
AMERICAN UNIVERSITY OF BEIRUT

A NOVEL SPATIO-TEMPORALLY
ADAPTIVE PARALLEL

THREE-DIMENSIONAL DSMC SOLVER FOR
UNSTEADY RAREFIED MICRO/NANO GAS

FLOWS

by

MIRVAT OMAR SHAMSEDDINE

A dissertation
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
to the Department of Mechanical Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
December 2018

Acknowledgements

Hereby, I want to thank all those who have contributed to this dissertation
and supported me all along the way. First and foremost, I am truly indebted and
thankful to my advisor, Prof. Issam Lakkis, for his invaluable assistance, support,
and great motivation throughout my dissertation research and at all times. I am
confident this success would not have been possible without his guidance and
inspiration. Besides, I am also sincerely grateful to all committee members for
their invaluable comments, useful tips, and enlightening discussions. Last but not
least, my sincerest love and gratitude go to my beloved family and my husband,
for their understanding and endless love, through the duration of my studies.

v

An Abstract of the Dissertation
of

Mirvat Omar Shamseddine for Doctor of Philosophy
Major: Mechanical Engineering

Title: A Novel Spatio-Temporally Adaptive Parallel Three-Dimensional DSMC
Solver for Unsteady Rarefied Micro/Nano Gas Flows

An efficient parallel multi-scale direct simulation Monte Carlo algorithm to
simulate three-dimensional rarefied gas flows over complex geometries is pre-
sented. The proposed algorithm employs a novel spatio-temporal adaptivity
scheme. Based on the gradients of flow macro-properties, the spatio-temporal
adaptivity scheme computes the cell size distribution and assigns the appropriate
number of time sub-steps for each cell. The temporal adaptivity scheme pro-
vides local time step adaptation through different temporal levels employed in
different cells. Spatial representation is based on a hierarchical octree Carte-
sian grid with low memory storage requirement. The hierarchical octree grid
endows the method with straightforward and efficient data management suit-
able for particle ray tracing and dynamic grid refinement and coarsening. Solid
objects, represented by triangulated surfaces, are incorporated using a cut-cell al-
gorithm. A new parallelization scheme suitable for simulating strongly unsteady,
non-equilibrium flows is proposed. The parallelization scheme implemented for
multi-core Central Processing Units (CPUs) significantly reduces the computa-
tional cost of modeling these flows. Performance of the method is assessed by
comparing with benchmarked test cases for various rarefied gas flows.

vi

Contents

Acknowledgements v

Abstract vi

1 Introduction 1
1.1 Literature Review . 1
1.2 Motivation and Objectives . 4
1.3 Thesis Outline . 7

2 Direct Simulation Monte Carlo 8
2.1 DSMC Method Overview . 8
2.2 DSMC Methodology . 11
2.3 DSMC Initialization . 12
2.4 Particle Movement . 15
2.5 Boundary Interaction . 16
2.6 Solid Wall Boundary Conditions 16

2.6.1 Velocity Slip and Temperature Jump 17
2.7 Periodic Boundary Condition . 18
2.8 Inflow/Outflow Boundary Conditions 18

2.8.1 Pressure Boundary Conditions 19
2.8.1.1 Particle Flux Conservation Scheme 19
2.8.1.2 Characteristic Theory Based Scheme 20
2.8.1.3 Zeroth-Order Extrapolation Scheme 21
2.8.1.4 Iteration Time Step Based Correction Scheme . . 22

2.8.2 Methodologies of Particle Generation 22
2.8.2.1 Reservoir Method 22
2.8.2.2 Standard Method 23

2.9 Particle Collisions . 26
2.9.1 Molecular Models in DSMC 26

2.9.1.0.1 The Hard Sphere Model (HS) 27
2.9.1.0.2 The Variable Hard Sphere Model (VHS) 28
2.9.1.0.3 The Variable Soft Sphere Model (VSS) . 29

2.9.2 Collision Pairs . 30

vii

2.9.3 Post Collision Velocities 30
2.10 Sampling . 32

3 New Parallel Adaptive Three-Dimensional DSMC Algorithm 35
3.1 Octree Data Structure . 35
3.2 Three-Dimensional Hybrid Mesh Scheme 36
3.3 Three-Dimensional Particle Ray-Tracing Scheme 41
3.4 Spatial and Temporal Adaptivity Scheme 42

4 Validation of The Proposed Algorithm Against Benchmark Sim-
ulations 54
4.1 Oscillatory Shear-Driven Couette Flow 54
4.2 Impulsive Started Couette Flow 57
4.3 Thermal Couette Flow . 59
4.4 Poiseuille Flow . 59
4.5 Slider Bearing Problem . 63
4.6 Hypersonic Flows . 65

4.6.1 Hypersonic Flow Past a Flat-Nosed Cylinder 65
4.6.2 Hypersonic Flow Over a Cylinder 66

5 Conclusion and Future Work 70

List of Figures

2.1 Molecular and continuum fluid models. 9

2.2 The Knudsen number limits on the mathematical models of gas
flows [1] . 10

2.3 DSMC flow chart [2]. ∆t: Simulation time step; ∆tS: Sampling
time; tL: Long time . 13

2.4 Maxwell velocity distribution as a function of molecular speed.
The lines indicate the most probable speed, the mean speed, and
the root-mean-square speed. 15

2.5 Maxwellian Reservoir particle generation method: Ghost cell is
indicated in gray (LR: reservoir depth). 24

2.6 Standard particle generation method: The surface which emits
particles is represented by the shaded region. 24

2.7 Illustration of the impact parameters [3] 27

2.8 (a) The schematic of the time-averaging of the flow properties
over a long interval of simulation time. (b) The schematic of the
ensemble-averaging of the flow properties over three independent
DSMC simulations, each initiated from a different random number
generator seed [4]. 34

3.1 Octree data structure . 36

3.2 Example of node neighbors in octree structure (a) a face neighbor,
(b) an edge neighbor, and (c) a vertex neighbor. 37

3.3 Generalized 4x4 transformation matrix in homogeneous coordinates 38

3.4 (a) Schematic representation of a triangulated surface mesh of a
sphere embedded in a 3D octree Cartesian grid. (b) Bounding box
and a cut-cell representation. 38

3.5 Geometric intersection tests to identify the complex 3D physical
object in the octree-based Cartesian structure [5]. 39

3.6 Ray-Box (a) and Ray-Triangle (b) intersection tests 43

3.7 Reflection of a simulated molecule from the boundary triangle el-
ement . 44

3.8 Ray-Tracing scheme . 45

ix

3.9 The schematic of running transient DSMC simulations on different
threads. Top Diagram: Each thread runs sequentially N realiza-
tions of the transient simulation consisting of M time steps. NsC
realizations rijk, j = 1..Ns, k = 1..C, are averaged every output
time interval, To = No∆t, to compute the macroscopic properties
distributions at output time step No. The decision to include a new
set of NsC transient simulations (increment N by Ns) is based on
the relative statistical difference between macroscopic properties
of the last NC realizations and the previous (N − Ns)C realiza-
tions. Note that N is an integer multiple of Ns. Bottom Diagram:
The spatio-temporal adaptivity is carried out for all threads every
Na = Ta/∆t time steps. C realizations rijk, k = 1..C are averaged
(by the sniffer) at t = Ta, 2Ta, ..., Tf (corresponding to time steps
i = Na, 2Na, ...,M) to estimate the macroscopic properties distri-
butions needed for the spatio-temporal adaptivity criteria. These
criteria will set the grid size and the associated temporal levels
distribution for the time intervals [Ta + ∆t, 2Ta], [2Ta + ∆t, 3Ta], ...
While the sniffer carries out sampling of the microscopic properties
and subsequently updates the distribution of cell sizes and tempo-
ral levels, the threads pause. Once the sniffer completes its task,
the threads resume. 46

3.10 Simplified flow chart of the implemented DSMC algorithm. ∆ta:
adaptive time; ∆ts: sampling time; tL: Long time. 47

3.11 Temporal adaptation algorithm within the DSMC code. Nl: num-
ber of temporal levels in the domain; 2l: number of time steps in
temporal level l; ∆tl: time step in temporal level l. 52

3.12 Schematic describing the temporal adaptation procedure with two
temporal levels. 53

4.1 Schematic view of oscillatory Couette flow 55
4.2 Normalized velocity profile for the shear-driven oscillatory Couette

flow at Kn = 0.1, Ma = 0.3248, and β = 5.0. 58
4.3 Normalized wall shear stress for the shear-driven oscillatory Cou-

ette flow at different times. Kn = 0.1, β = 5.0, and τ0 = U0/H. . . 59
4.4 Velocity (top) and Stress (bottom) fields for the impulsive start

Couette flow for Kn = 0.21 at times 16.2ε−1. 60
4.5 Temperature profile in a thermal Couette flow problem 61
4.6 Centreline pressure distribution (top figure) and flow field refined

mesh for a microchannel in the slip flow regime. 62
4.7 Schematic of the slider bearing geometry, L = 5µm, Ho = 5µm,

U = 25m/s. 63
4.8 Slider bearing normalized pressure profile for Kno = 1.25, Λ =

61.6, Ma = 0.08. 64

4.9 Flow Field Refined Mesh for a Flat-Nosed Cylinder. 66
4.10 Temperature and density contours for hypersonic flow past a flat-

nosed cylinder. A comparison of the results in this work with those
computed in previous work done by Bird [3]. 67

4.11 Temperature and density contours for hypersonic flow past a flat-
nosed cylinder. A comparison of the results in this work with those
computed in previous work done by Scanlon et al. [6]. 67

4.12 Sketch of the computational domain of argon hypersonic flow over
a cylinder at Kn∞ = 0.01, Ma∞ = 10, T∞ = 200 K, n∞ = 4.274×
1020particles/m3. 68

4.13 Contours of temperature of Mach-10 hypersonic flow past a circular
cylinder; colored lines are DSMC data; the grey spheres are VMR
data [7]. 69

4.14 Density and Temperature distribution along a vertical line before
the cylinder (x=0.205 m). (a) Density (b) Temperature. 69

4.15 Density and Temperature distribution along a vertical line in the
wake region (x=0.6 m). (a) Density (b) Temperature. 69

List of Tables

1.1 Overview of geometry and general features of the well-known DSMC
solvers and the presented one. 5

4.1 Comparison of elapsed time per DSMC realization for non-adaptive
and adaptive Poiseuille flow. 62

4.2 Elapsed time(s) of DSMC processes at flow sampling time step for
benchmark simulations. 64

4.3 Comparison of elapsed time per DSMC realization for non-adaptive
and adaptive hypersonic flow past a flat-nosed cylinder. 66

xii

Chapter 1

Introduction

1.1 Literature Review

Micro and nano-technologies are advancing rapidly and the computational tools
to predict the flow dynamics efficiently and accurately at these scales are con-
tinuously in demand. Gas flows in Micro and Nano devices are typically rarefied
and usually fall into the slip and transition flow regimes with a Knudsen num-
ber range 0.001 < Kn < 10 [1]. The direct simulation Monte Carlo (DSMC)
method [3] is the most widely used computational tool for efficiently simulat-
ing fluid flows at these scales. The method has been successfully applied to
investigate physical phenomena in a wide range of applications. These include
shock waves [3], spacecraft aerodynamics [8], squeeze-films and oscillating mi-
crostructures [9], microsensors [10], microfluidics [11], and various rarefied flows
in micro/nano-systems [12].

The geometry model in DSMC simulations refers to both the computational
mesh of the flow domain and the surface representation of solid objects. Two
primary approaches for the geometry model in existing state-of-the-art DSMC
solvers have been used. These include body-fitted unstructured grids such as
in MONACO [13] and dsmcFOAM [6], and Cartesian structured grids such as
in DAC [14], SMILE [15], Bird’s DSnV [16], MGDS [17], and SPARTA [18].
MONACO code [13] uses an unstructured body-fitted quadrilateral or tetrahe-
dral meshes to fit complex surface geometries. MONACO also employs a localized
data structure based on a computational cell to increase the performance of work-
station processors that can be used in parallel. Further, it allows an adaptive grid
with varying particle weights and variable time steps specified in each cell. dsm-
cFOAM [6] is the recent DSMC solver implemented within the OpenFOAM soft-
ware framework, and parallelized with MPI and fully object-oriented C++ based
approach. It is able to handle unstructured, arbitrary polyhedral meshes [19].
In contrast to body-fitted grids, the DSMC analysis Code (DAC) [14] developed
at NASA’s Johnson Space Center employs a two-level Cartesian grid and pos-

1

sesses parallel processing capabilities. DAC offers an automatic discretization
of the flow field to ensure appropriate refinement throughout the computational
domain. Each level-1 cell is refined into any number (in each coordinate direc-
tion) of level-2 Cartesian cells [14]. Different particle weights and variable time
steps are allowed for each level-1 computational cells. However, the distribution
of the DAC code is restricted to United States users. Bird’s DSnV [16] imple-
mentations use an equally-spaced background Cartesian grid with several levels
of refinements generated within a bounding box of the flow domain. Every par-
tition of the grid is divided into a finer grid of elements such that the number
of elements is on the order of the number of simulated molecules. The SMILE
code by Ivanov et al. [15] depends on a two-layer rectilinear adaptive grid and
a cut-cell method for simulating complex geometries. It is designed for parallel
computations on multiprocessor computers. The MGDS code [17] employs an
embedded 3-level Cartesian mesh, accompanied by a cut-cell method to incorpo-
rate arbitrary triangulated surface geometry into the flow field. It performs fully
automated adaptive mesh refinement (AMR) and automatically sets different
time steps in each level-3 computational cells. SPARTA [18], developed in C++,
employs a parallel processing technique based on the domain decomposition ap-
proach. It uses a hierarchical Cartesian grid and a recursive coordinate bisection
(RCB) method to decompose the domain among the processors. The code can
run on single or multiple processors using the message passaging interface (MPI)
library and domain decomposition of the simulation domain. It allows grid refine-
ment in regions with steep gradients of the flow quantities and assigns different
particle weights in collision cells proportional to the number of computational
particles they possess. Of these codes, DAC [14], SMILE [15], and MGDS [17]
are similar in the way of using hierarchical Cartesian grids and employing a ”cut-
cell” method that cuts an arbitrary triangulated surface geometries out of the
Cartesian flow field grid.

DSMC simulations employ a computational grid needed for collision partner
selection and sampling of macroscopic properties. Several problems of practical
importance, such as shock waves at micro-scales, boundary layers, pressure sen-
sors, MEMS, etc., have attracted interest to transient phenomena in rarefied gas
dynamics. Many of these problems are characterized by large-scale macroscopic
gradients and the presence of rarefied and continuum flow domains which dynami-
cally vary with time. Thus, variable resolution of different flow regions is required
for an accurate prediction of these flows. In this manner, an adaptive mesh re-
finement (AMR) has been increasingly used in modern DSMC codes [14, 20, 7].
Recently, a unified flow solver (UFS) for simulating transient rarefied-continuum
flows is developed [21]. The solver uses Adaptive Mesh and Algorithm Refinement
(AMAR) with dynamically adaptive Cartesian mesh and automatic selection of
kinetic solvers (particle-based DSMC or direct Boltzmann solvers using discrete
velocity method) based on continuum breakdown criteria [22]. The parallel ca-
pabilities of these solvers and an implicit scheme for the kinetic equation are

2

illustrated in [23]. Hierarchical mesh technology offers unique advantages for
automatic mesh for gas flows over complex geometries and moving/deforming
structures, dynamic mesh adaptation to local flow properties, and paralleliza-
tion [24]. Kolobov et al. [22] have developed a UFS that can automatically select
the appropriate solver in different parts of the computational domain, where the
direct numerical solution of the Boltzmann transport equation is used in rarefied
regions, and continuum flow dynamics solvers (Euler, Navier-Stokes) are used
elsewhere. Two and three-level Cartesian adaptive DSMC meshes are utilized
in a number of DSMC codes [25, 16, 26]. However, very little investigations
have been devoted to the potential advantages of an octree data structure in
DSMC simulations. Olson and Christlieb [27] used the gridless character pro-
vided by an octree-based algorithm to develop a gridless approach for sorting
of nearest-neighbor gas particles into local clusters. Octree data structure pro-
vides a potentially more general strategy for different cell volumes over multiple
orders of magnitudes without the restrictions associated with a fixed number of
refinement levels. In this manner, Arslanbekov et al. [28] used this approach and
developed a UFS-DSMC code that consists of the two types of kinetic solvers
coupled via (AMAR) methodology and can efficiently perform some of the same
functions as transient sub-cells for collision partner selection, and makes unified
parallelization of the code.

DSMC solvers can run with a single processor or in parallel using the Message
Passaging Interface (MPI) library on multiple processors. Parallelization is car-
ried out by decomposition of the spatial domain among the processors. Bird [3]
points out that dynamic grid adaptation is a main concern when applying the
DSMC method to multi-dimensional problems and states that an ideal DSMC
grid must fulfill three requirements: high computational efficiency, grid adapta-
tion to arbitrary geometries as well as to local flow conditions. Besides parallel
computing implementation, fully automated mesh adaptation of the flow field can
effectively save computational cost and provides efficient management of grid res-
olution. While time step adaptation depends on the local mean collision time,
the adaptation of collision grid cells is based on the local mean-free-path, the
number of simulated molecules, and other aspects such as the presence of surface
meshes. The use of a single fixed time step is computationally inefficient when
localized high-density gradients regions exist in the computational domain. In
such flows, different time steps are needed in different parts of the domain. With
variable time steps, a single iteration of the DSMC algorithm no longer represents
the same amount of physical time in each collision cell [29]. One way to tackle
this challenge is proposed by Kannenberg and Boyd [29], where the disparity
in the elapsed time is accounted for by weighting all particles by a time scale
factor, defined as the ratio of the local time step to the reference time step for
the simulation. The use of varying time steps according to this scheme increases
computational efficiency by reducing the number of simulated molecules in the
computational domain while maintaining relatively uniform molecule distribution

3

and sufficient molecules for obtaining accurate collision statistics per cell. Imple-
mentations, such as DAC [14] and MGDS [17], that use variable scaling of particle
weighting with spatially dependent time-steps are common. In the DAC algo-
rithm, however, the particle weight and time step size vary independently. This
requires cloning or deleting molecules to guarantee a balance of flux when the
molecule crosses one collision cell to the next. A different approach for handling
variable time steps is presented as a recent improvement to the DSMC algorithm
in [30], and has implemented in a recent work done by Wade et al. [31]. This
approach is based on updating a desired local time step (DTS) for each collision
cell, which is set to the minimum of user-specified fractions of the relative colli-
sion and transit times of the cell. A time parameter is assigned to all molecules
and all collision cells in which each molecule in a particular cell inherits the time
step of that cell. The flow time is advanced in steps equal to the smallest value
of DTS over all cells in the computational domain. The cell and molecule time
parameters are advanced based on the flow time and the DTS values within the
cells. Other variable time step methods [32, 33] propose a local time stepping
scheme which specifies a movement time step and a collision time step for each
representative particle in the computational domain. The two time steps are
independent and respectively represent the motion and collision evolvement of
the particle system. In addition, only when both the time attributes evolve to a
certain time, is the gas flow treated to develop to the same time [33]. Table 1.1
gives an overview of the geometry and general features of existing state-of-the-art
DSMC solvers.

1.2 Motivation and Objectives

The scope of this thesis is to develop a novel three-dimensional multi-scale direct
simulation Monte Carlo algorithm for the simulation of unsteady rarefied gas flows
over complex geometries. We aim to develop an ideal DSMC algorithm with high
computational efficiency, efficient data management, low memory storage require-
ment, increased flexibility, and dynamic grid adaptation to arbitrary geometries
as well as to local flow conditions. The flow domain is represented by a hybrid
mesh consisting of a hierarchical octree-based Cartesian grid [34, 28], whereas the
surfaces of solid objects are represented by a triangular mesh. The hierarchical
octree-based Cartesian grid representation of the domain allows for an efficient
data storage and management that is compatible with the spatio-temporal adap-
tation scheme. When compared to unstructured meshes, such representation
significantly improves memory requirement and is, therefore, more suitable for
simulating large-scale DSMC problems. The hierarchical octree-based Cartesian
grid representation also enables a potentially more general scheme for varying
cell volumes over a large range of the molecular length scales. The hybrid mesh
representation allows for simple integration of a variety of effective geometric

4

T
ab

le
1.

1:
O

ve
rv

ie
w

of
ge

om
et

ry
an

d
ge

n
er

al
fe

at
u
re

s
of

th
e

w
el

l-
k
n
ow

n
D

S
M

C
so

lv
er

s
an

d
th

e
p
re

se
n
te

d
on

e.

D
S

M
C

A
lg

or
it

h
m

G
ri

d
S

tr
u

ct
u

re
d

/U
n

st
ru

ct
u

re
d

P
ar

al
le

l
P

ro
ce

ss
or

D
is

tr
ib

u
ti

on
S
p

at
ia

l
A

d
ap

ti
v
it

y
C

ri
te

ri
a

G
ri

d
A

d
ap

ta
ti

on
T

em
p

or
al

A
d
ap

ti
v
it

y
C

ri
te

ri
a

T
im

e
S
te

p
O

th
er

M
O

N
A

C
O

U
n

st
ru

ct
u

re
d

gr
id

O
ve

r
gr

id
B

as
ed

on
λ

S
in

gl
e

fi
x
ed

ti
m

e
st

ep
L

o
ca

li
ze

d
d

at
a

st
ru

ct
u

re
R

ay
tr

ac
in

g
th

ro
u

gh
an

u
n

st
ru

ct
u

re
d

gr
id

d
sm

cF
O

A
M

U
n

st
ru

ct
u

re
d

gr
id

O
ve

r
gr

id
B

as
ed

on
λ

S
in

gl
e

fi
x
ed

ti
m

e
st

ep
op

en
F

O
A

M
C

+
+

to
ol

b
ox

D
A

C
T

w
o-

le
ve

l
C

ar
te

si
an

gr
id

7
B

as
ed

on
λ

V
ar

ia
b

le
ti

m
e

st
ep

V
ar

ia
b

le
p

ar
ti

cl
e

w
ei

gh
t

C
u

t-
ce

ll
m

et
h

o
d

R
es

tr
ic

te
d

d
is

tr
ib

u
ti

on
to

U
S

u
se

rs
P

ar
al

le
l

p
ro

ce
ss

in
g

ca
p

ab
il

it
ie

s
D

S
n

V
C

ar
te

si
an

gr
id

7
B

as
ed

on
N
si
m

V
ar

ia
b
le

ti
m

e
st

ep
7

S
M

IL
E

C
ar

te
si

an
gr

id
7

B
as

ed
on

λ
7

C
u

t-
ce

ll
m

et
h

o
d

P
ar

al
le

l
p

ro
ce

ss
in

g
ca

p
ab

il
it

ie
s

M
G

D
S

T
h

re
e-

le
ve

l
C

ar
te

si
an

gr
id

O
ve

r
gr

id
B

as
ed

on
λ

V
ar

ia
b
le

ti
m

e
st

ep
V

ar
ia

b
le

p
ar

ti
cl

e
w

ei
gh

t
C

u
t-

ce
ll

m
et

h
o
d

R
ay

tr
ac

in
g

th
ro

u
gh

a
C

ar
te

si
an

gr
id

S
P

A
R

T
A

H
ie

ra
rc

h
ic

al
C

ar
te

si
an

gr
id

O
ve

r
gr

id
B

as
ed

on
λ

S
in

gl
e

fi
x
ed

ti
m

e
st

ep
H

ig
h

ly
p

ro
b

ab
le

C
+

+
R

u
n

on
e/

m
u

lt
ip

le
si

m
u

la
ti

on
s

si
m

u
lt

an
eo

u
sl

y
in

p
ar

al
le

l

C
o
d

e
P

re
se

n
te

d
H

ie
ra

rc
h

ic
al

C
ar

te
si

an
gr

id
O

ve
r

re
al

iz
at

io
n

B
as

ed
on

λ
&
N
si
m

V
ar

ia
b
le

ti
m

e
st

ep
D

iff
er

en
t

T
em

p
or

al
le

ve
ls

O
ct

re
e-

b
as

ed
C

ar
te

si
an

gr
id

G
eo

m
et

ri
c

to
ol

s
in

co
m

p
u

te
r

gr
ap

h
ic

s
R

ay
tr

ac
in

g
th

ro
u

gh
a

st
ru

ct
u

re
d

gr
id

S
p
at

io
-t

em
p

or
al

ad
ap

ti
v
it

y
sc

h
em

e

5

tools used in computer graphics, including fast particle-tracing algorithms. This
enables DSMC calculations to be performed with less number of operations, such
as in successive grid adaptation, particle movement, and particle sorting. A cut-
cell method to simulate flows around immersed objects of complex boundaries
is implemented [35]. For near-boundary computational cells that are cut by the
true physical boundary of the solid object, the method computes the effective vol-
ume of cut-cells for accurate prediction of molecular collisions and macroscopic
properties in these cells. The cut-cell method also allows for decoupling of the
flow field mesh from the solid boundaries surface mesh, making it suitable for
simulating near-continuum flows with large density variations.

Novel aspects of the proposed algorithm include parallelization over realiza-
tions and a new spatio-temporal adaptation scheme. Most existing DSMC solvers
involve parallelization on multiple processors using the Message Passaging Inter-
face (MPI) library. The spatial domain decomposition parallelization method is
often used. However, This flavor of parallelization suffers from two drawbacks.
The first is the challenge of load balancing and distributed storage of the com-
putational domain. This challenge is particularly severe when the solver employs
a spatio-temporally adaptive algorithm that dynamically adjusts the computa-
tional grid and the time step in response to the evolving flow field structures
in unsteady flows. The second challenge is that the criteria for spatio-temporal
adaptivity are based on macroscopic properties computed as averages over a sta-
tistically meaningful number of realizations (a realization is a DSMC simulation
initiated from a unique random number generator seed). This latter observation
suggests parallelization over independent realizations. In the proposed frame-
work, the DSMC algorithm is optimized for simulating unsteady flows in parallel
over multiple cores. In contrast with distributing the computational domain over
the cores (or threads, or CPUs), the independent realizations are distributed over
the cores. Each thread or core processes a realization of the simulation of the
unsteady flow over the entire computational domain. Due to the lack of commu-
nication between the cores when each is handling an independent realization, the
parallelization efficiency is almost 100 %. In addition, this type of parallelization
is optimal when simulating strongly unsteady, non-equilibrium flows, where dy-
namic spatial-temporal adaptation is required. With each core being assigned a
DSMC realization, local macroscopic flow properties at different time steps are
collected simultaneously in parallel and computed as statistical averages over a
number of realizations for local spatial-temporal adaptation.

The proposed algorithm implements a novel spatio-temporal adaptivity scheme
efficient for simulating highly unsteady rarefied flows over complex geometries.
These flows typically experience considerable variability in the spatial gradients
of the macroscopic thermodynamics properties, and as such, spatial adaptation
needs to be frequently carried out. Moreover, the localized high-density gradients
regions that exist in these flows require the use of different time steps in different
parts of the domain. This calls for an automated adaptive time stepping scheme.

6

Instead of advancing with most limiting (smallest) time step, the scheme handles
spatial dependence of the time step by employing a number of discrete temporal
levels. The method implements a smart algorithm that efficiently loops over these
levels, in a descending order of the time step size, where within each loop, all cells
sharing the same time step are handled. Table 1.1 presents the main features of
the proposed DSMC solver in comparison with existing DSMC solvers.

1.3 Thesis Outline

The thesis is organized as follows: Chapter 2 gives a description of the specifics of
direct simulation Monte Carlo method. It highlights the implementation of dif-
ferent boundary conditions used in the numerical simulation of rarefied flows by
the DSMC Method. Chapter 3 presents the proposed three-dimensional unsteady
parallel DSMC algorithm. It provides the details of the implementation of the
three-dimensional hybrid mesh scheme, the effective three-dimensional particle
ray-tracing scheme, and the spatio-temporal adaptivity scheme. In Chapter 4,
extensive validation of our algorithm through several benchmark 2D and 3D nu-
merical simulations is performed. A wide variety of problems will be investigated,
including microfluidics, thermal processes, low speed subsonic flows, and hyper-
sonic flows. It will be shown that the developed algorithm can produce reliable re-
sults. Chapter 5 presents a summary of conclusions and recommends future work
that can be done to further advance the proposed algorithm to predict unsteady
flows in complex geometries encountered in micro- and nano-electromechanical
systems (MEMS/NEMS).

7

Chapter 2

Direct Simulation Monte Carlo

2.1 DSMC Method Overview

There are two existing models to study gas flow behavior at the macroscopic and
the microscopic level: Continuum-based models and molecular models. At the
macroscopic level, continuum-based models treat the fluid as a continuum and
define fluid density, flow velocity, pressure, temperature, and other macroscopic
flow quantities at every point in space and time. Conservation laws such as con-
servation of mass, momentum, and energy are a set non-linear partial differential
equations (Euler, Navier-Stokes, Burnett, etc.). At the microscopic level, molec-
ular models are divided into deterministic, such as the best-known molecular
dynamics (MD) approach, and statistical, such as the direct simulation Monte
Carlo (DSMC) method. These particle methods model gas behavior by track-
ing the interaction of computation particles, each with a position, velocity, and
internal energy, etc., and mimicking the discrete molecular nature of the actual
flow. They are intuitively attractive because they lack continuum assumptions
and therefore be valid where traditional, continuum-based, computational fluid
dynamics (CFD) techniques break down due to flow rarefaction. Fluid modeling
classification is depicted schematically in Figure 2.1.

Among the particle simulation methods, DSMC, pioneered by G. A. Bird
in the 1960s [3], is the most powerful numerical technique for the simulation
of complex, non-equilibrium rarefied gas flows in kinetic theory. The method
can be viewed as either a simplified molecular dynamics (DSMC being several
orders of magnitude faster) or as a stochastic particle method for solving the time-
dependent non-linear Boltzmann equation. For physicists and chemists, the most
well-known particle method is molecular dynamic (MD). In traditional molecular
dynamics, the particle interaction routines have been an order of O(N2) since each
simulated molecule is allowed to interact with every other molecule in the physical
domain. With the introduction of interaction potential functions, the computa-
tional time has improved, but the problem is still computationally expensive and

8

Fluid Modeling

Molecular Models Continuum Models

Euler Navier-Stokes Burnett

Chapman-Enskog

Deterministic Statistical

MD Liouville

DSMC Boltzmann

Figure 2.1: Molecular and continuum fluid models.

extremely time-consuming because of the coupling between molecular motion and
collisions. Consequently, the algorithm sped up considerably with the dilute gas
approximation which allows the separate computation of the collision dynamics
of molecules from their motion. To take the full advantage of this simplification,
Bird in 1963 has proposed an efficient means of sorting and collision sampling
routines [36] which allow candidate collision pairs to be in the order O(N) CPU
time. The result was the direct simulation Monte Carlo (DSMC) algorithm that
was two or three orders of magnitude faster than molecular dynamic (MD).

The governing dimensionless parameter for prediction of continuum is Knud-
sen number (Kn), which is defined as the ratio between the molecular mean free
path λ and the characteristic length scale of the physical system L. It indicates
the degree of flow rarefaction and varies from zero when the gas is considered
as continuum to infinity when the intermolecular collisions can be discounted.
In general, a continuum description is valid when λ is much smaller than the
characteristic flow dimension L, i.e. Kn < 0.1. Rarefied gas flows are in general
encountered in low-pressure applications such as high altitude atmospheric flows,
and in small geometries such as in micro-electromechanical systems (MEMS).
According to the magnitude of the Knudsen number, gas flows can be empiri-
cally classified into four regimes [1] as depicted in Figure 2.2 and can be sum-
marized as follows: When the Knudsen number is small (Kn tends to zero),
non-equilibrium effects are insignificant, and the standard Navier-Stokes-Fourier
(NSF) equations then reduce to the inviscid Euler equations. For Kn ≤ 0.001,
the NSF equations with no-slip boundary conditions are valid. As Kn increases
(0.001 ≤ Kn ≤ 0.1), rarefaction effects become more important, and the NSF
equations with velocity slip and temperature jump boundary conditions can ac-
curately predict the gas behavior. However, once the Knudsen number increases

9

to transition-continuum (0.1 ≤ Kn ≤ 10) and free-molecular (Kn > 10) flow
regimes, the continuum and thermodynamic equilibrium hypotheses breakdown;
therefore, the Boltzmann equation (BE) must be considered to analyse such flows.
The (BE) and the direct simulation Monte Carlo (DSMC) has proven to be the
most reliable in describing rarefied gas flows in the slip flow and transition flow
regimes.

Collisionless

BE/DSMC

Molecular

Models

 0 10 Kn :regime molecule-Free

 small 10Kn10 :regime transition-Continuum

10Kn10 :boundary slip with Stokes-Navier

10Kn :boundary slip without Stokes-Navier

 0Kn :Euler

1-

1-3-

3-

Re

Re

Re

Boltzmann Equation (BE)/DSMC

Euler Equations

Navier-Stokes Equations

Burnett Equations

Continuum

Models

MEMS NANO

Continuum

regime Slip – flow

regime

Transition

regime Free - molecule

regime

0.001 0.01 0.1 1 0 10 Kn

Figure 2.2: The Knudsen number limits on the mathematical models of gas
flows [1]

Knudsen number can be related to other two important dimensionless param-
eters in macroscopic fluid mechanics, the Reynolds number defined as the ratio
of inertia to viscous forces Re = ρv0L/µ, where ρ is the fluid density, v0 is the
characteristic velocity, L the characteristic flow length-scale, and µ the dynamic
viscosity of the fluid, and the well-known Mach number Ma = v0/a0 defined as
the ratio of the characteristic gas flow speed (v0) to the speed of sound (a0). Ma
is a measure of fluid compressibility and considered as the ratio between inertia
and elastic fluid forces. From the kinetic theory of gases, the mean free path λ
for gases is well defined as the average distance travelled by molecules between
collisions. For an ideal gas modeled as rigid spheres, the mean free path is given

10

by (Bird 1994 [3]):

λ =
1√

2πnσ2
(2.1)

where n is the number density (number of molecules per unit volume), and σ
is the effective molecular diameter. According to the kinetic theory of viscosity,
thermal conduction and diffusion in gases [37], the mean free path is related to
the viscosity µ, density ρ, and the mean molecular speed c̄ as:

µ ≈ 1

2
ρc̄λ (2.2)

where c̄ =
√

8kT/πm, m is the molecular mass, T is the absolute temperature,
and k is the Boltzmann constant k = 1.38 × 10−23J/K. The mean molecular
speed c̄ is related to the sonic speed a0 =

√
γkT/m, where γ is the specific heat

ratio, according to the equation:

a0 =

√
πγ

8
c̄ (2.3)

Combining the above two equations yields to λ = 1.26
√
γµ/a0ρ. It is easy to

obtain the required fundamental relationship:

Kn =
λ

L
= 1.26

√
γMa/Re (2.4)

A brief summary of the DSMC method, highlighting key aspects relevant to the
algorithm we are proposing in this work, is presented in the next sections. The
method is described in detail in the monograph by Bird [3] and the recent edition
Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Bird 1994 [3]).

2.2 DSMC Methodology

Based on the well-developed kinetic theory of gases, the DSMC method emu-
lates the physics of a real gas and provides a solution to the non-linear Boltz-
mann equation. It follows a representative set of randomly selected simulated
molecules, each representing a large number of physical molecules, as they col-
lide and move in physical space. The molecules’ motion, their interactions with
boundaries and intermolecular collisions alter with time their spatial coordinates,
velocity components, and their internal energies. Molecular motions are modeled
on a deterministic basis, while their collisions are treated on a probabilistic basis
according to an appropriate collision model. The simulation of the real gas flow
is carried out by statistical sampling of the macroscopic flow properties within
grids in the physical space of the flow field. Figure 2.3 illustrates a simplified flow
chart of the four major processes involved in a DSMC algorithm for an unsteady

11

or steady flow problem [2]: 1) moving the molecules over a time step and model
their interactions with boundaries, 2) indexing and tracking the molecules within
the grid of collision cells, 3) selecting molecules for collision on a probabilistic
basis and applying the appropriate collision model, 4) sampling the macroscopic
flow properties.

The validity of the DSMC method is associated with space and time dis-
cretization. The collision grid cell size, ∆x, must be small compared to the local
mean free path, λ ∼ |π/∇π|; the length scale characterizing the spatial variations
of the macroscopic properties, π. So, we choose ∆x� λ, where λ generally varies
with space and time. The simulation time step, ∆t, over which molecular motions
and collisions are uncoupled must be smaller than the local mean collision time,
∆t < τc = λ/vmp, where vmp is the most probable velocity. It must be smaller
than the molecule time-of-flight across a typical collision cell size, where it is
preferable for a molecule to spend two to three-time steps before leaving a cell.
The time step must also be smaller than the viscous diffusion time, ∆t < L2/ν,
and the period of oscillations for unsteady periodic flows, ∆t < 2π/ω, where ω
is the frequency of oscillations. The number of simulated gas molecules per cu-
bic mean free path, N , must be larger than a minimum (typically 20 molecules)
in order to preserve collision statistics and the molecules yield a reasonable ap-
proximation to the local velocity distribution function. Unless the gas is highly
rarefied and the simulation domain is small, the constraints on ∆x, ∆t, and
N make DSMC computationally expensive. Thus, adaptive techniques are re-
quired in hypersonic near-continuum flows spanning several orders of magnitude
of length and time scales.

2.3 DSMC Initialization

Initially, the number of simulated molecules in the computational domain is ran-
domly distributed with uniform density throughout the system. Once the po-
sitions of molecules are determined, each molecule is initialized with a velocity
according to the Maxwellian velocity distribution. Recall that the direct simu-
lation Monte Carlo method is essentially equivalent to the Boltzmann equation
and that the velocity distribution function is the only dependent variable in the
Boltzmann equation. The Maxwell-Boltzmann distribution function f(U) that
describes the distribution of molecular velocities in an ideal gas, established first
by James Clerk Maxwell and later proved by Ludwig Boltzmann [38, 39, 40, 41],
is given as:

f(U) =

(
β√
π

)3

e(−β
2‖U‖2) (2.5)

where f(U)dU defines the probability of a given molecule selected at random and
has a velocity U in the range [U,U + dU] at any instant, and β is the inverse of

12

Move molecules within ∆𝑡

Compute interaction with boundary

Sample flow properties

Compute collisions

Reset molecule indexing

Start

Read data

Set constants

Print final results

Initialize molecules

and boundaries

Unsteady flow: average runs

Steady flow: average samples after

 establishing steady flow

Unsteady flow:

Repeat until required

sample is obtained

Interval > ∆𝑡𝑠 ?

Time > 𝑡𝐿 ?

Stop

Figure 2.3: DSMC flow chart [2]. ∆t: Simulation time step; ∆tS: Sampling time;
tL: Long time

13

the most probable molecular thermal speed, given by:

β =
1√

2kT/m
(2.6)

where k being the Boltzmann constant, T is the absolute temperature of the gas,
and m is the molecular mass. The equation f(U) above can be sampled as a
product of three Gaussian distributions as follows:

f(u, v, w) = f(u)f(v)f(w) =
β√
π
e(−β

2u2) · β√
π
e(−β

2v2) · β√
π
e(−β

2w2) (2.7)

Accordingly, the Box-Muller algorithm [42] in polar coordinates (r, θ, φ), where
x = rsinφ, y = rsinθ, and z = rcosθ, is applied along with the principle of inver-
sion to numerically find the molecular velocities in each of the three dimensions
as follows:

u = rsin(θ) (2.8)

where r =
√
−2kT
m

log(Rf1) and θ = 2πRf2

v = rsin(θ)

w = rcos(θ)
(2.9)

where r =
√
−2kT
m

log(Rf3) and θ = 2πRf4 . Note that Rfi(i = 1, 2, 3, 4) is a

random number generated by the compiler between 0 and 1 (0 ≤ Rfi < 1).
In the context of the Kinetic Molecular Theory of Gases, a gas contains a large

number of particles in rapid motions. Each particle has a different speed, and
each collision between particles changes the speeds of the particles. An under-
standing of the properties of the gas requires an understanding of the distribution
of molecular gas speeds. Many useful properties of the gas in equilibrium state
can be obtained from the Maxwellian distribution. The Maxwell-Boltzmann dis-
tribution can be used to determine the distribution of the kinetic energy for a set
of molecules which is identical to the distribution of speeds for gas at a certain
temperature.

Various ’average’ molecular speeds, irrespective of direction, may be ob-
tained easily from the distribution function as follows: The most probable speed
corresponds to the maximum value of the Maxwell speed distribution function.
It is given as:

û = ‖U‖(dfdu=0) =

√
2kT

m
(2.10)

The mean speed is:

〈u〉 =

∫ ∞
0

f (‖U‖) ‖U‖ d‖U‖ =

√
8kT

m
(2.11)

14

û
u

rmsu

M
ax

w
el

l
S

p
ee

d

D
is

tr
ib

u
ti

o
n

 F
u

n
ct

io
n

Molecular Speed

M
o

st
 P

ro
b

ab
le

 S
p

ee
d

M
ea

n
 S

p
ee

d

R
o
o
t-

M
ea

n
-S

q
u

ar
e

S
p

ee
d

Figure 2.4: Maxwell velocity distribution as a function of molecular speed. The
lines indicate the most probable speed, the mean speed, and the root-mean-square
speed.

The root-mean-square speed is given by:

〈u2〉1/2 = urms =

√∫ ∞
0

f (‖U‖) ‖U‖2 d‖U‖ =

√
3kT

m
(2.12)

2.4 Particle Movement

After initializing the state of the system by the positions and velocities of simu-
lated molecules, {~ri, ~vi}, the DSMC time marching starts and the simulation time
step is defined. Simulated molecules are then moved as if they do not interact,
that is, their positions are updated to ~ri + ~vi∆t according to their microscopic
velocity components in a straight line path. Appropriate boundary conditions
are applied whenever a molecule strikes a boundary. When a molecule reaches a
boundary, the time-step is adjusted to (∆t−∆tw), where ∆tw is the time of flight
needed by the particle to cover a straight-line trajectory from the molecule’s initial
position ~ri to the point of impact ~rw. ∆tw is given by ∆tw = (~rw − ~ri) ·~n/ (~vi · ~n),
where ~n is the unit normal to the surface. Then, the molecule moves with a new
reflected velocity as dictated by the boundary conditions using the new time-
step.

15

2.5 Boundary Interaction

The interaction of simulated molecules with physical boundaries is an impor-
tant boundary condition in DSMC simulations. During their motion, simulated
molecules may encounter boundaries either at the periphery of the computational
domain or at surfaces of immersed bodies within the domain. The proper numer-
ical treatment and implementation of the boundary condition when a molecule
crosses a boundary is of great importance for accurate DSMC simulation. Dif-
ferent types of boundary conditions are employed in DSMC simulations. These
include solid wall boundary conditions, periodic boundaries, and infow/outflow
boundary conditions.

2.6 Solid Wall Boundary Conditions

A given gas-solid surface interaction can be treated as being fully specular, fully
diffuse, or by some combination of the two. This description is identified by
the tangential momentum accommodation coefficient that ranges from 0, for no
accommodation (specular reflection), to 1, for full accommodation (diffuse reflec-
tion).

In specular reflection, the molecular velocity component normal to the inci-
dent surface is simply reversed and the tangential component is left unchanged.
The specular wall boundary condition is the computational representation of an
inviscid wall and may also be used to represent a symmetry plane. The shear
stress at the wall and the rate of heat transfer in such a case are zero.

However, diffuse reflection from a perfect thermal wall, at temperature Tw,
cause random reorientation of all the three components of the outgoing velocity
of the reflected molecule, where the normal component is reset according to the
biased-Maxwellian distribution:

P⊥ (v⊥) =
m

kTw
v⊥e

−mv2⊥/2kTw (2.13)

and the parallel components are reset according the standard Maxwell-Boltzmann
distribution:

P‖
(
v‖
)

=

√
m

2πkTw
e−mv

2
‖/2kTw (2.14)

where k is the Boltzmann constant. The shear stress at the wall and the rate
of heat transfer are correspondingly non-zero. For a more detailed explanation
and a derivation of the diffuse wall boundary condition equations, refer to (Bird
1994 [3]).

In addition to the specified wall temperature boundary condition, specified
wall heat flux boundary condition is extensively encountered in the DSMC method
for the rarefied gas simulations of Micro/Nano electro-mechanical systems (MEMS/NEMS)

16

with a desired heat energy exchange. Recently, Akhlaghi and Roohi [43] and
Roohi et al. [44] implemented and validated a novel algorithm to impose a de-
sired (heating/cooling) wall heat flux in DSMC. This technique is based on an
iterative modification of the local wall temperature in order to achieve the desired
wall heat flux.

2.6.1 Velocity Slip and Temperature Jump

At sufficiently low Knudsen number (Kn< 10−3), both heat conduction and vis-
cous diffusion and dissipation are negligible, and the assumption of a continuum
with no-slip boundary conditions hold. Then, the velocity and temperature of
the gas near the wall are in equilibrium and equal to the wall velocity and tem-
perature. As Kn number increases, the flow becomes more rarefied and non-
equilibrium effects arise near the wall due to the insufficient number of molecular
collisions under rarefied conditions, thus invalidating the no-slip boundary con-
ditions. This results in conditions with velocity slip and temperature gradients
near the wall, known as slip conditions. The slip boundary condition shows at
first a linear relationship with the Knudsen number (Kn< 0.1); then non-linear
effects take over in the transition (0.1 <Kn< 10) and free molecular (Kn> 10)
regimes. The first-order Maxwell slip velocity and Maxwell-Smoluchovski tem-
perature jump boundary conditions are given as [45, 46]:

Us − Uw = Cmλ
∂U

∂n
+ Cs

µ

ρT

∂T

∂x
(2.15)

where Uw is the velocity at the wall, Us is the velocity slip on the solid surface, n
is normal to the wall, x is parallel to the wall, Cm is the velocity slip coefficient,
λ is the mean free path, Cs is the thermal creep coefficient, µ is the viscosity, ρ
is the mass density, and T is the temperature.

Ts − Tw = Ctλ
∂T

∂n
|n=0 (2.16)

where Tw is the gas temperature at the wall, Ts is the surface wall temperature,
Ct is the temperature jump coefficient.
The Boltzmann equation inherently takes into account the slip-boundary con-
ditions; therefore, the DSMC method takes account of them as well. The slip
velocity and temperature jump are calculated based on the direct microscopic
sampling of the corresponding molecules macroscopic properties that strike the
wall boundary. These relations, implemented in Bird’s DS2V algorithm [16, 47],
are given as:

Us =

∑
((m/|Un|)Up)∑

(m/|Un|)
(2.17)

Ttra,j =
1

3R

∑
((m/|Un|) (||U||2))−

∑
(m/|Un|)U2

s∑
(1/|Un|)

− Ttra,w (2.18)

17

where Us is the velocity slip, Un is the velocity normal to the wall, Up is the
velocity parallel to the wall, ||U|| is the velocity magnitude, Ttra,j is the trans-
lational temperature jump, and Ttra,w is the wall translational temperature and
the summations are taken over all particles that strike the surface.

2.7 Periodic Boundary Condition

The periodic boundary condition is the computational representation of an in-
finitely large periodic domain. It is used when the physical geometry of interest
and the flow field have a periodically repeating nature. Thus, two opposite peri-
odic planes are always used to specify that whatever enters through one periodic
plane must simultaneously exit the opposite periodic plane. This ensures that
every simulated molecule crossing a boundary re-enters at the periodic mirror
boundary to conserve the number of simulated molecules as if the simulation
boundary is infinitely replicated in the direction of the molecule’s motion. There
is no change in the molecule velocity; therefore, all macroscopic flow properties
remain unchanged.

2.8 Inflow/Outflow Boundary Conditions

The inflow/outflow boundary conditions can accommodate supersonic and sub-
sonic flows. For supersonic flows, free stream boundary condition of Dirichlet
type is employed at the inlet with known free stream properties. Thus, parti-
cles are injected based on specified number density, temperature, and mean flow
velocity of the external flow. However, vacuum boundary condition is applied
at the outlet where no molecules are allowed to enter the computational domain
and all molecules striking the ”vacuum” boundary are removed from the flow.
In DSMC simulations of external hypersonic flow fields, the stream velocities are
much higher than molecule velocities and very few molecules enter the domain
from the outflow boundaries; hence, vacuum boundary conditions can accurately
predict flow properties at the outlet boundary. However, this is not the case in
microflow applications where the flows in microsystems are often subsonic, the
flow conditions are not uniform, and free stream boundary conditions are not
physically correct. In addition, the flow velocities are much lower than ther-
mal velocities, and hence, molecules can enter the computational domain from
both boundaries. Typically, accurate measurements of velocity in microscale ex-
periments are rather difficult whereas pressure and temperature are more easily
measured. Therefore, pressure boundary conditions are employed such that with
the specified pressure, other flow variables such as the velocity are evaluated
in an implicit manner from the cells inside the domain once the inflow/outflow
boundary conditions propagate into the domain as the flow simulation progresses.

18

Several treatments have been proposed in the literature to model pressure bound-
ary conditions and are summarized below.

2.8.1 Pressure Boundary Conditions

Pressure boundary conditions are widely employed to predict gaseous flows in
micro-channels. Generally, two types of boundary conditions are used: (i) spec-
ified inlet and exit pressure and (ii) specified mass flow rate at the inlet (inlet
pressure and temperature) and specified pressure at the outlet. Various schemes
have been proposed in the literature to model inlet/outlet pressure boundary
conditions such as particle flux conservation scheme [48, 49], schemes based on
the theory of characteristics [50, 51, 52, 53], schemes based on extrapolations
from the interior domain [52, 54].

2.8.1.1 Particle Flux Conservation Scheme

Ikegawa and Kobayashi [48] proposed this scheme based on the particle-conservation
concept and determined the particle fluxes at the inlet and outlet boundaries by
computing the number of particles crossing the computational boundary. Ac-
cordingly, the mean flow velocity, u(t), at the boundary is computed using the
number of particles flowing in/out the boundary within a time step. This is given
as:

u(t) =
N t−1

+ −N t−1
−

n∆tA/FN

where the subscripts + and − refer to the particles flowing in and out of the com-
putational boundary, n is the number density, t is the current time step, A is the
boundary cross-sectional area, and FN is the number of real particles represented
by each simulated particle.
For the outlet boundary, the temperature is not known in advance, and the
boundary may not be at the same temperature. Hence, the temperature is com-
puted in an implicit manner from the cells inside the domain using the zeroth-
order extrapolation as follows:

(Te)j = Tj (2.19)

where the subscript e corresponds to conditions at the ghost cell by the outlet,
and j indexes the boundary cell at the outlet. The number density at the outlet
boundary is then computed using ideal gas equation:

ne =
Pe

k (Te)j
(2.20)

The particle flux conservation scheme was also applied by Nance et al. [50] at
the inlet boundary and Wu et al. [49] at both boundaries. However, the authors
determined the mean flow velocities on a per-cell basis and computed the particle

19

flux using a Maxwellian distribution instead of counting the actual number of
particles crossing the computational boundary.

2.8.1.2 Characteristic Theory Based Scheme

Nance et al. [50] appealed to the Whitefield’s characteristic theory [55], which
is widely used in continuum calculations to derive boundary conditions for sub-
sonic rarefied flows, and calculated the outflow properties at the outlet boundary.
Wang and Li [51] implemented the theory of characteristics for both inflow and
outflow boundaries. Liou and Fang [52] implemented a simpler approach in which
they used the specified exit pressure to initialize the molecules at the outlet using
the theory of characteristics, and proposed the stream-wise mean velocity at the
inlet boundary to be extrapolated in an implicit manner from the neighbour cell.
Wang and Li [51] and Liou and Fang [52] calculated the local pressure at the
outlet boundary using the overall temperature. White et al. [53] proposed a new
form of the above scheme to account for rotational non-equilibrium effects. They
stated that there are consequences of considering non-equilibrium between the
translational and rotational energy modes such as gas flows in a microchannel
with a high inlet to exit pressure ratio or at small aspect ratio, and flows of
diatomic and polyatomic gases. In such conditions, White et al. [53] suggested
that the pressure should be measured using the translational kinetic tempera-
ture instead of the overall temperature. According to the kinetic theory of dilute
gases, the overall kinetic temperature is defined as an average mean of the trans-
lational and internal temperatures, and the ideal gas equation does not apply to
the overall temperature in a non-equilibrium situation [3]. Thus, they computed
the translational temperature using the perfect gas law, and the rotational tem-
perature using the zeroth-order extrapolation from the nearest boundary cell of
the computational domain. The implementation of this boundary condition is
summarized below.

At the inflow boundary, the inlet pressure and temperature, Pin and Tin, are
known. The number density nin is obtained from the ideal gas equation of state:

nin =
Pin
kTin

where k is the Boltzmann constant.
The average inlet velocities at the boundary cells are determined as follows:

(uin)j = uj +
Pin − Pj
ρjaj

(vin)j = vj

(win)j = wj

where the subscript in corresponds to the value at the ghost cell by the inlet,
j indexes the boundary cell at the inlet, the density ρ (ρ = nm̄) and the local
speed of sound a are obtained from the boundary cell at the current time step.

20

Similarly, at the subsonic outflow boundary of the computational domain, the
only known flow parameter is the exit pressure Pe. The other flow quantities such
as density and mean flow velocity are extrapolated from the adjacent cell using
the theory of characteristics as follows:

(ρe)j = ρj +
Pe − Pj
a2
j

(ue)j = uj +
Pj − Pe
ρjaj

(ve)j = vj

(we)j = wj

(Te)j =
Pe

R(ρe)j

where the subscript e corresponds to conditions at the ghost cell by the outlet,
j indexes the boundary cell at the outlet, and R is the ordinary gas constant
related to the Boltzmann constant k by k = mR and m is the molecular mass.

2.8.1.3 Zeroth-Order Extrapolation Scheme

Due to the nature of the particle flux method, fluctuations in the imposed flow
parameters at the boundaries can be rather large under low-speed flow condi-
tions, which make the numerical solution unstable. Based on this issue, Liou
and Fang [52] proposed an alternative method using zeroth-order extrapolation
to update the boundary information obtained from the previous iteration. They
showed that this significantly improves the stability of the numerical solution.
The inlet stream velocity is determined in an implicit manner from the boundary
cell according to the equation:

(uin)j = uj

Farbar and Boyd [54] applied this scheme at both inlet/outlet boundaries; how-
ever, they computed the properties at the boundary as a weighted average of the
instantaneous value and that calculated from previous time step. The equations
are summarized as follows:(

utin
)
j

=
(
αu
′

in

)
j

+ (1− α)
(
ut−1
in

)
j(

ute
)
j

=
(
αu
′

e

)
j

+ (1− α)
(
ut−1
e

)
j(

nte
)
j

=
(
αn
′

e

)
j

+ (1− α)
(
nt−1
e

)
j

Te =
Pe

k (nte)j

where the prime values correspond to the instantaneous properties, α is a weight
parameter between 0 and 1.

21

2.8.1.4 Iteration Time Step Based Correction Scheme

Yang et al. [56] proposed an improved pressure boundary treatment which in-
troduces the pressure information into the velocity calculation and, in addition,
considers the time step and the cell length into consideration. They demonstrated
that this scheme leads to major improvements in terms of convergence and appli-
cability compared to other methods. The equations proposed by Yang et al. [56]
at inlet/outlet boundaries are given by the below equations:

(uin)j = uj +
Pin − Pj
ρj∆xc

∆t

(ρe)j = ρj +
Pe − Pj
(∆xc)

2 (∆t)2

(ue)j = uj +
Pj − Pe
ρj∆xc

∆t

(ve)j = vj

(we)j = wj

(Te)j =
Pe

R(ρe)j

In these equations, ∆xc represents the cell size.

2.8.2 Methodologies of Particle Generation

Flow boundaries in a DSMC simulation are implemented by injecting parti-
cles into the computational domain corresponding to the external flow condi-
tions. Two methodologies are proposed for their implementation in DSMC: stan-
dard and reservoir method. Once the macroscopic properties at the inlet/outlet
boundaries are determined, the number of molecules entering the flow field and
their molecular velocities are determined accordingly to the reservoir or standard
method. The work done by Lilley et al. [57] and Perez et al. [58] aim to study the
computational efficiency of the two methodologies of inflow/outflow boundaries
in subsonic gas flows for both low and high-speed regimes. The results agree
that inclusion of the pressure correction term in the inflow/outflow boundaries
improve the computational efficiency in both methods with the standard method
behaves slightly better in convergence rate than the reservoir method in subsonic
gas flows. The two methodologies are discussed in separate sections below:

2.8.2.1 Reservoir Method

The well-known Maxwellian Reservoir method corresponds to ghost cells located
at the boundaries of the DSMC computational domain (see Figure 2.5), and acted
as sink and source for the simulation particles. The volume generation reservoir

22

algorithm, described in Tysanner and Garcia [59], fills a fixed reservoir volume at
the beginning of each time step by random placement of an adequate number of
particles with randomly assigned, appropriately distributed velocities drawn from
a Maxwellian distribution at the simulated temperature. The particle positions
are advanced in time (one time step ∆t); particles that cross the boundary and
enter the simulation domain over a time step become part of it; the remainder are
discarded and the simulation proceeds as usual. It is essential to mimic a reservoir
of infinite capacity by refreshing it with an entirely new set of particles at each
time step. The only subtlety is ensuring that the reservoir depth is sufficient
LR ≥ umax∆t (∆t : time that the particle travels within the cell; umax : particles
maximum velocity normal to the local domain boundary) so that it is extremely
improbable that a particle could travel more than one depth of a reservoir at
single time step. To simulate an equilibrium reservoir of volume VR at number
density nR and temperature TR, the algorithm proceeds as follows:

1. Compute the number of particles to be generated within the reservoir as
NR = nRVR.

2. Randomly assign the molecular velocity components of each particle ac-
cording to the Maxwell-Boltzmannn distribution about the reservoir cell
temperature TR [Bird 1994]

P (v) =

√
m

2πkTR
e−mv

2/2kTR

where m is the molecular mass, k is the Boltzmann constant. A flow velocity
may be assigned to a reservoir to model inflow or outflow boundaries.

3. Move the particles at their assigned velocity for time ∆t; retain the particles
that cross the boundary into the DSMC domain and disregard any that do
not enter the domain.

2.8.2.2 Standard Method

This method involves a particle emission surface set at the flow boundary (see
Figure 2.6). The number of particles to be injected during a time step is de-
termined from the number flux and their velocities are generated from surface
distribution. Boundary Conditions in DSMC simulations are often based on the
equilibrium Maxwell-Boltzmann distribution function. Assuming a Maxwellian
velocity distribution, the number of flowing-in molecules from the inflow or out-
flow boundaries in a given time step with a mean stream velocity V and temper-
ature T is given by the following equation [3]:

N = ∆tAn
1

2β
√
πFN

{
e−s

2cos2θ +
√
πs cosθ [1 + erf(s cosθ)]

}
(2.21)

23

Adjacent Cell

Domain Boundary

𝐿𝑅

Ghost Cell

Figure 2.5: Maxwellian Reservoir particle generation method: Ghost cell is indi-
cated in gray (LR: reservoir depth).

where n is the number density, s = βV is the molecular speed ratio i.e. the ratio
of the mean stream speed to the most probable speed, β is the reciprocal of the
most probable molecular speed (=

√
2RT), FN is the number of real molecules

represented by each simulated molecule, A is the cross-sectional area, R is the
universal gas constant, θ is the angle between the stream velocity vector and the
unit normal vector to the surface element, and erf is the error function.

Adjacent Cell

Domain Boundary

Particle Emission

Surface

Figure 2.6: Standard particle generation method: The surface which emits par-
ticles is represented by the shaded region.

The velocity components of the molecules entering the flow field are generated
according to the velocity distribution characteristic of the external flow. Veloc-
ity components v and w parallel to the boundary are generated independently
from the ordinary Maxwell-Boltzmann distribution function, while the velocity
component u normal to the inflow/outflow boundary that corresponds to the bi-

24

ased Maxwell-Boltzmann distribution is generated according to the acceptance-
rejection method.

Consider a gas flow across a typical stream boundary in a DSMC simulation
with stream velocity vector of normal component U such that U > 0 for an inlet
boundary and U < 0 for an outlet boundary, then the molecular and thermal
velocity normal components are given by u and u′ = u − U, respectively. The
probability of a molecule entering the inflow/outflow boundary is proportional to
the velocity normal to the boundary u. The molecules are randomly located at
the boundary and their molecular velocity distribution is given as [3]:

f(u) = C−1u exp(−β2u′2)

where C−1 is the normalization constant calculated using the normalization con-
dition that is the integration with respect to u from 0 to ∞ must be equal to
unity, and is given by:

2β2C = s
√
π(1 + erf s) + exp(−s2)

where s = βU is the non-dimensional speed ratio. Accordingly, the ratio of the
probability to the maximum probability is given by [3]:

P

Pmax
=

2(βu′ + s)

φ
exp(χ− β2u′2) (2.22)

where φ = s+
√
s2 + 2 and 2χ = 1 + s

[
s−
√
s2 + 2

]
.

The procedure for the generation of typical velocity components from a pre-
scribed probability density distribution function f(u) in the acceptance-rejection
algorithm is done in two steps. First, a random value of u, denoted u∗, that is
uniformly distributed within the range of interest is generated. Second, the value
of f(u∗)/f(u) is then evaluated. If f(u∗)/f(u) > Rf , where Rf is a uniformly
distributed random fraction between 0 and 1, then the chosen u∗ is accepted;
otherwise, it is rejected and the loop must be restarted by selecting a new ran-
dom u∗ until an accepted value is attained. It is necessary to limit the range
of the selected normal velocity u∗. The acceptance-rejection method replaced
the upper limit of ∞ by a limit value of 3/β; therefore, the thermal velocity u′

is randomly sampled in the interval [−U, 3/β] and the stream total velocity of
entering molecules, u = U + u′, is then between umin = 0 and umax = U + 3/β.
Thus, the velocities of molecules entering the simulation space are given as fol-
lows:

u = (U + 3/β)Rf

v =

(√
−ln(Rf)/β

)
cos(2πRf) + V

w =

(√
−ln(Rf)/β

)
sin(2πRf) +W

25

where V and W represent the local mean flow velocity components in paral-
lel directions to the flow boundary. Once the velocity components of entering
molecules are obtained, they are moved just off the boundary and their location
is determined by the generation of further values of Rf .

2.9 Particle Collisions

Simulating molecular collisions is a statistical process which allows DSMC to
achieve faster numerical performance than deterministic simulation methods such
as molecular dynamics. The concept of collision in DSMC implies short-range
intermolecular interactions described through Boltzmann equation [39]. Under
the assumptions of molecular chaos and a rarefied gas, where the mean molecular
diameter is much smaller than the mean molecular space in the gas, only binary
collisions between the gas particles need to be considered, and particles that
are near each other are selected as collision partners. In consequence, molecular
motions are decoupled from intermolecular collisions over a time interval smaller
than the physical collision time.

To evaluate molecular collisions in the gas, the physical domain is partitioned
into collision cells, and the molecules are sorted into these cells. Several colli-
sional modeling techniques have been applied successfully within the framework
of DSMC. All simulate an appropriate choice of collision pairs, and implement
a certain number of representative collisions between randomly selected pairs of
molecules within each cell. Roohi et al. [60] reported a comprehensive review of
the different collision models developed in the framework of the DSMC method.

The probability of a collision between two molecules in a homogeneous gas is
proportional to the product of the relative velocity of the colliding partners vr and
the total collision cross section σ. The mean value of the product is computed
in each collision cell, and the maximum value is recorded. The collision pairs
are selected based on the acceptance-rejection method, and the probability of the
chosen pair depends on the ratio of their product to the maximum product. This
method would have a computation time proportional to the square of the total
number of molecules. Bird in 1994 has introduced the no-time counter method
(NTC) technique for the computation time to be directly proportional to the
number of molecules. In conjunction with this technique, the sub-cell method
(Bird, 1988 [61]) that restricts possible collision pairs to sub-cells is used. This
procedure ensures that collisions occur only between near neighbors, and thereby
reduces the memory requirements and improves the accuracy of the simulation.

2.9.1 Molecular Models in DSMC

During the collision process, intermolecular collisions occur in each cell on the ba-
sis of probability. This probability is proportional to the relative velocity between

26

the two molecules and the total collision cross section. In DSMC simulation, the
total collision cross-section σT may be interpreted as the area around a collision
molecule in which the center of the incoming molecule cannot penetrate. It is
written as:

σT = 2π

∫ π

0

σsinχdχ = 2π

∫
bdb (2.23)

where σ is the cross sectional area defined as [62]

σ =
b

sinχ

∣∣∣∣ dbdχ
∣∣∣∣ (2.24)

where b is an impact parameter of the distance of closes approach between the
pre-collision/post-collision velocities of the two collision molecules, and χ is the
deflection angle as shown in Figure 2.7. Different collision models based on

Powered by TCPDF (www.tcpdf.org)

Figure 2.7: Illustration of the impact parameters [3]

the kinetic theory of gases exist in literature and can be applied to represent
intermolecular collisions. Three most frequent molecular models, including the
classical hard sphere (HS), the variable hard sphere (VHS), and the variable soft
sphere (VSS) model, are used in the simulation.

2.9.1.0.1 The Hard Sphere Model (HS) The HS model is the simplest
molecular model in which the gas molecule has a fixed diameter d, the closest
approach b is defined as b = d12 cos

(
1
2
χ
)
, where d1 and d2 are the diameters of

the colliding molecules, and thereby the total collision cross section defined as

27

σT = πd2
12 is constant. The molecular scattering is isotropic so that the post-

collision velocity is uniform in solid angle. In HS model, the molecule diameter
can be calculated as

dHS =

[
(5/16)(mkTref/π)1/2

µref

]1/2

(2.25)

where µref is the reference viscosity at reference temperature Tref , m is the molec-
ular mass, and k is the Boltzmann constant k = 1.380658 × 10−23J/K. The
scattering law in HS model is not realistic as σT is a strong function of vr and
the translational energy Er = (1/2)mv2

r for a real gas. To correct this primary
deficiency of the HS model, the variable hard sphere model (VHS) was introduced
by (Bird 1981 [63]).

2.9.1.0.2 The Variable Hard Sphere Model (VHS) In the VHS model,
the molecule is a hard sphere with diameter d that is a function of the relative
velocity vr; as follows:

dVHS = dref

(
cr,ref
vr

)ξ
=

[
(15/8)(m/π)1/2(kTref)ω

Γ ((9/2)− ω)µrefε
ω−(1/2)
t

]1/2

(2.26)

where the subscript ”ref” denotes the reference values at the reference tempera-
ture Tref , ξ = 2/(η−1) = ω−1/2 where η is the power determining the ”hardness”
of molecules from the inverse power law (IPL) model, and ω is the viscosity index
comes from the power-law temperature dependence of the coefficient of viscosity
by µ ∝ T ω, εt = (1/2)mrv

2
r is the relative mean kinetic energy.

In the VHS model, the closest approach b can be defined as

b = dVHScos

(
1

2
χ

)
(2.27)

The total collision cross section is expressed as:

σT = σT,ref

(
dVHS

dref

)2

(2.28)

In a DSMC simulation, σT,ref , Tref , dref , and ω are known parameters, vr is
determined and the value of σT is calculated. Typical values of ω and dref are
given in Table 3 (Bird 1994 [3]).

For both hard sphere models (HS) and (VHS), the deflection angle of the
relative velocity is given by:

χ = 2 cos−1

(
b

d12

)
=⇒ cos(χ) = 2

(
b

d12

)2

− 1 (2.29)

28

The factor
(

b
d12

)2

is uniformly distributed between 0 and 1. Thereby, the scat-

tering in the HS and VHS models is isotropic and fully covers the plane (−π to
π). The scattering angle is numerically generated in the DSMC code as:

cos (χ) = 2(Rf)− 1 (2.30)

where Rf is a random number generated between 0 and 1.
Unlike HS model, the effective diameter is an energy-dependent variable in

the VHS model. However, both models obey the isotropic scattering law and do
not correctly predict the molecular diffusions in real gases flows especially of gas
mixtures. The variable soft sphere model (VSS) [64, 65, 66] was introduced to
account for the anisotropic scattering of real gases.

2.9.1.0.3 The Variable Soft Sphere Model (VSS) In the VSS model,
the molecular diameter varies in the same way as the VHS model, but there is a
deflection exponent, α, in the relation of the closest approach b such that:

b = dVSScos
α

(
1

2
χ

)
(2.31)

This model is called variable soft sphere because χVSS is smaller than χVHS. The
molecular diameter is defined as:

dVSS =

[
5(α + 1)(α + 2)(m/π)1/2(kTref)ω

16αΓ ((9/2)− ω)µrefε
ω−(1/2)
t

]1/2

(2.32)

where α is the scattering coefficient (α is 1 for the VHS model). The VSS total
collision cross section can be expressed as:

σT = πd2
VSS (2.33)

The deflection angle χ in the VSS model is given by:

χ = 2 cos−1

((
b

d12

)1/α
)

=⇒ cos(χ) = 2

(
b

d12

)2/α

− 1 (2.34)

The factor
(

b
d12

)2

is uniformly distributed between 0 and 1. Thereby, the scat-

tering in the VSS model is not isotropic, and the scattering angle is numerically
generated in the DSMC code as:

cos (χ) = 2(Rf)
1
α − 1 (2.35)

where Rf is a random number generated between 0 and 1.

29

2.9.2 Collision Pairs

In the NTC collision procedure, the number of particle pairs that should be
checked for collision within a collision cell of volume Vc at a time step (∆t), is
defined as:

Ncollisionpairs = 1/2NN̄FN (σTvr)max ∆t/Vc (2.36)

where N is the instantaneous number of simulated molecules in a cell at a time
step ∆t, N̄ is the time average number of simulated molecules in a cell, FN is the
number of real molecules represented by each simulated molecule, σT is the total
collision cross section, and vr is the relative speed in the collision. In 2007, Bird
has proposed a modification to the NTC method where N (N − 1) /Vc replaces
NN̄/Vc in the equation of possible collision pairs. Referring to his notes [67], this
solves three problems associated with the NTC method. First, the above equation
includes the term N̄FN/Vc which is the number density and it is undesirable
for a microscopic collision procedure to depend on a macroscopic flow property.
Second, the collision procedure requires two molecules and there will be a problem
if one molecule per collision cell is presented. Finally, it takes time to establish
the value of averaged quantities such as number density. Thus, the number of
possible collision pairs becomes:

Ncollisionpairs = 1/2N (N − 1)FN (σTvr)max ∆t/Vc (2.37)

Thus, if ∆t is kept constant and the volume Vc is divided into eight octants, we
obtain Ncollisionpairs ∼ 8(N

8
)(N

8
− 1)∆t/(Vc

8
) ∼ N(N − 8)∆t/Vc, which means that

Ncollisionpairs is conserved as long as N � 1. Furthermore, if N and Vc are kept
constant and ∆t is divided by m, then Ncollisionpairs ∼ N(N − 1)m(∆t/m)/Vc
and Ncollisionpairs is conserved if we carry m collisions. From kinetic theory, the
collision probability for hard sphere gases is proportional to their relative velocity.
Once the number of possible collision pairs is determined within each cell Nc, each
pair (i, j), 1 ≤ i < j ≤ Nc chosen at random from within the same subcell of a
collision cell, is checked for a collision probability test where the pair of particles
is accepted for collision if:

Rf <
σTvr

(σTvr)max
(2.38)

where σTvr represent the product of the mean relative velocity and the collision
cross section of pair (i, j), and Rf is a uniform random number ranging from 0
to 1. If the pair is rejected, a new pair is randomly chosen and the procedure is
repeated until the required number of candidate pairs Nc in the collision cell has
processed.

2.9.3 Post Collision Velocities

After the collision pair is chosen, their post-collision velocities, v
′
i and v

′
j, need to

be evaluated. From conservation of linear momentum, the center-of-mass (vcm)

30

velocity remains unchanged by the collision,

vcm =
1

2
(vi + vj) =

1

2

(
v
′

i + v
′

j

)
= v

′

cm (2.39)

The conservation of energy states that the magnitude of the relative velocity is
also unchanged by collision,

vr = ||vi − vj|| = ||v
′

i − v
′

j|| = v
′

r (2.40)

The conservation of momentum and energy provide four of the six constraints in
v
′
i and v

′
j needed to determine the post-collision velocities. The two remaining

unknowns are selected at random with the assumption that the direction of the
post-collision relative velocity is uniformly distributed over the unit sphere,

v
′

r = vr [(sinθcosφ)x̂+ (sinθsinφ)ŷ + cosθẑ] (2.41)

where φ is the azimuthal impact angle uniformly distributed between 0 and 2π,
and so it is computed using a random number as φ = 2πRf , and θ is the deflection
angle defined as the angle between the pre-collision relative velocity and the post-
collision relative velocity and distributed according to the probability,

P (θ)dθ =
1

2
sinθdθ (2.42)

The probability equation can be written as P (q)dq = 1
2
dq under the change of

variable q = cosθ, and so q is uniformly distributed in the interval [-1,1] and the
deflection angle is computed using another random number Rf ,

cos(θ) = 2Rf − 1

sin(θ) =
√

1− cos2θ
(2.43)

For the VSS model, the post-collision relative velocity depends on the value of
the parameter d (Bird 1994), it is given by:

d =
√
||vry||2 + ||vrz||2 (2.44)

If d > 10−6, the post-collision relative velocity components are given by:

v
′

rx = b||vrx||+ asin(c)d

v
′

ry = b||vry||+ a

(
||vr||||vrz||cos(c)− ||vrx||||vry||sin(c)

d

)
v
′

rz = b||vrz|| − a
(
||vr||||vry||cos(c) + ||vrx||||vrz||sin(c)

d

) (2.45)

31

If d < 10−6, the post-collision relative velocity components are given by:

v
′

rx = b||vrx||
v
′

ry = acos(c)||vrx||
v
′

rz = asin(c)||vrx||
(2.46)

where b = 2(Rf1)
1
α − 1, a =

√
1− b2, and c = 2π(Rf2), Rf1 and Rf2 being two

random numbers between 0 and 1.
The post-collision velocities of the two molecules in a collision pair (i, j) can be
obtained as:

v
′

i = v
′

cm +
1

2
v
′

r

v
′

j = v
′

cm −
1

2
v
′

r

(2.47)

This assumption is exact for the hard-sphere model and has been found to be an
excellent approximation in general [3]

2.10 Sampling

As DSMC is inherently a stochastic method, the macroscopic flow properties of
interest are computed as averages at the geometric center of the collision cells.
In the sampling process, the number of simulated molecules Nc, the number
density nc, the three velocity components uc, vc, and wc, are the main macroscopic
physical quantities sampled in a particular cell of volume Vc. The number density,
nc, is given as:

nc =
NcNrealpersim

NsamplesVc
(2.48)

where Nsamples is the number of samples collected, and Nrealpersim is the number
of real molecules represented by one simulated molecule.
The three velocity components are computed according to:

uc =
1

Nc

Nc∑
i=1

ui

vc =
1

Nc

Nc∑
i=1

vi

wc =
1

Nc

Nc∑
i=1

wi

(2.49)

where the sum is over simulated molecules in the statistics cell of volume Vc.
Once the three macroscopic velocity components are sampled, the macroscopic

32

translational temperature is computed as the average value of the three non-
equilibrium temperature components according to:

T =
1

3
(Tx + Ty + Tz) =

(
1

Nc

Nc∑
i=1

(
u2
i + v2

i + w2
i

)
−
(
u2
c + v2

c + w2
c

)) m

3k
(2.50)

where m is the molecular mass and k the Boltzmann constant.
Next, the pressure can be found using the ideal gas law Pc = nckTc (if it is valid),
or by integrating the change in particle momentum over all collisions within a
solid surface (for example, high Mach number condition where the pressure is not
isotropic) i.e. explicitly evaluating the pressure tensor [37].

Unless the number of computational particles in a given cell is large, there will
be unacceptably large uncertainties in the average quantities. Several samples of
each cell are therefore necessary. The DSMC method is an explicit time marching
simulation algorithm. As such, it always produces unsteady flow simulations. The
statistical scatter of a DSMC computation varies according to the inverse square
root of the sample size. The DSMC simulation starts from a set of prescribed
initial conditions and proceeds in small time steps identified with the physical
time in the real flow. Figure 2.8 illustrates the two sampling methods used in
DSMC: steady and unsteady sampling techniques. For predicting steady flows,
each independent Monte Carlo simulation proceeds until a steady behaviour is
established at a sufficiently large time. Time-averaging of the macroscopic flow
quantities over a number of time steps is required to reduce statistical fluctuations
and obtain smooth results. For simulating unsteady flows, ensemble averaging
of many independent Monte Carlo simulations, each originating from a different
random number generator seed, is carried out to obtain final results with an
acceptable statistical accuracy. The flow field is sampled at the appropriate
flow sampling time steps, denoted by dark bands in Figure 2.8. Unsteady flow
sampling to yield the macroscopic flow quantities at a given time step requires
averaging over all the independent realizations of the transient simulations at
that time step. More details on unsteady sampling methods are presented in
(Cave et al. 2008 [4]).

33

Time

Time

Time

Time

t=0 Flow time step

Flow sampling time step Sampling interval

 Reset flow

 Reset flow

Initial unsteady flow Steady flow field = average of these time steps

Unsteady

flow

sampled as

ensemble

average of

sampling

time steps

across each

run

(a)

(b)

Figure 2.8: (a) The schematic of the time-averaging of the flow properties over
a long interval of simulation time. (b) The schematic of the ensemble-averaging
of the flow properties over three independent DSMC simulations, each initiated
from a different random number generator seed [4].

34

Chapter 3

New Parallel Adaptive
Three-Dimensional DSMC
Algorithm

3.1 Octree Data Structure

An octree is a tree data structure that employs a hierarchy of tree-like sub-division
of a three-dimensional domain. It recursively partitions a three-dimensional space
into cubes, dividing each cube into eight equally-sized octants of halved-sized
dimensions. This recursive subdivision continues until some termination criteria
are met. Quad-trees are the two-dimensional analog of octrees where each node
has at most four children. The enclosing region for the entire tree is the bounding
box for the root node of the tree, a node with no parent. Each interior node
has exactly one parent and eight child octant; however, the leaf node is a node
with no children. The depth of a node from the root is referred to as its level,
with the root having level 0 (refer to Figure 3.1). In-depth studies of various
kinds of octrees can be found in [34]. Once the data structure is constructed,
a recursive neighbor subroutine is called to efficiently find all possible neighbor
nodes of each collision cell in the octree. The concept of a neighbor in a tree
structures (quadtrees or octrees) is defined as follows: We say that a node N is
a neighbor of node N’ in direction I if N corresponds to the smallest block (it
may correspond to a non-leaf node) adjacent to N’ (i.e., touching even if just at a
point) in direction I of size greater than or equal to the block corresponding to N’.
Whereas in two dimensions we have eight possible directions, in three dimensions,
we have 26 possible directions. In particular, in two dimensions, two nodes can
be adjacent, and hence neighbors, along with an edge (four possibilities) or along
a vertex (four possibilities). In contrast, in three dimensions, two nodes can be
adjacent, and hence neighbors, along with a face (six possibilities), along with an
edge (12 possibilities), or along a vertex (eight possibilities). Such neighbors are

35

termed face-neighbors, edge-neighbors, and vertex-neighbors, respectively. These
relations are shown in Figure 3.2. The neighbor-finding process is important to
traverse the tree during the ray-tracing phase of molecular movements.

x

y

z

1 2

4 3

6 5

8 7

(a) The hierarchical structure of the octree and the order of the eight octants

Level 0

Level 1

Level 2

Level 3

(b) Octree block decomposition of a three-dimensional object and its tree representation

Figure 3.1: Octree data structure

3.2 Three-Dimensional Hybrid Mesh Scheme

In the current study, an octree-based Cartesian grid divides the computational
domain into cubic cells, whereas the surface of the 3D solid object is triangulated
using the preprocessing open-source software SALOME 7.5.1 [68]. Tree-based
methods with the simple Cartesian structure and embedded hierarchy make use
of recursive encoding schemes. These schemes render processes such as mesh
adaptation, rebuilding, data access, and handling of fluid-solid interaction both
simple and efficient.

36

(a) (b) (c)

Figure 3.2: Example of node neighbors in octree structure (a) a face neighbor,
(b) an edge neighbor, and (c) a vertex neighbor.

The flow domain is represented by a hybrid mesh consisting of a hierarchical
octree-based Cartesian grid, where the 3D solid object is discretized into tetra-
hedral meshes using the open source pre-processor SALOME 7.5.1. The mesh
is then exported to a data file. The simulator read in the mesh, and three-
dimensional affine transformations are done (if necessary) before embedding the
object within the three-dimensional grid system. The transformations are possi-
ble as the object is represented by point sets or nodes. Three-dimensional affine
transformations include linear 3D transformations (translation, rotation, scaling,
shearing, and reflection) and perspective transformations according to a gener-
alized 4x4 transformation matrix in homogeneous coordinates as summarized in
Figure 3.3.

A special procedure is developed to accurately identify the 3D solid object and
record the object triangular surface mesh in the octree-based Cartesian structure.
Figure 3.4(a) shows a schematic diagram illustrating the hybrid mesh scheme.
Each solid object is bounded by a rectangular box. An axis-aligned box-box
intersection test [5] is then carried out to identify collision cells neighbours and
all cubic cells that overlap with the bounding box surface. In addition, the fast
3D triangle-box overlap testing by Moller [69] is implemented to test overlapping
between triangular elements of the solid object surface mesh and cubic cells inside
the bounding box. This test enables linking each surface mesh triangular element
to the overlapping Cartesian cells. Cartesian cells intersecting any of the object’s
surface triangles will be given a FLAG, and the indices of the surface triangles
related to each cell are re-coded. Figure 3.5 represents a schematic representation
of the geometric intersection tests used to identify the 3D solid object in the
octree-based Cartesian structure.

The proposed three-dimensional hybrid mesh scheme employs a flexible data

37

Perspective transformations

Linear transformations – local scaling,

shear, rotation, and reflection

Translations l, m, n along x, y, and z axis

Overall scaling

 T
r

q

p

jc f

ie b

gd a

l m n s

Figure 3.3: Generalized 4x4 transformation matrix in homogeneous coordinates

Surface triangle

element

 zyxP

zyxP

zyxP

,,

,,

,,

3

2

1

Determine the

relationship between

object and cells

(a) (b)

Figure 3.4: (a) Schematic representation of a triangulated surface mesh of a
sphere embedded in a 3D octree Cartesian grid. (b) Bounding box and a cut-cell
representation.

38

𝐴𝑚𝑎𝑥
𝐵𝑚𝑎𝑥

𝐵𝑚𝑖𝑛 𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥 𝑧

𝐵𝑚𝑖𝑛 𝑧

x

y

z

(a) Axis-aligned box-box intersection test. Each box is defined by its minimum and maximum
vertices. The intersection is based on the separating-axis theorem.

𝑉3

𝑉2

𝑉1

𝑉1

𝑉2

𝑉3

𝑏3

𝑏1

𝑏2

𝑏4

𝑏5

𝑏6
𝑏7

𝑏8

(b) Box-Triangle intersection test. (Left) The case when one of the triangle vertices intersects
the box; (Right) The plane containing the triangle intersects the box.

Figure 3.5: Geometric intersection tests to identify the complex 3D physical
object in the octree-based Cartesian structure [5].

39

structure which enables simulation of particles movement and sorting processes
with fewer operations, thereby reducing the CPU time. The derived data struc-
ture in Fortran 90 is adapted to efficiently store and manage the complete in-
formation related to the millions of particles, grid cells, and triangular surface
elements during a DSMC simulation. It is a collection of different elementary data
structures such as variable, pointers, linked lists, and arrays. Fortran 90 allows al-
locatable arrays of derived data type and arrays of derive-type objects which have
pointers as components in which various components of the derived data type are
accessed using percent signs. The former is used to store the complete particles’
information including global position, velocity, molecule cell/sub-cell address that
represents the global index of the cell/sub-cell containing this molecule, etc., and
the complete boundary triangles’ information including vertex nodes, triangle’s
normal vector, and orthonormal triangle basis. The latter is used to store the
data of collision cells including cell geometry, cell neighbors, resident particles,
children global indices, and boundary triangle indices.

Special treatment of the cells being crossed by the solid boundary, i.e., the
so-called cut-cells, is also applied. Figure 3.4(b) shows a zoomed-in view of the
box bounding the solid object (sphere) and a cut-cell representation. Two main
cut-cell methodologies for DSMC simulations of rarefied gas flows around moving
obstacles have been proposed [35, 70]. These methods used to estimate the cut-
cell effective volume needed to accurately model collisions and predict the macro-
scopic properties in the cut-cell. They use the random marker-based approach
and vary only in the way the immersed solid object is represented numerically.
The first one discretized the boundary surface mesh into triangular facets, and
the effective cell volume is computed either by polyhedron decomposition utiliz-
ing the facets and the collision cell faces into a number of pyramids and compute
their volume or by Monte Carlo random marker method [35, 70]. The latter
expresses the boundary surface by analytical expressions as an input [70]. The
Monte Carlo random marker cut-cell method is implemented in this work [35].
It performs two main functions: First, all triangular surface elements are sorted
into the appropriate octree Cartesian cells within the geometry data structure.
Second, a number of particles, Np, is randomly generated within each cell with
a volume V . Possible intersections between a ray going out from a particle and
directed along the unit normal vector of a given surface triangle element are de-
termined. If no intersections occur with all surface triangle elements within the
cell, the particle lies inside the flow field. Then, the volume of the cut-cell is
simply determined by dividing the fraction of particles determined to lie within
the flow field, Nc, by the total number of Monte Carlo particles considered, Np,
as:

Vc = V (Nc/Np)

The error in such a volume calculation is inversely proportional to the square
root of Np. Hence, the effective cut-cell volume converges to its exact value as the

40

number of Monte Carlo particles used increases. In this work, an initial guess of
the cut-cell volume is set equal to half the uncut Cartesian cell, and a threshold
error (≈ 1%) is specified, and we keep increasing the number of particles within
the cell until the percent error computed is below the threshold value. The cut-
cell algorithm is called at the beginning of each simulation when the octree is
constructed and not every time step.

3.3 Three-Dimensional Particle Ray-Tracing Scheme

Molecular movement routine constitutes a significant fraction of the computa-
tional cost in a DSMC simulation. Simulated molecules move along linear tra-
jectories defined in a vector form as rf = ri +v∆t, where rf is the final position
of the particle, ri is the initial position vector, and ∆t is the simulation time
step. To achieve both robustness and efficiency in tracking particle movement
within the hierarchical octree-based Cartesian grid, a special particle ray-tracing
technique is employed. The ray-tracing algorithm takes advantage of the cell
connectivity information provided by the mesh data to efficiently handle the in-
tersection of the line segment traced by the particle with arbitrary triangulated
complex boundary geometry. The most significant cause of inefficiency is testing
for intersection between a ray and each triangle of a sizeable complex body. This
is extremely slow and very costly when for example, the geometry is made up of
approximately 70, 000 triangles and 70, 000 tracks have to be tested for intersec-
tion. A review on the root of ray tracing and ray traversal algorithms for a variety
of commonly used data structures can be found in (Chang 2001 [71]). The first
octree traversal algorithm applied to ray tracing was introduced by Glassner [72].
Wu et al. implement a cell-by-cell ray-tracing technique for particle movement in
unstructured grids [73]. The method of the particle ray-tracing technique used in
their work is very similar to previous work done by Kannenberg [74] which involve
tracing a particle’s trajectory to the nearest cell face then moving the particle to
the intersecting position on the corresponding face where a further journey of the
particle depends on the face condition. As in other DSMC codes [75], ray tracing
is performed only for particles which leave the assigned cell or impact the solid
boundary to minimize the efficiency reduction due to (brute-force) ray tracing all
simulated particles in the simulation domain.

The ray-tracing scheme is used in the vicinity of the solid object surface where
the region of the bounding box is treated as follows. During a single time step, a
molecule cannot move more than one collision cell size along each dimension (a
DSMC time constraint). Ray tracing is performed only for particles that leave
their assigned cell and intersect the box bounding the solid object. If the particle
doesn’t reach the bounding box or crosses it before the end of the simulation
time step, the task of particle tracking is to test whether the particle intersects
the simulation domain boundary or not. If it hits the simulation domain bound-

41

ary, then the particle is removed if an inflow/outflow boundary is encountered;
otherwise, its interaction with the boundary is processed according to the spec-
ified wall boundary condition, its position is updated accordingly, and the task
of its movement is routine. If not, then tentatively update the final position of
the particle. If an intersection with the bounding box occurs (this includes the
cases where the particle is within the bounding box, or the particle is outside and
reaches the bounding box during its movement), a cell-by-cell particle tracking
procedure is performed to determine whether the particle reaches a boundary
surface triangle, stays in or leaves the current cell. This process is done in an
extremely efficient way by taking advantage of the hierarchical octree-based data
structure. The octree structure allows the most significant acceleration schemes
for the ray tracing algorithm wherein grid cells are axis-aligned boxes whose
edges are parallel to the basis vectors. Effective geometric tools used in com-
puter graphics, including ray-box and ray-triangle intersection tests, as shown in
Figure, are used within the ray tracing algorithm. If no ray-triangle intersection
occurs, the particle’s position is updated if the particle remains in the current
cell; otherwise, ray-box intersection tests with all possible neighbor collision cells
are performed to track the particle from the current cell to its nearest neighbor
collision cell. The particle-tracking algorithm is then invoked again to move the
particle over the remainder of the time step. If the particle intersects with one
or more of the triangulated boundary surface mesh elements contained within
a cell, the boundary triangle element with the minimum intersection distance is
specified. The particle’s position and velocity are determined according to the
appropriate boundary condition, and the task of the particle movement is also a
routine till using up the remaining of the whole time step. Figure represents the
reflection of the particle after it intersects a boundary surface mesh element. If
the particle leaves the bounding box before the end of the simulation time step,
then an intersection test with the simulation domain boundary is performed. At
the completion of the molecular movement phase, each particle is automatically
stored within its last cell by the sort subroutine. Figure 3.8 summarizes the
primary ray tracing steps in a flowchart.

3.4 Spatial and Temporal Adaptivity Scheme

A unique feature of the proposed algorithm is that it runs transient parallel Monte
Carlo simulations simultaneously and independently on multicore CPUs. Most
DSMC solvers are parallelized through decomposition of the physical domain into
groups of cells that are distributed among the processors. The efficiency of such
parallelization scheme may suffer due to the intensive communications between
the processors and load imbalance among the processors. The spatial domain de-
composition parallelization scheme is convenient for simulating low speed flows
where a uniform Cartesian grid is used, and high-gradient flows where grid res-

42

𝑑

(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥)

P

(a)

𝑃1

𝑃2

𝑃3

𝐼

𝑅1

𝑅2

𝑉𝑇𝑒𝑠𝑡

𝑉𝑇𝑒𝑠𝑡

𝑉𝑇𝑒𝑠𝑡

z

y

x

(b)

Figure 3.6: Ray-Box (a) and Ray-Triangle (b) intersection tests

43

𝑣𝑖
𝑣𝑟

𝑥

𝑦

𝑧

𝑛

Figure 3.7: Reflection of a simulated molecule from the boundary triangle element

olution in both space and time is evoked once before steady state is reached.
In contrast, the proposed parallelization scheme is more suitable for simulating
highly unsteady rarefied flows. The length and time scales in such flows vary
considerably over the domain. Thus, frequent spatio-temporal adaptation for
variable resolution of the different flow regions is required. The upper diagram
in Figure 3.9 shows a schematic representation of the proposed parallelization
scheme using multiple threads. Each thread runs sequentially N realizations
(each initiated from a unique random number generator seed) of the transient
DSMC simulation consisting of M time steps. The realizations from different
threads are averaged (by a SNIFFER algorithm) to compute the macroscopic
properties distributions at flow sampling time steps. Due to the lack of commu-
nication between the threads when each is handling an independent realization,
the parallelization efficiency is almost 100 %.

The proposed algorithm employs a novel spatio-temporal adaptivity scheme
to simulate flows with length and time scales that vary considerably over the
domain. Accurate prediction of these flows requires variable resolution of dif-
ferent flow regions. The spatio-temporal adaptivity scheme adjusts dynamically
local grid spacing and time steps, and accurately resolve local flow features. Fig-
ure 3.10 shows the flow chart for the implemented DSMC method using the
adaptive approach. The kinetic spatial scale, defined by the mean free path λ,
and the temporal scale, defined by the mean collision time τc = λ/

√
2kT/m,

44

Molecule Hits Boundary

Bounding Box

Identify Boundary Collision Cell

Boundary Collision Cell

Contains Boundary Triangles

Molecule Goes to Nearest

Boundary Collision Cell

Update Molecule

Position

Ray Intersects one of the

Boundary Triangles at a Point

within the Cell

Apply BCs and Reflect

Molecule from Boundary

Molecule Intersects

Simulation Domain

Molecule Leaves

Boundary Bounding Box

Apply BCs and Reflect

Molecule from Boundary

Move Molecule

YES NO

YES

YES

NO

NO

NO NO

NO YES

YES

YES

Figure 3.8: Ray-Tracing scheme

45

Spatio-temporal adaptivity is carried out for all threads every Na = Ta/Δt time steps. C realizations rijk,
k=1..C are averaged (by the sniffer) at t=Ta, 2Ta, …, Tf (corresponding to time step i=Na, 2Na, …, M) to
estimate the macroscopic properties distributions needed for the spatio-temporal adaptivity criteria invoked.
These criteria will set the grid size and the associated temporal levels distribution for the time intervals
[Ta+Δt, 2Ta], [2Ta+Δt, 3Ta], … While the sniffer carries out sampling of macroscopic properties and
subsequently updates the distribution of cell sizes and temporal levels, the threads pause. Once the sniffer
finished its task, the threads resume.

Each thread runs sequentially N realizations of the transient simulation consisting of M time steps. NsC
realizations rijk, j=1..Ns, k=1..C, are averaged every output time interval, To = No Δt , to compute the
macroscopic properties distributions at output time step No. The decision to include a new set of NsC
transient simulations (increment N by Ns) is based on the relative statistical difference between macroscopic
properties of the last NC realizations and the previous (N-Ns)C realizations. Note that N is an integer
multiple of Ns.

 r111 , r211, …, ri11, …, rM11thread 1

thread 2

…

thread k

…

thread C

 r112 , r212, …, ri12, …, rM12

macroscopic properties
distributions at t=iΔt

 r11k , r21k, …, ri1k, …, rM1k

 r11C , r21C, …, ri1C, …, rM1C

…

…

 r1j1 , r2j1, …, rij1, …, rMj1

 r1j2 , r2j2, …, rij2, …, rMj2

 r1jk , r2jk, …, rijk, …, rMjk

 r1jC , r2jC, …, rijC, …, rMjC

…

…

 r1N1 , r2N1, …, riN1, …, rMN1

 r1N2 , r2N2, …, riN2, …, rMN2

 r1Nk , r2Nk, …, riNk, …, rMNk

 r1NC , r2NC, …, riNC, …, rMNC

…

…

j = 1

…

…

…

…

…

…

…

…

…

…

…

…

j=Ns j = N

 r1j1 , …, rNaj1thread 1

thread 2

…

thread k

…

thread C

t=Ta t=2Ta

…

…

 r1jC , …, rNajC

 r1j2 , …, rNaj2

 r1jk , …, rNajk

 r(Na+1)j1 , …, r(2Na)j1

…

…

 r(Na+1)jC , …, r(2Na)jC

 r(Na+1)j2 , …, r(2Na)j2

 r(Na+1)jk , …, r(2Na)jk

t=Tf

 r(M-Na+1)j1 , …, rMj1

…

…

 r(M-Na+1)jC , …, rMjC

 r(M-Na+1)j2 , …, rMj2

 r(M-Na+1)jk , …, rMjk

 r(2Na+1)j1 , …, r(3Na)j1

…

…

 r(2Na+1)jC , …, r(3Na)jC

 r(2Na+1)j2 , …, r(3Na)j2

 r(2Na+1)jk , …, r(3Na)jk

…

t=3TaTa+Δt t=2Ta+Δt

i : time step, i=1..M,
j: realization per thread index, j=1..N
k: thread index, k=1..C

Figure 3.9: The schematic of running transient DSMC simulations on different
threads. Top Diagram: Each thread runs sequentially N realizations of the tran-
sient simulation consisting of M time steps. NsC realizations rijk, j = 1..Ns, k =
1..C, are averaged every output time interval, To = No∆t, to compute the macro-
scopic properties distributions at output time step No. The decision to include a
new set of NsC transient simulations (increment N by Ns) is based on the relative
statistical difference between macroscopic properties of the last NC realizations
and the previous (N −Ns)C realizations. Note that N is an integer multiple of
Ns.
Bottom Diagram: The spatio-temporal adaptivity is carried out for all threads
every Na = Ta/∆t time steps. C realizations rijk, k = 1..C are averaged (by the
sniffer) at t = Ta, 2Ta, ..., Tf (corresponding to time steps i = Na, 2Na, ...,M) to
estimate the macroscopic properties distributions needed for the spatio-temporal
adaptivity criteria. These criteria will set the grid size and the associated tempo-
ral levels distribution for the time intervals [Ta+∆t, 2Ta], [2Ta+∆t, 3Ta], ... While
the sniffer carries out sampling of the microscopic properties and subsequently
updates the distribution of cell sizes and temporal levels, the threads pause. Once
the sniffer completes its task, the threads resume.

46

are calculated according to the binary elastic collision model used in the DSMC
simulation. Several collision models, designed to reproduce the real flow macro-

Average runs for

unsteady flow

or

average samples

Output

results

Stop

Read data

Initialize

molecules &

boundaries

Start

For unsteady

flow, repeat until

reqd. sample is

obtained

Interval > ∆𝑡𝑎 ?

Move molecules

Apply BCs

Enter new molecules

Sort into cells

Interval > ∆𝑡𝑠 ?

Yes

Time > 𝑡𝐿 ?

No

Yes

No

No Yes

Spatial-Temporal

adaptation

Sample flow properties

Compute collisions

Figure 3.10: Simplified flow chart of the implemented DSMC algorithm. ∆ta:
adaptive time; ∆ts: sampling time; tL: Long time.

scopic behavior, were applied successfully to numerous DSMC simulations from
micro/nano flows to hypersonic flows. These models include the inverse power
law model, the hard sphere (HS) model, the variable hard sphere model (VHS),
and the variable soft sphere (VSS) model [3]. In the VSS model, the mean free
path is given as:

λVSS =
4α(7− 2ω)(5− 2ω)

5(α + 1)(α + 2)

(µ
n

)
(2πmkBT)−1/2

µ = µref

(
T

Tref

)ω (3.1)

where m is the molecular mass, n = ρ/m is the number density, µref is the
viscosity at reference temperature, kB is Boltzmann constant, α is the scattering
parameter (α = 1 for VHS model), and T is the temperature. The viscosity index
ω is the power exponent of temperature in the viscosity law given by ω = 1

2
η+3
η+1

.
η is the repulsive power exponent in the inverse power law model or the repulsion

47

point center model, F = K/rη, where F is the force, K is constant, and r is the
distance between molecules. Typical values of η are: 5, 7, 9, 11, 15, 21, 25, and∞.
For the hard sphere (HS) model one has ω = 1/2, and η = ∞, for the variable
hard sphere (VHS and also the inverse power law IPL) molecule with ω = 0.75,
one has η = 9, and for the Maxwellian molecule one has ω = 1, and η = 5.
The hard sphere model with η =∞ is the hardest molecule, and the Maxwellian
molecule is the most soft among the molecular models under study [46].
In the HS model, the mean free path is expressed as:

λHS =
1√

2πd2n
(3.2)

where d is the molecular diameter.
The mean collision time is related to the mean free path λ and the most probable
velocity vmp by

τc =
λ

vmp
= λ×

√
m√

2kBT
∼ λ√

T
(3.3)

It can be seen from the above equations that the mean free path and the mean
collision time are inversely proportional to the number density as:

λ ∼ Tα
∗

n

τc ∼
Tα
∗−0.5

n

(3.4)

where α∗ ∈ [0, ω − 1/2]; α∗ = 0 for HS model.
Thus, for flow field having large non-uniform density and temperature variation,
such as hypersonic flows over blunt bodies, will result in a significant variation
of the mean free path and mean collision time in the flow field. The presence
of large gradients of flow macroscopic parameters requires variable resolution of
different flow regions. In a high-density region, λ and τc would be small and
small cell size and time step should be used in these regions; while in low-density
areas, large cell size and time step would be used for accurate and efficient DSMC
simulation. In addition to the number density, the temperature also affects the
mean free path and the mean collision time. Thus, the process of regenerating
the mesh and reassigning a variable time step should ideally be fully automated
and consistent with the density and temperature distribution of the flow field.

Prior to the adaptation process, the DSMC simulation starts with a uniform
mesh. As depicted in the bottom diagram of Figure 3.9, spatio-temporal adap-
tivity is carried out for all threads every spatio-temporal adaptivity time interval.
This parallel process is frequently interrupted by the SNIFFER (serial) algorithm
to efficiently compute the macroscopic properties from the average of the realiza-
tions from different threads and subsequently set the grid size and the associated

48

temporal levels distribution. The additional cost of the SNIFFER serial activ-
ity is very small and the measured parallelization efficiency of the parallelization
scheme including the SNIFFER is more than 95 %.

Spatial adaptation of collision cells follows the conventional DSMC constraint
on the collision cell size, ∆xc = αcλ, where αc is a user-defined collision cell size
factor. The DSMC constraint on the minimum number of simulated molecules
per collision cell, Nmin, must be preserved in spatial adaptation process to disal-
low collision cells with too few molecules. It is concluded from previous DSMC
studies [76] that it is necessary that the cell size is constrained to be less than
one-third of the local mean-free-path, αc ∈ [1/4, 1/2], and the number of sim-
ulated molecules per cell should exceed 20 (Nmin > 20) for slip flow and 10
(Nmin > 10) for transition flow. Spatial adaptation is done in two processes:
refinement and coarsening. During the refinement process, the average of local
mean free path, λav, and the minimum number of simulated molecules over all
CPU cores is computed for each collision cell. Then, each collision cell is tested
for spatial adaptivity by computing the nearest division integer nd, given by:

nd =
log
(

∆xc
αcλav

)
log(2)

(3.5)

The collision cell is refined into (2nd)3 new octants provided that nd is greater than
or equal to one and the minimum number of simulated molecules in a collision cell
is greater than Nmin × (2nd)3. In the coarsening process, the average local mean
free path over all CPU cores is computed in each parent cell of eight collision
octants. Every parent cell with a size less than αcλav or contains a child with
few numbers of simulated molecules will be coarsened. The entire new geometry
octree data structure is then completed and simulated molecules are re-sorted
into the new tree structure.

The temporal adaptation requires computing the desired time step, ∆td, in
every collision cell and updating the DSMC simulation flow time step. Usually,
the desired time step is adapted to the minimum time between a specified fraction
of the local mean collision time in each collision cell, ∆t1 = α1τc, and a specified
fraction of the time needed for a molecule to travel a local collision cell size,
∆t2 = α2

∆xc/vmp, as follows:

∆td = min

(
α1

λc
vmp

, α2
∆xc
vmp

)
(3.6)

where α1 and α2 should be smaller than 1/2 in DSMC simulations [76], α1, α2 ∈
[1/3, 1/2]. The DSMC simulation flow time step is updated according to a user-
defined criterion. One of the criteria is the one specified by Bird in 2007 [67]
in which the flow time step is advanced in steps equal to the smallest value of
the desired time step among all collision cells. In the present study, different

49

temporal levels are considered in the computational domain where the number
of temporal levels, Nl, is computed from the minimum, ∆tdmin, and maximum,
∆tdmax, desired time steps as follows:

∆tdmax
∆tdmin

= 2Nl (3.7)

Each temporal level l, l = 0..Nl−1, is characterized by 2l time steps. Collision
cells are assigned to different temporal levels such that ∆tl = ∆tdmax

2l
≤ ∆tdc,

where ∆tl is the time step in temporal level l and ∆tdc is the desired time step
in collision cell c. After grouping collision cells into different temporal levels,
only levels with a minimum of 10% collision cells are considered in temporal
adaptation. The DSMC simulation flow time step is advanced in steps equal
to the average of the desired time steps of all collision cells in the first temporal
level. The simulation then proceeds to iterate over the different temporal levels, in
descending order of the time step size, where within each loop, all cells sharing the
same time step are handled. Figure 3.11 presents a flowchart of the implemented
temporal adaptation algorithm. The use of different temporal levels allows better
handling of the spatial dependence of the time step in the flow domain and
decoupling of molecular motion and collision in the variable time step. The
temporal adaptivity scheme results in spatial dependence of the time step based
on the criteria expressed in equations 3.6 and 3.7. Employing a discrete set of
temporal levels enable effective handling of the movement of molecules between
cells of different time steps. The proposed temporal adaptation scheme considers
equal time steps, the time step in a temporal level l, for the molecular movement
and collision attributes (Move Molecules (m,∆tl) and Collide Molecules (l,∆tl) as
shown in Figure 3.11). Multiple collisions are carried out at the end of each time
step ∆tl by computing to the nearest integer the ratio of the assigned temporal
level time step of a cell to its desired time step. The advantage of using different
temporal levels compared to other local time stepping techniques [32, 33] is to
better handle the spatial dependence of the time step in the flow domain and
the decoupling of molecular motion and collision in the variable time step. The
temporal adaptivity scheme permits an effective treatment for the movement of
molecules that may go to a cell with a different temporal level than the one of
their corresponding cell. Besides, it handles molecular collisions in each collision
cell while preserving the number of possible collision pairs based. A schematic of
the temporal adaptation procedure for a two-temporal levels case is presented in
Figure 3.12. For the sake of clarity, the large cells correspond to the first temporal
level with a time step ∆t, and the small ones correspond to the second temporal
level with a time step ∆t/2. We follow the loop over temporal levels as depicted
in Figure 3.11. During the loop over temporal level l = 0, simulated molecules
within cells of temporal levels l = 0, and l = 1 are allowed to move (sub-figures
(a) and (b)). The molecules are sorted at the end of the move step, and collisions

50

are performed within cells of temporal level l = 0 (sub-figure (c)). Before ending
the loop over temporal level l = 0, simulated molecules moved to level l = 1
(simulated molecule 2) are held stationary during the loop over the temporal
level l = 1, and simulated molecules moved from level l = 1 to l = 0 (simulated
molecule 5, 6, and 7) are reset to their initial positions (sub-figures (c) and (d)).
The loop over temporal level l = 1 considers an inner loop over two time steps of
∆t/2. The same criteria is followed. Sub-figures ((d) and (e)) and sub-figures ((g)
and (h)) correspond respectively to the move step within the nested loop over the
first and second time steps within the loop over temporal level l = 1. Sub-figure
(f) and sub-figure (i) correspond respectively to the sort/collision step within the
nested loop over the first and second time steps within the loop over temporal level
l = 1. Sub-figure (j) corresponds to the end of the temporal adaptation procedure.
At the end of the temporal adaptation algorithm, a global sort algorithm re-sorts
all molecules by their position coordinates into the appropriate collision cells.
The simulation is then resumed using the new mesh and the updated temporal
levels.

51

Temporal adaptation algorithm:

If (inflow/outflow boundaries exist) then

 Generate/Move molecules at flow boundaries.

 Assign FLAG to molecules entering the domain. These molecules

don’t move while iterating over temporal levels.

End if

Do l=0, Nl -1

Do j=1, 2l

 Move Molecules(𝑚, ∆𝑡𝑙): move molecules in cells in

temporal level m≥l with a time step ∆𝑡𝑙.
 Ray-Trace molecule movement

 Carry out molecule-surface interactions

 Update molecular position

 Sort Molecules

 Collide Molecules(𝑙, ∆𝑡𝑙): collide molecules in cells in

temporal level l.

 Multiple collisions

End Do

 Assign FLAG ‘*’ to molecules initially at level ‘l’ and moved to level

‘m>l’. These molecules don’t move in the next iterations of the loop.

 Retain molecules initially at level ‘m>l’ to their initial position.

End Do

Global Sort (loop over all cells/molecules)

Figure 3.11: Temporal adaptation algorithm within the DSMC code. Nl: number
of temporal levels in the domain; 2l: number of time steps in temporal level l;
∆tl: time step in temporal level l.

52

6

75

1
3

4 2

6
75

1
3

4 2

6
75

5

6

1 2

3

4

7

5

6

1 2

3

4

7

1
3

4

5

6

7

2

1
3

4 2
5

6
7

1
3

4 2

5

6

7

1
3

4 2
6

75

(a) (b) (c)

1
3

4 2

5

6

7

2
5

6
7

1
3

4

molecule at start of motion step
molecules at end of motion step
molecule to be reset to its initial state
stationary molecule
molecule in collision step
stationary molecule involved in collision
molecule at end of time step

1
3

4 2
6

75

(d)(e)(f)

(g) (h) (i)

1
3

4 2

6
75

(j)

Figure 3.12: Schematic describing the temporal adaptation procedure with two
temporal levels.

53

Chapter 4

Validation of The Proposed
Algorithm Against Benchmark
Simulations

Several time-dependent numerical simulations of rarefied gas flow in the slip and
transition flow regimes are investigated to validate the proposed three-dimensional
DSMC code. These simulations have been extensively applied in many applica-
tions of micro/nano-technologies. The simulations were carried out using Fortran
in CentOS Linux 7 on 16 core Intel Xeon(R) CPU E5-2650 v2 running at 2.6 GHz.

4.1 Oscillatory Shear-Driven Couette Flow

In the following, we analyze oscillatory Couette flow which is one of the previous
investigations that uses the unsteady direct simulation Monte Carlo method to
analyze time-periodic rarefied gas flows. A flow of argon gas between two infinite
parallel plates at a distance H apart is simulated such that the bottom plate
is stationary and the top plate oscillates in a simple harmonic motion with a
velocity U = U0sin(ωt) in the lateral direction. A schematic view of the problem
is shown in Figure 4.1. The oscillatory Couette flow is characterized by the
Knudsen Kn, Mach Ma, and Stokes β non-dimensional parameters. The Knudsen
number is the ratio of the mean free path λ to the characteristic system length
H, Kn = λ/H. The Stokes number β represents the ratio of the diffusion and
oscillation characteristic time scales, and it is defined as

β =

√
ωH2

ν
=

(
H2/ν

1/ω

)1/2

, (4.1)

where ν is the kinematic viscosity and ω is the oscillation frequency. The Mach
number is the ratio of the flow velocity to the local speed of sound a, Ma = U0/a,
and can be used to evaluate the effects of compressibility.

54

U = U0sin(ωt)

x

z

z = 0

z = H

Figure 4.1: Schematic view of oscillatory Couette flow

Simulation parameters are selected based on previous work done by Park et
al. [77]. The gas medium is initially at rest under standard atmospheric conditions
(P0 = 101325Pa and T0 = 273K). The two plates are maintained at the same
temperature Tw = 273K. The oscillation amplitude of the upper plate is kept
constant at U0 = 100m/s resulting in a low Mach number, Ma = 0.3248, so
that the compressibility effects are negligible. The characteristic system length
and the oscillation frequency are adjusted to H = 0.625µm, and ω = 8.096 ×
108rad/s, respectively. This results in a simulation of Kn = 0.1 and β = 5. we
utilize the Hard Sphere (HS) collision model for molecular collisions and the No-
Time-Counter (NTC) scheme for collision pair selection. The horizontal plates
are assumed to be fully accommodating and periodic boundary conditions are
employed on the side walls at the x− z and y− z planes. For this unsteady flow,
ensemble averaging over 5000 independent unsteady realizations is performed.
Each unsteady realization simulates the flow over a time span long enough for
the flow to reach the quasi-stationary behaviour. The macroscopic properties are
computed every T/4, where T = 2π/ω is the period of oscillation.

DSMC simulations consider combinations of cell size, time step, and a num-
ber of simulated molecules per cell constraints to produce physically realistic and
accurate solutions. The cell size constraint states that a characteristic cell di-
mension is chosen such that it is some fraction of the mean free path(typically
1/3 to 1/2 λ). In our simulation, cell size is chosen as 1/3λ, each containing two
sub-cells along each direction where nearby particles located within the same
computational sub-cell collide statistically. About 100 simulated molecules are
randomly distributed in each cell. The time step, (∆t), is chosen smaller than
the mean collision time (∼ λ/vmps) where vmps is the most probable velocity, the
time period of oscillations ' 2π/ω, and the viscous diffusion time scale ∼ H2/ν
where ν is the kinematic viscosity. Moreover, ∆t is chosen such that a simulated
molecule resides in the same cell for at least a few time steps to allow it to interact
with other molecules. In our simulation, a typical molecule is set to move about
one-third of the cell dimension in one simulation time step. This ensures that its
information can be adequately distributed throughout the computation domain.

55

The analytical solution to this problem is obtained by solving the Navier-
Stokes equations subject to the appropriate slip-flow boundary conditions. The
flow is isothermal, and simulation parameters are chosen such that compress-
ibility and viscous heating effects are negligible (low Ma). Besides, the small
amplitude lateral motion of the plate does not generate any stream-wise pressure
gradients. In this limit, the momentum equation in dimensionless form reduces
to the following:

∂u

∂t
=

(
∂2u

∂z2

)
(4.2)

For isothermal flows with tangential momentum accommodation coefficient (σv =
1) in slip flow regime, first-order velocity slip boundary conditions are applicable
and given by: {

u(0, t)− C1Kn∂u(0,t)
∂z

= 0

u(1, t) + C1Kn∂u(1,t)
∂z

= sin(ωt)
(4.3)

where C1 is the modified slip coefficient given by:

C1 = 1.298 + 0.718tan−1
(
−1.175Kn0.586

)
(4.4)

Indeed, the analytical solution of the above equations is that of a one-dimensional
boundary-value problem of heat conduction with non-homogeneous boundary
conditions of the first kind. This problem is solved with the integral transform
(Fourier transform) technique [78]. It follows that the general solution of the
oscillatory flow problem considered is:

u(z, t) =
∞∑
n=1

e−αλ
2
ntK(λn, z)

 t∫
0

eαλ
2
nt
′
A(λn, t

′)dt′

 (4.5)

where

A(λn, t
′) =

K(λn, 1)

C1Kn
(4.6)

and K(λn, z) is the Kernel corresponding to non-homogeneous boundary condi-
tions of the first kind given by:

K(λn, z) =
√

2
λncos(λnz) +H1sin(λnz)[

(λ2
n +H2

1)
(

1 + H2

λ2n+H2
2

)
+H1)

]1/2
(4.7)

and the eigenvalues, λn, are positive roots of the equation:

tanλ =
λ (H1 +H2)

λ2 −H1H2

(4.8)

where H1 = H2 = 1
C1Kn

.
In the work done by Park et al. [77], a semi-analytical/empirical model that

56

is applicable for quasi-steady flows (β ≤ 0.25) in the entire Knudsen regime, and
for any Stokes number flow in the slip flow regime (Kn ≤ 0.1), is developed.
A velocity response of the form u(z, t) = ={U(z)exp(jωt)} is expected, where
the symbol = denotes the imaginary part of a complex expression. Thus, in
the quasi-steady limit, The time-dependent velocity distribution is obtained as
follows [77]:

u(z, t) = =
[(
U0

sinh(
√
jβZ) +

√
jβC1Kn cosh(

√
jβZ)

(1 + jβ2C2
1Kn

2) sinh(
√
jβ) + 2

√
jβC1Kn cosh(

√
jβ)

)
exp(jωt)

]
,

(4.9)
where Z = z/L. The shear stress at the oscillating plate is given by:

τxz =
du(z, t)

dz
|z=L

= =
[(

U0

L

√
jβ

cosh(
√
jβ) +

√
jβC1Kn sinh(

√
jβ)

(1 + jβ2C2
1Kn2) sinh(

√
jβ) + 2

√
jβC1Kn cosh(

√
jβ)

)
exp(jωt)

]
,

(4.10)
DSMC results of the velocity distribution at different times of an oscillation

period within the time-periodic state are shown in Figure 4.2. The results are
in good agreement with the published data in [77], and with the analytical so-
lutions (equations (4.5) and (4.9)). Departure of the analytical solution from
that predicted by DSMC is expected due to the fact that it employs a first order
slip boundary condition at solid walls. Comparisons between the shear stress
obtained from DSMC simulations and the analytical solution are presented in
Figure 4.3 at different times.

4.2 Impulsive Started Couette Flow

Transient behavior of argon gas between two parallel, diffusely reflecting plates,
each at temperature T = 273K and transverse parallel velocity of U0 = 100m/s,
is studied. The characteristic length scale of the flow system is adjusted to
H = 0.2976µm for the simulation of a flow at Kn = 0.21. Unsteady sampling
of macroscopic properties and the viscous shear stress is performed at time t =
16.2ε−1, where ε denotes the molecular collision frequency. The viscous shear
stress τ , derived using molecular gas dynamics [3], is defined as the negative of the
pressure tensor with the static pressure subtracted from the normal components.
It is written in tensor notation as:

τ ≡ τij = −(ρv
′
iv
′
j − δijp) , (4.11)

where ρ is the mass density, and δij, the Kronecker tensor, is defined as:

δij = 1(i = j) , δij = 0(i 6= j) , (4.12)

57

0

0.25

0.5

0.75

1

-0.8 -0.4 0 0.4 0.8

z/
H

u/U0

Present DSMC

Park et al. [2004]

Analytical Solution

t = 0.75T

t = 0.5T

t = 0.25T

t = 0, T

Figure 4.2: Normalized velocity profile for the shear-driven oscillatory Couette
flow at Kn = 0.1, Ma = 0.3248, and β = 5.0.

v
′
i and v

′
j are the components of the velocity v

′
of a molecule relative to the

stream velocity, i.e., the thermal velocity. The mean or hydrostatic pressure p,
is defined as the average of the three normal components of the pressure tensor
pij = ρv

′
iv
′
j, that is:

p =
1

3
ρ(v′2x + v′2y + v′2z) =

1

3
ρv′2 (4.13)

The heat flux is defined as:

q =
1

2
ρv′2v′ + nεintv

′ (4.14)

where, εint is the internal (vibrational or rotational) energy related to one molecule.
To examine the accuracy of our numerical DSMC simulations of the velocity

and stress fields, a comparison of the DSMC data with previous ones by Had-
jiconstantinou [79], and with the exact solution of Navier-Stokes equation for
second slip flow is shown in Figure 4.4. Comparison of the results show fairly
good agreement.

58

-6

-4

-2

0

2

4

6

0.2 0.4 0.6 0.8 1 1.2

τx
z/
τ0

t/T

Present DSMC

Park et al. [2004]

Analytical Solution

Figure 4.3: Normalized wall shear stress for the shear-driven oscillatory Couette
flow at different times. Kn = 0.1, β = 5.0, and τ0 = U0/H.

4.3 Thermal Couette Flow

In the following Couette-flow test, Argon gas, initially at rest and at temperature
T = 273K, is contained in the region between two stationary plates, which held at
temperatures 173K and 373K, respectively. The system is then allowed to reach
a steady state. Figure 4.5 represents steady-state temperature profiles across the
channel at different Knudsen numbers (Kn = 0.1, 1.0). A very good agreement
is obtained with previous results by Olson et al. [27].

4.4 Poiseuille Flow

The pressure-driven Poiseuille gas flow in a rectangular microchannel between
two parallel plates is considered. The channel axis is along the x direction. The
plates, of length L along the flow direction (x), are separated by a distance H,
where L/H � 1. The flow is two dimensional in the x − z plane; the channel
dimension, W , along the y direction is much larger than H; W � H. Since the
flow is two dimensional in the x− z plane, the computational domain consists of
one grid cell in the y direction. The following boundary conditions were imposed:
(i) solid-walls are assumed to be perfectly accommodating, (ii) periodic boundary
conditions are enforced at the x− z planes on either size of the domain, and (iii)
the Maxwellian reservoir method is used for the inflow/outflow boundary condi-

59

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

u
/U

z/H

Present DSMC

Hadjiconstantinou [2005]

Second-Order Slip Solution

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

τ/
(µ

U
/H

)

z/H

Present DSMC

Hadjiconstantinou [2005]

Second-Order Slip Solution

Figure 4.4: Velocity (top) and Stress (bottom) fields for the impulsive start Cou-
ette flow for Kn = 0.21 at times 16.2ε−1.

60

150

180

210

240

270

300

330

360

0 0.2 0.4 0.6 0.8 1

T
em

p
er

at
u
re

 (
K

)

Position in Channel (m)

Present DSMC

Olson et al. [2008]

Kn=1.0

Kn=0.1

Figure 4.5: Temperature profile in a thermal Couette flow problem

tions at the inlet and outlet of the channel. The simulated fluid is argon gas (VHS
gas) initially at ambient conditions. The channel length is L = 5µm, the channel
aspect ratio is L/H = 5, the inlet flow stream temperature is Tin = 300 K, the in-
let to exit pressure ratio, Pin/Pe = 3, and the inlet pressure is Pin = 160.839 kPa.
To assess the spatial adaptivity scheme in our DSMC algorithm, this flow is
simulated with and without dynamic grid adaptation. For the non-adaptive sim-
ulation, the grid spacing was chosen to be ∆x ∼ 1/5λ0, where λ0 is the mean
free path at the initial conditions. For the adaptive simulation, the grid spacing
is computed as ∆x ∼ λ/3, where at each adaptation time interval, λ for each cell
is computed using Eq. (3.1), where T and n for the cell are averaged over all the
cores. Figure 4.6 shows the steady state centreline pressure distribution using
the proposed DSMC algorithm with and without grid adaptation. Our results
are in good agreement with the simulated pressure profile by Wu et al. [80], with
the pressure profile predicted using the adaptive scheme closer to that predicted
by Wu et al. [80]. The figure also shows the flow field refined mesh upon spatial
adaptation where the size of an inlet collision cell is adapted to half the size of a
collision cell at the exit; λin/λe ∼ Pin/Pe. With Pin/Pe = 3 and since the octree
divides a cell by integer powers of 2, λin/λe was set to 1/2.

The transient solution and spatial adaptivity sampling intervals are presented
in Table 4.1, among other parameters. The table also shows that at the end of
the simulation, the number of cells in the adaptive simulation increased from
13056 to 48084, which is comparable to that used in the non-adaptive case. The
computational cost of the adaptive simulation is, however, less by a factor of 7.7.

61

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

C
en

te
rl

in
e

P
re

ss
u
re

 R
at

io

P
/P

e

x/L

DSMC Data

DSMC Adaptive Data

Wu et al. [2001]

x, z=0 x=L

z=H

Figure 4.6: Centreline pressure distribution (top figure) and flow field refined
mesh for a microchannel in the slip flow regime.

Table 4.1: Comparison of elapsed time per DSMC realization for non-adaptive
and adaptive Poiseuille flow.

Non-Adaptive Adaptive
Time step 14.48 ps 28.96 ps
Sampling time 55.3 ns 55.3 ns
Transient solution sampling interval 27.45 ns 27.45 ns
Spatial adaptivity sampling interval 18.299 ns
Total no. of time steps 3800 1900
Total Time per Realization per core 45910.5 s 5931.76 s
Initial no. of Cells 52224 13056
Final no. of Cells 52224 48084

62

4.5 Slider Bearing Problem

Figure 4.7 shows a typical three-dimensional flat slider gas bearing configuration.
A channel is formed by a moving horizontal bottom surface and a stationary
slightly inclined surface whose length is L = 5µm and height at the trailing
edge is Ho = 50nm. The simulation used argon hard sphere particles initially at
ambient conditions. Thus, the Knudsen number at the exit is Kno = λ/Ho = 1.25.
The lower surface moving at a speed of U = 25m/s and the bearing number is
Λ = 61.6 (defined as Λ = 6µUL/paH

2
o ; pa is the ambient pressure and µ is the

viscosity of the gas). As for the boundary condition, the solid-walls are assumed
to be perfectly accommodating, periodic boundary conditions are enforced at the
x−z planes on either side of the 3D domain, and the Maxwellian reservoir method
is used for the inflow/outflow boundary conditions at the inlet and outlet. Our

Slider

Disk U

Cells

x

y
z

W

L

H

Figure 4.7. Schematic of the slider bearing geometry, L = 5µm, Ho = 5µm, U = 25m/s.

DSMC results are in excellent agreement with the previously published DSMC
solution by Garcia et al. [81].

Table 4.2 shows the simulation time per time step per core distributed among
the particles movement, sorting and collision time steps. It can be observed that
the molecular motion in the slider bearing flow takes the longest time. This is
due to the cost of the ray-tracing operations using the hybrid mesh constructed
near the inclined surface.

63

0.5

0.7

0.9

1.1

1.3

1.5

0 0.2 0.4 0.6 0.8 1

P

x

DSMC Results

Garcia et al. [1994]

Figure 4.8. Slider bearing normalized pressure profile for Kno = 1.25, Λ = 61.6, Ma = 0.08.

Table 4.2. Elapsed time(s) of DSMC processes at flow sampling time step for benchmark
simulations.

Non-Adaptive
Poiseuille

Adaptive
Poiseuille

Slider Bearing

Move Molecules 3.269 0.917 4.240
Sort Molecules 2.165 0.729 0.084
Perform Collisions 0.354 0.215 0.019

64

4.6 Hypersonic Flows

To further demonstrate the utility of this code, we present two simulations of
hypersonic flows with large density gradients. Two benchmark test cases are
considered, 2D hypersonic flow over a cylinder and 3D hypersonic flow over a
flat-nosed cylinder.

4.6.1 Hypersonic Flow Past a Flat-Nosed Cylinder

Hypersonic flow of argon gas at a temperature of 100K, a number density of
1×1021m−3, and a velocity of 1000m/s over a flat-nosed cylinder with a radius of
0.01m is considered for the analysis. This corresponds to a stream Mach number
Ma of 5.37 and a Knudsen number Kn, based on the diameter of the cylinder,
of 0.0474. The simulated flow field is 0.04m in the axial x−direction, and 0.03m
in the y− and z− directions. The total length of the cylinder is 0.02m and the
centre of its flat face is located at x = 0.02, y = 0, and z = 0. The free stream
flow boundary conditions are set at left (yz−plane), backward (y = 0.03), and top
boundary (z = 0.03) of the computational domain using standard method and by
providing free stream velocity and free stream temperature. Vacuum condition
is imposed at the outlet boundary (x = 0.04). Periodic boundary condition is
imposed at the bottom (xy−plane), and the in front boundary (xz−plane) of
the computational domain. Diffuse wall boundary condition is applied at the
cylinder wall by incorporating a half-range Maxwellian distribution determined
by the wall temperature and velocity. The temperature at the cylinder wall is
considered as 300K.

This problem has been considered by Bird [3] as a 2D axisymmetric problem
and a 3D quarter-section model with symmetry boundary conditions by Scan-
lon et al. [6]. To assess the spatial adaptivity scheme in our DSMC algorithm,
this flow is simulated with and without dynamic grid adaptation. For the non-
adaptive simulation, the grid spacing was chosen to be ∆x ∼ 1/2λ0, where λ0 is
the mean free path at the initial conditions. For the adaptive simulation, the ini-
tial grid size is ∆x ∼ λ0 and the grid spacing is computed as ∆x ∼ λ/2, where at
each adaptation time interval, λ for each cell is computed using Eq.(3.1), where
T and n for the cell are averaged over all the cores. Figure 4.9 shows the flow
field refined mesh upon spatial adaptation where the size of the grid cells near
the flat face of the cylinder is adapted to 1/4 the size of the initial grid. This
illustrates that the high-density region near the flat face of the cylinder is clearly
captured with much finer mesh distribution. The transient solution and spatial
adaptivity sampling intervals are presented in Table 4.3, among other parame-
ters. The table also shows that at the end of the simulation, the number of cells
in the adaptive simulation increased from 18,432 to 136,893 which is comparable
to that used in the non-adaptive case. The computational cost of the adaptive
simulation is, however, less by a factor of 4.3. Besides, the percentage of time

65

Figure 4.9. Flow Field Refined Mesh for a Flat-Nosed Cylinder.

spent by the sniffer algorithm for 15 different CPUs is less than 2% of the total
time per realization per core. This reflects the high performance and efficiency of
the implemented parallelization method. The temperature and density contours
obtained are plotted over the results from Bird’s DSMC2A code [3], and that from
dsmcFoam by Scanlon et al. [6] for comparison as shown in figures 4.10, 4.11. The
contours show very good agreement.

Table 4.3. Comparison of elapsed time per DSMC realization for non-adaptive and adaptive
hypersonic flow past a flat-nosed cylinder.

Non-Adaptive Adaptive
Time step 1.55 µs 1.55 µs
Sampling time 0.98 ms 0.98 ms
Transient solution sampling interval 0.196 ms 0.196 ms
Spatial adaptivity sampling interval 0.244 ms
Total no. of time steps 633 633
Total Time per Realization per core 102440.0 s 23719.0 s
Percentage of Time Spent by Sniffer 0.18% 1.1%
Initial no. of Cells 147456 18432
Final no. of Cells 147456 136893

4.6.2 Hypersonic Flow Over a Cylinder

Mach-10 hypersonic cylinder flow is a well-known 2D-benchmark problem [67,
7, 82]. Figure 4.12 shows the sketch of a Mach-10 (2634.1m/s) flow of argon
gas at a temperature of 200K and a number density of 4.274 × 1020m−3 past
a circular cylinder with a fully diffusive surface at a temperature of 500K. The

66

0

0.01

0.02

0.03

0 0.01 0.02 0.03 0.04

y
(m

)

x (m)

Present DSMC

Bird Data

 1 1.5

 2 2

 3 2.5

 4 3.5

 5 4.5

 6 5.5

 7 6.5

 8 7.5

 9 8.5

 A 9.5

1
2 3

4

5

6
7

8

9

A

TT /

0

0.01

0.02

0.03

0 0.01 0.02 0.03 0.04

y
(m

)

x (m)

Present DSMC

Bird Data

 1 0.75

 2 0.95

 3 1.05

 4 1.25

 5 1.50

 6 1.75

 7 2

 8 3

 9 4

 A 5

 B 7

3

7

6

5

4

3

4
5

8

9

 /

A

B

1 2

Figure 4.10. Temperature and density contours for hypersonic flow past a flat-nosed cylinder.
A comparison of the results in this work with those computed in previous work done by

Bird [3].

0

0.01

0.02

0.03

0 0.01 0.02 0.03 0.04

y
(m

)

x (m)

Present DSMC

Scanlon et al.1 2 3

4

5

6

7

8

9

A

 1 1.5

 2 2

 3 2.5

 4 3.5

 5 4.5

 6 5.5

 7 6.5

 8 7.5

 9 8.5

 A 9.5

TT /

0

0.01

0.02

0.03

0 0.01 0.02 0.03 0.04

y
(m

)

x (m)

Present DSMC

Scanlon et al.

 1 0.75

 2 0.95

 3 1.05

 4 1.25

 5 1.50

 6 1.75

 7 2

 8 3

 9 4

 A 5

 B 7

3

7

6

5

4

3

4
5

8

9

 /

A

B

1 2

Figure 4.11. Temperature and density contours for hypersonic flow past a flat-nosed cylinder.
A comparison of the results in this work with those computed in previous work done by

Scanlon et al. [6].

67

corresponding free-stream Knudsen number is 0.01 based on the free-stream mean
free path (λ∞ = 0.003m) and the diameter of the cylinder (D = 0.3048m).

Thermally diffuse surface

at T=500K

Symmetry reflection

0.85m

Free stream flow

Mach=10, T=200K

Kn=0.01

0
.4

m

0.3048m

Figure 4.12. Sketch of the computational domain of argon hypersonic flow over a cylinder at
Kn∞ = 0.01, Ma∞ = 10, T∞ = 200 K, n∞ = 4.274× 1020particles/m3.

As part of the validation process, the spatio-temporal adaptivity scheme is
applied to this problem due to the rapid variations in the local molecular mean
free path and the mean collision time presented. The computational grid is
generated initially with a cell size of approximately (1 − 2) λ based on free-
stream conditions, and 100 initial particles per cell. As the flow evolves within
the simulated domain, the parameters λ and τc are iteratively computed for each
cell. All DSMC requirements are checked, i.e., the cell size smaller than the
local mean free path, the time step smaller than the local mean collision time,
and a number of simulated molecules around 20 − 30 molecules. If within any
cell these conditions are not satisfied the spatio-temporal adaptation algorithm
is called, and the parameters ∆xc and ∆t are modified. In doing so, the cell size
is adapted to 0.25λ and the desired time step is adapted to 0.333τc. The total
number of cells in the simulation domain changed from 7, 680 to 10, 480, the
time step ∆t changed from 3.176µs to 1.42µs and 0.71µs within grid cells of the
first and second temporal levels, respectively. Figure 4.13 compares contours of
temperatures obtained using our DSMC algorithm with those reported previously
using the virtual mesh refinement (VMR) module [7]. Figures 4.14, 4.15 show the
density and temperature distribution along a vertical line just before the cylinder
(x = 0.205m) and in the wake region (x = 0.6m), respectively. The results are
very close to the benchmark.

68

Figure 4.13. Contours of temperature of Mach-10 hypersonic flow past a circular cylinder;
colored lines are DSMC data; the grey spheres are VMR data [7].

0

0.1

0.2

0.3

0.4

0 0.0001 0.0002 0.0003 0.0004

y
(m

)

Density (kg/m^3)

Present DSMC

VMR Data

(a)

0

0.1

0.2

0.3

0.4

0 2000 4000 6000

y
(m

)

T (K)

Present DSMC

VMR Data

(b)

Figure 4.14. Density and Temperature distribution along a vertical line before the cylinder
(x=0.205 m). (a) Density (b) Temperature.

0

0.1

0.2

0.3

0.4

0 0.00001 0.00002 0.00003 0.00004

y
(m

)

Density (kg/m^3)

Present DSMC

VMR Data

(a)

0

0.1

0.2

0.3

0.4

1200 1600 2000 2400

y
(m

)

T (K)

Present DSMC

VMR Data

(b)

Figure 4.15. Density and Temperature distribution along a vertical line in the wake region
(x=0.6 m). (a) Density (b) Temperature.

69

Chapter 5

Conclusion and Future Work

In this work, a new parallel adaptive multi-scale DSMC algorithm is proposed
and implemented to simulate unsteady rarefied flows in complex geometries. A
hierarchical octree-based Cartesian grid is generated and a cut-cell method, where
the triangulated solid boundary surface intersects the grid cells, is adopted. The
selected geometry model is characterized by its low memory storage requirements
compared to the use of non-Cartesian meshes, its ability to develop an efficient
ray-tracing particle movement scheme, and its flexibility to develop a fully dy-
namic three-dimensional spatial and temporal adaptive scheme that maintains
DSMC constraints consistent with the local variations of flow field properties.
The proposed algorithm employs a novel spatio-temporal adaptive scheme based
on the macroscopic averages of local flow properties. It also incorporates a new
parallelization method based on running parallel unsteady DSMC simulations
simultaneously and independently over multicores. Results for two- and three-
dimensional benchmark test cases evidence the accuracy and robustness of the
newly developed DSMC algorithm.

Future work should implement other aspects related to multi-dimensional
flows involving gas mixtures, axially symmetric flows, moving boundary flows,
and flows past multiple boundaries. In addition, this work could be extended
to account for the rotational and vibrational degrees of freedom in diatomic and
polyatomic gas. We expect to showcase the efficiency and accuracy of the al-
gorithm in predicting unsteady flows encountered in transient three-dimensional
problems in several micro- and nano-electromechanical systems (MEMS/NEMS)
applications.

This work provides further insight on multiple applications for future re-
search directions. In particular, the simulation of multi-physics problems, as
fluid-structure interaction (FSI) problems that involve fluid flows interacting with
movable and/or deformable solids or structures is increasingly needed in diverse
applications. These include micro-mechanical devices, dynamic instabilities in
structural engineering, and applications in biomechanics and medicine; to men-
tion just a few. Despite the high attention, there is still a lack of established

70

computational methods which offer accuracy, flexibility, and efficiency, allow-
ing to model and simulate general problems in this inherently multi-disciplinary
field [83]. The simulation of the complete fluid-structure interaction problem
could be done by integrating the proposed DSMC solver for the representation
of the fluid into a three-dimensional finite element solver on the structural side.
These solvers could be coupled iteratively by using their outputs. Outputs for
the DSMC solver could then be inputs for the finite element solver and vice versa.

The proposed algorithm can also be developed to simulate multi-scale simula-
tions of rarefied gas flows involving both continuum and rarefaction regions, and
spanning a wide range of Knudsen number regimes. An interesting issue in such
flows is the transition from the continuum to the rarefied regime and vice versa.
The DSMC method can model the entire Knudsen number regime accurately
but is computationally expensive to model the whole domain. This motivates
the use of hybrid continuum-particle simulation methods, which can couple the
Navier-Stokes equation to a DSMC solver [84, 85]. A different approach to han-
dle continuum in very low Knudsen number regions could be by isolating these
regions/collision cells from the rest of the simulation domain, enforcing local
thermodynamic equilibrium, and re-initializing these cells from equilibrium.

Another possible application to be addressed is the simulation of heat transfer
from microscale hot-wires sensors placed in a fluid flow. Thermal flow-meters are
characterized by their high sensitivity and simplicity among others; however,
their most significant problem is the high dependency on the thermo-physical
properties of the working medium. They exhibit a dependency on the thermal
conductivity, the specific heat capacity, the density, and the dynamic viscosity.
A recent application of micro-thermal flow sensors is to investigate heat transfer
through a periodic bunch of microcylinders arranged in a regular array. This could
be used to measure the thermal conductivity and get its profile as a function of
temperature, consequently, have a unique signature of the gas.

71

Bibliography

[1] M. Gad-el Hak, “The fluid mechanics of microdevices–the Freeman scholar
lecture,” Journal of Fluids Engineering, vol. 121, no. 1, pp. 5–33, 1999.

[2] G. A. Bird, Molecular gas dynamics. Clarendon Press, 1976. 76373657.

[3] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows.
No. v. 1, Clarendon Press, 1994. 94003873.

[4] H. M. Cave, K. C. Tseng, J. S. Wu, M. C. Jermy, J. C. Huang, and S. P.
Krumdieck, “Implementation of unsteady sampling procedures for the par-
allel direct simulation Monte Carlo method,” Journal of Computational
Physics, vol. 227, pp. 6249–6271, 6/1 2008.

[5] M. G. Coutinho, Guide to dynamic simulations of rigid bodies and particle
systems. Springer Science & Business Media, 2012.

[6] T. Scanlon, E. Roohi, C. White, M. Darbandi, and J. Reese, “An open
source, parallel DSMC code for rarefied gas flows in arbitrary geometries,”
Computers & Fluids, vol. 39, no. 10, pp. 2078–2089, 2010.

[7] C. Su, K. Tseng, J. Wu, H. Cave, M. Jermy, and Y. Lian, “Two-level virtual
mesh refinement algorithm in a parallelized DSMC code using unstructured
grids,” Computers & Fluids, vol. 48, no. 1, pp. 113–124, 2011.

[8] E. Oran, C. Oh, and B. Cybyk, “Direct simulation Monte Carlo: recent
advances and applications,” Annual Review of Fluid Mechanics, vol. 30,
no. 1, pp. 403–441, 1998.

[9] N. A. Diab and I. A. Lakkis, “Investigation of the squeeze film dynamics
underneath a microstructure with large oscillation amplitudes and inertia
effects,” Journal of Tribology, vol. 138, no. 3, p. 031704, 2016.

[10] M. B. Gerdroodbary, D. Ganji, M. Taeibi-Rahni, and S. Vakilipour, “Ef-
fect of Knudsen thermal force on the performance of low-pressure micro gas
sensor,” The European Physical Journal Plus, vol. 132, no. 7, p. 315, 2017.

72

[11] A. Frangi et al., Advances in multiphysics simulation and experimental
testing of MEMS, vol. 2. Imperial College Press, 2008.

[12] E. Roohi, “DSMC simulations of nanoscale and microscale gas flow,” in
Encyclopedia of Microfluidics and Nanofluidics, pp. 681–693, Springer, 2015.

[13] S. Dietrich and I. D. Boyd, “Scalar and parallel optimized implementation
of the direct simulation Monte Carlo method,” Journal of Computational
Physics, vol. 126, no. 2, pp. 328–342, 1996.

[14] G. LeBeau, “A parallel implementation of the direct simulation Monte
Carlo method,” Computer Methods in Applied Mechanics and Engineering,
vol. 174, no. 3-4, pp. 319–337, 1999.

[15] M. Ivanov, A. Kashkovsky, S. Gimelshein, G. Markelov, A. Alexeenko,
Y. A. Bondar, G. Zhukova, S. Nikiforov, and P. Vaschenkov, “SMILE sys-
tem for 2D/3D DSMC computations,” in Proceedings of 25th International
Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia, pp. 21–28,
2006.

[16] G. Bird and M. Capitelli, “The DS2V/3V program suite for DSMC calcula-
tions,” in AIP conference proceedings, vol. 762, pp. 541–546, AIP, 2005.

[17] D. Gao, C. Zhang, and T. Schwartzentruber, “A three-level Cartesian
geometry-based implementation of the DSMC method,” in 48th AIAA
Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, p. 450, 2010.

[18] A. Klothakis and I. Nikolos, “Modeling of rarefied hypersonic flows us-
ing the massively parallel DSMC kernel SPARTA,” in 8th Int. Congress
Computational Mechanics, 2015.

[19] G. B. Macpherson, N. Nordin, and H. G. Weller, “Particle tracking in
unstructured, arbitrary polyhedral meshes for use in CFD and molecu-
lar dynamics,” International Journal for Numerical Methods in Biomedical
Engineering, vol. 25, no. 3, pp. 263–273, 2009.

[20] G. Bird, M. Gallis, J. Torczynski, and D. Rader, “Accuracy and efficiency
of the sophisticated direct simulation Monte Carlo algorithm for simulating
noncontinuum gas flows,” Physics of Fluids, vol. 21, no. 1, p. 017103, 2009.

[21] V. I. Kolobov, R. R. Arslanbekov, V. V. Aristov, A. A. Frolova, S. A. Zabe-
lok, M. Mareschal, and A. Santos, “Unified flow solver for transient rarefied-
continuum flows,” in AIP Conference Proceedings, vol. 1501, pp. 414–421,
AIP, 2012.

73

[22] V. Kolobov, R. Arslanbekov, V. Aristov, A. Frolova, and S. A. Zabelok,
“Unified solver for rarefied and continuum flows with adaptive mesh and
algorithm refinement,” Journal of Computational Physics, vol. 223, no. 2,
pp. 589–608, 2007.

[23] S. A. Zabelok, V. I. Kolobov, R. R. Arslanbekov, M. Mareschal, and A. San-
tos, “GPU accelerated kinetic solvers for rarefied gas dynamics,” in AIP
Conference Proceedings, vol. 1501, pp. 429–434, AIP, 2012.

[24] S. Popinet, “Gerris: a tree-based adaptive solver for the incompressible Eu-
ler equations in complex geometries,” Journal of Computational Physics,
vol. 190, no. 2, pp. 572–600, 2003.

[25] M. Ivanov, G. Markelov, and S. Gimelshein, “Statistical simulation
of reactive rarefied flows-numerical approach and applications,” in 7th
AIAA/ASME Joint Thermophysics and Heat Transfer Conference, p. 2669,
1998.

[26] D. Gao, C. Zhang, and T. E. Schwartzentruber, “Particle simulations of
planetary probe flows employing automated mesh refinement,” Journal of
Spacecraft and Rockets, vol. 48, no. 3, pp. 397–405, 2011.

[27] S. E. Olson and A. J. Christlieb, “Gridless DSMC,” Journal of
Computational Physics, vol. 227, no. 17, pp. 8035–8064, 2008.

[28] R. Arslanbekov, V. Kolobov, J. Burt, and E. Josyula, “Direct simulation
Monte Carlo with octree Cartesian mesh,” in 43rd AIAA Thermophysics
Conference, p. 2990, 2012.

[29] K. C. Kannenberg and I. D. Boyd, “Strategies for efficient particle resolution
in the direct simulation Monte Carlo method,” Journal of Computational
Physics, vol. 157, no. 2, pp. 727–745, 2000.

[30] M. A. Gallis, J. Torczynski, D. Rader, and G. A. Bird, “Convergence behav-
ior of a new DSMC algorithm,” Journal of Computational Physics, vol. 228,
no. 12, pp. 4532–4548, 2009.

[31] A. C. J. Wade, D. Baillie, and P. Blakie, “Direct simulation Monte Carlo
method for cold-atom dynamics: Classical Boltzmann equation in the quan-
tum collision regime,” Physical Review A, vol. 84, no. 2, p. 023612, 2011.

[32] M. Laux, “Local time stepping with automatic adaptation for the DSMC
method,” in 7th AIAA/ASME Joint Thermophysics and Heat Transfer
Conference, p. 2670, 1998.

74

[33] G. Cai, W. Su, and F. Hou, “Theoretical development for DSMC local time
stepping technique,” Science China Technological Sciences, vol. 55, no. 10,
pp. 2750–2756, 2012.

[34] H. Samet, The Design and Analysis of Spatial Data Structures. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1990.

[35] C. Zhang and T. E. Schwartzentruber, “Robust cut-cell algorithms for
DSMC implementations employing multi-level Cartesian grids,” Computers
& Fluids, vol. 69, pp. 122–135, 2012.

[36] B. G.A., “Approach to translational equilibrium in a rigid sphere gas,”
Physics of Fluids, vol. 6, pp. 1518–1519, oct 1963. Provided by the
SAO/NASA Astrophysics Data System.

[37] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform
Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction
and Diffusion in Gases. Cambridge University Press, 1970. 70077285.

[38] L. Boltzmann, Lectures on gas theory. Berkeley: University of California
Press, 1964. ID: 556023.

[39] C. Cercignani, The Boltzmann Equation and Its Applications. Springer-
Verlag New York, 1988.

[40] F. John, J. E. Marsden, and L. Sirovich, The Boltzmann Equation and Its
Applications. Springer, -01-01 1988. doi: pmid:.

[41] J. C. Maxwell, The Scientific Papers of James Clerk Maxwell, vol. 2. Cam-
bridge University Press, 2011.

[42] G. E. P. Box and M. E. Muller, “A note on the generation of random normal
deviates,” The Annals of Mathematical Statistics, vol. 29, no. 2, pp. 610–611,
1958.

[43] H. Akhlaghi and E. Roohi, “A novel algorithm for implementing a specified
wall heat flux in DSMC: Application to micro/nano flows and hypersonic
flows,” Computers & Fluids, vol. 127, pp. 78–101, 2016.

[44] E. Roohi, V. SHARIATI, C. White, et al., “Evaluation of wall heat
flux boundary condition in DSMC implemented in OPENFOAM,” in
MIGRATE-2017 2nd MIGRATE Workshop & Summer School, 2017.

[45] M. Gad-el Hak, MEMS: introduction and fundamentals. CRC press, 2005.

[46] C. Shen, Rarefied gas dynamics: fundamentals, simulations and micro flows.
Springer Science & Business Media, 2006.

75

[47] A. J. Lofthouse, L. C. Scalabrin, and I. D. Boyd, “Velocity slip and temper-
ature jump in hypersonic aerothermodynamics,” Journal of thermophysics
and heat transfer, vol. 22, no. 1, p. 38, 2008.

[48] M. Ikegawa and J. Kobayashi, “Development of rarefied gas flow simulator
using the direct simulation Monte Carlo method(1 st report, 2-D flow anal-
ysis with the pressure conditions given at the upstream and downstream
boundaries).,” TRANS. JAPAN SOC. MECH. ENG.(SER. B)., vol. 54,
no. 507, pp. 3057–3060, 1988.

[49] J.-S. Wu, F. Lee, and S.-C. Wong, “Pressure boundary treatment in mi-
cromechanical devices using the direct simulation Monte Carlo method,”
JSME International Journal Series B Fluids and Thermal Engineering,
vol. 44, no. 3, pp. 439–450, 2001.

[50] R. P. Nance, D. B. Hash, and H. Hassan, “Role of boundary conditions
in Monte Carlo simulation of microelectromechanical systems,” Journal of
Thermophysics and Heat Transfer, vol. 12, no. 3, pp. 447–449, 1998.

[51] M. Wang and Z. Li, “Simulations for gas flows in microgeometries using the
direct simulation Monte Carlo method,” International Journal of Heat and
Fluid Flow, vol. 25, no. 6, pp. 975–985, 2004.

[52] W. Liou and Y. Fang, “Implicit boundary conditions for direct simulation
Monte Carlo method in MEMS flow predictions,” In other words, vol. 2,
p. 7, 2000.

[53] C. White, M. K. Borg, T. J. Scanlon, and J. M. Reese, “Accounting for
rotational non-equilibrium effects in subsonic DSMC boundary conditions,”
in Journal of Physics: Conference Series, vol. 362, p. 012016, IOP Publishing,
2012.

[54] E. Farbar and I. D. Boyd, “Subsonic flow boundary conditions for the direct
simulation Monte Carlo method,” Computers & Fluids, vol. 102, pp. 99–110,
2014.

[55] D. L. Whitfield, “Three-dimensional unsteady Euler equation solutions using
flux vector splitting,” 1983.

[56] J. Yang, J. Ye, J. Zheng, I. Wong, C. Lam, P. Xu, R. Chen, and Z. Zhu,
“Using direct simulation Monte Carlo with improved boundary conditions
for heat and mass transfer in microchannels,” Journal of Heat Transfer,
vol. 132, no. 4, p. 041008, 2010.

[57] C. R. Lilley, C. R. Lilley, and M. N. Macrossan, “Methods for implement-
ing the stream boundary condition in DSMC computations,” International

76

Journal for Numerical Methods in Fluids, vol. 42, pp. 1363; 1363–1371; 1371,
-08-30 2003. doi: 10.1002/fld.603 pmid:.

[58] A. Prez and J. A. Morigo, “Computational efficiency of
the inflow boundary conditions in DSMC simulation,” AIP
Conference Proceedings, vol. 1501, no. 1, pp. 601–608, 2012.
http://aip.scitation.org/doi/pdf/10.1063/1.4769597.

[59] M. W. Tysanner, M. W. Tysanner, and A. L. Garcia, “Nonequilibrium be-
haviour of equilibrium reservoirs in molecular simulations,” International
Journal for Numerical Methods in Fluids, vol. 48, pp. 1337; 1337–1349;
1349, -08-30 2005. doi: 10.1002/fld.983 pmid:.

[60] E. Roohi and S. Stefanov, “Collision partner selection schemes in DSMC:
From micro/nano flows to hypersonic flows,” Physics Reports, vol. 656,
pp. 1–38, 2016.

[61] G. A. Bird and G. A. Bird, “Direct simulation of gas flows at the molecular
level,” Communications in applied numerical methods, vol. 4, pp. 165; 165–
172; 172, -03-01 1988. doi: 10.1002/cnm.1630040205 pmid:.

[62] T. Tokumasu, T. Tokumasu, and Y. Matsumoto, “Dynamic molecular colli-
sion (DMC) model for rarefied gas flow simulations by the DSMC method,”
Physics of fluids (1994), vol. 11, pp. 1907; 1907–1920; 1920, -07-01 1999. doi:
10.1063/1.870053 pmid:.

[63] G. A. Bird, Monte-Carlo Simulation in an Engineering Context, pp. 239–
255. Rarefied Gas Dynamics, Parts I and II, American Institute of
Aeronautics and Astronautics, 01/01; 2017/04 1981. 17; M1: 0;
doi:10.2514/5.9781600865480.0239.0255.

[64] K. Koura and H. Matsumoto, “Variable soft sphere molecular model
for inversepowerlaw or LennardJones potential,” Physics of fluids.A,
Fluid dynamics, vol. 3, pp. 2459; 2459–2465; 2465, -10-01 1991. doi:
10.1063/1.858184 pmid:.

[65] K. Koura and H. Matsumoto, “Variable soft sphere molecular model for air
species,” Physics of fluids.A, Fluid dynamics, vol. 4, pp. 1083; 1083–1085;
1085, -05-01 1992. doi: 10.1063/1.858262 pmid:.

[66] J. Fan, “A generalized soft-sphere model for Monte Carlo simulation,”
Physics of fluids (1994), vol. 14, pp. 4399; 4399–4405; 4405, -12-01 2002.
doi: 10.1063/1.1521123 pmid:.

[67] G. A. Bird, “Sophisticated DSMC, Notes Prep. a Short Course DSMC07
Meet. St. Fe, USA.,” September 2007.

77

[68] “CEA/DEN, EDF R&D and OPEN CASCADE, SALOME: the open source
integration platform for numerical simulation,” 2015. URL: https://www.
salome-platform.org/ [accessed July 2018].

[69] T. Akenine-Möller, “Fast 3D triangle-box overlap testing,” in ACM siggraph
2005 courses, p. 8, ACM, 2005.

[70] J. M. Burt, E. Josyula, and I. D. Boyd, “Novel Cartesian implementation of
the direct simulation Monte Carlo method,” Journal of thermophysics and
heat transfer, vol. 26, no. 2, pp. 258–270, 2012.

[71] A. Y. Chang, “A Survey of Geometric Data Structures for Ray Tracing,”
2001.

[72] A. S. Glassner, “Space subdivision for fast ray tracing,” IEEE Computer
Graphics and Applications, vol. 4, pp. 15 – 24, October 1984. DOI:
10.1109/MCG.1984.6429331.

[73] J.-S. Wu and Y.-Y. Lian, “Parallel three-dimensional direct simulation
Monte Carlo method and its applications,” Computers & Fluids, vol. 32,
no. 8, pp. 1133 – 1160, 2003.

[74] K. C. Kannenberg, “Computational methods for the direct simulation Monte
Carlo technique with application to plume impingement,” 1998. Copyright
- Database copyright ProQuest LLC; ProQuest does not claim copyright in
the individual underlying works; Last updated - 2016-05-15.

[75] S. Dietrich and I. D. Boyd, “Scalar and Parallel Optimized Implementation
of the Direct Simulation Monte Carlo Method,” Journal of Computational
Physics, vol. 126, no. 2, pp. 328 – 342, 1996.

[76] Z.-X. Sun, Z. Tang, Y.-L. He, and W.-Q. Tao, “Proper cell dimension and
number of particles per cell for DSMC,” Computers & Fluids, vol. 50, no. 1,
pp. 1–9, 2011.

[77] J. H. Park, P. Bahukudumbi, and A. Beskok, “Rarefaction effects on shear
driven oscillatory gas flows: A direct simulation Monte Carlo study in the
entire Knudsen regime,” Physics of Fluids, vol. 16, no. 2, pp. 317–330, 2004.

[78] M. N. Ozisik, Boundary value problems of heat conduction. Courier Corpo-
ration, 2013.

[79] N. G. Hadjiconstantinou, “Validation of a second-order slip model for dilute
gas flows,” Microscale Thermophysical Engineering, vol. 9, no. 2, pp. 137–
153, 2005.

78

[80] J.-S. Wu and K.-C. Tseng, “Analysis of micro-scale gas flows with pres-
sure boundaries using direct simulation Monte Carlo method,” Computers
& Fluids, vol. 30, no. 6, pp. 711–735, 2001.

[81] F. J. Alexander, A. L. Garcia, and B. J. Alder, “Direct simulation Monte
Carlo for thin-film bearings,” Physics of Fluids, vol. 6, no. 12, pp. 3854–3860,
1994.

[82] B. Goshayeshi, E. Roohi, and S. Stefanov, “DSMC simulation of hypersonic
flows using an improved SBT-TAS technique,” Journal of Computational
Physics, vol. 303, pp. 28–44, 2015.

[83] H. J. Bungartz, M. Mehl, and M. Schäfer, Fluid structure interaction II:
modelling, simulation, optimization, vol. 73. Berlin: Springer, 2010.

[84] N. Hadjiconstantinou, “Discussion of recent developments in hybrid
atomistic-continuum methods for multiscale hydrodynamics,” Technical
Sciences, vol. 53, no. 4, 2005.

[85] A. Donev, J. B. Bell, A. L. Garcia, and B. J. Alder, “A hybrid
particle-continuum method for hydrodynamics of complex fluids,” Multiscale
Modeling & Simulation, vol. 8, no. 3, pp. 871–911, 2010.

79

