
AMERICAN UNIVERSITY OF BEIRUT

DISTRIBUTED FPGA-BASED
ACCELERATION OF BIG DATA ANALYTICS
IN THE DATA CENTER ENVIRONMENT

by

RAGHID HIKMAT MORCEL

A dissertation
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
to the Department of Electrical and Computer Engineering

of the Maroun Semaan Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
September 2018

Contents

Abstract 1

1 Introduction 6
1.1 Motivation . 6
1.2 Problem Statement . 11
1.3 Proposed Solutions and Contributions 13

1.3.1 A scalable Network-attached deployment model for FPGAs. 14
1.3.2 A design methodology for mapping ConvNet inference work-

loads to FPGA accelerators. 18
1.4 Thesis Outline . 19

2 Background for Data Centers and Big Data Architectures 21
2.1 Data Center Architectures . 21

2.1.1 Data Center Design Factors 22
2.1.2 Data Center Network Infrastructure 23
2.1.3 Data Center design models 25
2.1.4 Data Center Scalability and Power Efficiency issues 29

2.2 Big Data Architectures . 32
2.2.1 Stages of Big Data . 32
2.2.2 Big Data management frameworks 35

3 Network-Attached Reconfigurable Accelerator System Architec-
ture for the Spark Data Center 47
3.1 FPGA-based Deployment Models 50
3.2 Related Work . 52

3.2.1 Co-processor implementations 52
3.2.2 Network-Attached Accelerator implementations 58

3.3 Proposed Deployment Model . 61
3.3.1 Challenges . 61
3.3.2 Network-Attached Accelerator system architecture 62
3.3.3 NAA Node Architecture 64
3.3.4 NAA Compute Model . 66
3.3.5 Firmware Architecture . 72

v

3.4 Experimental Evaluation . 81
3.4.1 NAA Platform . 81
3.4.2 Firmware Implementation 82
3.4.3 Experimental Setup . 82

3.5 Conclusion . 83

4 Accelerating Convolutional Neural Network Operations in the
Spark Data Center Environment 85
4.1 The Multi-layer Convolution Operation 88
4.2 Related Work . 90
4.3 Fpga-based accelerator for convolutional networks 94

4.3.1 System Overview . 94
4.3.2 Hardware Architecture . 95
4.3.3 Software Layer . 100

4.4 Methodology and experimental results 101
4.4.1 Experimental Setup . 101
4.4.2 Benchmark . 101
4.4.3 Speedups resulting from employing the FPGA-based accel-

erator . 102
4.4.4 Performance Model for the Multi-layer Convolution Oper-

ation . 105
4.4.5 Energy Saving Resulting from employing the FPGA-base

accelerator . 108
4.5 Conclusion . 110

5 FeatherNet: An Accelerated Convolutional Neural Network De-
sign for Resource-Constrained FPGAs 111
5.1 Deep Convolutional Neural Networks 116
5.2 Related Work . 119
5.3 Design Methodolgy . 124

5.3.1 Design Challenges . 124
5.3.2 Graphical Representation and Modeling of Neural Inference

computation . 126
5.3.3 Optimization and Reduction schemes for 2D Convolution . 135
5.3.4 Optimizing for Finite Word-length Representation and Com-

putation . 151
5.4 Minimalists Accelerated Convnet System Architecture 155

5.4.1 Proposed Architecture . 156
5.4.2 Modularity and Portability 160
5.4.3 Design Entry and Implementation 162

5.5 Evaluation and Results . 165
5.5.1 Evaluation and Experimental Setup 165
5.5.2 Results . 166

5.6 Conclusion . 171

6 Conclusions and Future Perspectives 172
6.1 Conclusions . 172
6.2 Future Perspectives . 176

6.2.1 Network Attached Accelerator Optimizations 176
6.2.2 Optimizing FeatherNet for Performance 178

A Proof for the Proposed Transformation in Figure 5.7 182

Bibliography 184

List of Figures

1.1 Digitial Universe size predictions for 2020 8
1.2 Deploying FPGAs in data center facilities 15
1.3 A typical scenario where several FPGA boards are allocated to

two different applications . 16

2.1 Cisco’s Basic Layered Design . 24
2.2 A logic view of a server cluster . 27
2.3 A physical view of a server cluster 28
2.4 HPC Architectures Shift Toward Cluster Computing 29
2.5 HDFS distributing data blocks to rack servers 36
2.6 two client processes submitting two different MapReduce Jobs to

a Hadoop Resource Manager . 39
2.7 Hadoop MapReduce DataFlow . 40
2.8 Logical view of a Spark cluster . 43

3.1 Catapult’s 6 × 8 torus network topology and the physical wiring
on a pod of servers. 53

3.2 Components of the Shell Architecture. 54
3.3 Intel’s Xeon+FPGA platform. 55
3.4 A Snippet Blade. 56
3.5 The SDAccel Development Environment. 57
3.6 The RAD architecture. 59
3.7 RASSD node prototype. 60
3.8 NAA system architecture . 63
3.9 NAA system logical view . 64
3.10 NAA node Architecture. 65
3.11 Accelerator’s interfaces: parameters, input and output interfaces. 68
3.12 NAA computational pipeline example. 70
3.13 Layered Architecture . 74
3.14 Integrating our NAA system architecture into Spark 80
3.15 Experimental Setup . 83

4.1 System Overview. 95
4.2 Functional Architecture of our compute node. 96

viii

4.3 Optimized architecture of the multi-layer convolution. 98

4.4 Optimized 1D-FIR filter. 98

4.5 Speedup over an ARM core implementation as a function of the
number of input feature maps . 103

4.6 Speedup over a Core i7 CPU core implementation as a function of
the number of input feature maps 104

4.7 The achievable speedup as function of the operating frequency. . . 105

4.8 Latency of computing a single output feature map on the FPGA
and the slope . 107

5.1 An illustration of a typical Convolutional Layer. 118

5.2 Block diagram representation for the 1-D FIR filter (a) and for the
2-D FIR (b) . 129

5.3 A hardware realization for the 2-D convolution filter derive from
figure 5.2(b). 130

5.4 A block diagram representation for a Local response normalization
filter with n = 3. 133

5.5 A block diagram representation for a 2-D Pooling filter with kernel
size 3Ö3 and a stride of 1 pixel 135

5.6 A symbolic notation for the compressor and a typical example with
M = 2 . 137

5.7 Multi-rate signal processing transformations 137

5.8 A block diagram representation for 1-D convolution with a stride
of 2 samples . 138

5.9 Partially transformed 1-D convolution with a stride of 2 140

5.10 Fully transformed 1-D convolution 140

5.11 A minimal hardware implementation for a 1-D convolution filter
with a size of 3 and a stride of 2 141

5.12 A minimal hardware implementation for a 2-D convolution filter
with a size of 3Ö3 and a stride of 2 142

5.13 Coefficient Scrambler object feeding a 1D- filter with a mask size
3, stride 2, and padding 1 . 144

5.14 A 2D- Coefficient Scrambler object feeding a 2D- filter with a mask
size 3× 3, stride 2, and padding 1 146

5.15 A 2D- Coefficient Scrambler object 147

5.16 A 2D- FIR filter with mask size 3× 3 and stride 2 149

5.17 The sample and line accumulation grids that are common among
all 2D-fir filters . 149

5.18 Case where the outputs of two 2D-convolution filters are combined
into a single output feature . 151

5.19 Two 2D-FIR filters sharing the same sample and line accumulate
networks . 152

5.20 The effect of fixed-point representation of network parameters on
the accuracy of AlexNet . 153

5.21 System Architecture . 157
5.22 The memory mux component . 159

6.1 Modified NAA Node Architecture 178

A.1 T delay elements followed by an M-fold compressor 182
A.2 T delay elements rearranged into S delay element followed by T−S

delay elements . 183

List of Tables

4.1 Resource Utilization. 102

5.1 AlexNet layers and their hyper parameters. 119
5.2 Hardware cost of different 2-D FIR filters 131
5.3 Hardware cost of different 2-D FIR filters with strides 148
5.4 Possible fixed-point representation for every layer in AlexNet . . . 154
5.5 Evaluation Platforms and their characteristics 165
5.6 Resource Utilization for AlexNet on ZedBoard and Cyclone V . . 167
5.7 Performance and Energy Results of AlexNet implementation with-

out the on-chip cache. 167
5.8 Latency of individual compute stages of AlexNet with the on-chip

cache included. 168
5.9 Comparison between our implementation and other work in the

literature. 169

xi

An Abstract of the Dissertation
of

Raghid Hikmat Morcel for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Distributed FPGA-based acceleration of Big Data analytics
in the Data Center Environment.

Several research studies have shown that Big data, as a largescale phenomenon,

is creating substantial value for the world’s economy by boosting the productivity

and competitiveness of private-sector businesses and public enterprises, and thus

it is generating extensive economic surplus for consumers. However, the computa-

tional limitations of general-purpose processor-based data centers are preventing

businesses from fully integrating Big data architectures in their business model.

A widely accepted solution to this problem consists of supplementing micropro-

cessors with application-specific hardware accelerators. Although a wide-ranging

literature exists on the benefits of employing Field Programmable Gate Arrays

(FPGAs) as hardware accelerators in the data center environment, FPGAs have

not been extensively deployed there for two reasons: first, the lack of a scalable

and power-efficient data center deployment model for FPGAs, and second, the

complexity of programming and developing FPGA-based hardware accelerators

for data center workloads.

1

In this thesis, we address two problems: (1) the scalable deployment of FPGA

platforms, and (2) the design and implementation of FPGA-based hardware ac-

celerators for Deep Learning Big Data workloads. To address the first problem, a

scalable and power-efficient Network-Attached-Accelerator (NAA) system archi-

tecture is proposed. The proposed NAA system architecture allows the seamless

and efficient integration of FPGA-based platforms in existing data center archi-

tectures. Experimental Results showed that orders-of-magnitude improvements

in performance can be achieved in certain applications. Then, to address the sec-

ond problem, we propose a design methodology for mapping Deep Convolutional

Neural Network (ConvNet) inference workloads to FPGA hardware accelerators.

We employed our methodology to accelerate AlexNet, a popular computationally

intensive ConvNet used for accurate image classification, and we showed that

our design can achieve a potential performance of up to 9 frames/sec on a very

resource-restricted FPGA platform versus 2.84 frames/sec on a Core i7 processor

core.

2

Abbreviations

1RU 1 Rack Unit
ANSI American National Standards Institute
API Application Programming Interface
AM Application Master
ASIC Application Specific Integrated Circuit
ACB Accelerator Control Block
BICSI Building Industry Consulting Service International
BRAM Block Random Access Memory
ConvNet Convolutional Neural Network
CPU Central Processing Unit
CRM Customer Relationship Management
CNP Convolutional Neural Network Processor
CNN Convolutional Neural Network
CIFAR Canadian Institute For Advanced Research
CDM Coefficient Delivery Mold
DevKit Development Kit
DSP Digital Signal Processor
DAS Direct-Attached Storage
DAG Direct Acyclic Graph
DRAM Dynamic Synchronous Random Access Memory
DMA Direct Memory Access
DG Directed Graph
DLA Deep Learning Accelerator
ERP Enterprise Resource Planning
ERR Energy Reduction Ratio
FPGA Field Programmable Gate Array
FIR Finite Impulse Response Filter
GPU Graphical Processing Unit
GPO Giga OPerations Per Second
HPC High-Performance Computing
HDFS Hadoop Distributed File System
HLS High-Level Synthesis
IDC International Data Corporation

3

IoT Internet of Things
ILSVRC Large Scale Visual Recognition Challenge
IT Information Technology
IP Internet Protocol
IDE Integrated Development Environment
IRFoR Internal Routing and Forwarding Offload Engine
JAR Java ARchive
LUT LookUp Table
LB Logic Block
LRN Local Response Normalization
MPP Massively Parallel Processing
MWS Middleware Server
MoC Model of Computation
MNIST Modified National Institute of Standards and Technology
NIC Network Interface Card
NAA Network-Attached Accelerator
NAS Network-Attached Storage
NRDC National Resource Defense Council
NN Neural Network
OLS Ordinary Least Squares
PCIe Peripheral Component Interconnect express
PDMoC Parametrized DataFlow Model of Computation
PCAP Processor Configuration Access Port
PSGD Parallel Stochastic Gradient Descent Algorithm
PE Processing Element
QPI Quick Path Interconnect
RDD Resilient Distributed Dataset
RTL Register Transfer Language
RAD Reconfigurable Active Drive
RASSD Reconfigurable Active Solid State Drive
SAN Storage Area Network
SAS Serial Attached SCSI
SMP Symetric Multi-Processing
SQL Structured Query Language
SSD Solid State Drive
SoC System On a Chip
SSE Streaming Single-Instruction-Multiple-Data Extension
TIA Telecommunications Infrastructure Standard Association
TCP Transport Control Protocol
TCPoE TCP Offload Engine
UCLA University of California, Los Angeles
UDP User Datagram Protocol
UAV Unmanned Aerial Vehicles

4

VLAN Virtual Local Area Network
VALU Vector Arithmetic and Logic Unit
Yarn Yet Another Resource Manager

5

Chapter 1

Introduction

1.1 Motivation

Big Data has been promoted as being the umbrella term for very large datasets

whose size and complexity are beyond the ability of legacy hardware and software

technologies to capture, store and process [1, 2]. Recently, the term Big data

gained a lot of popularity, reflecting the exponentially expanding volume of the

digital universe and the resulting new technological advancements developed to

address the technical challenges of this explosive growth.

Examples of Big Data usages may be found in almost every sector in the

modern economy. In the private sector, for instance, companies and enterprises,

going about their daily business routines, collect and store massive amounts of

data about their customers, their suppliers, and their various economic and fi-

nancial operations. The captured data is, then, analyzed to extract valuable

insights and to guide the business during its complex decision-making process.

In the civil and construction engineering sector, hundreds or even thousands of

sensors are embedded in buildings, bridges, dams, and other megastructures to

proactively and predictively monitor their health and integrity, and thus ensuring

the safety of those who utilize and depend on these structures [3]. In healthcare,

6

data collected from patients are used to forecast a medical emergency and treat

it pro-actively before it incurs an irreversible damage; for example, the UCLA

brain surgery department is using Big Data Analytic tool-kits developed by IBM

to capture and analyze real-time data streams of vital signs collected from mul-

tiple bedside monitoring equipment. The collected data is used to create timely

alarms intended to predict sudden changes in the brain pressure in patients with

traumatic brain injuries. These well-timed alarms give nurses and physicians

more time to prevent further brain damages and to potentially save thousands of

lives [4]. The availability of cheap consumer devices such as smart phones, Per-

sonal Computers, and laptops, allowed a large portion of the world population

to easily access the internet. Consequently, billions of people are now producing

their own “trails of data” and enhancing their online presence, mainly through

social media platforms and services such as Facebook, Twitter, and Google+ [1].

In summary, Big Data as a phenomenon, is creating substantial value for human-

ity to the point that it became one of the indispensable factors of production in

the modern economy, without which advanced economic activities cannot even

take place [1].

This data collection behavior, although it is beneficial for the economy, comes

at a great price. The collected data must be stored and processed in consolidated

data center facilities; and the sheer size and variety of this collected data can put

a huge strain on the data center’s storage and computing infrastructures. Many

studies suggest that the amount of data collected or generated by individuals

and corporations combined has been rising rapidly and will continue to grow

exponentially in the upcoming years. An IDC report, for instance, claims that

the total volume of digital information created and replicated on the internet will

grow to almost 44 trillion gigabytes by 2020 [5]. Figure 1.1 depicts the predicted

7

Figure 1.1: Digitial Universe size predictions for 2020 [6]

size of the digital universe in 2020.

The sheer size of the collected data is not the only technical challenge of em-

ploying Big Data; the raw unstructured nature of this data, requires innovative

algorithmic solutions and procedures that are usually computationally very in-

tensive [1,7]. Many recent procedures were developed to capture value and derive

insights from unstructured Big Data; among those procedures is Deep Learning.

Deep Learning is a blanket term for a set of algorithms and techniques that can

automatically extract high-level, and complex abstract data representations from

large volumes of unstructured data [7, 8]. The ability of Deep Learning algo-

rithms to efficiently and accurately learn useful data representations makes them

an indispensable tool-set in any Big Data Analytic toolkit. As a consequence, in

the last couple of years, Deep Learning has been extensively used in many Big

Data realms such as largescale computer vision and scene understanding [9–11].

One of the most prominent Deep Learning methods employs Deep Convo-

8

lutional Multi-Layer Neural Networks (ConvNets). Deep Convolutional Neural

Networks (ConvNets) were inspired by the structure and function of the visual

cortex in the human brain [12], and are typically employed in the object recog-

nition/detection and in image classification. The main distinguishing feature of

these networks is that they incorporate convolutional layers in their structure.

Empirical studies have shown that Deep Convolutional Neural Networks outper-

form any form of shallow Neural Networks in many applications such as character

and object recognition/detection and can even achieve human-like or even super-

human performances in certain applications [8]. The only drawback of employing

Deep ConvNets in Big Data Analytics is their tremendous computational com-

plexity. For instance, some complex ConvNet architectures such as AlexNet [13]

may take 20 to 30 hours to train. Generally, the bigger the Network, the more

time it takes to train. ConvNet Inference is also computationally intensive; es-

pecially in certain Big Data scenarios where the inference task should run on a

very large number of inputs.

A report on Big Data published by McKinsey & Company [1], a worldwide

management consulting firm, pointed out that new innovations in software and

hardware technologies are required, to capture the full potential of Big Data, since

the limitations of legacy computing systems are preventing businesses from fully

integrating Big Data architectures into their business models. Many software

innovations that helped kick-start the use of Big Data in the enterprise, were

made in the last decade. In 2004, Google conceived MapReduce [14], which

is a parallel programming model and a distributed computing middleware used

to process largescale datasets on distributed computing resources in a server

cluster data center environment. MapReduce achieved tremendous success during

its lifetime, and inspired a lot of other companies to develop similar Big Data

9

software frameworks. For Example, Hadoop MapReduce [15] is a free and open

source implementation of the original Google MapReduce framework. Dryad

[16] is another Big Data framework that provides a more comprehensive parallel

programming model than MapReduce.

Although MapReduce gained a lot of popularity during the last decade, Many

studies have shown that it was ill-suited for implementing applications that are

iterative or interactive in nature [17,18]. Consequently, many alternative parallel

frameworks were proposed to solve the issues of MapReduce. This led to a wide

variety of specialized parallel frameworks such as Pregel [19], and GraphLab

[20]. In 2010, however, Zaharia et al. [18] proposed a unified general-purpose

in-memory Big Data computing framework called Spark. The Spark framework

gained special attention and a lot of popularity due to its expressive power and

very high performance. Nowadays, most of Big Data Analytic toolkits are built

on top of the Spark framework [21].

Studies have shown that current established trends such as reliance on so-

cial media, search engines, smart phones, and IoT devices will further stimulate

the exponential growth of the digital universe [1, 5, 22]. Moreover, application

demands for computational performance have already outpaced the processor’s

maximum achievable computational capacity. To meet the ever-increasing de-

mand for application performance, enterprises resort to scaling up their data

centers’ computational capacity by increasing the number processor cores. This

strategy, however, leads to power-hungry facilities, as every additional processor

core consumes a lot of power even when it is in an idle state. A Study has shown

that, in 2013, data centers in the U.S. alone consumed 91 billion Kilowatt-hours of

electricity, which is equivalent to twice the power consumption of all households

in New York city [23]. In fact, the power consumption of data centers around

10

the world is becoming a significant environmental issue as their carbon impact is

growing significantly higher every year.

This energy efficiency issue is common among all CPU-bound computing plat-

forms. Recently various research endeavors have shown that employing Appli-

cation Domain Specific computing platforms such as Graphical Processing Units

(GPUs) and Field Programmable Gates arrays (FPGAs) may significantly ben-

efit the data center environment in terms of power efficiency [24–26]. FPGAs,

however, allow developing custom hardware accelerators that are fully adapted for

certain applications and consequently they may provide better power×performance

figures than GPUs [27]. Moreover, certain complex workloads such as deep Con-

volutional Neural Network inference fits very well into the micro-architecture of

FPGA platforms, since FPGAs may be used to deploy customized reconfigurable

data-paths that are optimized for convolutions.

To summarize, capturing the full benefits of Big Data requires innovations

in both hardware and software technologies to take place. To keep up with the

ever-increasing demand for application performance, FPGAs can be deployed in

the data center environment to accelerate a wide-range of time-critical workloads,

and Big data software frameworks such as Spark must be extended to allow it to

target the deployed FPGAs.

1.2 Problem Statement

In this work, we aim at developing technologies and architectures that ease the

deployment of FPGA-based hardware accelerators in the modern data center

environment. Although the benefits of employing FPGAs to accelerate compu-

tationally intensive workloads are well known in the literature [24–26], FPGA

11

accelerators for Deep Learning workloads have not been widely deployed in the

data center. We identify two main reasons: (1) FPGA deployment models and

system architectures are not mature enough to allow the seamless integration

of FPGA-based accelerators in a data center facility, and (2) the complexity of

programming and developing FPGA-based accelerators for Deep Learning work-

loads, or Big Data Analytics in general, forms a true barrier that prevents FPGAs

from gaining a lot of popularity among Big Data application developers. Typi-

cal services and applications that run in the data center environment are com-

putationally complex and require deploying many FPGA devices to meet their

demands [28]. Moreover, data center operators should be able to flexibly control

the number and types of the deployed FPGA devices in a particular data center

facility; for instance, a data center operator may suddenly decide to scale out its

data center facility to meet seasonal surges in demand for computing power. It

may also decide to replace several deployed high-end FPGA devices with low-end

FPGA devices, to reduce power consumption; or it may do the exact opposite, to

improve performance. Consequently, successfully deploying FPGA platforms in a

data center environment requires (1) a scalable and (2) an energy efficient FPGA

deployment model. Furthermore, in cases where data center operators decide

to employ low-end FPGA devices in their facilities, a clever design methodology

that allows fitting very complex Deep Learning workloads into low-end FPGA

devices is also required. Finally, any FPGA system architecture should be able to

seamlessly integrate into current Big Data management platforms such as Apache

Hadoop [15] and Spark [18,29], thus these Big Data management platforms should

be extended to provide support for FPGAs.

12

1.3 Proposed Solutions and Contributions

As mentioned earlier, successfully deploying FPGAs in the data center environ-

ment to accelerate a handful of distributed Big Data applications requires three

essential components: (1) a scalable and flexible FPGA deployment method, (2) a

method to seamlessly integrate FPGA devices in current Big Data management

platforms (e.g. Hadoop and Spark), and (3) a library of FPGA configuration

bit-streams that consists of custom-designed accelerators for a handful of desired

applications. Note that addressing the second component, i.e., the seamless in-

tegration of FPGA devices in a Big Data management platform such as Spark,

requires extending the platform with the capability to target the deployed FPGA

devices. In this work, we address the first and third components only, i.e., the

scalable FPGA deployment and the development of a library of custom-designed

accelerators, and we leave extending the Spark platform to a future work.

In the first part of this work, we address the scalable and flexible deployment

of FPGA devices; we accomplish this objective first by proposing a Network-

attached accelerator deployment model for FPGAs in the data center environ-

ment, and second by developing a low-level firmware whose job is to mediate

between the extended Spark middle-ware layer and the deployed FPGA devices.

The proposed firmware should not be understood as an extension to the Spark

environment to support FPGA acceleration from the Spark user perspective, but

rather a low-level interface through which the extended middle-ware layer can

program, configure, and launch computations on the deployed FPGA devices;

as mentioned earlier, in this work, we do not attempt to design or implement

this extension, instead we leave the design and implementation of an extended

Spark middle-ware to a future work. In the second part of this work, we address

13

the design and implementation of FPGA-based accelerators (bitstreams) for deep

Convolutional Neural Networks (ConvNet), in particular, we address the prob-

lem of fitting complex ConvNet architectures [13,30–32] on resource-constrained

FPGA devices [33–36]. We propose a novel DSP-based design methodology for

mapping complex ConvNet inference sub-tasks to area, latency, and energy effi-

cient FPGA realizations that can be implemented directly in FPGA logic. The

resulting ConvNet accelerator architectures are suitable for deployment on low-

end FPGA devices that can be installed in small data center facilities and in

low-power IoT devices. In the following, we provide a brief overview of the

proposed solutions i.e., the scalable Network-attached deployment model, and

the design methodology for mapping complex ConvNet inference workloads to

resource-constrained FPGA devices.

1.3.1 A scalable Network-attached deployment model for

FPGAs.

The most common method of deploying FPGA-based accelerators in a traditional

computer system consists of connecting FPGA daughtercards to computer nodes

via PCIe edge connectors. For this reason, most of the previous attempts at

deploying FPGA-based accelerators in the data center environment were largely

based on PCIe-attached FPGA boards [28, 37, 38]. Figure 1.2(a) illustrates a

server cluster data center with FPGA daughtercards connected to several server

nodes via PCIe. With this deployment method, applications that target the

FPGAs benefit from the considerably fast PCIe interconnect between the CPUs

and the FPGA cards. A key disadvantage of this method, however, is that

it doesn’t scaleup efficiently. Recall that typical services and applications that

14

run in the data center environment are computationally complex and require

deploying too many FPGAs to meet their demands. Introducing a new PCIe

daughtercard with an FPGA device into a server cluster always requires a CPU-

based server node to host it. Given that CPU cores consume significant amounts

of power even when they are idle, scaling out the number of FPGA devices, with

the PCIe deployment method, significantly increases the power consumption of

the entire facility.

Back-end

Network

Regular x86 server nodes

Server nodes with FPGA daughtercards

PCIe FPGA card

(a)

Back-end

Network

Standalone FPGA boards with NICs

FPGA board

Regular x86 server nodes

(b)

Figure 1.2: Deploying FPGAs in data center facilities

In this work, we propose a different approach for deploying FPGA devices

in the server cluster data center founded on the Network-Attached Accelerator

(NAA) deployment model. In this deployment method, every FPGA board in

the data center has an Ethernet Network Interface Card (NIC) through which

the board can be attached directly to the network infrastructure. Figure 1.2(b)

illustrates a data center augmented with Network-Attached FPGA Boards. In

addition to the FPGA device and the Ethernet interface, every FPGA board

contains several on-board DRAM memory chips for local caching and storage.

The FPGA device can implement an arbitrary custom-designed accelerator for

15

Ethernet Switching Facility

Regular Worker nodes

Master node

Application 1 Application 2

Control

Control

Application 1

Application 2

Bitstream

repository

Figure 1.3: A typical scenario where several FPGA boards are allocated to two
different applications

an arbitrary computation.

Figure 1.3 illustrates a typical scenario where several FPGA boards are allo-

cated to two different applications. In order to run a compute job on the allocated

FPGA boards, the Master node (c.f. figure 1.3) contacts the Bitstream repository

to fetch suitable FPGA bitstreams for the applications. It reconfigures the allo-

cated FPGA devices using the fetched bitstreams, and then sends coarse-grained

task descriptions to each individual FPGA board. When the FPGA boards re-

ceive their task descriptions, they execute those tasks in parallel on the FPGA

accelerators. The worker nodes may as well receive task descriptions that instruct

each worker node to send certain local data partitions to a specific FPGA board.

In addition to the Network-attached deployment model, we also devise a system

architecture and a firmware design that allow the master node to allocate, pro-

gram, and launch computational tasks on the FPGA boards. This work includes

several contributions:

16

� A method for deploying FPGA devices directly into the data center’s net-

work infrastructure. We codenamed this method, the Network-Attached

Accelerator deployment method.

� A complete system architecture that allows an x86-64 master node to allo-

cate, program, and launch computational tasks on the Network-Attached

FPGA devices. A mechanism through which the master node sends task de-

scriptions to each individual FPGA board was proposed and implemented.

� We also designed and implemented a Firmware monitor program for man-

aging the internal states of the Network-Attached FPGA boards. Every

FPGA board runs an instance of this proposed firmware on a lightweight

processor system. The firmware implements supervisory functions such as

communication with the mater node and with the worker nodes, dynami-

cally reconfiguring the local FPGA devices, and scheduling operations on

the FPGA accelerators.

� The proposed Mechanisms through which the master node sends task de-

scriptions to each individual FPGA boards (NAA nodes) were put into test

and verified in an experimental setup where ZedBoards [35] were employed

to implement our proposed NAA nodes. The experimental results also ver-

ified the proper functioning of the firmware monitor program as well.

� We implemented an accelerator for the Multi-layer convolution operation,

which is mainly used in ConvNets, on an FPGA board (NAA node) and

compared the computational latency to a software implementation on a

Core i7, and we concluded that up to 134× speedup factors can be achieved

and up to 1017× energy reductions are possible.

17

1.3.2 A design methodology for mapping ConvNet infer-

ence workloads to FPGA accelerators.

Deep Convolutional Neural Networks are a special kind of deep machine learning

models that are typically employed in computer vision systems. In the inference

stage, the computations are heavily dominated by discrete 2D multi-layer convo-

lutions, which are basically made up of 2D-convolutions [8]. We propose a design

methodology for mapping ConvNet inference to low-end FPGA-based hardware

accelerators. The goal of this methodology is to fit complex ConvNets on low-end

and resource-constrained FPGA platforms. We tested our methodology on two

different resource-restricted FPGA platforms: (1) The ZedBoard [35], and (2)

the Cyclone V DevKit [36]; and we successfully deployed AlexNet [13], a popular

computational complex ConvNet for image classification that requires 700 million

multiplications with 61 million parameters for each image. our implementations

showed accurate results consistent with a non-accelerated software implementa-

tion. Images from the ILSVRC-2012 dataset were classified with a top-1 accuracy

of 73% and a top-5 accuracy of 84% achieving the FPGA benefits of reduced en-

ergy consumption at 0.126 Joules/frame and a potential performance of up to 9

frames/sec as compared to 2.84 frames/sec for a Core i7 processor core (3.16×

speedup). Our work introduced several new methods to address and several

ConvNet-related design challenges. Those include:

� A novel stride-aware graph-based method targeted at CNNs, and which

aimed at achieving efficient signal processing with reduced resource utiliza-

tion.

� A method to address the challenge of determining the minimal precision

arithmetic needed while preserving high accuracy. For this challenge, we

18

used variable-width dynamic fixed-point representations combined with a

layer-by-layer design-space pruning heuristic across the different layers of

the deep CNN model.

� A method aimed at achieving a modular design that can support differ-

ent types of CNN layers while ensuring low resource utilization. we made

sure to design small modules that can be interconnected to build an entire

accelerator design.

� A method to address the ease of design portability between two different

FPGA vendor platforms, namely Intel/Altera and Xilinx

1.4 Thesis Outline

This thesis is organized as follows:

In chapter 2, we cover the essential background needed to understand the basic

data center design principles, factors and models. We also provide an adequate

introduction to Big data architectures and data management frameworks: (1)

Apache Hadoop and (2) Spark.

Chapter 3 provides a detailed explanation of the proposed Network Attached

Accelerator (NAA) system architecture. We, first, describe the main internal

components of the NAA node. We, then, introduce the NAA compute model,

which is used to establish large and complex compute pipelines that can spread

across different NAA nodes. Finally, we describe the architecture of the firmware

program which runs on the lightweight processor component of the NAA node.

In Chapter 4, we accelerate the Multilayer convolution operation, which is one

of the kernel operators employed in Convolutional Neural Networks (ConvNets).

19

In this chapter, we built an experimental setup to measure the achievable speedup

ratio over a software implementation of the Multilayer convolution on a Core i7

processor core. We also developed a latency model for the Multilayer convolu-

tion operation and gave insights on the achievable speedup and energy reduction

ratios.

Chapter 5 covers an efficient FPGA-based hardware template architecture for

Deep Convolutional Neural Network inference is developed. We, first, propose a

design methodology for mapping any Convolutional Neural Network architecture

to an FPGA hardware accelerator. We employ Graph-based and stride aware

signal processing techniques to design 2D convolution circuits with stride con-

figurations. We tested our design methodology by implementing an accelerator

for AlexNet on two different resources-restricted FPGA platforms:(1) ZedBoard

, and (2) Cyclone V Devkit.

20

Chapter 2

Background for Data Centers
and Big Data Architectures

Enterprise data center technologies have undergone enormous improvements in

terms of raw computational power, storage capacity, and reliability. However,

current trends in big data, e-commerce, mobile devices, Internet of Things, and

massive data mining are pushing the performance envelope beyond the capacity

of traditional data center technologies [1, 5, 39]. In this work, we propose to use

FPGA-based acceleration technologies to scale up the performance of data cen-

ter facilities. Augmenting the data center facility with FPGA-based computing

platforms requires basic knowledge of the data center environment. In this chap-

ter, we provide a brief introduction to data center architectures, design factors,

deployment models, and scalability issues. We also dwell on the stages of big

data architectures and adequately introduce the two most important Big data

management frameworks: (1) Hadoop [15] and (2) Spark [18].

2.1 Data Center Architectures

A data center is a facility that consolidates an enterprise’s IT processes and

equipment by housing all the essential components of the enterprise’s computing

21

center [40]. These components can be categorized into three main types: (1)

Computational, (2) storage, and (3) networking components. Furthermore, the

data center also incorporates efficient power distribution planes, redundant and

backup power supplies, cooling units, and numerous security and facility protec-

tion devices. The proper planning and designing of data centers is governed by

four important factors: (1) Resiliency, (2) Performance, (3) Scalability, and (4)

Flexibility [40]. Consequently, many standardization bodies [41, 42] and enter-

prise networking hardware manufacturers devised multiple design guidelines to

properly address the aforementioned factors.

2.1.1 Data Center Design Factors

With the upsurge of digital media and Internet-based services, uninterrupted IT

operations became a decisive aspect of most modern successful organizations and

enterprises. Organizations that heavily rely on their data center infrastructures

to run their business operations are mostly concerned with data center resiliency.

Hence providing a reliable data center infrastructure is one of the key factors

that are always considered when designing a data center architecture. A resilient

data center can minimize chances of service interruption or downtime, potentially

saving millions of dollars. A study in 2016 [43] suggests that a data center outage

costs an enterprise up to 8000 dollars per minute of outage. Another important

factor that plays a major role in data center design is performance. Depending

on the application, performance is measured in terms of throughput or latency.

Throughput is the number of transactions or computational tasks completed per

second. Certain applications require a certain level of responsiveness; in this case,

computational latency is the metric of choice when measuring performance..

During the last decade, many applications have increased their computational

22

demand for the current data center infrastructures; moreover, novel applications

are regularly emerging every year. This continuous growth in demand for com-

putational power, regularly forces organizations and enterprises to scaleup the

computational performance of their data centers. Consequently, Scalability along

with Flexibility need to be cautiously considered when designing a data center

infrastructure. A modular and flexible data center architecture allows new appli-

cations and services to be quickly deployed in the existing infrastructure resulting

in significant competitive advantages for the enterprise [40].

2.1.2 Data Center Network Infrastructure

Many efforts were made at improving the aforesaid aspects i.e., Resilience, Per-

formance, Scalability and Flexibility. The Telecommunications Infrastructure

Standard for Data Center ANSI/TIA-942 [41] was the first standard to address

the data center networking infrastructure; it provided a flexible structured ca-

bling system and established an official tiering standard for defining the quality

of data centers. The ANSI/BICSI 002 standard [42], which describes Data Center

design and implementation best practices, specifies multiple design classes of data

centers depending on availability requirements and defines a selection method-

ology that a customer can employ to select a data center design infrastructure

class based on the operational availability requirements. Cisco, a world leader

manufacturer and vendor of networking and IT equipment, provides a proven

layered approach for planning and designing the data center networking compo-

nent for the enterprise environment. The Cisco layered approach to designing

data centers divides the data center network infrastructure into three layers: (1)

the core layer, (2) the aggregation layer, and (3) the access layer. The layered

architecture of the data center is depicted in figure 2.1.

23

Figure 2.1: Cisco’s Basic Layered Design [40]

The Access layer provides the physical point of connectivity for end-stations,

compute nodes, and server resources. In an enterprise data center environment,

the server component usually consists of 1RU rack servers, blade servers, cluster

servers, or mainframes [40]. The access layer networking infrastructure usually

consists of modular Layer 2 and sometimes layer 3 switches. These switches

employ a port link aggregation technology called EtherChannel [44] to aggregate

server traffic onto 10 Gigabit EtherChannel uplinks to the aggregation layer.

Moreover, a common practice in modern data centers is to implement access layer

switches paired in groups of two in order to support some level of redundancy in

the network infrastructure.

The Aggregation layer is responsible for aggregating thousands of sessions

leaving and entering access layer switches to and from the core layer [40], con-

sequently it must be able to provide a high-speed switching fabric. It defines a

boundary between layer 3 switching in the core layer and layer 2 VLAN switching

in the access layer. A typical data center can be comprised of multiple aggrega-

tion modules; as with the access layer switches, each aggregation module consists

24

of a pair of switches that work jointly to provide redundancy in the network-

ing infrastructure. Multiple aggregation layer services such as firewall, content

switching, intrusion detection and server load balancing can all be managed and

implemented in an aggregation module by allowing integrated service modules to

be deployed. Furthermore, aggregation layer switches are also expected to handle

network related overhead processing such as spanning tree and default gateway

redundancy protocols.

The core layer provides high-speed layer 3 fast forwarding services and switch-

ing between the multiple aggregation modules which together form the data cen-

ter network infrastructure, the campus core which is the enterprise’s regular net-

work, and the rest of the internet. 10 Gigabit Ethernet interfaces are used in the

core layer in order to support very high levels of throughput and reduce latency.

The data center core layer is an optional layer meaning that it may not be required

for small data centers that are not expected to scale in the near future. However,

it is recommended to employ a core layer for data center facilities that consist of

multiple aggregation modules for reasons related to scalability and performance.

To summarize, the practice of dividing the data center network infrastructure

into three layers helps in improving flexibility and scalability by allowing the

enterprise owner to scale out their data center facilities by flexibly adding more

aggregation module. Security may be improved by installing aggregation layer

service modules such as firewall and intrusion detection modules.

2.1.3 Data Center design models

Cisco [40] also recommends two different data center design models: (1) The

Multi-tier model, and (2) the Server Cluster model. Each design model is suited

for different modern use cases. The multi-tier model, which is the most common

25

model in the enterprise nowadays, is typically used to implement web service ap-

plications. Web service applications are normally implemented according to the

three-tier client-server model [45] in which the user interface (web service), the ap-

plication logic (application), and the data storage/retrieval (database) functions

are separated into three independent tiers. Consequently, the multi-tier data

center model primarily consists of three tiers of servers: web, application, and

database servers. In this environment a client-server application is implemented

into separate processes that run on different server tiers, and that use the TCP/IP

protocol stack to communicate over the network. This separation of servers into

different tiers provides some level of resiliency and security to the data center.

Resiliency is achieved through redundancy and load balancing between servers.

And security is achieved by installing firewalls between the different server tiers.

In the server cluster model, the data center is composed of multiple servers

that are linked together through a high-speed network interconnect, and that can

act collectively to perform a single complex computational workload. From the

user’s perspective, the server cluster appears as a single highly-available and fault-

tolerant machine with a much higher computational power and storage capacity

than what a single server can provide. Although high performance server clusters

are usually associated with scientific and military research, current large-scale en-

terprises and businesses are becoming more aligned with using server clusters in

their data centers to implement data- and compute-intensive applications. Ex-

amples of demanding applications that are currently being deployed in server

cluster data centers are parallel ray tracing algorithms [46] used in the film in-

dustry, financial analytics [39] used by financial trading houses, design modeling

used in many industries such as the automotive and aerodynamic industries, and

finally parallel lookup and page ranking algorithms [28] used in modern search

26

Compute

Node 1

Compute

Node N

Master

Node

Secondary

Master

Node

Front-end

Network

Network

Attached

Storage

Application server

Or client

Job Submission Path

Data Retrieval Path

Storage Path

Storage

Area

Network

Control Path

Storage Path

Job Submission

Path

Data Retrieval Path

Figure Legend

Back-end

Network

Figure 2.2: A logic view of a server cluster

engines such as Google and Bing. Finally, a new trend that started to unfold

during the last couple of years and is accelerating rapidly is the implementa-

tion of parallel data mining and machine learning algorithms in server cluster

environments [47–49].

Figure 2.2 illustrates a logical view of a server cluster along with its different

sub-components. Typically, some of the servers are designated as master nodes

and are responsible for scheduling and coordinating computational jobs on the

other servers. The remaining servers are commonly referred to as compute nodes,

as shown in figure 2. The mass storage sub-component of the server cluster

consists of the servers directly-attached hard drive, along with Network Attached

Storage (NAS) servers and one or more Storage Area Networks (NAS). A high-

speed back-end network provides low latency and high bandwidth connectivity

between the cluster’s subcomponents i.e., master nodes, compute nodes, and

27

Figure 2.3: A physical view of a server cluster [40]

storage components. The storage path from the compute nodes to the Storage

Area Network can be implemented into a separate network such as a Fiber channel

network [50], but can also be flowing through the high-speed back-end network.

Finally, a front-end network interface is used to provide access to the cluster;

application servers or remote clients may submit jobs to the master node and/or

retrieve the results of previously submitted jobs through the front-end interface.

Figure 2.3, shows a physical view of a server cluster designed according to the

Cisco layered approach, but without an aggregation layer.

A clustering middle-ware software running on the master nodes orchestrates

all the activities of the compute nodes and allows users to view the cluster as a

single computing node by providing the necessary tools and services needed to

target the compute nodes. Examples of current cluster middle-ware software tools

are Apache Hadoop [15], Spark citeref:sparkwebsite, ref:sparkpaper, and Google

Cloud DataFlow [51]. The Server clusters design model is typically associated

with High-performance computing, as most of the server cluster use cases relate

to massive data and compute intensive applications. Although there are other

28

Figure 2.4: HPC Architectures Shift Toward Cluster Computing [39]

high-performance computing architectures, the server cluster model is currently

dominating the HPC market due to its cost-effectiveness. Figure 2.4 depicts how

the HPC market shifted towards using cluster computing during the last decade.

2.1.4 Data Center Scalability and Power Efficiency issues

As the demand for application performance increases, the computational capacity

of the data center facility must scale to meet the demand. There are two different

approaches to scaling the computational capacity of a data center facility: (1)

horizontal scaling, and (2) vertical scaling. The horizontal scaling approach is

colloquially referred to as the “scale out” approach; it usually consists of deploying

additional server nodes into the data center facility to match the increase in

demand [52]. The other approach, which is the vertical scaling or the “scale up”

approach, consists of replacing old and aging server machines with more powerful

ones [52]. Historically, improvements in servers’ computational capacity were,

mainly, due to enhancements made to the microprocessor’s micro-architecture.

During the last decade, however, CPU manufacturers started employing multiple

cores on the same chip. [53] Nowadays, improving server performance takes place,

mainly, by adding more CPU cores. Subsequently, both approaches, the “scale

29

up” and the “scale out” methods, involve adding more CPU-bound compute

resources.

As mentioned earlier in section 2.1.1, resiliency and performance are among

the most important design factors in modern enterprise-grade data center de-

signs. To ensure resiliency and high-availability in their data processing services,

enterprises resort to adding redundant compute nodes that act as backup servers;

when a server node fails, a backup node may take over. Moreover, the maximum

compute capacity of a data center facility must always match the demand for

application performance during peak hours. Consequently, data center owners

typically plan to “scale up” or “scale out” their data center facilities to handle

peak annual demand for server performance [23]; during the rest of the year, a

large portion of the deployed server resources remain mostly unused. According

to a study conducted by the National Resources Defense Council (NRDC), server

utilization remained at around 12 to 18 percent between 2006 and 2012 [23]. Un-

derutilization of CPU-bound compute resources in data centers is one of the most

direct origins of data center inefficiencies.

One way of dealing with CPU-bound server inefficiencies is to resort to appli-

cation domain specific computing platforms such as: General Purpose Graphical

Processing Units (GP-GPU), Digital Signal Processors (DSPs), or Field Pro-

grammable Gate Arrays (FPGAs). These are computing platforms that are cus-

tomized for certain kinds of applications and are designed to excel in terms of

performance and power efficiency at the cost of a relative loss in flexibility. For

instance, GPUs can leverage their highly-parallel architecture to efficiently target

parallel algorithms. GPUs, however, may not be used to efficiently implement

general purpose workloads, because these workloads might involve computations

with a serial and unparallelizable nature; moreover, CPUs might have higher

30

clock speeds than GPUs. Consequently, GPUs are typically deployed along with

CPU-bound servers by tightly coupling a GPU daughtercard to each server ma-

chine via a high-speed bus such as PCIe.

During the last decade, FPGA-based application-domain specific comput-

ing platforms started to gain more popularity, especially in the field of High-

Performance-Computing. FPGA devices are reconfigurable computing chips that

generally consist of two kinds of resources: (1) logic, and (2) interconnect re-

sources [24]. Logic resources are comprised of Lookup tables (LUTs) and D-

flip-flop elements, organized into logic or functional blocks (LB). Interconnect

resources allow multiple logic blocks (LB) to be tiled and connected together

to compose a large sequential logic circuit. Both the logic and the intercon-

nect resources are programmable, in the sense that, LUTs and the interconnect

configuration can be both re-configured multiple times in the field. As FPGAs

started to gain more and more popularity, FPGA manufacturers started adding

more features to their FPGA chips, such as embedded hardware multipliers (DSP

units), Block Random Access Memory units (BRAM units), on-chip hard memory

controllers, and in some category of FPGA chips, dual-core embedded processor

systems. Many studies suggest that employing FPGA-based accelerator units in

a data center facility has huge positive implications on performance and power

efficiency [28,38,54].

To summarize, Application-domain-specific computing platforms such as GPUs

and FPGAs provide an attractive solution to the problem of scaling the compu-

tational power of a data center facility. In this work, we address the use of

FPGAs in the data center. In chapter 3, we will develop a method for deploying

FPGA-based accelerators in a server cluster data center environment. In chapter

5, we develop an efficient methodology for mapping Deep Convolutional Neural

31

Networks to FPGA-based hardware accelerators.

2.2 Big Data Architectures

A Big data system architecture is a combination of different complemental sub-

systems that together form a wide-ranging value-chain that can be employed by

a corporation to derive valuable insights from the data it collects [55]. According

to Han et al. [56], a typical big data value-chain consists of four stages: (1) Data

Generation, (2) Acquisition, (3) Storage, and (4) Analysis.

2.2.1 Stages of Big Data

The data generation stage is concerned with identifying potential data sources

that can be captured and analyzed by the enterprise. Due to technological ad-

vancements in digital sensors and information technology, almost all modern busi-

ness practices rely on amassing colossal amounts of data pertaining to business-

to-business, and business-to-customer transactions. Examples of such practices

include web-based service applications such as common Enterprise Resource Plan-

ning (ERP), and Customer Relationship Management (CRM) solutions that are

used by an enterprise to effectively manage and track its business resources. An

IDC report [22] estimates that by 2020, internet business transactions will reach

a staggering 450 Billion transactions per day. As the amount of data available

for businesses expands, the percentage of data that can be curated and analyzed

is steadily declining [2]. This growth in business data volume requires more ef-

fective big-data-geared methods to help gaining useful insights in an acceptable

time frame. Other sources of data that are currently challenging traditional data

processing schemes are networking data and scientific datasets [56]. Networking

32

data includes, but are not limited to, mobile phones, social media platforms, web-

sites, and IoT devices. At the time of this writing, more than 50% of the world

population were reported to have access to the internet [57] and around 30% of

them to own smart phone devices [58]. The sheer amount of data generated by

social media and mobile phone users exceeds 500 Gigabytes per minute [58].

Han et al. [56] define the Data Acquisition stage as the phase in which all

generated datasets captured by an enterprise are aggregated in a digital form

that is suitable for storage and analysis. Data acquisition is an umbrella term for

three main sub-phases: data collection, transmission, and pre-processing. The

data collection method must be carefully considered by the enterprise, mainly

because it depends on the physical characteristics of the data source [56]. Ac-

cording to Han et al. [56] data collection methods can be summarized into three

methods: (1) sensors, (2) log files, and (3) web crawlers. The collected data

is transferred from its place of origin to a data center facility for storage and

further processing through high-capacity transmission links. The sheer size of

the transferred data and the rate at which it is produced put stringent require-

ments on the internet backbone through which the data is transmitted as well

as on the internal networking infrastructures of data centers. Recently many ad-

vancements have been made to address the limitations of traditional data center

networking infrastructures. Some of these improvements target the communica-

tion physical layer technology used in the data center, such as employing fiber

optic cables with wave-division multiplexing, and all-optical switching [59], while

other improvements target the transmission control protocol [60,61].

After collection, the data should be organized and stored in a convenient for-

mat that simplifies retrieval and analysis. Storing large trails of data in a data

center facility raises two important concerns: the first is locating data within the

33

data center in a reliable and redundant fashion to insure high-availability and

avoid loss-of-data scenarios, and the second is providing a scalable high-speed

access interface to the stored data in order not to hinder the overall computa-

tional performance of the data center. Accordingly, in a big-data-geared data

center, the architecture of the data storage infrastructure and the data man-

agement frameworks used are of paramount importance. There are three main

storage infrastructure technologies used in current data centers: Direct-Attached

Storage (DAS), Storage Area Networks (SAN), and Network Attached Storage

servers (NAS) [56]. A typical data center uses a combination of all or a subset

of the three storage methods. DAS attempts to extend the storage capacity of

single servers by attaching more storage devices to individual servers, while SAN

provides a high-speed low-latency interconnect between multiple storage devices

and servers. In typical data centers, SAN provides an attractive alternative to

DAS, since it offers more flexibility and availability as well as affordable scal-

ability. Lately, however, many successful bigdata platforms [62, 63] employed

a distributed storage space strategy; These systems are composed of networked

servers with directly-attached storage devices (DAS) and an intelligent data man-

agement framework. The data management framework provides clients with an

appropriate Application Programming Interface (API) to manage storage, and

a parallel programming model to launch parallel computations on the servers.

These systems rely on moving the processing function closer to storage devices

alleviating the overhead of moving large amounts of data across the network. Re-

gardless of the Storage method used, a scalable, reliable, and an intelligent data

management framework is an essential element of most modern big-data-geared

data centers.

Finally, the last stage of a Big data value chain consists of analyzing the stored

34

data. The purpose of this analysis is to extract useful insights form the data and

to help a business evaluate its current situation and make the right decisions.

Big data analytics rely on computational techniques inherited from multiple dis-

ciplines such as statistics and computer science [1] The most prominently used

methods to analyze unstructured Big data are the ones specifically based on ma-

chine learning. Lately, Deep Learning methods gained a lot of popularity, as

they proved to be very useful and valuable tools for Big data analytics [7]. Deep

learning is based on a sub-area of machine learning called representation learn-

ing, in which a hierarchical learning process is employed to automatically extract

high-level complex representations of the input raw data.

2.2.2 Big Data management frameworks

Apache Hadoop

Apache Hadoop is a highly scalable big data management framework for server

cluster data centers based on the master-slave architecture, it allows distributed

processing of very large-scale datasets using a simple programming model [2,15].

In the following we provide a brief overview of the Hadoop project, it’s common

components, its applications and what it can and cannot provide.

Hadoop is divided into four pieces: (1) the Hadoop Distributed File System

(HDFS), (2) the Hadoop MapReduce programming model, (3) Hadoop Com-

mon, and (4) Hadoop Yarn. Hadoop Distributed File System (HDFS) is a Big

data storage facility and framework. In HDFS, data files are broken into data

blocks distributed across thousands of interconnected servers. HDFS can make

use of commonly available and inexpensive commodity servers, with an inexpen-

sive storage system such as one or two hard drives per server, arranged in a very

35

Figure 2.5: HDFS distributing data blocks to rack servers [2]

large network, to create a scalable, robust, fault tolerant and highly-available

high-performance computing platform. The high-availability is guaranteed by

replicating each data block on another server across the Hadoop cluster [2]. If a

node fails, the data blocks residing on this node can still be recovered from the

replicas available on other machines. Figure 2.5 shows a typical example of how

HDFS duplicates and distributes the data blocks into multiple servers. Note that

HDFS may also be rack-aware meaning that it makes it best effort not to place

duplicates of the same data block in the same rack of servers. Another benefit of

this redundancy is manifested in the ability of the Hadoop cluster to also break a

certain computation into multiple tasks and execute those tasks in a distributed,

parallel and redundant fashion improving fault tolerance.

In a Hadoop cluster, a single master node manages the data placement logic

and keeps all the files’ meta-data; The master node is typically referred to as

Name Node. The remaining nodes are called Data Nodes and are used to store the

aforesaid data blocks in a distributed fashion. Typically, the Name Node stores

36

meta-data information in main memory with the aim of having a quick response

time. A single Name Node is sufficient to manage a huge cluster; however, this

creates a single point of failure. To combat failure, the newest versions of Hadoop

include the capability to define a Backup Node, which is a standby machine that

periodically checks whether the primary Name Node is still alive; if the primary

Name Node fails, the Backup Node may take over.

A process, that runs on each Data Node, is responsible for creating storage

blocks and destroying them based on instructions received from the Name Node.

The Name Node provides an abstract interface and a file system namespace,

through which clients can execute filesystem operations such as opening and

closing files or creating directories. In other words, if a user desires to upload

a certain file to HDFS, the Name Node handles the low-level details such as

breaking the file into blocks and determining the mapping of these blocks to

Data Nodes. A client who wishes to read from or write to a distributed file in

HDFS, must first retrieve the locations of each block from the Name Node, before

communicating with the corresponding Data Nodes; the proper Data Nodes can,

then, receive read or write requests directly from the HDFS client.

The Apache Hadoop MapReduce framework is a Java-based software frame-

work that provides a programming model and a run-time environment for pro-

cessing large amounts of data distributed across multiple servers, in a parallel,

scalable, and fault tolerant manner. Hadoop MapReduce was inspired by an older

implementation of the MapReduce programming model called Google MapRe-

duce [14]. Hadoop MapReduce, however, fixed a lot of the limitations Google

MapReduce had. The Hadoop MapReduce framework is built on top of HDFS

and uses it as a distributed storage service. The latest version of Hadoop MapRe-

duce uses the Apache Yarn architectural center [64], which supports the notion

37

of software containerization. Containerization ensures the separation between

application logic development and the deployment of applications [65].

In Hadoop MapReduce, a master node, called Resource manager, is responsi-

ble for managing the computing resources of the HDFS cluster, and for schedul-

ing/monitoring the execution of MapReduce Jobs. To launch a MapReduce Job

on an HDFS server cluster, a client submits a job to the Resource Manager. A

daemon process running on the Resource Manage receives the requested MapRe-

duce job and tries to allocate a resource container for executing a job-specific

master daemon, called Application-Master (AM). The per-application AM is re-

sponsible for negotiating resource containers from the Resource Manager, and

for tracking the status of the MapReduce Job. After creating the AM, the Re-

source Manager tries to contact the Name Node server to locate the data blocks

required by the submitted job. Upon locating the data blocks, the Resource

Manager breaks down the job into multiple tasks and schedules those tasks on

the Data Nodes where the data is located.

A daemon process, called Node Manager, runs continuously on every Data

Node. The Node manager is responsible for, creating software containers for

MapReduce tasks, monitoring the computing resources of the Data Nodes, and

reporting status updates to the Resource Manager. The Scheduler component

of the Resource Manager employs the Apache Hadoop Yarn [64]. Yarn supports

the concept of Resource Reservation, in which an allocated task can be allocated

a set of reserved resources over a certain period of time [65]. Consequently, the

scheduling of tasks on the Data Nodes consists of allocating resource containers

for the appointed tasks. Figure 2.6 depicts two client processes submitting two

different MapReduce Jobs to a Hadoop Resource Manager.

In the MapReduce programming model [14], all data processing Jobs are

38

Figure 2.6: two client processes submitting two different MapReduce Jobs to a
Hadoop Resource Manager [15]

factored into two stages of computation: (1) a map stage, and (2) a reduce

stage. In the map stage, multiple map tasks operate concurrently on distributed

Hadoop data blocks, producing intermediate results. These intermediate results

are then sorted by the MapReduce framework and transferred to the second

stage, namely the reduce stage, in which one or more reduce tasks reduces the

intermediate results into the final desired result. The MapReduce framework

takes advantage of the data locality principle by scheduling Map and Reduce

tasks on the servers where the input data block already exists (Data Nodes),

greatly improving performance. In fact, the practice of moving data processing

functions to the place where the data block is stored is vastly common among all

bigdata frameworks, since the sheer size of the data makes transferring it through

the network very undesirable.

In the MapReduce framework the input dataset to a MapReduce Job is always

viewed as consisting of Key/Value pairs i.e., a list of pairs in the format (key1,

39

Map

Map

Map

Map

Combine

Combine

Combine

Combine

HDFS

Reduce

Reduce

Shuffle

&

Sort

HDFS

list{(k1, v1)} (k1, v2) list{(k2, v3)} list{(k2, v3)}

Figure 2.7: Hadoop MapReduce DataFlow

value1) [14]. During the Map stage, multiple map tasks operate on the input

dataset in parallel. Pairs, that are processed by the same Map task, are usually

assigned the same key. Each Map task also produces a list of Key/Value pairs.

The framework, then collects all the pairs produced by the different Map tasks,

sorts them, and groups them by key i.e., it creates one group for each key. In the

reduce stage, multiple reduce tasks operate on every group of pairs in parallel.

Every reduce task may produce a list of output values in another data domain. A

programmer, who wishes to write a MapReduce Job, must define both the map

and the reduce tasks. In addition to defining the map and reduce subroutines,

Hadoop MapReduce may also allow the user to define an optional combine sub-

routine that locally operates on the output of each individual Map task, before

sending results to the reduce stage. The Direct Acyclic Graph, shown in figure

2.7, describes the MapReduce dataflow process.

The Hadoop Common component contains supplementary libraries to support

the proper functioning of the aforementioned Hadoop components and to facili-

tate the interaction with the Hadoop Distributed File System. It includes a file

system shell interface allowing users to interactively upload, create, or manipulate

40

files in the HDFS. Common may also include several other functionalities such

as a Native libraries, Rack-awareness support, and security among many others

(refer to [15] and [2] for more information on the Hadoop Common component).

Programming with Hadoop requires mastering both HDFS’s API and the

Map-reduce programming model. Since HDFS and Hadoop MapReduce were

both implemented in Java, programmers may also implement their MapReduce

applications by implementing appropriate Java interfaces and abstract-classes.

Consequently, programming a MapReduce application may require thorough pro-

gramming skills. To alleviate this difficulty, the Hadoop community developed

several Hadoop-related applications or sub-projects that run on top of Hadoop

and are suitable for big Data applications such as Mahout [66], Hive [67], Cas-

sandra [68], and many other Hadoop sub-projects.

Apache Hadoop was successful in achieving two big data goals: Scalability

and fault tolerance. In practice, however, some applications may require chaining

multiple MapReduce Jobs to accomplish the desired functionality. For instance,

iterative computations, such as Machine Learning and optimization algorithms,

may repeatedly apply a certain function on the same dataset (referred to as the

working dataset) [18]. In this case, the computation may be mapped to a chain of

MapReduce jobs. Note that, at the end of every MapReduce cycle, data is stored

in HDFS and then reloaded for the next cycle. Accessing HDFS is practically

translated into disk operations which are relatively slow and may keep Hadoop

from delivering “speed-of-thought” response times [2].

Apache Spark

Google MapReduce [14] was first conceived as a parallel and fault-tolerant com-

puting framework for simple batch processing workloads. Although it gained a

41

lot of popularity, the simplistic nature of MapReduce makes it ill-suited for other

types of workloads such as interactive and iterative computations [18]. The lim-

itations of MapReduce led to a variety of specialized cluster computing systems

to be developed such as Dryad [16], Pregel [19], and GraphLab [20]. Apache

Spark is a unified general-purpose parallel processing engine that can efficiently

implement most of the modern types of workloads [69]. The features present in

Spark along with its user-friendly interface significantly contributed to the suc-

cess of Spark. In the following, we begin with describing the essential components

of an Apache Spark cluster architecture. Next, we describe the most important

characteristics that contributed to the success of this framework.

In a Spark data center, the master server node is, typically, referred to as the

driver node, whereas slave nodes are referred to as worker nodes [29]. In addi-

tion, to the driver node, a resource manager node is deployed to keep track of all

the available compute and storage resources in the cluster. A Spark application

consists of many distributed and independent processes coordinated by a single

entity called SparkContext [29]. Throughout its life cycle, the SparkContext ob-

ject is declared, initialized, and maintained by a Java program, called the Driver

program. As the name implies, the Driver program typically runs on the driver

node.

To run a Spark Job, clients submit their user programs to the driver node.

A submitted user program, first, declares and instantiates a SparkContext ob-

ject. The SparkContext object asks the cluster manager process, which usually

runs on the resource manager node, to allocate a number of compute resources

for the application. The cluster manager process, then, launches a number of

Executor processes on multiple worker nodes, and assign those processes to the

SparkContext object that requested the compute resources. Executor processes

42

Figure 2.8: Logical view of a Spark cluster [29]

are Java processes whose only purpose is to receive individual tasks or compute

functions from the Driver program and execute those tasks. The Driver program

runs through the application code and depending on the application, tasks are

sent to the Executor processes in the form of Java ARchive (JAR) or Python

files [29]. Figure 2.8 illustrates a logical depiction of a simple Spark cluster with

two worker nodes.

The Spark framework is not restricted to only one type of cluster managers.

Currently, Spark may be deployed on top of any of the following four cluster

management systems: (1) Standalone [29], (2) Apache Mesos [70], (3) Apache

Yarn [64], and (4) Kubernetes. The default and the simplest cluster manager

for the Spark framework is Standalone. In Standalone, applications submitted

to the Spark cluster are executed in first-in-first-out order, and during the ex-

ecution of each application all the available worker nodes are allocated unless

otherwise specified by the user. In Mesos, the cluster manager allows Spark to

run alongside other services on the same sever cluster. When Mesos is used as a

cluster manager, the responsibility of scheduling tasks is offloaded to the resource

manager, because it needs to account for the other services running alongside the

43

Spark framework. In Yarn, the Driver program and the Executors all run inside

containers. Finally, Kubernetes allows the automatic deployment and scaling of

containers. When Kubernetes is used as a resource manager, the Spark applica-

tion may be submitted directly to the Kubernetes cluster, which create a Driver

program within an abstraction called “Kubernetes pod”, where a “Kubernetes

pod” is a group of one or more containers [71]. The Driver, then, creates other

Executor processes within Kubernetes pods. The Scheduling the of execution of

both Driver and Executor codes is resolved by the Kubernetes cluster itself.

As mentioned earlier, Driver programs specify the data and control flows of

Spark applications. The Spark programming model defines two important ab-

stractions: (1) Resilient Distributed Datasets (RDDs), and (2) Parallel Transfor-

mations [18,72]. An RDD is an immutable, in-memory, collection of objects parti-

tioned across many server nodes. A Spark program, typically, consists of a series

of user-defined Parallel Transformations, where each Transformation processes

one or more source RDD objects and produces one or more different sink RDD

objects. RDDs have two interesting properties: (1) they are lazily evaluated,

and (2) they are ephemeral [18, 72]. Lazy evaluation means that when a Driver

program encounters a transformation that operates on a source RDD, the result-

ing sink RDD is not computed immediately. Instead, the framework maintains

enough information about the source RDD and the corresponding transformation

to compute the resulting RDD, whenever the resulting RDD is needed. Similarly,

in the case of a complex chain of transformations that starts with a base source

RDD, the framework doesn’t immediately start materializing the RDDs, but in-

stead it maintains enough records that allows worker nodes to compute all the

intermediate RDDs along the way until the end of the chain, whenever the sink

RDDs are needed. In Spark terminology, these records are stored in a graph-

44

based structure called Lineage Graph. The Partitions of the lazy RDDs may

only be materialized i.e., computed, when a Spark Action on the final sink RDD

is invoked. Spark Actions are parallel operations that do not create additional

RDDs but are rather used to evaluate a lazy RDD to extract useful information

from it.

The ephemeral property means that RDDs get discarded after their first use

unless the programmer explicitly changes their persistence property by employing

one of the following two Spark actions: (1) cache() and (2) save() [18]. The

cache action instructs the framework to evaluate a sink RDD, which will eventu-

ally evaluate the chain of all parent RDDs as well, and persistently cache the sink

RDD in memory for later use. Similarly, the save action evaluates the sink RDD

and saves it in stable storage i.e., in mass storage. The choice of using lazy eval-

uation in RDDs allows the Spark framework to group transformations together

contributing to the reduction of both computational complexity and networking

traffic between the nodes. In short, when a complex chain of transformations

is invoked on a source RDD, the framework composes a Lineage Graph of lazy

RDDs. The evaluation of the Lineage Graph, which is basically a Direct Acyclic

Graph (DAG) of lazy RDDs, may be triggered by one or more actions [18].

RDDs may be created in one of three ways: (1) by reading its elements form

a distributed file system such as HDFS, (2) by parallelizing an existing collection

of data in the Driver process, or (3) by invoking a parallel transformation on

an existing RDD [18]. Examples of commonly used parallel transformations are

the map(fun) and filter(fun) transformations. The map(fun) transformation

operates on a source RDD and returns another RDD that is formed by passing

each element of the source RDD through the function fun. The transformation

filter(fun) return an RDD formed by selecting elements form the source RDD

45

on which the function fun returns true. Common examples of actions used in

Spark applications are the reduce(fun) and saveAsTextFile (path) actions.

The reduce(fun) action aggregates the elements of the source RDD using the

user-provided binary function fun. The saveAsTextFile(path) action saves the

source RDD as a text file locally on the Driver node or on a distributed file

system such as HDFS. Note that SPARK supports a lot of transformations and

actions. The Spark Programming Guide [72] provides a complete treaty on the

Spark programming model, including, but not limited to, all available Spark

transformations and actions.

In addition to introducing the concepts of RDDs and transformations, Spark

introduced two other restricted types of shared variables: (1) Broadcast variables

and (2) Accumulators [72]. In certain parallel applications a large piece of data

may be used in multiple transformations and by many worker nodes. Instead of

packing the piece of data with every transformation, Spark provides a mechanism

through which the piece of data may be broadcasted to all worker nodes only once.

To broadcast a piece of data the programmer may create a broadcast variable

object, and the framework will ensure that the variable is copied to every worker

node only once. Some applications require implementing counters or parallel

sums, in which case Accumulators may come in handy. Accumulators in Spark

are variables that worker nodes may only add to, through an associative and

commutative operator. Associativity and commutativity allow Accumulators to

be easily implemented in a parallel environment [72].

46

Chapter 3

Network-Attached
Reconfigurable Accelerator
System Architecture for the
Spark Data Center

The amount of data that is being piled up, stored and analyzed by modern enter-

prise businesses, along with the data generated by Internet and mobile users on

an international scale are growing to an inconceivable degree [1,5]. An IDC report

claims that the total volume of digital information created and replicated on the

internet will grow to almost 44 trillion gigabytes by 2020 [5]. From the business

owner perspective, more collected data means more potentials to gain useful in-

sights and predict future outcomes, yet only a small portion of this data can be

analyzed [2]; Moreover, this portion of data is growing smaller everyday as the

rate at which the data is proliferating is gradually outpacing the computational

capacity of modern data centers.

Historically, the growth in demand for application performance in data center

infrastructures was matched with improvements in the microprocessors’ compu-

tational capacity. For most of its history, the microprocessor’s computational

and thermal performances remained ahead of demand [39]. Lately, however,

47

this situation started to change dramatically as most of current businesses and

enterprises became highly data-driven. Moreover, according to Intel [73], the

pace of advancement in transistor density in monolithic integrated circuits has

slowed down since 2012 and this trend will continue thereafter. To respond to

this performance gap between the insatiable demand for application performance

and the microprocessor sheer computational capacity, business owners and en-

terprises scale up and out their data center facilities by adding more processor

cores to meet the demand. This strategy, however, made the data centers very

inefficient in terms of energy and power consumption. According to an NRDC

report published in 2012, the main source of inefficiency in current data centers

is CPU underutilization. The study concluded that server’s utilization remined

between 15 and 18

To mitigate the problems of CPU-bound server clusters, the High-Performance

Computing (HPC) community started searching for application-domain specific

computing technologies that can harness the intrinsic composition and paral-

lelism in their applications [25,74]. The most famous application-domain specific

computing platform was the Graphical Processing Unit (GPU). After years of

success in the gaming and research industries, GPUs started to find their way

to the HPC and data center markets, due to their parallel structure and their

capacity to efficiently target parallel algorithms.

Employing custom-designed Integrated Circuits (ASIC), is another possible

alternative to CPU-bound architectures. Although custom-designed ASIC-based

solutions always provide the best performance per energy and power figures, em-

ploying them in the data center environment is nearly impractical, because data

center services evolve so rapidly, and ASIC fabrication processes are relatively

slow. Recently, the HPC community realized that they can use reconfigurable

48

computing platforms such as FPGAs to build custom-designed accelerators for

a wide-spectrum of workloads. FPGAs provide a very good balance between

hardware acceleration, customizability, and flexibility, through the concept of re-

configurability [24]. A lot of research suggest that FPGA-based implementations

of HPC workloads may provide many benefits in terms of performance, and power

efficiency [28,38,54].

Aiming at advancing the deployment of FPGA-based accelerators in the data

center environment, we propose an FPGA-based Network-attached Accelerator

deployment model for the server cluster data center environment. The proposed

architecture is also aimed at supporting currently available big data management

and computing middle-ware systems, such as Hadoop MapReduce [75] and Spark

[18,29]. The contributions of this work are as follows:

� A Network-Attached Accelerator (NAA) deployment model for the server

cluster data center, in which Accelerator nodes are centered around an

FPGA device and are attached directly to the cluster’s network infrastruc-

ture. Although a processor system is employed in the accelerator node, the

processor system is lightweight and is only meant to implement supervisory

functions.

� Due to the network-attached nature of the proposed system architecture,

the NAA cluster may be efficiently scaled out by simply adding more NAA

compute nodes to the cluster infrastructure.

� We proposed an NAA compute model that allows for tasks to be distributed

across multiple NAA compute nodes. This model permits the Spark Driver

node to establish a long computational pipeline that may extend across

multiple NAA compute nodes.

49

� A Firmware architecture for managing the low-level aspects of the accel-

erator nodes. The firmware runs on the lightweight processor system and

implements supervisory functions such as communicating with the server

nodes, reconfiguring the FPGA device, and scheduling operations on the

FPGA-based accelerators.

3.1 FPGA-based Deployment Models

Methods for deploying FPGA-based reconfigurable computing platforms in the

data center environment can be divided on the basis of the coupling-level between

FPGAs and microprocessors or the attach technology [37]. In general, there are

roughly two main categories of deployment methods: (1) Co-processor deploy-

ment, and (2) Network-attached accelerator deployment. In the first category,

which is the co-processor deployment methods, an FPGA device is attached as

a separate module that is tightly-coupled with the processor’s system bus. The

FPGA typically implements a custom-designed accelerator for a certain computa-

tional workload that the client desires to speed up. A key benefit of employing a

co-processor deployment method is the ability to take advantage of the high-speed

data pathways that the tight-coupling between the FPGA and the microproces-

sor may provide. Thus, legacy compute intensive applications can leverage the

existence of a tightly-coupled FPGA-based accelerator to speed up the execution

of a selected list of computational kernels, in which case a simple device driver

may be used to abstract the FPGA low-level interface and provide an extensi-

ble API for the application to target the accelerator. Typical, implementation

examples of co-processor methods employ FPGA boards with PCIe edge con-

nectors [28, 38] attached to server nodes, or motherboard implementations that

50

deploy Xeon processor chips along with FPGA devices tightly-coupled to the

CPU system through Intel’s Quick-Path Interconnect [37]. A key disadvantage

of these methods, however, is scalability; as inserting a new FPGA device into

a server cluster always requires a CPU-based server to host it. Moreover, typ-

ical HPC workloads require a significant number of FPGA devices to meet the

ever-increasing computational demands of modern applications. Consequently,

the number of FPGA devices may not significantly surpass the number of CPU-

bound x86-64 nodes. Given that one of the most prominent sources of energy

inefficiency in modern data centers is CPU underutilization [23], having a CPU-

bound x86-64 node attached to every FPGA could be a great disadvantage to

employing the co-processor model.

The second category of deployment methods relies on connecting FPGA-based

accelerator modules directly to the Data center’s network infrastructure. In this

deployment model, an FPGA-based accelerator unit is an independent and self-

contained compute node that can provide computational services to other entities

in the data center. Consequently, an FPGA-based module should exhibit all the

necessary interfacing technologies to allow it to connect to the network infras-

tructure such as an Ethernet Network Interface Card (NIC). The accelerator

module should be a standalone system with enough intelligence to operate on its

own without a direct fine-grained intervention from a server node. Consequently,

those nodes may include a lightweight embedded-style microprocessor to imple-

ment node and job management functions. The microprocessor may also receive a

coarse-grain job description from a master server node. This kind of deployment

methods can be scaled out flexibly, since the addition of an accelerator module

doesn’t require a directly-attached x86-64 server node to host it.

51

3.2 Related Work

Deploying FPGAs in the data center environment has captured the attention

of both industrial and academic research groups. In the following, we will shed

some light on the latest research endeavors to develop and deploy FPGA-based

solutions for the data center. Both the co-processor and the network-attached

deployment models were investigated.

3.2.1 Co-processor implementations

Microsoft’s Catapult architecture

The Catapult reconfigurable fabric [28] was among the first attempts at devel-

oping FPGA-based co-processors to accelerate compute and data intensive data

center workloads. It was developed by Microsoft to accelerate document ranking,

which is a compute intensive workload used in the Bing search engine. The ap-

proach took by Microsoft relies on supplementing every x86-64 server in a server

cluster data center with a small FPGA daughter card. The daughter card is

interfaced with the server’s motherboard via a PCIe edge connector to minimally

disrupt the server’s architecture. A secondary network connects the FPGAs di-

rectly. The purpose of connecting FPGAs directly was to provide a low latency

and high bandwidth inter-FPGA network. This allows complex applications, that

require more than one FPGA, to be mapped across multiple FPGAs efficiently.

Microsoft was faced with two challenges when deploying FPGAs in the data

center: the first challenge was to meet the low latency and high bandwidth

requirements of the secondary inter-FPGA network; the second challenge was

to marginalize operational expenses when servicing their FPGA-augmented ma-

chines. To address those challenges, they selected a two -dimensional 6x8 torus

52

Figure 3.1: Catapult’s 6 × 8 torus network topology and the physical wiring on
a pod of servers [28].

topology for the inter-FPGA network. They also routed all the FPGA daughter

card’s high-speed traces to the back of each server chassis and connected them ta

a Serial Attached SCSI (SAS) port. The SAS port may be plugged to a passive

backplane, which held the 6x8 torus cabling. This configuration provided an easy

way for servicing FPGA-augmented servers by allowing the maintenance team to

pull it out of the backplane without dealing with complex cabling. Figure 3.1

depicts the logical 6x8 torus network topology used in Catapult reconfigurable

fabric.

The Catapult employed high-end Altera Stratix V D5 FPGA devices in the

daughter cards. These devices have substantial logic resources such as Block

RAMs, DSP units and Look up tables. The high-resource density of these de-

vices allowed the designers of the Catapult to logically divide the FPGA fabric

into two partitions: shell and role partitions. The shell consists of all reusable

components that are common among all applications. The main elements of the

shell: (1) DRAM controllers, (2) serial links with a lightweight communication

53

Figure 3.2: Components of the Shell Architecture [28].

protocol for the inter-FPGA network, (3) router logic to manage inbound and

outbound traffic from the PCIe connector, (4) reconfiguration logic, (5) the PCIe

core. The role consists of the application logic itself. The study found that FPGA

acceleration benefited the document ranking by providing lower latency and bet-

ter scalability. According to the study, a major challenge in the long term is the

programmability, and the development of FPGA designs, since it still requires

hand-coding RTL and manual tuning. Although, Catapult, can benefit the data

center in terms of performance and efficiency, the study doesn’t discuss a suitable

parallel programming model for the framework, and was limited to page rank-

ing. Figure 3.2 illustrates the division of the FPGA fabric into the shell and role

components.

Intel’s Xeon+FPGA architecture

The exponential growth of mobile data traffic across the web is alone fueling the

data center growth. This emerging trend is urging leading high-performance com-

puting manufacturers such as Intel to search for architectures that incorporate

54

Figure 3.3: Intel’s Xeon+FPGA platform [37].

reconfigurable computing elements in order to improve performance and achieve

better energy efficiency figures. In 2015, Intel announced that it has completed

the acquisition of Altera, a historically well-known leading FPGA manufacturer.

Altera is now part of Intel’s Programmable Solution Group which is working in

tandem with Intel’s Data Center Group to deliver the next generation of FPGA-

geared data center architectures [76]. Recently, Intel proposed a new platform

for data centers that incorporates an Intel Xeon processor tightly-coupled to an

Altera Stratix V FPGA through a Quick Path Interconnect (QPI) [37, 77]. The

FPGA acts as a co-processor and is coherently attached to the microprocessor

system allowing the FPGA fabric to have easy access to the CPU’s virtual mem-

ory system. In addition to allowing the FPGA core to access virtual memory, the

platform enables efficient implementations of hybrid processing models with fine

grained interaction between the processor and the FPGA. Figure 3.3 depicts the

architecture of Intel’s Xeon+FPGA platform.

IBM PureData System

IBM delivers a product called IBM PureData System [62] for Analytics Archi-

tecture targeted at database, processing and storage. The PureData system is

based on the Netezza architecture, which uses FPGAs near the disk I/O to fil-

55

Figure 3.4: A Snippet Blade [62].

ter out superfluous data as it streams off the disk. The filtering frees the rest

of the system from processing unwanted data, and hence significantly enhanc-

ing system’s performance. The PureData system employs a novel architecture,

which combines an SMP front-end and a Massively Parallel Processing (MPP)

back-end. The SMP front-end, known as SMP host is a high-performance Linux

server responsible for compiling SQL queries into executable code segments for

processing on the Snippet Blades, which are MPP engines, each with an FPGA

for filtering streams of data as mentioned before. Snippet Blades also incorpo-

rate a multi-core CPU, high capacity RAM and a network interface card. All the

price-performance advantages of the system are due to an embedded engine im-

plemented in the FPGA called FAST. FAST contains a Compress engine which

un-compress disk blocks at wire speed, transforming a disk block into 4 to 8

blocks in memory. FAST also contains engines responsible for filtering out the

data based on the SQL query.

Xilinx SDAccel Environment

SDAccel is an Development Environment for targeting FPGA-based acceleration

from Xilinx [38]. It provides data-center-application developers with the neces-

sary hardware and software design tools to target FPGA-based accelerators in the

56

Figure 3.5: The SDAccel Development Environment [38].

server cluster data center environment. The SDAccel development environment

is similar to the GPU work environment; it allows the application developer to

dynamically and flexibly deploy and decommission accelerators in run-time by

using the concept of partial dynamic reconfiguration. The SDAccel compiler

targets x86-64 server machines augmented with FPGA-based PCIe cards. The

compiler supports any combination of OpenCL, C, or C++ application specifi-

cation languages and generates optimized hardware architectures for streaming

and low-latency computations. The most important contribution Xilinx accom-

plished with SDAccel is giving software developers access to a familiar workflow

that allows them to exploit the raw computational power of FPGAs with little to

no prior FPGA experience. In addition to providing an efficient compiler tool, the

Integrated Development Environment (IDE), offers the ability to emulate FPGA

devices on the x86-64 server machines. Emulation allows developers to easily test

and verify their designs for functionality, before deploying them on data-center-

ready FPGA-based PCIe cards. Figure 3.5 depicts the layered architecture of the

SDAccel development environment.

SDAccel’s compiler was tested with real world benchmark applications such

as compression and encryption and was able to produce 3× smaller and 3×

57

faster designs than any other design generated using other High-level Synthesis

tool. Moreover, the generated designs were comparable to hand coded Register-

Transfer Level (RTL) designs. Although SDAccel provides a GPU-like program-

ming environment, an emulation facility and a powerful compiler, it relies on a

co-processor deployment model. We mentioned earlier that, in the co-processor

deployment model, it is necessary to have a CPU-based server node to host every

FPGA daughter card; Consequently, scaling out the FPGA facility necessarily

requires adding more CPU-bound server nodes.

3.2.2 Network-Attached Accelerator implementations

FPGA Accelerated Storage Architecture for Data-Intensive Applica-

tions

An FPGA-based Solid-State Drive architecture, called Reconfigurable Active

Drive (RAD), was proposed by Li et al. [78]. The RAD combines the processing

power of FPGA-based accelerators and the high-bandwidth access of a Solid-

State Drive. Similarly, to what was proposed in the IBM PureData architecture,

RAD was developed based on the idea of moving data processing elements i.e.,

FPGAs, closer to the mass storage facility. In order to achieve very high through-

put between the SSD storage elements and the FPGA, RAD employs an array

of parallel flash chips. An FPGA device is placed between the SSD controller

and the flash package array as shown in figure 3.6. The FPGA may be divided

into two components: (1) User logic, and (2) Flash-access related logic. The

User logic is used implement data-intensive applications such as database pro-

cessing and data mining. The Flash-access related logic is used implement SSD

components such as a flash multiplexer and SSD control logic.

58

Figure 3.6: The RAD architecture [79].

RASSD: Reconfigurable Active SSD Platform for Data Intensive Ap-

plications

Along the same lines, Abbani et al. [54] proposed another FPGA-based Recon-

figurable Active SSD architecture, codenamed RASSD, that can be deployed in

a data center environment. A RASSD node brings together one FPGA device

and an SSD, in a tightly-coupled configuration. The FPGA device is used to

implement an accelerator that can process data streams from the SDD compo-

nent. Figure 3.7 illustrates the architecture of a RASSD node. In the data center

environment, RASSD nodes may be organized into clusters of compute nodes;

each cluster of RASSD nodes may be managed by one middleware server node

(MWS). MWS nodes are responsible for receiving compute requests from client

applications, and for orchestrating the execution of workloads on the RASSD

nodes [80].

The FPGA device on the RASSD node includes a MicroBlaze soft processor

core, peripheral controllers, and a user-defined reconfigurable region. The recon-

figurable region (c.f. figure 3.7) is used to place a custom-designed accelerator to

accelerate client’s workloads. RASSD supports dynamic partial reconfiguration

meaning that the reconfigurable region may be separately reconfigured without

59

Figure 3.7: RASSD node prototype [54].

affecting the remaining FPGA components. The MicroBlaze soft processor core

runs a lightweight Monitor program that performs supervisory function and ex-

ecutes accelerator driver codes called drivelets [54, 81]. A drivelet is a piece

of software code sent by a Middleware server to a RASSD nodes to execute a

certain workload on the MircoBlaze soft processor. The RASSD was tested us-

ing K-means, and it was found that it can run 1.3 to 15.2 times faster than a

multi-core CPU processor implementation while consuming 9.4 to 201.9 times

less energy.

To deploy the RASSD node in the data center environment, a Hadoop exten-

sion to the RASSD platform was proposed in [82]. The extension supports data

distribution and execution of mappers and reducers on the RASSD nodes. More-

over, a performance model was proposed to evaluate the impact of the proposed

extension. In [83], a multi-tasking and real-time operating system architecture for

the RASSD platform was proposed. The RASSD operating system is intended to

abstract and hide the low-level details of the RASSD platform from the running

applications.

60

3.3 Proposed Deployment Model

3.3.1 Challenges

1. The computational workloads involved in data centers are typically complex

and require deploying many FPGAs to meet the desired computational

capacity.

2. The demand for application performance is constantly on the rise; conse-

quently, any successful deployment model should be able to scale out and

up easily to meet the demand. Where scaling out refers to the ability to

flexibly increase the number FPGAs in a server cluster and scaling up refers

to the ability to deploy more power FPGA devices.

3. The deployment model should be able to support a wide range of FPGA

devices.

4. The cluster resource manager should be able to dynamically reconfigure

any FPGA node remotely. Given that our implementation belongs to the

category of Network-attached Accelerators, which usually don’t involve a

high-end CPU core, it is essential to develop a low-overhead framework that

runs on each individual FPGA node. The framework should enable many

supervisory functions, among which is communicating with the resource

manager across the network, and reconfiguring the FPGA fabric dynami-

cally.

5. The deployment model should be able to easily integrate with most big-

data management frameworks such as Apache Hadoop, and Spark. Conse-

quently, the architecture of the FPGA-augmented server cluster should be

61

analogous to that of Hadoop or Spark.

To address those challenges, we propose a scalable model for deploying FPGA-

based compute nodes in the server cluster data center environment. We will, first,

describe the system architecture of an FPGA augmented server cluster; we code-

named our architecture “Network-Attached accelerator” or NAA for short. We

will, then, propose a lightweight, scalable and flexible firmware architecture for

managing NAA nodes. The proposed firmware allows the server cluster manager

to gracefully add or decommission NAA nodes during the operation, thus enabling

scalability. In this model, we specifically targeted the Spark cluster computing

system; consequently, we devised a layered software approach for deploying the

accelerator in the Spark environment.

3.3.2 Network-Attached Accelerator system architecture

Figure 3.8 shows the functional architecture of a server cluster data center aug-

mented with FPGA-based Network-Attached Accelerators (NAAs). This archi-

tecture was inspired by the structure of the Apache Spark cluster computing

system [18, 29]. As in a Spark server cluster, the proposed architecture involves

a master node, a resource manager, and many slave server nodes. In addition to

the slave server nodes, this proposed architecture incorporates many Network-

Attached Accelerators (NAAs) and a Bitstream Repository.

An NAA compute node is a Single Board Computer System centered around

an FPGA device. The FPGA device can implement a custom-designed accelera-

tor for an arbitrary computation; moreover, the FPGA fabric may also implement

other supervisory functions. To run a certain application on the NAA compute

nodes, the driver program running on the master node asks the NAA resource

62

NAA Driver

Program

Master Node

NAA Resource

Manager

Cluster Manager

Node
Slave Server

Nodes

Back-end

Network

NAA Firmware

Bitstream

Repository

Bitstream

Database

NAA

compute

Nodes

Figure 3.8: NAA system architecture

manager, which is running on the Cluster manager node (c.f figure 3.8), to allo-

cate a few NAA compute nodes for the application. After allocating those NAA

nodes, the driver program contacts the Bitstream Repository to fetch suitable

bitstreams for those nodes. The driver program then sends the designated bit-

streams to the allocated NAA nodes and instructs them to program their FPGAs

using the abovementioned bitstreams. Upon receiving the suitable bitstreams and

programming their FPGAs, the designated NAA compute nodes notify the driver

program that they are ready for operations. The driver program, then, attempts

to establish a computational pipeline using the allocated NAA compute nodes.

In section 3.3.4, we will describe the concept of the NAA program and how its

provide an elementary mechanism for establishing the aforementioned pipeline.

Once established, the pipeline can be fed with data from two sources:(1) form

the slave server nodes, or (2) from the NAA’s on-board DRAM memory chips.

An instance of a firmware monitor program is installed on every NAA compute

node. The firmware monitor program is responsible for managing all aspects

related to scheduling computational tasks on the FPGA device, monitoring the

status of the compute node, sending synchronization heartbeats to the NAA

63

Master Node

Driver

process

Bitstream

Repository

Bitstream

database

Resource

Manager

Firmware

instance
Firmware

instance

Firmware

instance

NAA 1

NAA 2

NAA N

X86-64

X86-64

X86-64

NAA nodes

Figure 3.9: NAA system logical view

Resource manager and the NAA driver program, establishing communication

channels with the driver program, or any other slave server node. Figure 3.9

depicts a logical view of our FPGA-augmented server cluster along with it main

elements.

3.3.3 NAA Node Architecture

An NAA compute node consists of three components: (1) a general-purpose

multi-core microprocessor component, (2) a reconfigurable component (FPGA),

and (3) a Networking component. The networking component provides a way

to integrate NAA compute nodes into the server cluster’s network infrastruc-

ture. The FPGA component offers a dynamically reconfigurable fabric that can

be used to deploy custom-designed hardware accelerators for arbitrary compu-

tations. The general-purpose multi-core microprocessor component implements

supervisory functions and is used to run our proposed firmware architecture. We

will further dwell on the structure and role of our proposed firmware architecture

in section 3.3.5.

Depending on the FPGA device used, NAA compute nodes may range from

low-end embedded-style System-on-a-chip (SoC) platforms, to high-end FPGA

devices with very large resource counts. NAA compute nodes may also be classi-

64

On-Board DRAM Memory

Memory Controller

Ethernet

Media Access

Controller

PHY

Chip

MDIO

GMII

Scatter-

Gather

DMA
In

te
rc

o
n
n
ec

t

Multi-core microprocessor

component

Core 1 Core 2

Networking component

Custom-

designed

Accelerator 1

D
M

A
 s

u
b
sy

st
em

Custom-

designed

Accelerator 2

Data

Control

NAA compute Node

FPGA device

Reconfigurable component

Stream links

E
th

e
rn

et

Figure 3.10: NAA node Architecture.

fied based on the multi-core microprocessor component used. At one end of the

spectrum, an NAA node may be built around an FPGA device with no embedded

microprocessor whatsoever; in this case, a soft-processor core may be deployed

in the FPGA fabric to run the supervisory functions. At the other end of the

spectrum, an NAA node may include a full-fledged CPU chip tightly coupled

to an FPGA device, in which case the CPU may consist of a multi-core x86-64

microprocessor chip, while the FPGA is tightly coupled to the CPU’s memory

space through a high-speed interconnect. Figure 3.10 illustrates the architecture

of a typical NAA compute node and shows how its different components are as-

sembled together to form a complete processing module. An interconnect is used

to bring the various components of the NAA compute node together (c.f. figure

3.10). A memory controller is used to interface with the on-board DRAM mem-

ory, which may be a hard or a soft controller depending on the FPGA platform

used.

As implied in figure 3.10, the Reconfigurable component may include more

65

than one custom-designed hardware accelerator simultaneously (c.f. figure 3.10)

and each accelerator may be accessed through a different set of input/output

streaming interfaces. A multi-channel Direct Memory Access (DMA) subsys-

tem is employed to couple the hardware accelerators to the on-board memory,

through the interconnect and the memory controller. The DMA subsystem has

the capability to read a block of data from on-board memory and send this block

as a pipelined stream through a specific stream interface to one of the custom-

designed accelerators. Similarly, the DMA subsystem may also read a pipelined

stream from a particular stream interface and write it to a pre-designated mem-

ory location. The microprocessor component running the previously mentioned

firmware monitor program, is responsible for scheduling memory-to-fabric and

fabric-to-memory data transfers. In addition to scheduling data transfers, the

firmware also runs other supervisory functions such as communicating with the

NAA resource manager and with the NAA driver process (c.f. figure 3.8), con-

figuring the reconfigurable fabric component with new bitstreams, and managing

the meta-data of the hardware accelerators.

3.3.4 NAA Compute Model

In this work, we employ the streaming dataflow compute model [24] to reason

about the inherent composition and parallelism in an accelerated application.

Recall that in a streaming dataflow compute model, the computations are mod-

eled as Directed Graphs (DGs), in which case operators or sub-computations are

modeled as vertices, and data transfers between operators are modeled as edges;

in other words, a computation is modeled as a directed graph, in which the output

of one or more operators are linked to the inputs of one or more other operators.

We specifically model our accelerators using the Parametrized Dataflow Model

66

of Computation (PDMoC) [84]. In the parametrized streaming dataflow model,

some operators may be dynamically configured by re-assigning a set of param-

eters. A reconfiguration is said to have occurred whenever the parameters of

a parametrized Dataflow Graph are re-assigned; moreover, this reconfiguration

may occur only at certain points during the execution of the graph in order to

preserve the integrity of the output [84, 85]. Modelling computational tasks as

such may have a lot of benefits, as this Model of Computation (MoC) has a very

high expressive power and it may also allow data-path and interconnect sharing

to take place when implemented. Accordingly, in this study, a custom-designed

accelerator is modeled as a transformation T that operates on a set of inputs

X and a set of parameters P to produce a set of outputs Y. The output of an

accelerator is mathematically expressed as follows:

Y = T (X,P) (3.1)

WhereX = [x0, x1, . . . , xn−1], P = [p0, p1, . . . , pm−1], and Y = [y0, y1, . . . , yq−1].

T is a general transformation that represents the accelerated computation. Conse-

quently, every custom-designed accelerator exhibits one or more parameter stream

interfaces, one or more input data stream interfaces, and one or more output data

stream interfaces. Figure 3.11 shows an archetypal custom-designed accelerator

with one parameter interface, one input data interface and one output data in-

terface. The parameter interface is used to configure the accelerator for a specific

instance of the computation. This is done by loading an array of parameters

through the parameter interface. The input data interface is used to stream the

input data into the accelerator, while the output data stream interface is used

to capture the results of the computation. In addition to the parameter, input

67

On-Board DRAM Memory

Memory Controller

PHY

Chip

In
te

rc
o

n
n

ec
t

Multi-core

microprocessor

component

Accelerator 1

𝒀 = 𝑻 𝑿, 𝑷

D
M

A
 s

u
b

sy
st

em
Data

Control

NAA compute Node

FPGA device

E
th

er
n

et

Networking

component

Parameter interface: 𝑃

Data interface: 𝑋

Output interface: 𝑌

Dedicated interface

Figure 3.11: Accelerator’s interfaces: parameters, input and output interfaces.

and output interfaces, during a computation, the accelerator may need to access

the On-board memory to store intermediate data. Consequently, the accelerator

may also communicate with the On-Board DRAM memory through a dedicated

interface that bypasses the DMA subsystem (c.f. figure 3.11). The firmware is

responsible for allocating dedicated memory buffers for the accelerators to use

during their life cycle.

Internally, an accelerator can be in one of two states: unconfigured, and active.

Initially, the accelerator will be in the unconfigured state. In the unconfigured

state, the input data stream interface is blocked; in other words, it is not allowed

to receive any input data, since the internal circuits are still not configured to

perform the appointed computation. Upon receiving configuration parameters

via the parameter interface, the accelerator changes its internal state to active.

In the active state, the parameter interface is blocked, whereas the input data

68

stream interface is allowed to receive input data, and the internal circuits of the

accelerator are allowed to process this stream of input data and produce a result-

ing stream of data at the output interface. The number of tokens consumed at the

input data interface, and the number of tokens produced at the output interface

are also parameters received during the unconfigured state. When the accelerator

concludes the computation, it jumps back to the unconfigured state and waits for

another set of configuration parameters to be received on the parameter interface.

One example of a PDMoC-based accelerator is a two-dimensional Finite Im-

pulse Response filter with a re-adjustable filter mask size and re-adjustable co-

efficients. In this case, both the filter mask size and the coefficients of the filter

are parameters that can be set using the parameter interface. Another param-

eter that can be set in this accelerator is the size of the input image that the

filter needs to process. In chapter 5, we dwell more on designing convolution

filters for deep convolutional neural networks. The circuits we designed in chap-

ter 5 conform with the proposed archetypal accelerator in this section, in the

sense that they have parameter, input and output stream interfaces. Conforming

to this model, helps in deploying the designed accelerators in the server cluster

environment.

In our proposed NAA deployment model, we allow computations to be dis-

tributed across several NAA compute nodes. This may be viewed as partitioning

a streaming dataflow graph into multiple sub-graphs and deploy those individual

sub-graphs on multiple NAA compute nodes. The resulting sub-graphs, then,

need to communicate over a local area network. Figure 3.12 serves to illustrate

the concept of spreading a directed acyclic dataflow graph (DAG) on multiple

NAA compute nodes using an example. The illustrated DAG, in figure 3.12,

represents a MapReduce job that consists of a stage of map tasks followed by an-

69

DMA subsystem

Networking

Component
CPU

Map(.)

DMA subsystem

Networking

Component
CPU

Map(.)

map

map

map

map

map

map

Reduce

NAA node 0 NAA node 1

NAA node 0

NAA node 1

NAA node 1

X86-64

Master Node

Local Area Network

Direct Acyclic Graph

Reduce(.)

X86-64

Worker Node

Figure 3.12: NAA computational pipeline example.

other stage of reduce tasks. Accelerators for the map tasks are deployed on both

NAA node 0 and NAA node 1. An accelerator for the reduce task is deployed in

NAA node 1 alongside another map accelerator. The flow of data between the

accelerators is represented using colored arrowed lines (c.f. figure 3.12). Some of

those lines represent data flowing between accelerators sitting on the same node,

while other lines represent data flowing between different accelerators sitting on

different nodes.

The flows of data between accelerators, whether they live on the same node

or on different nodes, is managed jointly by the cluster’s master node and by the

firmware instances running on the different NAA compute nodes. In order to

manage those data flows properly, we introduce two different abstractions: (1)

Network streams, and (2) NAA programs. Network streams are objects that the

master node and the firmware instances maintain to exert control over a certain

flow of data. They may be viewed as tunnels through which a certain data stream

can travel across a local area network. Both the master node and the different

firmware instances may dynamically allocate and deallocate Network streams in

70

order to flexibly establish communication channels between the different accel-

erators that are sitting on different NAA compute nodes. The Network stream

class has multiple data members; the most important of these members are the

Network stream ID , source IP address, source port number, destination IP ad-

dress, and destination port number. The source, and destination information in a

Network stream object allows the NAA compute nodes to properly direct the flow

of data between the different accelerators across the NAA-augmented cluster.

Every NAA compute node maintains its own internal routing table that con-

trols the flow of data internally within the NAA node. Every entry in the internal

routing table consists of multiple fields; the most important of those fields are:

(1) source interface, (2) destination interface, (3) length, and (4) repetition. The

source interface can either be an accelerator’s output interface, a network stream,

or a pre-allocated buffer in memory. Similarly, the destination interface can either

be an accelerator’s input interface, a network stream, or a pre-allocated buffer

that is populated with useful data. The length field indicates the number of bytes

that will move across the designated route before it expires. The repetition field

is used when the source interface is a pre-allocated buffer, and the destination

interface is an accelerator’s input interface or a network stream, in which case

the data in the pre-allocated buffer is read into the destination interface N times,

where N is equal to repetition.

The NAA program is a class of objects that is used by the NAA driver program

to control the internal routing tables of all the NAA compute nodes in a certain

NAA-augmented server cluster. Consequently, the NAA program object consists

of the union of all the desired NAA node’s internal routing tables. In summary,

to build a computational pipeline, the NAA driver program needs to fetch the

correct bitstream files from the bitstream repository, program the allocated NAA

71

compute nodes, define the necessary Network Streams, build a suitable NAA

program, and finally send the corresponding portions of the NAA program to

every NAA compute node.

3.3.5 Firmware Architecture

As mentioned earlier, the NAA driver program is responsible for orchestrating

the execution of computational tasks on the NAA compute nodes. Initially, when

NAA nodes are connected to the cluster’s network, each NAA node starts send-

ing periodic heartbeat signals to the Resource manager. Each heartbeat signal

contains enough information on the NAA compute node to uniquely identify it.

When the Resource manager receives a heartbeat signal, it adds the correspond-

ing NAA node to a list of available nodes. To gain access to NAA compute

nodes, the Driver process contacts the Resource manager and requests a pre-

defined number of NAA compute nodes. The Resource manager, then, allocates

the requested number of NAA compute nodes to the Driver process. Information

about the allocated NAA nodes, such as IP address, FPGA model and memory

capacity, are sent to the Driver process by the Resource Manager ; The allocated

NAA nodes may, as well, be informed about this handover. The Driver process,

then contacts the Bitstream repository to fetch suitable FPGA bitstreams, and

programs the FPGA devices on the allocated NAA nodes.

To instigate a computation, the Scheduler part of the NAA Driver process

builds a suitable NAA program and disseminates it to the NAA compute nodes.

A monitor process running on every NAA compute node, receives the NAA pro-

gram from the driver, and acts upon it. We will refer to this monitor process

as the NAA-side firmware. In addition to interpreting the NAA program, the

NAA-side firmware acts as a mediator between the x86-64 server nodes and the

72

NAA node; It allows the Driver process or the Resource manager to control the

low-level aspects of NAA nodes such as configuring the FPGA fabric or allocat-

ing/deallocating local buffers. On the server side, a middleware software layer

implements all the necessary components, we previously mentioned such as the

Resource manager, the Driver process, Bitstream repository, and the Scheduler.

In addition to the middleware layer, a server-side firmware equivalent to the

NAA-side firmware is implemented. The purpose of the Server-side firmware is

to mediate between the middleware software layer instances running on the x86-

64 servers and the NAA-side firmware instances running on the NAA compute

nodes.

Layered Architecture

Our proposed NAA cluster system exhibits a layered architecture. Figure 3.13

illustrates the different layers involved. An Application layer sits at the top of

the stack. The Middleware layer consists of all the services provided by the

NAA driver program, the Resource manager, the Bitstream repository, and the

Scheduler. Finally, at the bottom of the stack, an NAA layer is employed to

manages all the low-level interactions with the NAA compute Nodes. The NAA

layer is responsible for programming the FPGAs, delivering an NAA program to

the NAA compute nodes, and feeding or receiving streams of data to or from

the NAA nodes. In this work, we will limit the scope of our discussion to the

structure and role of the NAA layer.

As shown in figure 3.13, the NAA layer consists of Server-side and NAA-

side firmware instances. An NAA-side firmware instance is a piece of software

that runs on the multi-core processor component of the NAA compute node. It

implements the concept of internal routing tables, which are populated using

73

Application

Server-side firmware

instance

FPGA fabric

NAA-side firmware

instance

NAA node 1

FPGA fabric

NAA-side firmware

instance

NAA node 2 NAA node N

Middleware

layer

NAA layer

Driver

Node

Resource

Manager

Bitstream

Repo

Application

Layer

x86-64 Servers NAA nodes

Figure 3.13: Layered Architecture

NAA programs, and the concept of Network Streams described in section 3.3.4.

Furthermore, the firmware does all the necessary book keeping regarding the

deployed FPGA-based accelerators, and reports status updates to the Driver

process trough heartbeats. The Server-side firmware provides a standard interface

through which the Driver process or the Resource Manager can communicate

with the NAA-side firmware instances and with the FPGA-based accelerators.

The Server-side and the NAA-side firmware instances may employ the standard

TCP/IP protocol stack to communicate, in which case the firmware implements

a lightweight version of the TCP/IP protocol stack. The firmware provides a set

of NAA commands through which the Driver process or the Resource Manager

can control the internal aspects of the NAA compute nodes. In the following

section, we will describe the necessary NAA commands made available by the

firmware.

NAA Commands

An NAA-side server process, listening at TCP port 7 and running on the NAA’s

processor component is responsible for receiving NAA commands and other con-

trol information. When the NAA server process receives a piece of data, it for-

74

wards the data to another internal process, called Command interpreter. The

Command interpreter can be in one of three states at a time: (1) Listening, (2)

Receiving, and (3) Executing. Initially, the Command interpreter is in the Lis-

tening state, in which case, the interpreter waits until it receives a valid NAA

command from the NAA server process. When a valid command is received, the

interpreter can go to one of the two other states i.e., Receiving or Executing. If the

received command requires additional data, the interpreter goes to the Receiving

state; otherwise, it goes directly to the Executing state. In the Receiving state,

the interpreter waits until the additional data is received completely before going

to the Executing state. Finally, in the Executing state, the firmware executes

the received command. When the received command is executed, the interpreter

goes back to the Listening state.

Upon scheduling a computation on an NAA compute node, the Driver pro-

cess, fetches the necessary bitstream from the Bitstream repository and tires to

program the FPGA device on the corresponding NAA compute node. To pro-

gram an FPGA device, the Driver process, first, attempts to establish a reliable

TCP connection with the hosting NAA node at port 7 to send NAA commands.

After establishing the reliable TCP connection with the NAA node, the Driver

process, through its server-side firmware instance, sends a program bitstream

command to the NAA-side firmware instance followed by the desired bitstream

file and an Accelerator Meta-data file. The Accelerator Meta-data file contains

information about the bitstream file such as the accelerators involved, along with

information about each individual accelerator. The most important pieces of

information carried by the Meta-data file are the accelerators’ ID numbers, the

input/output stream interfaces’ ID numbers, and the number, sizes and types of

the dedicated buffers allocated for the accelerators (refer to section 3.3.4 for infor-

75

mation on the dedicated buffers). The firmware maintains a data structure that

represents all the information about the accelerators; we call this data structure

Accelerator Control Block (ACB). Upon receiving the Bitstream and the meta-

data files, the firmware, then, programs the FPGA device using the Bitstream file,

and uses the information in the meta-data file to allocate the necessary buffers,

and to create the ACB.

After programming the NAA’s FPGA device, the scheduler component of the

Driver process might decide to buffer data on the NAA’s On-board memory. In

this case, the Driver process may instruct the NAA-side firmware to allocate a

memory buffer on the NAA’s main memory. To allocate a buffer on the NAA

side, the Driver process sends an allocate buffer command followed by a few

parameters that determines the buffer’s ID number, size and type. Buffering

may be employed in cases where a working dataset might be used multiple times.

Similarly, the Driver process may instruct the NAA-side firmware to deallocate

a buffer using the deallocate buffer command.

When the Driver process programs all its allocated NAA compute nodes, it

attempts to establish a computational pipeline. As described in section 3.3.4,

two important concepts may be used to establish this pipeline: (1) Network

streams, and (2) NAA programs. Network streams are communication tunnels

across which data may travel between NAA compute nodes. When it comes to

allocating Network streams on NAA compute nodes, there are two types of Net-

work streams : inbound and outbound. When an outbound Network stream is

allocated on an NAA compute node, the node may actively instantiate and es-

tablish a connection with another node through this stream. On the other hand,

if an inbound Network stream is allocated on an NAA node, the node may only

passively receive a connection request form another node through this stream.

76

Consequently, for every inbound Network stream in one NAA node, there should

be at least one outbound Network stream on another NAA node. Our firmware

architecture supports a set of NAA commands for allocating both inbound and

outbound Network streams. To allocate an inbound Network stream, the Driver

process may use the allocate inbound stream command followed by a list of

parameters that consists of the Network streams’s ID, and the destination port

number. Upon receiving this command, the NAA-side firmware launches a TCP

server process that listens for connection requests at the TCP port number spec-

ified in the received command’s parameters. Similarly, to allocate an outbound

Network stream, the allocate outbound stream command may be used. When

an outbound Network stream is allocated, the NAA-side firmware launches a TCP

client process that immediately starts attempting to establish a connection with

another server process that corresponds to another inbound Network stream on

another NAA node.

After allocating the necessary Network streams, the scheduler function, on the

Driver process, prepares a suitable NAA program. In section 3.3.4, we defined

the NAA program as the union of all the desired internal routing tables in the

allocated NAA nodes. When the scheduler is done with preparing the NAA

program, the Driver process disseminates the portions of the NAA program to

their corresponding NAA nodes. The load naa program command is employed

to load the individual portions of the NAA program to the different NAA nodes.

The server-side firmware instances, allow the NAA nodes to interact with the

server nodes as if the servers are regular NAA nodes as well. Consequently,

the Network streams may also be allocated on the server nodes, and the same

is true for the NAA programs. The server-side firmware instance allows the

regular server nodes, the worker nodes in this case, to emulate NAA nodes. This

77

emulation.

Finally, the Driver process may ask an NAA node to provide a summary

report on all its internal aspects such as the deployed accelerators, memory usage,

etc... To instruct the NAA node to send a summary report the show summary

command may be used.

Emulated NAA nodes

As mentioned earlier, the server-side firmware, which is installed on all the server

nodes in an NAA-augmented server cluster, allows the master node and the slave

server nodes (worker nodes in Spark’s terminology) to emulate NAA compute

nodes. From the perspective of the NAA-side firmware, all the compute nodes in

the cluster, including the x86-64 server nodes, are NAA compute nodes. This per-

spective allows the NAA compute nodes to use the same protocols we previously

described, such as Network streams and NAA programs, to communicate with

the regular x86-64 server nodes. Consequently, outbound Network streams may

be allocated on the worker nodes form which data may be fetched or to which

data may be written; on the NAA-side firmware instances matching inbound

Network streams should be allocated. To properly establish a compute pipeline,

the Driver process should issue NAA commands in this exact order: (1) program

the allocated NAA compute nodes using the program bitstream command, (2)

allocate the necessary buffers using the allocate buffer command, (3) allocate

all the necessary inbound Network streams on the NAA nodes using the allo-

cate inbound stream command, (4) allocate all the necessary outbound NAA

Network streams on the NAA nodes using the allocate outbound stream com-

mand, (5) allocate outbound Network streams on the emulated NAA compute

nodes, which are running on server-side firmware instances i.e., on the master

78

and worker nodes, (6) disseminate the portions of the NAA program to the cor-

responding NAA compute nodes using the load naa program command.

Integration with Spark

Our proposed NAA system architecture exhibits a similar structure to that of

a Spark cluster. In the Spark cluster environment, a driver node orchestrates

the distributed execution of Spark tasks on multiple worker nodes; moreover, a

cluster resource manager node is responsible for allocating compute and memory

resources for Spark applications. Similarly, our NAA architecture have an NAA

master node, an NAA cluster manager, and several NAA compute nodes (c.f.

figure 3.8). Our proposed architecture may co-exist with Spark’s infrastructure;

for instance, we can have a single resource manager node running both a Spark

resource manager and an NAA resource manager. The driver node may also run

a Spark Driver program along with an NAA driver program.

Another way of integrating our proposed NAA system architecture into the

Spark environment, consists of modifying the Spark middleware to support NAA

compute nodes. Figure 3.14 illustrates Spark’s layered architecture (on the left)

and how it may be modified to add NAA functionality (on the right). The Spark

layered architecture is divided into three layers: (1) The Application layer, (2) the

Spark core layer, and (3) the resource manager layer. The Spark core and resource

manager layers, together, form the Spark middleware layer. In the application

layer, many application libraries that use the underlying Spark middleware exist

such as Spark SQL, ML-lib, and GraphX. The scheduler component in the Spark

core is responsible for scheduling application tasks on the worker nodes. To add

NAA functionality to a Spark cluster, the Spark core may be modified to add an

NAA scheduler component, which is responsible for the decision process regarding

79

Regular

Applications

Spark Core

firmware

Regular Spark Applications

Spark Core

Middleware

layer

Application

Layer

Spark RM

Scheduler

NAA RM

Spark Resource Manager

NAA

Applications

NAA scheduler

GraphXML LibSQL

Meso

s
YarnStandalone

NAA layer

Bitstream repo Scheduler

Figure 3.14: Integrating our NAA system architecture into Spark

the allocation of Network streams and the composition of NAA programs. A

bitstream repository component may also added to the modified Spark core,

since deciding on the right FPGA bitstreams in an NAA cluster should be part

of the scheduling process in the NAA-augmented server cluster. Finally, the

previously described NAA layer is added at the bottom of the modified spark

layered architecture to allow the server node to control with the NAA nodes

through NAA commands.

In addition to including the NAA scheduler and the Bitstream repository

components, the modified Spark may also add new Spark transformations and

objects such as a mapFpga(path) transformation and a Hardware RDD class.

The mapFpga(path) transformation, when invoked on a Spark RDD, instructs

the framework to allocate several NAA compute nodes for the transformation.

The path parameter indicates the location of the Bitstream and Accelerator Meta-

data files that should be involved in the computation. The modified framework,

through the NAA- and Server- side firmware instances, programs the allocated

FPGA nodes. The scheduler components, also through the firmware, allocates the

necessary Network streams, composes a suitable NAA program, and disseminates

80

the different portions of the NAA programs to their corresponding NAA compute

nodes. Hardware RDD objects keep track of the data buffered on the NAA

compute nodes. The framework translates all operations on hardware RDDs into

suitable combinations of Network streams and NAA programs.

3.4 Experimental Evaluation

The NAA system architecture proposed in section 3.3.2 along with the firmware

architecture proposed in section 3.3.5 can be used to deploy custom designed

accelerators in the Spark data center environment. In order to validate this

assumption, we developed an experimental setup that consists of an x86-64 server

machine and one NAA compute node. The NAA compute node, as defined in

section 3.3.2, is a single board computer centered around an FPGA device. The

closest FPGA-based computing platforms to the concept the NAA compute node

are SoC-based FPGA development boards with Network Interface Cards and

relatively large on-board RAM memory.

3.4.1 NAA Platform

We employed a ZedBoard [35] platform to implement our NAA compute node.

The ZedBroad is an Evaluation and Development board from Avnet that features

the Xilinx Zynq 7020 SoC device. The Zynq SoC device brings together (1)

an FPGA device and (2) a dual-core ARM processor component on the same

package. The ZedBoard also features many other components such as a 1Gbit

Ethernet PHYceiver, an SD card reader, and 512 Mbytes of DDR III RAM

memory.

81

3.4.2 Firmware Implementation

The NAA-side Firmware is implemented as a bare-metal software running on

the dual-core ARM processing system of the Zynq device. A lightweight and

open source implementation of the TCP/IP protocol stack, called LWIP [86], is

employed to provide reliable and robust communication channels with the server

nodes. LWIP allows our NAA compute node to flexibly initiate TCP connections

with any other entity in the network, and to receive and accept a connection

request from any other compute node in the same network. Moreover, LWIP

allows the NAA node to send and receive UDP segments. Network streams are

implemented as TCP sockets, and the internal routing table is implemented as

an array of C structures with ID, source, and destination fields. The Dynamic

reconfiguration of the Zynq FPGA fabric is accomplished through the Processor

Configuration Access Port (PCAP).

3.4.3 Experimental Setup

Our experimental setup consists of an x86-64 server node, an Ethernet switch,

and one ZedBoard that implements an NAA compute node. A Java process that

emulates an NAA compute node on the x86-64 server node was deployed and a

preliminary implementation of the NAA-side firmware was also deployed on the

ZedBoard’s ARM processor component. Figure 3.15 illustrates our experimental

setup. To test the concepts of Network streams and NAA programs, we prepare

an FPGA-based accelerator that performs matrix-vector multiplications. The

accelerator has two stream interfaces: (1) an input interface through which the

input vector is received by the accelerator, and (2) an output interface through

which the resulting vector is received from the accelerator.

82

Java program

(Emulated NAA node)

DMA subsystem

ARM

processor

MatVecMult(.)

NAA node 0x86-64 node

Ethernet

Outbound Inbound

Network Stream

port0 port1

Stream0
Stream1

Port1

NAA program

Source Destination

Stream0 Port0

Stream0

Figure 3.15: Experimental Setup

The Java process, running on the x86-64 server, allocates a single inbound

Network Stream at the NAA-side firmware instance and attempts to open a TCP

connection with the server process that corresponds to it. In this experiment,

we manually composed the NAA program; the NAA program is shown on the

right side of figure 3.15. The Java process, then, sends the NAA program to

the ZedBoard, resolving its internal routing scheme (c.f. figure 3.15). After

establishing the TCP connection, the server node starts sending input vectors

through the allocated Network stream to the NAA compute node. The output

of the matrix-vector operation is, then, sent back to the server through the same

Network stream. The setting was tested with different vectors and was able to

correctly compute the results.

3.5 Conclusion

In this work, we proposed a Network-Attached Accelerator (NAA) system ar-

chitecture for deploying FPGA-based accelerators in a server cluster data center

83

environment. We defined an NAA node as a standalone compute node centered

around an FPGA device. The NAA node contains enough intelligence and com-

puting power to work independently, and to provide computation services to

other computer nodes in the network. We developed a Firmware architecture

that allows legacy cluster computing frameworks such as Spark to invoke the

NAA nodes and to use them to build complex compute pipelines and run tasks

on the established pipeline.

84

Chapter 4

Accelerating Convolutional
Neural Network Operations in
the Spark Data Center
Environment

Deep Learning has received a lot of attention lately due to the record-breaking

results it is able to achieve in several machine learning applications such as com-

puter vision, speech recognition, and natural language processing. Traditionally,

practical machine learning algorithms, such as classification and pattern recog-

nition algorithms, relied on a good representation of the input training data to

construct a model for the observed data; this model would then be used to recog-

nize future unseen data patterns during the inference phase. To achieve a good

representation of the data, fixed feature extractors are used. Typically, a fixed

feature extractor transforms the raw input into a suitable representation. Rep-

resentation and Feature extraction are fundamental issues in machine learning

because a poor representation of the input data, can undermine the performance

of even the best machine learning algorithms [7]. Therefore, feature engineers

craft fixed domain-specific feature extractors that can extract high level repre-

sentations from the raw input data and feed these representations to a machine

85

learning model, such as a classifier, for it to train on.

Deep learning, on the other hand, is a novel approach to machine learning

where complex representations, suitable for the problem in hand, can be auto-

matically inferred during the training process. Deep Leaning algorithms, develop

a multi-layered hierarchy of representations, where higher-level abstract features

are extracted from lower-level more concrete features [7,8]. Those representations

are not fixed nor pre-designed as in traditional machine learning approaches but

are rather learned during the training phase.

The most successful deep learning algorithms are those based on deep Feed-

forward Artificial Neural Networks, specifically deep multi-layer convolutional

neural networks. Deep Convolutional neural networks were inspired by the struc-

ture and function of the visual cortex in the human brain [12]. The main distin-

guishing feature of these networks is that they incorporate convolutional layers

in their structure. Empirical studies have shown that Convolutional neural net-

works outperform shallow neural networks in many applications such as charac-

ter and object recognition and can even achieve human-like or even superhuman

performances in some applications [8]. For instance, LeNet 5, a pioneering convo-

lutional neural network-based classifier for handwritten character recognition was

able achieve a classification accuracy of 99.87% [3]. In image and object recog-

nition, GoogLeNet [30] won the 2014 ILSVRC [87] competition, achieving the

best mean average precision and the lowest classification error on the ImageNet

dataset [88]. Lately, convolutional neural networks submitted to the ILSVRC

competition are capable of classifying objects that even humans find trouble in

classifying.

Although, the concept of deep convolutional neural networks first appeared

in the late 1960s, it wasn’t until recently that it achieved astounding results

86

and grabbed the interest of the academic and industrial communities. The un-

precedented computing power that current hardware platforms can provide made

training over large datasets possible and gave the above concept a chance to shine

because convolutional neural networks and Deep learning algorithms in general

are quite beneficial only when trained over large trails of data [7]. Also, as we

will describe in section 4.1, the algorithmic complexity of the convolutional layer

presents a real computational bottleneck in both training and inference phases, so

to mitigate the increasing complexity of deep convolutional neural networks, the

training algorithm is usually distributed across a computer cluster. For instance,

in a study conducted at Google [48], a 1 billion-connection neural network model

was trained on a cluster with 1000 16-core machines. The demand for high perfor-

mance in convolutional neural networks, led researchers to accelerate the training

algorithms of deep neural networks in two ways: (1) by distributing the training

workload across a shared-nothing cluster architecture (Data Parallelism) [48,49]

and (2) by coupling the main processor with a domain-specific programmable co-

processor, such as a Graphical Processing Unit (GPU) or a Field Programmable

Gates Array (FPGA), that helps the main processor by offloading the computa-

tionally intensive kernels into the core. Recently, there has been a surge of interest

in combining both approaches to scale up the performance of deep convolutional

neural networks [17].

In this work, we combined both approaches. we proposed a custom-designed

FPGA-based 2D convolution filter that can be used to accelerate the computa-

tion of the multi-layer convolution operator used in the distributed training of

convolutional neural networks. The design of the accelerator was inspired by

Farabet [89] and was upgraded with 2 circuit design optimizations; (1) A re-

timing transformation was applied in order to increase the clock frequency of

87

the circuit and hence its performance, and (2) a feed-back loop was applied to

compute the multi-layer convolution without the use of an accumulator. Accord-

ing to this work, the optimized FPGA-based accelerator (filter) is intended to

be used as a reconfigurable component that provides FPGA-based acceleration

for machine learning and data analytic applications. Additionally, we aimed to

extend the Spark [29] environment to be able to target the introduced system

architecture. In short, FPGA-based accelerators should run in the data center

under the Spark environment in order to provide a better performance per Joule

than a pure distributed software implementation.

The remainder of this chapter is organized as follows. Section 4.1 provides

a brief background on deep convolutional neural networks. In Section 4.2, we

discussed the related work in this area. Section 4.3 presents our system overview,

in addition to the custom FPGA-based accelerator design. In section 4.4, we

describe the experimental setup and report/discuss the resulting speedup and

energy savings due to the FPGA-acceleration. Finally, we conclude our work in

section 4.5.

4.1 The Multi-layer Convolution Operation

Convolutional Neural networks are a special kind of deep feed-forward artificial

neural networks in which the connectivity pattern is inspired by the structure of

the mammalian visual cortex [12]. They consist of a series of stages or layers of

computations where the first few stages are composed of convolutional and pool-

ing layers. Neurons in a convolutional layer are organized into two-dimensional

arrays, called feature maps, where every neuron in a feature map is connected

only to local rectangular patches of neurons in the feature maps of the previous

88

layer through a set of trainable weights called filter banks [12]. All the neurons

in one feature map share the same filter bank. This arrangement, also known as

parameter sharing, provides an important characterizing feature of convolutional

neural networks: translation invariance which states that if an image is trans-

lated a few pixels, a trained network can still recognition the same object within

the picture [8]. Mathematically, the operation involved in the convolutional layer

is nothing other than the discrete multilayer convolution shown in Algorithm 1.

After, the convolution, a bias is added to every feature map before applying a

point-wise non-linear activation function.

Algorithm 1: Multi-layer Convolution Operation

Input: An input three dimensional array X(q,m, n), where 0 6 q 6 Q
and 0 6 m < M and 0 6 n < N

Output: An output three dimensional array Y (r,m, n)
for r = 0 , r < R , r + + do

for q = 0 , q < Q , q + + do
for m = 0 , m < M , m+ + do

for n = 0 , n < N , n+ + do
for k = 0 , k < K , k + + do

for l = 0 , l < L , l + + do
Y [r][m][n]+ = W [r][q][k][l]×X[q][m+ k][n+ l];

return Y (r,m, n);

A typical, convolutional neural network consists of several stages of convo-

lutional and pooling layers before applying one or few stages of fully connected

layers at the output [8]. Training deep convolutional networks is performed by

defining an objective function which measures the error between the output of the

network and the desired output. The objective function is then minimized using

the Stochastic Gradient Descent Algorithm [12]. Both the training and inference

algorithms of convolutional neural networks involve the multi-layer convolution

89

algorithm during the forward pass [8]. Notice that the complexity of Algorithm

1 is O(RQMNKL), where M and N are the dimensions of the output feature

maps, R and Q are respectively the number of input and output feature maps,

and k and l are dummy variables. Given that deep neural networks are usually

trained over large volumes of data [7], the complexity of the training can quickly

grow to unmanageable levels. Therefore, in this work we investigate accelerating

Algorithm 1 using a custom designed FPGA-based accelerator.

4.2 Related Work

As mentioned earlier, the complexity of training convolutional neural networks

can be mitigated by distributing the training/inference workload across a cluster

or by employing application domain-specific co-processors tailored for convolu-

tional neural networks. Several approaches have been implemented in the liter-

ature. A popular approach, to accelerating neural network inference, is to train

the network off-line using a normal multi-core system or a distributed platform,

transfer the weights of the network to a custom-designed hardware accelerator

tailored for neural network computations, and perform the inference on custom

hardware.

In [89], an efficient implementation of convolutional neural networks on a

low-end DSP oriented FPGA was investigated. The system used a single FPGA

with an external memory module. A programmable Convolutional neural net

processor (CNP) was designed; the processor consists of a 32-bit Soft Processor

implemented in the FPGA reconfigurable fabric along with a Vector Arithmetic

and Logic Unit (VALU). The VALU consisted of all the basic operations of convo-

lutional neural networks including a 2D convolutional kernel based on the sliding

90

window architecture. The processor was designed for low-power embedded vision

systems, where the neural network is first trained off-line on a traditional com-

puter, and then uploaded to the CNP in order to accelerate the inference process.

The design was able to process 10 frames/second.

A second-generation architecture of the CNP was proposed in [90] to increase

the data throughput by adding multiple parallel Vector processing units and

allowing them to seamlessly operate on individual streams of data between them.

The architecture was implemented on a Xilinx Virtex 6 FPGA and was able to

process more than 30 frames/second. In the same line of research Farabet et

al. [27] proposed a scalable data-flow hardware architecture for general vision

applications called NeuFlow along with a data-flow compiler for the architecture

called LuaFlow.

A similar work to [27] was presented in [91], where a scalable, low-power co-

processor was presented. The co-processor consists of an array of configurable

processing elements that perform the operations required in the inference phase

of convolutional neural networks. The system was designed for the real-time

execution of these networks and is capable of achieving a peak performance of

227 G-ops/second on a Zynq chip with a Kintex-7 programmable logic.

In [25], Zhang et al. proposed a design scheme for exploring the design space

of FPGA-based implementations of convolutional neural networks. it was shown

that there could be 90% performance difference between 2 solutions with the

same resources. The optimization also takes buffer management and memory

bandwidth into consideration. As a case study, [25] implemented an optimized

accelerator on a VC707 FPGA that achieves a peak performance of 61.62 G-flops

under 100MHz clock frequency.

Incorporating FPGAs in accelerating the training of convolutional neural net-

91

works was given little attention in the literature. In fact, the training of large

networks could take days and even weeks of training [17, 48]. An approach for

accelerating both the training and inference of convolutional neural networks us-

ing GPUs was proposed by Strigl et al. [74]. In order to make the access pattern

more linear, the “unfolding” technique was used, where the input feature map of

each convolutional layer would first be copied to a matrix, where the elements of

each rectangular patch in a feature map are organized into a row in the matrix.

Once this is done, the training and inference processes can be implemented as

matrix operations using a GPU. The benchmarks were performed on a platform

with an Intel Core i7 860 processor and a GeForce GTX 275 GPU running Linux

Ubuntu. The GPU implementation of the LeNet5 network was found to give 2

to 8 times speedup over an optimized pure software implementation, that takes

full advantage of the SSE extensions of the CPU.

The excellent performance of GPUs, in addition to their flexibility, led to the

adoption of GPUs as accelerators for deep neural networks, for instance deep neu-

ral network libraries such as Caffe [92, 93], Torch7 [94], Theano [95] and Tensor-

Flow [96] employ GPUs for accelerating the training of deep networks. Although

GPUs are very attractive for software developers, custom architectures that are

tailored for a certain application domain can deliver a two orders of magnitude

improvement in the energy efficiency (G-ops/Watt) [27]. DSP-oriented FPGAs

can be used to implement custom designs; however, they lack support for effi-

cient floating point arithmetics. Consequently, most of the designs implemented

on FPGAs use fixed-point arithmetics.

Gupta et al. [97] investigated the effect of limited precision of fixed-point

data representation and arithmetics on the training of deep convolutional neural

networks. It was found that the precision required to train a neural network

92

depends on the rounding mechanism and on the neural network architecture.

LeNet-5 was successfully trained using the MNIST dataset with a Q4.12 precision

scheme (4 bits for the integer part and 12 for the fractional part) given that the

stochastic rounding mechanism is used.

The other approach to accelerate the training of deep networks is the par-

allelization of the training procedure. It is however critical when distributing

the training process, to decide on the distribution scheme. In [49], Zinkevich

et al. proposed and described the Parallel Stochastic Gradient Descent Algo-

rithm (PSGD). In this approach, data parallelism is employed. In other words,

the training dataset is distributed across multiple computing nodes. Each node,

having access to its own local data, trains a local copy of the neural network

model. Then a master subroutine collects all the models and aggregates them

into a single one by averaging their weights. PSGD is MapReduce friendly since

no communication overhead between the nodes is incurred during the training.

Another approach to distributing the training is achieved through model par-

allelism across a single machine and across a cluster. The work in [17], developed

a software framework for distributing the training of deep networks called DistBe-

lief. The framework allows the user to partition very large models across several

machines. The work also concluded that MapReduce is typically ill-suited for

iterative computations such as those used in convolutional neural networks.

In an effort to bridge the gap between distributing the training of deep con-

volutional neural networks and FPGA acceleration, the work in [98], proposed

an FPGA-accelerated Hadoop cluster architecture. Also, the Parallel Stochastic

Gradient Descent algorithm was employed in the context of Hadoop MapReduce

to accelerate the training of deep convolutional neural networks.

Similarly, to the work in [98], the current paper introduces a system architec-

93

ture that involves Spark as a parallel programming framework, and FPGA-based

acceleration to scale up the performance of the distributed tasks assigned through

Spark.

4.3 Fpga-based accelerator for convolutional net-

works

As mentioned earlier, the performance of deep learning and heavy data analytic

workloads can be improved by employing two methods: (1) distributing the data

and the related tasks to a number of disparate computing systems, and (2) em-

ploying application domain specific cores such as GPUs and FPGAs. In this

work, we employ loosely-coupled FPGA-augmented compute nodes, arranged in

a cluster configuration to accelerate the multilayer convolution for convolutional

neural networks.

4.3.1 System Overview

Figure 4.1 shows the functional architecture of our system. The system consists

of FPGA-augmented computing nodes arranged in a shared-nothing computer

cluster architecture. Each computing node is equipped with a Xilinx Zynq-7020

SoC which contains a dual core ARM Cortex-A9 processing system coupled with

an FPGA, and uses external DDRIII DRAM for external storage, an SD non-

volatile memory storage device for storing files, and an Ethernet controller to

provide network connectivity.

The cluster is managed by a middle-ware software suite that consists of the

parallel programming framework, Spark [29], which provides a simple interface for

94

ARM
Processing

System

FPGA

Node # NNode # 1

ARM
Processing

System

FPGA

Networking Resources

Hardware Layer: FPGA- augmented Cluster

Operating System Layer: Linux

Middle-ware Software layer:
SPARK Runtime Environment

Application Layer:
Deep Convolutional Networks, Data analytics,...

Layer 0

Layer 1

Layer 2

Layer 3

Figure 4.1: System Overview.

programming the cluster. In contrast to the work in [89], [90] and [27], which were

designed to provide real-time processing for specific applications, our system was

designed with the goal of providing reconfigurable-based acceleration for common

data analytic workloads in the data center. In this work, the Spark runtime

environment was extended to provide seamless integration of the FPGA-based

accelerators into the cluster. A custom designed FPGA-based accelerator for

the 2D multi-layer convolution was implemented in the FPGA. In the following,

section we describe the architecture of our accelerator.

4.3.2 Hardware Architecture

The multi-layer convolution is the major performance bottleneck in the train-

ing/inference of deep convolutional neural networks. Interestingly, the software

implementation of convolutional networks was evaluated and profiled in [98] for

performance bottlenecks and was found to consume around 90% of the total

95

Soft DMA Core

FP
G

A
Float-to-

Fixed point

Zero
 Padding

2D Multi-
Layer Conv.

Fixed-to-
Floating point

Control
Unit

Pr
oc

es
si

ng
Sy

st
em

AXI Interconnect

ARM
Core 1

ARM
Core 2

E
xt

er
na

l D
D

R
 I

II
 R

A
M

 M
em

or
y

DDR
Interface

AXI

Figure 4.2: Functional Architecture of our compute node.

computation time. Accordingly, enhancing the performance of the multi-layer

convolution is critical to improving the performance of the training/inference of

convolutional neural networks.

In this work, we aimed at designing an accelerator that would perform the

multi-layer convolution. The accelerator was designed to be (1) more perfor-

mant than software implementations and (2) more energy efficient. Figure 4.2

shows the architecture of our accelerator. It contains a floating-to-fixed-point

conversion circuit, a zero-padding circuit, a Pipelined 2D convolution filter, a

fixed-to-floating-point conversion circuit, and finally, a Control Unit.

In our design, we employed a variation of the 2D multi-layer convolution

filter used in [89], with 2 main optimizations: (1) A re-timing transformation

technique, used to reduce the clock period of the circuit and thus to increase the

performance of our system and (2) a feedback loop, devised to compute the multi-

96

layer convolution without the need for an accumulator circuit after the output of

the convolution filter.

Figure 4.3, shows our optimized architecture of the 2D multi-layer convolution

filter. As in [89], the circuit consists of several 1D Finite Impulse Response

filters (shown in figure 4.3), that operate on the input stream in parallel. For

completeness, we briefly describe the functionality of the 2D FIR circuit. Each

1D FIR filter corresponds to one row in the convolution mask. Also, as depicted

in figure 4.4 each 1D FIR has 2 input ports: A and B. The images that need to

be convolved are sent to the filter, line after line through the input port of the 2D

convolution circuit, which is connected to the input port A of each 1D FIR filter.

The output of each 1D FIR filter is delayed for NW cycles, where NW is the size

of our image’s line, before feeding it back to the 1D FIR that corresponds to the

next row of the convolution mask. Shifting the values of the outputs of the 1D

FIR filters through the delay lines corresponds to shifting the convolution mask

over the input image. The aforementioned architecture is known as the sliding

window architecture.

In [89], the input port has a high fan out, which severely limits the clock

frequency and hence the performance of the circuit. In our design a re-timing

transformation was applied to the filter by adding pipeline latches. In each 1D

FIR filter, shown in figure 4.4, a pipeline latch was added between each multiplier

and adder in order to reduce the critical path of the circuit. As shown in figure

4.3 and 4.4 another set of pipeline latches was added to reduce the high fan out

of the input port (the structures enclosed in red boxes in both figure 4.3 and 4.4).

The resulting circuit is a (KW +KH − 3)-level pipelined system with a very low

critical path, where KW and KH are, respectively, the width and height of the

convolution mask.

97

N
W
 Delays

K h−1

K h−2

Input

N
W
 Delays

N
W
 Delays

N
W
 Delays

N
H

(N
W
+K

W
–1) – K

W
+1 Delays

1D FIR
 W

11
, W

12
, W

13
, W

14
,W

15

1D FIR
 W

21
, W

22
, W

23
, W

24
,W

25

1D FIR
 W

31
, W

32
, W

33
, W

34
,W

35

1D FIR
 W

41
, W

42
, W

43
, W

44
,W

45

1D FIR
 W

51
, W

52
, W

53
, W

54
,W

55

Output

Reduce
Fan out

Feedback loop

Figure 4.3: Optimized architecture of the multi-layer convolution.

Kw−1 Kw−2 Kw−3

W
k1

W
k2

W
k3

W
k4

W
k5

Input
Port A

Input
Port B

Output

Reduce
Critical Path

Reduce
Fan out

Optimized 1D FIR

Figure 4.4: Optimized 1D-FIR filter.

98

In order to compute the multi-channel convolution, the resulting images from

the convolution filter must be accumulated. Typically, an accumulator circuit

could be added at the output of the filter, as in [89]. Unlike [89], our approach was

to delay the result of the 2D multi-layer convolution by NH×(NW +KW–1)–KW +

1 times and then to feed it back to the input of the 2D FIR filter. The resulting

circuit performs convolution and accumulation without an accumulator at the

output of the convolution filter.

The sliding window architecture requires padding zeros at the end of each

line. The zero-padding circuit, shown in figure 4.2 is responsible for padding

the required number of zero-valued samples to the end of each line and to the

end of each image. Without this circuit the software running on the ARM core

would have to pad the required zeros by writing them to the stream consuming

additional energy.

As for the memory interface, A multi-channel Direct Memory Access controller

is employed to read packets of 32-bit single-precision floating point numbers from

memory and feed them as a pipelined stream to the accelerator. The floating-

point numbers are first converted to fixed-point finite-precision numbers, which

are fed to the 2D multi-layer convolution filter (refer to figure 4.2). The convo-

lution filter processes the incoming stream and produces another output stream.

The DMA controller than reads the resulting stream back to memory for the

higher-layer software processes to consume.

Finally, our design can be configured for different sizes of input images by

providing access to memory-mapped configuration registers in the control unit.

The only fixed parameter in this design is the size of the convolution kernel, which

can be changed through dynamic reconfiguration.

99

4.3.3 Software Layer

As described above, our system design is composed of two main layers: the

hardware layer and the software/middle-ware layer. The hardware layer aims at

designing an optimized convolution architecture to perform hardware-accelerated

training of the convolutional neural network on local nodes. The second layer i.e.

the Software/Middle-ware layer is responsible for distributing the convolution

horizontally across several nodes in a data-center-like infrastructure, while verti-

cally offloading the convolution on each node to the FPGA. To this end, we have

augmented Spark middle-ware with custom transformations that offload the ex-

ecution of tasks sent from the master/driver, particularly the convolution tasks,

to FPGA accelerators. In simple words, we have created a new Spark operation

called mapFPGA along with a newly designed RDD called hardwareRDD. In the

same way that a map operator would instantiate a RDD of type MappedRDD,

mapFPGA would create an instance of hardwareRDD. As any RDD, hardwar-

eRDD is a subclass of the base class: RDD. The extension of the base class:

RDD, was achieved by overriding the compute function of RDD base class in a

way to load a native C library into Spark runtime. The native C library accepts

two buffers for two 2-D arrays. The first buffer stores the image pixels in single

precision floating point, while the second buffer stores the kernel parameters. The

C library mapFPGA is called on a RDD of type Array[Array[Float]] i.e. an im-

age (RDD[Array[Array[Float]]]). This RDD is in fact nothing but a distributed

collection of gray scale images, with an iterator to loop over each partition of the

RDD in a distributed manner.

Our current prototype supports distributed hardware-aided convolutions that

ultimately fit into training large convolutional network models. Simply, given

our initial prototype, when the driver program invokes mapFPGA operator on

100

an RDD of type Array[Array[Float]] implicitly, the distributed convolution will be

offloaded to FPGA while still integrating seamlessly with spark runtime. While

we are targeting mainly convolutional neural networks, the same system archi-

tecture can be used to accelerate other applications.

4.4 Methodology and experimental results

As discussed earlier, custom designed architectures tailored for specific appli-

cations can deliver better performance per energy than general purpose archi-

tectures such as multi-core processors. In order to validate this assumption in

the context of deep convolutional neural networks, we evaluate the performance

of our system, described in section 4.3, with the FPGA-accelerated multi-layer

convolution kernel.

4.4.1 Experimental Setup

we employ ZedBoards [35] as our FPGA-accelerated compute nodes. The Zed-

Board features the Xilinx XC7020 Zynq SoC device along with a 512 MB DDRIII

RAM, an SD Card Reader, an Ethernet controller, and a set of complementary

accessories. Each node is running a Linux operating system based on Linux kernel

image 3.16. We have developed, implemented and validated the custom-designed

FPGA-based multi-layer convolution accelerator detailed in section 4.3. Table

4.1, report the FPGA resource utilization of our accelerator.

4.4.2 Benchmark

A suitable benchmark to evaluate our accelerator is the LeNet 5 [99] convolutional

neural network, useful for handwritten digit recognition. The size and depth

101

Table 4.1: Resource Utilization.

Resource DSP
Block

RAM
Flip-Flops LUT

Used in the

design
25 6.5 5667 4,193

Available on

Chip
220 140 106,400 53200

Utilization 11.36% 4.64% 5.33% 7.88%

of LeNet 5 is manageable by the Zedboard. Therefore, they can be used as

a tool to study, and validate our approach. The LeNet family involves multi-

layer convolutions with a kernel of size 5x5. Typically, a large number of neural

network architectures involve 5x5 kernels [100]. Although the above exhibited

accelerator design approach, shown in section 4.3, tends to be generic, in the

following scenarios we only employed 5x5 2D multi-layer convolution filters to

administer our tests. In the following, we evaluated our design approach by

performing 2 tests: (1) A performance test and (2) an energy efficiency test.

4.4.3 Speedups resulting from employing the FPGA-based

accelerator

For the performance test, we measured the time required for a single FPGA com-

puting node, that implements the circuit described in section 4.3.2, to compute a

single output feature map of a multi-layer convolution. We measured this latency

with different numbers of input feature maps and different feature map sizes, and

we compared those measurements with the time required to do the same compu-

tation, using a pure software approach, on an ARM A9 processor core running

at 667 MHz. Initially, we ran our FPGA circuit at 150 MHz; later, we varied

102

Figure 4.5: Speedup over an ARM core implementation as a function of the
number of input feature maps

the operating frequency to study its effect on performance. We observed that

the FPGA-based convolution circuit significantly outperforms the ARM A9 im-

plementation of the multi-layer convolution. Here, we define the speedup ratio

as the ratio of the computational latency of the processor core to that of the

FPGA-based circuit. In figure 4.5, we vary the number of input feature maps,

and the size of the input feature map, and we report the correpsonding measured

speedup ratios.

As shown in figure 4.5, the speedup ratio increases with the number of input

feature maps, until it saturates and starts exhibiting a horizontal asymptotic

behaviour. Launching transactions between external memory and the FPGA

circuit incurs some overhead: To launch a computation on the FPGA circuit, a

software running on the ARM processor core, invokes a driver which schedules a

DMA transaction. The soft dma core, shown in figure 4.2, then, starts streaming

the input feature maps from external memory to the hardware circuit. This

103

Figure 4.6: Speedup over a Core i7 CPU core implementation as a function of
the number of input feature maps

overhead makes streaming small number of feature maps, or small feature maps

inefficient. Transfering a large number of feature maps, may hide this overhead

and allows the hardware accelerator to achieve its full potentials. This explains

why the speedup ratio increases with the number of input feature maps, or with

the size of the input feature map. This asymptotic limit reflects the achievable

speedup for the current operating frequency. To make a fair comparison, We also

measured the latency of a software implementation of the multi-layer convolution

on a Core i7-4510U processor core running at 2 GHz. We found that the FPGA

implementation can outperform the Core i7 processor core as well. Figure 4.6

shows that more than 10 times speedup over a Core i7 implementation may be

achieved.

To further investigate the relationship between the asymptotic limit and the

operating frequency, we measured the achievable speedup over different operating

frequencies. Figure 4.7 shows the results of this investigation.

104

Figure 4.7: The achievable speedup as function of the operating frequency.

To sum up, we deployed the basic convolution circuit described in section 4.3.2

on an FPGA compute node. Although the circuit occupied less than 12% of the

FPGA resources, it significantly outperformed a high-end Core i7 processor core

by around 10 times. The remaining resources may be employed to further boost

the performance of the multi-layer convolution; moreover, Spark’s extension al-

lows the inference and the training to be distributed across a cluster of FPGA

compute nodes, where each node takes part of the task-load. The raw computing

power provided by the FPGA, coupled with the ability to distribute the compu-

tation across a cluster of FPGA compute nodes, makes this platform perfect for

deploying convolutional neural networks in the Spark Data center environment.

4.4.4 Performance Model for the Multi-layer Convolution

Operation

In order to further understand the speedup results shown in the previous section,

we develop an empirical latency model for the Multi-layer Convolution Operation

105

on both FPGA and CPU platforms. Note that the hardware circuit, described

in section 4.3.2, computes a single output feature map using I input features, in

(N +K–1)2 × I × 1
βR

clock cycles. Where N ×N is the size of the input feature

map, I is the number of input feature maps, βR is the read memory access speed

in samples per second, and K is the size of the filter mask. The output of the

multi-layer convolution is then written back to memory, the latency of writing

the output feature map to memory is M2× 1
βW

, where M2 is the size of the output

feature map, and βW is the write memory access speed. So the total latency of

computing a single output feature map using the FPGA-based accelerator circuit

shown in figure 4.3 is:

LFPGA,5×5 = (N +K–1)2 × I × 1

βR
+M2 × 1

βW
(4.1)

Note that LFPGA,5×5 grows linearly with I. In typical Convolutional Neural

Networks I is on the order of hundreds of feature maps. When I is large, the

computational latency, in microseconds, of computing one output feature map

may be estimated by:

LFPGA,5×5 ≈
I × (N +K − 1)2

βR × fclk
(
µsec

)
(4.2)

In figure 4.8(a), we varied the number of input feature maps I, and the size

of those maps N , and we measured the corresponding computational latency of

a single output feature map. The plot validates the latency model proposed in

equation 4.2. In Figure 4.8(b), we show how the slope of the measured latency

curves, shown in figure 4.8(a), varies with the size of the input feature map (N).

We employed Ordinary Least Square (OLS) curve fitting to find the value of βR

at 150 MHz. Similar curves were obtained for the CPU implementation i.e., the

106

latency was shown to also grow linearly, and the CPU latency model exhibits a

similar form to the FPGA latency model. Note that the circuit we designed in

section 4.3.2, computes a single output feature map at a time. We can duplicate

the circuit to produce several output feature maps in parallel. Consequently, if

we deploy D copies of the circuit shown in figure 4.3, the Latency of computing

S output feature maps would become:

Nb of feature maps

L
at

en
cy

 (
m

ic
ro

se
co

n
d

)

(a)

Nb of feature maps

S
lo

p
e

(m
ic

ro
se

co
n

d
 p

er
 s

am
p

le
)

(b)

Figure 4.8: Latency of computing a single output feature map on the FPGA and
the slope

LFPGA,5×5 ≈
I × S × (N +K − 1)2

D × βR × fclk
(
µsec

)
(4.3)

Similarly, the computational latency, in microseconds, when computing S

output feature maps on the CPU processor core may be estimated by:

LCPU,5×5 ≈
I × S × (N +K ′)2

αR,cpu

(
µsec

)
(4.4)

αR,cpu, here, is a parameter that characterizes the performance of the CPU

107

processor core. For large values of I, the speedup ratio may be estimated using

the following formula:

Speedup ≈ LCPU,5×5
LFPGA,5×5

=
D × βR × fclk

αR,cpu
× (N +K ′)2

(N +K − 1)2
(4.5)

In order to identify the maximum possible speedup ration, we evaluated the

limit of this speedup as N grows arbitrarily. Equation 4.6 reports the maximum

achievable speedup.

maximum speedup ≈ D × βR × fclk
αR,cpu

(4.6)

In table 4.1, we have shown that the circuit described in figure 4.3, consumes

at most 11.36% of the DSP resources. The remaining FPGA resources can be

used to deploy 7 additional convolution circuits, where each convolution circuit

may compute a different output feature map in parallel. Moreover, αR,cpu for

the Core i7 processor core and βR × fclk were estimated using Ordinary Least

Squares and were found to be 5.9859 × 106 sample/sec and 1.0035 × 108 sample/sec

respectively. Knowing that, in the setting described in section 4.4.1, D can be

8, the maximum achievable speedup ratio can be calculated using equation 4.6 as

shown below:

maximum speedup ≈ 8× 1.0035× 108

5.9859× 106
= 134.115 (4.7)

4.4.5 Energy Saving Resulting from employing the FPGA-

base accelerator

For the energy efficiency test, we measured the power consumption of the Zed-

Board with and without FPGA-based acceleration. The measured board power

108

of the ZedBoard was found to be around 2.8 Watts in both cases. In the previous

section, we found that the FPGA implementation of the multi-layer convolution,

on the ZedBoard, may even outperform a Core i7 processor core. We also found

that the computational latency when computing S output feature maps from

I input features may be estimated using equation 4.3, when I is large. The

computational latency on a CPU core may be estimated using equation 4.4. A

Quad-core Core i7 processor core consumes at least 85 Watts, even when it’s idle.

Computing S output feature map on the ZedBoard, consumes EZedBoard joules of

energy:

EZedBoard ≈ LFPGA × PZedBoard (4.8)

Similarly, computing S output feature maps on a Core i7 processor core,

consumes ECore i7 joules of energy:

ECore i7 ≈ LCPU × Pcore (4.9)

If we define the Energy Reduction Ratio (ERR) as the ratio of the energy

consumed by the processor core to the energy consumed by the FPGA compute

node, then:

ERR ≈ Ecore

EZedBoard
=

Pcore

PZedBoard
× D × βR × fclk

αR,cpu
× (N +K ′)2

(N +K − 1)2
(4.10)

109

4.5 Conclusion

In this work, we aim at deploying FPGA-based compute nodes in the data cen-

ter environment. This was achieved by devising an FPGA-based accelerator

system design for distributed task-loads in a data-center-like environment, and

by extending the Spark cluster computing environment to let it target the ac-

celerators. Experimentations on a single FPGA-based compute node with an

accelerator circuit set to perform multi-layer convolution operations, one of the

most computationally expensive operations during both inference and training of

Convolutional Neural Networks, have shown that FPGA-based acceleration, on a

single node, may provide orders of magnitude speedup over software implemen-

tations on a Core i7 processor core. In addition, we have shown that employing

an FPGA-based accelerator system in the data center may significantly reduce

power and energy consumption. To summarize, FPGA-based acceleration may

provide a very good compromise between customization and flexibility; Moreover,

the good performance per energy figures FPGA platforms may provide can be

harnessed to efficiently scale up the performance of data center facilities.

110

Chapter 5

FeatherNet: An Accelerated
Convolutional Neural Network
Design for Resource-Constrained
FPGAs

With the proliferation of IoT- based applications, a surge of interest in embed-

ded vision systems has emerged in both the industrial and research communities.

Applications of embedded-based vision systems include, among many others, Un-

manned Aerial Vehicles (UAVs) with object/face detection/localization capabil-

ities, pedestrian detection systems in autonomous vehicles, and smart domestic

robots. In the data center environment, vision systems may also be employed on

a massive scale. For instance, in the future, search engines, with reverse image

search capabilities, may employ computer vision components to identify images

with a desired content [9–11]. On the other hand, recent advancements in ma-

chine learning have led to a widespread rise of what is commonly known as deep

learning applications. Deep Convolutional Neural Networks, also known as Con-

vNets or CNNs, are a special kind of deep machine learning models inspired by

the structure of the mammalian visual cortex [12]. Nowadays, the state-of-the-art

in computer vision systems employs deep ConNets [13, 30, 32]. However, these

111

networks are very compute intensive in both the training and inference phases,

and their success in recent years has been mainly due to two factors: (1) the

unprecedented computing power made available by general purpose computing

platforms and (2) the availability of large collections of labeled training datasets.

Typically, IoT and embedded vision systems are limited in both computa-

tional processing and power capacity [101,102]; moreover, these platforms should

be available at the lowest possible cost to economically justify their use [103].

Consequently, deploying pre-trained CNNs on embedded vision platforms to har-

ness their inference ability must rely on energy efficient custom-designed accelera-

tors that are adapted for convolutional neural computations. Among acceleration

technologies, Application Specific Integrated Circuits (ASICs) provide the best

performance per energy figures as they can be strictly tailored for a certain appli-

cation. However, they lack the flexibility of general-purpose computing platforms

such as CPUs and GPUs, and thus they fail at adapting to fast changing deep

learning algorithms. Field Programmable Gate Arrays (FPGAs), on the other

hand, provide a very good balance between hardware acceleration, customizabil-

ity, and flexibility, through reconfigurability. A lot of work in the research litera-

ture targets high-end FPGA platforms and can achieve very high computational

throughput (e.g. 1020 img/sec [26]).

In this work, we present an efficient FPGA hardware template architecture for

deep neural inference tailored for low-end, resource-constrained FPGA platforms,

which are commonly aimed at edge computing and IoT applications [33–36],

but that are increasingly being used for high-end, computationally and memory

intensive CNN applications [13, 30–32]. This chapter advances knowledge by

providing a new design methodology that achieves the least amount of resources

and that targets low-end FPGA platforms for IoT deployment. Additionally,

112

as part of the design process, new methods and techniques were introduced to

address several design challenges. We believe that the solutions to these design

challenges can benefit designers and other researchers using similar devices or

facing similar challenges:

1. For efficient signal processing with reduced resource utilization, we present a

novel stride-aware graph-based method targeted at ConvNets. The method

is inspired by previous literature, in particular the first Noble identity from

the multi-rate DSP literature [24, 104]. In our work, we differ from the

previous DSP literature in that we modified the standard Noble iden-

tity to a new form (shown in figure 5.7(b) and proved in appendix A)

that can be employed to obtain resource-efficient implementations of 2D-

convolutions with strides. This modified form of the Noble identity can be

repeatedly employed in a series of transformations on signal-flow-graphs for

2D-convolutions to derive compact and minimal convolution filter architec-

tures that can be directly implemented in hardware. In addition to the

convolution filters with strides, we also modeled the other computations

involved in ConvNets (e.g. 2D-convolutions with stride 1, pooling layers,

and normalization layers), and derived corresponding resource-efficient im-

plementations.

2. For determining the minimal precision arithmetic needed while preserving

high accuracy : we propose variable-width dynamic fixed-point representa-

tions combined with a layer-by-layer design-space pruning heuristic across

the different layers of the deep ConvNet model. This is different from the

literature where either a single fixed-point representation is chosen at all

layers, or the search space is exhaustive and slow. The selected word lengths

113

are also constrained to being multiples of the model parameter word lengths

to simplify data storage and movement across the model.

3. For achieving a modular design that can support different types of ConvNet

layers while ensuring efficient resource utilization, we propose the computa-

tional modules to be relatively small. In the FeatherNet design, the modules

are composed of computational filters that can be interconnected to build

an entire accelerator design. These model elements can be easily configured

through HDL parameters (e.g. layer type, mask size, stride, etc.) to meet

the needs of specific ConvNet implementations and thus they can be reused

to implement a wide variety of ConvNet architectures. Although we used

these model elements to implement AlexNet [13], the modular nature of the

design allows the easy implementation of other ConvNets as well. In the

context of targeting resource-restricted FPGAs, the modular nature of our

design allows us to easily remove elements form an overall design without

affecting the flow of data within it, and thus save FPGA resources. In this

aspect, our approach is different from previous modular ConvNet designs,

where the modules are composed of relatively large blocks of logic resources

in contrast to smaller blocks of filters, as in our case.

4. For ease of portability between two different FPGA vendor platforms, namely

Intel/Altera and Xilinx, we make sure that our HDL implementation is

not specific to one FPGA product, and that the design is portable across

two competing FPGA vendor platforms. For proof of concept, we proved

this principle on Intel/Altera and on Xilinx. Previous approaches [105,

106] achieve similar portability by implementing their designs in behav-

ioral VHDL/Verilog, and rely on the synthesis tools to resolve the micro-

114

architectural differences and infer the device-specific components for each

target device (BRAMs, DSPs, etc.). The limitation of these approaches is

that the synthesis tools do not have information about the purpose or intent

of the design, and thus may try to optimize for area and performance by

inferring device primitives. As a result, the tools may misplace the individ-

ual hardware blocks (e.g. BRAMs and LUTs) in certain sub-components of

the design. To address this limitation, we rely on instantiating the device-

specific hardware blocks needed in each computational filter rather than

simply relying on the tools to infer these blocks while keeping track of

the similarity and differences between the platforms. For example, due

to the dimensions of the ConvNet feature maps involved in the computa-

tions in AlexNet, normalization filters are best implemented using BRAMs,

whereas max pooling filters are best implemented using LUTRAMs in Xil-

inx FPGAs [33] and MLABs in Cyclone V [34]. To achieve the desired

portability, we develop a hierarchical design that decouples device-specific

features needed to meet the low resource utilization target from the rest of

the design. We use VHDL generics to seamlessly instantiate and integrate

the device-specific components in our design. Using this decoupling, we are

able to successfully implement our ConvNet on two architecturally different

FPGA devices; the Xilinx Zynq and Intel Cyclone V, using two different

logic synthesis tools. Our design can be easily ported to other devices by

editing a small number of VHDL source files.

Our methodology is applied to AlexNet [13], a popular CNN for image clas-

sification that requires 700 million multiplications with 61 million parameters

for each image. Although the implementations were customized for the AlexNet

CNN, the architecture can be adapted for other convolutional network architec-

115

tures. Our results demonstrated the success of addressing the design challenges

and achieving low (30%) resource utilization for the lower end FPGA platforms:

Zedboard [35] and Cyclone V [36]. The design overcame the limitation of de-

signs targeted for high end platforms which cannot fit on low end IoT plat-

forms [101–103]. Furthermore, our design showed superior performance results

(measured in terms of performance/watt/dollar) compared to high end optimized

designs (9.31× 10−3 Frame per Joule per Dollar compared to 5.17× 10−3 for the

state-of-the-art [26]). The designs also showed accurate results consistent with

non-accelerated designs, where images from the ILSVRC-2012 dataset were clas-

sified with a top-5 accuracy of 83.58% (compared to 79% in [26]) while achieving

the low-end FPGA benefits of improved energy efficiency per cost at 9.31× 10−3

Frame per Joule per Dollar and a frame rate of up to 9 frames/sec.

The rest of this paper is structured as follows: Section 5.1 provides a detailed

background on Convolutional Neural Networks. We also shed some light on a

selection of the latest related research efforts on accelerating CNNs on FPGAs, in

section 5.2. Section 5.3 illustrates the design methodology used to realize efficient

implementations of the different computational sub-tasks involved in ConvNets.

In Section 5.4, we describe the architecture of our proposed accelerator. Finally,

we evaluate the performance and energy efficiency of the design in Section 5.5.

5.1 Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (ConvNets) are a special kind of feed-

forward multi-layer neural networks (NN) that typically consist of a series of

convolutional and pooling layers, followed by one or more fully-connected layers.

In a convolutional layer, the neurons are arranged into several separate rectan-

116

gular patches commonly known as Feature maps [12]. This arrangement makes

them suitable for processing multi-dimensional data such as 2-D color images

and 3D video signals. In typical multi-dimensional signals such as images and

videos, local groups of pixels are highly correlated [12]. Convolutional layers are

designed to exploit this spatial correlation in an input neural layer by employ-

ing a local connectivity pattern between neurons in consecutive layers; in other

words, in a convolutional layer, every neuron is connected to only small patches

of neurons, commonly referred to as local receptive fields, residing on different

feature maps from the previous convolutional layer. Another key aspect that dis-

tinguishes convolutional layers from fully connected NN layers is the parameter

sharing scheme in which all neurons that belong to the same convolutional layer

share the same set of weights. These arrangements, i.e., local connectivity and

parameter sharing, are mathematically described by a multi-dimensional discrete

convolution operation followed by a non-linear activation function [12, 25]. Fig-

ure 5.1 illustrates the structure of a typical convolutional layer. A convolutional

layer can assume multiple hyper-parameters. Among these is the size of the local

receptive field, which is the common size of the convolution masks in the 2-D

convolutions shown in Figure 5.1. In practical ConvNets, the convolution mask

can stride multiple pixels at a time, and thus the stride configuration is another

hyper-parameter of a convolutional layer. Another important hyper-parameter

is the zero-padding configuration which determines the number of zero samples

concatenated at the beginning and at the end of every feature map.

The last hyper-parameter for a convolutional layer is the group parameter,

which determines the number of groups the input and output feature maps are

divided to. Every group of output feature maps is then connected to its corre-

sponding group of input feature maps. This arrangement reduces the complexity

117

Red Component

Green Component

Blue component

+

2D Conv

2D Conv

2D Conv

+

2D Conv

2D Conv

2D Conv

+

2D Conv

2D Conv

2D Conv

F(.)

F(.)

F(.)

Feature Map 1

Feature Map 2

Feature Map N

𝐾1,1

𝐾1,2

𝐾1,3

𝐾2,1

𝐾2,2

𝐾2,3

𝐾3,1

𝐾3,2

𝐾3,3

Layer 0 Convolution Stage Activation Layer 1

Input Image

Figure 5.1: An illustration of a typical Convolutional Layer.

of the ConvNet, but it is rarely used nowadays since the current usually powerful

computing platforms obviate the need for it. A convolutional layer is often fol-

lowed by a pooling layer, which computes a statistical summary of local neural

activities in a convolutional layer. Feature maps at the input of the pooling layer

are first divided into rectangular patches of neurons, also referred to as receptive

fields. The neurons in every patch or receptive field are then summarized into a

single neuron for every patch, typically using the maximum of the samples or the

average of the samples. The purpose of pooling is to make the detection invariant

to minor shifts and distortions [12].

Currently, deep ConvNets employ more processing stages between the con-

volutional and pooling layers. For example, AlexNet [13], a ConvNet used for

image classification, employs a Local Response Normalization (LRN) layer after

the first and second convolutional layers. The role of the LRN layer is to drain

118

Table 5.1: AlexNet layers and their hyper parameters [13].

Layer Name Type Hyper Parameters

Conv1 Convolutional Size: 11×11 Stride: 4 Pad: 0 Group: 1

Norm1 LRN 𝜶/𝒌 = 5×10-5 𝜷 = 0.75 n: 5

Pool1 Max Pool Size: 3×3 Stride: 2 Pad: 0

Conv2 Convolutional Size: 5×5 Stride: 1 Pad: 2 Group: 2

Norm2 LRN 𝜶/𝒌 = 5×10-5 𝜷 = 0.75 n: 5

Pool2 Max Pool Size: 3×3 Stride: 2 Pad: 0

Conv3 Convolutional Size: 3×3 Stride: 1 Pad: 1 Group: 2

Conv4 Convolutional Size: 3×3 Stride: 1 Pad: 1 Group: 2

Conv5 Convolutional Size: 3×3 Stride: 1 Pad: 1 Group: 1

Pool5 Max Pool Size: 3×3 Stride: 2 Pad: 0

Fc6 Fully Connected Input Neurons: 9216 Output Neurons: 4096

Fc7 Fully Connected Input Neurons: 4096 Output Neurons: 4096

Fc8 Fully Connected Input Neurons: 4096 Output Neurons: 1000

the response of local clusters of neurons that have uniformly large activations

and boost those neurons that have relatively large activations when compared to

their neighbors. In the last few years, many other ConvNet architectures were

inspired by AlexNet and were able to achieve better performance. Those include

GoogleNet [30], Zeiler& Fergus [31], and VGG [32]. AlexNet, however, is still

widely used as benchmark for evaluating ConvNet accelerators [26, 107] due to

its high computational complexity. Table 5.1 summaries the AlexNet computa-

tional layers and the hyper-parameters we used in our implementation.

5.2 Related Work

The work of Farabet et al. [27, 89, 90], was among the first pioneering efforts

to accelerate Convolutional Neural inference on low-end DSP-oriented FPGA

platforms. In [89], a programmable FPGA-based ConvNet Processor (CNP) was

designed and deployed on two different FPGA platforms: a Xilinx Spartan-3A

DSP 3400 FPGA and a Xilinx Virtex 4 SX35 FPGA. The CNP consists of a

Parallel Vector Arithmetic and Logic Unit (VALU) along with a control unit

119

that sequences the operations of the VALU. The CNP could process 10 frames per

second using a ConvNet with 2 million synaptic connections. Current generations

of ConvNets, however, are much more complex; AlexNet, for instance, has around

724 million synaptic connections. Moreover, the ConvNets that were deployed

in [27, 89, 90] do not contain many of the more intricate structures and layers

involved in current state-of-art ConvNets. This means that even though the

works in [27,89,90] target low-end platforms, they do not support recent ConvNet

architectures such as AlexNet [13], GoogleNet [30], and VGG [32].

In general, any convolutional layer in a ConvNet inference workload can be es-

sentially resolved into multiple multidimensional Finite Impulse Response (FIR)

convolution operations [8,12]. Implementing N-dimensional FIR Convolutions on

FPGA platforms was investigated in [108–112]. The work of Meher et al. [108]

explores the realization of 1D- and 2D- FIR filters using systolic decomposition of

Distributed Arithmetic (DA) based inner-product computations. The resulting

DA-based FIR implementations can be implemented using Lookup tables and

shift-add operations only, and thus do not require any multipliers. While these

implementations can be efficiently mapped to LUT-based and legacy FPGA de-

vices, they provide little benefit on existing and modern DSP-based FPGA de-

vices, i.e., FPGA devices that incorporate special reconfigurable hardware mul-

tipliers referred to as DSP units. Moreover, implementing FIR filters using dis-

tributed arithmetic assumes that the coefficients of the FIR convolution filters

are constant. Since modern ConvNet architectures require thousands of convo-

lution operations per single inference, the best implementation strategy for large

ConvNet architectures relies on implementing multidimensional FIR convolution

filter implementation with variable convolution coefficients. Several other notable

optimizations were proposed in the literature: the use of Partial Buffering (PB)

120

scheme to implement 2D- Convolutions on FPGA devices [109, 110], the use of

multi-window PB to improve tradeoff between resource utilization and external

memory bus bandwidth [111], and the combination of Carry-save and Carry-

propagate arithmetic to implement convolution adder trees on FPGA devices

that supports Carry-propagate arithmetic only [112]. In this work, we address

the implementation of convolution filter architectures for 2D- convolutions with

arbitrary strides and mask sizes tailored for implementing complex ConvNet ar-

chitectures on resource-constrained FPGA devices. We describe the proposed

design methodology in section 5.3.

In recent years, interest in accelerating neural network inference on FPGA

platforms has grown significantly and different design approaches were investi-

gated and employed. In the work of Zhang et al. [25], a design space exploration

methodology was proposed. Various computation optimizations and transforma-

tions such as loop unrolling, pipelining, and tiling were investigated along with

memory access optimization schemes. With the help of the roofline performance

model, proposed in [113], optimized solutions were identified, which were then

implemented using High Level Synthesis tools [114, 115]. The work of Zhang et

al, [25] inspired a series of other research efforts such as that of Alwani et al. [116],

which observed the existence of a previously unexplored design dimension that

focuses on fusing the processing of multiple convolutional layers, and that of

Shen et al. [117] which proposed an automated design methodology that divides

the FPGA resources into several processors instead of a single large processor

achieving more throughput.

The automatic generation of FPGA accelerators from a high-level description

of a Convolutional Neural Network was also investigated and implemented by

Sharma et al. [107] who proposed a framework, called DNN-Weaver, that auto-

121

matically generates a synthesizable hardware design for Deep ConvNets. DNN-

Weaver was used to generate designs for three high-end FPGAs: the Intel Arria

10 and Stratix V, and the Xilinx Zynq FPGA.

The current state-of-the-art appeared in the work of Aydonat et al. [26], who

proposed a novel architecture written in OpenCL [115] called Deep Learning Ac-

celerator (DLA). The DLA employs several design techniques such as maximizing

data reuse and external memory bandwidth and the use of the Winograd trans-

form to boost the performance of the implementation. The DLA could process

1020 images per second using AlexNet deployed on a high-end Arria 10 FPGA

device.

HDL-based implementations of ConvNet architectures were also explored in

the literature [105, 106]. In [105], an open source VHDL-based ConvNet library

and toolbox is presented. The toolbox provides an easy method to investigate

the implication of employing low-bit fixed-point arithmetic on each individual

layer, while the VHDL library provides reference designs for different ConvNet

layers (e.g. Hardware synthesizable neurons and a PCIe-based ZF-net [31] layer

implementation). The final purpose of this library is to deploy ConvNet in-

ference algorithms on high-end Xilinx Ultrascale FPGA platforms tailored for

data center deployment. In the work of Abdelouahab et al. [106], a framework

called Haddoc2 was proposed. The Haddoc2 framework can take a Caffe model

for a very small ConvNet architecture and automatically generate an equivalent

VHDL-based hardware description of the network. The framework also employs

other optimizations such as using short fixed-point arithmetic and implement-

ing multiplications using Logic Elements (LE) rather than hardware DSP blocks.

As in [105] and citeref:Abdelouahab, in this work, we resort to implementing

our accelerator in an RTL language, in particular we employ a combination of

122

VHDL and Verilog. This choice of design entry language was made to avoid the

limitations of High Level Synthesis tools described in reference [118].

Implementing deep ConvNet inference in reduced precision fixed-point arith-

metic has also been investigated in the literature and the existing approaches

generally fall into two categories. The first category, also known as the post-

training quantization approach, relies on training deep ConvNets in floating-point

and then performing a floating-to-fixed-point conversion where for a given Con-

vNet layer the output neural activations and the neuron parameters are both

represented in fixed-point [119–122]. The second category relies on trained quan-

tization, where the network is trained with the constraint of having quantized

weights [123–129]. Notable efforts that employ this approach include training

Binarized Neural Networks (BNN) whose weights and neural activations are con-

strained to +1 or -1 [123, 128], or training Ternary Weight Neural Networks

(TWN) whose weights are constrained to +1, 0, and -1 [127], or training Con-

vNets that have reduced precision weights and activations [124–126,129]. In the

work of Jacob et al. [126] a quantized training framework was proposed to min-

imize the loss of accuracy from quantization, and the experimental results have

shown significant improvements in the tradeoff between accuracy and on-device

latency.

In this work, we focus on the development of accelerator designs that enable

the implementation of complex ConvNet architectures on resource-constrained

FPGA platforms aimed at the IoT market, and thus we seek implementations

that consume the least resources possible to target low-end FPGA devices while

still achieving acceptable performance. Our work contrasts with the majority

of FPGA-based ConvNet accelerator designs reported in the literature, which

either leverage the abundant resources of mid- to high-end devices to achieve

123

the highest performance possible when implementing complex ConvNets [25, 26,

105, 107, 116, 117], or resort to implementing relatively small ConvNet architec-

tures that have limited storage and computational requirements on embedded

systems [106, 119, 126]. To tackle the challenge of designing a resource-efficient

ConvNet accelerator, we devise a two-fold methodology. First, we propose a set

of data-flow-based design techniques that allow a designer to extract DSP-based

graphical representations of deep ConvNet sub-computations and map these rep-

resentations to efficient hardware implementations. In this context, we also pro-

pose a novel stride-aware graph-based method targeted at convolutional layers

that employ 2D-convolutions with non-unit strides; this method can be system-

atically employed to derive compact and minimal-resource 2D-convolution filter

architectures that can be directly implemented in hardware. Second, we in-

vestigate employing dynamic fixed-point arithmetic, i.e., different layers of the

ConvNet use different bit-widths. Our approach is similar to the approaches used

in references [119] and [122]; however, we differ from these approaches in that we

use a layer-by-layer design-space pruning heuristic to infer the minimal required

bit-widths and precision-levels in each ConvNet layer.

5.3 Design Methodolgy

5.3.1 Design Challenges

For the design to meet the performance, power and cost requirements of IoT

applications, we identified four challenges in designing the accelerator:

1. The limited resources available on low-end FPGA platforms. These plat-

forms are well suited for low-cost and power sensitive applications and are

124

typically characterized by a limited number of available DSP units, Block

RAMs and programmable logic blocks. They are usually promoted by their

manufacturers as capable of delivering the highest DSP performance-per-

watt.

2. The relatively high computational complexity of deep convolutional neural

networks. The number of multipliers in an AlexNet [13] inference is on the

order of 700 million operations per frame. Given the real-time requirement

of IoT applications, which is several frames per second and requires billions

of operations per second, this places a significant strain on the resource-

limited FPGA.

3. The memory or space requirements of deep convolutional neural networks,

where each convolutional layer can produce many feature maps. The follow-

ing convolutional layer may use these feature maps multiple times, which

requires caching the intermediate feature maps.

4. The limited on-board memory bandwidth in low-end platforms. The mem-

ory bandwidth on such devices is typically limited to around 100 Gbps. The

Cyclone V dev-kit, for instance, has a theoretical memory bandwidth of 70

Gbps and an achievable rate of 58.9 Gbps. The Zedboard, another low-end

platform, can achieve around 34 Gbps. These numbers can be contrasted

with those of high-end platforms such as the Intel Arria 10 and Stratix V

that have 273 Gbps and 372 Gbps respectively.

To deal with these challenges, we propose several design techniques for im-

plementing convolutional neural networks on resource-constrained FPGAs. The

first design technique is based on modeling sub-computations in convolutional

125

neural networks in terms of graphical representations, and then employing a set

of high-level transformations to derive suitable resource-efficient realizations. The

second design technique is based on implementing the accelerator using limited

precision fixed-point arithmetic, which greatly reduces resource utilization on the

FPGA.

5.3.2 Graphical Representation and Modeling of Neural

Inference computation

The computations involved in convolutional neural network inference are best

described in terms of Digital Signal Processing (DSP) computations or signal

processing chains rather than general purpose workloads. DSP computations

differ from their general-purpose counterparts in two major ways. The first dif-

ference is in the real-time requirement where data is received periodically from a

source and should be processed within a bounded time frame, as in a real-time

vision system with a camera generating frames at a certain rate. The second

difference is in the data-flow property where a signal processing sub-task starts

executing as soon as the data needed for that sub-task is available at the input.

This modeling of computations is usually referred to as the streaming data-flow

compute model, in which the computations can be modeled as a set of trans-

formations on an input data-sequence rather than a sequence of operations that

needs to be performed on a batch of data. The study of modeling DSP computa-

tions and data-flow algorithms is very well established in the literature, especially,

in the work of Keshab [104], and later Hauck and Dehon [24]. In this work, we

reason about the implementation of various sub-tasks involved in convolutional

neural networks using the data-flow compute model, in which computations are

126

described using a Graphical representation, that is, a Data-Flow Graph or a

Block Diagram. We, then, propose a set of high-level transformations on these

graphical representations to derive efficient hardware implementations for many

computations involved in deep convolutional neural networks.

Efficient Modeling of 2-D Convolutions.

The most important, and computationally intensive sub-task in a convolutional

neural network, is the multi-layer convolution operation, which consists of a se-

quence of 2-dimensional discrete-time convolution operations. Every convolution

operation involved can be modeled as a discrete linear shift-invariant system with

a finite impulse response; consequently, every convolution is, in principle, a Finite

Impulse Response (FIR) filter. In this section, we establish a design methodol-

ogy for deriving hardware implementations for 2-D FIR convolution filters by

extending the previously known methods in the digital signal processing liter-

ature. Figure 5.2(a), shows a 1-dimensional 3-tap FIR filter in block diagram

representation. For the sake of simplicity and presentation, we will use the 3-

tap FIR filter as a typical example to illustrate the proposed design techniques.

Note, that the block diagram representation of the filter clearly exposes the data-

flow properties of the 1-D convolution, including its data-driven properties, and

it unmasks the inherent fine-grain parallelism among different operations in the

convolution. The representation shown in Figure 5.2(a), can be mapped directly

to a hardware implementation that consists of three independent hardware mul-

tipliers, two adders, and two delay elements which can be realized using two

hardware registers. The filter can convolve an input sequence with an impulse

response sequence of size three. At every iteration or clock cycle, the filter reads

one input sample from the input sequence, performs three multiplications and 2

127

additions in parallel and generates one output sample. Another architecture can

be derived for the block diagram representation; one that can perform the same

convolution with less hardware multipliers and adders, but such an implementa-

tion is more serial in nature and cannot process a sample on every iteration. In

this work, we seek implementations that can at least process one input sample

on every iteration.

Although designing a 2-D convolution filter is slightly more complex, it can

be derived from its 1-D counterpart by exploiting the fact that a 2-D convolution

is essentially made of several concurrent 1-D convolution operations. A high-

level mathematical formulation of the 2-D convolution operation is illustrated in

equation 5.1.

I ′ =
∑
q

∑
p

K(p, q)× I(x− p, y − q) (5.1)

I(x, y) is the input 2-D sequence or image. K(x, y) is a 2-D sequence that

represents the convolution kernel or the filter mask. I ′(x, y) is the 2-D sequence

that results from convolving I(x, y) with K(x, y). It may be shown that equation

5.1 can be reformulated in terms of simple 1-D convolutions. The reformulation

is shown in equation 5.2

I ′x(y) =
∑
q

Kx(q) ∗ Ix(y − q) (5.2)

kx(y) denotes the yth row of the filter mask; Ix(y) also denotes the yth line

or row of the input image, and the “*” binary operator denotes the 1-D linear

convolution. Note that although equation 5.2 describes a 2-D convolution oper-

ation, it exhibits a great deal of similarity to the that of a 1-D convolution, but

with the multiplication operator being replaced by a 1-D convolution operation

128

denoted by “*”. This similarity allows us to draw a comparable block diagram

representation for the 2D-FIR filter as shown in Figure 5.2(b). The 2 represen-

tations shown in both Figure 5.2(a) and 5.2(b) have a great degree of similarity

in their structures, with the only difference being in the operations used.

𝑍−1

𝑘(2) 𝑘(1) 𝑘(0)

𝑥(𝑛)

𝑦(𝑛)
𝑍−1

(a)

𝑘𝑥(2) 𝑘𝑥(1) 𝑘𝑥(0)

𝐼𝑥(𝑦)

𝐼′𝑥(𝑦)

* * *

𝛿𝑥(𝑦 − 1) 𝛿𝑥(𝑦 − 1)

(b)

Figure 5.2: Block diagram representation for the 1-D FIR filter (a) and for the
2-D FIR (b)

The block-diagram representations shown in Figure 5.2 are different in two

respects:

� In the first diagram, the filter consumes 1 sample from the input sequence

at every iteration; similarly, every operation in Figure 5.2(a) processes one

sample per iteration. The diagram shown in Figure 5.2(b) receives an entire

row of samples from the input 2-D sequence at every iteration and every

sub-task in this diagram operates on an entire row of samples rather than

on a single sample.

� In figure 5.2(b) the delay elements denoted by Z−1 are replaced by multi-

dimensional (2D) linear systems [130] with an impulse response of δx(y−1)

each, which is a fancy way to refer to delays along the y-axis. In other

words, if we apply a 2-D sequence S(x, y) to the input of this system, the

output will be the sequence R(x, y) = S(x, y − 1).

Many hardware realizations for the 2-D FIR filter can be derived from Figure

129

𝐾(2,2) 𝐾(2,1) 𝐾(2,0)

𝑥(𝑛)

𝑍−𝐿

𝐾(1,2) 𝐾(1,1) 𝐾(1,0)

𝑍−𝐿

𝐾(0,2) 𝐾(0,1) 𝐾(0,0)

𝑍−𝐿

𝑍−1 𝑍−1

𝑍−1 𝑍−1

𝑍−1 𝑍−1

Figure 5.3: A hardware realization for the 2-D convolution filter derive from
figure 5.2(b).

5.2(b). However, we can set for a minimal-resource realization, that is a real-

ization that takes a minimal number of multipliers and adders and can process

at least one input sample on every iteration. We show this realization in Figure

5.3. With this realization, the 2-D input sequence is processed one row at a time.

Equally, every row is processed one sample at a time. This means the 2D input

sequence should be received by the filter in row major order; and the resulting

output sequence is also generated in row-major order. As a result, in this work,

all input feature maps are stored and transferred in this particular order.

Different convolution filters with different filter mask sizes, can be designed

using the same methodology we used to design the 2-D FIR filter with a mask size

of 3×3. In general, a hardware realization of a 2-D convolution filter with a filter

mask of size N ×M and designed according to our methodology would result in

130

Table 5.2: Hardware cost of different 2-D FIR filters

FIR window

size

Multipliers Adders Registers

3x3 9 8 6

5x5 25 24 20

7x7 49 48 42

11x11 121 120 110

N×M hardware multipliers, N×M−1 adders, (N−1)×M registers, and M−1

delay lines of depth L each, where L is the width of the resulting output feature

map. Although, the 3× 3 2-D convolution was portrayed in this section as a toy

example to illustrate the methodology, this convolution kernel is heavily used,

along with other convolution mask sizes, in current deep convolutional neural

networks. The following table summarizes the hardware cost figures for many

convolution filter implementations.

As shown in Table 5.2, the complexity of filters with large FIR windows such

as the 7x7 or 11x11 is relatively high, especially, when working with resource-

limited FPGA platforms. The Zedboard for instance has around 240 DSP48E

units, implementing a filter with a convolution kernel of size 11x11 would not fit

into the Zedboard’s FPGA fabric, if every multiplier is implemented using two

DSP48E units. Fortunately, however, in modern convolutional neural networks,

some convolutional layers have a stride configuration that differs from 1, i.e.,

the convolution mask can jump multiple pixels at a time as it slides around the

image. For instance, the convolution kernel of size 11x11 usually has a stride

configuration of at least 4 pixels and hence an 11x11 FIR with a stride configu-

ration of 4 may be implemented with only 9 multipliers instead of 121, greatly

reducing its cost. In section 5.3.3, we propose a set of high-level transformations

and reduction schemes to design hardware implementations for FIR filters with

131

arbitrary stride configurations.

Modeling the Local Response Normalization Layer

The concept of Local Response Normalization is borrowed from the phenomenon

of “Lateral inhibition” in neurobiology [12]. In biological neural networks, a stur-

dily excited neuron has the capacity to quell the neighboring neurons improving

the perception ability of the entire network. The first effort to introduce the

concept of Normalization to improve the accuracy of artificial deep convolutional

neural networks was in the work of Alex Krizhevsky et al. [13]. The operation for

the Local Response Normalization as it appears in [13] is described in equations

(3) and (4):

bix,y = aix,y × cix,y (5.3)

cix,y =

(
1 +

α

k

j=i+n/2∑
j=i−n/2

(aix,y)
2

)−β
(5.4)

Where aix,y denote the activity of a neuron that belongs to the ith feature map

at position (x,y) and bix,y represent the normalized neural activities. Note that

the sum in cix,y runs over multiple adjacent feature maps at the same position.

Hence, the 2-D arrays cix,y depend on n adjacent feature maps. We treat the

normalization operation as a non-linear DSP filter and thus it can be represented

in a Data-Flow Graph representation or in a block diagram representation as

shown in figure 5.4. Figure 5.4 illustrates a normalization filter with n = 3

feature maps.

f(x) =
(
1 + α/k × x

)−β
is a non-linear function; and the δx,y(i − 1) block is

a delay unit along the i-axis. The above block diagram can be directly mapped

to a hardware implementation, with two multipliers, two adders and three delay

132

𝛿𝑥,𝑦(𝑖 − 2)

𝛿𝑥,𝑦(𝑖 − 1) 𝛿𝑥,𝑦(𝑖 − 1)(.)2 𝑓(.)

Figure 5.4: A block diagram representation for a Local response normalization
filter with n = 3.

lines. The non-linear function can be implemented using lookup tables. The

lengths of the delay lines depend on the size of the feature maps involved in the

normalization layer.

Modeling the Pooling Layer

In traditional convolutional neural networks, a pooling layer operates on non-

overlapping rectangular clusters of neurons within the same feature map. In each

cluster, the pooling operation condenses the excitations of neighboring neurons

into a single neuron in the next layer. In some cases, such as [13], the clusters

upon which the pooling layer acts, can be overlapped, thus improving the gen-

eralization capacity and accuracy of the trained model. By overlapping these

clusters, the pooling layer starts resembling the convolutional layer in that the

rectangular clusters of neurons are similar to convolution filter masks. Hence, just

like convolutions, the pooling can have a stride configuration that determines how

far the pooling clusters are overlapping. In this section, we use a design method-

ology similar to the one we used for 2-D convolution filters. Although there are

many pooling methods, the most common pooling schemes are the max pooling

and the average pooling. In max pooling, the maximum excitation value in each

133

cluster is used, whereas, in average pooling the average of the excitation values is

used. A mathematical formulation of a max pooling operation with a stride of 1

pixel (maximum overlap) in both x and y directions, and a mask size of N ×M

is shown in equation 5.5.

I ′ =
N−1∨
i=0

M−1∨
j=0

I(x− i, y − j) (5.5)

The ∨ operation denotes the maximum operation; mathematically, ∨(a, b) =

max(a, b). Finally, I(x, y) denotes the input feature map and I ′(x, y) is the pooled

output feature map. Equation 5.5 can be re-written as:

I ′(x, y) =
M−1∨
j=0

lx(j) (5.6)

In this reformulation, lx(j) denotes the result of pooling the jth row or line of

the input feature map using a 1-D pooling operation. If the feature map arrives

at the input of the pooling filter in row-major order, according to Equation 5.6,

the 2-D pooling computation can proceed in two stages. In the first stage, every

row is pooled individually. In the second stage, the pooled rows obtained from

the first stage are combined to obtain the resulting pooled feature map. Figure

5.5, shows a block diagram representation for a 2-D pooling filter with a kernel

size of 3× 3 and a stride of 1 pixel.

Note that the maximum operation, shown in figure 5.5, is implemented using

FPGA carry-chain and lookup table resources which are abundantly available on

most FPGAs, as opposed to DSP units which are available in limited numbers.

The unit delay elements are implemented using FPGA slice registers, while the

delays along the y-axis are implemented using Block RAMs configured as delay

lines. Pooling filters with larger kernel sizes and different stride configurations

134

𝑍−1

V

𝑍−1

V

𝑥(𝑛)

𝑦(𝑛)
V

𝛿𝑥(𝑦 − 1) 𝛿𝑥(𝑦 − 1)

V

First Stage: Row Pooling Second Stage: Column Poling

Figure 5.5: A block diagram representation for a 2-D Pooling filter with kernel
size 3Ö3 and a stride of 1 pixel

can be designed in a similar fashion. However, when the stride configuration

is different from one, we employ down-samplers at the output of both first and

second stages. In the next section, we derive a method to reduce the resource

utilization for convolution filters with stride configurations.

5.3.3 Optimization and Reduction schemes for 2D Con-

volution

As mentioned earlier, in section 5.3.2, some convolutional layers have convolution

masks that can jump multiple pixels at a time both vertically and horizontally.

We referred to such convolution operations as convolution filters with a stride

configuration. We also laid down a systematic technique to derive a hardware

implementation for the 2-D convolution filter with a stride of 1 pixel. In this

section, we extend our methodology to include implementing convolution filters

with arbitrary stride configurations. Designing convolution filters with stride

configurations requires a certain understanding of multi-rate signal processing;

consequently, we will review some of the notions of multi-rate processing, and

then propose a multi-rate-based transformation technique that helps mapping a

135

2-D convolution with an arbitrary stride configuration to a hardware realization.

Multi-rate Processing Perspective for Strides in ConvNets

In DSP systems, it is possible to reduce the sampling rate of a sequence by an

integer factor M by using a sampling rate compressor. The compressor performs

periodic sampling of the original sequence at time instances that are multiples

of M . To increase the rate, on the other hand, a sampling rate expander is

used along with a low-pass filter. In this work, we limit our scope to studying

the sampling rate compressor as it can serve our interest in deriving hardware

architectures for convolution filters with multiple strides. Figure 5.6, shows the

notation of the sample rate compressor and illustrates a typical example of how

the compressor reduces the sampling rate of a 1-D sequence. We are going to use

this notation to represent our proposed high-level transformation and reduction

scheme.

Multi-rate signal processing generally refers to a set of techniques that utilizes

sample rate compressors and expanders to reduce the computational cost of some

multi-rate signal processing systems and consequently improving their efficiency.

Two important results from multi-rate processing are the Noble Identities which

allow interchanging of filtering and compressing or expanding operations and the

polyphase decomposition of a filter’s impulse response. Ref. [131], provides a

complete treaty on Noble identities and polyphase decomposition. Figure 5.7(a)

illustrates the first Noble identity.

Efficient Multi-rate-based Transformation for Strides

The Noble identity shown in Figure 5.7(a), is used for the analysis of multi-

rate systems. M delay elements can be transferred from the input of an M-fold

136

Figure 5.6: A symbolic notation for the compressor and a typical example with
M = 2

𝑍−𝑀 ↓M

↓M 𝑍−1

(a) The first Noble Identity

𝑍−𝑇 ↓M

↓M 𝑍−𝑖𝑍−(𝑇−𝑀𝑖)

(b) Our proposed transformation

Figure 5.7: Multi-rate signal processing transformations

rate compressor to its output as 1 delay element, as illustrated in Figure 5.7(a).

We propose a generalized form of this identity in Figure 5.7(b). Given T delay

elements at the input of an M-fold rate compressor, we can transfer M×i of these

elements from the input of the compressor to its output as i delay elements. In

this proposed identity, T , M and i can be any combination of natural numbers

(we provide a proof for this identity in Appendix A). We will show in the next

section, that the identity, shown in Figure 5.7(b), proves to be very useful in

deriving hardware architectures for convolution filters with strides.

Designing 2D Convolution Kernels with strides

In this section, we tackle the general case of sh stride, where the convolution mask

can jump sh samples at a time, where sh is an arbitrary positive integer greater

137

𝑍−1

𝑘(2) 𝑘(1) 𝑘(0)

↓ 2𝑍−1
𝐼(𝑥) 𝐼𝑆(𝑥)

Figure 5.8: A block diagram representation for 1-D convolution with a stride of
2 samples

than or equal to 1. A 1-D convolution with horizontal strides sh is defined as

IS(x) =
∑
p

K(p)× I(shx− p) (5.7)

Note that we can break-down equation (5.7) into two steps; the first step

consists of performing a normal 1-D convolution with a stride of 1 sample as

shown in equation (5.8)

I(x) =
∑
p

K(p)× I(x− p) (5.8)

The next step consists of down-sampling I(x) to obtain IS(x)

IS(x) = I(sh × x) (5.9)

Equation 5.11 is an sh-fold sample rate compressor. By employing an sh-fold

compressor at the output of the normal 2-D convolution, we obtain the same

output as that of a convolution with horizontal strides of sh. Knowing this fact,

a block diagram representation for a convolution operation with a stride configu-

ration sh can be drawn. Figure 5.8 illustrates a block diagram representation for

a 1-D convolution filter with a mask size of 3 and a stride of 2 samples.

138

A direct implementation of the arrangement shown in Figure 5.8 is clearly

inefficient, since half of the samples computed by the FIR filter are dropped

by the compressor. We employ the transformation shown the Figure 5.7(b), to

convert the above diagram to a more efficient data-flow representation in which

unneeded computations are avoided. We then fold the data-flow representation

to derive an efficient hardware implementation for the 1-D convolution with a

stride of 2 samples.

The final adder at the output of the FIR filter (refer to Figure 5.8) and the

compressor can be interchanged. The result of interchanging the order of the

compressor and the adder is shown in Figure 5.9. Note that the single delay

element followed by the 2-fold compressor, designated using a dotted rectangle

in Figure 5.9, is a special case of the proposed transformation shown in Figure

5.7(b) with T = 1, M = 2, and i = 1. Hence, this arrangement can be replaced

by a unit advance element, followed by a 2-fold compressor, and a unit delay

element as shown in Figure 5.9.

Similarly, the unit advance element can be moved to the inputs of the second

adder. The unit advance element cancels the effect of the second unit delay

element in the FIR filter. And the compressor can be moved to the input of

the second adder in a similar fashion. After the conversion, we end up with the

diagram shown in Figure 5.10.

The diagram in Figure 5.10 consists of two components: a polyphase de-

composition unit and a computation unit. The polyphase decomposition unit,

designated with a dotted rectangle in Figure 5.10, performs serial to parallel con-

version, meaning that it receives two samples from the input sequence in a serial

fashion and delivers them in parallel to the computation unit. The computation

unit is made of two pipeline stages of computations and each stage consists of

139

𝑍−1

𝑘(2) 𝑘(1) 𝑘(0)

𝐼(𝑥)

𝑍−1
𝐼𝑆(𝑥)

↓ 2

↓ 2

𝑍+1 ↓ 2 𝑍−1

Figure 5.9: Partially transformed 1-D convolution with a stride of 2

𝑍+1

↓ 2

↓ 2

𝑘(2) 𝑘(1) 0𝑘(0)

𝑍−1

𝐼(2𝑥 + 1)

𝐼(2𝑥)

Stage 0 Stage 1

𝐼𝑆(𝑥)

Polyphasic Decomposition

𝐼(𝑥)

Figure 5.10: Fully transformed 1-D convolution

140

𝑘(2)

𝐼(𝑥)

𝑘(1) 𝑘(0)0

0 𝐼𝑆(𝑥)

01

Figure 5.11: A minimal hardware implementation for a 1-D convolution filter
with a size of 3 and a stride of 2

two multiplications and two additions. We designated each stage with a dotted

rectangle in Figure 5.10. It is worth noting here, that the multipliers in each stage

cannot operate on each clock cycle, due to the serial-to-parallel converter which

delivers 2 samples every other clock cycle. Hence, in the final transformation, we

remove the serial to parallel converter and collapse the multipliers that are within

the same stage into a single multiplier. The resulting block diagram is shown in

figure 5.11, and can be directly mapped into a hardware implementation. Note

that the convolution weights shown in figure 5.11 are delivered to the multipli-

ers in a pre-defined pattern that depends on the convolution’s mask size, stride

configuration, and padding parameters. We employed shift registers (shown in

figure 5.11) to store the parameters on the FPGA. The shift registers exhibit

a control unit that ensures its proper and synchronized operation. Moreover, a

weight-loading mechanism was implemented to enable an external circuit to load

a new set of weights whenever a new convolution operation is scheduled.

The hardware implementation shown in figure 5.11, consists of 2 hardware

multipliers, 2 adders, 2 multiplexers, and 2 registers. Compared to the direct

141

0

0

𝑍−𝐿

0

𝑍−𝐿

𝐼(𝑥)

𝐼𝑆(𝑥)

Figure 5.12: A minimal hardware implementation for a 2-D convolution filter
with a size of 3Ö3 and a stride of 2

implementation, shown in figure 5.8, this reduced implementation was able save

1 hardware multiplier. Similarly to what we did in section 5.3.2, we can extend

the 1-D convolution to 2-D. Figure 5.12, shows a 2-D convolution filter with a

mask size of 3Ö3 and a stride of 2 in each direction.

A hardware implementation of the 2-D convolution filter shown in Figure 5.12

takes 4 multipliers, 4 adders, 4 registers, 2 delay lines, 2 multiplexers, and some

control circuitry to control the multiplexers. Note that a direct implementation,

i.e., an implementation like the one in figure 5.8 but for a 2-D filter will cost

9 multipliers, 6 adders, and 2 delay lines. The same methodology can be used

for designing convolution filters with different sizes and stride configurations. In

general, a hardware realization of a 1-D convolution filter with a filter mask of

size P a horizontal stride configuration sh, a horizontal padding configuration

ph, and designed according to the methodology proposed in this section would

result in Lh adders, multipliers, registers and multiplexers, where Lh is defined

as follows:

Lh =

(⌈⌈
P − ph
sh

⌉
+
ph
sh
− 1

⌉
+ 1

)
(5.10)

142

Similarly, a hardware realization of a 2-D convolution filter with a filter mask

of size P×Q, a horizontal stride configuration sh, a vertical stride configuration sv,

a horizontal padding configuration ph, a vertical padding configuration pv would

result in L multipliers and registers, (Lh + 1) × Lv adders and multiplexers, Lv

delay lines, where L, Lh, and Lv are defined as follows:

L = Lh×Lv =

(⌈⌈
P − ph
sh

⌉
+
ph
sh
−1

⌉
+1

)
×

(⌈⌈
Q− pv
sv

⌉
+
pv
sv
−1

⌉
+1

)
(5.11)

Coefficient Delivery Pattern

In the previous section, we employed the identity shown in figure 5.7(b) to de-

sign efficient dataflow graph representations for convolution filters with arbitrary

stride configurations. This method, however, requires delivering the convolution

weights to multipliers in a pre-defined pattern that depends on the convolution

mask size, stride, and padding parameters. In this section, we call the forenamed

pattern, Coefficient Delivery Pattern, and we derive a systematic methodology

for obtaining this pattern for any 2D-convolution filter.

To simplify the derivation of the Coefficient Delivery Pattern, we define a

synchronous data flow operator that we call Coefficient Scrambler. A 1D- Coef-

ficient Scrambler is an actor object that operates on an input convolution mask

to produce the desired coefficient pattern for a 1D- convolution filter with arbi-

trary strides; similarly, a 2D- Coefficient Scrambler is used to produce the desired

pattern but for a 2D-convolution filter. The Coefficient Scrambler object has mul-

tiple attributes: (1) a mask size attribute, (2) a stride attribute, (3) a padding

attribute, and (4) a repetition attribute. Figure 5.13 depicts a 1D- Coefficient

Scrambler object acting on a convolution kernel to produce the desired coefficient

143

CF1: Coefficient Scrambler

Mask size = 𝐾ℎ = 3
Stride = 𝑠ℎ = 2
Padding = 𝑝ℎ = 1
Repetition = 𝑅 = 2

𝑘2 𝑘1 𝑘0

𝑘2 𝑘0

𝑘1 0

𝑘2 𝑘0

𝑘1 0

Coefficient Delivery Mold

1st repetition

2nd repetition

T
im

e-
ax

is

× 2
𝑘1 0

𝑘2 𝑘0

𝐼(𝑥)

0 𝐼𝑆(𝑥)

l-
ax

is

m-axis

Figure 5.13: Coefficient Scrambler object feeding a 1D- filter with a mask size 3,
stride 2, and padding 1

delivery pattern for a convolution filter with a mask size 3, a stride configuration

2, and a padding parameter 1. Generally, a 1D- Coefficient Feeder has one input

port and Lh output ports, where Lh is as defined in the previous section; for each

mask it receives, it produces R repetitions of its Coefficient Delivery Pattern.

The Coefficient Delivery Pattern obtained in figure 5.13 is recapitulated by,

what we refer to as, the Coefficient Delivery Mold or CDM for short (c.f. figure

5.13). Consequently, for a certain arbitrary 1D- convolution filter, the correct

Coefficient Delivery Pattern can be determined by properly populating a Coef-

ficient Delivery Mold (CDM). As a rule of thumb, a CDM has sh rows and Lh

columns. Given a 1D- convolution with a mask K = [kP−1, kP−2, . . . , k0], stride

sh, padding parameter ph, the CDM can be populated according to the following

rule: if we denote the element at row l and column m of the CDM matrix as

Cl,m. then

144

Cl,m =

 kr, 0 ≤ r ≤ P − 1

0, otherwise
(5.12)

r =

(
m−

⌈
P − ph
sh

⌉)
× sh + l + P − ph (5.13)

The repetition attribute of the Coefficient Scrambler R is also reflected in

the Coefficient Delivery Mold ; it appears at the right of the CDM matrix (c.f.

figure 5.13) and can be obtained using equation 5.14. SI , here, is the length of

the input signal i.e., the length of the input feature map. Notice that we defined

SI as length instead of size, since the input feature here is a line rather than a

rectangular structure.

R = SI + 2× ph − P + sh (5.14)

The concept of the 2D- Coefficient Scrambler is just like its 1D- counterpart,

in the sense that it has a Coefficient Delivery Mold ; we call it 2D- CDM. Figure

5.14 shows a 2D- Coefficient Scrambler feeding a 2D- FIR convolution filter with

a mask of size 3 × 3, stride 2 and padding 1. In this example, the Coefficient

Scrambler has two interfaces; one interface for each row of multipliers in the

convolution circuit. The 2D- Coefficient Delivery Mold consists of a matrix of

1D- sub-molds. In general, a 2D- CDM, has sv rows of 1D- sub-molds, and Lv

column of 1D-molds.

Given a 2D- convolution with a 2D- mask K, horizontal stride sh, vertical

stride sv, horizontal padding parameter ph, vertical padding parameter pv, the

2D- CDM may be populated according to the following rule: If we denote Ct,v,l,m

the element at row l and column m in the 1-D mold, which is at row t and column

145

𝑘4 0

𝑘5 𝑘3

CF2: 2D-Coefficient Scrambler

Mask size = (𝐾ℎ, 𝐾𝑣) = (3, 3)

Stride = (𝑠ℎ, 𝑠𝑣) = (2, 2)

Padding =(𝑝ℎ, 𝑝𝑣) = (1, 1)

Repetition = (𝑅ℎ, 𝑅𝑣) = (2, 3)

0

0

𝑘0𝑘1𝑘2

𝑘3𝑘4𝑘5

𝑘6𝑘7𝑘8

2D- Coefficient Delivery Mold

m-axis

l-
ax

is

× 2
0 0

0 0

𝑘1 0

𝑘2 𝑘0
× 2

× 3

𝑘7 0

𝑘8 𝑘6
× 2

× 2

× 3

T
im

e-
ax

is

𝑍−𝐿

0

𝑍−𝐿

Figure 5.14: A 2D- Coefficient Scrambler object feeding a 2D- filter with a mask
size 3× 3, stride 2, and padding 1

v in the 2D- CDM, then

Ct,v,l,m =

 kr
′
r , 0 ≤ r ≤ P − 1, and 0 ≤ r′ ≤ Q− 1

0, otherwise
(5.15)

r =

(
m−

⌈
P − ph
sh

⌉)
× sh + l + P − ph (5.16)

r′ =

(
v −

⌈
Q− pv
sv

⌉)
× sv + t+Q− pv (5.17)

K =

kQ−1P−1 kQ−1P−2 . . . kQ−10

kQ−2P−1 kQ−2P−2 . . . kQ−20

...
...

. . .
...

k0P−1 k0P−2 . . . k00

. (5.18)

There are two repetition attributes for the 2D- Coefficient Scrambler : R and

R′ and they are reflected in the 2D-CDM as shown in figure 5.15. R and R′ may

146

𝑘4 0

𝑘5 𝑘3

2D- Coefficient Delivery Mold

m-axis

l-
ax

is

× 𝑅
0 0

0 0

𝑘1 0

𝑘2 𝑘0
× 𝑅

× 𝑅′

𝑘7 0

𝑘8 𝑘6
× 𝑅

× 𝑅

× 𝑅′

T
im

e-
ax

is
Figure 5.15: A 2D- Coefficient Scrambler object

be obtained using equations 5.19 and 5.20. SI , here, is the width of the input

image, and S ′I is its height. Note that R × R′ is equivalent to the latency of

convolving the input image with the convolution mask.

R = SI + 2× ph − P + sh (5.19)

R′ = S ′I + 2× pv −Q+ sv (5.20)

Analyzing the Effect of the Reduction Scheme

A single 2D convolution filter designed according to the reduction scheme pro-

posed earlier provides a certain level of performance or latency, while occupying

a predictable amount of FPGA resources. As mentioned in section 5.3.2, the

filters designed here, can process at least one input sample on every clock cy-

cle. Consequently, a filter can process an input feature map of size N × N in

around N × Nclock cycles. Table 5.3 shows the amount of resources or silicon

area occupied by different convolution filter designs with and without employing

147

Table 5.3: Hardware cost of different 2-D FIR filters with strides

FIR window size

and stride

Latency

(clock

cycle)

Resource Count/Area-latency product

Without reduction With reduction applied Reduction in

area-latency

productMultipliers

Resources

×

latency

Multipliers

Resources

×

latency

3x3, stride = 2 𝑁 ×𝑁 9 9(𝑁 × 𝑁) 4 4(𝑁 × 𝑁) 2.25 ×

5x5, stride = 2 𝑁 ×𝑁 25 25(𝑁 × 𝑁) 9 9(𝑁 × 𝑁) 2.78 ×

7x7, stride = 2 𝑁 ×𝑁 49 49(𝑁 × 𝑁) 16 16(𝑁 × 𝑁) 3.1 ×

11x11, stride = 4 𝑁 ×𝑁 121 121(𝑁 × 𝑁) 9 9(𝑁 × 𝑁) 13.4 ×

the reduction scheme. The table also shows the latency of computing the 2D

convolution of an input feature map of size N × N . Note here that we only re-

port multiplier count as a rough estimation of the silicon area. Table 5.3, shows

that up to 13 time-reduction in the area-latency product can be achieved for

filters with a mask of size 11 × 11 and a stride of 4. In general, the reduction

in area-latency becomes more pronounced with convolution filter designs with

larger stride configurations.

Although the proposed reduction scheme resembles the Winograd technique

for the fast computation of the convolution operation in that both schemes can be

used to reduce the number of multipliers in an implementation, there are subtle

differences between the two. While the Winograd technique can be exclusively

used when the convolution stride configuration is one [26], the proposed reduction

scheme is tailored only for convolutions with stride configurations larger than one.

Observations

We observe that a 2D Finite Impulse Response filter with arbitrary mask sizes,

padding, and stride configurations can always be resolved into three constituent

parts: (1) A multiplier grid, (2) a sample accumulation grid, and (3) a line ac-

cumulation grid. Those three parts are depicted in figure 5.16. As in systolic

148

𝑍−𝐿

0

0

0
𝑍−𝐿

Multipliers Grid

Samples Accumulator Grid Lines Accumulators Grid

𝑋0
0(𝑛)

𝑋1
0(𝑛) 𝑋1

1(𝑛)

𝑋0
1(𝑛)

𝑌1(𝑛)

𝑌0(𝑛)

𝑍(𝑛)

i-axis

Figure 5.16: A 2D- FIR filter with mask size 3× 3 and stride 2

array architectures, the sample accumulator grid is made of a regular homoge-

neous two-dimensional array of tightly-coupled processing elements (PEs). We

will henceforth refer to these processing elements as sample-add-accumulate PEs.

Similarly, the line accumulator grid is also composed of a one-dimensional vertical

array of PEs that we refer to as line-add-accumulate units. Figure 5.17 depicts

both the sample-add-accumulate and the line-add-accumulate PEs.

𝑋(𝑛)

𝑅(𝑛)
𝑍(𝑛)

𝑆(𝑛)

(a) sample-add-accumulate PE

𝑍−𝐿

𝑋(𝑛)

𝑅(𝑛)

𝑍(𝑛)

𝑆(𝑛)

(b) line-add-accumulate PE

Figure 5.17: The sample and line accumulation grids that are common among all
2D-fir filters

Both the sample accumulation, and the line accumulation girds can be mod-

eled as Multiple-Input-Multiple-Output systems. We denote those systems as

149

T1 and T2. The output of the sample accumulation grid i.e., system T1 can be

formulated mathematically as follows:

Yj(n) =

sh−t∑
i=0

Xj
Lh−1(n− i) +

Lh−2∑
r=0

sh−1∑
i=0

Xj
r
(
n− sh × (Lh − r − 1) + i

)
(5.21)

Here t is the smallest positive integer such that n + t = K × sh, where K

is a positive integer. Lh is the number of multipliers along the i-axis, and sh is

the horizontal stride configuration. Similarly, the output of the Line accumulator

grid can be formulated mathematically as:

Z(n) =
sv−l∑
i=0

YLv−1(n−i×S0)+
Lv−2∑
r=0

sv−1∑
i=0

Yr
(
n−sv×(Lh−r−1)×S0+i×S0

)
(5.22)

Here l is the smallest positive integer such that
⌊
n/S0

⌋
+ l = K × sv, where

K is a positive integer. Lv is the number of multipliers along the j-axis, sv is the

horizontal stride configuration, and S0 is the size of the line that results from each

individual 1D-Convolution .i.e, S0 = SI+2∗ph−P
sh

+ 1. We can prove that both the

sample and the line accumulation girds are linear time invariant systems. The

linearity property can be leveraged to aid in reducing resource utilization and

building more compact efficient hardware implementations. A case where this

property proves to be very useful in deriving efficient hardware architectures for

convolutions, is when it is required to perform 2D-convolutions on two different

input feature maps with two different convolution kernels and add the resulting

output feature maps into a single feature. This case is depicted in figure 5.18,

where two input images I0 and I1 are convolved with two different kernels K and

150

∗

∗

+

𝐼0

𝐼1

𝑂𝐹0

Figure 5.18: Case where the outputs of two 2D-convolution filters are combined
into a single output feature

K ′, and the output of the convolutions are combined into a single output feature

map.

Since the sample and line accumulation grids are both linear systems, the

adder at the output of both convolutions may be absorbed into the 2D-convolution

operations. The convolution operations may share the same sample accumula-

tion and line accumulation gird, as shown in figure 5.19. This sharing of resource

is commonly referred to in the literature as sub-structure sharing, and it has

significant impact on the resource utilization of FPGA implementations.

5.3.4 Optimizing for Finite Word-length Representation

and Computation

In embedded systems where power is of major concern, the use of fixed-point

arithmetic is an appealing alternative to floating-point arithmetic due to its

smaller logic resource requirements. This is particularly advantageous, and at

times necessary, in resource-limited FPGAs. Moreover, some applications do not

require the high numerical precision of floating-point arithmetic. For instance,

Deep Convolutional Neural Networks are well known for their resilience and their

ability to cope with limited precision arithmetic, especially, during inference [97].

151

Multipliers Grid

𝑍−𝐿

0

0

0
𝑍−𝐿

Samples Accumulator Grid Lines Accumulators Grid

Multipliers Grid𝐼0 𝐼1

𝑂0

Figure 5.19: Two 2D-FIR filters sharing the same sample and line accumulate
networks

As a result, to implement a resource and energy efficient hardware design, we use

a limited-precision fixed-point representation. In this section, we describe the

methodology, and evaluate a low precision fixed-point implementation for a deep

convolutional neural network.

Effect of finite word-length representation of model parameters

Before we investigate the effect of fixed-point arithmetic, we begin by analyzing

the effect of finite precision fixed-point representation of network parameters on

the accuracy of the classifier. We use AlexNet to illustrate the methodology, but

the same approach can be employed with any other neural network classifier. To

investigate this effect, we use software-based fixed-point simulations, in which we

run a fixed-point software implementation of the algorithm on a pre-determined

dataset. We used a pre-trained Caffe-compatible AlexNet model obtained from

152

Figure 5.20: The effect of fixed-point representation of network parameters on
the accuracy of AlexNet

[132]. The images used in the simulation are randomly selected from the ILSVRC-

2012 dataset. We Evaluate two metrics: the top-1 and top-5 accuracies [87].

Note that, in this work we use 2’s complement format and we adopt the notation

used in [24] to characterize the structure of a fixed-point representation. i.e.,

a (n,m) fixed-point format would denote a representation that uses n bits to

represent integers, and m bits to represent fractions. We, also, observe that

AlexNet parameters are always between -1 and 1, hence a suitable fixed-point

representation for them is (1,m).

Figure 5.20 shows how the top-1 and top-5 accuracies change with m. The top-

5 and top-1 accuracies of a floating-point implementation of AlexNet are indicated

by dashed horizontal lines on figure 5.20. Note that the top-5 accuracy of AlexNet

with fixed-point parameters declines only when the number of fractional bits is

less than 6. Given that all parameters are between -1 and 1, we can use a

global fixed-point representation (1, 7) for all the parameters of AlexNet without

153

Table 5.4: Possible fixed-point representation for every layer in AlexNet

Layer Minimum Peak
Representation (n, m) Total

n m n+m

Data -123 151 9 -1 8

Conv1 -2524 2587 13 {3, 11, 19} {16, 24, 32}

Norm1 0 139 9 {7, 15, 23} {16, 24, 32}

Conv2 -923 645 11 {5, 13, 21} {16, 24, 32}

Norm2 0 139 9 {7, 15, 23} {16, 24, 32}

Conv3 -489 431 10 {6, 14, 22} {16, 24, 32}

Conv4 -252 284 10 {6, 14, 22} {16, 24, 32}

Conv5 -189 207 9 {7, 15, 23} {16, 24, 32}

FC6 -104 69 8 {0, 8, 16, 24} {8, 16, 24, 32}

FC7 31 18 7 {1, 9, 17, 25} {8, 16, 24, 32}

FC8 -10 35 7 {1, 9, 17, 25} {8, 16, 24, 32}

impacting the top-5 and top-1 accuracies.

Effect of fixed-point arithmetic

One of our aims in this work is to reduce hardware complexity by minimizing

n + m without impacting the accuracy of the classifier. This trade-off between

accuracy and hardware complexity is best tackled using the multiple word-length

paradigm [24]. In this paradigm, every computational stage in AlexNet inference

is assigned a different fixed-point representation instead of a system-wide repre-

sentation. The reasoning behind this paradigm is two-fold: (1) signals in different

computational stages have different dynamic ranges and thus, requires different

representations, and (2) every computational stage or layer in AlexNet inference

contributes differently to the output stage of the classifier. Table 5.4, shows the

dynamic ranges of different layers in AlexNet and n.

Note that data movement circuits, i.e., circuits that moves data between ex-

ternal memory and the FPGA, are much simpler when the word-length represen-

tations of data samples are multiples of 8-bits, since typical on-board memories

are byte addressable. Hence, the number of fractional bits, m, is chosen in such

154

a way as to keep the total word-length in each layer a multiple of 8-bits.

To find the best combination of m values, we resort to fixed-point simulations.

A brute force approach might consist of simulating all possible combinations of

value for m and select the combination that gives the best classification accuracy.

However, this approach is costly, as there are 139,968 possible combinations. We

use a heuristic method to find a minimal solution in terms of hardware cost but

keeps the accuracy at an acceptable range. The reasoning behind this method is

that the first few layers are the most critical and hence we may start by gradually

reducing the fractional part of the first layer until the accuracy starts dropping.

Then we shift to the next layer and start reducing its fractional part until the

accuracy starts dropping again. This procedure is repeated until we reach the last

layer. Following this procedure, we found that the following combination of values

of m (−1, 3, 7, 5, 7, 6, 6, 7, 8, 9, 9) does not degrade the accuracy of the classifier.

We have used this combination of fixed-point representations for the different

layers in our minimal implementation in the Evaluation and results section.

5.4 Minimalists Accelerated Convnet System Ar-

chitecture

In this section, we describe a method for mapping the filters we designed, in sec-

tion 5.3, into an FPGA hardware accelerator. The proposed hardware accelerator

conforms with the guidelines we proposed in chapter 3. Recall that in chapter

3, we defined the accelerator as having three kinds of stream interfaces: (1) pa-

rameter interfaces, (2) input data interfaces, and (3) output data interfaces. In

this implementation, we gave the accelerator more than one parameter interface.

the parameter interfaces are used to load the ConvNet model parameters from

155

external memory. The input data interface is used to load the input image into

the accelerator, while the output data interface is used to capture the result of

the classification into external memory.

5.4.1 Proposed Architecture

Figure 5.21 illustrates the general functional architecture of our proposed tem-

plate accelerator. The template design of the minimalist ConvNet accelerator

consists of three main types of components: (1) data-flow computational en-

gines, (2) data movement circuitry, and (3) on-chip cache memory. The Data-

flow computational engines are responsible for carrying out all the computational

sub-tasks in a certain implementation of a CNN, whereas the data movement cir-

cuitry is responsible for reading data from external memory and feed it to the

accelerator. The on-chip cache memory component is used to cache or buffer

the intermediate data generated by the different sub-computations. We define

a computational stage or sub-task as a set of transformations that starts with

a convolutional or fully-connected layer, followed by an optional normalization

layer and then by an optional pooling layer. This allows ConvNet inference to be

modeled as a chain of computational stages. Consequently, ConvNets have two

types of computational stages: convolutional and fully-connected, and, therefore,

in this architecture, there are only two types of Data-flow computational engines:

(1) convolutional and (2) fully-connected engines.

A typical convolutional engine is a chain of computational filters that begins

with a 2-dimensional convolution filter, and is followed by an activation filter,

which computes an element-wise non-linear activation function on an input fea-

ture map; a Local Response Normalization (LRN) filter, and a pooling filter. In

section 5.3, we devised a systematic methodology for designing minimal hard-

156

Feature

Accumulator

FIR

Size: 11x11

Stride: 4

LRN

n: 5

Max Pool

Size: 3x3

Stride: 2

Activation:

ReLu

Feature

Accumulator

FIR

Size: 5x5

Stride: 1

LRN

n: 5

Max Pool

Size: 3x3

Stride: 2

Activation

: ReLu

Feature

Accumulator

FIR

Size: 3x3

Stride: 1

Max Pool

Size: 3x3

Stride: 2

Activation

: ReLu

Activation:

ReLu

External Memory

Input Image

Score

vector

DMA DMA

FPGA Fabric

C
o

n
v

o
lu

ti
o

n
a

l
E

n
g

in
e

1

DMA
C

o
n

v
o

lu
ti

o
n

a
l

E
n

g
in

e
 2

C
o

n
v

o
lu

ti
o

n
a

l
E

n
g

in
e
 3

F
u

ll
y

 C
o

n
n

e
c
te

d
 E

n
g

in
e

Fully

Connected

Memory

Mux 0

Memory

Mux 1

Memory

Mux 2

Memory

Mux 3
Memory

Mux 4

On-chip Cache

Cache
Component

1

Cache
Component

2

Cache
Component

3

Cache
Component

4

Cache
Component

5

Figure 5.21: System Architecture

ware realizations for each type of those filters. A Fully-connected engine, on the

other hand, consists of a simple dot-product filter. This architecture enables the

designer to further boost the performance of a convolutional engine by deploying

multiple 2-dimensional convolution filters in one convolutional engine, and conse-

quently multiple normalization and pooling filters. However, since we are aiming

for a minimalist implementation, we limit the number of filters to one per engine.

The on-chip cache memory, shown in figure 5.21, is implemented using block-

RAMs, and is organized into multiple, independently-accessible, simple dual-

port RAM memories, called cache components. Each cache component acts as

a ping-pong buffer. Therefore, the data-flow computational engines can access

different cache components in parallel, allowing the computational engines to

operate concurrently while the cache components act as buffers. This choice of

cache organization allows a form of temporal parallelism or pipelining to occur,

157

i.e., input features can be received by each computational stage just as they are

released by the previous one.

The two data movement circuits are referred to as DMAs in the figure. One

DMA unit feeds input images to the pipeline while another DMA writes the

resulting score vectors back to memory. Other DMA units (not shown in the

figure) are also used to load convolution weights from memory to the convolution

filters. Special components called Memory Muxes (c.f. Figure 5.21) are used to

control the flow of data between the computational engines, the on-chip cache,

and the data movement circuitry. A memory mux can operate in two different

modes (c.f. Figure 5.22). In the first mode of operation, referred to as Mode

A and depicted in figure 5.22(a), the mux alternates between two states: in the

first state the data stream flowing into port 1 is forwarded to both ports 2 and 4

(Flow 1). In the second state, the data stream flowing into port 3, is forwarded

to port 4 (Flow 2). This mode of operation is useful when the on-chip cache sub-

component is not included in the design and the data-flow computational engines

are supposed to buffer their output data on external memory. In figure 5.22(a),

the data stream received from a previous computational stage through port 1, is

simultaneously dispatched to the current computational stage, and to external

memory. The memory mux then switches to the next state, where flow 2 is now

active, allowing the current computational stage to receive the data that was

generated by the previous stage, from external memory. In the second mode of

operation, referred to as Mode B and depicted in figure 5.22(b), the data stream

flowing into port 1, is dispatched to port 2, while the incoming data at port 3 is

forwarded to port 4. Note that, in this mode, flows 1 and 2 are both active at the

same time. This mode of operation, is useful when the on-chip cache is included

in the design, since it allows the previous stage or computational engine to write

158

to a cache component, while the current computational engine is reading from it.

Flow 1

F
lo

w
 2

4

1

2 3

(a) Memory mux in mode A

Flow 1

F
lo

w
 2

4

1

2 3

(b) Memory mux in mode B

Figure 5.22: The memory mux component

Communications between different computational stages are scheduled by spe-

cial control units. In fact, every memory mux has its own independent control

unit, which controls its behavior and mode of operations. Equally, each cache

component has its own control unit, which mediates read and write operations.

The data movement circuits or DMAs, on the other hand are controlled by an

on-chip processor core. And since, the DMAs are configured to operate in scatter-

gather mode, the on-chip processor can chain together multiple simple DMA re-

quests to offload multiple interrupts and consequently hide the latency of the

interrupts. By controlling communications between different stages, the control

units along with the on-chip processor core can handle the scheduling of compu-

tations on the computational engines. Upon scheduling a convolution operation,

a DMA unit loads the weights that correspond to the scheduled convolution into

the corresponding convolutional filter from external memory. Subsequently, the

corresponding memory mux is scheduled to read the corresponding feature maps

from a cache component and feed them to the convolutional engine.

159

5.4.2 Modularity and Portability

The rapid evolution of Convolutional Neural Network architectures, and the wide

variety of FPGA devices in the market, promote designs with two important prop-

erties: (1) Modularity, and (2) Ease of portability between different FPGA vendor

platforms. To achieve a modular design that can support different types of Con-

vNet layers while ensuring efficient resource utilization, we propose the modules

to be relatively small. In our design, the modules are composed of computational

filters that can be interconnected to build an entire accelerator design. In section

5.3, we provide a methodology for designing computational filters. These model

elements can be easily configured through HDL parameters (e.g. layer type, mask

size, stride, etc..) to meet the needs of specific ConvNet implementations and

thus they can be reused to implement a wide variety of ConvNet architectures.

Although we used these model elements to implement AlexNet, the modular na-

ture of the design allows the easy implementation of other ConvNets as well. In

the context of targeting resource-restricted FPGAs, the modular nature of our

design strategy allows us to easily remove model elements form an overall design

without affecting the flow of data within it, and thus when targeting the imple-

mentation of a specific ConvNet that does not contain a particular layer type, the

model element that correspond to this particular layer can be removed and thus

further saving FPGA resources. It is worth noting that our approach is different

from previous modular ConvNet designs, where the modules are composed of rel-

atively large blocks of logic resources and aim at achieving specific functionalities

instead of smaller blocks of filters.

To ease the portability between two different FPGA vendor platforms, we

wanted to make sure that our HDL implementation is not specific to one FPGA

product, and that the design is portable across two competing FPGA vendor

160

platforms, namely Intel/Altera and Xilinx. Previous approaches [105,106] achieve

similar portability by implementing their designs in behavioral VHDL/Verilog,

and rely on the design/synthesis tools to resolve the micro-architectural differ-

ences and infer the device-specific components for each target device (BRAMs,

DSPs, ...). The problem with this approaches is that synthesis tools do not have

information about the purpose or intent of the design, and thus may try to op-

timize for area and performance by inferring device primitives. As a result, the

tools may misplace the individual hardware blocks (e.g. BRAMs and LUTs) in

certain sub-components of the design. To address this limitation of proper place-

ment, we relied on instantiating the device-specific hardware blocks needed in

each computational filter rather than simply relying on the tools to infer these

blocks while keeping track of the similarities and differences between the two plat-

forms. For example, due to the dimensions of the ConvNet feature maps involved

in the computations in AlexNet, normalization filters are best implemented using

BRAMs, whereas max pooling filters are best implemented using LUTRAMs in

Xilinx FPGAs and MLABs in Cyclone V. To achieve the desired portability, we

developed a hierarchical design that decouples the device-specific features needed

to meet the low resource utilization target from the rest of the design, and we

used VHDL generics to seamlessly instantiate and integrate the device-specific

components for the targe device. Using this decoupling in our hierarchical de-

sign, we were able to successfully implement our ConvNet accelerator design on

two architecturally different FPGA devices, the Xilinx Zynq 7020 [33] and Intel

Cyclone V [34], using two different logic synthesis tools. Our design can be easily

ported to other devices by editing a small number of VHDL source files.

161

5.4.3 Design Entry and Implementation

High level synthesis tools such as Xilinx HLS [114] and Intel’s OpenCL framework

[115] raise the design abstraction level and allow for an easy and rapid exploration

of the application design space [118, 133]. Although High-level Synthesis tools

provide an attractive solution to designing FPGA-based hardware accelerators,

their limitations are well known and understood in the literature. According

to Bailey [118], high level synthesis tools have many limitations: (1) Random

C-like codes does not map very well to hardware implementations, and thus

algorithms must be re-written in a particular style to enable the synthesis tools

to exploit parallelism, (2) Algorithms that use pointers must be restructured to

use array references, since the use of pointers obscures the data-flow properties

of the algorithm, (3) recursion, which is extensively used in procedural-based

programming, does not map well to hardware implementations, (4) high-level

synthesis tools does well when scheduling and pipelining sequences of operation,

but struggles with complex synchronizations, (5) the RTL code produced by

high-level synthesis tools is not human readable and thus it is hard to perform

RTL verification, or debug and modify the resulting RTL code, (6) the best

representations for hardware accelerators are not necessarily based on high-level

languages, and some computations are best described using data-flow-based block

diagrams (e.g. Image filtering, 1D- and 2D- Fast Fourier Transforms, ...).

As mentioned in section 5.2, Xilinx HLS has previously been employed to

implement ConvNet accelerators on FPGA platforms in [25, 116, 117], while In-

tel’s OpenCL was employed in [26]. The use of high level synthesis tools in

[25, 26, 116, 117] assisted the designers in exploring the ConvNet inference de-

sign space, and alleviated the effort of implementing the resulting accelerators,

as these tools can automatically analyze the structure of the high-level language

162

specifications of the different sub-computations involved in a ConvNet and ex-

tract the necessary Data and Control paths. Implementing ConvNet inference

in VHDL or Verilog was the subject of [105] and [106]. In their work, however,

they did not address the challenge of implementing Complex ConvNet inference

workloads on resource-constrained FPGA platforms. In contrast with the works

in [25,26,105,106,116,117], we approach the problem of mapping complex Con-

vNet inference workloads to low-end and resource-constrained FPGA platforms

that are suited for IoT deployment, thus understanding the tradeoff between

area (or resources occupied by the accelerator) and latency is important. As

mentioned in section 5.3.2, our approach relies on modeling the different sub-

computations involved in a ConvNet inference as DSP-based block diagrams or

signal processing chains. We also derived a graph-based method for mapping the

aforementioned DSP-based block diagrams to minimal-resource filter realizations

that can be directly implemented in hardware. These filter realizations are best

described using structural VHDL/Verilog, rather than procedural languages such

as those involved in high-level synthesis tools; moreover, with VHDL/Verilog we

can have more control over the resources allocated in the design (e.g. number

of multipliers, adders, and BRAMs). Consequently, we implemented our design

using a combination of both VHDL and Verilog. We used Verilog to instantiate

the device-specific components (e.g. BRAMs, LUT RAMs, and DSP units), and

VHDL to assemble the device-specific components together and to implement

the control path. As mentioned earlier, the VHDL design exhibits a hierarchi-

cal structure that decouples device-specific features from the rest of the design,

and this design choice eases the portability of the design across different archi-

tecturally different FPGA devices. The benefits of employing VHDL/Verilog to

implement the filter structures derived in section 5.3.2 can be summarized as

163

follows:

1. Implementing the design in structural VHDL/Verilog allows for more con-

trol over the exact placement of resources (e.g. DSP units, BRAMs, and

LUTRAMs). As mentioned earlier, the resulting filter structures derived in

section 5.3.2 can be mapped directly into hardware implementations, and

they are best described and implemented using structural VHDL/Verilog.

2. The DSP-based representations of inference sub-computations allow us to

further improve performance or reduce area (FPGA resource) requirements

by employing other DSP-based optimizations such as the strength reduction

schemes described in reference [104]. We left employing these optimization

schemes to a future work.

3. In our approach, we are able to derive a relationship between the amount

of FPGA resources occupied by the accelerator and the computational la-

tency. The amount of resources occupied by a convolution filter with arbi-

trary hyper-parameters (i.e., mask size, stride, and padding) was derived in

section 5.3.3 equation (5.11), while the latency of computing a single output

feature map was derived in section 5.3.3 equations (5.19)and (5.20). This

relationship is vital for understanding the tradeoff between area (resources

occupied by the accelerator) and performance. In chapter 6 section 6.2.2,

we employed this relationship to estimate the performance of an FPGA

platform when implementing a particular ConvNet inference workload and

when all the available resources are employed.

164

Table 5.5: Evaluation Platforms and their characteristics

Platform ZedBoard™ Cyclone® V Dev-Kit

Manufacturer Avnet™ Intel®/Altera®

Board

Resources

On-board RAM 512 MB 384 MB + 512 MB

FPGA Zynq 7020 Cyclone V GT D9

FPGA

Resources

Block RAMs 140 (5,160 Kb) 1220 (12,200 Kb)

DSP Units 240 DSP48E 342 DSP

Lookup tables 53,200 113,560

Process Technology 28nm HPL 28nm LP

5.5 Evaluation and Results

5.5.1 Evaluation and Experimental Setup

Evaluation Platforms

As mentioned earlier, in this work, we aim at deploying ConvNets on low-end

resource-limited FPGA platforms. For this purpose, we decided to deploy our

accelerator design described in section 5.4, on two low-end FPGA platforms:

The Xilinx Zynq 7020 SoC device [33], and the Intel Altera Cyclone V GT device

[34]. We used the “Zynq Evaluation and Development” Board (ZedBoard) from

Avnet [35] to target the Zynq 7020 FPGA. For the Cyclone V FPGA, we used the

Cyclone V Development Kit [36]. Table 5.5, summarizes the available resources

and the key differences between the two platforms.

Evaluation Network and Dataset

We deployed a pre-trained Caffe-compatible AlexNet model from the Caffe model

Zoo [132]. Note that Caffe [92] is a deep learning software framework developed

by the UC Berkeley Artificial Intelligence Lab. This framework is typically used

to train and deploy deep neural networks. The pre-trained AlexNet model is

trained on the ILSVRC-2012 [87] dataset. We sample a random selection of

165

images from the ILSVRC-2012 validation dataset to test our accelerator.

Evaluation Metrics

To evaluate the performance of our design, we measured seven different per-

formance metrics: FPGA resource utilization, end-to-end latency measured in

terms of milliseconds (ms), throughput measured in terms of frame per sec-

ond (frame/sec), performance measured in terms of Giga Operations per Second

(GOPs), Energy efficiency measured in terms of Joules per frame (Joule/frame),

Energy efficiency per cost measured in terms of Frame per Joule per Dollar

([frame/Joule] / Dollar), and finally the total board power consumption mea-

sured in terms of Watts.

5.5.2 Results

Performance of Basic Design

First, we implemented the architecture shown in Figure 5.21, but without includ-

ing the on-chip cache memory which buffers the intermediate feature maps on

FPGA Block-RAMs. The buffering scheme was presented in section 5.3.4. The

implementation employs the fixed-point representation scheme derived in section

5.3.4. We collected resource utilization, performance and energy results on the

two low-end FPGA platforms described in 5.5.1. Table 5.6 shows the resource

utilization results on both platforms. Note that the resource utilization percent-

ages are on average around 30% of all the available resources on the FPGA fabric

in both platforms.

The performance and energy per frame results are shown in Table 5.7. Note

that the execution time of AlexNet is around 1.3 seconds on the ZedBoard and

166

Table 5.6: Resource Utilization for AlexNet on ZedBoard and Cyclone V

Platform
ZedBoard™ Cyclone® V

Count Percentage Count Percentage

DSP 55/220 25% 53/342 15%

BRAM 49/140 35% 322/1220 26%

Look-up Tables 16,536/53,200 31% 20,898/113,560 18%

Flip Flops 31,976/106,400 30% 83592/454,240 18%

Table 5.7: Performance and Energy Results of AlexNet implementation without
the on-chip cache.

Platform ZedBoard™ Cyclone® V Dev-

Operating Frequency 100 MHz 150 MHz

Latency (mSec) 1,332.4 ms 1,666 ms

Throughput (frame/sec) 0.75 frame/sec 0.6 frames/sec

Energy (Joule/frame) 1.918 Joule/frame 1.899 Joule/frame

Performance (GOPs) 0.543 GOPs 0.434 GOPs

Performance Density 3.28×10-5 GOPs/LUT 2.08 ×10-5 GOPs/LUT

around 1.6 seconds on the Cyclone V dev-kit. This is mainly, because every

convolutional layer needs to reuse the input feature maps multiple times while

computing the output feature maps. Moreover, without the on-chip cache com-

ponent, input features must be buffered on the External Memory (refer to Figure

5.21) which is much slower than the on-chip cache component.

Performance of the Accelerator when Caching is Enabled

Table 5.8 shows the measured latency of each computational stage in AlexNet,

when the on-chip cache memory, described in section 5.4, is included in the

design. Note that the end-to-end latency is reduced from 1.3 sec to 0.6 sec on

the ZedBoard, and from 1.6 sec to 0.4 sec on the Cyclone V development kit.

The reason for this reduction in the individual latencies of each stage is that

enabling the on-chip cache memory allows the intermediate input feature maps

167

Table 5.8: Latency of individual compute stages of AlexNet with the on-chip
cache included.

Platform ZedBoard™ Cyclone® V Dev-

First Stage 148 ms 99 ms

Second Stage 89 ms 60 ms

Third Stage 166 ms 110 ms

Fourth Stage 124 ms 83 ms

Fifth Stage 83 ms 55 ms

FC6 8.8 ms 7.5 ms

FC7 3.95 ms 3.35 ms

FC8 0.96 ms 0.81 ms

Total 623.71 ms 418.66 ms

to be buffered in the on-chip cache sub-components (refer to section 5.4), and

thus every convolutional engine can now consistently read one sample from the

cache sub-components on every clock cycle (refer to figure 5.21 and to section 5.4);

Consequently, the latency of convolutional stages is equal to N ×N × If × Io/G

clock cycles, where N × N is the size of the input features, If the number of

input features, Io the number of output feature maps, and G the group hyper-

parameter; and the latency of fully-connect stages is equal to NI ×NO memory

cycles, where NI is the number of input neurons, and NO is the number of output

neurons. Moreover, as mentioned section 5.4, the on-chip cache sub-components

are configured as independently-accessible simple dual-port RAM memories. this

choice of cache organization allows the different data-flow computational engines

to operate in parallel. This temporal parallelism can be exploited to establish

an execution pipeline made of the different computational stages of AlexNet.

Consequently, the accelerator can run at the rate of the slowest computational

stage i.e., at 6 frames/sec on the ZedBoard and at 9 frames/sec on the Cyclone

V.

168

Table 5.9: Comparison between our implementation and other work in the liter-
ature.

Reference Zhang et al [25]
Aydonat et al

[26]

Our design with on-chip cache included

ZedBoard™ Cyclone® V

FPGA Chip Virtex7 VX485T Arria 10 -1150 Zynq ZC7020 Cyclone V GT D9

Frequency 100 MHz 303 MHz 100 MHz 150 MHz

Max DSP capacity 2800 DSP 1518 DSP 240 DSP 342 DSP

Performance 61.62 GOPS 1382 GOPS 4.358 GOPS 6.516 GOPS

Frame/sec 46 (Conv Layers) 1020 6 9

Latency (msec) 21.61 0.98 621.23 418.66

Top-5 Accuracy Not Reported 79% 83.58% 83.58%

Energy/frame 0.4 J/image 0.043 J/image 0.239 J/Image 0.126 J/image

Frame/Joule 2.5 image/J 23.2 image/J 4.18 image/J 7.9 image/J

Frame/Joule/$ 7.15×10-4 5.17×10-3 9.31×10-3 4.42×10-3

Board Power 18.61 Watts 45 Watts 2.95 Watts 8.5 Watts

Comparison to other implementations

In this section, we make a quantitative comparison between our design and two

other FPGA-based accelerator implementations from the literature that are based

on AlexNet. We reported performance, accuracy, board power, energy and energy

efficiency per cost measurements in table 5.9. The first design we are comparing

against is from the work of Zhang et al [25], which deploys their accelerator on a

high-end Xilinx Virtex7 FPGA. This implementation employs a MicroBlaze soft

processor core to assist with accelerator startup, communication with the host

computer, and with time measurements. The Second implementation is from the

work of Aydonat et al [26], which is the current state-of-the-art. The platform

used in [26] is a high-end Arria 10 -1150 platform that has a PCIe interface

connecting it to a host computer, which controls all memory transfers and kernel

executions using the Intel SDK for OpenCL.

169

Discussion and Analysis of Results

The minimalist accelerated ConvNet system architecture shown in figure 2, was

implemented on two different resource-constrained FPGA platforms: The Zed-

Board and the Cyclone V Development kit. In terms of suitability for deployment

in IoT device, the designs in [25] and [26] use a relatively large number of compu-

tational resources and cannot fit on low-end resource-constrained FPGA devices

needed for IoT deployment, but rather they fit for data-center deployment. Fur-

thermore, deploying the FPGA devices presented in references [25] and [26] in IoT

devices is not an option since they consume a lot of power (18.61 Watts in [25] and

45 Watts in [26]) which can quickly drain the small battery that powers the IoT

device. On the other hand, both of our implementations, i.e., our implementa-

tion on the ZedBoard and on the Cyclone V platform, consumes significantly less

power (2.95 Watts and 8.5 Watts, respectively) making them better suited for IoT

applications with limited power sources than [25] and [26]. Furthermore, in order

to reflect the tradeoff between performance and platforms’ costs, we compare our

implementations to references [25] and [26] using the “Frame per unit Energy

per Cost (measured in frames/joule/dollar)” as our performance metric. Our

ZedBoard implementation achieves significantly better than both [25] and [26]

in terms of energy efficiency per cost which is measured in terms of Frames

per Joule per Dollar, and which reflects the good tradeoff between performance

and the costs of ZedBoard. Our Cyclone V implementation also achieves better

performance than [25], and comparable performance to [26]. Finally, it is worth

mentioning that, as indicated in table 5.6, our implementations on both resource-

constrained platforms uses only 25% of the DSP resource on the ZedBoard and

15% of the DSP resources on the Cyclone V. This provides an opportunity to

further improve performance by leveraging additional resources to improve frame

170

rates; or reduce power and energy consumption by migrating to smaller devices.

However, we leave the exploration of these two options for a future work.

5.6 Conclusion

This paper presents an efficient methodology for mapping large convolutional

neural networks to resource-constrained FPGA platforms targeted at IoT de-

ployment; we demonstrated this framework by building a minimalist accelerator

design for AlexNet. Our results demonstrated the success of addressing the design

challenges and achieving low (30%) resource utilization for the lower end FPGA

platforms: Zedboard [35] and Cyclone V [36]. The design overcame the limitation

of designs targeted for high end platforms which cannot fit on low end IoT plat-

forms [101–103]. Furthermore, our design showed superior performance results

(measured in terms of performance/watt/dollar) compared to high end optimized

designs (9.3110−3 Frame/J/$ compared to 5.1710−3 for the state-of-the-art [26]).

The designs also showed accurate results consistent with non-accelerated designs,

where images from the ILSVRC-2012 dataset were classified with a top-5 accuracy

of 83.58% (compared to 79% in [26]) while achieving the low-end FPGA benefits

of improved energy efficiency per cost at 9.3110−3 Frame/J/$ and a frame rate

of up to 9 frames/sec.

171

Chapter 6

Conclusions and Future
Perspectives

6.1 Conclusions

In chapter 3, we developed a Network Attached Accelerator (NAA) system ar-

chitecture that allows deploying FPGA platforms in a server cluster data center

environment. An NAA compute node, which hosts an FPGA device, may be

directly attached to the facility’s network infrastructure without the need for

a CPU-bound x86-64 server node to host it. This choice of deployment model

improves scalability, since a data center operator may easily add more FPGA

devices by simply attaching more NAA compute nodes to the network infrastruc-

ture. Our proposed NAA compute model allows the cluster’s master node to dy-

namically build a complex logical network of FPGA-based hardware accelerators

that spread across multiple NAA compute nodes. On the level of a single NAA

compute node, the reconfigurable component may host multiple FPGA-based ac-

celerators simultaneously, where every accelerator has three types of streaming

interfaces: (1) input, (2) output, and (3) parameter interfaces. Moreover, ev-

ery FPGA-based accelerator is allowed to access memory during its operation

through an optional dedicated memory interface.

172

The processor component of the NAA compute node runs a monitor program,

that we call firmware. The firmware implements supervisory, communication, and

internal routing functions. Finally, the firmware allows an extended form of the

Spark cluster computing platform to target NAA compute nodes and to use them

to establish complex compute pipelines. Although we didn’t cover the necessary

changes that should be made to the Spark middleware in this work, the nature

of the relationship between the proposed firmware architecture and the extended

Spark environment was described in section 3.3.5 of chapter 3; the extended Spark

environment employs a server-side firmware instance to control the NAA compute

nodes through a set of NAA commands. The extended Spark environment may

define new transformations that are capable of targeting NAA compute nodes

such as mapFpga(path) which attempt to allocated NAA compute nodes from

a pool of available nodes, program their FPGAs, establish a complex compute

pipeline, and execute multiple task on this pipeline.

The proposed NAA system architecture and its firmware architecture may

be employed to seamlessly integrate NAA compute nodes into the data center.

Moreover, deploying FPGAs using the NAA deployment model, improves scala-

bility which is one of the most important design factors in modern data center

architectures. Since extending the Spark middleware is outside the scope of this

work, we only evaluated the performance of a single NAA compute node and

compared it against a CPU processor core in chapter 4.

In chapter 4, we aimed at accelerating the multi-layer convolution operation

which is one of the key kernel operations in Deep Convolutional Neural Networks

(ConvNet) [8]. We employed a similar setting to the proposed NAA system

architecture in chapter 3. We also employed ZedBoards [35], which are Zynq

SoC [33] evaluation and development boards, to implement an accelerator for the

173

2D-Multi-Layer Convolution Operation. Previous studies have shown that 90%

of the time spent computing the inference function in ConvNets is wasted on the

2D-Multi-Layer convolution operation [98]. The Multi-Layer Convolution filter

that we implemented was of size 5 × 5, which is the only filter size required in

LeNet [99], a ConvNet used in handwritten digits recognition. We measured the

computational latency of our ZedBoard implementation, which was running at

150 MHz, and compared it to the latency on a Core i7 processor core running at 2

GHz. We reported up to 10 times speedup ratios over the Core i7 processor core.

Moreover, we developed a latency model on both the FPGA and processor core

and we concluded that up to 134 times speedup may be achieved using only the

ZedBoard platform. Theoretically, in terms of performance, a 134 times speedup

means that, in certain situations, one FPGA device may replace around 134 Core

i7 processor cores. In terms of energy, the board power of the ZedBoard was

observed to be around 2.8 Watts; given that a Core i7 processor core consumes

at least 21.25 Watts even when it is in an idle state, the maximum gain in energy

efficiency was computed to be around 1017 times.

The operation, we accelerated in chapter 4, was implemented in isolation.

In practical settings, however, the 2D-Multi-layer convolution is implemented as

part of a larger application such as a complete ConvNet inference task. In chap-

ter 5, we implemented a complete accelerator for Convolutional Neural Networks.

We also proposed a design methodology for mapping any Convolutional Neural

Network to an FPGA accelerator. The proposed methodology is based on Graph-

ical Representations of DSP- and DataFlow- oriented tasks. We also proposed a

novel multi-rate and stride aware methodology for efficiently implementing Con-

volution filters with strides configurations. In addition, to covering the design

of 2D-convolution filters, we also managed to devise a methodology for mapping

174

all neural layers, that are typically employed in ConvNets, into hardware filters.

Finally, we tested our accelerator on two different FPGA platforms: (1) a Zed-

Board [35], and (2) a Cyclone V development kit [36]. We have shown that we

can achieve a potential performance of up to 6 frames/sec on the ZedBoard and 9

frames/sec on the Cyclone V devkit. In terms of board powers consumption, the

ZedBoard consumes around 2.95 Watts, whereas the Cyclone V consumes around

8.5 Watts.

The latency of a software implementation of the AlexNet inference on a Core i7

processor core (Core i7-4510U) was measured and found to be around 351 msec

i.e., 2.84 frames/sec. The potential speedup ratios when the ZedBoard and the

Cyclone V devkit are employed are 2.11× and 3.16× respectively. Given that a

Core i7 processor core consumes at least 21.25 Watts, the Energy reduction ratios,

when the ZedBoard and the Cyclone V devkit are employed, may be estimated

as 15.2× with the ZedBoard, and 7.9× with the Cyclone V. Note that in this

implementation, the resource utilization of all types of FPGA resources are only

less than 31%. By utilizing all the available FPGA resources, a more efficient

implementation may be created, and thus the speedup and energy reduction

ratios may be both improved significantly; we left this optimization for a future

work (refer to section 6.2.2 for more information on the potential speedup results

when all resources are used)

In the following we summarize all the conclusions drawn from this work:

� FPGAs may be deployed into the data center environment as Network-

Attached Accelerator (NAA) nodes. A compute model and a firmware

architecture were developed to allow modified versions of cluster computing

frameworks such as an extended version of Spark to target the FPGA nodes.

175

� Since NAA nodes are attached directly into the data center network in-

frastructure, an NAA-based cluster may be scaled out easily by simply

increasing the number of NAA nodes.

� A modular design that provides flexibility for multi-layer ConvNet imple-

mentations with different topologies.

� A single FPGA compute node (NAA compute node) may provide orders

of magnitude speedup (134×) and energy reduction (1017×) ratios over a

Core i7 processor core, when implementing a simple operation such as the

2D-Mult-layer Convolution operation.

� A design methodology for mapping Convolutional Neural Networks (Con-

vNet) to low-end and resource-constrained FPGA devices was devised. We

used this methodology to map AlexNet, a computationally complex Con-

vNet architecture, to two low-end FPGA platforms: ZedBaord, and Cyclone

V devkit. Although the mapped designs utilizes only less than 31% of the

available FPGA resources, they have shown promising results. Employing

the remaining resources would significantly improve the performance and

energy results (refer to section 6.2.2).

6.2 Future Perspectives

6.2.1 Network Attached Accelerator Optimizations

In chapter 3, we described the internal structure of the NAA compute node as

being made up of three essential components: (1) a general-purpose multi-core

microprocessor component, (2) a reconfigurable component (FPGA), and (3) a

176

Networking component. The Networking component is responsible for receiv-

ing/transmitting data across the local area network. Recall that we employed

a lightweight version of the TCP/IP protocol stack to allow the NAA compute

node to reliably communicate with one another and with the server nodes. Since

the TCP/IP protocol stack runs on the multi-core processor component of the

NAA node, TCP performance or the achievable throughput on the NAA nodes

is bounded by the computational capacity of the processor. As a general rule of

thumb, every 1 bit/sec of TCP/IP throughput requires 1 Hertz of CPU process-

ing [134]. For instance, to maintain a stable bi-directional 200 Mbit/sec TCP/IP

connection between two NAA nodes (an aggregate throughput of 400 Mbit/sec),

the processor component would have to spend 400 Million clock cycles per second

for the TCP/IP stack alone. If the NAA node has a single processor core, and

the processor core is clocked at 400 MHz, then there will be no more rooms left

for other tasks beside the TCP/IP protocol stack. In our experimental setup,

we employed ZedBoards to implement NAA nodes, mainly because ZedBoards

consume significantly less power than any CPU-based computer system. Al-

though the ZedBoard does incorporate a processor, the employed processor is a

lightweight dual-core arm A9 processor core that is optimized for low-end and

power sensitive applications.

The conundrum we’re faced with in this situation may be summarized as fol-

lows: incorporating a low-end processor core on the NAA node is a desirable

feature since it reduces power consumption; however, the reduced computational

capacity of the processor significantly hinders TCP performance. To solve this

problem, we may deploy soft TCP offload Engines (TCPoE) in the FPGA fabric

to relieve the processor core from running the TCP/IP protocol stack. Many

FPGA manufacturers and third-party IP core vendors provide production grade

177

On-Board DRAM Memory

Memory Controller

Ethernet

Media Access

Controller

PHY

Chip

MDIO

GMII

In
te

rc
o
n
n
ec

t

Multi-core microprocessor

component

Core 1 Core 2

Networking component

Custom-

designed

Accelerator 1

NAA compute Node

FPGA device

Reconfigurable component

E
th

er
n

et

TCPoE

Internal

Routing

Engine

Figure 6.1: Modified NAA Node Architecture

TCPoE that may even run at wire speed [135]. Figure x shows a modified NAA

node architecture that incorporates a TCPoE near the Networking component.

In addition to employing a TCPoE, we may also employ an Internal Routing and

Forwarding Offload Engine (IRFoE). In the current implementation of the NAA

compute node, we assigned the task of routing the NAA node’s internal traffic to

the processor core. As in the case of the TCP/IP protocol stack, the performance

of the internal routing and forwarding function may also be bounded by the com-

putational capacity of the processor core. Consequently, offloading the routing

and forwarding roles to a custom-designed circuit significantly improves applica-

tion performance. Designing, implementing, profiling and testing the IRFoE are

left to a future work.

6.2.2 Optimizing FeatherNet for Performance

In chapter 5 and specifically in section 5.3.3, we have shown that a hardware

realization of a 2-D convolution filter with a filter mask of size P×Q, a horizontal

178

stride configuration sh, a vertical stride configuration sv, a horizontal padding

configuration ph, a vertical padding configuration pv would result in L adders,

multipliers and registers, M delay lines, and L + M multiplexers, where L is

defined as:

L(P,Q, sh, sv, ph, pv) =

(⌈⌈
P − ph
sh

⌉
+
ph
sh
−1

⌉
+1

)
×

(⌈⌈
Q− pv
sv

⌉
+
pv
sv
−1

⌉
+1

)
(6.1)

Moreover, when we described the 2D- coefficient delivery pattern and its cor-

responding Coefficient Scrambler object, we mentioned that the repetition at-

tributes may be obtained using the following equations:

R = SI + 2× ph − P + sh (6.2)

R′ = S ′I + 2× pv −Q+ sv (6.3)

Where SI and S ′I are the width and height of the input image. Consequently,

the actual latency for computing an output feature map of size SI ×S ′I is R×R′.

We can devise an architecture that utilizes all the available resources on the FPGA

in such a way that when computing a single layer, the architecture attempts to

compute as many convolutions in parallel as it can afford. With this method,

given that there are M available multiplier on the FPGA, the total number of

convolutions that may be computed in parallel (TNOCP) when computing a

single ConvNet layer is:

TNOCP (M,P,Q, sh, sv, ph, pv) =

⌊
M

L(P,Q, sh, sv, ph, pv)

⌋
(6.4)

179

Given a layer i, with a filter mask of size P i × P i, horizontal and vertical

stride configurations si, horizontal and vertical padding configurations pi, I i input

feature maps, Oi output feature maps, a grouping parameter gi, and input feature

map size SI
i×SI i. Assuming that all intermediate feature maps are being cached

on BRAMs, the latency of computing layer i with M multipliers may be estimated

using the following equation:

Li(P i, si, pi, I i, Oi, gi,M) =
I i ×Oi × (SI

i + 2× pi–P i + si)2

gi × TNOCP (P,Q, sh, sv, ph, pv)
(6.5)

The latency of computing all the convolutional layers then becomes:

Lc(x) = Timage + Tcoef +
∑
i

Li(P i, si, pi, I i, Oi, gi,M) (6.6)

Tcoef , here, is the aggregate time it takes to read all the coefficients or pa-

rameter of the convolutional layers, and Timage is the time it takes to read the

input image. We have shown in chapter 5, that fully connected layers are memory

bound, hence the latency of computing the output of fully connected layers is ex-

actly equal to the time it takes to read all the parameters for the fully connected

layers (Tconnected). The total latency for computing the inference, then, becomes:

Lc(x) = Timage + Tcoef + Tconnected +
∑
i

Li(P i, si, pi, I i, Oi, gi,M) (6.7)

On the ZedBoard every DSP unit may implement one 18 × 25 signed multi-

plier; and since there are 240 DSP unit on the Zynq 7020 device, the total number

of independent multipliers is MZynq = 240. On the Cyclone Devkit every DSP

unit may implement 2 independent 18× 18 multipliers. Since there are 342 DSP

180

units, the total number of independent multipliers is MCyclone = 640. Conse-

quently, we can estimate the maximum achievable performance on every device

using the model we provided in equation 6.7. For instance, the maximum achiev-

able performances on the Cyclone V Devkit and on the Zedboard, when they

implement AlexNet, are 31 frames/sec and 21 frames/sec, respectively. Employing

all the FPGA resources to compute as many convolutions in parallel as possible

requires further designing and testing, and we leave this for a future work.

181

Appendix A

Proof for the Proposed
Transformation in Figure 5.7

Section 5.3.3 presents a method for transferring delay elements from the input of

an M-fold compressor to its output. Figure 5.7(b) can be considered a generalized

form of the first noble identity. In the following, we will prove the validity of the

transformation shown in Figure 5.7(b), knowing that the transformation in Figure

5.7(a) is valid. Assuming we have delay T elements followed by a M-fold sample

rate compressor as shown in figure A.1.

The T delay elements can be rearranged into S delay element followed by

T − S delay elements; here S can be any natural number. The rearrangement is

shown in Figure A.2.

To employ the Noble identity shown in Figure 5.7(a) on the M-fold compressor

and the T − S delay elements, we choose S such that the value of T − S is a

Figure A.1: T delay elements followed by an M-fold compressor

182

Figure A.2: T delay elements rearranged into S delay element followed by T −S
delay elements

multiple of M i.e., T −S = i×M . In this case S = T − i×M . After we employ

the Noble identity in Figure 5.7(a), we end up with the transformation proposed

in Figure 5.7(b).

183

Bibliography

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers, “Big data: The next frontier for innovation, competition, and
productivity,” McKinsey Global Institute, Tech. Rep., 5 2011.

[2] C. Eaton, D. Deroos, T. Deutsch, G. Lapis, and P. Zikopoulos, Understand-
ing Big Data: Analytics for Enterprise Class Hadoop and Streaming Data.
McGraw-Hill, 2012.

[3] (2018) Sensor suppliers to the civil engineering industry.
http://www.sherbornesensors.com/international/civil-engineering. Sher-
borne Sensors. [Online]. Available: http://www.sherbornesensors.com/
international/civil-engineering

[4] (2013, Mar) Ucla relies on breakthrough ‘big data’ technology
from ibm to help patients with traumatic brain injuries. https:
//www-03.ibm.com/press/us/en/pressrelease/40624.wss. IBM. [Online].
Available: https://www-03.ibm.com/press/us/en/pressrelease/40624.wss

[5] V. Turner, J. F. Gantz, D. Reinsel, and S. Minton, “The Digital Universe
of Opportunities: Rich Data and the Increasing Value of the Internet of
Things,” International Data Corporation, Tech. Rep., 4 2014.

[6] G. Rohling. (2014, October) Facts and forecasts: Bil-
lions of things, trillions of dollars. [Online]. Available:
https://www.siemens.com/innovation/en/home/pictures-of-the-future/
digitalization-and-software/internet-of-things-facts-and-forecasts.html

[7] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald,
and E. Muharemagic, “Deep learning applications and challenges in big
data analytics,” Journal of Big Data, vol. 2, no. 1, p. 1, Feb 2015. [Online].
Available: https://doi.org/10.1186/s40537-014-0007-7

[8] M. A. Nielsen, Neural Network and Deep Learning. Determination Press,
2015.

[9] A. Krizhevsky and G. E. Hinton, “Using very deep autoencoders for
content-based image retrieval.” in ESANN, 2011.

184

http://www.sherbornesensors.com/international/civil-engineering
http://www.sherbornesensors.com/international/civil-engineering
http://www.sherbornesensors.com/international/civil-engineering
https://www-03.ibm.com/press/us/en/pressrelease/40624.wss
https://www-03.ibm.com/press/us/en/pressrelease/40624.wss
https://www-03.ibm.com/press/us/en/pressrelease/40624.wss
https://www.siemens.com/innovation/en/home/pictures-of-the-future/digitalization-and-software/internet-of-things-facts-and-forecasts.html
https://www.siemens.com/innovation/en/home/pictures-of-the-future/digitalization-and-software/internet-of-things-facts-and-forecasts.html
https://doi.org/10.1186/s40537-014-0007-7

[10] R. Mottaghi, H. Bagherinezhad, M. Rastegari, and A. Farhadi, “Newtonian
scene understanding: Unfolding the dynamics of objects in static images,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 3521–3529.

[11] J. McCormac, A. Handa, S. Leutenegger, and A. J. Davison, “Scenenet rgb-
d: 5m photorealistic images of synthetic indoor trajectories with ground
truth,” arXiv preprint arXiv:1612.05079, 2016.

[12] Y. Lecun, Y. Benjio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp.
436–444, may 2015.

[13] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information
Processing Systems, Nevada, NV, 2012, pp. 1097–1105.

[14] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[15] Apache hadoop. http://hadoop.apache.org/. Apache. [Online]. Available:
http://hadoop.apache.org/

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed
data-parallel programs from sequential building blocks,” in Proceedings
of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, ser. EuroSys ’07. New York, NY, USA: ACM, 2007, pp.
59–72. [Online]. Available: http://doi.acm.org/10.1145/1272996.1273005

[17] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z.
Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
scale distributed deep networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, ser.
NIPS’12. USA: Curran Associates Inc., 2012, pp. 1223–1231. [Online].
Available: http://dl.acm.org/citation.cfm?id=2999134.2999271

[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, ser. HotCloud’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 10–10. [Online].
Available: http://dl.acm.org/citation.cfm?id=1863103.1863113

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-
scale graph processing,” in Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’10.

185

http://doi.acm.org/10.1145/1327452.1327492
http://hadoop.apache.org/
http://hadoop.apache.org/
http://doi.acm.org/10.1145/1272996.1273005
http://dl.acm.org/citation.cfm?id=2999134.2999271
http://dl.acm.org/citation.cfm?id=1863103.1863113

New York, NY, USA: ACM, 2010, pp. 135–146. [Online]. Available:
http://doi.acm.org/10.1145/1807167.1807184

[20] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning and
data mining in the cloud,” Proc. VLDB Endow., vol. 5, no. 8, pp. 716–727,
Apr. 2012. [Online]. Available: https://doi.org/10.14778/2212351.2212354

[21] T. W. Dinsmore. (2017, February) Spark is the
future of analytics. https://thomaswdinsmore.com/2017/02/14/
spark-is-the-future-of-analytics/. ML/DL. [Online]. Available: https:
//thomaswdinsmore.com/2017/02/14/spark-is-the-future-of-analytics/

[22] J. Gantz and D. Reinsel, “The Digital Universe Decade – Are You Ready?”
International Data Corporation, Tech. Rep., 5 2010.

[23] J. Whitney and P. Delforge, “Data Center Efficiency Assessment,” Natural
Resources Defense Council (NRDC), Tech. Rep., 2014.

[24] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and Prac-
tice of FPGA-based Computation. Burlington, MA: Morgan Kaufmann,
2008.

[25] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing fpga-based accelerator design for deep convolutional neural
networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15.
New York, NY, USA: ACM, 2015, pp. 161–170. [Online]. Available:
http://doi.acm.org/10.1145/2684746.2689060

[26] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An opencl�deep learning accelerator on arria 10,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’17. New York, NY, USA: ACM, 2017, pp. 55–64.
[Online]. Available: http://doi.acm.org/10.1145/3020078.3021738

[27] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. Le-
Cun, “Neuflow: A runtime reconfigurable dataflow processor for vision,” in
CVPR 2011 WORKSHOPS, June 2011, pp. 109–116.

[28] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A reconfigurable
fabric for accelerating large-scale datacenter services,” SIGARCH Comput.

186

http://doi.acm.org/10.1145/1807167.1807184
https://doi.org/10.14778/2212351.2212354
https://thomaswdinsmore.com/2017/02/14/spark-is-the-future-of-analytics/
https://thomaswdinsmore.com/2017/02/14/spark-is-the-future-of-analytics/
https://thomaswdinsmore.com/2017/02/14/spark-is-the-future-of-analytics/
https://thomaswdinsmore.com/2017/02/14/spark-is-the-future-of-analytics/
http://doi.acm.org/10.1145/2684746.2689060
http://doi.acm.org/10.1145/3020078.3021738

Archit. News, vol. 42, no. 3, pp. 13–24, Jun. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2678373.2665678

[29] Apache spark. https://spark.apache.org/. Apache. [Online]. Available:
https://spark.apache.org/

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 1–9.

[31] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Pub-
lishing, 2014, pp. 818–833.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014. [Online].
Available: http://arxiv.org/abs/1409.1556

[33] (2017) Zynq-7000: All programmable soc with hardware and soft-
ware programmability. https://www.xilinx.com/products/silicon-devices/
soc/zynq-7000.html. Xilinx. [Online]. Available: https://www.xilinx.com/
products/silicon-devices/soc/zynq-7000.html

[34] (2017) Cyclone v. https://www.altera.com/products/fpga/cyclone-series/
cyclone-v/overview.html. Intel/Altera. [Online]. Available: https://www.
altera.com/products/fpga/cyclone-series/cyclone-v/overview.html

[35] (2017) Zedboard. http://zedboard.org/product/zedboard. Avnet. [Online].
Available: http://zedboard.org/product/zedboard

[36] (2017) Cyclone v - gx fpga development kit. https://www.altera.
com/products/boards and kits/dev-kits/altera/kit-cyclone-v-gx.html. In-
tel/Altera. [Online]. Available: https://www.altera.com/products/
boards and kits/dev-kits/altera/kit-cyclone-v-gx.html

[37] P. K. Gupta. (2015, June) Xeon+fpga platform for the data
center. https://www.archive.ece.cmu.edu/∼calcm/carl/lib/exe/fetch.php?
media=carl15-gupta.pdf. Intel. [Online]. Available: https://www.archive.
ece.cmu.edu/∼calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf

[38] (2014) The xilinx sdaccel development environ-
ment. https://www.xilinx.com/support/documentation/backgrounders/
sdaccel-backgrounder.pdf. Xilinx. [Online]. Available: https://www.xilinx.
com/support/documentation/backgrounders/sdaccel-backgrounder.pdf

187

http://doi.acm.org/10.1145/2678373.2665678
https://spark.apache.org/
https://spark.apache.org/
http://arxiv.org/abs/1409.1556
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
http://zedboard.org/product/zedboard
http://zedboard.org/product/zedboard
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyclone-v-gx.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyclone-v-gx.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyclone-v-gx.html
https://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-cyclone-v-gx.html
https://www.archive.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.archive.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.archive.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.archive.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf
https://www.xilinx.com/support/documentation/backgrounders/sdaccel-backgrounder.pdf

[39] “Accelerating High-Performance Computing With FPGAs,” Altera Corpo-
ration, Tech. Rep., 10 2007.

[40] (2008, May) Data center architecture overview. https:
//www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data Center/
DC Infra2 5/DCInfra 1.html. Cisco. [Online]. Available: https:
//www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data Center/
DC Infra2 5/DCInfra 1.html

[41] “Telecommunications Infrastructure Standard for Data Centers ANSI/TIA-
942,” TELECOMMUNICATIONS INDUSTRY ASSOCIATION, Arling-
ton, VA 22201 U.S.A., Standard, 2005.

[42] “Data Center Design and Implementation Best Practices,” BICSI, 8610
Hidden River Parkway Tampa, FL 33637-1000 USA, Standard, 2014.

[43] “Cost of Data Center Outages,” Ponemon Institute, Tech. Rep., January
2016.

[44] “Amendment to carrier sense multiple access with collision detection
(csma/cd) access method and physical layer specifications-aggregation of
multiple link segments,” IEEE Std 802.3ad-2000, pp. i–173, 2000.

[45] W. W. Eckerson, “Three tier client/server architecture: Achieving scalabil-
ity, performance and efficiency in client server applications,” Open Infor-
mation Systems, vol. 10, no. 1, 1995.

[46] T. Plachetka, “Event-driven message passing and parallel simulation of
global illumination,” Ph.D. dissertation, University of Paderborn, 2003.

[47] J. S. Park, M.-S. Chen, and P. S. Yu, “Efficient parallel data
mining for association rules,” in Proceedings of the Fourth International
Conference on Information and Knowledge Management, ser. CIKM
’95. New York, NY, USA: ACM, 1995, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/221270.221320

[48] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado,
J. Dean, and A. Y. Ng, “Building high-level features using large
scale unsupervised learning,” in Proceedings of the 29th International
Coference on International Conference on Machine Learning, ser.
ICML’12. USA: Omnipress, 2012, pp. 507–514. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3042573.3042641

[49] M. A. Zinkevich, M. Weimer, A. Smola, and L. Li, “Parallelized stochastic
gradient descent,” in Proceedings of the 23rd International Conference
on Neural Information Processing Systems - Volume 2, ser. NIPS’10.

188

https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
http://doi.acm.org/10.1145/221270.221320
http://dl.acm.org/citation.cfm?id=3042573.3042641

USA: Curran Associates Inc., 2010, pp. 2595–2603. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2997046.2997185

[50] (2006) Fibre channel basics. https://images.apple.com/server/docs/Fibre
Channel Basics TB v10.4.pdf. Apple. [Online]. Available: https://images.
apple.com/server/docs/Fibre Channel Basics TB v10.4.pdf

[51] Cloud dataflow. https://cloud.google.com/dataflow/. Google. [Online].
Available: https://cloud.google.com/dataflow/

[52] S. J. Bigelow. (2018) Scale-up or scale-out: What fits best
in your data center? https://searchdatacenter.techtarget.com/tip/
Scale-up-or-scale-out-What-fits-best-in-your-data-center. SearchDataCen-
ter. [Online]. Available: https://searchdatacenter.techtarget.com/tip/
Scale-up-or-scale-out-What-fits-best-in-your-data-center

[53] (2018, 05) Computer processor history. https://www.computerhope.
com/history/processor.htm. Computer Hope. [Online]. Available: https:
//www.computerhope.com/history/processor.htm

[54] N. Abbani, A. Ali, D. A. Otoom, M. Jomaa, M. Sharafeddine, H. Artail,
H. Akkary, M. A. R. Saghir, M. Awad, and H. Hajj, “A distributed recon-
figurable active ssd platform for data intensive applications,” in 2011 IEEE
International Conference on High Performance Computing and Communi-
cations, Sept 2011, pp. 25–34.

[55] F. Gallagher. (2013) The big data value chain. http://fraysen.
blogspot.sg/2012/06/big-data-value-chain.html. Apple. [Online]. Available:
http://fraysen.blogspot.sg/2012/06/big-data-value-chain.html

[56] H. Hu, Y. Wen, T. S. Chua, and X. Li, “Toward scalable systems for big
data analytics: A technology tutorial,” IEEE Access, vol. 2, pp. 652–687,
2014.

[57] (2017) Internet usage statistics the internet big picture. https:
//www.internetworldstats.com/stats.htm. Internet World Stats. [Online].
Available: https://www.internetworldstats.com/stats.htm

[58] T. Hale. (2017, July) How much data does the world
generate every minute? http://www.iflscience.com/technology/
how-much-data-does-the-world-generate-every-minute/. iflscience. [On-
line]. Available: http://www.iflscience.com/technology/
how-much-data-does-the-world-generate-every-minute/

[59] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya,
Y. Fainman, G. Papen, and A. Vahdat, “Helios: A hybrid

189

http://dl.acm.org/citation.cfm?id=2997046.2997185
https://images.apple.com/server/docs/Fibre_Channel_Basics_TB_v10.4.pdf
https://images.apple.com/server/docs/Fibre_Channel_Basics_TB_v10.4.pdf
https://images.apple.com/server/docs/Fibre_Channel_Basics_TB_v10.4.pdf
https://images.apple.com/server/docs/Fibre_Channel_Basics_TB_v10.4.pdf
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://searchdatacenter.techtarget.com/tip/Scale-up-or-scale-out-What-fits-best-in-your-data-center
https://searchdatacenter.techtarget.com/tip/Scale-up-or-scale-out-What-fits-best-in-your-data-center
https://searchdatacenter.techtarget.com/tip/Scale-up-or-scale-out-What-fits-best-in-your-data-center
https://searchdatacenter.techtarget.com/tip/Scale-up-or-scale-out-What-fits-best-in-your-data-center
https://www.computerhope.com/history/processor.htm
https://www.computerhope.com/history/processor.htm
https://www.computerhope.com/history/processor.htm
https://www.computerhope.com/history/processor.htm
http://fraysen.blogspot.sg/2012/06/big-data-value-chain.html
http://fraysen.blogspot.sg/2012/06/big-data-value-chain.html
http://fraysen.blogspot.sg/2012/06/big-data-value-chain.html
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
https://www.internetworldstats.com/stats.htm
http://www.iflscience.com/technology/how-much-data-does-the-world-generate-every-minute/
http://www.iflscience.com/technology/how-much-data-does-the-world-generate-every-minute/
http://www.iflscience.com/technology/how-much-data-does-the-world-generate-every-minute/
http://www.iflscience.com/technology/how-much-data-does-the-world-generate-every-minute/

electrical/optical switch architecture for modular data centers,” in
Proceedings of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM
’10. New York, NY, USA: ACM, 2010, pp. 339–350. [Online]. Available:
http://doi.acm.org/10.1145/1851182.1851223

[60] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),”
in Proceedings of the ACM SIGCOMM 2010 Conference, ser. SIGCOMM
’10. New York, NY, USA: ACM, 2010, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/1851182.1851192

[61] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” in Proceedings of the ACM SIGCOMM 2012 Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communication, ser. SIGCOMM ’12. New York, NY, USA: ACM, 2012,
pp. 115–126. [Online]. Available: http://doi.acm.org/10.1145/2342356.
2342388

[62] P. Francisco. (2014) Ibm puredata system for analytics architec-
ture. http://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf. IBM’s
International Technical Support Organization. [Online]. Available:
http://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf

[63] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003, pp. 29–43.
[Online]. Available: http://doi.acm.org/10.1145/945445.945450

[64] Apache hadoop yarn. https://hortonworks.com/apache/yarn/. Apache.
[Online]. Available: https://hortonworks.com/apache/yarn/

[65] Containers at google. https://cloud.google.com/containers/. Google.
[Online]. Available: https://cloud.google.com/containers/

[66] Mahout. https://mahout.apache.org/. Apache. [Online]. Available: https:
//mahout.apache.org/

[67] Apache hive tm. https://hive.apache.org/. Apache. [Online]. Available:
https://hive.apache.org/

[68] Manage massive amounts of data, fast, without losing sleep. http:
//cassandra.apache.org/. Apache. [Online]. Available: http://cassandra.
apache.org/

[69] M. Zaharia, An Architecture for Fast and General Data Processing on Large
Clusters. USA: ACM Books, 2016.

190

http://doi.acm.org/10.1145/1851182.1851223
http://doi.acm.org/10.1145/1851182.1851192
http://doi.acm.org/10.1145/2342356.2342388
http://doi.acm.org/10.1145/2342356.2342388
http://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4725.pdf
http://doi.acm.org/10.1145/945445.945450
https://hortonworks.com/apache/yarn/
https://hortonworks.com/apache/yarn/
https://cloud.google.com/containers/
https://cloud.google.com/containers/
https://mahout.apache.org/
https://mahout.apache.org/
https://mahout.apache.org/
https://hive.apache.org/
https://hive.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://cassandra.apache.org/

[70] Apache mesos. http://mesos.apache.org/. Apache. [Online]. Available:
http://mesos.apache.org/

[71] Production-grade container orchestration. https://kubernetes.io/. Kuber-
netes. [Online]. Available: https://kubernetes.io/

[72] Rdd programming guide. https://spark.apache.org/docs/latest/
rdd-programming-guide.html. Apache Spark. [Online]. Available:
https://spark.apache.org/docs/latest/rdd-programming-guide.html

[73] “INTEL CORP, FORM 10-K,” EDGAR Online, Inc., Tech. Rep., 12 2016.

[74] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and scalability of gpu-
based convolutional neural networks,” in 2010 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing, Feb 2010, pp. 317–
324.

[75] Mapreduce tutorial. http://hadoop.apache.org/docs/
current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html. Apache. [Online]. Available:
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/
hadoop-mapreduce-client-core/MapReduceTutorial.html

[76] (2015, Dec) Intel completes acquisition of altera. https://newsroom.
intel.com/news-releases/intel-completes-acquisition-of-altera/. Intel. [On-
line]. Available: https://newsroom.intel.com/news-releases/
intel-completes-acquisition-of-altera/

[77] T. P. Morgan. (2018, May) A peek inside that in-
tel xeon-fpga hybrid chip. https://www.nextplatform.com/2018/05/
24/a-peek-inside-that-intel-xeon-fpga-hybrid-chip/. The Next Plat-
form. [Online]. Available: https://www.nextplatform.com/2018/05/24/
a-peek-inside-that-intel-xeon-fpga-hybrid-chip/

[78] N. Abbani, A. Ali, D. A. Otoom, M. Jomaa, M. Sharafeddine, H. Artail,
H. Akkary, M. A. R. Saghir, M. Awad, and H. Hajj, “A distributed recon-
figurable active ssd platform for data intensive applications,” in 2011 IEEE
International Conference on High Performance Computing and Communi-
cations, Sept 2011, pp. 25–34.

[79] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy, “Design tradeoffs for ssd performance,” in USENIX
2008 Annual Technical Conference, ser. ATC’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 57–70. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1404014.1404019

191

http://mesos.apache.org/
http://mesos.apache.org/
https://kubernetes.io/
https://kubernetes.io/
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://www.nextplatform.com/2018/05/24/a-peek-inside-that-intel-xeon-fpga-hybrid-chip/
https://www.nextplatform.com/2018/05/24/a-peek-inside-that-intel-xeon-fpga-hybrid-chip/
https://www.nextplatform.com/2018/05/24/a-peek-inside-that-intel-xeon-fpga-hybrid-chip/
https://www.nextplatform.com/2018/05/24/a-peek-inside-that-intel-xeon-fpga-hybrid-chip/
http://dl.acm.org/citation.cfm?id=1404014.1404019

[80] M. Jomaa, K. Mershad, N. Abbani, Y. Sharaf-Dabbagh, B. Romanous,
H. Artail, M. A. R. Saghir, H. Hajj, H. Akkary, and M. Awad, “A media-
tion layer for connecting data-intensive applications to reconfigurable data
nodes,” in 2013 22nd International Conference on Computer Communica-
tion and Networks (ICCCN), July 2013, pp. 1–9.

[81] A. Ali, M. A. R. Saghir, H. Akkary, H. Artail, H. Hajj, and M. Awad,
“Rassd: A dynamically reconfigurable active storage device for energy ef-
ficient data analytics,” in 2013 4th Annual International Conference on
Energy Aware Computing Systems and Applications (ICEAC), Dec 2013,
pp. 81–86.

[82] A. Kaitoua, H. Hajj, M. A. R. Saghir, H. Artail, H. Akkary, M. Awad,
M. Sharafeddine, and K. Mershad, “Hadoop extensions for distributed
computing on reconfigurable active ssd clusters,” ACM Trans. Archit.
Code Optim., vol. 11, no. 2, pp. 22:1–22:26, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2608199

[83] A. Ali, M. Jomaa, B. Romanous, M. Sharafeddine, M. A. R. Saghir,
H. Akkary, H. Artail, M. Awad, and H. Hajj, “An operating system for
a reconfigurable active ssd processing node,” in 2012 19th International
Conference on Telecommunications (ICT), April 2012, pp. 1–6.

[84] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow mod-
eling for dsp systems,” IEEE Transactions on Signal Processing, vol. 49,
no. 10, pp. 2408–2421, Oct 2001.

[85] K. Desnos, M. Pelcat, J. Nezan, S. S. Bhattacharyya, and S. Aridhi, “Pimm:
Parameterized and interfaced dataflow meta-model for mpsocs runtime re-
configuration,” in 2013 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS), July 2013,
pp. 41–48.

[86] (2015) lwip: A lightweight tcp/ip stack. https://savannah.nongnu.
org/projects/lwip/. Free Software Foundation, Inc. [Online]. Available:
https://savannah.nongnu.org/projects/lwip/

[87] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“Imagenet large scale visual recognition challenge,” International Journal
of Computer Vision, vol. 115, no. 3, pp. 211–252, Dec 2015. [Online].
Available: https://doi.org/10.1007/s11263-015-0816-y

[88] (2016) Imagenet. http://image-net.org/. Stanford Vision Lab. [Online].
Available: http://image-net.org/

192

http://doi.acm.org/10.1145/2608199
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/
https://doi.org/10.1007/s11263-015-0816-y
http://image-net.org/
http://image-net.org/

[89] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An fpga-based
processor for convolutional networks,” in 2009 International Conference on
Field Programmable Logic and Applications, Aug 2009, pp. 32–37.

[90] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culur-
ciello, “Hardware accelerated convolutional neural networks for synthetic
vision systems,” in Proceedings of 2010 IEEE International Symposium on
Circuits and Systems, May 2010, pp. 257–260.

[91] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240 g-
ops/s mobile coprocessor for deep neural networks,” in 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, June 2014,
pp. 696–701.

[92] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proceedings of the 22Nd ACM
International Conference on Multimedia, ser. MM ’14. New York,
NY, USA: ACM, 2014, pp. 675–678. [Online]. Available: http:
//doi.acm.org/10.1145/2647868.2654889

[93] Caffe. http://caffe.berkeleyvision.org/. Berkeley Artificial Intelligence
Research. [Online]. Available: http://caffe.berkeleyvision.org/

[94] Torch: A scientific computing framework for luajit. http://torch.ch/.
Torch. [Online]. Available: http://torch.ch/

[95] Theano. http://deeplearning.net/software/theano/. Theano. [Online].
Available: http://deeplearning.net/software/theano/

[96] Tensorflow: An open source machine learning framework for everyone.
https://www.tensorflow.org/. Google. [Online]. Available: https://www.
tensorflow.org/

[97] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the 32Nd
International Conference on International Conference on Machine Learning
- Volume 37, ser. ICML’15. JMLR.org, 2015, pp. 1737–1746. [Online].
Available: http://dl.acm.org/citation.cfm?id=3045118.3045303

[98] A. Alhamali, N. Salha, R. Morcel, M. Ezzeddine, O. Hamdan, H. Akkary,
and H. Hajj, “Fpga-accelerated hadoop cluster for deep learning computa-
tions,” in 2015 IEEE International Conference on Data Mining Workshop
(ICDMW), Nov 2015, pp. 565–574.

193

http://doi.acm.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2647868.2654889
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://torch.ch/
http://torch.ch/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://dl.acm.org/citation.cfm?id=3045118.3045303

[99] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov 1998.

[100] Cifar. https://www.cs.toronto.edu/∼kriz/cifar.html. CIFAR. [Online].
Available: https://www.cs.toronto.edu/∼kriz/cifar.html

[101] D. Blaauw, D. Sylvester, P. Dutta, Y. Lee, I. Lee, S. Bang, Y. Kim, G. Kim,
P. Pannuto, Y. . Kuo, D. Yoon, W. Jung, Z. Foo, Y. . Chen, S. Oh, S. Jeong,
and M. Choi, “Iot design space challenges: Circuits and systems,” in 2014
Symposium on VLSI Technology (VLSI-Technology): Digest of Technical
Papers, June 2014, pp. 1–2.

[102] H. Jayakumar, K. Lee, W. S. Lee, A. Raha, Y. Kim, and V. Raghunathan,
“Powering the internet of things,” in 2014 IEEE/ACM International Sym-
posium on Low Power Electronics and Design (ISLPED), Aug 2014, pp.
375–380.

[103] H. Singh. (2018, May) How much does it cost to develop an
iot application? [Online]. Available: http://customerthink.com/
how-much-does-it-cost-to-develop-an-iot-application/

[104] P. K. Keshab, VLSI Digital Signal Processing Systems Design and Imple-
mentation. New York, NY: Wiley & Songs, 1999.

[105] AlphaData, “An open source fpga cnn library,” 2017. [Online]. Available:
ftp://ftp.alpha-data.com/pub/appnotes/cnn/ad-an-0055 v1 0.pdf

[106] K. Abdelouahab, M. Pelcat, J. Sérot, C. Bourrasset, and F. Berry, “Tactics
to directly map cnn graphs on embedded fpgas,” IEEE Embedded Systems
Letters, vol. 9, no. 4, pp. 113–116, Dec 2017.

[107] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh, “From high-level deep neural models to fpgas,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), Oct 2016, pp. 1–12.

[108] P. K. Meher, S. Chandrasekaran, and A. Amira, “Fpga realization of fir
filters by efficient and flexible systolization using distributed arithmetic,”
IEEE Transactions on Signal Processing, vol. 56, no. 7, pp. 3009–3017, July
2008.

[109] X. Liang, J. Jean, and K. Tomko, “Data buffering and allocation in
mapping generalized template matching on reconfigurable systems,” J.
Supercomput., vol. 19, no. 1, pp. 77–91, May 2001. [Online]. Available:
https://doi.org/10.1023/A:1011196613858

194

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://customerthink.com/how-much-does-it-cost-to-develop-an-iot-application/
http://customerthink.com/how-much-does-it-cost-to-develop-an-iot-application/
ftp://ftp.alpha-data.com/pub/appnotes/cnn/ad-an-0055_v1_0.pdf
https://doi.org/10.1023/A:1011196613858

[110] F. Cardells-Tormo, P. . Molinet, J. Sempere-Agullo, L. Baldez, and
M. Bautista-Palacios, “Area-efficient 2d shift-variant convolvers for fpga-
based digital image processing,” in International Conference on Field Pro-
grammable Logic and Applications, 2005., Aug 2005, pp. 578–581.

[111] H. Zhang, M. Xia, and G. Hu, “A multiwindow partial buffering scheme for
fpga-based 2-d convolvers,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 54, no. 2, pp. 200–204, Feb 2007.

[112] C. D. Moreno, F. J. Quiles, M. A. Ortiz, M. Brox, J. Hormigo, J. Villalba,
and E. L. Zapata, “Efficient mapping on fpga of convolution computation
based on combined csa-cpa accumulator,” in 2009 16th IEEE International
Conference on Electronics, Circuits and Systems - (ICECS 2009), Dec 2009,
pp. 419–422.

[113] S. Williams, A. Waterman, and D. Patterson, “Roofline: An
insightful visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1498765.1498785

[114] (2017) Vivado high level synthesis. https://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html. Xilinx. [Online]. Avail-
able: https://www.xilinx.com/products/design-tools/vivado/integration/
esl-design.html

[115] (2017) Intel sdk for opencl applications. https://software.intel.com/en-us/
intel-opencl. Intel. [Online]. Available: https://software.intel.com/en-us/
intel-opencl

[116] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn ac-
celerators,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Oct 2016, pp. 1–12.

[117] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator effi-
ciency through resource partitioning,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), June 2017,
pp. 535–547.

[118] D. G. Bailey, “The advantages and limitations of high level synthesis
for fpga based image processing,” in Proceedings of the 9th International
Conference on Distributed Smart Cameras, ser. ICDSC ’15. New
York, NY, USA: ACM, 2015, pp. 134–139. [Online]. Available:
http://doi.acm.org/10.1145/2789116.2789145

195

http://doi.acm.org/10.1145/1498765.1498785
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl
https://software.intel.com/en-us/intel-opencl
http://doi.acm.org/10.1145/2789116.2789145

[119] P. Peng, Y. Mingyu, and X. Weisheng, “Running 8-bit dynamic fixed-point
convolutional neural network on low-cost arm platforms,” in 2017 Chinese
Automation Congress (CAC), Oct 2017, pp. 4564–4568.

[120] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neu-
ral networks on cpus,” in Proc. Deep Learning and Unsupervised Feature
Learning NIPS Workshop, vol. 1, 2011, p. 4.

[121] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantization
of deep convolutional networks,” in Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume
48, ser. ICML’16. JMLR.org, 2016, pp. 2849–2858. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3045390.3045690

[122] P. Gysel, “Ristretto: Hardware-oriented approximation of convolutional
neural networks,” arXiv preprint arXiv:1605.06402, 2016.

[123] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks: Training deep neural networks with weights and
activations constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[124] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[125] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low precision
weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1, pp.
6869–6898, Jan. 2017. [Online]. Available: http://dl.acm.org/citation.cfm?
id=3122009.3242044

[126] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[127] F. Li and B. Liu, “Ternary weight networks,” CoRR, vol. abs/1605.04711,
2016. [Online]. Available: http://arxiv.org/abs/1605.04711

[128] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Ima-
genet classification using binary convolutional neural networks,” in Euro-
pean Conference on Computer Vision. Springer, 2016, pp. 525–542.

[129] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients,”
arXiv preprint arXiv:1606.06160, 2016.

196

http://dl.acm.org/citation.cfm?id=3045390.3045690
http://dl.acm.org/citation.cfm?id=3122009.3242044
http://dl.acm.org/citation.cfm?id=3122009.3242044
http://arxiv.org/abs/1605.04711

[130] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Pro-
cessing, ser. Prentice-Hall Signal Processing Series, Englewood Cliffs, NJ,
1984.

[131] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[132] (2015) Model zoo. https://github.com/BVLC/caffe/wiki/Model-Zoo.
BVLC. [Online]. Available: https://github.com/BVLC/caffe/wiki/
Model-Zoo

[133] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, “An introduction to
high-level synthesis,” IEEE Design Test of Computers, vol. 26, no. 4, pp.
8–17, July 2009.

[134] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J. Reg-
nier, “Tcp performance re-visited,” in Performance Analysis of Systems and
Software, 2003. ISPASS. 2003 IEEE International Symposium on. IEEE,
2003, pp. 70–79.

[135] (2017) 10g tcp offload engine. https://www.intel.com/content/
www/us/en/programmable/solutions/partners/partner-profile/algo-logic/
ip/10g-tcp-offload-engine.html. Intel/Altera. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/solutions/
partners/partner-profile/algo-logic/ip/10g-tcp-offload-engine.html

197

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/algo-logic/ip/10g-tcp-offload-engine.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/algo-logic/ip/10g-tcp-offload-engine.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/algo-logic/ip/10g-tcp-offload-engine.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/algo-logic/ip/10g-tcp-offload-engine.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/algo-logic/ip/10g-tcp-offload-engine.html

	Abstract
	Introduction
	Motivation
	Problem Statement
	Proposed Solutions and Contributions
	A scalable Network-attached deployment model for FPGAs.
	A design methodology for mapping ConvNet inference workloads to FPGA accelerators.

	Thesis Outline

	Background for Data Centers and Big Data Architectures
	Data Center Architectures
	Data Center Design Factors
	Data Center Network Infrastructure
	Data Center design models
	Data Center Scalability and Power Efficiency issues

	Big Data Architectures
	Stages of Big Data
	Big Data management frameworks

	Network-Attached Reconfigurable Accelerator System Architecture for the Spark Data Center
	FPGA-based Deployment Models
	Related Work
	Co-processor implementations
	Network-Attached Accelerator implementations

	Proposed Deployment Model
	Challenges
	Network-Attached Accelerator system architecture
	NAA Node Architecture
	NAA Compute Model
	Firmware Architecture

	Experimental Evaluation
	NAA Platform
	Firmware Implementation
	Experimental Setup

	Conclusion

	Accelerating Convolutional Neural Network Operations in the Spark Data Center Environment
	The Multi-layer Convolution Operation
	Related Work
	Fpga-based accelerator for convolutional networks
	System Overview
	Hardware Architecture
	Software Layer

	Methodology and experimental results
	Experimental Setup
	Benchmark
	Speedups resulting from employing the FPGA-based accelerator
	Performance Model for the Multi-layer Convolution Operation
	Energy Saving Resulting from employing the FPGA-base accelerator

	Conclusion

	FeatherNet: An Accelerated Convolutional Neural Network Design for Resource-Constrained FPGAs
	Deep Convolutional Neural Networks
	Related Work
	Design Methodolgy
	Design Challenges
	Graphical Representation and Modeling of Neural Inference computation
	Optimization and Reduction schemes for 2D Convolution
	Optimizing for Finite Word-length Representation and Computation

	Minimalists Accelerated Convnet System Architecture
	Proposed Architecture
	Modularity and Portability
	Design Entry and Implementation

	Evaluation and Results
	Evaluation and Experimental Setup
	Results

	Conclusion

	Conclusions and Future Perspectives
	Conclusions
	Future Perspectives
	Network Attached Accelerator Optimizations
	Optimizing FeatherNet for Performance

	Proof for the Proposed Transformation in Figure 5.7
	Bibliography

