

)
(cos θ)2

)
((λ(κ+1)+1)β cos θθ̇+λγẋ)

α−
(
β2

γ

)
(1+κ)(cos θ)2

PID kp + e(t)ki
∫
e(t)dt+ kd

de(t)
dt

EBC − 2lm(−gk3 sin θ+k2lθ+k4lθ̇)
2k3−2gk1l3m2 cos θ+k1l4m2θ̇2

Refer to (26)

Since the pendulum’s pivot is not actuated and there is no direct control over
θ, the system’s performance is improved by including proportional and derivative
components at the angle and angular velocity of the inverted pendulum. The
resulting control input becomes:

ucart = uinitial + k5θ + k6θ̇. (7.36)

The generic block diagram with controller C and plant P is depicted in Fig.
7.21, where u can take various values depending on the controller, as shown in
Table 7.4.

7.4.2 System Analysis

In this section the controllability and stability of the inverted pendulum is tested
in the fixed system and on a cart. In nonlinear systems one can test for a weaker
form of controllability, which is the local strong accessibility [104]. This property
is linked back to controllability in linear systems [104]. In order to prove local
strong accessibility of a nonlinear system, it has to be proven that the matrix
formed of the drift vector, the input vector, and their Lie bracket is of full rank
[104].

First, the accessibility for the inverted pendulum on a cart is tested. The
states are defined as q = [x1, x2, x3, x4] = [θ, θ̇, x, ẋ]. The state space equations
are then presented as:
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ẋ1 = x2,

ẋ2 =
g(m+M) sinx1 + cosx1 (u+ lm(sinx1)x

2
2)

−l(m+M) + lm(cosx1)2
,

ẋ3 = x4,

ẋ4 =
u+m sinx1 (g cosx1 + lx22)

m+M −m(cosx1)2
,

(7.37)

In order to test accessibility, the states have to be written in terms of the
drift and input vector fields ẋ = g1(x) + g2(x)u, with g1(x) and g2(x) as shown
in (7.38) and (7.39) respectively.

g1(x) =

[
x2

g(m+M) sinx1+cosx1(lm(sinx1)x22)
−l(m+M)+lm(cosx1)2

x4
m sinx1(g cosx1+lx22)
m+M−m(cosx1)2

]
(7.38)

g2(x) =
[
0 cosx1

−l(m+M)+lm(cosx1)2
0 1

m+M−m(cosx1)2

]
(7.39)

The Lie bracket formed by the two vector fields is calculated as:

[g1(x), g2(x)] =
∂g2
∂x

g1(x)− ∂g1(x)

∂x
g2(x). (7.40)

Since the rank of the matrix formed by the three vectors is three, then the
system is considered to be locally strong accessible. The same proof applies to
the fixed inverted pendulum. The state vector and state equations are written in
(7.41) and (7.42).

q = [x1, x2] =
[
θ, θ̇
]
, (7.41)

ẋ2 =
u− glm sinx1

l2m
. (7.42)

The corresponding drift and input vector fields are shown in (7.43) and (7.44)
respectively. The Lie bracket of the previously mentioned vectors is calculated
as done in (7.40).

g1(x) =

[
x2,
−g sinx1

l

]
, (7.43)

g2(x) =

[
0,

1

l2m

]
. (7.44)

The matrix formed of g1(x), g2(x), and g1g2(x) is full rank of two, which
indicates that the system is locally strong accessible.
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Table 7.5: Gain Parameters of the Three Controllers for the Simulations and
Experiments

Controller
Parameter Values

EBC Controlled Lagrangian PID
k1 k2 k3 k4 k5 k6 λ κ b c kp ki kd

Fixed IP
simulation

0.5 120 50 280 - - 0.01 2460 0.1 50 10.1 1.8 15

IP on a cart
simulation

0.1 100 50 300 20 1 0.05 424 0.3 40 -3.9 -2.5 -0.55

Fixed IP
experimental

0.1 2 1 5 - - 0.01 964 0.15 45 0.1 1 0.01

Humanoid
simulation

0.5 150 55 220 - - 0.01 0.005 0.2 53 10.2 7.5 12.4

The Lyapunov Energy-Based Control (EBC) ensures local stability as long
as the derivative V̇ of the candidate Lyapunov function is negative semi-definite.
Since the chosen control law for both the fixed inverted pendulum and the one
on a cart is based on keeping V̇ negative semi-definite, then this guarantees local
stability for the two systems. Even in the adaptive fixed inverted pendulum, the
systems stability is ensured since the reference angle is included in the Lyapunov
function without disturbing the negative semi-definite property.

7.4.3 Simulation and Experimental Results-Inverted Pen-
dulum

In this section, the energy-based controller is implemented and validated in MAT-
LAB/Simulink simulations for the inverted pendulum in the fixed state and on
a cart and in experiments on the Quanser QUBE-Servo for the fixed inverted
pendulum.

The energy-based controller is compared to the PID control and the controlled
Lagrangian approaches. The controller parameters for the tested scenarios are
shown in Table 7.5, where the first two rows present the gains for the simulations
of the fixed inverted pendulum and the one on a cart. The third and fourth row
present the gains for the fixed pendulum experiments and the humanoid simu-
lations respectively. The comparison metrics used are the maximum overshoot,
settling time, peak input force, and cumulative work.

The work done to bring the fixed inverted pendulum and the one on a cart
into the upright position is calculated using (7.45) and (7.46) respectively.

Workoncart = |∆x · u| , (7.45)

Workfixed = |∆θ · u| . (7.46)
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The metric used to compare energy expenditure between the different con-
trollers is the cumulative work.

CumulWork =

∫ tf

0

Work dt. (7.47)

7.4.4 Simulation Results of the Fixed Inverted Pendulum

The fixed pendulum angle variation for the three controllers is shown in Fig.
7.22 while the applied torque is shown in Fig. 7.23. The energy-based controller
brings the fixed inverted pendulum to the equilibrium position with no overshoot,
contrary to the other two controllers. While it requires 11.33 seconds longer as a
settling time than the traditional PID controller, it needs 103.5 N less peak torque
input (10 N less compared to the Controlled Lagrangian). The energy-based
controller also requires less work to reach stability than the other two controllers
(around three times less than the nearest controller). The performance results of
the three controllers are shown in Table 7.6.

Table 7.6: Performance Metrics for the Three Controllers of the Fixed Inverted
Pendulum

Controller
Performance Metrics

θ
overshoot

(rad.)

θ
settling

time (sec.)

|Peak
input

torque|(N)

Cumulative
Work

(N.rad.)
CL -0.081 47.000 10.230 10.790
PID -0.123 0.277 103.700 981.000

EBC
No

Overshoot
11.610 0.248 3.180

7.4.5 Simulation Results of the Inverted Pendulum on a
Cart

The simulations are done in Simulink and the model parameter values for the
inverted pendulum are shown in Table 7.7. The controllers are tested for an
initial angular displacement of 1.0472 rad which is the same angle used in the
literature to test the Controlled Lagrangian and PID controllers [105, 106]. The
weight parameters are for tuning and at this stage they are being tuned manually
while conforming to the constraints set by the Lyapunov function.

The controllers are compared based on angle displacement, control input mag-
nitude, and cumulative work done. Fig. 7.24 shows the pendulum angle variation
of the inverted pendulum on a cart for the three controllers. While the EBC leads
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Figure 7.22: Angle variation of the fixed inverted pendulum

Figure 7.23: Torque variation of the fixed inverted pendulum
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Table 7.7: Parameter Values - Inverted Pendulum on a Cart

Parameter Value
M 0.44 kg
m 0.14 kg
l 0.215 m
g 9.81 m/s2

Figure 7.24: Angle displacement variation for the inverted pendulum on a cart

to a slightly higher overshoot, it has a faster settling time than the other two con-
trollers. The exact numerical statistics are presented in Table 7.8.

The input force variation for the three controllers is shown in Fig. 7.25. For
a clearer presentation of the results, the comparison is shown in Table 7.8. The
energy-based controller offers a compromise between the excessive peak input
force required by the PID controller and the minimal force required by the Con-
trolled Lagrangian approach. This is done while ensuring the least amount of
cumulative work done to achieve stability of the inverted pendulum in the up-
right position. The energy-based controller shows 3974.7 N less peak input force
than the PID controller and 10.2 N more peak input force than the Controlled
Lagrangian. The cumulative work comparison is shown in Table 7.8, where the
energy-based spends the least work with 4.0323 N.m. and the closest controller
(Controlled Lagrangian) spending 2261 N.m. proving a significant improvement.
It is important to note that the results are subject to controller gain tuning and
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Table 7.8: Performance Metrics for the Three Controllers of the Inverted Pendu-
lum on a Cart

Controller
Performance Metrics

θ
overshoot

(rad.)

θ
settling

time (sec.)

|Peak
input

force|(N)

Cumulative
Work

(N.m.)
CL -0.087 36.000 10.197 2261.000
PID 0.028 1.281 3995.000 1.664e+7
EBC -0.153 0.461 20.349 4.032

Figure 7.25: Input force variation for the inverted pendulum on a cart

extensive iterations were done to find the best gains for each controller used for
comparison.

7.4.6 Experimental Results of the Fixed Inverted Pendu-
lum

The EBC is tested on the QUBE-Servo inverted pendulum (Fig. 7.26) and com-
pared to the Controlled Lagrangian and PID control algorithms. The inverted
pendulum is subjected to an impact from a ball released from a consistent angle.
The parameter values guiding the experimental setup are shown in Table 7.9,
where mp is the pendulum, lp is the pendulum length, mb is the mass of the ball,
and lr is the rope’s length.
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Figure 7.26: Experimental Setup

Table 7.9: Parameter Values of the Experimental Setup

Parameter Value
mp 0.05487 kg
lp 0.144 m
mb 23.28 g
lr 0.167 m
g 9.81 m/s2

θrelease 34.7◦
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Table 7.10: Performance Metrics for the Three Controllers of the Fixed Inverted
Pendulum Experiments

Controller
Performance Metrics

θ
overshoot

(rad.)

θ
settling

time (sec.)

|Peak
input

torque|(N)

Cumulative
Work

(N.rad.)
CL 0.052 2.35 0.273 0.812
PID 0.122 3.968 0.046 0.632
EBC 0.141 5.438 0.001 0.551

The swaying angle, input torque, and cumulative exerted work of the pendu-
lum are measured and plotted for a response to the impact with the released ball.
The ball release represents an impulse disturbance or a push disturbance as will
be shown in the following section. The numerical results are listed in Table 7.10.

The angle variation of the inverted pendulum can be seen in Fig. 7.27. The
EBC leads to more swaying time and higher swaying angle (0.141 rad compared to
0.052 rad of the Controlled Lagrangian) than the PID and Controlled Lagrangian
methods but this is due to the low energy expenditure constraint put on the
proposed controller.

The increase in swaying angle and settling time (3.088 seconds longer than the
fastest controller) is reflected in the low input torque needed by the energy-based
controller to achieve stability of the inverted pendulum in the upright position
(Fig. 7.28).

Regarding the cumulative work expenditure, which is the main goal behind in-
troducing the energy-based approach the results are shown in Fig. 7.29. Energy-
based control ensures stability with 14.7% less work than the PID controller and
47.4% less work than the Controlled Lagrangian. The improvement in exper-
iments are less than those in simulation as the hardware used doesn’t support
high torques. In simulation more freedom was available in the torque input range.

7.4.7 Humanoid Push Recovery Simulations

The motivation behind the energy-based controller design was to implement it
on humanoid robots in quiet stance and during gait. The previous simulations
and experiments were done on the inverted pendulum model since humanoids
are usually modeled as inverted pendulums to simplify the control and motion
planning process.

The three controllers covered in this section are simulated on the Nao H25
V5.0 humanoid in Webots against a 20N push disturbance in the sagittal plane
as seen in Fig. 7.30. The 20N push is considered a strong disturbance given that
the controllers are applying the ankle strategy while all other joints are locked.
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Figure 7.27: Angle variation of the fixed inverted pendulum while recovering from
the ball impact

Figure 7.28: Input torque variation of the fixed inverted pendulum while recov-
ering from the ball impact
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Figure 7.29: Cumulative work expenditure of the fixed inverted pendulum while
recovering from the ball impact

Nao is modeled as a fixed inverted pendulum actuated at the ankle joints in the
sagittal plane with its feet fixed on the ground (no foot rotation). The response
is plotted for analysis and the performance metrics are listed in Table 7.11.

The swing angle variation of Nao is shown in Fig. 7.31 while recovering from
the push disturbance for each of the three controllers. The plots show a 253%
improvement when using the energy-based controller as compared to the closer
control algorithm which is the Controlled Lagrangian method. The energy-based
approach also improves the settling time as compared to the other two controllers.

The energy-based controller also improves the required input torque to recover
from the push disturbance. While the PID controller requires a peak torque of
82.36 N and the Controlled Lagrangian method requires 15.92 N, the energy-
based approach needs only 0.79 N to recover from the same push disturbance.
The input torque plots for the three controllers are shown in Fig. 7.32.

In order to compare the energy expenditure during push recovery, Webots of-
fers torque feedback calculations which reflect the energy expenditure and battery
consumption of the motors at the ankle joint. Fig. 7.33 shows the cumulative
feedback torque plots for the three controllers. The energy-based approach proves
to be 5.4% more energy-efficient than the PID controller and 142.7% more effi-
cient than the Controlled Lagrangian approach.

The energy-based controller outperforms the PID and Controlled Lagrangian
approaches in energy expenditure and cumulative work when tested in simula-
tion and experiments. It also outperformed them in peak input force and angle
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Figure 7.30: Webots simulation setup on Nao humanoid

Figure 7.31: Angle variation of Nao while recovering from a 20N push
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Figure 7.32: Input torque at Nao’s ankle joints while recovering from a 20N push

Table 7.11: Performance Metrics - Nao Push Recovery

Controller
Performance Metrics

θ
overshoot

(rad.)

θ
settling

time (sec.)

|Peak
input

torque|(N)

Cumulative
Work

(N.rad.)
CL 0.120 6.208 82.360 128.900
PID 0.230 3.712 15.920 55.880
EBC 0.034 2.944 0.788 53.110

overshoot when simulated in Simulink and Webots on Nao. However, in the
experiments on the Quanser QUBE Servo, the energy-based control had higher
overshoot than its competitors. This may be due to the fact that the pendulum’s
inertia is not included in the equations of motion and thus affected the perfor-
mance in the experiments. Nevertheless, the proposed controller was still capable
of maintaining equilibrium in a more energy-efficient manner.

7.5 Energy-Based Humanoid Gait

The EBC developed in the previous section is applied to the new gait genera-
tion algorithm since the EBC proved to require less torque in comparison with
traditional controllers. Instead of relying on the PID controller which is set by
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Figure 7.33: Cumulative feedback torque at Nao’s ankle joints while recovering
from a 20N push

default in Webots, EBC is applied along with the newly derived gait angles based
on energy-exchange. Therefore, there is an EBC at each joint of the humanoid
to obtain the desired gait angle at each step of the gait cycle. As in the pre-
vious simulations, Hoap2 walks at a speed of 0.025 m/s. The effect of using
EBC along with energy-exchange gait angles is evaluated through the analysis of
energy patterns and average torques exerted at the actuated joints.

The kinetic and potential energies at the humanoid’s CoM during the new gait
are shown in Fig. 7.34 to validate the energy-exchange property. The use of EBC
exerts less torque at the torso compared to that needed with the standard PID
controller (Fig. 7.35). Similar improvements are evident on the thighs and shanks
as shown in Fig. 7.36 and Fig. 7.37, provided that the same energy-exchange
gait angles are applied and the only difference is in the controllers used.

Averages of the absolute values of torques exerted at each link in both PID
and EBC are summarized in Table 7.12. The average torque can be used as
an indicator since both gaits are applied at the same constant speed with the
same target angles. The Energy-Based Controller leads to 39.6% improvement in
torque exerted at the torso, 55.3% less torque at the thighs, and 3.5% improve-
ment at the shanks.

The total mechanical energy during the energy-exchange gait under EBC has
an average of 18.8 J which is about 1% less than the energy during the use of PID
control. The overall Lagrangian of the gait under both controllers is shown in Fig.
7.38. The improvement in energy-efficiency of the proposed controller (EBC) is
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Figure 7.34: KE and PE patterns of Hoap2 CoM during new energy-exchange
gait with EBC

Figure 7.35: Torque exerted at the torso during energy-exchange gait with PID
control (blue) and EBC (red dashed)
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Figure 7.36: Torque exerted at the left thigh during energy-exchange gait with
PID control (blue) and EBC (red dashed)

Figure 7.37: Torque exerted at the left shank during energy-exchange gait with
PID control (blue) and EBC (red dashed)

93



Table 7.12: Average torque exerted at each link during energy-exchange gait with
standard PID control and EBC.

Controller
Average Torque (absolute values) N rad

Torso Thigh Shank
PID 0.48 0.47 1.15
EBC 0.29 0.21 1.11
% Improvement 39.6% 55.3% 3.5%

Figure 7.38: Overall Absolute Lagrangian during energy-exchange gait with stan-
dard PID control (blue) and EBC (red dashed)

evident in the smaller variations of the Lagrangian (maximum difference between
peaks is 0.04) as compared to the slightly larger variations in the standard gait
(maximum difference is 0.06).

The proposed control strategy also increases robustness against push distur-
bances during single stance in the sagittal plane (up to 16.5 N.m) and the lateral
plane (up to 11 N.m). This shows 10 % improvement in disturbance rejection in
both planes when using EBC as compared to standard PID control.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis a human-inspired mechanism for humanoid fall avoidance and stable
gait generation was presented. The sensory reweighting algorithm improved the
role of visual sensing in humanoid fall avoidance during quiet standing. Through
dynamically varying the degree of reliance on each sensor the robot is able to
maintain balance in different environments and in unforeseen circumstances. The
experimental scenarios described in the previous section demonstrate that the
sensory reweighting system performs better in terms of the magnitude of the an-
kle torque as well as the settling time in the angular displacement. The use of
proprioceptive sensory inputs increases the robot’s ability to reject disturbances
of higher magnitudes regardless of the disturbance direction and location. The
model-free push recovery scheme improves the response time and resistance to
disturbances of higher magnitude compared to traditional fall avoidance strate-
gies. The results are validated both in simulations and by conducting experiments
on the actual Nao.

This thesis also contributed in the development of human-like walking on
small-scale commercial humanoid robots. This became possible through the de-
velopment of the energy-exchange gait. The walking algorithm is inspired by
a theory in Kinesiology which guides human walking. In addition to the gait
synthesis, a new Energy-Based Controller is developed to enforce the energy-
exchange property in humanoid walking. The new proposed gait was shown to
be more energy-efficient than the standard gait. The energy conscious gait is also
more stable against push disturbances in the sagittal and lateral planes during
the most vulnerable phase of the gait cycle which is single stance.
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8.2 Future Work

The work done in this thesis formulated an understanding of the importance
of studying human behavior comprehensively. The clear understanding of the
characteristics that guide human behavior lays the foundation for a strong hu-
manoid maneuverability and stability. The focus in this thesis was on mimicking
the intuition behind human stability and walking. A suggested approach for fu-
ture research is more of a design path where the humanoid joints and limbs are
manufactured to resemble those of humans.

While this thesis presented a number of solutions to the problem of small-scale
humanoid stability and gait design, it opens the door to many areas of interest
that are worth investigating in the future. The main points of interest for future
work are listed below.

• The inclusion of environment perception in assessing the humanoid’s pos-
ture and possibilities of recovery from push disturbances. For example,
vision is not only useful in differentiating between ego-motion and a mov-
ing environment. It could be used to identify objects in the environment
that could aid in maintaining balance (e.g. a wall to lean on).

• The enhancement of proprioceptive sensors on small-scale humanoid robots
by adding force-sensing skins could improve the estimation of disturbance
magnitudes, direction, and point of contact.

• The study of the effect of human running on the energy-exchange prop-
erty and whether it holds under different patterns of running. This would
present an important step in developing complex maneuvers on small-scale
humanoid robots with limited physical capabilities.

• The application of energy-exchange gait on exoskeletons in order to correct
the walk of people with disabilities, and increase energy-efficiency.

• The study of the arm movements during human gait and fall avoidance.
While the arms are used for fall management and preventing damage to
other body parts, they also play a role in maintaining balance. A simple
example is the extension of the arms while walking on a narrow edge.

• The use of proprioceptive sensors for adapting the energy-exchange gait to
different terrain types. The current gait synthesis requires even terrains
for successful walking. Adding a stage of calibration before walking helps
in detecting terrain types and adjusting the gait generation process. The
terrain type would be estimated using the robot’s foot pressure sensors. In
this case, the proprioceptive information obtained could be used to enable
model-free control on the stance foot during energy-exchange gait in uneven
terrains.
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Appendix A

Abbreviations

CL Controlled Lagrangian
CoG Center of Gravity
CoM Center of Mass
DoF Degree of Freedom
EBC Energy-Based Control
EMG Electromyography
EP Equilibrium Point
ERP Event-Related Potential
FSR Force Sensitive Resistor
HSV Hue-Saturation-Value
IMU Inertial Measurement Unit
KE Kinetic Energy
LIPM Linear Inverted Pendulum Model
ME Mechanical Energy
PE Potential Energy
PID Proportional Integral Derivative
RANSAC RANdom SAmple Consensus
SLAM Simultaneous Localization and Mapping
VMC Virtual Model Control
ZMP Zero Moment Point
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