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Title: Context Inference, Localization and Mapping in Indoor Environments using MM Waves

Nowadays, the availability of the location information becomes a key factor
in todays communications systems for allowing new location based services. In
outdoor scenarios, the Mobile Terminal (MT') position is obtained with high accu-
racy thanks to the Global Positioning System (GPS) or to the standalone cellular
systems. However, the main problem of GPS or cellular systems resides in the in-
door environment and in scenarios with deep shadowing effect where the satellite
or cellular signals are broken. Moreover, the availability of single transmitter in
an indoor environment is a main challenge for not only localization but also map-
ping. Hence, we adopt millimeter wave (MMW) to make use of its propagation
characteristics offering solutions for localization in known environments and solu-
tions for Simultaneous Localization and Mapping (SLAM) and context inference
in unknown environments with single anchor node located in a random position
with respect to the unknown receiver using the concept of virtual anchor nodes
and virtual receiver tackling single bounce and double bounce. Furthermore, we
tackle mobility whereby we enhance localization and mapping using family of
Kalman filters and the concept of learning. In summary, the thesis is divided
into six main chapters. In the first chapter, we survey different technologies and
methodologies for indoor and outdoor localization with an emphasis on indoor
methodologies and concepts. Additionally, we discuss in this chapter different
localization-based applications, where the location information is critical to esti-
mate. Finally, a comprehensive discussion of the challenges in terms of accuracy,
cost, complexity, security, scalability, etc. is given. The aim of this chapter
is to provide a comprehensive overview of existing efforts as well as auspicious
and anticipated dimensions for future work in indoor localization techniques and
applications. Then, we introduce in the second chapter an introduction to local-

vi



ization and mapping using MMW. In this chapter, we introduce four approaches
for indoor localization using single-anchor and MMW propagation characteris-
tics are introduced. More precisely, we introduce the Triangulateration (TL),
Angle-Difference-of-Arrival (ADoA), Received Signal Strength (RSS) and Time
Difference of Arrival (TDoA) techniques to do position estimation for the receiver.
Then, we introduce a hybrid localization technique to enhance the localization
accuracy of the receiver. We assess the performance of each technique via cumu-
lative distribution function (CDF) for the location estimation root mean square
error (RMSE). Simulations confirm that localization of the receiver relying on
a single anchor in MMW achieve a few centimeters accuracy. MOSAIC is then
proposed in chapter three whereby simulataneous localization and environment
mapping is performed using mmWave without a-priori knowledge. In MOSAIC,
the positions of virtual anchor nodes (VANs), known as mirrors of the real anchor
with respect to obstacle, are estimated using the proposed TL technique, TDoA
and RSS. Then it is followed by estimating the obstacle position and its dimen-
sions. Finally, we compare the performance of the proposed techniques according
to the Cramer-Rao Lower Bound (CRLB) with N anchor nodes. Furthermore,
we introduce in chapter four an extension to 3D localization and mapping using
mmWave. In this chapter, we performed 3D localization and mapping in outdoor
vehicular and indoor environments. Mobile environment is then assessed in terms
of localization and mapping in chapter five. In this chapter, Extended Kalman
Filter (EKF) and Unscented Kalman Filter (UKF) based Probability Density
Function (PDF) are used to enhance the estimation of the point of reflections
(PoRs). Finally, conclusion is drawn in chapter six.
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Chapter 1

Recent Advances In Indoor
Localization: State-of-the-Art,
Approaches and Applications

1.1 Introduction

Modern communications systems aim at providing high data rates with ubiqui-
tous service coverage. Nowadays, the availability of the Mobile Terminal or Un-
located Device (UD) location information at the base stations, i.e. its knowledge
by the operators, has become a key factor in enabling communications systems
to provide new location based services [1]. Practical localization techniques are
based on Time of Arrival (ToA), Time Difference of Arrival (TDoA). Received
Signal Strength (RSS) and Angle of Arrival (AoA). In outdoor scenarios, the
UD position can be obtained with high accuracy from Global Navigation Satel-
lite Systems (GNSS), such as the Global Positioning System (GPS), or from
the standalone cellular systems. However, these positioning systems are severely
degraded or may fail altogether in indoor environments where the satellite or
cellular signals are interrupted, and in scenarios with deep shadowing effects|2].
Various approaches and methodologies have been proposed to deal with these
problems. Hybrid positioning is a well-known approach for positioning that ex-
hibits sufficient accuracy and coverage [3]. In this respect, combined localization
approaches are extensively proposed in the literature to solve the hearability
problem in indoor scenarios. Another potential candidate for critical scenarios
consists of the class of heterogeneous approaches that combine different radio ac-
cess technologies (such as cellular systems like 3G and 4G, WLAN, and WiMAX),
as shown in Figure 1.1. Indeed, techniques based on combinations of cellular and
WLAN networks have recently received increasing interests from both the lo-
calization and communication communities[4][5]. This is not only due to the
request made by Federal Communication Commission (FCC) regarding the accu-

1



rate localization of the UDs, but also because of the many applications that are
location sensitive such as billing, fleet management, and mobile yellow pages|6].
Although any positioning techniques could be exploited in indoor scenarios and
homogeneous networks, there are practical limits on the combination of these
techniques as well as on the minimal number of anchor nodes (AN) that can
be used in such scenarios[7]. For instance, in many cases, only one or two ANs
are able to communicate with the UD. Hence, new techniques based on hybrid
data fusion and/or heterogeneous access are proposed and analyzed in this case.
In this chapter, we provide a review on recent techniques and concepts used to

Femtocell

Figure 1.1: Heterogencous Scenario (AP: stands for access point, BS stands for
Base Station)

improve localization with their fundamental limits, challenges and applications
with a particular focus on indoor environments. Although reviews on localiza-
tion techniques are available in the literature [8]-[15], these are either narrow
in focus or have been overtaken by significant technological advances. Thus,
the survey in [12] is somewhat outdated, whereas the authors of [8] focus only
on ultrasonic positioning systems. The work in [10] describes relatively recent
localization techniques but does not explore the future trends, challenges, and
applications. The works of [13] and [14] review various technologies, such as
WLAN, used for indoor positioning in addition to different positioning technique
with the metrics used to assess the performance, such as the estimation accuracy
of positioning. However, they do not discuss positioning neither from the per-
spective of energy efficiency nor from the perspective of a requirement in recent
applications, such as ambient assisted and health living applications. Addition-
ally, they do not explore advanced methodologies used to enhance localization,
such as cooperative localization and data fusion techniques. The survey in [15]
provides remarkable classification of different fingerprint-based outdoor localiza-
tion approaches, discussing how cach method works. So, we aim to present a
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survey that is restricted neither for fingerprinting-based techniques nor for out-
door localization. As well, the rapid evolution of methodologies and technologies
in this domain and the need for a comprehensive and up-to-date survey of the
approaches, applications and future trends, provide the motivation for this chap-
ter. To summarize, a number of aspects differentiate this chapter from existing
works; first, we review advanced localization techniques and positioning systems
for indoor and outdoor environments. Second, we discuss recent methodologies
such as data fusion and cooperative techniques used to enhance the accuracy
of localization. Third, we present an overview of machine learning techniques
that have recently been adopted for localization purposes. Fourth, we describe
various localization-based applications from different fields. Finally, we present a
comprehensive list of localization challenges foreseen in the future mainly in next
generation 5G networks.

The rest of the chapter is organized as follows. In section 1.2 we discuss the
fundamental limits of localization in indoor environments and describe the ba-
sic localization techniques in section 1.3. Also, we discuss the state-of-the-art
system-based localization techniques with the challenges in terms of energy con-
sumption and positioning accuracy in section 1.4. Then, we review cooperative
localization and hybrid data fusion techniques in section 1.5. In section 1.6 we
turn our attention to the use of game theory generally and coalition games for lo-
calization. In section 1.7, we explore various localization-based applications. We
present in section 1.8 a comparative study on the accuracy, range and techniques
used for different localization systems. Finally, perspectives and challenges of
recent advancements in indoor localization are discussed in section 1.9.

1.2 Fundamental Limits of Localization in In-
door Environments

Position information is usually provided by global navigation satellite systems,
such as GPS or the European satellite navigation system Galileo. However, the
accuracy of positioning is affected by the environment, especially in indoor sce-
narios or dense urban areas where localization using GNSS can be inaccurate
or even impossible due to the interruption of the connection with the required
satellites. Hence, alternative localization algorithms have to be used to estimate
UD position with high accuracy. This has been primarily achieved using radio
signals offered by terrestrial radio access networks. Typically, these positioning
strategies comprise a two-stage positioning system consisting of a ranging phase
where nodes use distance dependent signal relation, such as RSS, ToA, AoA, etc.
to estimate their own position. Then, in the second phase, the nodes utilize the
position of the known anchors and the information obtained in the ranging phase
to compute their own coordinates. The Cramer Rao Lower bound (CRLB) then
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defines the fundamental limit on the positioning accuracy of the nodes by mod-
elling the impact of the noisy ToA, AoA, or RSS measurements on the ranging
quality. Other bounds on accuracy, such as the Bayesian Cramer Rao bounds,
the WeissWeinstein bound and the extended ZikZakai bound can be tighter and
more informative than the CRLB when the localization system is map-aware.
These bounds indicate that an accuracy of 2m could be reached if a map-based
priori knowledge and map-aware localization is used [16][17]. For instance, in
[17], RSS based algorithms were evaluated using trace-driven analysis and shown
to benefit from the addition of more resources up to a point beyond which their
performance degraded. This effect was then mitigated by cleaning the data to
remove low quality landmark where the quality is defined in terms of the fit of
the distance to RSS model. Hence, the performance is enhanced by cleaning the
data. The accuracies in order of 0.2 m are possible when utilizing commodity
hardware. Additionally, the maximum error achieved in the worst case scenario
can be decreased to reach 1.6 m. However, basic localization techniques have their
limitations. ToA/TDoA is limited by the requirement of at least 3 base stations
(or ANs) to generate 2-D fix. AoA requires at least two base stations. The per-
formance of AoA techniques is highly dependent on the range giving significant
position estimation errors from relatively small error in the AoA measurements.
They are restricted by the carrier frequency, and the size of the array. Thus, they
are used only for localization in applications with requirement of low accuracy
or in combination with other measurements. Also, AoA systems are sensitive
to angular multipath, a major effect in indoor environment. Consequently, ToA
techniques are preferred in urban areas due to multipath effect whereas AoA are
preferred in open areas. Looking at the different access technologies for local-
ization purposes, we can also note various limitations. For instance, empirical
analysis of the appropriateness of WLAN localization showed that significant er-
rors always occur, even though reasonable accuracy may be achieved [18]. Errors
are mainly due to the presence of different locations with similar radio signatures,
such as fingerprints or received signal strength, caused by the dynamic propaga-
tion of radio signals [15]. Thus, this is considered as a fundamental limit of pure
WLAN-based techniques where large errors in range of 6 to 8m occur. To give
more insights about these aspects and limits, we will describe with the necessary
details the stand-alone localization techniques used for indoor scenarios.

1.3 Basic Positioning Techniques in Indoor En-
vironments

Localization methods are based on the estimation of distance to anchor nodes
with known positions and on internode measurements. Node cooperation en-
hances position estimation and is mostly beneficial when traditional localization
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techniques fail to produce accurate estimation, as is the case in indoor scenarios.
Linear least squares (LLS) lateration is a simple method for position estimation.
Ideally, the unknown node would be located at the intersection of at least three
circles with centers at the anchor nodes and radii equal to the distance to each
of these anchor nodes. However, as it is highly unlikely that a single point of
intersection is obtained, least squares (LS) optimization is used to minimize the
sum of squared residuals. Consequently, the problem becomes a nonlinear opti-
mization that needs proper initial estimates [19]. Since nonlinear optimization is
computationally expensive, alternative methods, such as linearized expressions,
are used to estimate the position using LLS. Although this is not an optimal
solution for position estimation, it nevertheless achieves roughly good accuracy
with low complexity [19]. In the following, we briefly describe basic standalone
positioning techniques used in the context of homogeneous networks with the
possibility of hybridization.

1.3.1 Time of Arrival (ToA)

The ToA approach includes the calculation of the time needed by the signal to
travel from the UD to the ANs. The UD is localized to a circle centered on
the AN with a radius d estimated through the ToA. Hence, to detect the exact
location of the UD, at least three ANs are required. In this case, the estimated
position of the UD is simply within the region of intersection (if it exists) of the
three circles, as shown in Figure 1.3. The actual estimated position could then
be easily obtained through any filtering technique such as LS or Weighted Least
Square (WLS) [20][21].

1.3.2 Time Difference of Arrival (TDoA)

TDoA examines the time difference at which the signal arrives at many measuring
units. The transmitter must lie on a hyperboloid for each TDoA measurement
with a constant range difference between the two measuring units. Such measure-
ments are taken between multiple pairs of reference points with known locations.
Also, relative time measurements are used at each receiving node in place of ab-
solute time measurements. No synchronized time source is needed by TDoA to
perform localization; however, synchronization is only needed at the receivers.
The location to be estimated is the intersection of many hyperbolic curves, as
shown in Figure 1.4. This technique is referred to as multilateration.

1.3.3 RSS based Fingerprinting

The RSS approach includes two main methods: the path loss lognormal shad-
owing model to deduce a trilateration, and the RSS fingerprinting [7]. The first
approach is used to estimate the distance between the serving BS and the UD

)



Localization

Positioning| Algorithms

' . . | Scene ' Proximity I
Triangulation Analysis Detection

Measurement [Techniques

—_— —

- P——
Lateration Angulation Fingerprinting- Cell-ID RFID
based

TOA TDOA LEs RTOF AOA AOD
based

Figure 1.2: Classification of localization methods

based on a path loss lognormal shadowing model, as shown in Figure 1.5. Then,
trilateration is used to estimate the location of the UD using at least 3 serving
BSs. On the other hand, the RSS-based fingerprinting firstly collects RSS fin-
gerprints of a scene, as shown in Figure 1.6, and then estimates the location of
the UD by matching on-line measurements with the closest possible location that
corresponds to measurements in a database [4]. Therefore for each possible loca-
tion, ambiguity points could exist leading to high estimation errors in standalone
positioning scenarios.
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1.3.4 Angle of Arrival (AoA)

This technique includes the calculation of the angle at which the signal arrives
from the UD to the ANs. Then, the region where the UD could exist can be
drawn, as shown in Figure 1.7. Basically, this region is a line having a certain
angle with the ANs. Although at least two ANs are needed to estimate the
location of the UD, the position estimation error could be large if a small error
occurs in the AoA estimation. Therefore, the AoA based technique is of limited
interest for positioning purposes, unless it is used with large antenna arrays.

BS1

Figure 1.4: TDoA

P = a =108 log(d"?)

(<§>)

Figure 1.5: RSS for distance estimation

1.3.5 Hybrid Techniques

Recently, hybrid and cooperative mobile positioning has emerged as a new stream
of wireless location; the core idea of cooperative positioning relies on the utiliza-
tion of trustworthy short-range measurements to enhance the accuracy of the
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location estimation of a wireless system.

Different combinations of the basic standalone positioning techniques (RSS, ToA,
TDoA, AoA, etc) have been implemented to enhance the accuracy of location es-
timation. For instance, a combination of ToA, AoA and RSS based fingerprint
approach, as shown in Figure 1.8, provides initial estimation of UDs [22]-[24].
The hybrid ToA/TDoA and RSS proposed in [25] achieves further enhancement
in terms of location estimation accuracy when compared to the use ToA or TDoA
alone.

4 Ambiguities from RSS

&
RSS Base Fingerprint

Figure 1.6: RSS based Fingerprinting Approach

1.3.6 Common Pitfalls in stand-alone positioning tech-
niques

Generally, stand-alone positioning techniques suffer from drawbacks affecting the
localization accuracy. For instance, the ToA technique requires accurate timing
reference at the UD and synchronization between this reference and the clock at
the anchor. Obviously, it is highly challenging to achieve this task; if it is achieved,
it will cause an increase in the cost and dimensions of the mobile device. Besides,
a remarkable change in the software of the mobile device is needed by the TDoA
approach along with further hardware installations. TDoA requires having the
processing done at the UD and sending the estimated location to the system on
the reverse link. Hence, the bulk and the costs of the handset will be increased
in order to satisfy the estimation and synchronization needs. As well, the RSS
technique has drawbacks in terms of difficulty to have a LOS between transmitter
and receiver in indoor scenarios. Hence, localization accuracy is affected by the
multipath effect induced in indoor environments. Above and beyond, pathloss
models are used also to perform localization. However, shadowing and multipath
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fading effects deteriorate the accuracy of such models. The accuracy in this case
can be improved by using pre-measured RSS contours centered at the receiver,
or using many measurements taken at several BSs. Also, the enhancement of
the localization accuracy can be achieved by using RSS measurement based on a
fuzzy logic algorithm. As well, the AoA technique suffers from drawbacks such as
complexity in terms of hardware requirements and reduction in the localization
accuracy as the UD moves away from the measuring units.

@® TOAEstimates
@ RsSSAmbiguities

0 AaoaEstimates

Figure 1.8: Combination of ToA, AoA and RSS fingerprints

1.4 System based Localization in Indoor Envi-
ronments

Despite the fact that hybridization of basic positioning techniques provides im-
provement in the localization accuracy, there is always a need nowadays for bet-
ter methodologies that achieve enhancements in energy consumption and further
improvements in accuracy. In the literature, different localizations techniques
have been proposed that can be classified into the categories shown in Figure
1.2. In all these categories, research has been focused on advanced techniques
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based on new metrics and signals such as energy driven, signals of opportunity
(SoOP), Ultra-Wide Band (UWB) in addition to the conventional systems such
as WLAN, WSN| etc. So, we will discuss more intelligent positioning techniques;
specifically, the UWB based localization, WLAN-based localization, and Sensors-
based localization. Finally, we will discuss in this section the use of SoOPs as
emerging technology to improve localization followed by the challenges of the
system-based localization techniques in terms of energy and accuracy.

1.4.1 Ultra-Wideband (UWB) based Localization

UWRB technology is based on transmitting ultrashort pulses less than 1 ns, with
a low duty cycle from 1 to 1000. The transmitted signal in UWB is sent over
multiple frequencies band. UWB then allows accurate localization and tracking
of mobile nodes in indoor environments. UWB technology is commonly used by
researchers and industry in various fields such as indoor positioning in order to
present enhancements in terms of achieving high range measurement resolution
and accuracy, low probability of interception, multipath immunity, and the abil-
ity to combine positioning and data communication in one system. Additionally,
UWRB technology is highly scalable and can be used at low cost with a low en-
ergy consumption [26]. The position is estimated in UWB-based applications
from the radio signals traveling between target node and reference nodes whose
positions are well known. This procedure is done using ToA, AoA, RSS, TDoA,
and hybrid technique as stated in Section 1.3. Localization systems based on
UWB technology achieve an accuracy of centimeters. With three-dimensional
positioning based on ToA or TDoA, an accuracy of 15 c¢m in indoor scenario
has been achieved [27]. Indeed, multipath signal components are decomposed
by UWB receivers because they possess high bandwidth. In scenarios satisfying
Line Of Sight (LOS) conditions, the first path that refers to the LOS component
is the robust path used for localization purposes. Nevertheless, more complex
techniques are needed if this is not the case in order to perform accurate esti-
mation of the initial delay. Furthermore, the time-based positioning techniques
offer higher localization accuracy compared to RSS technique in UWB-based po-
sitioning applications since the high bandwidth of UWB is not efficiently used
by RSS technique in terms of enhancing positioning accuracy compared to the
time-based techniques. On the other hand, ToA and TDoA make use of the fact
that UWB signal has high time resolution to increase the positioning accuracy
relative to other techniques [28].

1.4.2 WLAN- based Localization

WLAN is the most known solution for indoor positioning [11][12]. Positioning
systems based on WLAN provide better performance compared to some tech-
nologies, such as GPS, global system for mobile communications (GSM) and
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Bluetooth. This aspect is due to the fact that WLAN positioning systems do
not require any additional software or hardware manipulation, but are able to
perform localization based on the existing infrastructure. RSS is the most known
WLAN localization technique due its easy extraction in 802.11 networks and its
ability to run on of-the-shelf WLAN hardware. On the other hand, ToA, TDoA,
and AoA are less common to WLAN-based positioning systems since angular and
time delay measurements are complex.

Usually, WLAN scanning aims to find available networks for connection. Typi-
cally, the scanning can be performed at low rate since the set of available networks
changes slowly. When a device aims to estimate its own position while acquiring
WLAN signals, recurrent RSS measurements are needed from the APs in order to
minimize positioning error. A regular update is needed when a positioning device
is moving along a trajectory; hence, scanning for available APs on all relevant
channels is performed by each device at rate equivalent to the update rate. As
averaging a set of RSS measurements reduces the effect of noise, a device that is
concerned about positioning accuracy performs the scanning at a rate higher than
the update rate. Alternatively, a slower scanning rate than the update rate leads
to reduced power consumption at the expense of positioning accuracy. Hence,
balancing the trade-off between power consumption and positioning performance
is the main driver for a device in selecting its parameters for scanning in WLAN.
Two main approaches are used for indoor WLAN: mono-objective approach and
multi-objective approach [29]. Both approaches are based on Variable Neigh-
borhood Search, aiming to reduce the positioning error during WLAN planning
process. The combination between WLAN positioning system and sensors em-
bedded on smart devices obtains precise indoor localization for mobile smart
devices [30]. The reader may refer to [8]-[12] for more information.

1.4.3 Sensors Based Localization

Inertial sensors such as gyroscopes are widely used in localization. Neverthe-
less, inertial sensors, usually based on low-cost MicroElectroMechanical System
(MEMS), suffer from errors which in turn affect the localization accuracy [31][32].
In order to alleviate this problem, the work in [33] employs denoising, which re-
duces noise from raw sensor signals. This approach enhances the accuracy and
performance of the system by avoiding breakdowns induced by excessive noise.
The localization in sensor-based technologies can be also divided into two cat-
egories: (1) Signature-based and (2) Beacon-based techniques. Signature-based
techniques [34] assume non-uniform distribution of the nodes to be used as a sig-
nature for estimating location by noticing node neighborhoods. In Beacon-based
techniques [35], Beacon nodes should identify their absolute positions using GPS
or manual configuration. The location of the remaining nodes is estimated using
distance/angle measurements to beacon nodes followed by multilateration or tri-
angulation.
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Sensors based localization is an important feature of mobile systems, such as Au-
tonomous navigation, entertainment robots, service robots, and military robots
[31][36][37]. In these environments, the localization of mobile nodes can be
achieved using dead reckoning-based odometry through, for instance, wheel speed
sensors [31],[36][37]. Emergency Sensor Networks (ESN) in contexts such as for-
est fires, natural calamities (hurricanes, storm), and terrorist attacks [38] are also
of great interest. The placement of the sensor nodes in emergency applications
is extremely localized for each point at which the size of the node group is based
on the intensity of the monitored event at that point.

1.4.4 Signals of opportunities (SoOPs)

Currently, mobile terminals implement a variety of communications standards
like GSM, UMTS, LTE or even short range communications like Bluetooth or
WLAN. Therefore, such terminals are capable of listening to a broad spectrum
of radio signals. The transmitters of such radio signals compare to landmarks in
classical navigation. Their position might be known. But if the position of the
origin of such SoOP is unknown, their observation can still potentially improve
the positioning performance of classical mobile radio positioning using downlink
reference signals for instance. Basically, these signals are not specific for navi-
gation. SoOPs are RF signals utilized for communication purposes. SoOP has
many advantages in terms of signal space diversity and higher received signal
power.

Related work considers digital terrestrial video broadcasting signals for position-
ing purposes [39] based on signal propagation delay estimation. Here the trans-
mitters are fixed and it is reasonable to assume their positions to be known.
Skyhook has developed a positioning system based on WLAN signals [40]. This
approach requires a database which must be learned and kept up to date using
appropriate self-learning algorithms. So inherently this approach does not as-
sume knowledge about the WLAN transmitter positions from the beginning. TV
and WLAN signals are combined to improve positioning [41].

Moreover, different mitigation methods such as assisted GPS and differential
GPS were proposed to provide enhancements to achieve robust navigation under
critical scenarios. Recent proposed navigation systems use SoOP to enhance the
accuracy. For instance, cooperative network is developed to provide accurate
localization by using large number of nodes combined with SoOP [42]. The fun-
damental ability of cooperative network is that each node can produce navigation
signals that can be used by other uses in the network in addition to receiving
SoOP from selected towers. In such case, both local and global positioning is
possible. Actually, the known positions of the SoOP provide global position-
ing. On the other hand, local positioning permits signals produced through the
cooperative network. Thus, a SoOP technique can be used for the purpose of
localization, such as using timing measurements to perform opportunistic posi-
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tioning [43]. Many SoOPs are used for mobile localization without GPS [44][45].

1.4.5 Challenges and Pitfalls

The target of this section is to detail the main challenges and pitfalls of each
system.

1.4.5.1 Challenges in UWB-based localization system

The performance of positioning systems based on UWDB technology may face
many challenges induced by aspects such as extremely cluttered operational en-
vironments causing multipath, NLOS and shadowing artifacts. For instance, in
ToA-UWRB based schemes and NLOS conditions, the performance degradation is
mainly due to the mismatch between the first arriving path and the direct path
and the addition of detouring delay. Another big challenge of UWB based local-
ization resides in implementing wideband radio devices for a UWB signal with
absolute bandwidth larger than 500 MHz. Here, some efforts have been done
in the research community to develop such platforms reaching 10 to 15 cm in
positioning accuracy. The reader might refer to [46] for more details.

In UWB-based positioning system, interference with the ultra-wide spectrum may
occur because of the misconfiguration. Interference may occur also due to the
spread of the UWRB signal over the bandwidths containing the frequency of the
existing narrowband system. Another challenge resides in the need of, at least
three receivers with unblocked direct path to the transmitter for normal ToA
positioning algorithm. UWB-based positioning system requires also signal acqui-
sition, tracking, and synchronization to be performed with very high precision in
time relative to pulse rate. Currently, researchers are working on such problems.
We can notice for instance the work in [47][48] where a novel technique for ToA
with two receivers is proposed. Even though this work is very interesting to solve
such issues, the door is still open for more solutions as limitations and challenges
are still there.

1.4.5.2 Challenges in WLAN-based localization system

WLAN-based localization system is time consuming for site surveying and is
labor intensive. Another challenge is the fact that the multipath of such systems
is influenced by the existence of physical objects. Also, WLAN-based localization
system may interfere with other applications in the 2.4 GHz ISM. Moreover, the
variation of signal strength with respect to time is considered a weakness of such
system causing deterioration in the localization accuracy. The variation of signal
strength caused by the movement of people, doors, and furniture in offices requires
updating simultaneously the signal strength map. Hence, this is considered as a
main drawback of WLAN fingerprinting systems.
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1.4.5.3 Challenges in Sensors-based localization system

In terms of methodologies, anchor-based localization techniques are usually pre-
ferred in this environment due to their accuracy. Nevertheless, such techniques
have disadvantages, such as the need for proper anchors to be installed in WSN.
As the anchors have high cost and energy consumption, the number of required
anchors must be minimized. Another weakness of anchor-based localization tech-
niques is that a uniform distribution of anchors is needed knowing that this cri-
terion cannot be satisfied in many environments such as battlefields and natural
disasters environment, where sensor nodes are deployed randomly. While lo-
calization of unknown nodes in WSN is done using randomly selected anchors,
the anchors differ in their impacts on the accuracy of localization due to their
characteristics and the uncertainties of wireless communication. To solve this
problem, the work in [50] proposed a new anchor-based positioning technique by
the creation of a database for optimized anchors. Then, anchors from the created
database are used to measure the distance to the unknown node and the new
located unknown nodes become new anchors in order to decrease the dependency
of localization technique on anchors and to ensure that the anchors are uniformly
distributed over the network.

1.4.5.4 Common Pitfalls in SoOps

When using SoOP for the purpose of localization, one has to consider significant
aspects such as the lack of independent SoOP, 2-D vs. 3-D solutions, SoOP clock
errors, signal integrity, and multipath and NLOS signals. The uncertainty in the
clock of the signal transmitter due to an offset relative to the clock of the receiver
in addition to the unknown transmission time is a challenge against localization.
As well, hybrid/fused SoOPs are used in order to alleviate the technical challenges
obtained from positioning with SoOP [44].

1.4.5.5 Energy Efficiency: A common challenge

In many indoor scenarios, the positioning techniques have to be energy efficient
as they are based on devices with limited battery life such as sensors, smart-
phones, etc. Nevertheless, these positioning techniques have various criteria of
encergy efficiency, service availability, and accuracy. For instance, the energy used
during the idle state by an access point (AP) in WLAN networks is wasted if
no user is being served. As stated in [51], more than USD 6 billion is spent for
almost 74TWh of electricity consumed for internet related equipment every year
in USA. Hence, there is a vast need for energy efficient positioning techniques.

Although the WLAN based positioning system service approaches are energy ef-
ficient techniques, they are not generally obtainable for users. Hence, the work in
[52] proposed to use the current WLAN infrastructure and Access Points (Aps)
without pre-deployment calibration and a genetic algorithm for energy-efficient
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localization purposes, like WLAN access points (APs). Consequently, this ap-
proach is restricted to indoor scenarios.

Another interesting approach resides in power cycling algorithms in smartphones
[53]. The duty cycling approach polls the built-in sensors of a smartphone at spe-
cific time intervals to identify any mobility and whether to turn the GPS on or
off. A Bluetooth-based Position Synchronization (BPS) is another idea of energy
efficient positioning technique [53]. The location information is shared among
devices using BPS over a Bluetooth connection.

Furthermore, positioning systems based on the combination of different method-
ologies and techniques are also energy efficient. Here we distinguish the works of
[54] which provides location estimates through the utilization of heterogeneous
positioning services and the combination of techniques including a received signal
strength indicator and a 2D trilateration, and of [55] based on context information
and a fusion engine using particle filters. Moreover, we provide the work of [56]
which introduced a preliminary analysis of probabilistic localization techniques
for power-efficient map-aided localization, developing the green global-greedy po-
sition estimation (3GPE), and presenting entropy deduction as a new metric for
performance assessment. However, this approach still has many challenges. The
first is the determination of the inherent relations between the expected errors,
the location precision and the probability of each possible matched fingerprint.
The second is the evaluation of the accuracy contribution of each AP using the
entropy deduction metric of probabilistic fingerprint [57][58].

When accuracy and energy efficiency are required, more technologies advance-
ment should be achieved. This can be obtained by making use of hybrid data
fusion concept and cooperative approach between different localization systems
as discussed in section 1.5.

1.5 Cooperative Localization and Hybrid Data
Fusion

1.5.1 Hybrid Data Fusion (HDF)

So far, heterogeneous wireless resources are included in most of wireless environ-
ments, such as LTE femto base stations, WLAN APs and WSNs. Also, such en-
vironments are characterized by the crowded cooperation over medium or short
ranges between multi-standard UDs. Additionally, radiolocation ability is effi-
cient in such scenarios for the sake of enhancing connectivity performance and
enabling context-based services or indoor navigation [59].

However, due to the signal attenuation and the multi-path propagation problems
caused by reflections of radio signals, the accuracy of wireless-based indoor po-
sitioning is severely degrading in uncontrolled environments. Many researchers
combine other sources of sensors (e.g. inertial measurement unit (IMU), cameras,
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and range finders) to compensate for these problems. Fusing the information from
different positioning systems with different physical principles can improve the
accuracy and robustness of the overall system.

It is worth noting that various wireless devices, such as Bluetooth, WLAN and
radio frequency identification (RFID), provide a localization accuracy ranging
from several meters to centimeters inside buildings. So, we will review in this
section first the conventional techniques based on HDF. Then, we will discuss
the fusion with maps and fingerprinting, fusion with inertial information, fusion
with camera information, and fusion with other information such as the spatial
structure information of an environment.

1.5.1.1 Conventional HDF Techniques

Recently, research work has been focusing on two main approaches in HDF, the
centralized and non-centralized approaches. Iterative positioning (e.g. [60],[61],[62])
and cooperative links selection (e.g. [63],[64]) are used with the non-centralized
approach. Moreover, such heterogeneous and cooperative environments include
complex phenomena such as the conjunction of harmful sparse connectivity,
space-time correlations among various radio access technologies and poor Ge-
ometric Dilution Of Precision (GDOP) conditions. The authors of [65], however,
carried out extensive research that dealt uniquely with cooperation in homoge-
neous scenarios. As well, a measurement campaign in jointly heterogeneous and
cooperative wireless indoor scenarios uses ZigBee devices with RSS measurement
abilities [66].

HDF methods estimate reliable position information to the benefit of communica-
tions. The work in [67] has introduced the main radio technologies and scenarios
for wireless positioning assessed by the Wireless Hybrid Enhanced Mobile Radio
Estimators (WHERE) European project. Two novel particle filter based HDF
techniques are used to either track the position directly from the received signal
or the path dependent parameters. Moreover, new cooperative schemes, based on
obtaining proper mathematical representations corresponding to LOS and non-
LOS propagation, are used to enhance the performance of mobile communication
systems in terms of position accuracy and reliability.

Another interesting set of work resides in the combination between angle-based
localization, map filtering, and pedestrian dead reckoning [68] where absolute
location estimates are provided by the angle-based localization system. On the
other hand, accurate length and shape of the traversed route are obtained from
pedestrian dead reckoning (PDR) without absolute location and heading infor-
mation. The estimates obtained from PDR movement and angle-based location
techniques are merged together with a building vector map in a particle filter
that is used as the fusion filter in this study. Hence, merging information from
different positioning techniques can lead to higher positioning accuracy for sev-
eral of indoor scenarios.
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Hybridization is also used for the purpose of pedestrian tracking [69]. Usually,
this hybrid technique merges inertial measurements and RSS information via a
Kalman filter. Classic hybrid methods for pedestrian tracking (e.g. [70] and [71])
were based on the utilization of a map-based or fingerprinting RSS localization
method. However, this requires a time-consuming calibration step in order to
create the radio map of the environment to be utilized for position estimation
of mobile node through the matching between map measurements and mobiles
measurements. On the other hand, another hybrid localization method [69] uses
a channel modeling technique where a propagation channel model serves to give
a direct relation between the distance between two nodes and the RSS; then, a
positioning technique or triangulation is utilized to estimate node position from a
set of distances to some known anchor nodes. Yet, fingerprinting methods provide
higher accuracy; however, this approach has minimal calibration cost. Addition-
ally, the fusion between inertial measurements and channel-based localization
provides enhancements over fingerprinting methods in terms of positioning accu-
racy [69].

Generally, techniques based on LS are mainly used in cooperative positioning
schemes as in [72]-[75]. On the other hand, statistical approaches such as factor
graphs [47] and belief propagation [76] make use of a set of observations and
a priori probability distributions of node positions to estimate the maximum a
posteriori location.

It is worth mentioning that distributed localization is also used in HDF through
the so-called iterative multilateration (see [77] for instance). Once the position
is estimated for an unknown node, this node is used as an anchor node whose
estimated position is broadcasted to all neighboring nodes. The procedure is
shown in Figure 1.9, where the target can do self-localization by making use of
not only neighboring anchor nodes, but also virtual anchor nodes that have been
localized in earlier iterations. Virtual anchors are localized with different levels
of uncertainties. Also, this process is iterated until all nodes with at least three
reference nodes achieve estimation for their position. In this case, information is
needed only within local neighborhood, thus reducing communication cost at the
cost of error propagation. Consequently, it is essential to have careful selection of
reference nodes in order to reduce the accumulation of error through considering
the uncertainties in estimating reference nodes.

1.5.1.2 HDF Techniques including maps and fingerprinting

A number of propagation model-based or fingerprinting-based techniques have
been proposed for indoor wireless positioning. RF location fingerprinting [78] uses
a set of sensor measurements (i.e. RSS) from WLAN access points, GSM, RFID
readers, or other RF-based sensors to represent the locations. On the other hand,
propagation model-based approaches [79][80] require an explicit sensor model to
predict the propagation of the RF signals. However, their accuracy is affected
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Figure 1.9: Iterative Multilateration

by a large number of environmental factors, since it is almost impossible to find
a universal model to characterize the radio signal propagations in indoor envi-
ronments due to severe multipath and numerous site-specific parameters. This
approach does not rely on any explicitly predicted model to characterize the sen-
sors behavior. Instead, an a priori set of fingerprints that expresses the sensors
output at sampled locations in the global frame has to be recorded in advance
during an offline training phase. In the online localization phase, the location
of a node is determined by matching the current observations with the recorded
reference fingerprints. Fingerprinting-based approaches are therefore assumed to
be more accurate and robust as compared to the model-based approaches with
regard to location-specific distortions.

The traditional fingerprinting-based approaches require a time-consuming and
laborious site survey phase in order to construct, combine with and update the
fingerprinting map. Therefore, some researchers proposed different techniques to
reduce the site survey in the traditional fingerprinting-based approaches. Here,
we mention the works of [81] exploiting human motions, [82] using smartphone-
based crowdsourcing, and [83] adopting ray tracing tool.

1.5.1.3 Fuse with inertial information

The movement of a mobile object can be estimated from the IMU and thus
can be integrated into indoor positioning systems to improve their performance.
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The position estimates can be improved and smoothed by fusing the WLAN and
IMU data [84]. Moreover, the orientation information can be retrieved using the
movements of the pedestrian, which leads to a more precise WLAN positioning
system. The IMU information assists the selection of nearest neighbors for real-
time WLAN fingerprinting positioning in order to reduce the positioning error
[85]. Tt is combined also with a region-based fingerprinting using a Kalman Fil-
ter to improve the positioning accuracy [86]. The accuracy is further improved
through a multisensory system, which combines data from different sensors (RSS,
visual features, and built-in accelerometer) in smartphones [87].

1.5.1.4 Fuse with Camera information

A hybrid indoor location estimation system is achieved also by merging the in-
formation from WLAN with the build-in camera on a smart-phone for position
estimation [88]. This approach utilizes visual markers pre-installed on the floor
for the position correction. Visual information is combined also with the radio
data to track a person wearing a tag using a mobile robot in indoor environments
[89]. The authors of [90] presented a method to integrate range-based sensors
and ID sensors (i.c. infrared or ultrasound badge sensors) using a particle filter
to track people in a networked sensor environment. As a result, their approach
is able to track people and determine their identities owing to the advantages of
both sensors.

1.5.1.5 Fuse with other information

The spatial structure information of an environment may be used to improve
the localization accuracy. Given a map of an environment, an object can only
appear in the free space of the environment. Hence, different kinds of information
fusion lead to an improvement in the positioning accuracy, usually at the cost of
additional complexity. For instance, data fusion occurs also with different types
of RF sensors to improve the localization accuracy since different positioning
systems may complement each other [91].

1.5.2 Cooperative Localization in SLAM

The Simultaneous Localization And Mapping (SLAM) technique performs lo-
calization relative to a map of an unknown environment that is simultaneously
acquired by a moving node. While SLAM techniques are used in outdoor en-
vironments, their utilization in indoor scenarios is however dominant. SLAM
is a localization technique used to build up a map within a known or unknown
environment while at the same time tracking the current location. SLAM algo-
rithms are tailored to the available resources, aiming to work with operational
compliance and not targeting perfect results. Published approaches are employed
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in self-driving cars, unmanned aerial vehicles, autonomous underwater vehicles,
robots and even inside the human body. SLAM is mainly used in cases where
nodes are not equipped with a GPS sensor. As alternative, incremental egomo-
tion sensors, such as inertial navigation and odometry, are used for localizing
the mobile node. Nevertheless, error is accumulated over time by such sensors
making accurate map generation a challenging task.

In practice, we have two main methods listed under cooperative SLAM localiza-
tion. The first one is the centralized approach through which a central system
distributes the data to all nodes (such as robots) in the group. The weakness of
this system is that any fault in the central unit leads to a failure of the whole lo-
calization system, and nodes are limited in mobility in order to keep contact with
the central system. On the other hand, the second method is the decentralized
approach through which the exchange of the data between nodes is done without
the need of a central unit [92][93].

In SLAM, the data, of both the sensor networks and the autonomous nodes or
vehicles, is usually merged for enhancing localization techniques [94]. Basically,
the one-way cooperative localization scheme is based on the fact that one system
is supplementing the other to do localization. The two-way cooperative localiza-
tion technique is based on the idea of sensors performing their own localization
by themselves first and then performing localization of the vehicles (or robots),
while the localization of the vehicles will be done by themselves.

SLAM presents critical challenges in robot research community due to the non-
linear nature of the problems therein. As discussed by [95], Extended Kalman
filter (EKF) is widely utilized for the localization of robot and the incremen-
tal development of the environment map in SLAM. Besides, the localization in
non-linear SLAM systems is tackled also in EKF literature. Particle filter is also
used to denote both possible map configurations and robot poses. Using a new
map representation denoted by distributed particle mapping allows an efficient
preservation and update of hundreds of robot positions and candidate maps.
Simultaneous Localization and Mapping and Moving Object Tracking (SLAM-
MOT) represent a normal continuation for the SLAM problem with moving ob-
jects. The SLAMMOT technique is used to solve the observability problem as
well as enhance the accuracy of localization, mapping, and tracking [96]. Other
extensions of SLAM techniques also exist. We notice the Cooperative Simulta-
neous Localization, Mapping and Target Tracking [97], the distributed strong
tracking unscented particle filter which uses distributed particle filter [98]. All
these techniques are applicable in indoor environment.

1.5.3 Common Pitfalls to avoid

In this section, we handle the pitfalls to avoid while using data fusion techniques
in cooperative localization.
Data fusion is highly critical in WSN since it increases the network lifetime and
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achieves the objectives of the application, such as target tracking, event detec-
tion and decision making. Consequently, applying inappropriate data fusion leads
to misleading evaluations and waste of resources. Hence, we must take care of
probable limitations of data fusion so that we can prevent blundering cases from
occurring. Also, WSN recommends applying data fusion in a distributed fashion
in order to increase network lifetime. Nonetheless, we must also take care of
the challenges obtained when performing data fusion in a distributed manner.
Therefore, a centralized fusion system may provide better performance than the
distributed system.

Moreover, the feasibility of data fusion techniques requires the evaluation of pro-
cess computational cost and the delay presented in the communication. The
centralized version is preferred when computational resources are available and
the cost of transmission is somehow low.

Statistical data fusion techniques such as probabilistic data association and Kalman
techniques have an optimal performance under particular conditions. However,
the target cant be assumed to be moving independently and the measurements
cant be assumed to have normal distribution around the estimated position. Sec-
ond, it is difficult to attain a priori probabilities for detection errors and mislead-
ing measurements, knowing that statistical methods represent events as proba-
bilities. On the other hand, the complexity of statistical techniques optimizing
numerous frames increases exponentially with the number of targets. Hence, such
techniques are considered to be computationally intensive. So, it is preferred to
assume no interaction between particles and to perform individual tracking.
Challenges are also induced by the data fusion process with distributed data
fusion techniques. These challenges include out-of-sequence measurements, tem-
poral and spatial alignments of the information and data correlation. As shown
by many researchers [60]-[98], the cooperative and hybrid data fusion approaches
enhance significantly the accuracy of localization and navigation of mobile users,
despite of the drawbacks listed above. However, the accuracy limit is still not
clear and requires further investigation. In philosophy, learning from your past
evolves your future. As Leo Buscaglia said, Change is the end result of all true
learning.

1.6 Learning Algorithms for Localization

1.6.1 Learning and environment mapping

In localization, both supervised and unsupervised learning approaches have been
proposed. For instance, in Self-Organizing Map (SOM), the adopted approach
is unsupervised learning [99]. Nevertheless, supervised learning techniques are
presented since the relationship from distances information (inputs) to desirable
behavior of the node (outputs) to be localized are achievable.
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In SLAM, learning techniques are widely combined with environmental mapping.
For instance, the standard SLAM is extended into signal-strength-based SLAM
with learning approaches through the Gaussian Process Latent Variable Model
(GP-LVM) [99]. Combining GP-LVM and a dynamic motion model, a topological
graph of the environment is built up from the raw signal strength data. This map
is then used for efficient localization by applying Bayesian filtering [100][101].
In indoor environment, learning and radio maps are used to obtain high accu-
racy. Radio map can be automatically constructed via crowdsourcing and RSS
measurements [102]-[104]. However, as RSS measurements are vulnerable to envi-
ronment dynamics they are more extravagant in indoor environments with severe
multipath. Consequently, the location will be estimated with low accuracy. Doing
the site survey repetitively and applying appropriate learning approaches solve
this problem despite of its complexity in terms of time consumption. Fresh RSS
measurements can be taken to adapt the radio map by deploying fixed reference
ANs [105]-[108]. Hence, location service is enhanced with high quality when the
radio map is always updated through learning. Among others, game theory has
gained a lot of research interest in this domain.

1.6.2 Game Theory to improve Localization

Game theory originates from the field of applied mathematics to analyze complex
interactions between entities. Basically, game theory is a set of analytic tools that
perform distributed decision process. Generally, a game is composed of decision
makers, i.e. players with different strategies. Each player has a utility (payoff)
that represents the level of satisfaction. The aim of each player is to maximize
his own expected payoff [109]. Game theory includes coalition formation. The
classification of coalition game is done by mapping a network component as a
game component, nodes as players, available adaptations as action set, and per-
formance metrics as utility function [110].

1.6.2.1 Game Theory in localization

Game theory is very efficient for localization purposes since it permits the forma-
tion of optimal coalitions of nodes for localizing a target node. Greedy strategies
are usually proposed and used to minimize the error of their localization process
and reduce the power consumption. Thus, it is important to study the tradeoffs
in selecting an effective strategy for indoor localization.

1.6.2.2 Coalition Games for positioning purposes

Game theory has been used in localization, primarily for demonstrating the trade-
off between cost and performance and for selection of reference nodes [111], specif-
ically for allocating measurements between reference nodes aiming to localize the

22



target. In a distributed localization approach, the concept of game theory and
utility functions is used to determine the combination of reference (anchor) nodes
that lead to the best localization performance [77]. To implement the coopera-
tive localization approach, a coalition game denoted by the pair (N,v) is adopted,
where N represents a finite set of players and v denotes its utility function. The
players are the element of N and any non-empty subset C' C N represents a
coalition, as shown in Figure 1.10. Particularly, N represents the grand coali-
tion. Basically, the coalition value, represented by v, denotes the value of a
coalition in a game. The payoff x; of each player i € S represents the amount of
utility received by each player from the divisionv(s). Hence, the payoff allocation
is denoted by x € RISl where |S]| is the cardinality of S. The localization proce-
dure here is demonstrated as a game fitting in the class of weighted-graph games.
For such illustration, the players are defined as the vertices, and the value of a
coalition can be defined as the summation of the weights of edges connecting pair
of vertices in coalition. The main concept is to allocate more measurements to
nodes with higher contribution in the localization process. Generally, coalitional
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Figure 1.10: Coalition Games

games are categorized into two kinds depending on the distribution of the gain
among players in a coalition. The first type is the transferable utility (TU) game
where we may have proportionality in the total gain attained between players in a
coalition bound by feasibility constraints. A non-transferable utility (NTU) game
is the second type. In such game, additional constraints, preventing arbitrary al-
location, are imposed on the assigned strategies. Also, the payoff of each player
is based on joint actions inside coalition. The localization problem can be also
seen as a coalitional formation game within nearby anchors [112], where coalition
formation is done through merge and split procedure, to reduce the cost of com-
munications. The localization problem here is a game of NTU nature since the
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same position estimate is obtained by all nodes within the locating coalition and
the power consumed is determined based on the relative locations of the nodes.
To do so, a utility function is defined to model the cost and quality indicator of
the localization [77]. In practice the definition of the cost and utility functions
depend on the coalition cardinality, the limit of error targeted and the range of
distances to be estimated through coalition games. For instance, a good choice is
to define a utility function which increases with the distance between the anchor
nodes and/or the error between the estimation and real measurement decreases.
In such a choice is made, the cost of coalition will be less. In a real scenario with
multiple anchor nodes, the following utility function of a node z could be made:

(V) = a 1_%2(2;21) _(1]_\[‘“)2% (1.1)

iEN iEN

where 0 < o < 1 regulates the tradeoff between cost and performance, N is the
number of measurements taken at a given location z, d; represents the estimated
distance of the i-th node, d; represents the distance between the i-th node and
the joint estimated target position, h is the coalition head index and R is the
coverage range.

One can also define other utility functions determined by locations of all nodes
in the coalition with cardinality N at a given measurement instance by:
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The interest in each coalition function defined above is different. For instance,
the first coalition could be used at each node at different time stamps to reduce
the total energy consumption throughout all readings. The second function could
be used with spatial correlation of nodes readings. A good example therein is
given in [112] where the authors proposed non-super-additive coalition. It is the
case when the grand coalition, a coalition that comprises all nodes, is not optimal.
Another approach in coalition games would be in considering the coverage area of
the target node as a set of correlation regions [113]. The correlation region in this
case represents the region where readings reported by nodes are alike. According
to the localization performance, it is viable to assume that redundant information
is provided by spatially correlated nodes in terms of GDOP or CRLB. Hence, we
can represent the coverage area of the target node by set of active nodes acting
as anchors. This approach reduces the complexity of the search method because
only a subset of anchor nodes is involved in the process of forming coalition.
As a common rule of thumb, the localization in indoor environments from the
perspective of a game theory deals with mobile devices as players competing
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on limited resources to perform position estimation [111]-[113]. This problem is
formulated as a standard non-cooperative game, where the players are the mobile
devices, the strategies are the scanning parameters and the payoff for each player
involves the accuracy level of positioning and the power consumption.

1.6.3 Open challenges in localization based learning

In general, many challenges are recognized when using learning techniques for lo-
calization in heterogeneous wireless environment. In multi-agent localization, var-
ious activities are proposed to handle centralized localization approaches through
the utilization of physical tagging. This helps in identifying the single agent posi-
tion to global positioning systems based on cameras or GPS. However, in practical
environments and mainly in indoor scenarios, it is preferred to avoid these cen-
tralized multi-agent approaches since they reduce the system autonomy and range
of applicability. Based on that, probabilistic and distributed framework solves
the problem of mutual localization with unidentified relative position measures
[114][115]. This comes at the detriment of centralized failure risk. In game theory
based localization, a main challenge is to recognize the players and identify the
localization problem as a cooperative or non-cooperative game. The selection of
the players and strategies defined by each player with their objectives are vital
in identifying the game. Players are assumed to be rational individuals in game
theory since the actions taken by each player is based on his best interest. In
such scenario, game theory models and explores the competitive or cooperative
interaction among nodes (anchors or not) and/or network operators that repre-
sent rational decision makers. Another challenge in cooperative games resides in
the need of collaboration among users for the sake of maximizing their payoffs, in
our case the location information; however, players may refuse cooperation and
be selfish in order to preserve limited resources such as energy or optimize their
own profit. Hence, incentive mechanisms are preferred to be embraced. Further-
more, the decision process done by the players is considered as a critical feature
to consider in game theory in general and in localization particularly. Finally,
in indoor wireless environment, defining the utility function as a function of the
location is a complicated task due to the vast number of several applications with
dissimilar needs.

1.7 Applications

In this section, we detail the main applications of localization in indoor environ-
ments. Indoor positioning and navigation for mobile devices is a market with
expected size of 4 billion dollars in 2018 [116]. A reliable, user-friendly, and accu-
rate solution for indoor positioning and navigation might open the doors to the
definition of new applications and the creation of new business opportunities in
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countless scenarios [117], and is indeed considered as a cornerstone in the real-
ization of the Internet of Things vision [118][119]. It is worth mentioning that
some of these applications could be also applied in outdoor scenarios.

1.7.1 Robotics

Robotics is one of the main applications of indoor localization. Many researches
and developments have been conducted for implementing mobile multi-robot sys-
tems applications. The movement of robots in real large indoor scenarios where
cooperation is required between them is a critical topic. For instance, coopera-
tion between robot teams enhances the mission outcomes in applications such as
surveillance, unknown zones exploration, guiding, or connectivity maintenance.
Ubiquitous Networking Robotics in Urban Settings (URUS) project [120] is an
excellent example using localization for evacuation in case of emergency where
the robots lead the people to safe area via safe pathways in case of fire. More-
over, obstacle avoidance and dynamic and kinematic constraints are considered
in robotics in order to achieve complete navigation system [121][122]. Similarly,
the work in [123] used the idea of forces among robots to avoid obstacles. An-
other application is seen in [124] where a multi-robot navigation system takes into
account all robot (dynamic) constraints and calculates one function for all the
formation to perform robot navigation with assured collision avoidance. SLAM
is also very interesting in robotics. Therein, the tasks performed by a robot
are done autonomously without the awareness of its surrounding and own posi-
tion. SLAM is useful in construction autonomous robots. However, it requires
high processing resources to carry out SLAM in real time [125]. Then, C-SLAM
[126] solves the problem by constructing the environment map based on the col-
laboration between multiple robots. A global map is obtained in C-SLAM by
merging individual maps obtained by multiple robots. Additionally, accurate
navigation of mobile robot in indoor environments is achieved through an UWB
navigation system [127]. The navigation system consists of two sub-systems: the
robot control system and the localization system. Autonomous robot navigation
is achieved in this system through a TDoA-based localization technique, digital
implementation of transmitter and receiver and combination of both sub-systems
[127]-[129].

1.7.2 Ambient Assisted Living and Health Applications

Indoor localization is one of the useful constituent in AAL tools. AAL environ-
ments are generated from ambient intelligence which is an advanced tool perform-
ing creative machine-human interactions. For instance, AAL tools aim to enhance
health status of older adults by making them able to control their healthiness con-
ditions [130][131]. Elderly people make use of such applications for the purpose
of monitoring, tracking and other location-based applications. Besides, we real-
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ize the significance of such applications in indoor scenarios where GPS signals
are useless. Some of indoor localization systems based on AAL applications are
Smart floor technology to notice the existence of people [132] and Passive Infrared
(PIR) sensors to notice motion of people. Currently, indoor positioning is central
in the deployment of seamless emergency response services such as E911 in the
US, hindered by the lack of common benchmarks and platforms [133][134]. This
has recently pushed different research entities worldwide to propose advanced and
beyond state-of-the-art solutions in this domain with applications varying from
ambient assisted living, elderly support, emergency cases, etc. Here, we should
mention the work of the project SALICE [135][136] which proposed solution based
on the heterogeneous combination between satellite-based localization and com-
munications systems to provide emergency services. The project is mainly based
on combining delay diversity techniques and maximum ratio combining between
satellite and terrestrial sites. The deployment of gap fillers (used as relays) on
the border of the emergency area is another proposition of the project to in-
crease the signal diversity by alternating between LOS and NLOS conditions.
In parallel, standardization bodies also recognized the fundamental role of loca-
tion information, and are actively working on standards related to the retrieval
of location information, the Location Working Group within the Open Mobile
Alliance [137] and the technical specification TS23.271 by the 3GPP [138] being
notable examples, as well as the upcoming 18305 standard by International Or-
ganization for Standardization and International Electrotechnical Commission,
whose joint JTC1/SC31 subcommittee includes a working group on positioning.
Last but not least, hardware companies are also pursuing the design of systems
and chips for accurate indoor positioning, e.g. based on IEEE 802.11ac or IEEE
802.15.4. Investigations in indoor scenarios on UWB for human body localization
arc performed via numerical and analytical methods by placing wearable compact
sensors on the upper part of the body. This work succeeded in performing 3D
localization using such sensors. Also, UWB technology is appropriate for wear-
able wireless sensor networks, and a 3D localization accuracy of 2 cm to 3 c¢m is
achieved; hence, a system with this accuracy can be applicable for monitoring pa-
tient, tracking and applications for capturing motion. Other applications are also
based on UWB technology [49][139] where orthopedic computer-aided surgery as
well as its integration with smart surgical tools such as wireless probe for real-
time bone morphing is implemented [49]. UWB positioning system is proven to
achieve a real time 3D dynamic accuracy of 5.24 mm to 6.37 mm. Hence, this
dynamic accuracy implies the potential for millimeter accuracy. This accuracy
satisfies the requirement of 1 mm to 2 mm 3D accuracy for orthopedic surgical
navigation systems.
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1.7.3 Location-based Services

Location-based Services (LBS) are defined generally as service that outspreads
GIS capabilities or spatial information to end users through wireless networks
and/or the internet. Yet, LBS applications can offer the context and the connec-
tivity needed to dynamically associate the position of a user to context-sensitive
info about current environments; whereas conventional GIS applications are con-
centrated on geographical information for land planning and management. Hence,
high level of personalization is achieved with LLBS applications that simplify a ca-
pability of making each user the center of his universe. LBS send data dependent
on context and accessed by a mobile device by knowing the geographical loca-
tion. LBS service is required for indoor and outdoor environments. For instance,
indoor LBS include applications to obtain safety information or up-to-date data
on cinemas, events or concerts in the vicinity. Further applications of this type
include a navigation application used to direct a user to the target store in a
public building. Moreover, LBS are used for advertisements, billing, and for per-
sonal navigation to guide guests of tradeshows to the targeted exposition booth.
Also, LBS applications can be used at bus or train stations to navigate to the
bus stop. Likewise, LBS are used for notification based on proximity, automated
logon /logoff tasks in institutions and the profile matching.

1.7.4 5G Networks

Location information can be used to address many challenges in 5G networks
[140]. The accuracy of location estimation was improved from hundreds to tens
of meters using cell-ID localization in 2G, localization based on timing via syn-
chronization signals in 3G and reference signals dedicated for localization in 4G.
As well, localization technologies can be used by numerous devices in 5G to attain
an accuracy of location estimation in the range of centimeter. Basically, in 5G
networks, it is expected to use precise location estimation through all layers of
the communication protocol stack [141]. This fact is due to several aspects [140].
One of these aspects is the inverse-proportionality between SNR and distance
due to pathloss; hence, the distance becomes an indicator of the interference
level and the received power. So, the best multi-hop path between the source
and the destination in a dense network becomes the shortest path in terms of
distance when neglecting the shadowing factor. Next, remarkable differences in
the localized power are recognized due to shadowing effect. Additionally, nearby
terminals can be used to induce local channel information due to the fact that
shadowing often reveals decorrelation distances larger than localization uncer-
tainty. So, the use of precise location information by 5G networks over all layers
of communication protocol stack is due to the prediction of most of the 5G user
terminals in their mobility patterns knowing that these terminals will be either
associated with fixed or controllable units or people. Last but not least, local-
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Table 1.1: Comparisons of positioning techniques
| Wireless Positioning Systems | Localization Technique | Range | Accuracy |
Dolphin [145][146] ToA, trilateration Room 2 cm
RFID/INS [147]-[152] RSS/INS Indoor 2 cm
UWB [153]-[156] TDoA/ToA, trilateration 15 m 10 cm
RFID/FPM [157] RSS/INS Indoor 1.7m
Land Marc [158][159] RSS, triangulation 50 m 1-2 m
GPS [160][161] ToA, trilateration Global 1-5 m
Radar [162][163] RSS, triangulation Room scale | 2-3m
Cricket [164] ToA, trilateration 10 m 2 cm
Active Bats [165] ToA, trilateration 50 m 9 cm
Active Badge [166][167] ToA, trilateration 5m 7 cm
COMPASS [168][169] RSS, triangulation 15 m 1.65 m
WhereNet [170][171] RSS, triangulation 20 m 2-3m
LiFS [81] Fingerprinting Database 9m
Bluetooth [172][173] RSSI Fingerprinting Indoor 2-5m

ization is not only required for location-based services, but also for several jobs
in cyber-physical systems, like smart transportation systems and robotics in 5G
networks [142][143]. Furthermore, methods for resource allocation based on lo-
cation awareness [144] can diminish delays and overheads since they can predict
the quality of channel further than customary time scales. This is indeed one of
the technical targets of the 5G technologies.

1.8 Comparative Study

In this section, we will present a comparative study between different localization
techniques in terms of range accuracy for different applications. Basically, we
present in Table 1.1 a comparison between different positioning systems showing
the range, accuracy, and the technique(s) used. All of the positioning systems
and the location information are reported from literature and produced in real
time (according to the references mentioned). Moreover, we can observe in Figure
1.11 the accuracy achieved by different wireless based positioning systems used
for indoor, outdoor and locally urban, and rural and remote areas. It is very
clear from this figure that the accuracy requirements depend on the scale of
the transmission; hence, it will affect the type of application supported by the
corresponding localization technique. So, it is important to notice vitality of
localization in current and future wireless systems in any and all applications
and scenarios.
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1.9 Perspective and Challenges

In this section, we summarize the perspectives and challenges in indoor localiza-
tion. We should mention that many challenges and pitfalls have been addressed
in the previous sections. The target of this section is just to summarize on the
main ones and provide some details on those which have not been addressed so
far.

Scale

Automation/ guiding/ tracking
control, etc. , . routing, etc.
< )

Rural &
Remote

GSM, CDMA/3G
mobile cellular network

UWSB,
proprietary
microwave
solutions

Cell-ID
ToA
TDoA

Qutdoor
Locally &
Urban

AoA
TDoA
RToF

RF &
Ultrasonic
Hybrid
methods

Indoors

Accur ran
uracy range

0.1m 1m 10 m

Figure 1.11: List of various wireless-based positioning systems [11]

1.9.1 Constructing radio fingerprinting map with less hu-
man participation

Although the fingerprinting-based approach provides satisfactory accuracy, one
often has to reconstruct or update the fingerprinting map to capture the features
of a new environment (for example, when new sensors are installed), which is
extremely time-consuming. Moreover, the complexity of the fingerprinting-based
approaches is proportional to the number of entitles one wants to locate. For

30



example, in order to locate a laptop and a smart phone, we need to build up
a fingerprint map for each of them due to the heterogeneity of these devices.
So the main challenge to address here is to have a unified framework for radio
fingerprinting maps independently of entitles.

1.9.2 Combining various non-radio techniques

The use of non-radio technologies (IMU, visual sensors) can compensate for the
errors from the existing wireless positioning technology. The improved accuracy
is achieved by the additional installations of the costly equipment; therefore inves-
tigating a cost-effective wireless positioning system is still a promising direction.

1.9.3 Integrating various wireless positioning solutions

A variety of wireless sensors can be used for positioning services. Different sensors
are working with different physical principles. Combining the measurements from
different positioning systems can improve performance of the overall solution.

1.9.4 Security and Privacy

The security and privacy factors are considered important to discuss with Indoor
Positioning Systems (IPSs) within Personal Network [12], where users position
people and objects in their home. The user cares if he is being tracked and his
activities are being known by someone. Typical IPSs have threats in WLAN-
IPS environment. For instance, positioning system based on RSS measurements
threaten security since the mobile device collects the measurements of all AP
devices and personal data such as AP ID is sent to the IPS server [174]. Ad-
ditionally, the privacy in IPSs can be enhanced via a controlled access to the
information distribution and location information. As well, security and privacy
can be improved in IPSs from the software and system architecture perspectives.
For instance, position system architecture dealing with self-localization can guar-
antee high degree of privacy and security for users when the estimation of the
position is done at the target device [12]. Hence, the location information cant
be accessed by anyone in Personal Networks (PNs) if the target device doesnt
provide it to an entity.

1.9.5 Scalability

A scalable positioning system means that it functions properly when its scope
gets larger. Usually, the performance of localization reduces with the increase
in the distance between the transmitter and receiver. Further, a positioning
system may require scaling on 2 axes, density and geography. Geographic scaling
represents the coverage of an area or volume, whereas density scaling represents
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the number of units positioned per unit geographic space or area per time period.
Wireless signal channels may turn out to be congested as more area is covered or
the units in such area are crowded; hence, further computation or communication
infrastructure may be required to do localization. In addition, the dimension of a
system is another metric for scalability. A positioning system may locate objects
in 2-D space, 3-D space or in both. So far, most of the proposed techniques are
dealing with 2D while the recent recommendations from different standardization
committees require 3D information with high accuracy (FCC recommendation for
instance). This is then another important aspect to be tackled in the future.

1.9.6 Complexity

Positioning systems have complexity in terms of software, hardware, and op-
eration factors. Specifically, software complexity represents the complexity of
computations in a positioning algorithm. If a centralized server side handles the
computations, location estimation is performed quickly because of the existence
of adequate power supply and great processing capability. However, if the com-
putations are performed at the mobile user, complexity becomes evident since
mobile users have weak processing power and short battery life; thus, positioning
techniques with low complexity are preferred in this case. Additionally, represent-
ing complexity of various positioning techniques through a formula analytically
is really a difficult task; hence, the time spent for computations should be con-
sidered. Also, location rate is used as an indicator for complexity. Oppositely, we
have location lag that represents the delay between movement of a mobile user
to a new position and the reporting of this new position by the system.

1.9.7 Accuracy vs. Cost-effective

Different levels of accuracy are achieved with different positioning systems. For
instance, an accuracy of 2 m to 3 m is achieved with RADAR [162]. On the other
hand, 2 cm accuracy is achieved with a cricket system that is based on ultrasonic
signals [164]. Furthermore, WLAN-based positioning system utilizes the existing
WLAN infrastructures for localization; therefore, the positioning accuracy highly
depends on the environments and placements of the wireless sensor nodes. Other
positioning systems usually require previous installation of the beacons in the
environment. Therefore, in practice, it is very challenging to meet accuracy
requirement and at the same time keep within minimum number of beacons
and mobile device costs. The trade-off between accuracy and cost consists of a
capital challenge in indoor scenario since from one side; the accuracy suffers from
the existence of obstacles and multi-path transmission while the cost is quite
affordable due to the availability of signals (such as WLAN) at reduced cost.
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1.9.8 Applications and Accuracy

The accuracy of the localization techniques highly depends on the applications.
While some techniques are working perfectly in indoor scenarios, for instance,
they might not be applicable in medical applications such as in Wireless Body
Area Networks due to the precision requirement (in mm). This is a general chal-
lenge which should be tackled in any application and environment. Particularly,
in mmWave, a promising candidate for 5G networks, the accuracy and means of
localization are still open research issues to be solved. Nevertheless, the impor-
tance of high accuracy is primordial in this environment.
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Chapter 2

Localization In Known
Environment

2.1 Introduction

MilliMeter Wave (MMW) wireless communication systems have recently gained
great research interests due to their benefits in terms of spectrum, propagation
characteristics, potential applications and services [175][176]. Basically, MMW
spectrum ranges between 30 GHz and 300 GHz. A band of these frequencies is
said to be unparalleled compared to cellular and Wireless Local Area Network
(WLAN) microwave systems operating at frequencies below 6 GHz.

Technically, MMW spectrum can be used for military, radar and cellular services.
For instance, the spectrum at 28 GHz, 38 GHz, and 70-80 GHz provides promis-
ing channel propagation specifications for the evolving fifth generation (5G) of
cellular systems [177][178]. Among the potential services offered by MMW, lo-
calization and mapping appears as key factor in enabling new means and tools
for communications systems [1]. Moreover, Indoor Positioning Systems (IPSs)
arc the center of attention for researchers because of the vast technological en-
hancement in smartphones and tablets, and the evolving technology of Internet
of Things (IoT) as a future service in 5G. For instance, localization is critical for
detecting products stored in a warehouse, medical equipment and personnel in
a hospital, firemen in a building of fire, and police dogs finding explosives in a
building. With the evolution of MMW communication systems, IPSs will exploit
the infrastructure of future MMW groundwork.

MMW systems are equipped with steerable mechanisms due to the necessity of
employing high-gain directive antennas. Furthermore, the small wavelength of
MMW systems promotes the use of Multiple-Input Multiple-Output (MIMO)
required to achieve time diversity [180]. Further researches showed that MMW
channel behaves as the quasi-optical channel; hence, the Line of Sight (LoS) factor
is dominant [181]. Thus, MMW channel models take into consideration no more
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than double-bounce reflection effect since higher order of bounces for non-Line
of Sight (NLoS) paths is deteriorated at mm-wave frequencies [182]. The charac-
teristics of the channel at those frequencies showed that reflections dont generate
significant amount of scattering [183], and that the transmitted beam will have
the same directivity after reflections with slight scattering [184]. Hence, Snells
law holds in terms of the equality between the angles of departure and incidence
upon reflection [181]. These propagation characteristics could be then used for
localization and mapping. However, the appropriate channel models, localization
procedures and mapping approaches should be derived [178][185][186].

In literature, there exist few researches on localization systems operating at 60
GHz. Most of the research work done focused on measuring the delay spread used
for systems based on Time-of-Arrival (TOA), Time-Difference-of-Arrival (TDOA)
and Angle-of-Arrival (AoA) methods [187], [188]. The benefit behind using the
60 GHz band is achieved within the availability of a very large bandwidth (up to
7 GHz); hence, achieving accurate range measurements.

In this chapter, we propose two localization techniques for estimating the loca-
tion of the receiver through a single anchor node. Then, we propose to estimate
obstacles positions and dimensions in an indoor environment. This is done by
creating Virtual Anchor Nodes (VANs) and adopting Triangulateration (TL) and
Angle-Difference-of-Arrival (ADoA). The proposed methods allow us to develop
context inference and mapping of the indoor environment. The proposed tech-
niques achieve very high accuracy reaching sub-meters (few centimeters in some
cases). Hence, they could be easily adopted for IoT applications mainly in health,
fire and emergency.

2.2 Characteristics of MmWave Communications

To take full advantage of mmWave communications, its characteristics should
be specified and taken into consideration in design of network architectures and
protocol. In the following subsections a summary of these characteristics.

2.2.1 Wireless Channel Measurement

At the time signals at lower frequency bands can propagate for many miles and
penetrate easily through buildings, millimeter wave signals suffer from huge prop-
agation loss where they can travel only few miles and cannot penetrate solid
materials well. Range of mmWave communications is limited by the rain at-
tenuation and atmospheric and molecular absorption characteristics of mmWave
propagation. Despite their disadvantages causing problems in communication
systems, these characteristics of millimeter wave propagation can allow more
densely packed communications links, thus increase security of communication
transmissions. Morcover, it is been shown that rain attenuation and atmospheric

35



absorption do not create significant additional path loss for cell sizes about 200
m. Hence, mmWave communications are mainly used for indoor environments,
and small cell access and backhaul with cell sizes about 200 m.

2.2.2 Directivity

Millimeter wave links are inherently directional. Communications between two
devices are not possible if their beam directions are not pointing towards each
other. Hence, to achieve a high gain at a specific direction, the antenna array
drives its beam towards this direction electronically by controlling the phase of
the signal transmitted by each antenna element. All other directions will offer
a very low gain. The directional beam pattern improves the transmission range
but it complicates communication protocol designs. For that, efficient protocols
and beam training procedures are essential to discover the best beam direction
pair between devices and reduce the required beam training time.

2.2.3 Sensitivity to Blockage

Diffracting around obstacles whose size is significantly larger than the wavelength
is almost limited by electromagnetic waves. Obstacles like humans and furniture
can block links because of their so small wavelength at 60 GHz (5 mm). For
example, blockage by a human can penalize the link budget by 20-30 dB [10].
Results shows that in presence of human activities, channel in a realistic indoor
environment is blocked for about 1% or 2% of the time for one to five persons[11].
Therefore, mmWave links are interrupted by human mobility resulting in a time-
varying network topology. Ensuring a reliable connection for delay-sensitive ap-
plications such as HDTV is a big challenge for mmWave communications.
Moreover, the relations between index of refraction, speed of light in vacuum and
speed of light in medium are valid for light. Hence, having signals with behavior
far away from optical behavior would make these equations invalid. That’s why
we go to mmWave to make use of Snell’s law as a good estimator to use for clas-
sifying obstacles. So, it is not a matter of a direct relation between frequency and
index of refraction; it is related to the behavior of the signal in indoor scenarios
if we can apply the concept of snell’s law or not. Snells law relates the incident
angle 6; and the medium of incidence n; to the angle of refraction 6;,. and medium
of refraction n, through the following equation:

n;sin (6;) = n, sin (6,.) (2.1)

We assume obstacles as pure reflectors. Hence, the rays are 100% reflected when
they hit the obstacle. This aspect facilitated the process of estimating the VAN
and detecting the obstacle limits. On the other hand, assuming that part of
the ray will be reflected and part will be refracted with the use of the AoA and
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Snells Law allows us to determine the angle of refraction and reflection. Next, we
will relate the reflectance obtained from snells law with the reflection coefficient
obtained from the RSS at the receiver in order to classify obstacles by estimating
the index of refraction of the obstacle.

2.3 Localization Techniques

Our proposed MMW localization technique is tested in an indoor environment
consisting of a rectangular room bounded by four walls, the ceiling and the floor.
We grouped the room boundaries and radio-reflective obstacles in the reflective
objects set . Obstacles are described as two-dimensional flat polygonal faces
with sharp vertices and straight edges. Each oriented surface S is denoted by its
perpendicular line, written as:

y=py+ax(z—p) (2.2)

where p = [p,, p,| is a point of intersection between the surface and its perpen-
dicular and « is the slope of the line orthogonal to the surface S, represented by
the following equation:

—1
3 (2.3)
Knowing that ( is the slope of the surface S, which can be found as:
 yPl—yP2
b= TPl —xP2 (24)

where pl = [¢P1,yP1] and p2 = [xP2,yP2] are two points on the surface S. By
assumption, a single MMW Access Point (AP), seen as Anchor Node (AN), is
deployed in the room at a location pT and is used as anchor node for localization
objectives. Additionally, the AP is assumed to broadcast its position and the
specifications of the objects in to the node(s) targeted for localization. This
assumption holds for devices used for localization with hard energy limitations.
The AoA spectrum, SP, (). is a 2 x L matrix that records the amplitude of
cach received ray component (RRC) as a function of the azimuth 6 at a given
location p, where L is the number of RRCs. Each RRC can be either due to a
LOS link between the transmitter and the receiver or due to NLOS link caused
by reflections of one or more surfaces in the obstacle set . In addition, SP, ()
contains in its first row the amplitude of each RRC sorted in decreasing order
and in its second row the azimuth 6 with respect to reference angle 6,. Hence,
each column of SP, () is seen as a vector of polar coordinates that represents
the amplitude and the phase of the vector relative to 8,. Moreover, the room
geometry is assumed to be known for user(s) to be localized.
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2.3.1 Virtual Anchors

The concept of VAN is widely used in literature, mainly in ultra-wide band [197]
for localizing a receiver using single anchor node with MMW propagation char-
acteristics. In this chapter, concept of VAN is used for the purpose of context
inference and mapping of indoor environment through obstacle detection. As
introduced also, the first column vector of SP, (#) represents the LOS path be-
tween the transmitter and the receiver to be localized, and the columns 2 : L
represent the NLOS paths. So, we have I, — 1 RRCs that correspond to NLOS
paths. Each of these paths can be modeled as emitted by a virtual anchor node
(VAN) through a virtual LOS path reaching the receiver pR. The locations of
the VANS, as shown in Figure 2.1 are determined by mirroring the AP p7" with
respect to the surfaces in the obstacle set O since it is the source of signal re-
flections. So, the obstacle will be the perpendicular passing though the midpoint
of the segment between the transmitter and the VAN. Knowing the slope of the
surface S in the obstacle set O, we can calculate the slope of the segment be-
tween transmitter and the VAN using equation (2.3). Then, the coordinates of
the VAN (2V;, yV;), the mirroring of the transmitter with respect to the obstacle,
are calculated using equation (2.4), where § and pT = (pT z,pTy) are known.
We denote V' = {pv,, pvy, - - - } to be the set of the positions of all possible VANSs,
and we denote V' = {V, Vi.---} to a partition of V. We let V; = pT’, and each
set Vi1 = 1,2,... represents all VANs that has been mirrored ¢ times due to
reflections caused by any surface in the obstacle set O. Actually, there is no
limit on the number of reflections of the signal transmitted by p7. However, a
MMW signal fades quickly during its propagation as it reflects off the surfaces.
So, we limited the set V' by assuming a maximum reflection order p [196]. So,
the set of all VANs will be represented as V,, = ., V;. As shown in Figure 2.1,
the anchors V; and V; represent first and second order of reflection respectively;
hence, V; € Viand V; € V5.

2.3.2 The Triangulateration (TL) algorithm

As stated in the introduction, we adopt the concept of triangulate-validate (TV)
in [198] and we simplify it to lead what is called here Triangulateration (TL).
TV is based on coordinate transformation to map the received power and angle
of arrival of each RRC into vectors from the position of any anchor. Adopting
an initial guess in the localization approach, the TV algorithm proposes a cost
function to measure the compatibility between the RRCs and the VANs. How-
ever, the TL technique in this chapter is based on solving a system of equations
relating the receiver with the anchor nodes using the coordinates of the receiver
and the anchor nodes, the distance between them and the angle with respect to
the positive x-axis. Contrarily to [198], TL approach does not use a cost function
to validate the estimation. It is a simple Least Square followed by averaging. It

38



is a simple way taking into account all the VANs. It does not eliminate neither
scale any of the VANs positions as done with TV, as the target is to estimate the
obstacles dimensions and location (not the receiver).

It would be easier to estimate the position of the receiver through a direct tri-
angulation method if we know the association between the VANs in V' and the
RRCs in SP, (#). However, this association is unknown; hence, we have to esti-
mate the position via set of TL steps that are shown to be less complex than the
method of maximum-likelihood (ML) [197]. Moreover, we restrict the set V' to
reach a maximum reflection order fi,,,,. Actually, a low value of ; makes more
sense for Triangulateration since reflections fade the signal; thus, VANs of high
reflection order can be far away from the receiver. As well, the MMW signal is
almost seen as a noise after more than two reflections; hence, we set 4 = 2.
TL steps are based on forming a triangle between the unknown receiver and each
anchor node. As shown in Figure 2.2, the following relations are constructed
using trigonometric relations in the right triangle formed between the receiver
pR, at time k£ and VAN pV; as follows:

Vi — xRy, = pi; - cos b (2.5)
yVi — yRe = pi - sinby; (2.6)
where pV,; = (2V;,yVi) and pR,, = (2 Ry, yRy) are the VANs and the unknown

receiver respectively. Also, 6y, and py,; are the AoA and the distance of the

pV;(xV;,yV)) €V,

7
1

3

pVi(xVi,yV) ey

Figure 2.1: VANSs related to first and second order of reflections

RRC "transmitted virtually” from the VAN pV, to the receiver at position pRy,
respectively. Then for each pair of virtual anchor nodes pV; and pV;, we solve
the system of equations in (2.5) and (2.6) corresponding to pV,; with those cor-
responding to pV; to obtain the following system of equations:

xV; —aVj = pp; - cosb; — prj - cosb; (2.7)
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Figure 2.2: Triangle formed between pV, and pR,,

yVi —yVj = pri-sinl; — prj - sinb ; (2.8)
The above system of equation can be written using matrix notation as follows:
where V; ;,I', and P are defined as follows:

zV, — xV;
Vi': ! J
! [’yVi—ij}

r— costy;, —cosl;
sinf; —sinby;

P= |: Pk.i :|
Pk,j
Solving equation (2.9), we obtain the following:
P=T".V, (2.10)

After solving for P, the estimation of the position pR,; of the receiver can be
done by replacing py; in equation (2.7) and equation (2.8). The TL steps are
repeated for all possible pairs of (pVi, ij),i # 7 in the set Ve, So, we will
obtain K estimates of the receiver position. The final estimate will be the average
of all estimates pR;, k=1,2,... K.
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2.3.2.1 Cramer-Rao Lower Bound (CRLB)

Assuming a wideband multipath model, we estimate the receiver position using
the TL and ADoA techniques based on a Gaussian AoA model. This model rep-
resents scenarios where there is strong LOS component that could be resolved by
the receiver separately from multiple NLOS components due to local scattering.
For a single transmitter p7" with an AoA 6 (pT) at the receiver, the Gaussian
LOS model with local scattering is defined as follows:

where 0 € [0, 7] and Q (¢) = [ exp (—t?/2) dt /V/2m and o2, the estimation error
variance, represents the spatial extent of scattering. Additionally, the remaining
AoA measurements due to reflected and scattered NLOS paths are assumed to
be virtually in LOS with VANs. Hence, the distribution of these NLOS paths is
defined as follows:

1 (@ -0 (pvi)>2
5 (1 20 (%))exp — (2.12)

PNLOS (@'/Pvi) =

202

Hence, the AoA estimates are generated for a wideband multipath model based
on the following distribution:

Pwideband (/9\1, 52, . ,§L/pT> =

PLos (51/pT) PNLOS (@2/1,‘/2) VLo (gL/va) (2.13)

where L is the number of RRCs. Accordingly, the log-likelihood function for the
estimates of the AoA for all RRCs is as follows:

(5.~ 0:0v)

- (2.14)

L (51,52, .o, 0/pT, V) = —XL:

i=1

g

where 60; (V;) is the true AoA coming from the VAN pV; to the receiver and
pV,=pT.

Then, we construct the Fisher Information Matrix (FIM) F ({p7,V'}) in order
to calculate the Cramer-Rao Lower Bound (CRLB), which is F~* ({pT, V'}). For
the Gaussian model in equation (2.13), F ({pT, V'})is defined as follows:

EL sin?(6;) . ZL cos(6;) sin(6;)
i=1 " o2,2 i=1 7,2
F ({pTv V}) = ( _ ZL cos(gl)plsin(@-) EL cosf(ef)z ) (215)

2 2
i i

i=1 o2p i=1" o2p
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Knowing that the total error of localizing the receiver is the sum of variances
along the z and y, we define the CRLB for localizing the receiver using the TL
technique as follows:

Y1
i=1 o'zpi

| 2.16)
L L 2(01—9 ) (
Ei:l Ej:i-‘rl Slno—‘lp?p?

CRLB 4,4 = Tr (F~ ({pT, V})) =

2.3.3 The Angle Differences-of-Arrival (ADoA) Technique

The TL method is based on the azimuth 6 of all RRCs with respect to reference
angle f3. The knowledge of 6, is assumed to be known; however, this may not be
a valid assumption due to the error in the measurement of §, that may be done
using a digital compass of a smartphone. ADoA doesnt require the knowledge of
Ay since it will be neglected in the difference between two AoA values. The reader
may refer to [198] for more information about ADoA in mmWave. However, we
give the main equations for the flow of context inference and obstacle mapping in
the next sections. In ADoA, we take all possible triplets of VANs (V;, V;, V)i #
j # q, and we define the angle of differences as follows:

(51 = SPPQJ' - SPp2,i (217)
(52 = Sppg,q — Sppg’j (218)
As shown in Figure 2.3, the trajectory of receiver pR, is a circle where pVZ-p/f_{?ij

Figure 2.3: The geometry of ADoA localization Technique

is constant and equals to d;. As well, we assume pVipﬁ;{Tij > 0 if pV, follows

PV, in a counterclockwise direction within the semi-circle and ‘pVikaij <

7, where |.| operator generates the absolute value of the measured angle. Con-
sider the circumference €} in Figure 2.3; we use the relation between central and
vertex angles intercepting the same chord (pViij) in a circle to obtain the
following relation:

pVopV, =2 pV@ij =2-0 (2.19)
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If pVip/R?ij > /2, then ‘pVﬁVj‘ > 7. Thus, we wrap pV?)_EVj to the

interval [—m, 7) using the operator WP(.). So, the radius r; of (j is calculated
using geometric relation in a circle as follows:

HPVi, - ijH
2 - sin <‘ wp (meVj) ‘ /2)

(2.20)

mn =

—
As shown in Figure 2.3, 171 is the perpendicular vector to vector pV,pV ;. Hence,

N
knowing the orientation vector of pV,pV; is equal to (zV; — zV}, yV; — yVj), we
can define the following perpendicular orientation vector:

= (yV — yVj, — (aV; — aV))) (2.21)

Hence, the coordinates of center o; = (xV,,.,yV,,) for Cj is defined as follows:

o 2
2V = &V, £ “”f) 2 — (—Hpvi PV, H) (2.22)
i \ :
R 2
y‘/;n = yvm1 + wlT(m\ 7”12 - (M) (223)
|

where m; = (2Vp,,,yVin,) is the midpoint of the chord (pViij). Similarly,
we can compute the radius r and the center oy = (2V,,,yV,,) for the circle Cs.
Then, the intersection between C; and () is considered as a proper estimation
for the receiver position whenever the intersection point is pointed by the ori-
entation vectors 51 and 172. As well, we choose the solution that validates the
angle of arrival for each RRC. As we did for the TL algorithm, we verify if the
position estimation is within the room geometry and doesnt belong to any surface
in the obstacle set O. This algorithm is repeated over all possible triplets of VANs
(pVZ-, pV;, qu),i # j # q that belong to the set V... So, we obtain a set of
position estimations that represents the intersection between the circumferences

C} and (5 determined by the angle differences of arrival 4; and d5 and the chords
— —

pV,pV, and pV,pV,, pV,,pV,,pV, € V. The final estimation of the re-

ceiver position is the average of all possible position estimations obtained from

the ADoA technique.

2.3.3.1 Simulation Results for TL and ADoA

The room geometry is of rectangular type of size 8.9 x 6.3 m. We take the
south-western corner of the room to be the reference of the Cartesian coordinate
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system. The angles are measured with respect to the positive part of the x-
axis. The transmitter is set at position pT = (0.2,0.2) m. We assume the
antenna at the transmitter to be omnidirectional; hence, the transmitted power
PT(0) is constant for all #. Instead, antenna array is used at the receiver with a

reception beam pattern described as Pg, (0) = exp (—i—i) ,s = 0.1. The value of

parameter s and the Gaussian shape have been devised empirically. Additionally,
all results were implemented for 10000 realizations. The CDF for the localization

1
0.8}
0.6 —— ADOA =0
w —— ADOA 7=0.02
a ~— ADOA 7=0.06
o —TLo=0
04t —TL 5=0.02
TL 5=0.06
0.2}
0 | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

Localization error [m]

Figure 2.4: Localization error CDF for TL and ADoA for different values of
o (rad)

error shown in Figure 2.4 shows that for ideal case, where o = 0°, both the TL and
the ADoA techniques localize the receiver with full accuracy. When the value of
o increases, the accuracy of localization achieved using TL and ADOA decreases.
For instance, when o = 0.02rad = 1.15°, the accuracy of localization achieved
with TL and ADoA is almost 0.3 m and 0.1 m, respectively. Additional increase
in the noise to reach ¢ = 0.06rad = 3.44°, localization accuracy decreases to reach
an error of more than 0.5 m and 0.33 m, respectively, at 90% of the estimates.
Moreover, we can observe from Figure 2.4 that TL achieves higher localization
accuracy compared to ADoA as we increase 0. Nevertheless, the performance of
not only ADoA but also TL is far from the CRLB level. As shown in Figure 2.5,
the proposed standalone TL and ADoA localizing techniques dont provide the
ultimate estimation accuracy; thus, other localizing techniques, such as RSS and
TDoA, can be combined to achieve higher accuracy of localization.
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Figure 2.5: Localization error CDF for TL and ADoA for different values of
o (rad)

2.3.4 Received Signal Strength (RSS) Approach
2.3.4.1 Weighted-Least Square (WLS) Estimator

We modeled the estimation of the receiver position using AoA localization ap-
proach via the proposed TL technique and the ADoA algorithm. In this section,
we are going to estimate the receiver position using the RSS based localization
approach.

The VANs in this approach can be seen as anchor nodes collecting measurements
to localize the single AP receiver. The received power at these anchor nodes
follows a log-normal shadowing pathloss model in MMW channels [196][197].The
received power, P;, is calculated using the following equation:

d; .
P; [dBm] = Py — 10nlogy, % +mn,i=1,...,L (2.24)

where P, is the power at the reference distance dy, n is the pathloss exponent
(PLE), d; is the Euclidean distance between the receiver and the ith VAN, L is
the number of VANSs representing the number of RRCs, and n; is the zero mean
Gaussian random variable measured in dB scale with shadowing fading effect
described by the standard deviation oggs. The square of the distance d; between
the VAN pV, and the receiver pR,, is represented as follows:

@ = ||pV, — PRyl = (+V; — wpa)* + (4Vi — yra)” (2.25)
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Without loss of generality, we assume the transmitter to be the reference. Hence,
for 7 > 1, we define the following:

ylchdZ2 — d% = :10‘/;2 — 2Ry -V + y‘/f — 2Yrs - YVi (2.26)

Expressing equation (2.26) in matrix form, we obtain the following equation:

2]-
2$VL 2yVL Yhe

aVi —aVE4+yVi —yVEi+di — d3

20Vy 2yVs
(2.27)

eVE—aVE+yVE —yVi +di = dj

The real distance d; is not known in RSS localization; hence, noisy estimations
of the distance,d;, obtain from equation (2.24), are related with the unknown
position of the receiver pR = [z gy, ny]T as follows:

R-pR=T (2.28)
where R and T are defined as follows:
2(xVy —2Vh) 2(yVo —yWy)

R = : :
2(zVy —aV1) 2(yVe —yW)
aVy = aVE+yVe —yViE + di — dj
T = :
2VE—aVE+yVE—yVEi+di — &2

The estimation of pR in (2.28) is solved linearly using the weighted least-squares
estimator, as shown in the following equation:

pR = (RTWR) ' R"WT (2.29)

where the weighting matrix W is equal to the inverse of the covariance matrix
3 g, of the vector T. X g, provides a measure of the estimation error variance.
Assuming that the measurements of Ziz are independent [201], X g, is calculated
from the random vector T as shown below:

Var (Zi?) + Var (Eﬁ) Var (Zif) e Var Zif ]
Var ((Nz’f) Var ((f) + Var (Zé) o Var Zlf

e (@) Vr () Var (i) - var (2)|

(2.30)

ER:I? =
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where Var represent the variance, and the terms of g, are computed using the

following equation: )
Var (dz) —E [dﬂ - (E [dZD (2.31)

In addition, equation (2.24) shows that the measured distance d; follows a log-
normal random distribution, modeled using the following equation:

N(0,0r55) N(lnd1 ORSS lnlO)
= e "

dy = d;. 10~ 1on 107 (2.32)
where the mean and the standard deviation of the distribution are pg = In d;
and 04 = opgs (In10) /10n, respectively. The n-th moment of a lognormal ran-
dom variable with mean g4 and standard deviation og is calculated as p, =

enhat(niod) /2, Hence, we calculate E El?] and E [ZZ?] as follows:
E [dQ = 2Hat20] (2.33)
E [4 = Mhatsa] (2.34)

Thus, the variance is computed as follows from equation (2.31):

~ ~ ~. 2 2 2
Var (df) =E [d?] - (E [d,z]) = e, (68”d - 64”d> (2.35)
As a result, the RSS localization estimation error is controlled by two factors
of MMW communications: the PLE 7, and the random shadow fading standard
deviation orss. MMW is expected to affect significantly the estimation error
because of the high pathloss.

2.3.4.2 Maximum Likelihood (ML) Estimator

We also propose to use the combination between WLS and ML estimators with
the RSS approach aiming to localize the receiver with higher accuracy. Given
equations (2.24) and (2.32), the density of P; is defined as follows:

10/1log 10 1 ( 10177 10)2 a2\’
p)— Lo 7 ~ _A\IRSS 8] [0 S 2.36
fp( ) \/mpl eXp 8 0g df ( )

Hence using equation (2.36), we calculate the expectation of d; as follows:

~ 1 1 /In 100’R55 2
E M — exp [5 (Tn) ]di (2.37)
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2
We denote o« = exp [% (%ﬁﬁ) . After we get the estimation of the receiver

position Pp,.peg using the WLS estimator for a number of realizations, we sclect
the estimation that satisfies the ML criteria using the following expression:

Pur =
2
(2.38)

arg Z t In d?/(y?
ooy \ (PR —pV, (1) + (bR(2) ~pV, ()’

2.3.4.3 Cramer-Rao Lower Bound (CRLB)

The Cramer-Rao Lower Bound (CRLB) for an unbiased estimator is based on
calculating the second partial derivative for the log-likelihood function (LLF') of
the probability density function. Consider the RSS approach for localizing the
receiver, the LLF of the probability density function of P; defined in (2.36) is
expressed as follows:

_ 10g
10/log10 1 _ <a o 2
log (Pr (P;d)) H 0/10g 10 - ) ( 4)
\/ 27TURSS P 8
2
L _ 10p 2
10 1 <0‘Rsslog10> ( <d2
= L x log + log| =) ——F(log| =
5 <log(10) \/277012%5) ; 5 <P¢> 2 & .
(2.39)
Then, the second partial derivative is defined as follows:
2
& (log (Pr (P;d))) (—sﬂ"gm) Lo d
) ORSS 10 g
= — [ — - = 2.4
od> In 10 Z::df (1 10 g( )) (240)
Consequently, the CRLB is calculated as follows:
Inl 1
CRILBpgs — — 21 (2.41)

2 L 1 P
(#ﬁog:lO) 2lim1 &2 (ln 5 — log (j))
2.3.4.4 Simulation Results

We test the performance of RSS technique for localizing the receiver. Figure 2.6
shows the root mean square error (RMSE) for localizing the receiver using the
weighted least square solution of the RSS approach. The figure shows the error
for different values of the PLE 7 versus orgs. The error of estimation increases
with the increase in ogrgs. However, the estimation error decreases with the
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increase in the PLE n. Knowing that the scenario under simulation is based on
first and second order of reflection, higher values of 1 generate less estimation
error since it accommodates more precisely for NLOS effect. Additionally, more
improvement could be made in order to achieve an accuracy that is closer to
the CRLB shown for different values of the PLE 7 in Figure 2.6. Consequently,
we used the ML estimator over set of estimates obtained by the WLS in order
to localize the receiver using the RSS approach more accurately. As shown in
Figure 2.7, the combination between WLS and ML estimators achieves accurate
localization of the receiver with an error less than 5 cm at maximum.

0.9
—8—1=3.6
0.8 —+—n=4
—A—n=4.4
0.7F - © = CRLB forn=3.6
- @ - CRLB for n=4 n
0.6 - A - CRLB for n=4.4

Figure 2.6: RMSE versus orgg for estimating receiver using WLS for RSS local-
ization for different values of n

2.3.5 Time Difference of Arrival (TDoA)
2.3.5.1 Weighted Least Square (WLS) Estimator

The receiver position is estimated now using TDoA weighted least square esti-
mator. The distances between the receiver and the ith VAN in absence of noise
is represented as follows:

dil:CXtiJ:di—dl,Z’:l,...,L (242)

where ¢;; is the TDoA of the received signal at the pair of the #th VAN and
the transmitter respectively, and ¢ is the speed of the signal propagation. As
shown in equation (2.42), the estimated TDoAs are converted to range difference
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Figure 2.7: RMSE versus opgg for estimating receiver using ML, and WLS for
different values 7

of arrival (RDoA) measurements creating a set of nonlinear equations describing
the hyperbolic range difference. The receiver position can be estimated from the
intersection of the resultant hyperboloids. In realistic scenarios, RDoA measure-
ments d;; are obtained with noise as modeled in the following equation:

(:Zil:dﬂ—knﬂ:di—dl—i—nﬂ,i:l,...,[/ (243)

where n;; is the zero mean Gaussian random noise vector of the RDoA measure-
ment with a (L — 1) x (L — 1) covariance matrix ¥, that is expressed as follows:

\

n21
u=F [n21 nL]
nr )
1 1/2 ... 1/27 (2.44)
— 20T 1/2 ' :
: 1/2
/2 ... 1/2 1

where o' represent the noise of the TDoA measurements. Equation (2.43) can
be written as d;; + d; = d; + n;;. Hence, squaring and substituting with equation
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(2.25), we obtain:

ere (Vi — Vi) + yro (Vi — yVi) + dadis =
% [(:r‘/f — V) (gVE —yVE) — CZ%] n %”31 i (2.45)
We denote the unknown vector to be PR = 1 Rees YRas dl]T; hence, the problem

now is formulated as follows:
R]_pR(l) = T]_ + €1 (246)
where R; and T; are expressed as follows:

(pV, —pVy)" dn

R, = : :
(PVL - PV1)T Jm
1 ma1 — (251
T = B :
mry — CZ%1

and mo; = pV?pVi — pV{pVI. Knowing that the measurement error n;; is
small, the noise vector ¢; is approximated as follows:

€6~ [ngldg, Cey nleL}T (247)

Finally, the solution of equation (2.46) is obtained using weighted-least square
estimator as follows:

pR, = (RTW.R,)  RTW,T, (2.48)

where W1, the weighting matrix, is the inverse of the covariance matrix of the
noise represented by equation (2.47):

W, = (E[ad]) " = (F.2F7) (2.49)

where ¥y = diag{ds, ds, ..., d;}. Additionally, pR = [xgs, yr.| and d; are as-
sumed independent by the weighted least square solution of equation (2.48).
Moreover, the estimator in equation (2.48) doesnt provide high accuracy [202];
hence, we enhance the estimation accuracy via the minimization of the weighted
least square solution. So, we square the elements of pR)to get:

RQPR(Q) = T2 + €9 (250)

where Ry, pR(y), and Ty are expressed as follows:

(mh—xmf}

R. —
P @ |: (szlr - QJV1)2
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R, —

=
— = O

(PRU) (1) - $V1>2
T, = (pi:{(l) (2) - le)Q
(pR(n (3)>

and e, represents the error obtained because of the non-zero covariance in pR(l).
So, we obtain after another weighted least square minimization the following:

PRy = (RIW5R,)  REW,T, (2.51)

where Wy, the weighting matrix, is selected based on the estimation error. Fi-
nally, the location estimate pR = [Z gy, g}Rgc]T is defined as follows:

pR=P [ \/ph(g) (1) \/pi:{(z) 2) }T +pV, (2.52)

where P = diag {sgn (pR(l) (1) — xV1> , Sgn. (pR(l) (2) — yVl)}

removes the sign ambiguity due to the square roots in equation (2.52). On the
other hand, Wy is the inverse of the estimation error that can be expressed as
follows:

_ . -1
W, = (B [ed]) ™ = (F2cou <pR(1)) F! ) (2.53)
where Fy and cov (Pgyrpo A(l)) are defined as follows:
Fy = diag { (PR(D (1) - SUV1> ; (pha) (2) - yVl) »PR(U (3)} (2.54)
cov (ph(1)> — (R'W,R,) " (2.55)

As a conclusion, the estimation of the receiver position based on TDoA is affected
by the channel root mean square (RMS) delay spread, or as shown in equations
(2.51) and (2.52). The narrow beams used in MMW reduce the delay spread;
hence, the error of estimating the receiver can be reduced in the MMW band.

2.3.5.2 Maximum Likelihood (ML) Estimator

We also propose to use the combination between WLS and ML estimators aiming
to localize the receiver with higher accuracy. Given equation (2.43), the density
of d;; is defined as follows:

- 2
di1 — d;
(i) = | ) -



After we get the estimation of the receiver position pR using the WLS estimator
for a number of realizations, we select the estimation that satisfies the ML criteria
using the following expression:

P/ = argmin
PR

3 (dﬂ - ¢ (PR (1)~ pVi (1) + (PR(2) - pV, <2>>2>

i=1

(2.57)

2.3.5.3 Cramer-Rao Lower Bound (CRLB)

Similar to the calculation of the CRLB for the RSS approach, we calculate the
CRLB for estimating the receiver position using TDoA approach. Due to the
whiteness of the noise and the property of exponential functions, we calculate
the probability density function of d;; defined in equation (2.44) as follows:

L (CZ d )2_

il — il
( ) E 27TCQO'2T Rl ST
1 S (Czﬂ B dﬂ)f (2.58)

= ———Fexp |—
L 2,27
(2mc202T)2 2cto

Applying the same methodology used for RSS, we calculate the second partial
derivative of the LLF for the probability density function defined in equation

(2.58) as follows: ]
52 (log (Pr (d; d))) - I (2.59

od? 20?7
Consequently, the CRLB for estimating the receiver position using TDoA is as
follows:

CRLBTDOA =

(2.60)

2.3.5.4 Simulation Results

Using the same scenario used for testing TL, ADoA, and RSS, we tested the
performance of TDoA in localizing the receiver. For instance, Figure 2.8 shows
the CDF of estimating the receiver using the weighted least square solution of
the TDoA approach. We observe that the error of estimation increases with
the increase in orp,a. For the sake of achieving higher accuracy, we used the
ML estimator with the TDoA localization approach. As shown in Figure 2.9,
ML estimator achieves estimation accuracy less than 10 cm that is closer to the
CRLB compared to the performance of the WLS estimator.
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2.3.6 Hybrid Localization

Recently, hybrid and cooperative mobile positioning has emerged as a new stream
of wireless location. The core idea of cooperative positioning relies on the uti-
lization of trustworthy short-range measurements to enhance the accuracy of
the location estimation of a wireless system. Different combinations of the basic
standalone positioning techniques (RSS, ToA, TDoA, AoA, etc) have been imple-
mented to enhance the accuracy of location estimation. Thus, the combinations
between TL and ADoA, TL and RSS, TL and TDoA and TL, TDoA, ADoA and
RSS are implemented to show further enhancement compared to the standalone
positioning techniques in terms of localization accuracy.

2.3.6.1 Simulation Results

Using the same scenario used for testing TL, ADoA, and RSS, we tested the per-
formance of different combinations of the standalone basic positioning techniques
in localizing the receiver. For instance, Figure 2.10 shows the RMSE of estimat-
ing the receiver using the TL, ADoA, RSS in combination with TL, and ADoA
in combination with TL, TL in combination with TDoA, TL in combination with
TDoA and RSS and TL in combination with ADoA, RSS and TDoA. We observe
that the error of estimation decreases when the combination approach is applied

compared to the error obtained with the standalone positioning techniques, TL
and ADoA.

1.2 x x x
-©-TL
1F ~&~ ADOA
—%—= RSS&TL
ADOA&TL
08+ TL&TDoA
— —5TL, TDOA&RSS
E —0~ TL ADoA TDOA&RSS
50.6
=
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Figure 2.10: RMSE for receiver localization using TL, ADoA, TDoA and RSS
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2.4 Conclusion

We presented in this chapter the concept of VANs used for localizing a single re-
ceiver in an indoor scenario of single access point with MMW propagation charac-
teristics. We introduced TL, ADoA, RSS and TDoA for receiver localization using
the LS, WLS and ML estimators. The performance of the techniques with differ-
ent estimators is tested through simulations in terms of RMSE and CDF of the
location estimation error. Localization accuracy for each of the four techniques
has been compared with the CRLB. Moreover, the concept of hybridization in
localization improved the localization accuracy of the receiver when compared to
accuracy attained from standalone positioning techniques. After tackling local-
ization in known environment with single transmitter, we will tackle in the next
chapter localization and mapping in environment without a-priori knowledge.
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Chapter 3

Simultaneous Localization and
Environment Mapping without
a-priori Knowledge

3.1 Introduction

Originally, the concept of Simultaneous Localization and Mapping (SLAM) was
achieved (in robotics) by moving a robot in an unknown environment to be recog-
nized [204]. The process is based on steering a laser beam across a dense number
of test directions. Then, the round-trip time (RTT) of the signal reflected by
the obstacles is estimated in each direction. Hence, the distance to obstacles,
inferred from the RTT, was used to build the indoor map. Accurate ranging
and high angle resolution are the two main inputs for an accurate SLAM. Such
aspects were usually achieved through laser technology. Despite the interest of
the technology and the approach adopted therein, the system has to be as the
technology has to be equipped with laser and mechanical steering devices; hence,
it is complex and high-cost integration in mobile devices [205][206].

At mmWave frequencies, very few works have dealt with SLAM approaches. We
particularly mention the works of [204] and [207] where the authors proposed
a radar-based system operating at mmWaves to overcome the shortcomings of
laser. They provided high ranging accuracy using wideband signals and high di-
rectional antenna with mechanical steering. Technically, the reflected signal from
the obstacle is scanned in front of the radar transceiver to estimate the distance
from the obstacle. Thanks to the large system bandwidth and high temporal res-
olution of the paths, the proposed approaches therein have shown high accuracy.
However, the system has to be in radar-like configuration, i.e. perpendicular to
the obstacle, in order to have highly accurate mapping. We should mention that
this radar-like system was possible in mmWaves as the latter promotes the im-
plementation of massive antenna arrays at the ANs [208]-[211]. This is indeed
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possible due to the reduced size of antenna arrays. For instance, the works in
[212]-[215] proposed new designs of personal radar with SLAM features using
massive antenna arrays placed in a smart-phone or tablet. Likewise, the authors
of [216] adopted mmWave technology with multi-antenna radar system to scan
the environment even if the smart-phone is kept in the user pocket. The concept
of SLAM is expected to be widely spread in the future, especially in the domain
of IoT [217].

In this chapter, our approach for SLAM in mmWave technologies is totally dif-
ferent. The proposed work does not impose any constraint on the receiver ori-
entation and configuration; rather, it exploits the rays characteristics and the
separation capabilities of these rays at the receiver to propose an innovative
framework (called MOSAIC) for localization and mapping purposes. More pre-
cisely, the chapter exploits one or more of the localization metrics, i.e. AoA,
TDoA, and RSS, to achieve the obstacle detection, mapping and dimensioning.
The latter are assumed to have different shapes and randomly distributed in the
indoor environment. Throughout the chapter, the system model is firstly derived
for one AN and one receiver and then extended to multiple ANs. The number of
AN s has been optimized through Cramer-Rao Lower Bounds (CRLB) derivations.
The CRLBs outcomes are then used in the simulations to assess the proposed
localization and mapping approaches.

Technically speaking, we will briefly introduce a first approach available in lit-
erature on the localization of a receiver (Rx) in a known environment using the
concept of virtual anchor nodes (VANs). Then, as shown in Fig. 3.1, the concept
of Rx localization is extended to unknown environment. In this case, MOSAIC
proposes to exploit the information obtained by at least two channel metrics
(TDoA, AoA, RSS) to estimate the Rx position. To implement a joint localiza-
tion and mapping, MOSAIC is based on the estimation of the VANs positions,
followed by the estimation of the obstacles sides directions and positions. More-
over, MOSAIC proposes two approaches for the obstacles dimensions (i.e. sides).
This chapter extends our previous work in [218] in which the room geometry
has been identified using the AoA metric only. The contributions of this chapter
could be summarized as follows:

e Exploitation of the map-based mmWave channel characteristics to provide
localization and mapping in indoor scenarios.

e Extension of our previous work in [218] based on AoA metrics to other
metrics (RSS and TDoA): this extension is needed since in real scenarios
these channel metrics are available and could be exploited to improve the
localization and mapping accuracy

e Exploitation of the VANs principle widely used in literature to realize the
obstacle positioning, dimensioning and mapping. In this chapter, MOSAIC
proposes two different approaches for mapping. The first one is based on
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estimating the cloud of reflection points (CoRP) belonging to the obstacle
borders. The CoRP will be used to estimate the obstacles limits, positions
and dimensions. The second is based on determining the obstacles vertices.

e Derivation and exploitation of the CRLB to optimize the number of ANs
needed to achieve a target accuracy.

e Validation of proposed approaches through extensive simulation results. A
professional mmWave ray tracing tool has been also used for the simulation
results.

Use measurements "
from AoA, TDoA, i i Estimate the
RSS (A pair of - ;ftﬂhngm%ns Obss_*éa;csles | ——
metrics is required ! P>
in unknssvn positions Hirections and (Two approaches)
environment) positions
e
Rx Localization Environment Mapping

(obstacle localization & dimensioning)

Figure 3.1: Steps needed in MOSAIC

For the sake of clarification, the following notations will be adopted in the chapter.
A point in the environment starts with letter p. For instance, pT, pR and pV
stand for the transmitter, receiver and VAN positions. The index £ stands for
time while 4 stands for the i*" received ray component (RRC) respectively. Also,
the subscript notation (7, j) is used to indicate the difference in measurement
between the element ¢ and element j while the subscript m refers to an AN.
Throughout the chapter, the time index k is mentioned only when necessary for
the sake of simplification of the model.

The rest of this chapter is organized as follows. In Section 2, we develop the
system model and the localization methodology of the receiver using mmWave.
In Section 3, we introduce localization approaches in mmWave with an extension
to unknown environment. In section 4, new approaches for context inference by
estimating obstacles positions and dimensions are presented. In Section 5, the
effect of the number of ANs is discussed using the CRLB. Then, the simulation
results for an indoor environment are provided in section 6, while conclusions are
drawn in Section 7.

3.2 MOSAIC: System Model and Environment

3.2.1 System Environment

We consider in this chapter a 2D indoor environment consisting of a room bounded
by 4 walls for the sake of simplicity. The extension to 3D environment is left for
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further work. The room geometry is assumed to be known with single transmitter
and single receiver. This assumption does not change any step in the proposed
approaches neither in the conclusions but makes the model simpler to argue.
The room boundaries and radio-reflective obstacles in the reflective objects are
grouped in a set O. Obstacles are described as two-dimensional flat polygonal
faces with sharp vertices and straight edges. Each oriented obstacle S is denoted
by its perpendicular line, described by:

y:yp—i—a-(:z:—xp) (3.1)

where p = (zp, yp) is a point of intersection between the obstacle and its perpen-
dicular and « is the slope of the line orthogonal to the obstacle S. By assumption,
a single mmWave transmitter (Tx) is deployed in the room at a location pT.
Additionally, the transmitter is assumed to broadcast its position to the node(s)
targeted for localization.

Throughout the chapter, AoA will be the main metric for localization and map-
ping. It is very robust against power loss and absorption at mmWave [219]. The
AoA spectrum has been widely used in literature [187][188]. It gives the power
received at each angle of arrival hence it is usually modeled as a 2 x L matrix,
SP (0), that records the amplitude of each RRC as a function of the azimuth 6
at a given location p, where L is the number of RRCs. Each RRC can be either
due to a LoS link between the transmitter and the receiver or due to NLoS link
caused by reflections of one or more surfaces in the obstacle set O. Localization in
this case is achieved by observing NLoS paths as virtual LoS rays coming through
virtual LoS links from VANs, whereby the concept of VAN is elaborated in 2.3.1.
A sorting in decreasing order of SP (6) according to the first row, i.e. to ray
power, allows to characterize the received signal in which the first column has
the highest power. In practice, if the receiver and transmitter are in LoS, this
column represents 6y, the AoA of the LoS ray, and its corresponding power. The
columns 2 : L represent the NLoS paths.

3.3 Localization using mmWaves

In this section, we consider a harsh environment with one Tx and one Rx only.
We tackle the problem of localization in mmWave while mainly based on AoA
measurements due its robustness against power loss in mmWave [219]. Other
measurement metrics such as TDoA and RSS are needed if the environment map
is unknown.
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3.3.1 The Triangulateration (TL) Algorithm in Known
Environment: an AoA based Approach

This algorithm is based on estimating the location of a receiver at position pR
using a set of triangulation steps followed by a verification of the estimated po-
sitions [198][218]. In this section and for the sake of clarification, we assume
that the location orientation and dimensions of the obstacle are known at the
receiver.

The TL provides good accuracy with low complexity versus the conventional
maximum likelihood (ML) algorithm!. TL steps are based on forming a triangle
between the unknown receiver and each VAN. As shown in Figure 3.2, the follow-
ing relations are constructed using trigonometric relations in the right triangle
formed between the receiver pRy, at time & and VAN pV; as follows:

xV; — xRy, = pr; - cos b (3.2)

yVi — yRy = pri - sin b (3.3)
where pV,; = (2V;,yVi) and pR;, = (2 Ry, yRy) are the VANs and the unknown
receiver respectively. 6, and pg; are the AoA and the distance of the RRC

"transmitted virtually” from the VAN pV, to the receiver at position pRy, re-
spectively. In this section, we aim at estimating the position of the receiver, i.e.

IFor a fair comparison, ML results will be provided in the simulations results section.
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xRy and yRy in equation (3.2) and equation (3.3). Hence, using 6;,; and pV,
(assumed known in this section), the problem turns out to find p;;. The latter
could be easily estimated by simply differentiating between the signal originated
from different VANs. Hence, for each pair of VANs pV, and pV/, the following
equation holds:

V=IE (3.4)
where V, I, and E are defined as follows:
xV, — zV;
V= ' J
[ yVi —yV; ]
r_ | s Or; —cosby;
o sin ekﬂ' —sin Ok,j
= |: Pki :|
Pk,j
Solving equation (3.4), we obtain:

Knowing =, the estimation of the position pR; of the receiver can be done by
inserting py; in equation (3.2) and equation (3.3). The TL steps are repeated [
times, that is the total number of all possible pairs of (pVi, ij), 7 # 7 in the
set Vl.

3.3.2 Rx Localization in unknown environment

When the environment is unknown (i.e. there is no information on the obstacles
in the room), the first step of the TL approach could not be applied as the VANs
positions are unknown. To solve this problem, additional localization metrics such
as TDoA and RSS? are considered. Indeed, if for instance both AoA and TDoA
measurments are available, the rays of both metrics are sorted in a decreasing
order in terms of power. The first ray will be denoted as the LoS and the rest
are the NLoS rays. The receiver position will be then deduced as the intersection
point which verifies both the AoA and TDoA based distance equations. The
algorithm for Rx localization is defined as follows.

e Find the distance between pT and pR;, using TDoA measurements of the
first path. Theoretically, the distance of travel for the first ray is calculated
from the TDoA as follows:

Pro = € tko (3.6)

where c is the speed of light, py o is the distance traveled by the first ray
(LoS ray) and # is the TDoA of the first ray, assumed to be in LoS.

2These measurements are primordial for channel estimation at mmWaves
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e Find 9;;,07 the triangulated angle of ) i.e. the AoA of the first ray (LoS
ray), as follows:

9;,0 =7/2 = 00,0 < O < /2
0,0 = Opo — 7/2,7/2 < o <
9;,0 =371/2 = O, 7 < Opp < 37/2
9;6,0 =0k —31/2,37/2 < O < 2

(3.7)

e Using equation (3.6) and equation (3.7), estimate the position of the receiver

as follows: ,
B sinfy, g
PR, = pT + pro- 2 [ cos b, } (3.8)
where pR;, = [ xRy yRg ]T, pT = [ T yT ]T and Q is defined as
follows:
Q=[-1 -1]",0< b < /2
Q=[1 -1, 7/2<bo<n (3.9)
Q=[1 1]",7<0,<37/2 '
Q=[-1 1]".31/2<0<2r

It is very clear from these derivations that localization in mmWave can be easily
done with or without environment knowledge as long as there is sufficient mea-
surements. Moreover, it is straightforward to mention that the availability of
the LoS components highly improves the accuracy of the localization approaches.
In case the LoS ray is not available, the estimation of the Rx position will be
biased. However, as shown in [220], the estimation error could be very small if
appropriate algorithms are implemented. In this chapter, we are not proposing
any approach for separation between LoS and NLoS yet the approach in [220] is
easily adopted.

3.4 Context Inference and Obstacle Mapping in
MOSAIC

The main target of this section is to estimate obstacles locations and their dimen-
sions using the received signal at Rx. MOSAIC implements obstacle detection in
two steps: (1) estimating the position of the VANs using TL (i.e. using AoA),
RSS and TDoA; (2) estimating the obstacle direction, points of reflection and

obstacle dimensions®.

3All the calculations hereafter are presented in ideal conditions, i.e. without measurements
errors, for the sake of simplification. However, in simulations, a bias due to measurements
errors is added to different models

63



3.4.1 Estimation of VANSs positions

Here, three different algorithms are proposed depending on the available mea-
surement metrics. The first algorithm is based on the TL discussed earlier, the
second one is based on the TDoA while the third is based on RSS.

3.4.1.1 Algorithm 1- TL for Estimating VANs

As stated above, the first step for mapping consists in estimating the positions of
the VANs. However, these depend on the obstacles whose positions and dimen-
sions are assumed unknown. Mathematically speaking, this requires estimating
the different parameters (zV;, yV;, pr;) which represent the coordinates of the
VANSs and their distances with respect to the receiver.

The scenario is developed under harsh conditions, i.e. one transmitter and one
receiver are only available for both localization and context inference. Hence, to
deal with these conditions, we propose to move the receiver step-by-step while
collecting new estimation. Technically, the estimation of (xV;,yVi, pr;) depends
on the relative position of the receiver with respect to the VANs, as shown in
Fig. 3.3. For instance, assuming that the AoA for the LoS path between the
transmitter and receiver and the AoA for the NLoS path (LoS virtually) between
the transmitter and receiver (VAN and receiver) fall in the first quadrant, the
system of equations describing the relation between the different parameters in
(xVi, yVi, pr,i) defined in equation (3.2) and equation (3.3) is as follows:

Vi — xRy = pri - cos O,

{ TRy, — 2T = pro - sinfy (3.10)
yVi —y Ry = pr - sinby,

/ ’ 3.11

{ YRy — yT = pro - cosbrp ( )

where py o is the distance between the receiver position at time k and the trans-
mitter, 0y is the AoA for the LoS link between the transmitter and the receiver,
Pr.i is the distance between the VAN to be localized and the original receiver
position and 0 ; is the AoA for the NLoS link corresponding to pV,. By solving
the above two systems of equations, we obtain:

{ Vi — 2T = pyp - sinOy o + py,i - cos O (3.12)

yVi —yT = pro - cosOpo + pr; - sin by

The receiver now is moved to a new position pR;_; as shown in Fig. 3.3 so that
we can solve the new system of equations where the unknown variables become
the positions of the VANs. The latter defines the relation between the parameters
in (xV;,yVi, pr.) corresponding to the new receiver position is:

2V — 2T = pri10-sinOpy10 + Prgri - €0 Opyr (3.13)
yVi—yT = pry10 - co8Opp10 + ey SN0y '
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Figure 3.3: Estimated VANs by moving the receiver from pR;, to pR;;

where pyi1; and Ox41; are the distance and the AoA, respectively, corresponding
to the link between the VAN pV,; and the new receiver position pR;_ ;. Then,
the estimation of the VANs is done by combining the two systems of equations
in equation (3.12) and equation (3.13). This leads to the following:

cosb; —cosOiyr, P B
sinfp; —sinblpi1; Pl+1,i

—sinfyo sinfriip Pk0
—cosfo cosbiiip Pk+1,0

(3.14)

The two unknowns, py; and py.1,, are calculated as follows:

[ Ph.i ] _ oyl [ —sinfo sinbgyi10 ] { Pk,0 ] (3.15)

Pk+1,i — COs ‘9k,0 cos 9k+1,0 PE+1,0

cosO,; —cosbi.q;
where ¥ = [ ki kg ]

sin ‘9k,i —sin 0]@_,_14‘

pri and pyi1,; are then replaced in equation (3.12) or equation (3.13) to estimate
xV; and yV;. Knowing that RRCs come from the transmitter via a LoS link and
from VANs via NLoS links, this process is iterated over all entries of the AoA
power spectrum SP;, (0), a (2 x L) matrix, to estimate the positions of all VANs.
The calculations are repeated at every receiver position.

3.4.1.2 Algorithm 2- TDoA for Estimating VANs

TDoA can be also used for the estimation of the VANs. The distances between
the receiver and the VAN pV, in absence of noise is represented as follows:

P£(0.4) :C't(OJ‘) :pi_p07i: 1,,L—1 (316)

where 2 ;) is the TDoA of the received signal at the pair of the VAN pV,; and
the transmitter respectively, and ¢ is the speed of the signal propagation. As
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shown in equation (3.16), the estimated TDoAs are converted to range difference
of arrival (RDoA) measurements creating a set of nonlinear equations describing
the hyperbolic range difference. The receiver position can be estimated from the
intersection of the resultant hyperboloids. In realistic scenarios, RDoA measure-
ments p() are obtained with noise as modeled in the following equation:

P(0,i) = Po,i) T €04) = Pi — po+ €oapt=1,..., L —1 (3.17)

where ¢(g ;) is the zero mean Gaussian random noise vector of the RDoA measure-
ment. equation (3.17) can be written as P(o,i) + po = pi + €0.4). Hence, squaring
and substituting with equation (3.28), we obtain:

eR(xV; —2T) +yR (yV; — yT') + popoiy =

1 ~ 1 (3.18)
9 [(1,‘/;2 - J?Tz) + (yvzz - yTz) — P(0,) 2] + 2 €(0,i)2 + Pi€(0,i)
Hence, the model is given by:
G-pR=H (3.19)

where G, and H are defined as follows:

xy — T 1 —yT

G = : :
v — 2T yp1—yT

% (C](o,l) - ,5(0,1)2) - Poﬁ(o,n
H= :
2 (90.2-1) — Po,.-1)%) — Pobo.1-1)
where ;) = pVZ-TpVi — pT? pT. Three TDoA measurements are observed
at three different positions of the receiver pR;,, pR,; and pR,_, respectively.
The following system of equations is constructed based on the difference between
the measurements taken at pR,, and pR;,; and those taken at pR; and pR;,
respectively:

G (pPR; — PRyyy) = Hy — Hypy

5 (Prs1,01)% = Pr01)2) + Prt1,0Pk41,0,1) — Pr0Pr(01) | (3.20)

L % (ﬁk+17(07L—1) 2 ﬁky(O,L—l)Q) + Pk+1,0Pk+1,(0,L—1) — Pk,0Pk,(0.L—1) |

G (PR; — PRy ») = Hy — Hypo

3 (Pre2,01)? = Pr01)2) + Prt2,0Pk42,(01) — Pr0Pr,(0.1) (3.21)

3 (Prt2.0.0-1)% = Pr(0,0-1)2) + Pr+2,00k42,0,0-1) — Ph,0Pk,(0,1—1) |
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equation (3.20) and equation (3.21) can be written in matrix notations as:

G -P,=H, (3.22)
where P4 and H, are defined as follows:
Py =[ pR, — PRy, PR, — PRy, | (3.23)
H,=[H,-Hy H,—Hp, | (3.24)
The Least Square (LS) solution of G yields:
G=H, P, (3.25)
As a result, the positions of the VANs are estimated as follows:
T Y1 T yT
: : =G+ | + (3.26)
Tr-1 Yr-1 oI yT

3.4.1.3 RSS for Estimating VANs using LS Solution

The RSS approach can be also used to estimate the positions of VANSs required
for obstacle detection. The received power at these anchor nodes follows a log-
normal shadowing pathloss model in mmwave channels [196][197].The received
power, P;, is calculated using the following equation:

P;[dBm] = Py — 10nlogygpi +€,i=1,...,L—1 (3.27)

where P, is the power at the reference distance pg, n is the pathloss exponent
(PLE), p; is the Euclidean distance between Rx and the VAN pV,, and ¢; is
the zero mean Gaussian random variable measured in dB scale with shadowing
fading effect described by the standard deviation o,. The square of the distance
pi between the VAN pV, and the receiver pR is represented as follows:

o2 = ||pV, — pR|} = (2V; — zR)* + (yV, — yR)’ (3.28)

Without loss of generality, we assume the transmitter to be the reference. Hence,
for i >= 1, we define the following:

TR -p} —pp=aV?—22R -2V +yV? - 2yR - yV; (3.29)

Expressing equation (3.29) in matrix form, we obtain the following equation:

2x V] 2y V]
| 1 ./. 1 R -
. . . yR -
22V 29V
(3.30)
eVt — a2 + yVit — yT? + pf — i

eV —aT? +yVi, —yT? + g — piy
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The real distance p; is not known in RSS localization; hence, noisy estimations
of the distance, g;, obtained from equation (3.27), are related with the unknown
position of the receiver pR = [zR, yR]" as follows:

RpR=T (3.31)
where R and T are defined as follows:
2(aVi—aT)  2(yVi—yT)
R = ; s

2 (ZL‘VL_l — LL’T) 2 (yVL—l — yT)

pVE = aT? +yVP —yT? + p§ — pi
T = :
aViy —aT? +yVi, —yT?* + o — phy
Equation (3.31) can be extended to N different positions {pRy, PRyyy, .., Py}
Hence, the following system of equations is generated based on the difference
between the measurements taken at pR; and pR,,,n =k+1,...,k+ N, respec-

tively:
R (PR, —p,p) = T1 — Ty

ﬁ%,ﬂ - ﬁ%,l - ﬁ%,o + pN%L,l (332)

o o <o <o
Pro = Pki—1 — Pno t Pni—1

where 7 ; is the estimated distance between VAN pV; and the receiver at position
pR,,, knowing that pf“ is defined as follows:

p2:=PV: — PR, = (aVi — 2R.)* + (yVi — yR,)* (3.33)

The target is to estimate R in order to estimate the positions of the VANs. A
simple Least Square (LS) estimator gives:

R=T, P} (P,P])”" (3.34)
where T; and P4 are now defined as follows:
P;=| pRy — PRy PRy — PRy ... PR, — PRy | (3.35)
Ty=[Ty-T, Ty—Ts ... Ty—Ty] (3.36)
As a result, the positions of the VANs are estimated as follows:
xV) yVi 1 T yT
: L =GR (3.37)
(l?VL_l yVL_l T yT
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3.4.1.4 Estimating VANs using RSS-WLS solution

The aim here is to enhance the estimation taking into account the noise variance.
We start with an example of 3 measurements and then the equations are updated
accordingly. Equation (3.32) can be written as:

Pwrs - Rwrs = Twrs (3.38)
where Py s, Rwrs and Ty s are defined as follows:

i P12 (1) P13 (1)

0 0
Piy(2) Pi3(2)
Pywrs = 0
Py (1) Pi3(1)
i 0 P2 (2) Pi3(2) |
[ 2 (xVy — aVy) ]
2(yVo —yW1)
Rwrs = :
2 (zVy, —aVy)
| 2(yVe —yWi) |
[ T,(1,1) |
Td(172)
Twis = :
Ty (L—1,1)
L Td (L - 17 2) i

where Py, = pR;, —pR,; and P13 = pR;, — pR;,,. Additionally, knowing that
the dimensions of Ry s and Tyrs are 2- (L — 1) x 1 and the dimension of Py ¢
is2-(L—1)x2-(L—1). Hence, Py g can be written as follows:

P12 (1) P13 (1)

P =1
WLS & P, (2) P (2)

(3.39)

where T is the identity matrix of dimension (L —1) x (L —1). Consequently,
Ry s of the VANs can be estimated by:

. 1 i
Rwrs = 3 (Wwers - Pwirs) Wwirs - Twrs (3.40)

where the weighting matrix Wy g is equal to the inverse of the covariance matrix
EW'LS of the vector TWLS-
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3.4.2 Obstacle Detection

After the estimation of the VANs, the target is to detect the obstacles in the
room. Referring to Fig. 3.3, obstacle detection is achieved using either RSS and
AoA or TDoA and AoA. The obstacle detection is done by the following steps at
each Rx position k:

e The VANS positions are firstly estimated as detailed in the previous section.

e Since the VANs are the mirrors of the transmitter with respect to all surfaces
of the obstacles in the room, the obstacles are then the perpendicular to the
line connecting the transmitter to each estimated VAN respectively. The
perpendicular line passes through the midpoint of the segment [pV,pT].
The latter is calculated as follows:

pT +pV,

2
where pM, = (xM;,yM;). Then, the normal to the point of reflection

(PoR) pS, corresponding to VAN pV;, is calculated as follows:

n, = pT —pV, (3.42)

pM; = (3.41)

where n; = (zn;, yn;).

e cquation equation (3.1) is used to write the obstacle surface, where a and
pM, = (xM;,yM,) are the slope and midpoint of segment [pV,pT], re-
spectively. Fig. 3.3 shows the estimated obstacles by firstly estimating its
location (the midpoint between Tx and VAN) and direction.

e Using the AoA and the estimated positions of the receiver, VAN and obsta-
cle, the point of reflection at the obstacle can be easily deduced. It is simply
the point of intersection between the line [pV,, pR| and the obstacle line.
Then, the vector crossing the PoR Sy ; from the receiver to the transmitter
is represented as follows:

w; = pV, — pR (3.43)
where w; = (zW;, yW;). Then, we solve for the points of intersection be-
tween VANs and the receiver to estimate the PoRs as follows:

pS; = pR+

T 3.44
(inv(diag(ni.wi))'((pMi—pR)-ni)T> W, (3.44)

e At each receiver measurement, this procedure is iterated over all pairs of
(pV,;,pT),i = 1,2,..., L, where L is the number of VANs. At each it-
eration, an estimated point of reflection belonging to the obstacle side is
created. Using all these measurements, a cloud (set) of reflection points is
generated.
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e Using the CoRP, an interpolation between these points is applied. It is
followed by a simple smoothing operation.

In summary, obstacle surfaces are detected and estimated using a set of connected
reflection points. Using the concept of mirroring, we iterate over all pairs of
(pV,,pT) at each Rx position to detect an obstacle surface. Then, the problem
turns down to estimate the obstacle limits.

3.4.3 Obstacle Dimensioning: Finding the Obstacle Lim-
its

,
Q\\Prx ! 4
-~
’
fegion of Reflections,
N ’ - P
N S —C—y

, .
SN s Pry<

.

va;

Figure 3.4: Region of possible reflections

After detecting the direction of the obstacles in the room and the correspond-
ing CoRP, the boundaries of the obstacle are left to be set. Here two approaches
are proposed (jointly or separately):

Approach 1: Estimate the vertices by power measurements As shown
in Fig. 3.4, a point of reflection is obtained at the obstacle if the receiver moves
within the region of all possible reflections determined by the obstacle limits, the
position of the transmitter, and the related VAN. Hence, the AoA/TDoA/RSS
spectrum generated at all receiver positions will dramatically change when the
receiver leaves the region of reflection. Indeed, mmWave signals suffer from ab-
sorption loss by each obstacle. Hence, a change in the reflection environment will
change when Rx changes from a region of reflection to another. Without loss of
generality, when the receiver moves to the right or to the left outside the region of
reflection shown in Fig. 3.4, the power of the received signal at the corresponding
AoA will dramatically change raising the existence of the object limit. So the
latter could be estimated by a simple border detection through power measure-
ments, i.c separating the power of an obstacle ray from noise or walls rays. In
this chapter, the detection is based on a simple energy detector algorithm whose
threshold is set to maximize the probability of detection.

Approach 2: Estimate the vertices as intersections of the obstacle sides:
This approach could be applied if the obstacle is of 2D shape (not 1D). As shown
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in the previous section, each side of the obstacle is firstly determined via its di-
rection and the CoRP. Hence, the limits (i.e. the vertices) of the obstacles are
simply determined by the intersections of these sides.

To show the effectiveness of the proposed approaches, a simulation is executed
in an indoor environment with a rectangular obstacle, a moving receiver across
several positions and 4 transmitters as shown in Fig. 3.5. In this figure, it is very
clear that the estimated points of reflection reproduce well the obstacle shape.
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-8-Rx,
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>
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Figure 3.5: Indoor scenario for CoRPs” Estimation using AoA with static trans-
mitter and moving Receiver

3.4.4 Clustering the Cloud of Vertices Points

Each measurement at each Rx position provides an estimation of the point of
reflection first and then, through obstacle limits calculations, provides an estima-
tion of the vertices constituting the obstacle. However, as these measurements
are biased due to noise, a clustering of all measurements is required. Without
loss of generality, the K-means algorithm [221] has been used to cluster the set of
estimates of the obstacle vertices. Then, the sum of absolute differences approach
is implemented to specify the centroids of the clusters. The latter represent the
component-wise median of a set of estimations for an obstacle vertex.

3.4.5 Discussion on MOSAIC

One AN was used so far for receiver localization and obstacle detection. If the
obstacle is known then the estimation of the receiver position follows from the
VANSs positions. However, when the obstacle information is not available, the
estimation of both the receiver and the VANs positions can be done if enough
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measurement metrics (TDoA and AoA, RSS and AoA) are available.

The estimation accuracy depends on the availability of LoS path. When it is
not available, the measurements (mainly the AoA) will be biased since in our
approach, the first path is considered to be the LoS. To overcome this problem
and reduce the bias, it is very important to increase the number of ANs leading
to an increase in the LoS measurements which implies a large number of points of
reflection that could be used to determine the obstacle limits. On the other side,
the limits of the obstacle are estimated if and only if the receiver is within the
range of reflection. Nevertheless, this is not always the case with a single receiver
at a given position and single AN as shown in Fig. 3.5. Consequently, having
large number of ANs will also enhance the mapping accuracy. So, one question
arise: how many ANs do we need in MOSAIC at a receiver position, i.e. without
tracking?

3.5 Optimal Number of ANs

The target in this section is to explore the effect of increasing the number of
ANs in terms of localization accuracy and mapping capabilities. Indeed, it has
been shown in the previous section that the environment mapping depends on
the estimation of the VANs which depends on the localization accuracy of the
receiver. However, increasing the number of ANs indefinitely leads to additional
measurements to be processed from one side and might not provide the best
accuracy from the other side. To answer this question, we derive the CRLB of
each algorithm proposed in Section 4 at each position of the Rx.

3.5.1 CRLB Derivations with N ANs

The optimal number of ANs needed is analyzed via CRLB optimization for each
metric.

3.5.1.1 CRLB for Algorithm 1 (The TL Approach)

Here, we assume that the AoA measurements taken at the receiver coming from
all ANs are independent. Assuming a wideband multipath model, we estimate the
receiver position using the TL technique based on a Gaussian AoA model. This
model represents scenarios where there is a strong LoS component that could be
resolved by the receiver separately from multiple NLoS components due to local
scattering. For a single transmitter pT with an AoA 6(pT) at the receiver, we
consider a Gaussian LoS model with local scattering defined as:

| (6-0(pm)°

@) "

3.45
2mo (1-2Q (£ 202 (3.45)

PLoS (é/ PT) =
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where 6 € (0.7, Q (1) = [ exp(—t?/2)/v/2mdt and o2 is the estimation error
variance, representing the spatial extent of scattering. Additionally, the remain-
ing AoA mecasurements due to reflected and scattered NLoS paths are assumed
to be virtually in LoS with VANs. Hence, the distribution of these NLoS paths
is defined as follows:

1 (6:—0.0V))

PNLoS (92/pvz) = o (1 - 2Q (%)) exp(— 20-2

(3.46)

where 6; (pV,) is the true AoA coming from the VAN pV, to the receiver know-
ing that pV, = pT. Hence, the AoA estimates are generated for a wideband
multipath model based on the following distribution:

Puwideband (éo, éh e »éL—l/PT) =
Dros (éo/pT) PNLos (91/pV1> -+ PNLos (éL—l/va—1>

where L is the number of RRCs. Accordingly, the log-likelihood function for the
estimates of the AoA for all RRCs is as follows:

(3.47)

L(é07él7'°')éL—1/pT7 pV) = - (348)

Based on what has been derived for single transmitter in terms of the probability
density function (pdf) of the wideband multipath model in equation (3.47), the
log-likelihood function for the estimates of the AoA for all RRCs corresponding
to multiple transmitters (i.c. ANs) is as follows:

. ( g, (pvm))2

2

~

M
L (9}, bs,....0,1/pT, pv) -3 (3.49)

g
m=1 q

1

where 6; (me’i) is the true AoA coming from the VAN pV, ; corresponding to
the transmitter pT,, reaching the receiver pR and pV,,, = pT,,. Then, we
construct the Fisher information matrix (FIM) F ({pT, V}) in order to calculate
the CRLB, which is F~' ({pT,pV}). For the Gaussian model in equation (3.47),
F ({pT, V}) is defined as follows:

F({pT,pV}) =
1112 11
DAY Dk N D 1w (3.50)
6;) sin(0;
Yoy Yl e e

where p,, ; is the distance between me ; corresponding to the transmitter pT,,
and the receiver pR. Knowing that the total error of localizing the receiver is

74



the sum of variances along z and y, we define the CRLB for localization under
NLoS environment using the TL technique as follows:

CRLBgnios = Tr (F7' ({pT. V}))
2 Zm 1 Zz 1 p:L i (351)
Z =1 Z Zk 1,k#4 Sl;l—ek)

p'mk

In case of LoS environment, the CRLB for localization using TL technique based
on AoA approach is as follows:

Zm 1p 1LoS

sin? (0, —6},)

> >
Pin.LoSPk,LoS

CRLBg|10s =

(3.52)
m=1 Zk:l,k;ﬁm

3.5.1.2 CRLB for Algorithm 2 (TDoA Metric)

The TDoA measurements taken at the receiver from multiple ANs are assumed
to be independent. The distances between the receiver and the VAN pV,
corresponding to the transmitter p,, in absence of noise is represented as follows:

pm,(i,O) =cC- tm,(i,O) = Pm,i — Pm,0, M = ].7 ey M&Z = ]., N L—-1 (353)

where t,, ;1 is the TDoA of the received signal at the pair of the VAN pV,
and the transmitter pT,, respectively, and c is the speed of light. As shown
in equation (3.53), the estimated TDoAs are converted to RDoA measurements
creating a set of nonlinear equations describing the hyperbolic range difference.
In realistic scenarios, RDoA measurements py, ;o arc obtained with noise and
modeled as:

ﬁm7(i,0) = Pm,(i,0) + €m,(i,0) = Pm,i — Pm,0 + €m,(i,0), T = ]-7 cee sM (354)

where ¢ = 1,..., L —1 and ¢, ;o) is the zero mean Gaussian random noise vector
of the RDoA measurement with a (L — 1) - (L — 1) covariance matrix 3;. Thus,
the pdf of py, (i0) defined in equation (3.54) is as follows:

T ([) ,0) — P /‘0)2
_ H H eXp [_ 'm,(4,0) : 2m7(1,7 ) ]
271'02 QCzo'T

m=1 i=1

L1 9 (3.55)
B 1 Zm:1 it (Pmi0) = Pmgio)
- -1 SXP | — 22
(2mc202) 2 2cior

Using the second partial derivative of the LLE for the pdf defined in equation
(3.55), we obtain:

0 (log (Pr(p;p))) _ M- (L—1) (3.56)

op? o2
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Consequently, the optimal number of ANs required to achieve a TDoA localiza-
tion accuracy defined by the CRLB is as follows:

o2,

Mo imal —
primal = ([, 1) - CRLB,

(3.57)

3.5.1.3 CRLB for Algorithm 3 (RSS Approach)

In RSS based approach, the log likelihood function (LLF) of the pdf of P; is
expressed as follows:

log (Pr (PT;p)) =

- 10 )
T 10/ log 10 1 (Up loglo) p%n,z
log o exp | — log £
m=1i=1 4/2m02 Prni 8 Pri

10

= M- (L~1)-log (W) -
M L1 1 (%)2 pmi )’
2.2 |l (pm) T2 <log <_>>

oo Pm,i

(3.58)

Il
—
.
Il
—

where p,, ; is the distance between the VAN pV, . corresponding to the transmit-
ter pT,, and the receiver pR and py,; is its estimate. Then, the second partial
derivative is defined as follows:

) M L- ;
82 (log (;;(P,P))) :_(aplijngO) Zi 21 (lnlO log ('ZW)) (3.59)

m=1 i= 1me my

Hence, the optimal number of ANs is obtained by optimizing the following CRLB
for a target localization accuracy:

-1
CRLBprss = (log(Pr(Psp)))
Op>
- . (3.60)

lO’I] Pm,i
(oploglo) Em 1EL 1 pmz (lnlo log (sz))

3.5.2 Discussion

The CRLB of the different metrics decreases with the number of ANs, except
for AoA, in which a further discussion should be provided. Indeed, when the
AoA metric is used for localization and mapping, it is very important to separate
between the LoS and NLoS cases. In the former, an additional number of ANs
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increases the resolvability of the Rx location as it will be shown in next section.
However, in the case of NLoS, the increase in the ANs will increase the number
of ambiguities hence it deteriorates the estimation. This is not the case in RSS
or TDoA since they are used to support the TL approach. Another conclusion
can be derived from the calculations of the CRLBs. equation (3.60) and equation
(3.57) show that the number M of ANs and the number L of RRCs can be
exchanged without changing in the CRLB. This means that both RSS and TDoA
present similar results if the number of anchor nodes is increased or the number
of reflections is increased.

3.6 Simulation Results

3.6.1 Parameters and Environment Settings

The room geometry is of rectangular shape of size (10 x 10)m?. The south-western
corner of the room is assumed to be the reference of the Cartesian coordinate sys-
tem. The angles are measured with respect to the positive part of the x-axis. The
transmitter is set at position pT = (0.2,0.2) m. The antenna at the transmitter is
assumed to be omnidirectional; hence, the transmitted power SP (6) is constant
for all #. An antenna array is considered at the receiver with a reception beam

pattern described as SP (0) = exp (—%) ,8 = 0.1. The value of parameter s

and the Gaussian shape have been devised empirically. Additionally, all results
are simulated for 10000 realizations.

3.6.2 Performance of the Rx Localization Algorithm in
unknown Environment

In this section, we provide the simulation results of the localization accuracy in
an unknown environment. We remind the reader that an unknown environment
refers to the case where there is no information about the obstacles in the room.
We implemented different combinations of the basic standalone positioning tech-
niques (TL, RSS, and TDoA) to achieve additional enhancement in the local-
ization accuracy. Fig. 3.6 shows the RMSE of estimating the receiver’s position
using TL, TL in combination with TDoA, TL in combination with RSS and TL
in combination with RSS and TDoA. It is very clear that the hybrid approach
presents the best results. Particularly, the combination of the TL and TDoA has
a good accuracy and presents comparable results with those obtained with all
metrics. In terms of localizing VANs, Fig. 3.7 shows that the estimation error
can be greatly reduced, reaching few centimeters, if the number of Rx measure-
ments is high enough. For instance, the error is shown to be less than 0.075 m at
orpoa = 0.2 ns and less than 0.04 m at orpoa = 0.1 ns with 100 Rx positions.
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This means that a mobile receiver can perfectly estimate the positions of the
VANS.

0.6

05

-©-TL

=M= RSS&TL
—4—TL&TDoA
=¥~ TL,TDoA&RSS

0.4 r

RMSE [m]
o
w

0.2

0 . . . . . . . . .
0 0.01 0.02 003 004 005 006 007 0.08 0.09 0.1

Tno A[rad]

Figure 3.6: Simulation Results of the Hybrid Approach

3.6.3 Optimal Number of ANs

Increasing the number of ANs is proposed for the sake of enhancing localization
and obstacle mapping accuracy. This enhancement is expected to increase the
probability of LoS links and the number of estimations for the obstacle vertices.
Thus, the optimal number of ANs is recognized as a compromise between the
number that achieves the best localization accuracy and the number that achieves
full detection of an obstacle. As shown in Fig. 3.8, the localization accuracy for
TL becomes worse with the growing number of ANs. The decrease of the CRLB
level using TL as the number of ANs grows is due to the NLoS environment.
The AoA localization based technique is highly sensitive to errors under NLoS
scenario since the rays coming from NLoS paths will deteriorate the localization
accuracy. This is indeed expected as AoA is very sensitive to errors as shown in
literature. For instance, an error of 5° might lead to high direction error which
is translated by high position error.

However, in LoS conditions, higher number of ANs decreases the CRLB level of
the localization accuracy as shown in Fig. 3.8. In such scenario, the AoA of the
LoS ray is less biased to error compared to that of the NLoS ray; hence, the
localization accuracy is enhanced with higher number of ANs. Moreover, the
increase in the number of ANs is shown in Fig. 3.9 to decrease the CRLB using
RSS and TDoA. Finally, as expected, the rise in the number of ANs is shown to
enhance the mapping ability. It is very clear that at least 30 ANs are needed to
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have a good estimation of the VANs hence the obstacle vertices.
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Figure 3.8: CRLB of localization accuracy using AoA under LoS/NLoS conditions
for various number of ANs

3.6.4 Obstacle Mapping

After localizing the VANSs, the obstacles in the room are to be mapped in terms
of their positions, dimensions and limits. Three types of obstacles have been
considered: a square, a triangle and a hexagon. Fig. 3.11 shows the estimated
vertices of a triangular obstacle in the room with M = 12 and M = 42 ANs,
respectively, using the TL with 04,4 = 0.097ad (almost5°) and the K-means
algorithm to cluster the set of estimated obstacle vertices. It is very clear that

79



the TL approach presents very good accuracy if the number of ANs is large
enough. Moreover, the results are in line with CRLB derived in the previous
section which specifies at least 30 ANs for good accuracy. Fig. 3.12 presents the
mapping results of a square and hexagonal obstacles using TDoA approaches,
provided in Section IV with opp,4 = 0.05ns and opp,4 = 0.1ns, respectively.
Here, the cloud of vertices points at each measurement is shown as well as the
resulting estimated vertices using K-means algorithm.
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Figure 3.9: CRLB of localization accuracy versus number of ANs using TDoA
and RSS

3.6.5 Analysis and Conclusions on the Simulations Re-
sults

As shown in Fig. 3.10, the CRLB level of the TL (AoA- based approach) de-
creases with the growing number of ANs under LoS environment. Nevertheless,
this is not the case with NLoS environment. However, as the obstacle mapping
highly depends on the localization accuracy from one side and needs the reflec-
tion paths from the other side, it becomes very important to select the optimal
number of ANs which is able to realize both localization and mapping. Another
important point resides in the AoA measurement errors as they highly affect the
accuracy of the obstacle mapping. However, thanks to the large number of an-
tennas implemented in mmWave technology, these errors are very small [220].
Similarly, TDoA is shown to achieve high accuracy in terms of localizing VANs
with respect to the noise variance of the TDoA measurements. In practice, the
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Figure 3.11: Obstacle (triangle) mapping using the TL approach to estimate the
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Figure 3.12: Obstacle (hexagon and Square) mapping using TDoA

TDoA based approach provides a negligible estimation error in the localization
approach. However, the mapping needs an estimation of the AoA which again
needs to be very accurate. In terms of raw accuracy, 10 GHz bandwidth is re-
quired to achieve accurate estimation using TDoA with an error in the order of
0.1 ns in terms of g;. This is indeed one advantage of using mmWave whose band
can reach few GHz.

RSS based approach is the worst in terms of estimating the VANSs positions due
to an increased error in the Rx localization as shown in the CRLB given in
Fig. 3.10. Moreover, this bias is increased in practice due to the absorption loss
by the obstacles on the NLoS rays powers. Finally, it is worth mentioning that
the simulation results have shown that the localization and mapping within the
MOSAIC framework present an excellent accuracy reaching few centimeters if
appropriate algorithms and parameters are selected.

3.7 Conclusion

In this chapter, we presented MOSAIC a framework for joint localization and
mapping. The concept is based on few steps based on localization of the receiver,
followed by the estimation of the VANs using TL, TDoA and RSS and then obsta-
cle detection and dimensioning. Obstacle detection is achieved via an estimation
of CoRP and then obstacle dimensioning is achieved by two different approaches
which estimate the vertices of the obstacle either by power measurements or by
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following the geometric definition of these vertices as intersections of the obstacle
sides if and only if the obstacle is of 2D shape.

The performance of the localization techniques is tested through simulations in
terms of RMSE and CDF of the location estimation error. In terms of obstacle
detection, the chapter proposed a new approach based on VANs and mirroring.
A thorough analysis of the proposed approaches has been made in the chapter
from theoretical and algorithmic point of view. Simulations have shown that
finding the optimal number of ANs using the CRLB is a compromise between
localization and obstacle mapping accuracy.

In summary, this chapter consists a first of its kind in mapping an indoor en-
vironment based on the channel measurements. Definitely, much work could be
achieved in the future. Among others, the localization and detection of multiple
objects is a possible future direction. Also, an extension to 3D localization and
mapping for this work tackling not only single bounce but also double bounce
will be proposed in the next chapter.
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Chapter 4

Extension to 3D Localization and
Mapping

4.1 Introduction

This chapter raises an important question on the opportunities offered by millime-
ter Waves (mmWaves) signals for 3D localization and mapping (3D-LOCMAP)
in vehicular and indoor environments. More precisely, this chapter presents a
technical framework for SDLOCMAP using the mmWave channel response and
mmWave propagation characteristics. To do so, we firstly introduces a combina-
tion between Triangulateration (TL) and Received Signal Strength (RSS) or Time
of Arrival (ToA) measurements for SDLOCMAP. In the case of a channel model
with single bounce, the environment mapping (such as obstacles) is achieved by
estimating the positions of virtual anchor nodes (VANSs), known as mirrors of
the real anchors with respect to obstacle. Then, the obstacle position and di-
mensions are found via the estimation of the reflector points on the obstacle. In
case of double-bounce, the scenario is observed from single-bounce perspective
by estimating Virtual Receiver (VRx), VAN, and two Points of Reflection (PoR).
Simulation results have shown the accuracy of the proposed framework which can
be extended for further investigations. The work here will open the door for mul-
tiple applications in vehicular, robotics, health, radar-like systems, and Internet
of Things (IoT). In this chapter, we tackle the joint problem of 3D localization
and mapping (3DLOCMAP). The high-level proposed approach is shown in Fig-
ure 4.1. It allows us developing context inference and mapping of the environment
with high accuracy reaching sub meters (few centimeters in some cases). In this
work, we are tackling two different environments: the vehicular and indoor and
we propose a framework for SDLOCMAP using a professional mmWave channel
simulator. The contribution of this chapter can be summarized in the following
aspects:

e Exploitation of the map-based mmWave channel criteria to provide 3D
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localization and mapping. MmWave signals have no scattering effect and
they realize high penetration loss through obstacles. This fact triggers the
use of Snell’s law for obstacle detection and classification.

e We use the concept of Virtual Anchor Nodes (VANSs) to estimate the lo-
cation of each mmWave receiver (Rx) using the combination between the
proposed Triangulateration (TL) technique and RSS or ToA.

e Introduction of the virtual receiver (VRx) to develop environment mapping
in the case of double-bounce channel propagation

e Validation of proposed approaches through extensive simulation results.

» Obstacle Detection

e Use Concept of Virtual Receiver (VRx)
e Estimation of VAN and VRx

e Obstacle detection via estimation of Point of
Reflection (PoR)

Localization, Context Inference and
Mapping using mmWave

Figure 4.1: The process of localization, context inference and mapping using
geometric approach

The rest of this chapter is organized as follows. In Section 2, we develop the
system model and the 3D localization methodology of the receiver using mmWave.
In Section 3, we perform 3D localization for a receiver in an unknown environ-
ment. Then, obstacle mapping for single bounce and double bounce scenarios in
3D environment is tackled in section 4 and section 5 respectively. In Section 6,
we provide simulation results while conclusions are drawn in Section 7.
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4.2 System Model using Millimeter Wave

4.2.1 Environment Settings

The proposed mmWave localization techniques are tested in a 3D environment.
The boundaries and radio-reflective obstacles in the reflective objects are grouped
in a set O. Obstacles are described as three-dimensional flat polygonal faces with
sharp vertices and straight edges. Fach oriented surface S of 3D obstacle is
denoted by its perpendicular line, written as:

a(x —ps) +b(y—py) +c(z—p.) +d=0 (4.1)

where p = (ps, py, p») is a point of intersection between the surface and its perpen-
dicular and 77 = (a, b, ¢) is the vector orthogonal to the surface S. By assumption,
a single mmWave AP is deployed at a location p’®. Additionally, the AP is
assumed to broadcast its position and the specifications of the objects in O to
the node(s) targeted for localization. In this chapter, the AoA will be firstly pri-
oritized and investigated since the AoA metric is not sensitive to the absorption
loss at mmWave. It will be then complemented by other metrics, such as RSS
and ToA, when necessary. The AoA spectrum, P, (), is a 3 x N, matrix that
records the amplitude of each received ray component (RRC) as a function of
the azimuth 6 and elevation ¢ at a given location p, where N, is the number of
RRCs. Each RRC can be either due to a LoS link between the transmitter and
the receiver or due to NLoS link induced by reflections of one or more surfaces
in the obstacle set O. Then, SP, (0) is a 3 x N, matrix, which contains in its first
row the amplitude of each RRC sorted in decreasing order, in its second row the
azimuth @ with respect to reference angle 6y, and in its third row the elevation
¢ with respect to reference angle ¢g. Moreover, the boundaries of the testing
environment are assumed to be known for the node(s) to be localized.

4.2.2 Virtual Anchors

As the environment is unknown, the NLoS rays are recognized as virtual LoS rays
transmitted from VANs to fulfill the condition on the number of anchor nodes
needed for localization. The first column vector of SP, (0, ¢) represents the LoS
path between the transmitter and the receiver to be localized, and the columns
2 : N, represent the NLoS paths. So, we have N, — 1 RRCs that correspond to
NLoS paths. Each of these paths can be modeled as emitted by a VAN through
a virtual LoS path reaching the receiver pf®®. The locations of the VANs are
determined by mirroring the AP p?* with respect to the surfaces in the obstacle
set O since it is the source of signal reflections. We denote V= {v, v1,...} to be
the set of the positions of all possible VANs, and we denote V= {Vj, V1,...} to
be a partition of V. We let V, = p’*, and each set V;,i= 1,2, ... represents all
VANSs that have been mirrored ¢ times due to reflections caused by any surface in
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the obstacle set O. Actually, there is no limit on the number of reflections of the
signal transmitted by p?*. However, a mmWave signal fades quickly during its
propagation as it reflects off the surfaces. So, we limited the set V' by assuming a
maximum reflection order p = 2. Hence, the set of all VANs will be represented
as V, = 2‘:0 Vi. As shown in Figure 4.2, the anchors v; € V; represent first
order of reflection and the anchors v; € V5 represent second order of reflection.

4.3 Localization of the Receiver in an unknown
environment: The Proposed Algorithm

As the environment is assumed to be unknown in this section, i.e. none of the
v; is known except the true TX position vy, the first step in the localization and
mapping consists in finding the positions of the receiver and of the VANs and
of the VRx. To solve this problem, we can easily assume that there are enough
measurements about ToA/RSS/AoA!. The proposed algorithm is divided into
two main steps: (1) filtering the received signal and (2) localization through
hybrid approach

4.3.1 Filtering the Received Rays

In a dense environment, such as indoor or dense vehicular environment, many
of the rays will be received after few reflections. Hence, their powers will be
beneath the noise power. In order to reduce the localization error and avoid the
noise effect on the received rays’ powers, the first step in the proposed algorithm
is to filter out the signal keeping the strong rays. To do so, the rays are first
sorted based on ToA values in ascending order where the first ray is the ray
received with minimum delay. Then knowing that the noise variance is equal to
—174+10 x log,, (BW), the signal is filtered out to keep the strongest rays based
on a received power threshold, vypr, calculated as follows:

1+ Q' (PFA)
N ) (4.2)

where BW is the bandwidth, @' (.) is the inverse @ function, and PFA is the
probability of false alarm to separate a ray (with a given delay) from noise.

ypr = —174 4+ 10 x log,y (BW) + 10 x logy, (

4.3.2 Estimating the Rx Position

The estimation of the Rx position is done by appropriate combination of the
channel metrics. Without loss of generality, let us assume that the first received

'this assumption is valid and solid as these measurements are needed for channel estimation
at mmWave
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path corresponds to a LoS. Hence, we can easily write (see Fig. 4.2):

af = 2T 4 posin (9°1) cos (65°4)

y' = 17 4 posin (g sin (65'°4) (4.3)
2R = 217 4 py cos (¢§°4)
where p’* = (xTx,yT‘”,sz), pfr = (:rR‘”,yR’”, sz), po is the distance traveled

by the first ray, and ¢3'°4 and 644 are the elevation and the azimuth of the AoA
for the ray assumed to be in LoS. Consequently, the estimated receiver position

pf® is calculated as follows:

sin (¢§'?) cos (634)

PR = pT + pg | sin (¢f°4) sin (634) (4.4)
cos( 640“)

It is very clear from equation equation (4.4) that the estimation of the Rx position
requires the knowledge of the distance py traveled by the LoS path. The latter
could be easily estimated using either RSS or ToA metric as follows.

4.3.2.1 RSS

RSS is used to estimate the distance traveled by each ray using the free space
pathloss model. The pathloss for each ray is calculated first as follows:

4xmxf,

PL; = P' — P; — 20 x log;,(
c

) (4.5)

where PL; is the pathloss for the ith path, ¢ is the speed of light, P' is the
transmitted power in dB, P} is the received power for the ith path in dB and

f. is the carrier frequency. Thus, the distance traveled by the ¢th ray is then
estimated as follows:

pi = 1075/%0 (4.6)

4.3.2.2 ToA
ToA can also be used to estimate the distance traveled by each ray as follows:
pi = ¢ X toa; (4.7)

where toa; is the ToA for the ith ray.

Hence, using py from equation equation (4.6) or equation equation (4.7) in
equation (4.4), the estimation of the Rx position in an unknown environment can
be directly obtained.
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Figure 4.2: VANs related to first order of reflection

4.4 Obstacle Mapping in Single Bounce Scenario

The main target of this section is to estimate obstacles locations and their dimen-
sions using the received signal. We introduce obstacle detection in three steps;
(1) estimate the position of the VANSs, (2) estimate the positions of VRx, and (3)
estimate the obstacle direction and dimensions by finding the points of reflection
on the obstacles, as shown in 4.3. The VANs and the receiver are estimated
using the TL algorithm for NLoS environments. Then, we will use the concept
of mirroring to detect the obstacle in between the transmitter and the VANs.

4.4.1 Estimation of the VAN Positions

The model in equation (4.6) can be easily extended to NLoS rays for obstacle
mapping. Here, two different scenarios can be targeted: single bounce and double
bounce.

4.4.1.1 Single Bounce Scenario

After estimating the Rx position, we need to estimate the VANs for rays coming
from NLoS paths. In case of single bounce scenario, the paths are considered to
be transmitted from virtual transmitters denoted by VANs. In other words, the
received ray coming through NLoS path is considered to be a virtual LoS path
coming from the VAN. The VANs are estimated for the 3D geometric model
shown in Figure 4.2 as follows:

x? = zf + p;sin (¢7°4) cos (6{°4)

y? = yf + pisin (¢7°4) sin (67°4) (4.8)

2V = 2R 4 p; cos (¢4)

where v; = (a¥,y?, z?) is the VAN corresponding to the #th NLoS ray where

i=1.---,N, — 1 and p; is the distance traveled by the corresponding path.
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4.4.2 Obstacle Detection through Points of Reflection

After estimating the VANs, we need to categorize them into two sets: The first
one is the set of VANs that are obtained due to walls, floor and ceiling reflections,
and the second one is the set of VANs that are obtained due to obstacle reflec-
tions. This classification can be done by applying the concept of mirroring over
the transmitter with respect to the room boundaries in order to find the VANs
of the first set. Hence, we will be able to identify the VANs that are due to ob-
stacle reflections. The obstacle is detected by estimating the points of reflection,
gathered as cloud of reflection points (CoRP) of the rays induced by the obstacle.
If the size of this CoRP is large enough, a good estimation by interpolation and
extrapolation of the obstacle sides (hence obstacle shape) is possible. However,
for a given receiver position and a single transmitter, the set of VANs and hence
the size of the CoRP is limited leading to a biased estimation of the obstacle
shape. Hence, we need to increase the number of APs in order to estimate all
the VANS required to do perfect estimation of the obstacle.
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Figure 4.3: VAN and VRx related to first and second order of reflection

The estimation of the reflection point could be done in different ways, de-
pending on the available measurements. It is mainly based on the geometry of
reflected rays, obstacle orientation and the positions of VANs and Rx. In the
sequel, we assume that the angle of departure (AoD) for each ray is known 2.

First, the midpoint between the transmitter and VAN v; is calculated as follows:

_ pT+pV,

M;
2

(4.9)

where M;’ﬁ = (CUMphayMpzT’”, zMPZT’>. Then, the normal to the point of reflec-

2this assumption is considered here for the ease of derivations. if this information is not
available the estimation can still be done at the expense of additional calculation complexity
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tion (PoR) PoR/ corresponding to VAN v; is calculated as follows:

n/M = p'* —v; (4.10)

PoRy _

1

from the receiver to the transmitter is represented as follows:

where n (xnpopzl )Y, PoRy, Z, PoR; ) Then, the vector crossing the PoR POR}
[ [ 7

Ww; =V; — pr (411)

where w; = (2™, y"i, z*). Then, we solve for the points of intersection between
VANSs and the receiver to estimate the PoRs as follows:

T
S, = pR + <'m'u(dmg(nl-.wi)) « (M, — pR) x ni)T> Wi (4.12)

Then, the distance traveled by each ray coming from NLoS path passing from
the transmitter to the receiver through the PoR is estimated as follows:

Tx—PoR—Rx o

oR\2 i oR)?2 oR)?
\/(x“ — a7+ (YT =yt 4 (2T = 2P0 (4.13)

V(e — aPoR? 4 (yhe — yPoR)? (e — opoRy

4.4.3 Estimation of the Reflection Coefficient

The reflection coeflicient that corresponds to the absorption loss induced by the
reflection of the obstacle can be determined for each NLoS path. It is calculated
using the RSS value as follows:

T, = PLi—

4 4.14
(P — 20 x log,o (@) — 20 x log,, <fo> + 4.3) (4.1
C

4.5 Obstacle Detection for double-bounce sce-
nario

4.5.1 Estimation of the VAN and VRx Positions

As shown in Fig. 4.3, the double bounce scenario is observed as two stages of single
bounce scenario. Here, two points of reflection are to be considered. Moreover,
we introduce the virtual receiver (VRx) defined by mirroring Rx on each obstacle.
In practice, VRx position is unknown and has to be estimated. It is very useful
in this scenario in order to estimate the two points of reflection, as it will be
detailed later. Similar to the single bounce scenario, the distance traveled by

91



each ray is estimated using either the ToA or RSS measurements. Assuming the
ray with the strongest RSS value and minimum ToA to be the LoS path, the
receiver position is estimated using equation (4.4). As the Angle of Departure
(AoD) of each ray is in general known through channel estimation, then VRx
position is estimated as follows:

x) B = 2T% 4 p;sin (gbf"D ) cos (HAOD )

K3 7

yi =yt pisin (¢f°") sin (6,7) (4.15)

(3
2R = 2T 4 pycos (¢70F)

where p¥ " = (xVR"’, yV i ZVR“’), and (bf”D and 9{‘0’3 are the elevation and the
azimuth of the AoD for the ith ray sent by transmitter.

It is worth mentioning that, in the case of double bounce scenario, the positions of
the VANs can be easily estimated through equation (4.8). Similar to the single-
bounce scenario, the set of VANs induced by obstacle reflection is determined
using equation (4.15). Double-bounce scenario is observed as two steps of single
bounce scenario where the first PoR is the VRx that is estimated as PoR, is
estimated in a single bounce scenario. After estimating the VRx, the second step
of single-bounce is between the VRx and the transmitter in order to estimate the
second PoR PoR? shown in Figure 4.3.

4.5.2 Estimation of the Reflection Points

The estimation of the reflection point could be done in different ways, depending
on the available measurements. It is mainly based on the geometry of reflected
rays, obstacle orientation and the positions of VANs and Rx. In the sequel, we
assume that the angle of departure (AoD) for each ray is known 3. First, the
midpoint between the receiver and VRx is calculated as follows:

MVin . pr + VRXZ'

pRz = 5 (4.16)
VRx: MVin VRx; VRx;
where Mpr = <m pfie g pRe oy phe > Then, the normal to the second

PoR PoR? corresponding to VRx VRX; is calculated as follows:

n/°f = pf" _ VRx; (4.17)

K3

where n’o% = (anoRg,ynf R onl "Rz). Then, the vector crossing the PoR
7

PoR? from the transmitter to the VRx is represented as follows:
i p

w; = VRx; — p'* (4.18)

3this assumption is considered here for the ease of derivations. if this information is not
available the estimation can still be done at the expense of additional calculation complexity
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where w; = (2, y¥, 2"). Then, we solve for the points of intersection between

VRxs and the transmitter to estimate the PoRs as follows:
PoR} = p'"+

T
(inv(diag (nf)"R"‘.wi)) X ((MZIQ"" — pTx> X nfORQ)T) W

Then, the distance traveled by each ray coming from NLoS path passing from the
transmitter to the receiver through the PoR is estimated using equation (4.13).
The reflection coefficient is then estimated using equation (4.14).

(4.19)

4.5.3 Correction of the Estimated Positions of PoR

After estimating the PoR, the target is to estimate the AoD and AoA so that
we compare with exact results. The estimated elevation angle of AoD, ¢°7 is
estimated as follows:

2 AoD Ly (B AT
(bz- oL _ — Sin (ZdTJ—P()Rﬁ> (420)

where

dZT:L‘—PoRl _ \/(Q?Tz _ leoRl)Q + (yTz . yZ'PORI)Q 4 (ZTI . ziPoRl)Q

is the distance between the estimated first PoR PoR/ and the transmitter ple.
On the other hand, the estimated elevation angle of AoA, ¢#°4, is estimated as

follows:
7 AoA 1 Zz'PORz — 2R
@i = — Ssin W (421)

1

where
2 2 2. .
die—rols — \/ (xfe — pPoM2)" 4 (yRe — yPo2)" 4 (pRe — 2 PoR2)" s the distance

i

between the estimated second PoR PoR), and the receiver p/. Similarly, the
estimated azimuthal angles of AoA and AoD are estimated as follows respectively:

PoRy Tx

Ao — yz - y

00 = cos™! <W> (4.22)
PoR> Rx

NAo — yi - y

fAoA — o1 (W) (4.23)

Then, we calculate the error between the real and estimated values of azimuthal
AoD, elevation AoD, azimuthal AoA and elevation AoA, respectively, as follows:

HAD — 150 (é;éloD _ 9;40D)
VoD — wapi (360 - g1oP — gor)
404 — wapi (360 — G — gt
VA — wpi (360 — o0 — o)

1

(4.24)
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where w2pi is a wrapping function to 180°. Then, the estimated first PoR PoR
is corrected by rotation as follows:

PoRy 2 PoR2 i PoR2
> Vi
ifan ==, PoRy + ZLF oRy z, PoRy « cose,fiAOD _ (yipoRl —y, PoRy  sin ElﬂAnD> % coseyA"D

PoR PoR PoR
_PoRy o P;)Rl2 PoR; Mpor; . HAoD PoRy ]ngRlz HAoD VAoD
J; = |y, + | = -z X sine€; + | v; -y, X cose;"” X cose; ”

1 1

SPoRy PoR)
Zi = Zi X cos €

VAoD
i

(4.25)
PoRgy PoRy rPoRy
PoRj Mpor Mp,r Mp,g . : : i
where M, .} = (xl Ty, 7,z ) is the midpoint between PoRj and
1

PoR),. Similarly, the estimated second PoR PoRY is corrected by rotation as
follows:

v PoR2 aPoR2 pPoR2

_PoR: MpPor PoR: Mpor PoR: "PoRr . v

ghof2 _ (4, Pof gPoRa _  TPORL ) cog liA0A (yz oRy PRy ) sme;HAoA) X cos ey 40D
mPbola mboltz ! "RJ'Z

_PoR. PoR PoR PoR . Ao PoR PoR Ao v

yi 2 = yi 1 + (El 2 _ Ii 1 X sin E,{{ AoA + yl, 2 _ yi 1 X cos E,LI_I AoA X cos EL AoD

VAoD

sPoRy
i i

= zf"“l X cos e

(4.26)
It is worth mentioning that the reflection coefficient equivalent to the absorption
loss can be estimated in the same way as in the single bounce scenario. However,

it will correspond to the absorption due to two reflections.

4.6 Simulation Results

4.6.1 Simulation Environment

We define the position, orientation and antenna characteristics of the transmitter
and the receiver placed in a 3D environment with reflecting and blocking obsta-
cles. Scattering, diffraction and vertical propagation are neglected at mmWave.
We use image-based ray-tracing method to trace the paths between transmitter
and receiver surrounded by obstacles in a 3D environment. The carrier frequency
used in f, = 60GH z with a bandwidth of BW = 250M Hz. The scenario under
test consists of N transmitters and a receiver. The LoS path does not always
exist. Additionally, each path is characterized by a complex amplitude gain and a
delay based on environmental properties. The complex amplitude gain of a path
is obtained from the transmitter and receiver antenna gain, reflection coefficient
and the path attenuation. Antenna gain is related to the radiation patterns. We
assume constant complex permittivity for each object.

Reflections are then computed using Fresnels equations as a function of this
permittivity and angle-of-incidence. The reflection coefficient is the product of
the phase shifts and attenuations. Moreover, path attenuation is modeled by the
free-space path loss (FSPL) that defines the gain of the received signal based
on the propagating distance d and wavelength A\. The phase shift is represented
as a rotation by d/A in the complex plane. The antennas are assumed to have
radiation pattern with 60° half power beam width (HPBW). In this chapter,
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Figure 4.4: Vehicular Outdoor Environment, with PoR. The right top corner
shows the PoRs without the environment

Figure 4.5: Another Vehicular Outdoor Environment showing estimated PoR
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we consider two particular environments: an outdoor vehicular environment and
indoor environment. Each of these environments has been recently of great re-
search interest. Indeed, the framework of 3DLOCMAP can be directly applied
in autonomous vehicles to sense and map the obstacles around and in vehicular
networks for multiple purposes (detect human crossing the road, sensing the en-
vironment, traffic measurement, etc). 3DLOCMAP can be also used for robotics
in indoor environment to map objects. In both applications, 3SDLOCMAP acts
as a radar-like system. All the simulations have been ran using the commercial
S_5G Channel Simulator© developed by Siradel.

4.6.2 Outdoor Vehicular Environment

The outdoor vehicular environment shown in Fig. 4.4 consists of a single AN and
multiple Rx each considered as a single receiver. Only single and double bounce
reflections are considered. As shown in the right top corner of Fig. 4.4, we are able
to estimate the different PoRs including two PoRs for the ray induced by double
bounce reflection and two PoRs for the ray induced by single bounce reflection.
The result shows accurate detections of PoRs. Similarly, the results in Fig. 4.5
show the estimation of the PoR for another vehicular outdoor environment. In
case of single bounce, the PoR is shown to be estimated accurately. On the other
hand, the two PoRs for the double bounce case are estimated with small error.
Nevertheless, the achieved information is that the received ray in this case is
induced by double reflections. The estimation error is shown in Fig. 4.6 in terms
root mean square error (RMSE) of estimating the PoR (given in terms of its
coordinates), distance between the AN and the estimated PoR, and the distance
between the AN and the estimated receiver passing through the estimated PoR.
The error is shown to increase with the increase of the noise ¢9,, in AoA mea-
surements. Moreover, the distance between the AN and PoR is estimated with
higher error due to the estimation error of the PoR which is due to the error in
the AoA. However, the distance traveled by the transmitted ray from the AN to
the Rx passing through the PoR is shown to be estimated with higher accuracy
since it is based on the ToA measurements and not related to the exact position
of the PoR.

4.6.3 Indoor Environment

3DLOCMAP was also implemented in indoor environment. As shown in Fig. 4.7,
the power scale shows the variation of transmitted rays in terms of RSS. The
transmitted rays are first filtered based on RSS threshold value ypr determined
by equation (4.2), in which PFA=0.05. Hence, the rays with RSS higher than
~vpr, shown in right top corner in Fig. 4.7, are used for estimating the Rx and
PoR. Similarly, the estimation error shown in Fig. 4.8 shows higher accuracy in
terms of distance traveled from AN to Rx passing through the PoR compared
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Figure 4.6: RMSE measurements for the PoR, Distance AN-PoR-Rx, Distance
AN-PoR, Outdoor Vehicular Environment

Figure 4.7: Indoor Environment
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to the estimation of the distance between the AN to PoR that is estimated with
additional errors. Nevertheless, indoor environment shows a higher accuracy of
estimation compared to outdoor vehicular environment.

—&—PoR
10 {—9— Distance AN-PoR-Rx
—O— Distance AN-PoR

10 20
AoA error STD ¢°

Figure 4.8: RMSE measurements for the PoR, Distance AN-PoR-Rx, Distance
AN-PoR, Indoor Environment

4.7 Conclusion

We presented in this chapter 3DLOCMAP and its potential application in ve-
hicular and indoor environments. We proposed a general framework to estimate
the Rx position and estimate the environment through obstacle mapping. The
concept of VANs has been introduced from literature to propose a first estima-
tion of the points of reflection. Our work introduced then the concept of virtual
receiver highly important in the case of double bounce reflection. The results of
this chapter were provided in real scenarios using the commercial 5G Channel
Simulator® developed by Siradel. The simulation results have perfectly shown
that 3DLOCMAP can perfectly estimate the environment as long as the error in
the AoA estimation is less than 5°. Definitely, much work could be achieved in
the future. Among others, the localization, detection and classification (object,
human, etc) of moving objects will be of order in the future research directions
[222].
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Chapter 5

Localization and Mapping in
Mobile Environment

5.1 Introduction

Recently, new approaches have been considered in SLAM using mmWave frequen-
cies due to their unique channel characteristics. Actually, it was shown that the
channel at mmWave behaves as quasi-optical channel. The Line of Sight (LoS)
ray is the dominant, while in None Line of Sight (NLoS), most of the power is
carried by a single bounce. Furthermore, the reflections don’t generate significant
amount of scattering [223] and consequently Snell’s law applies.

In this chapter, we consider localization and mapping in mobile environment. In
this regard, tracking filters are used in order to achieve high localization and map-
ping accuracy. In literature, different tracking filters have been proposed and ap-
plied to handle the mobility of the mobile terminals. Kalman Filter (KF) [224] is
an adaptive recursive solution for the estimation of linear Gaussian process based
on Least Square Error (LSE). Nevertheless, non-linear processes are not handled
with the standard KF solutions. Extended Kalman Filter (EKF), Second-order
extended Kalman Filter (SEKF) [225], and Unscented Kalman Filter (UKF) are
examples from the family of Kalman filters. EKF is the first extension of the KF;
it performs a first order linearization of the nonlinear system and then applies
the conventional KF estimation. SEKF preserves the second-order terms via the
Taylor series development of the transition and measurement equations. UKF
is based on selecting a set of sigma points and performing unscented transform.
The conditional mean and variance are computed by UKF with third order of
accuracy for Gaussian noise. Recently, cubature Kalman filter (CKF) [226] was
introduced based on the utilization of a spherical radial cubature rule for estima-
tion of the Gaussian filter. The Monte Carlo based filtering, called also particle
filters, handles complex nonlinear systems [227]. Particle filters utilize a large
number of independent random variables defined as particles in order to update
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the posterior probability. The location, weights, and propagation of the particles
are adjusted according to the Bayesian rule. Recently, nonlinear filters based on
probability density function (PDF) have gained some attention since PDF cap-
tures all the statistical characteristics of a random variable. Mainly, two kinds
of criteria are generally used in PDF filtering: PDF shaping and entropy mini-
mization. PDF shaping is based on picking filtering parameters so that the PDF
of the residual follows a narrow distributed zero mean Gaussian PDF [228]. On
the other hand, entropy minimization techniques aim at minimizing the entropy
of the filtering residual [229]-[231].

In this chapter, EKF and UKF based PDF are adopted by deriving the appropri-
ate analytical framework of the CoRP model within a mobile context. It has been
shown that our approach can reach centimeter accuracy in terms of environment
mapping.

For clarification, the following notations will be used throughout this chapter:
p stands for positions, for example, pT, pR, pV and pM are respectively the
positions of transmitter, receiver, Virtual Anchor Node (VAN) and midpoint be-
tween VAN and transmitter. The index k& stands for time, and ¢ stands for the
it" received ray.

The chapter is organized as follows. In Section 2, the framework is briefly re-
described and we summarize the derivations for the geometric approach proposed
in Chapter 3. The model is then extended in Section 3 to include ToA and AoA
biased measurements. In Section 5, EKF is detailed and neural network is in-
troduced in Section 6 using UKF based PDF filter. Finally, Section 6 provides
simulation results and conclusion is drawn in Section 7.

5.2 Enhancing the Geometric SLAM Approach
using EKF

As stated in Chapter 3, the steps considered in the geometric SLAM approach
are summarized as follows:

e Localization of the receiver position at every time k
e Estimation of the VANs
e Estimation of the PoR for every RRC i

A mobile environment is considered in this chapter. Hence, we introduce in this
section the use of EKF to enhance the accuracy of estimating the PoRs.

5.2.1 Localization of the Receiver

As stated earlier, localization of the receiver is based on simple steps derived from
the relation between the geometric environment and the channel measurements.
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Consider that the first received path corresponds to a LoS, the position of the
receiver can be written as follows :

PR =pT + po

cos(bp)
sin(6o) ] (5-1)

where pT = (2T, yT), pR = (2R, yR), 0y is the angle of arrival corresponding to
LoS path and py is the distance traveled between Tx and Rx. This latter could
be easily estimated using ToA metric as follows:

pi = c-T; (5.2)

where ¢=3-10%m/s is the speed of light, and 7j is the ToA for i ray, where i = 0
corresponds to the LoS.

5.2.2 Estimation of the VANSs positions

The VANs are the mirrors of real anchors (transmitter) with respect to obstacles,
such as room boundaries. Using Fig. 5.1, the estimation of the VAN position is
given by:

yVi = yR + p;.sin(6;)
or equivalently,

cos(6;) ] (5.4)

where pV; = (2V;,yV;) is the VAN corresponding to the i NLoS ray and p; is
the distance between Tx and Rx for NLoS.

Figure 5.1: Virtual Anchor Node as a mirror to Tx
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5.2.3 Obstacle Mapping through the CoRP

Once the VANs positions are estimated, the problem turns out then to find the
PoRs on the environment boundaries (and maybe the obstacles in the environ-
ment). As estimated in Chapter 3 section 3.4.2, the PoRs are simply points of
intersection between the perpendicular bisector of the line connecting the trans-
mitter and each estimated VAN and, the line connecting the VANs and the
receiver at each time k.

Fig. 5.2 shows the calculated PoRs positions, pS;, in ideal channel measurements
(i.e. without any bias). It can be clearly seen that the proposed algorithm is able
to exactly retrieve these positions.

Figure 5.2: Exact positions of PoRs

5.2.4 Points of Reflection in Presence of Metric Estima-
tion Bias

Starting with equation (3.44), the estimated pS, in the presence of measurement
noise (e.g. AoA error), can be written as follows:

I/)éi, = pS, + ApS, (5~5)
where

ApS, = ApR +inv (diag (Ili . Wz)) :

((_ (M) -n; — ApV; - Qi) w; + (q; - 1) AWz') (5.6)

where q;, the vector passing through pR and the midpoint between pT and pV;
n;, the normal to the point of reflection S;; w;, the vector crossing the point of
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reflection pS; to the virtual receiver defined as the mirroring point of the receiver
with respect to the obstacle, are defined as follows:

T +xV;
| =5 R
q; [ e A } (5.7)
n; = pT - pV, (5.8)
w; =pV, —pR (5.9)

The errors of estimation ApR, ApV, and Aw; for estimating pR, pV,; and w;
are calculated based on the error on either the AoA measurements or TDoA
measurements.

5.2.4.1 PoR Estimation in Presence of AoA Bias

Assuming a biased estimation of the AoA, the error ApR of estimating the
receiver is given as follows :

APRZEG‘PO{

—sinbo } (5.10)

cos b,

where ¢y is the AoA error in radians. Hence, ApR imposes an error ApV,, the
error of estimating the VAN pV, as:
- — sin 6y —sin 6;
Asz = Cg (/)0 |: cos 00 :| + pi |: cos ei :|> (5].].)

Moreover, the error in AoA measurements impose an error of Aw, for estimating
w; calculated as:

—sin 91'
AWZ' = €9 * Pi |: cos 02 :| (512)
Thus, the PoRs are estimated with error as shown in Figure 5.3:
5.2.4.2 PoR Estimation in Presence of TDoA Error
On the other hand, assuming error in TDoA, ApR is given by:
. sin 90
ApR =c- ¢ [ cos 0y ] (5.13)

where c is the speed of light, ¢; is the TDoA error in radians. Similarly, ApR
imposes an error ApV, that is:

_ sin 0y sin 6;
sovimena ([ 30 ] [ )) -

Finally, the error in TDoA measurements impose an error of Aw; for estimating
w, calculated as:

(5.15)

awi= e | g

Hence, the PoRs are estimated with error as shown in Figure 5.4:
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Figure 5.3: Estimated positions of PoR with AoA bias at ¢ = 5°

Estimated PoR

Figure 5.4: Estimated positions of PoR with ToA bias at ¢ = 1 ns
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5.2.5 Extended Kalman Filter in Tracking the PoRs

Accurate mapping is quite a challenging task in biased measurements. As seen
in Fig. 5.6 and 5.11, a biased ToA or AoA leads to high error in the environment
mapping. Hence, it is very important to improve the estimation accuracy from
one side and adapt the mapping to mobile conditions.

To solve this problem and extend our work to a SLAM approach, the EKF has
been developed. Indeed, EKF can efficiently work in non-linear systems, it has
very low memory requirement and computation complexity compared to other
Bayesian positioning and tracking algorithms such as Particle Filter (PF).

In order to perform the EKF filter, it is very important to derive both the hidden
and observational processes due to bias. The main challenge therein is to have a
model of the PoR pS, with respect to the mobile receiver position. The processes
of the EKF filter are described as:

PR, = f(PRy_1) + Qi

5.16
pPS;, = h(pRy) + Ry ( )

where f and h are the hidden and the observational processes of PoR respectively,
and they are defined as follows:

TR

F=1yr

(5.17)
R

h= yRR

1
+ d(pSz-pR) tand;

Q and R represent the covariance matrices of the two processes.

Proof of equation (5.17)

The problem turns out in finding a relation between pS,; and pR.
Starting with equations equation (5.1), we can write:

{ 2S;i = rR + dps, pr) (5.18)

yS; = yR + dps, pr)-tant;
where the difference between pS, and pR is given by :

(P = pd)
pocosty + p;cosh;) + tanb;(posinby + p;sinb;.)

d(pSz,pR) = 2( (5'19)

Hence, the estimated position of the receiver is given by:

PR = pR + d,p (5.20)
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For ToA

where d,p = ceo. [ E?;EZ?}; ] is the error of estimating pR.

For AoA
—sin(fo)
cos(bp)

By substituting equation (5.20) in equation (5.18), the estimated positions of pS,
in terms of pR. yields:

where d,r = pofto- is the error of estimating pR.

- 1
PS; = PR + d(ps, pR)- [ Lan); ] S

Cas ] (5.21)

eyS

or equivalently:

1

vang; | 98 (5.22)

pPS; = PR + dps, pr) [

is the error for estimating pS,;.

where dS; = pu. [ Cas
eyg

5.3 Improvement by Neural Network: UKF fil-
ter with MEC

EKF was not sufficient to enhance the results for highly non-linear systems. For
that was the Unscented Kalman Filter (UKF), it takes a bunch of points called
sigma points and approximate it with a fact that more the number of points,
more precise our approximation will be. The conditional mean and variance are
computed by UKF with third order of accuracy of Gaussian noises and at least
second order for non-Gaussian.

On the other hand, Monte Carlo based filtering (also called particle filters), han-
dles complex nonlinear systems. It is based on using huge number of independent
random variables, that are the particles, to represent and update posterior prob-
ability by adjusting there location, weight and propagation according to Bayesian
rule. Unfortunately, there are no basic rules to know how to design a proposal
distribution. In addition to that, a large number of particles is required to achieve
satisfying results, which also means highly complex computations.

A sampling method, known by Unscented transformation (UT) method, is used
by UKF to define the considered wighted sigma points because when a Gaussian
is passed through a non linear function, it does not remains a Gaussian anymore
but we will use UT to approximate the Gaussian from the resulting figure . Steps
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of UT transformation method are summarized as follows :

1. Compute Set of Sigma Points

2. Assign Weights to each sigma point

3. Transform the points through non linear function

4. Compute Gaussian from weighted and transformed points
5. Compute Mean and Variance of the new Gaussian.

Recently, nonlinear filters based on probability density functions (PDF) attracted
the attention of researches since they capture all statistical characteristics of a
random variable. PDF shaping and entropy minimization are two kinds of criteria
that can be used in PDF filtering. PDF shaping depend on selecting filtering
parameters so that the PDF of the residual follows a narrow distributed zero
mean Gaussian PDF. Whereas, entropy minimization minimizes the entropy of
the filtering residual (Figure 5.5). Despite its advantage, PDF filter can only
guarantee local optimum. Convergence of global optimum can be guaranteed
by combining both UKF and PDF filtering, as we will discuss later.  Despite

I 1
1 ~ 1
: Xp-1]k-1 State Transition function X1k M\ x’,:lk :
! _ (x) U !
1 Learning Phase + !
| Predicted Measurement ;| state Observation function |
: h(x) :
P e e e e e e e e e e e e e e e e e e -

UKF Innovation (error) Okukf

Processing Phase RBF Network 18 5q
Parameters updated using
Current Measurement Yk minimum entropy criterion PDF Innovation (error)

Figure 5.5: schematic of UKF based PDF filter

its good performance under Gaussian noises, UKF fail to perform under non-
Gaussian noises. It is already known that UKF ensures a third order accuracy,
but to improve its performance, an additional term should be added based on the
higher order moment of approximation error. At the same time, highly complex
computations are required for particle filters (PF) [29] to deal with non-Gaussian
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non-linear systems. PF use a large number of independent particle variables to
update the posterior probability.

The aim of our work is to reduce the shortcoming of the UKF and PDF getting
an optimal estimation based on minimum entropy criterion. For that a UKF
based on PDF filter is proposed to ensure convergence to global optimum. This
combination is divided into two parts : prediction of error in UKF represented
by v**f and output of an RBF-network whose weights are tuned by the entropy
of innovation itself represented by v?¥.

5.3.1 Basic Concepts

We consider the PDF of random vector x in Lebesgue measure is represented
by p(x). ) represents the true state in time step k; while @, (or z4;) and @) (k—1)
stands for filtered and predicted state of xy.

5.3.1.1 Probability Density Function

Probability density can be estimated by several methods. Kernel density estima-
tion (KDE) , also known by Parzen window method, is one of these estimation
methods that we will use because of its relationship with Renyi’s entropy [26].
The estimation of probability density function from samples using KDE is ex-
pressed as follows:

f(@) = 5 22 Golw =) (5.23)

where G, is the kernel function with bandwidth o and (1, ..., zx) are the samples.
The kernel should be non-negative real valued integrable function preserving the
following conditions:

o f:;c Gy(x)de =1
o G,(—x) =G,(x), Ve

Output of KDE is guaranteed as a probability density function by the first condi-
tion; whereas stability of the expectation of process is guaranteed by the second
condition. Different kernel functions can be used; as uniform, triangular, Gaus-
sian.. This latest, which is Gaussian kernel, is most commonly used and expressed
as follows:

exp(—5 ) (5.24)



Concerning the KDE, the bandwidth is more important than the kernel function.
The mean and variance of the estimated PDF are expressed as follows:

Bias|p(x)| = E|p(x)] — p(x) =~ ,/g—
| [ )1 [p( A)] p(2 ) fp w0 5.25)
Varlp(z)] = El(p(z) — Blp(x)})] ~ —Cap(2)

where p” is the second order derivative of PDF, and C1 and C2 are constants
related to specific kernel. According to these equations, an equalization between
low bias and low variance is the best choice of the bandwidth since it influence
them in opposite manners[27]. Mean integrated square error (MISE) is widely
used to select the appropriate bandwidth. Its equation is given by:

MISE(o) = argn%jinE/ (Po(x) — p())dx (5.26)

Bandwidth for Gaussian Kernel is simply selected as follows: ¢ = 0.26 or ¢ =
G(AN-1(2d 4 1))

where o is the data standard deviation, N is the number of samples, and d is the
dimensionality of the data [28].

5.3.1.2 Renyi’s Entropy and Minimum Entropy Criterion

By theory, entropy is the measure of uncertainty relative to random variables.
Shannon entropy, Hartley entropy, Min-entropy and Renyi’s entropy are defini-
tions of entropy introduced for various purposes. Usually, Renyi’s entropy is used
to quantify randomness of random variable, and its defined as follows:

H, = - ! log/pa(x)dx, (5.27)

—

where order a > 0 and « # 1. The most common used type of Renyi’s entropy
the quadratic, where o = 2. It is given by:

Hy, = —10g/p2(x)dx, (5.28)
Using KDE, probability density of x is estimated as given below:
LN
p(r) =+ Z; Os(z — ;) (5.29)
where Gy, is the Gaussian function defined by the following equation:
n 1 1
Ge(x —zy) = (QW)_f(detZ)_ie:cp{—i(x — )" Yz — )} (5.30)
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Hence, Renyi’s quadratic entropy is figured using KDE as shown below:

Hy = —log/ (% ZGg(m — z;)))%da

N

_ _1og$ / (ZZGE(:E — ;)G (v —x;))dx

i=1 j=1

= —log %Z Z / Gy(r — 2)Gx(x — z;)dx

i=1 j=1

1 N N
= —log WZZ/G‘@E(TZ - TJ)

i=1 j=1

(5.31)

where the last equality is based on the fact that the convolution of two Gaussian
functions is also Gaussian [27].

For accuracy of estimation, the main criteria to figure the deviation between the
estimation and the true value is the mean square error (MSE). Although that,
it only looks after the second moment of the error. Using MSE in non-Gaussian
environments cannot give the optimal solution needed. To solve this issue, it is
proposed to use minimum error entropy (MEE) where it measures the dispersion
of a random variable.This latest should give the sharpest error PDF since peaky
error PDF are given by low entropy, however spread error PDF results from
higher entropy (such as MSE).

Information potential, defined as the argument of the logarithmic in quadratic
Renyi’s entropy is given below:

1 N N
(z) = ZZGE(%: - ;) (5.32)

Note thaty/2 is omitted for simplicity. Hence, to minimize the entropy we should
maximize the information potential since the logarithmic function is a monotonic
increasing function.

5.3.2 UKF based PDF Filter with MEC
5.3.2.1 System Model

Consider the following non-linear system:

= f(zr—1) + @

o hle) 1o (5.33)
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where x represents the state vector, y, the measurement, ¢,_; and r; are respec-
tively the process noise and measurement noise.
Difference terms in UKF, describing errors, are expressed as follows:

® ¢, = X — Tyk—1 known as prior error
® ¢, = T — Ty, known as posterior error

® U, = Y, — Y known as innovation which describes the discrepancy between
the measurement and the predicted measurement.

The UKF gain is considered in a way that posterior error covariance is minimized.
Innovation term vy, is not expected to be Gaussian in non-linear and non-Gaussian
systems. This work suggest adding neural network v”¥ term to the innovation
knowing that the weight matrix of this term is adjusted by minimizing entropy
criterion, which lead to minimization in randomness and entropy of innovation.
Only innovation term is changed in this algorithm, and PDF part is added.
Tuning RBF weight was expected to be with MSE; however, MSE provide same
accuracy as UKF (no better results) because it is a second order algorithm.The
minimum entropy criterion (MEC) was replaced to deal with nonlinear stochastic
systems.

The equation below represents the innovation term with added PDF term:

k d
UV = /UZ f —+ UZ if

= yp — g +0p?
Assuming that the input to the network is the UKF innovation as follows:
L = v (5.35)
The neural network is then defined as follows:
" = WIe(l,) where Wy € RP*™ (5.36)

which represent weight matrix of the RBF-network.

5.3.2.2 RBF and Weights

In order to achieve unbiased estimation, the additional term vidf should have
zero mean. However,unlike MSE, MCE doesn’t ensure to have an expectation of
vzdf equals to zero in terms of estimation error. For that, new constraints should

be introduced to have expectations of def equals to zero.
Let’s consider the RBF network y = W1 ®(z)R* — R™ defined as follows:

W = [wy,wy, . .., wapy]" (5.37)
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(D(‘T) = [(1017 P25+ I)OQp]T (538)
— 12
pi(z) = exp(——”x 5 cil ),i=1,2,...,2p (5.39)
Orpf

If ¢; and w; are symmetrically distributed, we can say :

[ —Cgp_i -+ 1 (5 40)
w; = —wgp—; + 1 '

Then for any stochastic input with symmetric PDF distribution, RBF network
will have a zero-mean distribution as shown below:

Ely] = E[WTtIJ(x)] = E[Z w;p;()] (5.41)

Substituting equation (5.38) and equation (5.39) in equation (5.41), the following
mean is obtained:

Bly) = > wiBlei(x) = ey (@) (542

Assume that p(x) is the PDF of x, the mean of the PDF term will be equal to
zero as shown below where 9, ;11(z) and p(z) are odd and even functions of x
respectively.

Elpi(x) — papin(@)] = /‘p@) (0u(2) — @apisa ()] = 0
2p (5.43)
Ely] = ZwiE[%(x) - 902p—i+1(50)] =0

In conclusion, if we have symmetrically distributed condition for the RBF net-
work, the term vidf achieves a zero mean since the input to the network is sigma-
point innovation with a symmetric PDF.

5.3.2.3 Pseudo Innovation

As mentioned previously, the innovation term changed to the following form:
v = v L We(1L) (5.44)

where Wy, is the weight vector, that would be different for every k. However, to
obtain PDF estimation a series of measurements has to be taken. Hence, to solve
this problem, pseudo innovation is introduced instead of real innovation.

At time step k, the pseudo innovation is expressed as follows based on equation
(5.34)

PIF = v + W —WIo(L) = o + WEo() for k—N+1<i<k (545)
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where N is the number of samples used in the estimation of PDF. Thus, we
obtain the pseudo innovation term sf’ that represents the former error time step
k. Since they share the same linearly dependent term W},and due to its simple
use in the estimation of PDF and the adaptive tuning process; s* is introduced.

i

5.3.3 Entropy Based Non-Linear Filtering

To reduce the uncertainty from the innovation term, minimum entropy criterion
is used. Ideally, PDF of the innovation has to be Gaussian with unbounded
innovation or uniform with bounded term. Because of the contaminated mea-
surements,these results are practically not achieved. To solve this problem, min-
imization of error entropy (MEE) should be solved as follows given a sequence of
pseudo innovation data 3? ans input Ig:

min f/(PI) st s= v L WT(T) (5.46)
H(.) is the Renyi’s quadratic entropy and W is the weight of the neural net-

work. As done previously, we replace the minimization of the entropy with the
maximization of the information potential, which gives:

mwi/n H(PI)= mvgxw(PI) (5.47)
The locally optimal weight is obtained by the following equation:
oPp(PI)
———==0 5.48
oI (5.48)

Actually, optimal solution is obtained iteratively for on-line processing; so the
adaptive law is written as shown below by using gradient descent method:

Wi = Wi + - Vwp(PIF) (5.49)

The potential information of the pseudo innovation at time step k is the calculated
by the following equation:

k k
1
Y(PI*) = 2 > Y Gu(prf-PIb (5.50)
i=k—N—+1 j=k—N+1
For simplicity, we represent ®(1j) by ®(k). Then the gradient of the information
potential is expressed as follows:
k

o1 &
WO(PTF) = 2 (= E E pPIk — prk
VP 8W(N2 i=k—N—+1 j=k—N+1 G i)

", 0Gx(PIF - PIF)9(PIF - PIF)

1
_ 1 : 5.51
NZ i,j:;NH ()(P[ﬁ o P]J]'C) ow | )
k
1 _ . .
=m0 D Gu(PIf - PIN@(G) - ()(PIf — PI})T
i,j=k—N+1
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5.3.4 Algorithm Summary

The algorithm can be summarized as follows:
e Select parameters for the UKF

e Choose the kernel bandwidth € (a diagonal matrix normally) and other
parameters of the RBF network, the initial value of which is set to W1 =0

e Use UKF method to obtain x}:k‘f and equation (5.36) to obtain vy
e Modify the state estimation by ), = z}™ + KW ®(k)
e Record Wy, ®(k) and vy, at each time step k.

e Construct the pseudo innovation PIF = v;‘kf + WL®(i) using the recorded
information.

e Update W using equation (5.41) and equation (5.43) by the properly chosen
1

t+1 — ¢ and go back to equation (5.25)

5.4 Simulation Results

We consider in this work a 2D indoor environment consisting of a room of known
geometry (10x10), bounded by 4 walls and having one transmitter placed at pT.
A mmWave ray-tracing tool has been used and corresponding channel measure-
ments were recorded at each position pRj. The simulation results are given in
terms of the Mean Square Error (MSE) and provided first with and without EKF
filtering, then work is extended to UKF based PDF filtering.

5.4.1 EKF-SLAM Results

In this section, we aim at evaluating the importance of the EKF in mapping. We
do so by evaluating the estimated PoRs. For simplicity purposes, the scenario
shown in Fig. 5.7 is adopted. In this figure, the estimated PoR before and after
EKF are shown. Moreover, Fig. 5.8 shows the RMSE for estimating the CoRP
with and without EKF adopted in the previous sections for different values of
the TDoA and AoA estimation bias.

All results are recorded in terms of the ToA standard deviation o = [0.5, 2, 4, 8|ns
and averaged over 500 positions.
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Figure 5.6: The cloud of reflection points with static transmitter and moving
receiver: without ToA bias (top) and with ToA bias (bottom)
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Figure 5.11 shows the CoRP with and without ToA bias when the receiver is
moving in the different directions of the environment. It is very clear that a
simple filtering such as K-means solution can be applied to exactly map the
environment. Fig. 5.9 gives the MSE of the results without EKF and with
EKF running over 1 iteration while Fig.5.10 is provided with 10 iterations. Both
figures show that MORSEL framework presents a good mapping accuracy. The
latter could be improved by EKF and can even reach few cm even with high
ToA bias. It is worth mentioning that due to the large bandwidth available at
mmWave, the paths resolvability is very high which means a reduced error in ToA
measurements. All results are recorded in terms of the AoA standard deviation

—&— MSE without EKF

—&—MSE with EKF

55 (NS) %1072
Figure 5.9: MSE (m?) vs o of ToA (ns), EKF with 1 iteration
o = [1,5,15,25]degree and averaged over 100 positions.
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Figure 5.10: MSE (m?) vs o of ToA (ns), EKF with 10 iterations

Figure 5.11 shows the CoRP with and without AoA bias when the receiver is
moving in the different directions of the environment. It is very clear that a simple
filtering such as K-means solution can be applied to exactly map the environment.
Fig. 5.12 gives the MSE of the results without EKF and with EKF running over 1
iteration while Fig.5.13 is provided with 5 iterations. Both figures show that this
framework presents a good mapping accuracy. The latter could be improved by
EKF and can even reach few cm even with high AoA bias. It is worth mentioning
that due to the large bandwidth available at mmWave, the paths resolvability is
very high which means a reduced error in AoA measurements.

5.4.2 UKF based PDF Results

First, we must choose the parameters of the PDF filter: We take the step size =
0.2, the number of iterations= 100, Kernel bandwidth = 0.02, and the number of
the RBF =20, for 400 sample we obtain these results. Since both the process noise
and the measurement noise are not Gaussian,the UKF cannot lead to satisfactory
performance. PDF lter starts from 400th sample point, the time before which is
used to gather data and wait for the UKF to settle down. It takes about 150
points for the PDF lter to reach its optimum, which means that Renyis entropy
of the innovation is minimized. The output error term is shown in Fig.5.14. The
non-Gaussianity of process and measurement noises leads to an unsatisfactory
performance of the UKF.However,by introducing PDF lter, the innovation term is
greatly decreased after time step 150. Fig. 5.15 depicts the PDF of the innovation
term with UKF only and with proposed UKF based PDF filter. It can be seen
that under the PDF lter,the probability density of the innovation is shaped into
a Gaussian like one. Moreover, UKF based PDF filter enhances the accuracy of
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estimating the PoRs in comparison to EKF as shown in Figure 5.16.
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Figure 5.16: Estimation of PoR using EKF and UKF based PDF

5.5 Conclusion

In this chapter, we applied the proposed approaches in this dissertation for lo-
calization and mapping in mobile environment. The EKF was firstly used to
enhance the proposed geometric SLAM approach. Simulations have shown that
EKF provided accuracy enhancement in SLAM for environments with ToA and
AoA biased measurements. Then, the learning approach introduced by the con-
cept of neural network embedded within UKF based PDF filter under MEC has
also provided further accuracy enhancement over EKF as well in SLAM.
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Chapter 6

Conclusion and Future Work

We presented in this manuscript different techniques and approaches for local-
ization and environment mapping using mm Wave technologies in both 2D and 3D
environments. Despite the different challenges of localization using mmWaves,
we proposed in this manuscript a general framework to build the environment by
estimating the points of reflection on the obstacles available in the environments.
This has been achieved by subsequent steps that include localization of the re-
ceiver position, estimation of the VAN position and then the PoR. Then, using
the cloud of reflection points, an environment mapping is possible. In this doc-
ument, we have evaluated theoretically and by simulations different approaches
for localization and mapping. When necessary, CRLBs have been derived. More-
over, 3D SLAM has been implemented thanks to the support of Siradel (part of
ENGIE), a french company. The simulation results have perfectly shown that
localization and mapping can effectively build the environment as long as the
error deviation in AoA is less that 5 deg whereas in ToA it is less than 1ns.

In this thesis, we have also evaluated the efficiency of the proposed algorithms
in a mobile environment by implementing different versions of the Kalman filter.
To do so, we derived the analytical model of the PoR in a mobile environment
depending on the AoA or ToA variations and bias. While the results of the EKF
filter have shown good localization and mapping accuracy, it has been shown that
these results did not reach a centimeter accuracy: one of the possible targets that
mmWaves can offer. This is indeed due to the possible divergence of the EKF
due to large non-linearities in the mapping analytical model (it is one of the
main problems in the EKF). To reach this accuracy, we adopted an Uncented
Kalman filter with learning by using a minimum entropy criterion. Combined to
PDF model, the UKF filter was able to obtain a coarse estimation of the anlyt-
ical mode while the PDF filter makes the Renyi’s entropy of the innovation as
small as possible. Simulation results of the UKF with learning have shown that
the accuracy of the localization and mapping can reach an unprecedented value.
This will definitely open the door for different applications in both indoor and
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outdoor environments such locals for elderly people, IoT, smart cities, to cite few.

As future work, different approaches can be tackled. Some might be purely
technical while others are related to the evolution of the technology and its avail-
ability on the market. Here, we can cite few possible perspectives:

Extension of this work to a 3D mobile environment: the work in this thesis
was mostly done in 2D while some results have been extended to 3D thanks
to the channel measurements and the support of a French partner (Siradel).
Definitely, an extension to 3D will open the door for more challenges in the
reconstruction of the obstacles, in the accuracy of the mapping, and in the
mobile environment that a receiver might follow.

More learning in the processing algorithms: this is definitely interesting in
environment with some particular behaviors such as indoor locals. Applying
advanced learning algorithms will improve the mapping accuracy hence it
will open the door for more advanced applications.

Application of the scenario to a real environment that includes different
rooms, corridors, obstacles in which channel measurements are available.
Unfortunately, this was not possible in this thesis due to the limitation
in the computation resources that are related to the channel model (full
Ray-Tracing tool) and the complexity of these environments.

Implementation of these algorithms in a real hardware platform: this was
not possible during this PhD due to the cost of the equipment.

Extension of the proposed framework to other environments: Currently,
the application of mmWaves in vehicular networks has attracted a great
research interest. Hence, it would be interesting to investigate the use-cases
of environment mapping in this environment.

Development of a set of use-cases that might be of interest on the market
in the next few years
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