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AN	ABSTRACT	OF	THE	THESIS	OF	

 
 
 
Ghady Moussa       for   Master of Engineering Management 

                         Major: Engineering Management 
 
 
 
Title: IPP with credit facility on raw material 

 
This paper develops two models that aim at studying the optimal production policy for a 
manufacturer. The inventory models presented in this paper are based on the classic 
Economic Production Quantity (EPQ) analysis.  In the first base model, we determine 
the optimal production policy by accounting for the inventories of the raw material and 
the finished products. In this base model, the production policy consists of determining 
the number of batches of raw material to order for multiple identical production cycles, 
in addition to the optimal production quantity in each cycle. In the second model, we 
determine the optimal production policy with an additional fixed credit facility period 
for settling the procurement cost. A closed-form formula of the optimal number of 
production cycles is obtained in the first model and a thorough analysis is made to find 
that number for the second model. In addition to incorporating the effect of trade credit 
of raw material in the EPQ, our results could aid manufacturers in deciding on different 
supplier offers related to delays in payment.  
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CHAPTER I 
INTRODUCTION 

 

Most production inventory models consider the economic ordering of raw 

material independently of the production of the finished products.  However, quite 

often, raw materials should be procured and stocked in inventory prior to their 

manufacturing and transformation into finished products. To solve this problem, 

integrated procurement production (IPP) systems are introduced to build a link between 

procurement and production policies when raw materials are transformed into finished 

goods. (See Goyal, 1992, for a review of IPP models). In this paper, we propose an 

inventory model that develops economic order quantities (EOQ) for raw materials and 

economic production quantities (EPQ) for finished products with the objective of 

minimizing total inventory costs. 

Another concept studied in this paper is credit facility that is not taken into 

consideration in the conventional inventory theory. In fact, the conventional inventory 

theory assumes that the manufacturer pays for an order as soon as the raw materials are 

received. Nevertheless, this assumption is not always applicable. In fact, in most 

business transactions, suppliers allow a certain credit period to settle the account. This 

leads to a win-win situation in which the supplier stimulates demand and the 

manufacturer accumulates benefits from interest on sales revenue during the credit 

period. Indeed, in the manufacturer’s point of view, the longer the credit period the 

lower the inventory holding cost due to savings in the inventory financing cost. This 

delay period is important for the suppliers as well. In fact, it is considered a valuable 

promotional tool for the suppliers by which they can increase the demand on their 

materials without reducing their prices. The reader is referred to Haley and Higgins 



2 

(1973) and Goyal (1985) for early works and background of inventory management 

under trade credit and Maddah et al. (2004) for a review of related works. 

A survey to determine and validate the reliance of manufacturers on credit facilities as a 

financing vehicle was conducted. A total number of twenty companies of varying sizes, 

operating in various industries and sectors, were questioned and inquired on their 

utilization of credit facilities to improve liquidity and cash flow. The companies 

surveyed had an upper bound of yearly revenues of 15 million dollars (USD) to the 

lower bound of 1 million dollars (USD) and an average of 6.8 million dollars (USD). 

The surveyed companies manufactured products from specialty construction products, 

to outfits, passing by porcelain tableware. Ninety percent, or 18 out of 20, confirmed the 

availability of credit facility as a financing method offered by their suppliers. The 

financing term differed from supplier to supplier depending on the contract size, 

specific project, credit limit, and other factors. Typical credit term ranged from as short 

a duration as 2 weeks to up to a lengthy duration of 180 days. Suppliers that failed to 

offer credit facilities served their customers by offering discounts on advanced 

payments.  

The concept of credit period was extensively studied in the inventory management 

literature in many settings. This paper aims at studying the effect of credit facilities on 

the inventory of raw material in an IPP system.  The rest of the paper is organized as 

follows. The literature for both IPP systems and inventory management under credit 

facility is discussed in Section 2. An EPQ model that takes into consideration raw 

materials is studied in Section 3. In this section, closed-form formulas of the optimal 

production quantity and of the number of batches of raw material that the manufacturer 

should order for multiple cycles are derived.  A new model is discussed in Section 4 
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where credit facility is incorporated into the model of Section 3. In this section, a 

closed-form formula for the production quantity is given for a fixed number of raw 

material batches. Then, enumeration is used to find the number of batches that should 

be ordered for different cycles. Section 5 presents numerical results and managerial 

insights. Section 6 concludes this paper.  
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CHAPTER II 

LITERATURE REVIEW 
 

The traditional economic ordering quantity (EOQ) formula was first presented 

by Harris (1913) to determine the economic order size that balances fixed ordering cost 

and holding cost.  Later, Taft (1918) introduced the economic production quantity EPQ 

formula to determine the economic manufacturing batch size under a similar cost trade-

off. Since then,  a large body of research was developed to extend these theories. Goyal 

(1977) seems to be the first to consider the procurement-production (IPP) system in 

which the inventory management of the raw materials and the finished product for a 

single product are integrated to minimize costs. Many papers extend Goyal’s model to a 

multistage supply chain such as Korgaonker (1979), Adam and Ignall (1980). Other 

papers such as Park (1983) and Raafat (1985, 1988) use Goyal’s integrated model but 

consider that the raw materials and finished products are deteriorating.  More recent 

works on IPP include Priyan et al. (2015), Fauza et al. (2013) and Nasr et al. (2014), 

and references therein. However, to the best of our knowledge, no work in the literature 

considers the IPP system with credit facility on raw material ordering.  Some 

assumptions in the classical inventory theory are sometimes not valid. For example, 

unlike many practical contexts, most inventory models assume that payment occur 

immediately upon receiving an order.  Goyal (1985) is among the first works to assume 

that the supplier allows a defined period to settle the account after receiving an order. 

Goyal (1985) develops an economic order quantity model under the conditions of 

allowable delay in payments assuming that the unit selling price and the unit purchasing 

price are equal, and that the account is settled at the end of the credit period. Teng 
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(2002) revises Goyal’s model by considering that the unit purchase cost and selling 

price are different. Many authors extended Goyal’s model to account for deterioration 

such as Aggarwal and Jaggi (1995), Jamal et al. (2000), Sarker et al. (2000). Others 

assume that shortage is permitted to occur such as Jamal et al. (1997), Chen and Ouyang 

(2006), Chung and Huang (2009). Chung and Huang (2003) considers the economic 

production quantity (EPQ) inventory model for a manufacturer when the supplier offers 

a permissible delay in payments assuming that a part of the amount of the total cost will 

be paid at the end of the credit period and the other part of the amount would be paid by 

getting a loan from the bank. Along a similar avenue Teng and Chang (2009) 

investigate the optimal retailer’s replenishment decisions with two levels of trade credit 

policy in the EPQ framework.  Many other authors also considered the EPQ model 

under credit facilities such as Huang (2004), Huang (2007), Goswami et al. (2010), 

Mahata (2012). However, to the author’s knowledge, none of them have studied EPQ 

models taking into consideration both raw materials costs and delay in payments.  Our 

proposed research considers such an EPQ model.	
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CHAPTER III 
BASE IPP MODEL 

	

	

Figure 1: EPQ Model involving raw material and finished products 

	

Consider the IPP model discussed in Section 1. Figure 1 shows the behavior of 

raw material and finished products in one cycle: raw material (empty circles) being 

transformed into finished products (filled circles) at a rate α then finished products 

being sold at a rate β ,  β < α . (In this example β = 1, α = 2) 

The IPP model studied in this paper takes into consideration both the finished products 

and the raw material.  In this model, following the literature (e.g. Goyal 1992) raw 

material is ordered in lots that cover n production cycles. The production rate and 

consumption rate are assumed to be deterministic and constant over time and the lead 

time is assumed to be zero. No shortage, on either raw materials or finished products, is 

allowed, and no quantity discount on raw material is also assumed. The objective of this 

model is to determine the optimal amount of raw material that should be ordered and the 
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optimal number of production cycles in a raw material ordering cycle.  Table 1 shows 

the notation we use for this model. 

 

y Production lot size 
Z Maximum inventory of the finished product 
n Number of production cycles in one raw material procurement cycle (the 

total amount of raw material procured is ny ) α Production rate of finished products or Depletion rate of raw material 
β Demand rate of finished products 
t1 time to accumulate Z units of finished products at the rate (α−β) 

units/unit time = time to produce y units of finished products at the rate  α 
units/unit time 

 

t2 time to consume Z units of finished products at the rate β units/unit time ,              
Z =

	
t2 β t0 time to produce y units of finished products at a rate α and consume them 

at a rate β h unit holding cost ($/unit/year) 
h0 Unit holding cost of raw material ($/unit/year), 
K0 fixed raw material ordering (procurement) cost 
K fixed production (setup) cost 

Table 1: Notations 
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Figure 2: Behavior of Inventory level for finished products and raw material over time 

	

Figure 2 shows a raw material ordering cycle with five production runs. Through a 

purchase, enough raw material is stored to produce finished products across multiple 

cycles, in this example, five in total. As finished products are manufactured and sold, 

raw material inventory decreases accordingly, eventually reaching 0 once the last batch 

of finished products are produced.  

The total cost per ordering cycle is composed of the production cost, nK, the fixed cost 

of ordering raw material, K0, and the holding costs of the finished products and of raw 

materials. Following, the standard EPQ model the holding cost of the finished product 

over n production cycles is given as n(hZt0 / 2), where Z = y(1− β/α) is the maximum 

t1 t1 t1t1t1

ny

t0 t0t0 t0t0
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inventory level of the finished product.  The following lemma gives the average 

inventory level of raw material. 

  

Lemma 1.  The average inventory level of raw material is  

	

( )1
0

0
0

1
( 1)2 2

2 2

n nytn yt n yyZ
nt

b
a

-
+ -

= = + 	

		

Proof. See Appendix 1.  

Therefore, the total cost per cycle is 

( ) ( )2 2 2

0 0

1
, 1

2 2 2
n nny y yTC y n nK h K h nb

b a b a
-æ öæ ö= + - + + +ç ÷ç ÷

è ø è ø
	

With a cycle duration of nt0, the annual ordering cost is then 

( ) ( )0
0

0

1( , ), 1
2 2 2

u
u

nTC y n KK y yTC n y h h y
nt y ny

bb b b
a a

-æ öæ ö= = + - + + +ç ÷ç ÷
è ø è ø

		(1)	

For a given number of production runs per cycle, n, it can be easily shown that the 

annual cost, TCu(y,n) is convex in the production lot size y. Then, the optimal order 

quantity for a given n is obtained from the first order optimality condition,	

( )*( ),
0udTC y y n n

dy
=

= 	

 which implies that  
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( )
( )
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01 1
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nK Ky n
n h h n

b b
b b
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+
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é ùæ ö æ ö- + - +ç ÷ ç ÷ê úè ø è øë û

	 	(2)	

	 	 	

Next, we adopt a sequential optimization approach. The optimal order quantity, y*(n) in 

(2) is replaced in the annual cost in (1), to obtain the annual cost at optimal inventory 

level,  TCu(n) = TCu(n, y*(n)).  Upon replacement,	

	 	

( )
[ ]0 02 1 1

u

h h n nK K
TC n

n

b b b b
a a

é ùæ ö æ ö- + + - +ç ÷ ç ÷ê úè ø è øë û= 					(3)						

Assuming that n is a continuous variable, the following theorem indicates that the 

annual cost TCu(n) is quasiconvex in n and gives an expression for the optimal n.  

Theorem 1.  The annual cost TCu(n) is quasiconvex in n, with a unique local minimum   

	

0 0 0 0

0

1K h h h K
n

h K

b bb b
a a

b

æ öæ ö- + -ç ÷ç ÷è øè ø= 				 	 (4)	 	 	 	

	

Proof. See Appendix 2.  

Theorem 1 implies that the optimal (integer) number of shipments can be obtained by 

rounding the continuous solution up or down, whoever gives the least cost, 
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	 	 	 ( ) ( )( )argmin ,n u un TC n TC n= ê ú é ùë û ê ú    (5) 

		where	  ( )x xê ú é ùë û ê ú  is	the	largest	integer	≤ x (≥ x).   	 	

Once n is found from (5), the optimal production lot size is found (2) as y* = y*(n).  Some 

papers have discussed ways to find the optimal number of production cycles (e.g. Goyal 

1992), Nasr (2014)). However, none of these papers have obtained the closed-form 

expression in (4) and (5).  This is the first contribution of our proposed research. 
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CHAPTER IV 
IPP MODEL WITH DELAY IN PAYMENT ON RAW 

MATERIAL ORDERS 
 

   Consider the same model as in Section 3. However, assume now that the 

manufacturer will pay the suppliers of raw material after a fixed time T (the credit 

facility period) of receiving an order. The objective of this model is similar to that in 

Section 3, to determine the optimal production lot size and the number of production 

runs per procurement cycle, in a way that minimizes the total cost.  

Three general cases are studied in this model, 

(i) Credit facility period longer than procurement cycle, T > nt0 . 

(ii) Credit facility period shorter than procurement cycle, T < nt0, and falls in a production 

phase,  

(iii) Credit facility period shorter than the procurement cycle, T < nt0, and falls in a 

consumption phase,  

 

The same notations as Section 3 (Table 1) are used. We add the following. 

● T : Delay in payment (credit facility) period  

● j: Number of the production run in a procurement cycle where payment must be made;   

j=T/t0 

● i = Manufacturer cost of capital  
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● c0 = Unit cost of raw material 

● c1 = added cost to transform one unit of raw material into finished products 

● ie = interest rate earned by the manufacturing on revenues during the credit period 

● Arm = area under the raw material inventory level between the beginning of the 

procurement cycle and the end of the credit period.  

● Afp = Similar area for finished products 

A’ = area under the straight line representing the interest earned on the raw material 

between the beginning of the procurement cycle and the end of the credit period.  

 

An appropriate estimation of the inventory costs under delay in payments requires 

appropriate accounting of the financing cost. Assume the cost of capital of the 

manufacturer is at the rate i, the unit financing cost of raw material is then ic0.  To 

estimate the unit financing cost of the finished product, assume that, in addition to the 

raw material cost, a cost c1 is needed to produce the finished product. The cost c1 

accounts for all operational costs beyond raw material, e.g., labor, utility, accessories, 

etc.  Then, the unit financing cost of the finished product is i(c0 + c1).  With the fixed 

ordering cost not changing, and with an additional negative cost (profit) for earned 

interest on revenue during the credit period, the total cost per ordering cycle can now be 

written as, 

( ) ( ) ( ) 22 2

0 0 1 0 0 0

1
, 1 '

2 2 2sf fp s rm e

n n yy yTC y n nK K h n i c c A h n ic A i c Ab
b a b a

æ ö-æ ö= + + - + + + + + -ç ÷ç ÷
è ø è ø

			

(6)		

            Analysis of Case (i).  
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In this case,    

 Arm = 0  

 Afp=0  

	

Then, the annual cost and optimal inventory level for a given number of production runs 

are given by 

													

( ) ( )0 0
1 1 0 0

1 21( , ) 1
2 2 2 2sf s e

n yK T ntK yTCU n y h c y h i c
y ny

b b bb b b
a a

-é ù -æ ö é ùæ ö= + + + - + + -ê úç ÷ç ÷ ê úè ø ë ûè ø ë û
		

(7)		
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1 11
2 2 2 2

e
sf s
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b b
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+
=
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è ø è ø

						(8)	

	

Analysis of Case (ii). We derive the following expressions for the inventory areas Arm and 

Afp using geometry. 

( ) ( ) ( )
( )( )21 01

0 01 1
1

1
2 2

j j
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t j t TytA n i yt n j y jt T y
t= =

+ - -
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( )( )21 00
1

1
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2 2

j
fp i

T j tZtA Z
t

-
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- -
= +å 	
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β nt0( )2
2 +βnt0 T −nt0( )
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With these expressions used to estimate the inventory holding cost, proceeding in a 

similar manner to the base model analysis in Section 3, we derive the following 

expression for the total annual cost and optimal order quantity  for a given number of 

production runs,  

	

( ) ( ) ( ) 2 2 2 2
0

2 1 0 0

11, 1
2 2 2 2 2 2sf s e

n yKK y ny T TTCU y n h ic y h ic T i c
y ny ny ny

bb b b b bb
a a

-é ù é ù é ùæ ö= + + + - + + + - + -ê úç ÷ ê ú ê úè ø ë û ë ûë û
					

	(9)			
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									(10)	

	 	 	 	

Analysis of Case (iii). Similar to the previous case, we derive the following expressions 

for the inventory areas Arm and Afp using geometry to estimate the inventory holding cost. 
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Then, upon simplification, the annual cost and the optimal inventory level for a given 

number of production runs are found to have the same expressions as those in Case (ii) 

which are given in (9) and (10).    

As we have seen, Cases (iii) and (ii) have the same expressions for the annual cost.   

That leaves us with only two cases to analyze, Case 1 (T > nt0) and Case 2 (T < nt0). 

To find the optimal solution, the following algorithm is used. 

Algorithm 1. 

Step 1. Set n = 1 and TCU* = 0 02( ) [ (1 / ) ( / )]K K h hb b a b a+ - + .	

Step 2. Find y1(n) from (8).  Set y1*(n) = min(y1(n),	bT/n)	and                                

TCU1*(n) = TCU1(y1*(n), n), where TCU1(y1*(n), n) is obtained from (7). 

Step 3.  Find y2(n) from (10).  Set  y2*(n) = max(y2(n),	bT/n)	and TCU2*(n) = 

TCU2(y2*(n), n), TCU2(y2*(n), n) is obtained from (9).  

Step 4.  If TCU1
*(n) < TCU2*(n), set TCU*(n) = TCU1*(n) and y*(n) = y1*(n). 

Otherwise, set TCU*(n) = TCU2*(n) and y*(n) = y2*(n). 

Step 5. If TCU*(n) < TCU*, set n* = n, y* = y*(n), n = n +1, and go to Step 2.  

Otherwise, stop. 

Step 1 of Algorithm 1 initiates the search for the optimal solution by setting the annual 

cost to a large enough value.  This value is obtained by setting n = 1 in (3), the annual 

cost for the base case with no credit period.  (Since credit facility reduces the cost, this 

is obviously an upper bound on the optimal cost.)  For a given number of production 

batches n, Step 2 searches for the minimum cost from Case 1 (T > nt0), which is 
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equivalent to finding the minimum of TCU1(y, n) in (7) for y ∊ (0,	bT/n].		The convexity 

of TCU1(y, n) in y implies that this minimum is achieved at y = min(y1(n),	bT/n).		A 

similar analysis is done in Step 3 for Case 2 (T < nt0), which translates into finding the 

minimum cost for y ∊	[bT/n,	∞),	which is achieved at y = max(y2(n),	bT/n).  Step 4 

determines the optimal order size for a given n by comparing the  solutions obtained in 

Steps 2 and 3.  Finally, Step 5 updates the optimal solution, and sets the stopping 

criterion. The algorithm stops when the minimum cost at optimal inventory level, 

TCU*(n) starts increasing in n.   
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CHAPTER V 
NUMERICAL RESULTS AND INSIGHTS 

 
In this section, the results of our numerical study are presented.  Consider the input 

data for the base case in Table 2.    

 

 

 

 

 

 

 

Table 2: Base parameter values  

For the base model in Section 3, utilizing Theorem 1, the optimal (continuous) number 

of production runs is n  =3.65  To get the optimal integer value of the number, we find 

from (3) that TCu(3) =  $4,585 and TCu(4) = $4,579.66 which implies that the optimal 

number of production runs is n* = 4. The optimal production lot size is given from  (2) 

as  y* = y*(4) = 192 units. Finally, a plot of the annual cost at optimal inventory level 

TCu(n) in (3) is shown in Figure 7. This plot clearly indicates that TCu(n) is indeed 

quasiconvex as shown in Theorem 2. 

Parameter Base Value 
K0 $2000/order 
K $50/production run 
c0 $50/unit 
cf $100/unit 
i 10%/year 

hs0 $0.5/unit/month 
hsf $1/unit/month 
a 1,200 units/month 
b 8,00 units/month 
c1 $50/unit 
ie 3%/year 
T 0.3 years 
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Figure 3: Cost at optimal inventory level vs number of production runs 

	

Next we numerically analyze our main credit facility model in Section 4 using Algorithm 

1.   
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n y1 (n) y1*(n)  y2(n) y2*(n)  TCU1*(n)  TCU2*(n) TCU*(n)  
1 925 240 689 689  $6,933   $3,853   $3,852.89  
2 537 120 373 373  $6,990   $3,581   $3,580.54  
3 383 80 257 257  $7,120   $3,517   $3,517.44  
4 299 60 198 198  $7,268   $3,509   $3,508.98  
5 247 48 161 161  $7,424   $3,523   $3,522.58  
6 211 40 136 136  $7,583   $3,547   $3,547.09  
7 184 34 118 118  $7,745   $3,578   $3,577.69  
8 164 30 105 105  $7,908   $3,612   $3,611.96  
9 148 27 94 94  $8,071   $3,649   $3,648.54  
10 135 24 86 86  $8,235   $3,687   $3,686.62  

Table 3: Numerical example of IPP Model with Delay in Payment on Raw Material 
Orders 

To validate the model and gain insights, a one-way sensitivity analysis was run for both 

models. First, K0 is varied from $2,000 up to $5,000 with other parameters fixed at their 

base values in Table 1. Tables 4 & 5 respectively show the sensitivity analysis on K0 for 

both first and second models. Figure 4 shows the effect of the change of K0 on the 

number of raw materials that should be ordered for both models and figure 5 shows how 

that affects TCU* in both cases.  

K0 y n~ n* ny TCU* 
2000 192 3.63 4 768 4580 
2500 213 4.08 4 852 5073 
3000 232 4.47 4 928 5523 
3500 202 4.83 5 1010 5933 
4000 215 5.16 5 1075 6316 
4500 228 5.47 5 1140 6677 
5000 201 5.77 6 1206 7016 

Table 4: Sensitivity analysis over K0 for the first model 
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K0 y* n* n*y* TCU* 
2000 198 4 792 3509 
2500 218 4 872 3990 
3000 192 5 960 4429 
3500 206 5 1030 4832 
4000 218 5 1090 5209 
4500 194 6 1164 5564 
5000 204 6 1224 5899 
Table 5: Sensitivity analysis over K0 for the second model 

 

 

 

 

 

	

Figure 4: Relationship between n*y* and K0 for both base model and credit facility 
model 
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Figure 5: Relationship between K0 and TCU* for both base model and credit facility 
model 
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K n~ n* y* n*y* TCU* 
100 2.6 3 259 777 4,742 
300 1.5 2 403 806 5,167 
500 1.2 1 739 739 5,416 
700 1.0 1 768 768 5,629 

Table 6: Sensitivity analysis over K for the First Model 

 

 

K n* TCU* y* n*y* 
100 3 3670.41 266 798 
300 2 4090.27 412 824 
500 1 4350.83 757 757 
700 1 4558.33 785 785 
Table 7: Sensitivity analysis over K for the Second Model	

	

	

	

 

Figure 6: Relationship between n*y* and K for both base model and credit facility 
model 

	

700

720

740

760

780

800

820

840

100	 300	 500	 700	

Model	with	credit	facility

Model	without	credit	facility

K

Y



24 

	

Figure 7: Relationship between K and TCU* for both base model and credit facility 
model 
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is less than that for the one without it. 
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In fact, n*y* is directly affected by hs0 because the higher the holding cost of the raw 

material, the less raw material should be ordered at one shot at the beginning of the 

cycle. In this analysis, we also note that no matter how K  is varied the total cost for the 

model with credit facility is less than that for the one without it 

hs0 hsf y* n~ n* n*y* TCU* 
0.1 1 198 3.93 4 792 4436.52 
0.3 1 195 3.79 4 780 4508.66 
0.5 1 192 3.65 4 768 4579.67 
0.7 1 189 3.52 4 756 4649.59 
0.9 1 243 3.39 3 729 4716.5 

Table 8: Sensitivity analysis over hs0 for the First Model 

 

 

 

hs0 hsf y* n* n*y* TCU* 
0.1 1 816 4 3264 3361.8 
0.3 1 804 4 3216 3435.97 
0.5 1 792 4 3168 3508.98 
0.7 1 780 4 3120 3508.9 
0.9 1 768 4 3072 3651.7 

Table 9: Sensitivity analysis over hs0 for the Second Model 
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Figure 8: Relationship between n*y* and hs0 for both base model and credit facility 
model 

 

 

 

 

Figure 9: Relationship between hs0 and TCU* for both base model and credit facility 
model  
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As for hsf , it was varied from 0.6 to 1.4 leaving everything else constant.  The results 

are shown in Tables 10 and 11 and Figures 10 & 11. When hsf increases, the number of 

raw materials does not get directly affected but the Total cost increases for both cases. 

n*y* is not directly affected by hsf because the raw material can be ordered, 

manufactured and sold without staying in the inventory for long while at the finished 

product phase. Similarly to the previous analysis, note that no matter how hsf is varied 

the total cost for the model with credit facility is less than that for the one without it. 

hs0 hsf n~ n* TCU* y* n*y* 
0.5 0.6 3.52 4 4566.84 193 772 
0.5 0.8 3.58 4 4573.26 192 768 
0.5 1 3.65 4 4579.67 192 768 
0.5 1.2 3.72 4 4586.07 192 768 

Table 10: Sensitivity analysis over hsf  for the First Model 

 

 

 

 

 

 

hs0 hsf n* y* n*y* TCU* 
0.5 0.6 4 198 792 3495.8 
0.5 0.8 4 198 792 3502.4 
0.5 1 4 198 792 3508.98 
0.5 1.2 4 197 788 3515 

Table 11: Sensitivity analysis over hsf  for the Second Model 
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Figure 10: Relationship between n*y* and hsf for both base model and credit facility 

model 

 

 

 
Figure 11: Relationship between hsf and TCU* for both base model and credit facility 

model  
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Then sensitivity analysis with respect to the financing cost i is shown next.  This was 

varied from 3% to 11%. The results are shown in Tables 12 and 13 and Figures 12 & 13.  

As expected, when i increases, the number of raw materials decreases but the Total cost 

increases for both cases.n*y* is directly affected by i because the financing cost can be 

seen as an opportunity cost and the higher the opportunity cost on ordering the raw 

material , the less raw material should be ordered.Note that no matter how i is varied the 

total cost for the model with credit facility is less than that for the one without it. 

i y* n~ n* n*y* TCU* 
0.03 319 3.65 4 1276 2761.64 
0.05 260 3.65 4 1040 3382.31 
0.07 225 3.65 4 900 3905.55 
0.09 202 3.65 4 808 4366.54 
0.11 184 3.65 4 736 4783.3 

Table 12: Sensitivity analysis over i for the First Model 

 

 

i y* n* n*y* TCU* 
0.03 319 4 1276 2401.64 
0.05 262 4 1048 2809.87 
0.07 229 4 916 3128.95 
0.09 206 4 824 3392.43 
0.11 190 4 760 3617.37 
Table 13: Sensitivity analysis over i for the Second Model 
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Figure 12: Relationship between n*y* and i for both base model and credit facility 

model 

 

 
Figure 13: Relationship between i and TCU* for both base model and credit facility 

model  
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of raw materials that should be ordered decreases and the Total cost decreases for both 

cases. 

n*y* is directly affected by ie because when ie increases, the order size n*y* decreases in 

an attempt to shorten the cycle duration and allow the manufacturer to benefit from more 

interest on the generated revenue. 

ie y* n* n*y* TCU* 
0.03 198 4 792 3508.98 
0.05 196 4 784 3472.4 
0.07 194 4 776 3435.53 
0.09 193 4 772 3398.36 
0.11 191 4 764 3360.89 
Table 14: Sensitivity analysis over ie for the Second Model 

 

 

Figure 14: Relationship between n*y* and ie for both base model and credit facility 
model 
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Figure 15: Relationship between ie and TCU* for both base model and credit facility 
model  

 

The last thing that we varied is the credit facility period, T, which was changed from 0 to 

0.7 years. Results are shown in Table 15 and Figures 14 & 15. As we can see, the higher 

the credit facility period, more raw materials are ordered at a significantly less cost.  This 

shows that ignoring credit facility in the analysis of the IPP model can lead to sub-optimal 

results with higher perceived costs.  

T y* n* n*y* TCU* 
0.0000001 192 4 768 4579.67 

0.1 193 4 772 4194.21 
0.3 198 4 792 3508.98 
0.5 207 4 828 2930.52 
0.7 220 4 880 2445.3 

Table 15: Sensitivity analysis over T  for the Second Model 
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Figure 16: Relationship between ny and T for the Second Model 

 

 

 

 

 
Figure 17: Relationship between TCU* and T for the Second Model 
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CHAPTER VI 

 CONCLUSION 
 

In conclusion, unifying the economic lot size problem of the raw materials and the 

finished products is essential, also including the credit facility while studying the optimal 

production policy will have a huge impact on the cost and the ordering policy. To make 

the system even more optimal, the manufacturer should order raw materials for n 

production runs; this paper presents a closed formula for n in the case of an integrated 

procurement production system that orders raw materials according to the economic order 

quantity model and transforms them into finished products using the economic production 

quantity.  

In the future, researchers can base their work on our models by taking different 

assumptions; they can take into consideration shortage on raw materials and finished 

products, they can consider the demand to be stochastic, consider there is quantity 

discount on raw material or they can take into account the time value of money.  

Considering multiple raw materials with different trade credit terms could also be a useful 

extension.  
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Appendix 1 

Area of raw material in model 1 

 
 
To find the number of Raw material in inventory at different values of T, we found the 

areas under the curve that turned out to be in function of triangles and rectangles.  

For T<nt0 , T falls in the production phase;  
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For T<nt0 , T falls in the consumption phase; 
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For T>nt0 ,  Arm = 
"#$
%
+ '(')*)

%
yt0 ; This is the area under the whole curve so can be 

used for the first model that doesn’t take credit facility into consideration. 
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Appendix 2 

Convexity of TCU(n,y*(n)) in model 1 

TCU(n,y*(n))=	 2 ∗
'∗5∗67	58∗6 ∗ 9∗ *):; 798∗

:
; 798∗(')*)

'
 	

N=	 𝑛 ∗ 𝐾 ∗ 𝛽 + 𝐾? ∗ 𝛽 ℎ ∗ 1 − 6
C
+ ℎ? ∗ (

6
C
+ 𝑛 − 1 	) 	

DE
D'
	=	K*𝛽 ∗ ℎ 1 − 6

C
+ ℎ?

6
C
+ 𝑛 − 1 + ℎ? 𝑛 ∗ 𝐾 ∗ 𝛽 + 𝐾? ∗ 𝛽 	

 D
FE
D'F

=𝐾 ∗ 𝛽 ∗ ℎ? + 𝐾 ∗ 𝛽 ∗ ℎ?= 2	𝐾 ∗ 𝛽 ∗ ℎ?	> 0à N is convex 

	and	n	is	linear	à	TCu(n)	is	quasiconvex	(Refer	to	Avriel,	M.(2003)		that	talked	about	

the	ratio	of	a	convex	function	by	a	linear	function	in	his	book	Nonlinear	Programming	

Analysis	and	Methods)	

	

  



 

 

  


