

AMERICAN UNIVERSITY OF BEIRUT

POWERFUL ALGORITHMS FOR QUEUEING SIMULATION

(PAQS)

by

HODA NIZAM EL HALABI

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Engineering Management

to the Department of Industrial Engineering and Management

of the Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

January 2019

v

ACKNOWLEDGEMENTS

First and Foremost, I would like to express my sincere gratitude to my advisor

Prof. Bacel Maddah, whose invaluable guidance and support were very helpful

throughout my research. I couldn’t have imagined having a better advisor and mentor

for my graduate study.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Nadine Moacdieh and Dr. Walid Nasr, for their encouragement and insightful

comments.

My Sincere thanks to Mrs. Mayssa Jaafar and Mr. Tarek Bou Hamdan for their

help in offering me the resources in running the software through the experiments. I

would also like to extend my thanks to the staff in the Industrial Engineering and

Management department for being there to help any time without hesitation or delay.

Heartfelt thanks go to my lovely friends who have supported me throughout the

hard times. I express my appreciation to everyone who has involved directly and

indirectly to the success of this research.

I am profoundly grateful to my parents, Nizam and Sawsan, to my husband

Nizar and to my sister Hind for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of researching

and writing this thesis. My research would have been impossible without the inspiration

of my brother Omar.

Above all I thank God, the Highest and Almighty one, for letting me through

this journey of life and for the endless blessing that has showered upon me.

vi

AN ABSTRACT OF THE THESIS OF

Hoda Nizam El Halabi for Master of Engineering

Major: Engineering Management

Title: Powerful Algorithms for Queueing Simulation (PAQS)

Queueing theory models have been widely used in several industries, such as

manufacturing, maintenance, computer systems, transportation, telecommunication,

etc., in order to build high-performance systems that respond to customer’s demand in a

reasonable time and cost-efficient manner.

This research project addresses basic aspect of queueing analysis related to

simple single-node systems, where customers arrive to a multi-server system according

to a known distribution, wait in line, if needed, get served based on another well-

determined distribution in a first-come, first-served manner, and then depart the system.

Our proposed PAQS software aims to implement efficient and effective

algorithms for simulating single node queues generally denoted as G/G/s. PAQS is

sought to utilize state-of-art technique for generating the arrival and service time

variates and determining the run length necessary for an accurate output. In particular,

we improve the efficiency of the simulation via a fast sorting technique. Our simulation

methodology is suitable for analyzing high-variability queues that have been recently

observed on many internet servers.

vii

CONTENTS

ACKNOWLEDGEMENTS ………………………………………………..

 v

ABSTRACT…………………………………………………………………..…

 vi

LIST OF ILLUSTRATIONS...…………………………………………….

 ix

LIST OF TABLES……………………………………………………………..

 x

Chapter

 I. INTRODUCTION……………………………………………………….

 1

 II. LITERATURE REVIEW……………………………………………..

 4 Appendix VIII Sample of

1. C

O

N

T

E

N

T

S

(

A

)

Page

ACKNOWLEDGEMENTS ..

v

ABSTRACT ..

 vi

LIST OF ILLUSTRATIONS ...

 ix

LIST OF TABLES ...

 xi

 A. Queueing Terminology and History..……………………………….…… 4

 B. Theoretical Background for the Simulation.……………………..….…… 5

 C. Simulation Software Packages………..………………………………….. 6

 D. Useful Tools from the Queueing Literature……………………………… 7

E. Graphical User Interface Guidelines Background..………………………. 9

 III. PAQS SIMULATION METHODOLOGY……………….…….. 10

 A. Base Algorithm……………………...…………………………………… 10

 B. L’Ecuyer Random Number Generator……………………………….…... 11

 C. Random Variates Generation………...………………………………...… 13

 D. Simulation Run Length and Server Utilization Equation..…………….… 25

 E. Batch Means and Confidence Interval………………………………….. 26

viii

 F. The G/G/s System………………………………………………………… 28

 G. Detailed Algorithm………………………………………………………. 30

 IV. GRAPHICAL USER INTERFACE (GUI).…….…..…………...

……………….……..

32

 A. GUI Introduction…………………...…………………………………… 32

 B. GUI Guidelines……………………...……………………………….…... 32

 C. GUI – PAQS Platform……..………...………………………………...… 34

1. PAQS Main Window……………………………………………… 34

2. PAQS Main Buttons………………………………………………. 35

 D. GUI – PAQS Design Guidelines…………………….....…………….… 36

V. PAQS VALIDATION AND PERFORMANCE…..…...……...

……………….……..

 38

 A. Accuracy Testing (Validation)……...…………………………………… 38

 B. CPU Time (Efficiency)……………...……………………………….…... 47

VI. CONCLUSION AND FUTURE WORK………….....…...……...

……………….……..

 56

REFERENCES……………………………………………………………..……………………………

58

 Appendix

I. C++ CODE……………………………………………………………………………………...…. 63

ix

ILLUSTRATIONS

Figure Page

1 - Uniform (a,b) density function .. 14

2 - Exponential (1/λ) density function .. 15

3 - m-Erlang (λ) density functions .. 16

4 - Hyperexponential (λ1, λ2, p) density functions .. 18

5 - Weibull (α,1) density functions ... 19

6 - Weibull (3.5,β) density functions .. 20

7 - Gamma (α, 1) density functions .. 22

8 - Beta (α1,α2) density functions .. 24

9 - Triangular density functions .. 25

10 - Queueing System (G/G/s) ... 29

11 - Single Node Queue .. 29

12 - PAQS main window form ... 34

13 - Parameters for the chosen distributions ... 35

14 - GUI Output .. 36

15 - Convergence of Wq(PAQS) to exact Wq(QNA) for M/M/s system 40

16 - Convergence of Wq (PAQS) to exact Wq(QNA) for M/D/s system 41

17 - Convergence of Wq (PAQS) to exact Wq(QNA) for M/H2/s system 41

18 - CPU Time in PAQS ... 48

19 - CPU time for M/H2/10 system, PAQS vs. Arena .. 54

20 - CPU time for M/G/10 system, PAQS vs. Arena ... 54

21 - CPU time for M/W/10 system, PAQS vs. Arena .. 55

x

TABLES

Table Page

1 - Simulation Run Length and QNA mean delay approximations for M/G/s systems..40

2 - PAQS Validation for M/M/s System ... 43

3 - PAQS Validation for M/D/s System ... 43

4 - PAQS Validation for M/Er/s System .. 43

5 - PAQS Validation for M/G/s System 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 2 ... 44

6 - PAQS Validation for M/G/s System 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 4 ... 44

7 - PAQS Validation for M/W/s System 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 0.23 44

8 - PAQS Validation for M/W/s System 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 29.24 45

9 - PAQS Validation for M/H2/s System 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 12.52 45

10 - PAQS Validation for Er/M/s System 𝐶𝐴
2 = 0.25, 𝐶𝑆

2 = 1 45

11 - PAQS Validation for Er/Er/s System 𝐶𝐴
2 = 0.25, 𝐶𝑆

2 = 0.25 46

12 - PAQS Validation for Er/H2/s System 𝐶𝐴
2 = 0.25, 𝐶𝑆

2 = 12.5 46

13 - PAQS Validation for H2/Er/s System 𝐶𝐴
2 = 12.5, 𝐶𝑆

2 = 0.25 46

14 - PAQS Validation for H2/M/s System 𝐶𝐴
2 = 12.5, 𝐶𝑆

2 = 1 47

15 - PAQS Validation for H2/H2/s System 𝐶𝐴
2 = 12.5, 𝐶𝑆

2 = 12.5 47

16 - CPU Time for M/M/s System, PAQS vs. Arena ... 49

17 - CPU Time for M/D/s System, PAQS vs. Arena .. 49

18 - CPU Time for M/Er/s System, PAQS vs. Arena ... 49

19 - CPU Time for M/G/s System, PAQS vs. Arena, 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 2 49

20 - CPU Time for M/G/s System, PAQS vs. Arena, 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 4 50

21 - CPU Time for M/W/s System, PAQS vs. Arena, 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 0.23 50

22 - CPU time for M/W/s System, PAQS vs. Arena, 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 29.24 50

23 - CPU time for M/H2/s System, PAQS vs. Arena, 𝐶𝐴
2 = 1, 𝐶𝑆

2 = 12.52 51

24 - CPU time for Er/M/s System, PAQS vs. Arena, 𝐶𝐴
2 = 0.25, 𝐶𝑆

2 = 1 51

25 - CPU time for Er/Er/s System, PAQS vs. Arena, 𝐶𝐴
2 = 0.25, 𝐶𝑆

2 = 0.25 51

26 - CPU time for Er/H2/s System, PAQS vs. Arena, 𝐶𝐴
2 = 0.25, 𝐶𝑆

2 = 0.25 51

27 - CPU time for H2/Er/s System, PAQS vs. Arena, 𝐶𝐴
2 = 12.5, 𝐶𝑆

2 = 0.25 52

28 - CPU time for H2/M/s Systeme, PAQS vs. Arena, 𝐶𝐴
2 = 12.5, 𝐶𝑆

2 = 1 52

xi

29 - CPU time for H2/H2/s System, PAQS vs. Arena, 𝐶𝐴
2 = 12.5, 𝐶𝑆

2 = 12.5 52

30 - Mean waiting time in queue and CPU time for M/H2/10 system, PAQS................ 53

31 - Mean waiting time in queue and CPU time for M/G/10 system, PAQS 53

32 - Mean waiting time in queue and CPU time for M/W/10 system, PAQS 53

 To My

Beloved Parents

1

CHAPTER I

INTRODUCTION

In a time of persistent change in worldwide business condition, companies, big

and small, are finding it progressively hard to manage, and conform to the demands for

such changes. With the end goal to enhance execution of a perplexing assembling

framework, the dynamic conditions should be seen well (e.g., usage, fluctuation, lead

time, throughput, WIP, working costs, quality, and so forth). In this vein, well-

established analytical methods like queueing theory, can be applied to enhance

understanding. Queueing systems are helpful to design and measure the performance of

manufacturing frameworks and as well as the complex services processes. Queueing

theory turns into so much prominent study in academic and research areas, especially in

operations where complexity, unpredictability and randomness abound (e.g., Gross et al.

(2008), Cooper (1981)).

Different examples in our life illustrate different types of queueing systems and

the most unpleasant experience is the waiting time in queue. Queueing theory estimates

analytically the mean waiting time (delay) of customers and other performance

indicators such as server utilization (percentage of time a server is busy), length of

waiting lines (average number of customers in queue). Examples where queueing theory

applies include calls waiting on telephone lines, customers waiting at the supermarket

cashier, cars waiting at the petrol station, etc.

The problem of queueing is identified by the attendance of a group of customers

who arrive randomly to the business station in order to be served; the customer could be

served immediately or join a queue and wait for the system to be free. Though queues

2

are regularly physical lines of individuals or things, they can likewise be invisible as

with telephone calls waiting on hold or packets waiting at a web server. Accordingly

several questions cross our mind, mainly related to the number of servers, arrival rate,

service rate, system capacity, population size, service discipline.

Queues are commonly analyzed in the literature under the Markovian assumption,

where both the inter-arrival times and service times are assumed to follow the

exponential distribution Gross et al. (2008). However, this assumption is not always

valid, especially for systems where there is high variability of processing time, as

discussed in many recent references, especially in terms of Internet traffic observed by

many authors, for example, Fowler (1997), Harchol-Balter and Downey (1997),

Harchol-Balter, Crovella, and Murta (1999) and Harchol- Balter (2002), Leland, Taqqu,

Willinger, and Wilson (1994) , Liu, Shu, Zhang, Xue, and Yang (1999), Maddah, El-

Taha, & Tayeh, (2010), Maddah, Nasr and Charanek (2017), Paxson (2000) and

Willinger, Taqqu, Sherman, and Wilson (1997),.

For queues with non-Markovian arrival times or service times, we adopt a classical

approach based on Monte Carlo simulation. However, for multi-server systems, in

particular, we improve the efficiency of the simulation via a fast sorting technique. In

addition, for generating random numbers and performing output analysis we adopt state

of the art techniques from the recent literature. Our simulation methodology is suitable

for analyzing high-variability queues that have been recently observed on many internet

servers, as discussed in the above references.

The remainder of this thesis comprised of six chapters. Chapter II provides a

brief review of the related literature and history of queueing system. Chapter III

introduces the theoretical background for our proposed simulation software, as well as

3

tools and approximations useful to test and validate the software output. Chapter IV

shows the designed graphical user interface and the corresponding guidelines and

requirements. Chapter V presents some test cases and numerical results on PAQS

performance. Finally, Chapter VI summarizes our main findings and gives suggestions

for future work.

4

CHAPTER II

LITERATURE REVIEW

Our work is related to three main streams of literature which we review next.

Section A gives a short history of queueing theory. Section B presents a brief theoretical

background of recent related papers. Section C describes some simulation software

packages. Section D provides some queuing approximations which we use to validate

pour PAQS software.

A. Queueing Terminology and History

A queue is a group of entities waiting in line. It is defined in [Webster, 1991]’

dictionary as follows:

“1. A sequence of messages or jobs held in temporary storage awaiting

transmission or processing.

2. A waiting line especially of persons or vehicles.

3. A braid of hair usually worn hanging at the back of the head.”

At the beginning, the study of queueing network was motivated by application in the

telephone industry (Erlang, 1917). These problems have become highly sought-after

and extensively studied by J.R. Jackson; where the first significant theoretical insights

in seminars papers Jackson (1957, 1963) showed that under special assumptions (open

queueing network1, exponential inter-arrival and service times, Markovian routing, first-

come-first-served discipline, etc.) a queueing network may be analyzed by considering

1 An open queueing network involves customers that all leave the system eventually.

5

its stations separately in a product-from formula. Gordon and Newel showed that the

product form solution is applicable for closed queueing networks, where the number of

jobs is fixed, and the inter-arrival and service durations follow the exponential

distribution. These results have been extended by Basket et al. (1975), and Kelly,

(1975), to other cases where open, closed and mixed networks exist with multiple job

classes and different service discipline. These works stress ability to analyze queueing

networks composed of several stations by an appropriate decomposition into single-

node systems. These decomposition schemes expand the contribution of our single node

simulation.

B. Theoretical Background for the Simulation

In El-Taha and Maddah (2006), multiple servers are grouped in two-stations

with possibly multiple servers per station. Superior performance of this series system

over M/G/s parallel system is demonstrated for high-variability service times in heavy

traffic or systems. One of the products used in El-Taha and Maddah (2006) is the

development of an efficient simulation technique by utilizing the work load vector

method based on Kiefer and Wolfowitz (1956). The latter work load method was used

by Scheller-Wolf and Sigman (1997) to obtain high moment approximations in multi-

server queues.

El-Taha and Maddah (2006) report encouraging simulation results in terms of the ability

to run long simulations explicitly. A similar system was considered in Maddah et al.

(2010) with additional requirement in assuring the optimal configuration of load

balancing between the two stations in series while maintaining the effectiveness of the

system. The two papers are generalized in Maddah, Nasr and Charanek (2017), by

6

developing an analytical scheme that allows determining by number the optimal

configuration of a series system for a given number of stations, in terms of the number

of servers and the thresholds at each station. Both sequenced papers Maddah et al.

(2010) and Maddah, et al. (2017) utilize the same simulation methodology proposed in

El-Taha and Maddah (2006), and report further encouraging results on run time

efficiency. In this research, we propose to enhance and simplify the usage of the work

load vector method based simulation in El-Taha and Maddah (2006), and subsequent

works.

C. Simulation Software Packages

The developed queueing theory reviewed in Chapter II Section A, the main

motivation to develop many software packages for the analysis of queueing systems.

There are some early packages that were based on original algorithms. One of them is

the Queueing Network Analyzer (QNA) that has been developed by Whitt (1983) as an

implementation of his two-node decomposition method. QNA is based on open

queueing network model, it can handle multiple servers, multiple customer classes,

general arrival, and service time distribution and both Markovian and deterministic

routing. The queuing discipline is FCFS with infinite buffer capacity and QNA utilize

efficient two moment approximations and decomposition techniques Govil and Fu

(1999). Bitran and Tirupati (1988) show that the approximation is poor when there are

multiple customer types each with its own deterministic method. Another software

package based on Whitt’s QNA methods is RAQS (Rapid Analysis of Queueing

Systems), which is described in Kamath et al. (1995).

7

Another software package is the QNET, which is based on diffusion

approximation using reflected Brownian approximation for solving open queueing

network problems under heavy traffic conditions (Dai and Harrison (1993), Harrison

and Nguyen (1990). This package is written in text mode and its source code is

available for free download. However, since mid-90s this software has not been

rewritten and its use has remained very limited. The computational complexity of the

QNET algorithm grows in the size of the network, making it impractical for the analysis

of large networks (Dai et al. 1994).

The QTS (Queueing Theory Software) is written as Excel spreadsheet to analyze

a wide range of queueing systems using both Markov chains and Monte Carlo

Simulation. The software is based on the textbook of Gross et al. (2008). An advantage

of this software is that the user has all-in-one model and several performance indicators

in a simple sheet. However, this software cannot perform rapidly for long simulations.

None of these software seems to be suitable for analyzing high variability

queues where two moment approximations fail and long simulations are needed. Our

PAQS software is sought to fill this gap by developing the ability to efficiently simulate

high variability queues.

D. Useful Tools from the Queueing Literature

Whit (1989) develops formulas to estimate the simulation run lengths required to

achieve desired statistical precision in queueing simulations. The statistical precision is

based on absolute error and relative error, the first one is defined as the ratio of the

simulation standard error to the simulation estimator of the mean and the second one is

the expression that shows the absolute margin (the radius of half width of a confidence

8

interval for a statistic measurement) as a percent of the true value. The G/G/s simulation

length formulas in Whitt (1989) are used in our work. As such, we subscribe to the

simulation approach of using one long replication. The pros and cons of this approach

are discussed in (Law 2015).

The two moment approximations for the mean delay in G/G/s queue that we use

to validate our simulation results are provided by Whitt (1983,m1993). These

approximations are known perform well for low service time variability and heavy

traffic (e.g., El-Taha and Maddah (2006)). We develop our validation scheme with these

observations in mind.

Whitt (1992) shows the importance to determine an appropriate level of server

utilization, which is insensitive to the number of servers. The suggested approximation

or the utilization equation is necessary to keep a measure of congestion fixed (e.g. mean

delay) among G/G/s systems with different number of servers. We adopt the utilization

equation in our work.

Banks et al. (2010) propose a method of batch means for steady state

simulations for constructing a confidence interval around the point estimate of one long

replication. The batch means divides the output data into few large batches. As well as it

aims to examine the autocorrelation between batches to find the suitable confidence of

interval for the simulated data. We also adopt Banks et al. (2010) batch means method

in our work.

L’Ecuyer et al. (1999) defines a general framework of a multiple recursive linear

generator (MRG), which provides large number of streams and spaced far from each

other in the sequence. It is considered among the most efficient tool to generate random

number L’Ecuyer (1999). This package is now used in a large variety of software

9

environments including Arena and Matlab (L’Ecuyer (2017)). The algorithm

implemented in different languages including C++ language which is used in our work.

E. Graphical User Interface Guidelines Background

"To design is much more than simply to assemble, to order, or even to edit; it is

to add value and meaning, to illuminate, to simplify, to clarify, to modify, to dignify, to

dramatize, to persuade, and perhaps even to amuse." - Paul Rand .

In general, the Graphical User Interface is a critical component of most systems

and has to be designed properly. A GUI is part of Human-Computer Interaction (HCI)

which is the study, planning and design of how people and computers work together. To

assure the proper interaction between user and the system, it is mandatory to have a

well-designed GUI considered as useful, usable and used. General principles given by

several pioneers of user-centered design are derived in great part based on innate

characteristics of human’s sense and perception, to be taken into consideration to design

GUI. According to Nielsen (2003) to design a good user interface the designer has to

try to decrease the complexity of software and to produce an environment which makes

it easy, efficient and enjoyable to work with. Nielsen provides 10 GUI guidelines in his

book titles Usability Engineering. Wicken et al. (2017) define 13 principles of display

design in their book An Introduction to Human Factors Engineering. The book provides

a detailed description of the capabilities and limits of people, both physical and mental,

and how these can guide the design of everything in terms of typography, memory and

data visualization. Schneiderman et al. (2005) reveal the eight golden rules of interface

design in the popular book Designing the User Interface, as a guide to good interaction

design in terms of feedback, control, actions, consistency and memory.

10

CHAPTER III

PAQS SIMULATION METHODOLOGY

The following section will introduce the simulation methodology utilized to

build our model. In Section A, we present the base simulation algorithm adopted from

El-Taha and Maddah (2006). In Section B, we present the random number generator

necessary to generate random numbers for inter-arrival and service times, which is

based on L’Ecuyer et al. (1999). In Section C we present the algorithm of generating

random variates from the different continuous and discrete distributions that we adopt in

our simulation. The output analysis is analyzed in Sections D and E. In Section D we

utilize Whitt’s (1989) suggestions to get the simulation run length or the number of

simulation services completion for G/G/s systems and the server utilization equation

used for the appropriate test cases. In Section E, we present batch means method. The

G/G/s system structure and its different components are explained in Section F. The

detailed algorithm and the most important performance measures of the queueing

systems in our simulation are introduced in Section G.

A. Base Algorithm

The aim of our project is to create a simulation tool that estimates the mean

waiting time for a single node queue in a multi-server G/G/s system, where its

parameters are identified by the user. Our work is based on implementing the efficient

algorithm developed by El Taha and Maddah (2006), which is adopted from the work

load vector technique or Kiefer and Wolfowitz (1956). The latter introduces the

11

workload vector for the FIFO G/G/s queue. The component of G/G/s system that we

simulate are as follows:

𝐴𝑛 the arrival time of customer n.

𝑆𝑆𝑛 the time customer n enters service.

𝑆𝑛 the service time of customer n,

𝑇𝑛 = 𝐴𝑛+1 − 𝐴𝑛 the time between the arrival of customer n and customer n+1

𝑊𝑛 the total workload customer n observes in system upon arrival:

𝑊𝑛 = 𝑊𝑛(1) + ⋯ + 𝑊𝑛(𝑠), where 𝑊𝑛(𝑖) , 1 ≤ i ≤ s, is the ith component of the Kiefer

and Wolfowitz workload vector Wn. This vector is defined by the recursion:

𝑾𝑛+1 = 𝑹 (𝑊𝑛(1) + 𝑆𝑛 − 𝑇𝑛, 𝑊𝑛(2) − 𝑇𝑛, … , 𝑊𝑛(𝑠) − 𝑇𝑛), where 𝑹 is an

operator that sorts the components of Wn+1 in ascending order, and where

(𝑥1 … 𝑥𝑠)+ = (𝑚𝑎𝑥(0, 𝑥1), … , 𝑚𝑎𝑥(0, 𝑥𝑠)).

PAQS is based on the following algorithm:

Step 1. Set 𝑛 = 1, 𝐷 = 0, and 𝑊𝑛(𝑖) = 0, 1 ≤ i ≤ s (s is the number of servers.)

Step 2. Generate inter-arrival time 𝑇𝑛 and service time 𝑆𝑛 of customer n.

Step 3. Set𝑊𝑛+1(1) = 𝑊𝑛(1) + 𝑆𝑛 − 𝑇𝑛 and 𝑊𝑛+1(𝑖) = 𝑊𝑛(𝑖) − 𝑇𝑛 for i =2,3, … c.

Step 4. Set 𝑊𝑛+1 = 𝑹(𝑊𝑛+1)+ , where 𝑹 places coordinates in ascending order

Step 5. Set 𝐷 = 𝐷 + 𝑊𝑛+1(1).

Step 6. If 𝑛 < 𝑁𝑠 , set 𝑛 = 𝑛 + 1 and go to Step 2. Else set 𝑊𝑞 =
𝐷

𝑁𝑠
 and exit, Ns is

the simulation run length.

B. L’ Ecuyer Random Number Generator

A simulation of any queueing system in which there are random components

requires a method of generating numbers that are random in the interval from 0 to 1. A

12

sequence of random numbers must have two essential statistical properties: uniformity

and independence. Uniformity property is defined as when the interval [0,1] with N total

number of observations, is divided into n subintervals of equal length, the expected

number of observations in each interval is N/n. The independent property is that the

probability of observing a value in a particular interval is independent of the previous

values generated. Accordingly, the random variates from all other distributions (gamma,

weibul, erlang, etc) are obtained by transforming IID random numbers in a way defined

by the desired distribution. Different techniques are used to generate random numbers

such as linear congruential generators (LCG), mixed generators, multiplicative

generators (Law 2015).

In our work, we use the L’Ecuyer’s Multiple Recursive Generator in L’Ecuyer et al.

(1999). It differs from the LCG in that it involves two separate generators that are

combined together, and it uses the recursion method to get the next values. The 32-bits

Random number generator MRG32k3a has a period of 2191, the seed is a vector with six

components. The large period is suitable for long simulations, necessary to produce

different streams of random numbers with no cycling. It is reproducible i.e, given the

starting conditions it is possible to generate the same set of random numbers

independent of the system that is being simulated. This is helpful for debugging

purposes and facilitates comparison between systems. In addition, this generator is fast

and simple to understand and implement with small storage. It is chosen as well because

the good statistical properties of the generated numbers in terms of uniformity and

independence. A similar generator with many large streams and sub streams is

implemented in Arena, AutoMod and WITNESS simulation packages (Law 2015,

p.404).

13

MRG32k3a is defined by the following algorithm (L'Ecuyer, Blouin and Couture 1999)

First it starts up the two separate recursions, as operating in parallel at the same time

𝑦1,𝑛 = (𝑎12𝑦1,𝑛−2 + 𝑎13𝑦1,𝑛−3)(𝑚𝑜𝑑 𝑚1)

𝑦2,𝑛 = (𝑎21𝑦2,𝑛−1 + 𝑎23𝑦2,𝑛−3)(𝑚𝑜𝑑 𝑚2)

Then it combines the obtained two values at the nth step as follows:

𝑥𝑛 = (𝑎12𝑦1,𝑛−2 + 𝑎13𝑦1,𝑛−3

xn = (𝑦1,𝑛 + 𝑦2,𝑛)(𝑚𝑜𝑑 𝑚1)

where, 𝑎12 = 1403580, 𝑎21 = 527612 , 𝑎13 = −810728 , 𝑎23 = −1370589 , 𝑚1 =

 232 − 209, 𝑚2 = 232 − 22853, 𝑠𝑒𝑒𝑑 = 12345, 𝑛 ≥ 3, and 𝑥3 , 𝑥4, 𝑥5 . . . are

outputs of the generator. Dividing the outputs by 𝑚1 gives pseudo-random Uniform

[0, 1) outputs.

C. Random Variates Generation

This section shows particular algorithms for generating random numbers from

several common continuous distributions (Law 2015) that we adopt in PAQS. We also

briefly describe the distributions.

1. Deterministic Distribution

The deterministic distribution has a coefficient of variation equal to zero and it is

appropriate to describe scheduled arrival and fixed service times. A random variable X

has a deterministic distribution when it is always equal to the same constant.

14

2. Uniform Distribution

The Uniform distribution is the most basic form of continuous probability

distribution function. It is a rectangular distribution with constant probability and each

range of values that has the same length on the distributions support has equal

probability of occurrence. The Uniform Distribution is used in the absence of detailed

data, when a range is known only. A random variable X is uniformly distributed on

interval a real interval [a,b], 𝑋 ~ 𝑈(𝑎, 𝑏) has 𝑎 as a location parameter and (𝑏 − 𝑎) as a

scale parameter. This random variable has the following probability density function

(PDF), and cumulative distribution function (CDF),

 𝑓(𝑥) = {
1

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐹(𝑥) = {
0, 𝑥 ≤ 𝑎

(𝑥 − 𝑎)/(𝑏 − 𝑎), 𝑎 ≤ 𝑥 ≤ 𝑏
1, 𝑥 ≥ 𝑏

The mean and variance are 𝐸[𝑥] =
(𝑎+𝑏)

2
 and 𝑉𝑎𝑟[𝑥] =

(𝑏−𝑎)2

12
.

The algorithm to generate random variates with Uniform distribution is as follows,

1. Generate 𝑈~ 𝑈(0,1)

2. Return 𝑋 = 𝑎 + (𝑏 − 𝑎)𝑈

Figure 1 - Uniform (a,b) Density Function

f(x)

1

𝑏 − 𝑎

x
a b

15

3. Exponential Distribution

The exponential distribution is one of the broadly used continuous distributions.

It is often used to model the time elapsed between events especially arrival events. The

most important property of the exponential distribution is memoryless property. A

random number X is exponentially distributed with rate 𝜆, 𝑋 ~ 𝐸𝑥𝑝𝑜(1/𝜆) has the

following probability density function (PDF), and cumulative distribution function

(CDF),

 𝑓(𝑥) = { 𝜆𝑒−𝑥𝜆, 𝑥 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐹(𝑥) = {1 − 𝑒−𝑥𝜆 , 𝑥 ≥ 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The mean and variance of X are is 𝐸[𝑥] = 1/𝜆 and 𝑉𝑎𝑟[𝑥] = 1/𝜆2

The algorithm to generate random variates with Exponential distribution is as follows,

1. Generate 𝑈~ 𝑈(0,1)

2. Return 𝑋 = −
ln 𝑈

𝜆

Figure 2 - Exponential (1/λ) density function

4. m-Erlang Distribution

The m-Erlang distribution is characterized by its low variability; it is suitable for

modeling random variables with low variability. As known the coefficient of variation

16

is considered as a measure providing an adequate representation of the model, for the

Erlang distribution the coefficient of variation is usually less than or equal to 1. In the

Erlang model the coefficient of variation is decreased by increasing the value of the

parameter m, the squared coefficient of variation varies from 1/(𝑚 − 1) and 1/𝑚

(Adan and Zhao, 1994). An m-Erlang random variable X with parameter 𝜆 & 𝑚 it can

be written as 𝑋 = 𝑌1 + 𝑌2 + ⋯ 𝑌𝑚 , the Ym’s are IID exponential random variables

with rate 𝜆 each, 𝑋 ~ 𝑚 − 𝐸𝑟𝑙𝑎𝑛𝑔(𝜆). The cumulative density function has no closed

form and the probability density function is as follows,

𝑓(𝑥) =
𝑥𝑚−1𝑒−𝑥/𝜆

𝜆𝑚(𝑚 − 1)!

The algorithm to generate random variates with m-Erlang distribution is as follows,

1. Generate 𝑈1, 𝑈2, … . . 𝑈𝑚 as IID U(0,1)

2. Return 𝑋 = −
𝑚

𝜆
 ln (∏ 𝑈𝑖

𝑚
𝑖=1)

Figure 3 - m-Erlang (λ) density functions

5. Hyperexponential Distribution

The Hyperexponential distribution represents a continuous statistical distribution

defined on the interval [0, ∞], parameterized by two vectors (𝑝1, … , 𝑝𝑚) and

17

(𝜆1, … , 𝜆𝑚), it is known as an m-phase hyperexponential distribution. The parameters 𝑝𝑖

are the phase probabilities, have values in the interval [0,1] and satisfy ∑ 𝑝𝑖
𝑚
𝑖=1 = 1. The

parameters 𝜆𝑖 are the phase rates and have positive real values. These parameters

determine the overall shape of the PDF which is monotonic decreasing and has tails

showing the PDF decreases exponentially for large values of X. The coefficient of

variation is always greater than 1, which makes especially for high variability systems,

Feldmann and Whitt (1998).Therefore, the Hyperexponential distribution can be used to

approximate random probability distributions, especially those with heavy tails,

reflecting high variability. This means that the hyperexponential distribution is

appropriate to represent random phenomena for which most outcomes are small (ant

jobs) and very large (elephant jobs) outcomes occur only occasionally. In this thesis we

will consider the 2-phase hyperexponential distribution, H2. The H2 distribution is used

for the inter-arrival time distribution when arrivals tend to cluster, it is used for the

service time distribution when most customer require short size services but few

customers require very long size services (Seelen et al., 1985). De Smit (1983), assumes

that for many practical situations, in which service times or inter-arrival times occur

with coefficient of variation larger than 1, the two-phase 2-phase Hyperexponential

distribution may offer a satisfactory fitting. A 2-phase Hyperexponential random

variable with parameters 𝜆1, 𝜆2 and 𝑝, 𝑋 ~ 𝐻𝑦𝑝𝑒𝑟𝑒𝑥𝑝𝑛𝑡𝑙(𝜆1, 𝜆2, 𝑝), has the following

probability density function (PDF),

𝑓(𝑥) = 𝑝𝜆1𝑒−𝜆1𝑥 + (1 − 𝑝)𝜆2𝑒−𝜆2𝑥

The mean, second moment and variance of X are,

𝐸[𝑥] =
𝑝

𝜆1
+

1 − 𝑝

𝜆2
, 𝐸[𝑥2] =

2𝑝

𝜆1
2 +

2(1 − 𝑝)

𝜆2
2

18

𝑉𝑎𝑟[𝑥] = 𝐸[𝑥2] − 𝐸[𝑥]2 =
2𝑝

𝜆1
2 +

2(1 − 𝑝)

𝜆2
2 − (

𝑝

𝜆1
+

(1 − 𝑝)

𝜆2
)2

The algorithm to generate random variates with Hyperexponential distribution is as

follows:

1. Generate 𝑈1, 𝑈2 as IID U(0,1)

2. If 𝑈1 ≤ 𝑝, return 𝑋 = log (𝑈2)/(−𝜆1)

3. If 𝑈1 > 𝑝, return 𝑋 = log (𝑈2)/(−𝜆2)

Figure 4 - Hyperexponential (λ1, λ2, p) density functions

6. Weibull Distribution

The Weibull distribution is widely used due to its versatility, flexibility and

relative simplicity since it can fit a wide range of data from different fields: biology,

engineering, economics, etc. The major advantages to using Weibull analysis is that it

can be used for analyzing lifetimes with very small samples. The shape parameter or the

Weibull slope α determines distinct from location and scale which marked effects on the

behavior of the distribution. The scale parameter β determines the scale of measurement

of the values in the range of the distribution; the changes if this parameter has the effect

of stretching out the probability density function of the distribution (Characteristics of

the Weibull Distribution, 2002). Accordingly, the Weibull distribution has high or low

19

variability depending on the chosen parameters, see Figure 4 and Figure 5. A Weibull

random variable with parameters α and β, 𝑋 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼, 𝛽), has the following

probability density function (PDF), and cumulative distribution function (CDF),

 𝑓(𝑥) = { 𝛼𝛽−𝛼𝑥𝛼−1𝑒−(𝑥/𝛽)𝛼
, 𝑥 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐹(𝑥) = { 1 − 𝑒−𝑥/𝛽𝛼
 , 𝑥 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The mean and variance of X are,

𝐸[𝑥] =
𝛽

𝛼
𝛤(

1

𝛼
), (α) is the Gamma function

For any positive real number α, 𝛤(𝛼) = ∫ 𝑥𝛼−1𝑒𝑥∞

0
𝑑𝑥

 𝑉𝑎𝑟[𝑥] =
𝛽2

𝛼
{2𝛤 (

1

𝛼
) −

1

𝛼
[𝛤 (

1

𝛼
)]2}

The algorithm to generate random variates with Weibull distribution is as follows,

1. Generate 𝑈~ 𝑈(0,1)

2. Return 𝑋 = −𝛽(−𝑙𝑛𝑈)1/𝛼

Figure 5 - Weibull (α,1) density functions

20

Figure 6 - Weibull (3.5,β) density functions

7. Gamma Distribution

The Gamma distribution is applied widely in various fields (engineering,

science, business) to model continuous variables that are always positive and have

skewed distributions. The shape parameter α determines distinct from location and

scale; a change in α alters the distribution skewness. The scale parameter β determines

the scale of measurement of the values in the range of the distribution; a change in β

compresses of expands the distribution without altering its basic form (Gamma

Distributuion). Accordingly, the Gamma distribution has high or low variability

depending on the chosen parameters. A Gamma random variable with parameters α and

β 𝑋 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), has the following probability density function (PDF), and

cumulative distribution function (CDF),

 𝑓(𝑥) = {
𝛽−𝛼𝑥1−𝛼𝑒−𝑥/𝛽

𝛤(𝛼)
, 𝑥 ≥ 0 𝛤(𝛼) is the Gamma function

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

21

For any positive real number α, 𝛤(𝛼) = ∫ 𝑥𝛼−1𝑒𝑥∞

0
𝑑𝑥

 𝐹(𝑥) = {
1 − 𝑒−𝑋/𝛽 ∑

(𝑥/𝛽)𝑗

𝑗!

𝛼−1
𝑗=0 , 𝑥 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The mean and variance of X are 𝐸[𝑥] = 𝛼𝛽 and 𝑉𝑎𝑟(𝑥) = 𝛼𝛽2

The algorithm to generate random variates with Gamma distribution is an

acceptance rejection algorithm, which we adopt from Law (2015). First note that

given ~ 𝐺𝑎𝑚𝑚𝑎(𝛼, 1) , we can obtain for any 𝛽 > 0, a gamma (α,β) random

variable 𝑋 by letting 𝑋 = 𝛽𝑌. The algorithm to generate 𝑌 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼, 1) and

𝑋 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) proceeds as follows

For 0 < 𝛼 < 1

The distribution is exponentially shaped and asymptotic to both the vertical and

horizontal axes.

1. Generate 𝑈1~ 𝑈(0,1) , and let 𝑃 = 𝑏𝑈1, where 𝑏 = (𝑒 + 𝛼)/𝑒. If P>1 got to

step 3. Otherwise proceed to step 2.

2. Let 𝑌 = 𝑃1/𝛼, and generate 𝑈2~ 𝑈(0,1) . If 𝑈2 ≤ 𝑒−𝑌, return 𝑋 = 𝑌. Otherwise,

go back to step 1.

3. Ley 𝑌 = − ln [
𝑏−𝑃

𝛼
] and generate 𝑈2~ 𝑈(0,1). If, 𝑈2 ≤ 𝑌𝛼−1, return 𝑋 = 𝛽𝑌.

Otherwise, go back to step 1.

For 𝛼 > 1 Set 𝑎 = 1/√(2𝛼 − 1), 𝑏 = 𝛼 − 2𝑙𝑛2, 𝑞 = 𝛼 + 1/𝑎, 𝜃 = 4.5,

 𝑑 = 1 + 𝑙𝑛𝜃

1. Generate 𝑈1 and 𝑈2 as IID U(0,1)

2. Let 𝑉 = 𝑎𝑙𝑛 [
𝑈1

1−𝑈1
], 𝑌 =α𝑒𝑉, 𝑍 = 𝑈1

2𝑈2 , and 𝑊 = 𝑏 + 𝑞𝑉 − 𝑌

3. If 𝑊 + 𝑑 − 𝜃𝑍 ≥ 0, return 𝑋 = 𝛽𝑌. Otherwise, proceed to step4.

4. If 𝑊 ≥ 𝑙𝑛𝑍, return 𝑋 = 𝛽𝑌. Otherwise, go to step1.

For 𝛼 = 1 the distribution is the same as an exponential distribution of mean β.

22

When α is an integer, the gamma distribution is the same as the Erlang distribution.

The skewness reduces as the value of α increases.

Figure 7 - Gamma (α, 1) density functions

8. Beta Distribution

The Beta distribution is used to model random variables limited to a finite

interval. It plays a fundamental role in different scientific fields, including processes

related to soil property, geological mineral-to-rock ratios, project management and HIV

transmission behavior. The Beta distribution is used as a rough model in the absence of

data where the system being studied does not exist in some form and collecting data is

not possible (Ongaro and Corsi, 2015). Therefore, the beta distribution approach placing

the density function on a real interval [a,b] is to assume that the random variable as a

beta distribution on this interval with shape parameters 𝛼1 and 𝛼2. This approach

provides greater flexibility due to the variety of shapes that beta density function can

assume, (see Figure 7). The beta distribution is related to a number of other distributions

(Uniform, Gamma, Pearson, Bernouilli, Negative Binomial, etc.). A Beta random

variable with parameters α1 and α2, 𝑋 ~ 𝐵𝑒𝑡𝑎(𝛼1, 𝛼2), has the following probability

23

density function (PDF), and has no closed form for the cumulative distribution function

(CDF),

 𝑓(𝑥) = {
𝑥𝛼1−1(1−𝑥)𝛼2−1

𝐵(𝛼1,𝛼2)
, 0 < 𝑥 < 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝐵(𝛼1, 𝛼2) is the beta function defined by 𝐵(𝑧1, 𝑧2) = ∫ 𝑡𝑧1−1(1 − 𝑡)𝑧2−1𝑑𝑡
1

0

The mean and variance of X are,

 𝐸[𝑥] =
𝛼1

𝛼1+𝛼2

 𝑉𝑎𝑟[𝑥] =
𝛼1𝛼2

(𝛼1+𝛼2)2(𝛼1+𝛼2+1)

To generate 𝑋 ~ 𝐵𝑒𝑡𝑎(𝛼1, 𝛼2) on the interval [a,b] for a<b, first we generate

𝑌 ~ 𝐵𝑒𝑡𝑎(𝛼1, 𝛼2) on interval [0,1] and we can obtain a 𝐵𝑒𝑡𝑎(𝛼1, 𝛼2) random variable

𝑋 by letting 𝑋 = 𝑎 + (𝑏 − 𝑎)𝑌. The algorithm to generate 𝑌 ~ 𝑏𝑒𝑡𝑎(𝛼1, 𝛼2) on interval

[0,1] and 𝑋 ~ 𝐵𝑒𝑡𝑎(𝛼1, 𝛼2) on the interval [a,b], proceeds as follows,

1. Let 𝑌1 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼1, 1) and 𝑌2 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼2, 1), generate

 𝑌1 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼1, 1) and 𝑌2 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼2, 1)

2. 𝑌 = 𝑌1/ (𝑌1 + 𝑌2) . Return 𝑋 = 𝑎 + (𝑏 − 𝑎)𝑌.

24

Figure 8 - Beta (α1,α2) density functions

9. Triangular Distribution

The Triangular distribution is used as rough approximation to a random variable

with an unknown distribution. It is a second approach as the beta distribution that

approximating an unknown distribution in the absence of data. It is specified by its

minimum, maximum and mode values. It can be skewed either to left or right by having

a mean value greater than or less than the average of the minimum and maximum

values. A Triangular random variable with parameters a, b and m, 𝑋 ~ 𝑡𝑟𝑖𝑎𝑛𝑔(𝑎, 𝑏, 𝑚),

has the following probability density function (PDF), and cumulative distribution

function (CDF),

 𝑓(𝑥) = {
2(𝑥 − 𝑎)/[(𝑏 − 𝑎)(𝑚 − 𝑎)] 𝑎 ≤ 𝑥 ≤ 𝑚

2(𝑏 − 𝑥)/[(𝑏 − 𝑎)(𝑏 − 𝑚)] 𝑚 < 𝑥 ≤ 𝑏
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝐹(𝑥) = {
(𝑥 − 𝑎)2/[(𝑏 − 𝑎)(𝑚 − 𝑎)], 𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑚

1 − (𝑏 − 𝑥)2/[(𝑏 − 𝑎)(𝑏 − 𝑚)], 𝑖𝑓 𝑚 ≤ 𝑥 ≤ 𝑏

The mean and the variance of X are,

 𝐸[𝑥] = (𝑎 + 𝑏 + 𝑚)/3

 𝑉𝑎𝑟[𝑥] = (𝑎2 + 𝑏2 + 𝑚2 − 𝑎𝑏 − 𝑎𝑚 − 𝑏𝑚)/18

25

The algorithm to generate random variates with Triangular distribution is as follows:

1. Set 𝑚1 = (𝑚 − 𝑎)/(𝑏 − 𝑎)

2. Generate 𝑈~ 𝑈(0,1)

3. If 𝑈 < 𝑚1, set √(𝑚1𝑈), Otherwise set 𝑌 = 1 − √[(1 − 𝑈)(1 − 𝑚1)]

4. Return 𝑋 = 𝑎 + (𝑏 − 𝑎)𝑌

Figure 9 - Triangular density functions

D. Simulation Run Length and Server Utilization Equation

Our work targets queueing system with high variability for which the simulation

is highly time consuming (e.g Maddah, et al. 2017). The challenge in our model is to

simulate high variability in queueing systems based on specified simulation run length

aiming to get accurate output. As discussed in Chapter 2, our approach is to rely on one

long simulation run. Accordingly, in our program the simulation run length, Ns, for

G/G/s systems is derived from the simulation run length tr suggested by Whitt (1989).

The simulation run length in our program Ns shows the number of service completions

to be simulated and it is the given by

𝑁𝑆 = 𝑡𝑟𝜆=
4𝜎𝑞

2𝑍𝛽/2

𝜀2𝐸[𝑄0]2
𝜆 ,

26

where, 𝜆 is the arrival rate, 𝐸[𝑄0] =𝜌2(𝐶𝑠
2 + 𝐶𝐴

2) [2(1 − 𝜌)]⁄ is the asymptotic estimate

of the expected queue length, 𝜎𝑞
2 =𝜌2(𝐶𝑠

2 + 𝐶𝐴
2)3 [2𝑠(1 − 𝜌)4]⁄ is the asymptotic

estimate of the variance of the queue length. Measures of statistical precision are

defined by ε and β, which are the relative width of the estimation interval on the queue

length and the corresponding level of precision, respectively, Zβ/2 is such that P{Z< Zβ/2}

=β/2, where Z is the standard normal random variable. 𝐶𝑠
2 and 𝐶𝐴

2 are the squared

coefficient of variation of service times and inter-arrival times respectively, the traffic

intensity is symbolized by ρ, and the number of servers is indicated by “s”.

Another Whitt approximation is used in PAQS is Whitt’s (1992) utilization

formula. This formula aims to design the service system and to keep a measure of

congestion fixed among G/G/c with different number of servers. If the number of

servers increased from 𝑆1 to 𝑆2 the utilization should increase from 𝜌1 to 𝜌2 as follows:

(1 − 𝜌1)√𝑐1 = (1 − 𝜌2)√𝑐2

E. Batch Means and Confidence Interval

The purpose of the simulation experiment is to obtain estimates of the

performance measure of the system under study. These estimates are statistically

analyzed before conclusions can be drawn on the basis of the simulation-generated

output data; the purpose of the statistical analysis is to acquire some assurance that these

estimates are sufficiently precise for the proposed use of the model. The disadvantage of

model with single, long replication occurs when trying to compute the standard error of

the sample mean. The data obtained is considered depended and the usual estimator is

biased (Banks et al. 2010, p. 467). Accordingly, in our model we have used the batch

27

means method which attempts to solve the problem of single replication by dividing the

output data from one replication into few large batches and then treating the mean of

these batches as if they are independent with k batches each having a size of 𝑚 and

mean �̅�𝑗 =
1

𝑘
∑ 𝑌𝑖𝑗

𝑗𝑚
𝑖=(𝑗−1)𝑚+1 , 𝑗 = 1, 2, … 𝑘 . Starting with either continuous-time or

discrete-time data, the variance of the batch mean is estimated based on the variance of

�̅�𝑗 , 𝑆2, as follows

𝑆2 =
1

𝑘
∑

(�̅�𝑗 − �̅�)2

𝑘 − 1
=

∑ (�̅�𝑗
2 − 𝑘�̅�2)𝑘

𝑗=1

𝑘(𝑘 − 1)

𝑘

𝑗=1

where, �̅� =
∑ 𝑌𝑖𝑗

𝑘
𝑖=1

𝑘
 is the overall sample mean. The batch means �̅�1, �̅�2, … , �̅�𝑘 are not

independent. However, if the run length is sufficiently long, successive batch means

will be approximately independent and the variance estimator will be approximately

unbiased. There is no widely accepted and relatively simple method for choosing an

acceptable number of batches k or a batch size m, but there are some general guidelines

as follows (Banks et al. 2010, p. 468)

 Schmeiser (1982) finds that there is no benefit from dividing the total sample

size into more than 𝑘 = 30. Schmeiser (1982) also finds that the performance of the

confidence interval, in terms of its width and its variability, is poor for fewer than 10

batches. Accordingly, a number of batches between 10 and 30 should be used.

 The lag-1 autocorrelation ρ1 = 𝑐𝑜𝑟𝑟(Y̅j, Y̅j+1) is usually studied to assess the

dependence between batch means. When lag-1 autocorrelation is nearly 0, than the

batch means are treated as independent. All lag autocorrelation should be smaller in

absolute value that the lag-1 autocorrelation.

28

 Law and Carson (1979) suggested the estimation of lag-1 autocorrelation

from a large number of batch means based on smaller batch size, so 100 ≤ k ≤ 400;

when the autocorrelation is approximately 0 between these batch means, the the

autocorrelation will be smaller if we re-batch the data to between 10 and 30 batch

means with larger batch size.

Given these insights, Banks et al. (2010) provide the following batch means strategy:

 Form k batches, 100 ≤ k ≤ 400 with the data and compute the batch means.

Estimate the sample lag-1 autocorrelation of the batch means

𝜌1̂ = ∑
(�̅�𝑗 − �̅�)((�̅�𝑗+1 − �̅�)

∑ (�̅�𝑗 − �̅�)2𝑘
𝑗=1

𝑘

𝑗=1

 If ρ1̂ ≤ 0.2, then re-batch the data into 30 ≤ 𝑘 ≤ 40 batches, and build a

confidence interval using 𝑘 − 1 degrees of freedom for the respective distribution and

for the estimation of variance. Otherwise, If ρ1̂ > 0.2, then re-batch the data into 𝑘 =

10 batches, and form the confidence interval using 𝑘 − 1 degrees of freedom for the

respective distribution and for the estimation of variance.

 The confidence interval is defined as follows,

�̅� ∓ 𝑡𝑘−1,𝛽/2
𝑆

√𝑘
 , where 𝑡𝑘−1,𝛽/2 is such that 𝑃{𝑇𝑘−1 ≤ 𝑡𝑘−1,𝛽/2) = 𝛽/2, and 𝑇𝑘−1 is

a random variable having the t distribution with “k-1” degrees of freedom.

F. The G/G/s System

In a waiting line system or queueing system, a person arrived to the system waits

in line, if needed, and get served by the available server and then departs the system.

The queueing system is denoted by G/G/s model, which assumes (i) a general inter-

arrival distribution with rate 𝜆 and 𝐴 denote a random inter-arrival time, 𝜆 = 1/𝐸[𝐴];

29

(ii) a general service distribution with rate 𝜇 and 𝑆 denote a random service time, 𝜇 =

1/𝐸[𝑆]; and (iii) 𝑠 available servers. In addition, we assume that the service discipline is

FCFS (First Come First Served) and that all inter-arrival and service times are

independent (Ross, 2014). The queueing system G/G/s characterized by arrival entities,

queue discipline, system capacity and service mechanism is shown in Figure 9. If the

number of customer is < 𝑠 , the arrival enters the available server. However, when 𝑛 >

𝑠, a queue will build if arrival occurs. The system capacity is characterized by the

number of parallel servers and the traffic intensity is defined by 𝜌 = 𝜆/𝑠𝜇, where 𝑠 the

number of servers and 𝜆/𝜇 is the average number of busy servers. If ≥ 𝑠𝜇 , the system

cannot handle the load put upon it, hence it has no statistical equilibrium. If > 𝑠𝜇 , the

queue grows in length at the rate 𝜆 − 𝑠𝜇 customer per unit time, on the average.

Accordingly for G/G/s queue to have a statistical equilibrium and to design a stable

system, the server utilization must satisfy 𝜆 < 𝑠𝜇 (Banks et al. 2010).

Figure 10 - Queueing System (G/G/s)

In our thesis, the queuing system is composed one single-node where the customer's

service is completed all at once as shown in Figure 10.

Figure 11 - Single Node Queue

30

G. Detailed Algorithm

As shown in Chapter III Section A, the base algorithm of our software,

following are necessary procedure taken into consideration to build the model:

1- The inter-arrival and service times in Step 2 are generated efficiently and effectively

for the following distributions: exponential, gamma, beta, triangular, uniform, m-

erlang, weibull and hyperexponential, using the powerful random number generator

discussed in Chapter III Section C.

2- The simulation run length or the number of simulation service completion Ns in

Step 6 is based on Whitt (1989) suggestions discussed in Chapter III Section D.

3- The autocorrelation of the output data is based on the Batch Means Method

discussed in Chapter III Section E.

In addition, the measures to evaluate the performance of any G/G/s system are

represented below; however, in our work we focus on performance measures the

waiting time in queue which is considered the most unpleasant experience in queueing

system. The performance measures of the queuing system are obtained as follows:

1- The mean number in the system is,

𝐿 = Ʃ𝑛𝑃𝑛 (𝑛 = 0 to ∞) ,

Pn represent the system size 𝑃𝑛 = 𝑙𝑖𝑚
𝑡→∞

𝑃{𝐿(𝑡) = 𝑛}. 𝐿(𝑡) is the number of

customers in the system at time t.

2- The mean waiting time in the system is,

𝑊𝑞 = ∑ 𝑊𝑖 / 𝑛 (𝑊𝑖 is the waiting time of ith customer).

3- Little’s Law implies as follows,

𝐿 = 𝜆𝑊

31

4- The mean waiting time in queue is,

𝑊𝑞 = ∑ 𝑊𝑞𝑖 / 𝑛 (𝑊𝑞𝑖 , the waiting time in queue of ith customer)

5- The mean number in queue is,

𝐿𝑞 = 𝜆𝑊𝑞

6- The mean waiting times in queue and in system are related as follows,

𝑊 = 𝑊𝑞 + 1 /µ

7- The mean waiting numbers in queue and in system are related as follows,

𝐿 = 𝐿𝑞 + 𝜆 /µ

32

CHAPTER IV

GRAPHICAL USER INTERFACE (GUI)

A. GUI Introduction

The user interface is an essential component of every computer application. The

popularity of Graphical User Interface (GUI) has increased massively since 1980s when

Apple introduced the first mass-market system with a UI. Nowadays, the majority of the

users expect to be offered a graphical user interface, especially the users who are not

familiar with software programs. The purpose of this thesis is to build efficient and

effective software for simulating single-node queues; accordingly it is necessary to

design a graphical user interface to provide high usability to make PAQS friendly and

interactive user interface.

B. GUI Guidelines

PAQS was written in C++ language with Visual Studio 2017 and a user-friendly

graphical user interface was designed respecting the laws of human perception as well

as a number of design guidelines and standard platforms. The most important part of

the development of the graphical user interface was to ensure high usability as defined

by Nielsen which consists of five attributes (Nielsen 1993, p.2):

 Ease of understandability: the system should be easy to learn.

 Speed of user task performance: the system should be efficient to use

 User error rate: the system should have a low error rate

 Retention over time: the system should be easy to remember

 User satisfaction: the system should be pleasant to use.

33

In order to build a graphical user interface with high usability, Nilesen suggests

a model consisted of ten steps or guidelines, (Nielsen 1993, p.8, p.72). Our GUI design

will be based on the majority of Nielsen’s 10 guidelines which are defined as follows

 Match system and the real world

 Consistency and standards (properties, standards platforms)

 Help and documentation

 User control and freedom (undo, cancel buttons)

 Visibility of system status (feedback)

 Flexibility and efficiency

 Error prevention (capture error)

 Recognition, not recall (minimize user’s memory)

 Help users recognize, diagnose, and recover from errors.

 Aesthetic ad minimalist design (simplicity, use concise language, good

graphic design)

Another key point given by Nielson is to know the user of the GUI. At the

beginning of every project rise several questions that are needed to be answered, like the

features (education level, experience with software tools in general, age...) of the target

audience and the goals behind the usability of the application. Accordingly, the

audiences most involved in our PAQS software are the engineering students where they

can use this software in the simulation courses or other related materials and the

researches interested in queueing systems.

34

C. GUI – PAQS Platform

The Graphical User Interface (GUI) written in C++ language using Visual

Studio 2017 allows an intuitive and easy front end of the software. This section shows

the GUI main window and buttons.

1. PAQS Main Window

The main window of the GUI is represented in the figure below:

Figure 12 - PAQS main window form

Upon the appearance of the window form shown in Figure 12, the user has to

choose the types of the inter-arrival and service times distributions from the combo-

boxes labeled “Inter-Arrival Time Distribution” and “Service Time Distribution”; the

distributions are :Uniform, Exponential, Triangular, m-Erlang, Hyperexponential,

Gamma, Weibull and Beta, are presented in Chapter III, Section C. Based on the chosen

distribution the suitable parameters will appear and the user has to enter the parameters

of G/G/s system. For example, for the exponential distribution only one textbox appears

to be filled by the appropriate rate, as shown in Figure 13

35

Figure 13 - Parameters for the chosen distributions

Then the user has to enter the number of servers for the G/G/s system in the box

labeled Number of Servers. Upon the receipt of the distributions parameters and the

number of servers, a functional test is built in PAQS to check the validity of the system;

a valid system should have the server utilization𝜌 < 1, where 𝜌 = 𝜆/(𝑠µ) and the

service and inter-arrival rates are calculated in Chapter III. Accordingly, if the user

entered the values of the parameters that give 𝜌 > 1 an error message appears.

2. PAQS Main Buttons

The GUI consists as well of two main buttons: “Run Simulation” and “Reset”.

The functionality of each one is explained below.

a. Run Simulation button

Upon the receipt of the distribution and the parameters and after pressing on the run

simulation button a test is applied to check the stability of the system as mentioned

above. Upon passing the stability test, the system calculates the simulation run length or

number of service completion (𝑁𝑆), random number variates based on the chosen

distribution, the coefficient of variation for inter-arrival and service times, the

autocorrelation among the random numbers, the waiting time in queue and the

confidence interval. So the system works as per the algorithm explained in Chapter III,

Section A to calculate the waiting time in queue. The system as well applies the batch

36

means method and confidence interval as presented in Chapter III, Section E. The

output is given with 95% confidence interval and level of precision and relative width

𝛽 = 𝜀 = 10%. Moreover, PAQS provides the other components of system

performance as presented in Chapter III, Section G. In addition, the PAQS shows the

CPU time in seconds necessary to simulate the mean waiting time in a multi-server

queueing system. The figure below shows the output of PAQS

Figure 14 - GUI Output

b. Reset button

After running a simulation the user has to press on the Reset button in order to

clear the values of all input and outputs.

D. GUI – PAQS Design Guidelines

The graphical user interface for PAQS was designed respecting to most of the

Nielsen’s guidelines which are useful for the goal of our work. PAQS is considered easy

to use and understand since user can easily interact with the GUI by choosing clearly

the provided distributions and entering the required parameters that appear according to

37

the chosen distribution. It is as well simple where only the basic functions are shown in

the main window, the interface kept simple and the output are presented clearly.

PAQS is considered consistent and organized according to the user’s expectation

and needs. It is transparent and predictable since users focus on tasks they perform and

not how the GUI works. PAQS as well minimizes user’s memory since the same work

the same way and there is no need to learn something new when performing the same

task each time.

Moreover, PAQS’s users have freedom of movement and freedom of choice that

encourages the usability of our software; the control is in the user’s hand, since the

users decides to choose the appropriate queueing mode and easily clears the entered

data by pressing on the Reset button. In addition, PAQS matches the system and the real

word through the simulation of the single node queue of G/G/s system by entering the

appropriate data and getting the output measuring and evaluating the system

performance.

Furthermore, PAQS protects the application from user mistake when

inappropriate input are entered and gives feedback as visibility of system status; so an

error message appears whenever the user enter parameters that are not appropriate for a

stable queueing system, as shown in the previous section (traffic intensity<1).

Finally, PAQS follows Nielsen’s guidelines in terms of efficiency and flexibility

since it is based on solid algorithm and approximations and it is implemented efficiently

to estimate accurate waiting time in queue during seconds of the CPU time; the resulted

outputs are verified and validated by comparing the waiting in queue simulated by

PAQS to other simulation software and approximation for G/G/s system, as presented in

Chapter V.

38

CHAPTER V

PAQS VALIDATION AND PERFORMANCE TESTING

Software testing process is an important part of the software development

process. It is an investigation conducted to detect failures so that defects are discovered

and corrected (Arabo, 2011). The scope of testing includes execution of the code in

different environments and conditions. Accordingly, to validate our PAQS software

we conducted several test scenarios considered as functional and performance testing.

The functional testing is necessary to validate that the application correctly performs all

of its required functions using different input data. The performance testing is essential

to benchmark the performance of PAQS with respect to other simulation software

within the same environment and conditions; hence, to identify performance

bottlenecks in high variability system. We center our performance testing on

comparing PAQS to the state-of-the-art simulation software Arena.

A. Accuracy Testing (Validation)

The functional test cases were conducted by comparing the results of the mean

delay estimated from PAQS with the QNA delay approximation (Whitt, 1983) and

Arena simulation.

The QNA approximation starts by estimating the mean delay for in a M/M/s

system having the same arrival and service rates, and respectively, as the G/G/s in

questions, 𝑊𝑞(𝑀/𝑀/𝑠), which is given by (Gross and Harris 1998, p. 70)

𝑊𝑞(𝑀/𝑀/𝑠) =
𝑎𝑠

𝑠!(𝑠µ)(1−ρ)2 𝑃0,

39

where 𝑎 = 𝜆/𝜇 is the offered load, and 𝜌 = 𝑎/𝑠 is the traffic intensity, and P0 is the

steady state probability of having an empty system,

𝑃0 =(∑
𝑎𝑛

𝑛!
+

𝑎𝑠

𝑠!∗(1−ρ)

𝑠−1
𝑛=0)−1

The mean delay in the G/G/s system at hand, is then give from the QNA

approximation,

𝑊𝑞(𝐺/𝐺/𝑠) ≈
𝐶𝐴

2+𝐶𝑠
2

2
∗ 𝑊𝑞(𝑀/𝑀/𝑠),

where, 𝐶𝐴
2 and 𝐶𝑠

2 are the squared coefficients of variation (SCVs) of Inter-arrival

times and service times.2

The first validation we do targets both the accuracy of mean delay estimated by

PAQS, as well as the adequacy of the simulation run length that we adopt from Whitt

(1989), as described in Chapter III Section D. For this purpose we analyze three M/G/s

systems described in Table 1, with Markovian, no-variability (deterministic, D) and

high-variability (Two-phase Hyperexponential, H2) service times.

For the different M/G/s systems in Table 1, we calculate the needed simulation

run length, 𝑁𝑠, using the formula given in Chapter III Section D with levels of

precision and relative width β = ε =10%. (We use these numbers in PAQS as the

number of simulated service completions.) Table 1 also reports on the mean delay

estimate from the QNA approximation.

2 The SCV of a random variable X is 𝑆𝐶𝑉[𝑋] =
𝑣𝑎𝑟[𝑋]

(𝐸[𝑋])2.

40

 Type
ρ=

λ/s* µ
µ λ CS

2 Ns
QNA -

Wq(M/G/s)

M/M/6 0.83 2 10 0 374,081 0.293

M/D/6 0.83 2 10 1 187,041 0.152

M/H2/6 0.83

1

(µ1=0.11,

µ2=0.9)

4.98 15.22 1,464,051 2.38

Table 1 - Simulation Run Length and QNA mean delay approximations for M/G/s

systems

For each M/G/s system in Table 1 we perform several replications of PAQS

simulation by changing the value of simulation run length. We increase the simulation

length gradually until the value of 𝑁𝑆 of Table 1 is reached. Figures 15-17 summarize

the results of each testing and reflect how the simulated mean delay converges to the

exact value when 𝑁𝑆 is reached, and compare PAQS mean delay with that obtained

from the QNA approximation.

Figure 15 - Convergence of Wq(PAQS) to exact Wq(QNA) for M/M/s system

For M/M/s system the squared coefficient of variation of service times is 𝐶𝑠
2 =

1, Figure 15 shows that when the number of service completion reaches the calculated

41

value of 𝑁𝑆 = 374,081 the mean delay of PAQS converges to the value of mean

delay given by QNA approximation

Figure 16 - Convergence of Wq (PAQS) to exact Wq(QNA) for M/D/s system

For M/D/s system, deterministic system, the squared coefficient of variation of

service times is 𝐶𝑠
2 = 0, Figure 16 also shows that when the number of service

completion reaches the calculated value of 𝑁𝑆 = 187,041 the mean delay of PAQS

converges to the value of mean delay given by QNA approximation.

Figure 17 - Convergence of Wq (PAQS) to exact Wq(QNA) for M/H2/s system

42

For M/H2/s system shown in Figure 17, the squared coefficient of service times

is Cs
2 = 15.22, the mean delay of PAQS seems to converge to the exact value when the

simulation length reaches 𝑁𝑆 (as the blue curve given PAQS mean delay vs. the

simulation length flattens around 𝑁𝑆) However, PAQS simulated delay does not

converge to that of the QNA approximation. This is not surprising as it is well-known

that the QNA approximation does not perform well under high variability. Similar

results to those in Figures 15-17 are presented in Maddah et al. (2017).

Further validation results incorporating point estimate, �̂�𝑞, and confidence

interval, (�̂�𝑞 − 𝐻𝑊, �̂�𝑞 − 𝐻𝑊), where HW is the half-width of the confidence interval,

from the standard Arena software are reported in Tables 2-15. In these tables,

variability (as measured by the squared coefficient of variation of inter-arrival and

service times, CA
2 and CS

2, was maintained at a low level in order to (i) obtain accurate

delay estimates from QNA, and (ii) run ARENA within manageable CPU time. In

Tables 2-15, we attempt to keep a fixed measure of congestion when changing the

number of servers, as discussed in Chapter III Section D. Tables 2-15 indeed show that

PAQS results are valid as the confidence interval generated on the mean delay

generated by PAQS overlaps with that of Arena in almost all cases indicating that both

software give estimates of mean delay that are not significantly different. Furthermore,

the confidence interval of PAQS contains the approximated QNA approximate mean

delay in most cases.

In reporting the results in Tables 2-15, we put a time limit on Arena simulation

of three hours, in order to save time. For example, in the last two cases of Table 8,

Arena simulation did not terminate within three hours, so we stopped Arena and

43

reported no results from Arena. This behavior of Arena is also reported in many

subsequent cases, characterized by high variability. What is interesting is that PAQS

handled these cases in few CPU minutes, which testifies to the achievement of the main

objective of PAQS, simulating G/G/s with high efficiency. More results on PAQS

efficient performance are reported in the following section.

Table 2 - PAQS Validation for M/M/s System

𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟏

 QNA PAQS Arena

 ρ tr Ns �̂�𝒒
�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

M/M/1 0.8 169,126.56 270,602.50 2.00 1.954 2.06 2.077 1.949 2.04 2.131

M/M/5 0.911 130,550.11 1,188,733.56 0.88 0.833 0.861 0.885 0.862 0.909 0.955

M/M/10 0.937 123,350.32 2,310,979.16 0.62 0.591 0.617 0.643 0.603 0.633 0.663

M/M/20 0.955 118,612.83 4,532,332.05 0.44 0.425 0.433 0.451 - 0.44 -

Table 3 - PAQS Validation for M/D/s System

𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟎

 QNA PAQS Arena

 ρ tr Ns �̂�𝒒
�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

M/D/1 0.8 84,563.28 135,301.25 1.00 0.988 1.02 1.051 0.9450 0.983 1.021

M/D/5 0.911 65,275.06 594,366.78 0.44 0.424 0.439 0.453 0.432 0.453 0.474

M/D/10 0.937 61,675.16 1,155,489.58 0.31 0.301 0.313 0.324 0.311 0.330 0.350

M/D/20 0.955 59,306.41 2,266,166.03 0.22 0.211 0.222 0.233 0.216 0.227 0.238

Table 4 - PAQS Validation for M/Er/s System

𝒌 = 𝟒, 𝝁𝒆 = 𝟖 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟓

 QNA PAQS Arena

 ρ tr Ns �̂�𝒒
�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

M/Er/1 0.8 105,704.10 169,126.56 1.25 1.208 1.256 1.303 1.206 1.250 1.294

M/Er/5 0.911 81,593.82 742,958.48 0.55 0.540 0.560 0.587 0.527 0.551 0.574

M/Er/10 0.937 77,093.95 1,444,361.97 0.39 0.378 0.395 0.411 0.387 0.402 0.418

M/Er/20 0.955 74,133.02 2,832,707.53 0.27 0.260 0.272 0.283 0.257 0.274 0.291

44

Table 5 - PAQS Validation for M/G/s System 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟐

𝜶 = 𝟎. 𝟓 𝜷 = 𝟏 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟐

 QNA PAQS Arena

 ρ tr Ns �̂�𝒒
�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

M/G/1 0.8 253,689.84 405,903.75 3.00 2.844 2.929 3.013 2.868 2.950 3.032

M/G/5 0.911 195,825.17 1,783,100.34 1.32 1.245 1.293 1.340 1.388 1.409 1.429

M/G/10 0.937 185,025.48 3,466,468.73 0.93 0.886 0.931 0.975 0.833 0.868 0.902

M/G/20 0.955 177,919.24 6,798,498.08 0.65 0.629 0.661 0.693 0.676 0.714 0.752

Table 6 - PAQS Validation for M/G/s System 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟒

𝜶 = 𝟎. 𝟐𝟓 𝜷 = 𝟐 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟒

 QNA PAQS Arena

 ρ tr Ns �̂�𝒒
�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

M/G/1 0.800 422,816.41 676,506.25 5.00 4.657 4.822 4.987 4.527 4.764 5.001

M/G/5 0.911 326,375.28 2,971,833.91 2.20 2.038 2.142 2.246 1.865 1.972 2.079

M/G/10 0.937 308,375.79 5,777,447.89 1.55 1.452 1.524 1.612 1.257 1.310 1.363

M/G/20 0.955 296,532.07 11,330,830.13 1.09 1.035 1.086 1.137 0.829 0.865 0.901

Table 7 - PAQS Validation for M/W/s System 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟑

𝜶 = 𝟐. 𝟏𝟔𝟕 𝜷 = 𝟎. 𝟓𝟔𝟒 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔𝟎𝟏, 𝟗. 𝟏𝟏𝟓, 𝟏𝟖. 𝟕𝟓𝟒, 𝟑𝟖. 𝟐𝟓, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟑

 QNA PAQS Arena

 ρ tr Ns �̂�𝒒
�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

M/W/1 0.8 104,567.99 167,482.90 1.24 1.183 1.221 1.259 1.195 1.241 1.286

M/W/5 0.91 80,716.85 735,738.01 0.54 0.538 0.562 0.586 0.540 0.565 0.591

M/W/10 0.937 76,265.34 1,430,324.90 0.38 0.377 0.395 0.413 0.370 0.397 0.424

M/W/20 0.955 73,336.24 2,805,177.78 0.27 0.263 0.272 0.281 0.259 0.270 0.281

45

Table 8 - PAQS Validation for M/W/s System 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟐𝟗. 𝟐𝟒

𝜶 = 𝟎. 𝟑 𝜷 = 𝟎. 𝟎𝟓𝟓 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔𝟎𝟏, 𝟗. 𝟎𝟎𝟖, 𝟏𝟖. 𝟒𝟖𝟗, 𝟑𝟕, 𝟔𝟒𝟗, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟐𝟗. 𝟐𝟒

 QNA PAQS Arena

 ρ tr Ns �̂�𝒒
�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾
�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

M/W/1 0.816 2,898,731.95 4,642,797.70 34.10 31.467 33.746 36.024 30.063 31.988 33.913

M/W/5 0.918 2,291,027.57 20,637,680.91 15.00 13.123 13.833 14.544 12.582 13.478 14.373

M/W/10 0.942 2,175,122.65 40,217,734.85 10.56 9.055 9.505 9.955 More than 3 hours3

M/W/20 0.959 2,098,393.52 79,004,020.89 7.44 6.419 6.700 6.981 More than 3 hours

Table 9 - PAQS Validation for M/H2/s System 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟏𝟐. 𝟓𝟐

𝝁𝟏 = 𝟎. 𝟐𝟒𝟒 𝝁𝟐 = 𝟏𝟎 𝒑𝟏 = 𝟎. 𝟏 𝒑𝟏 = 𝟎. 𝟗, 𝝀 = 𝟏. 𝟔𝟎𝟏, 𝟗. 𝟎𝟎𝟖, 𝟏𝟖. 𝟒𝟖𝟗, 𝟑𝟕, 𝟔𝟒𝟗, 𝑪𝑨
𝟐 = 𝟏, 𝑪𝑺

𝟐 =
𝟏𝟐. 𝟓𝟐

 QNA PAQS Arena

 ρ tr Ns �̂�𝒒
�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

�̂�𝒒 −

𝑯𝑾
�̂�𝒒

�̂�𝒒 +

𝑯𝑾

M/H2/1 0.816 1,301,900.52 2,125,551.88 15.02 14.244 14.772 15.30 14.097 14.700 15.30

M/H2/5 0.918 1,029,802.50 9,452,132.10 6.61 6.179 6.415 6.650 6.114 6.400 6.686

M/H2/10 0.942 977,867.54 18,421,408.10 4.65 4.356 4.570 4.783 4.232 4.425 4.616

M/H2/20 0.959 943,479.33 36,189,201.29 3.28 2.905 3.045 3.184 More than 3 hours

Table 10 - PAQS Validation for Er/M/s System 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓 , 𝑪𝑺

𝟐 = 𝟏

𝝁 = 𝟐, 𝒌 = 𝟒 𝝀𝒆 = 𝒌 × 𝝀 , 𝝀 = 𝟏. 𝟔𝟎𝟏, 𝟗. 𝟎𝟎𝟖, 𝟏𝟖. 𝟒𝟖𝟗, 𝟑𝟕, 𝟔𝟒𝟗, 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓 , 𝑪𝑺

𝟐 = 𝟏

 QNA PAQS Arena

𝝀𝒆 ρ tr Ns �̂�𝒒

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

Er/M/1 6.4 0.8 105,704.1 169,126.56 1.25 1.022 1.152 1.282 1.051 1.104 1.158

Er/M/5 36.42 0.910 81,593.82 742,958.48 0.55 0.424 0.535 0.645 0.475 0.505 0.533

Er/M/10 74.94 0.936 77,093.95 1,444,361.97 0.39 0.319 0.391 0.423 0.322 0.344 0.365

Er/M/20 152.84 0.955 74,133.02 2,832,707.53 0.27 0.246 0.263 0.279 0.127 0.256 0.384

3 The simulation of these cases took more than 3 hours in Arena, so we don’t’ have results.

46

Table 11 - PAQS Validation for Er/Er/s System 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓 , 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟓

𝝁 = 𝟐, 𝝁𝒆 = 𝟖, 𝒌 = 𝟒, 𝒌 = 𝟒 , 𝝀𝒆 = 𝒌 × 𝝀 , 𝝀 = = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓 , 𝑪𝑺

𝟐 =
𝟎. 𝟐𝟓

 QNA PAQS Arena

𝝀𝒆 ρ tr Ns �̂�𝒒

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

Er/Er/1 6.4 0.8 42,281.64 67,650.63 0.50 0.399 0.415 0.430 0.391 0.410 0.429

Er/Er/5 36.423 0.91 32,637.53 297,183.39 0.22 0.188 0.198 0.207 0.184 0.194 0.204

Er/Er/10 74.94 0.937 30,837.58 577,744.79 0.15 0.132 0.140 0.147 0.128 0.135 0.142

Er/Er/20 152.844 0.955 29,653.21 1,133,083.01 0.11 0.092 0.097 0.102 0.091 0.096 0.101

Table 12 - PAQS Validation for Er/H2/s System 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓, 𝑪𝑺

𝟐 = 𝟏𝟐. 𝟓𝟐

𝝁𝟏 = 𝟎. 𝟐𝟒𝟒, 𝝁𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏 𝒑𝟐 = 𝟎. 𝟗, 𝒌 = 𝟒 , 𝝀𝒆 = 𝒌 × 𝝀, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 =

𝟎. 𝟐𝟓, 𝑪𝑺
𝟐 = 𝟏𝟐. 𝟓𝟐

 QNA PAQS Arena

 𝝀𝒆 ρ tr Ns �̂�𝒒
�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

Er/H2/1 6.4 0.8 1,079,873.1 1,727,796.96 12.77 11.971 12.393 12.814 11.97 12.479 12.983

Er/H2/5 36.42 0.91 833,562.47 7,590,063.79 5.61 4.692 5.110 5.528 5.08 5.336 5.582

Er/H2/10 74.94 0.937 787,591.77 14,755,601.91 3.95 3.690 3.863 4.036 More than 3 hours

Er/H2/20 152.84 0.955 757,342.91 28,938,940.15 2.78 2.534 2.650 2.766 More than 3 hours

Table 13 - PAQS Validation for H2/Er/s System 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐, 𝑪𝑺

𝟐 = 𝟏

𝝁 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐, 𝑪𝑺

𝟐 = 𝟏

 QNA PAQS Arena

ρ tr Ns �̂�𝒒

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

𝝁𝟏 = 𝟎. 𝟐𝟎𝟓, 𝝁𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏𝟏 𝒑𝟐 = 𝟎. 𝟖𝟗

H2/Er/1 0.8 1,071,238.42 1,713,981.47 12.67 14.201 14.554 14.905 14.744 15.38 16.015

𝝁𝟏 = 𝟎. 𝟏𝟒𝟏𝟎𝟓, 𝝁𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟎𝟎𝟏𝟒 𝒑𝟐 = 𝟎. 𝟗𝟗𝟖𝟔

H2/Er/5 0.910 826,550.07 7,526,211.82 5.57 2.232 2.339 2.446 2.197 2.278 2.359

𝝁𝟏 = 𝟗𝟓. 𝟗𝟗𝟐, 𝝁𝟐 = 𝟐. 𝟐𝟕𝟐, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏

H2/Er/10 0.937 796,190.80 14,916,705.51 3.99 4.563 4.752 4.941 4.465 4.677 4.888

𝝁𝟏 = 𝟏𝟗𝟐. 𝟕𝟎𝟒, 𝝁𝟐 = 𝟒. 𝟔𝟓𝟏, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏

H2/Er/20 0.955 760,267.95 29,050,709.41 2.79 3.191 3.339 3.487 3.108 3.295 3.482

47

Table 14 - PAQS Validation for H2/M/s System 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐, 𝑪𝑺

𝟐 = 𝟏

𝝁 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐, 𝑪𝑺

𝟐 = 𝟏

 QNA PAQS Arena

ρ tr Ns �̂�𝒒

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

𝝀𝟏 = 𝟎. 𝟐𝟎𝟓, 𝝀𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏𝟏 𝒑𝟐 = 𝟎. 𝟖𝟗

H2/M/1 0.8 1,134,660.88 1,815,457.41 13.42 15.610 16.136 16.662 15.007 15.599 16.191

𝝀𝟏 = 𝟎. 𝟏𝟒𝟏𝟎𝟓, 𝝀𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟎𝟎𝟏𝟒 𝒑𝟐 = 𝟎. 𝟗𝟗𝟖𝟔

H2/M/5 0.910 875,506.36 7,971,986.91 5.90 2.897 3.049 3.201 2.966 3.073 3.178

𝝀𝟏 = 𝟗𝟓. 𝟗𝟗𝟐, 𝝀𝟐 = 𝟐. 𝟐𝟕𝟐, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏

H2/M/10 0.937 842,447.17 15,783,322.70 4.22 4.843 5.021 5.198 4.844 5.025 5.206

𝝀𝟏 = 𝟏𝟗𝟐. 𝟕𝟎𝟒, 𝝀𝟐 = 𝟒. 𝟔𝟓𝟏, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏

H2/M/20 0.955 804,747.76 30,750,333.93 2.96 3.395 3.557 3.719 More than 3 hours

Table 15 - PAQS Validation for H2/H2/s System 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐, 𝑪𝑺

𝟐 = 𝟏𝟐. 𝟓

𝝁𝟏 = 𝟎. 𝟐𝟒𝟒, 𝝁𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏 𝒑𝟐 = 𝟎. 𝟗, 𝝁 = 𝟐 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐, 𝑪𝑺

𝟐 = 𝟏𝟐. 𝟓𝟐

 QNA PAQS Arena

ρ tr Ns �̂�𝒒

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

𝝀𝟏 = 𝟎. 𝟐𝟎𝟓, 𝝀𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏𝟏 𝒑𝟐 = 𝟎. 𝟖𝟗, 𝝀 = 𝟏. 𝟔

H2/H2/1 0.8 2,108,829.88 3,374,127.81 24.94 26.849 27.862 28.874 26.321 27.425 28.527

𝝀𝟏 = 𝟎. 𝟏𝟒𝟏𝟎𝟓, 𝝀𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟎𝟎𝟏𝟒 𝒑𝟐 = 𝟎. 𝟗𝟗𝟖𝟔, 𝝀 = 𝟗. 𝟏𝟎𝟓

H2/H2/5 0.910 1,627,475.01 14,819,092.22 10.96 9.422 9.902 10.381 9.266 9.552 9.838

𝝀𝟏 = 𝟗𝟓. 𝟗𝟗𝟐, 𝝀𝟐 = 𝟐. 𝟐𝟕𝟐, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏, 𝝀 = 𝟏𝟖. 𝟕𝟑𝟓

H2/H2/10 0.937 1,552,945.00 29,094,562.63 7.79 7.952 8.233 8.514 More than 3 hours

𝝀𝟏 = 𝟏𝟗𝟐. 𝟕𝟎𝟒, 𝝀𝟐 = 𝟒. 𝟔𝟓𝟏, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏, 𝝀 = 𝟑𝟖. 𝟐𝟏𝟏

H2/H2/20 0.955 1,487,957.65 56,856,566.54 5.47 5.652 5.893 6.134 More than 3 hours

B. CPU Time Testing (Efficiency)

The performance testing is conducted by measuring the CPU time necessary to

complete the simulation for a single run and by comparing it with that of ARENA. The

testing experiment provided several testing cases based on changing the factors

(queueing system parameters) which affect the response variable (mean waiting time in

queue).

48

The CPU time necessary to simulate a single run in PAQS is directly generated

by the program as shown in Figure 18, whereas the CPU time in Arena was measured

by an online stopwatch.4

Figure 18 - CPU Time in PAQS

Tables 16-32 show the CPU time needed to generate the result of mean waiting

time in queue simulated in PAQS vs. Arena. The times are measured in seconds.

Tables 16-29 also report PAQS and Arena point estimates, �̂�𝑞, for further validation.

Tables 16-32 demonstrate the main point behind PAQS well. PAQS CPU time is

significant less than that of Arena in all reported cases, e.g., by a factor of 20 in the last

row on Table 17. Furthermore, for high-variability queues such as those in Tables 30-

32, where Arena needs a very long CPU time (> 3 hours), PAQS runs efficiently within

manageable and reasonable times. Figures 19-21 compare the CPU times of Arena and

PAQS graphically, and further the superior performance of PAQS.

4 We contacted Arena support staff who indicated that Arena does not automatically generate a CPU time

for simulations.

CPU time is generated

by PAQS in seconds

49

Table 16 - CPU Time for M/M/s System, PAQS vs. Arena

𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟏

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU Time

PAQS

CPU Time

Arena

M/M/1 0.8 169,126.56 270,602.50 2.06 2.04 8.149 135

M/M/5 0.911 130,550.11 1,188,733.56 0.861 0.909 35.317 523

M/M/10 0.937 123,350.32 2,310,979.16 0.617 0.633 67.058 1,824

M/M/20 0.955 118,612.83 4,532,332.05 0.433 0.44 133.165 1,760

Table 17 - CPU Time for M/D/s System, PAQS vs. Arena

𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟎

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU Time

PAQS

CPU Time

Arena

M/D/1 0.8 84,563.28 135,301.25 1.02 0.983 3.956 66

M/D/5 0.911 65,275.06 594,366.78 0.439 0.453 17.301 390

M/D/10 0.937 61,675.16 1,155,489.58 0.313 0.330 33.611 540

M/D/20 0.955 59,306.41 2,266,166.03 0.222 0.227 66.366 1,205

Table 18 - CPU Time for M/Er/s System, PAQS vs. Arena

𝒌 = 𝟒, 𝝁𝒆 = 𝟖 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟓

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU Time

PAQS

CPU Time

Arena

M/Er/1 0.8 105,704.10 169,126.56 1.256 1.250 4.975 95

M/Er/5 0.911 81,593.82 742,958.48 0.560 0.551 21.813 368

M/Er/10 0.937 77,093.95 1,444,361.97 0.395 0.402 42.494 676

M/Er/20 0.955 74,133.02 2,832,707.53 0.272 0.274 89.442 1,460

Table 19 - CPU Time for M/G/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟐

𝜶 = 𝟎. 𝟓 𝜷 = 𝟏 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟐

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU Time

PAQS

CPU Time

Arena

M/G/1 0.8 253,689.84 405,903.75 2.929 2.950 11.953 142

M/G/5 0.911 195,825.17 1,783,100.34 1.293 1.409 52.254 660

M/G/10 0.937 185,025.48 3,466,468.73 0.931 0.868 103.327 1,231

M/G/20 0.955 177,919.24 6,798,498.08 0.661 0.714 207.082 2,766

50

Table 20 - CPU Time for M/G/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟒

𝜶 = 𝟎. 𝟐𝟓 𝜷 = 𝟐 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟒

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU Time

PAQS

CPU Time

Arena

M/G/1 0.800 422,816.41 676,506.25 4.822 4.764 19.922 292

M/G/5 0.911 326,375.28 2,971,833.91 2.142 1.972 101.738 1,259

M/G/10 0.937 308,375.79 5,777,447.89 1.524 1.310 192.286 2,520

M/G/20 0.955 296,532.07 11,330,830.13 1.086 0.865 384.705 4,605

Table 21 - CPU Time for M/W/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟑

𝜶 = 𝟐. 𝟏𝟔𝟕 𝜷 = 𝟎. 𝟓𝟔𝟒 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔𝟎𝟏, 𝟗. 𝟏𝟏𝟓, 𝟏𝟖. 𝟕𝟓𝟒, 𝟑𝟖. 𝟐𝟓, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟑

 ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)
CPU Time

PAQS

CPU Time

Arena

M/W/1 0.8 104,567.99 167,482.90 1.221 1.241 4.885 97

M/W/5 0.91 80,716.85 735,738.01 0.562 0.565 20.962 367

M/W/10 0.937 76,265.34 1,430,324.90 0.395 0.397 46.888 624

M/W/20 0.955 73,336.24 2,805,177.78 0.272 0.270 97.599 1,393

Table 22 - CPU time for M/W/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟐𝟗. 𝟐𝟒

𝜶 = 𝟎. 𝟑 𝜷 = 𝟎. 𝟎𝟓𝟓 𝝁 = 𝟐, 𝝀 = 𝟏. 𝟔𝟎𝟏, 𝟗. 𝟎𝟎𝟖, 𝟏𝟖. 𝟒𝟖𝟗, 𝟑𝟕, 𝟔𝟒𝟗, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟐𝟗. 𝟐𝟒

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU

Time

PAQS

CPU

Time

Arena

M/W/1 0.816 2,898,731.95 4,642,797.70 33.746 31.988 135.788 1,280

M/W/5 0.918 2,291,027.57 20,637,680.91 13.833 13.478 604.374 9,425

M/W/10 0.942 2,175,122.65 40,217,734.85 9.505 - 1178.014 >3hrs

M/W/20 0.959 2,098,393.52 79,004,020.89 6.700 - 2318.77 >3hrs

51

Table 23 - CPU time for M/H2/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟏 , 𝑪𝑺

𝟐 = 𝟏𝟐. 𝟓𝟐

𝝁𝟏 = 𝟎. 𝟐𝟒𝟒 𝝁𝟐 = 𝟏𝟎 𝒑𝟏 = 𝟎. 𝟏 𝒑𝟏 = 𝟎. 𝟗, 𝝀 = 𝟏. 𝟔𝟎𝟏, 𝟗. 𝟎𝟎𝟖, 𝟏𝟖. 𝟒𝟖𝟗, 𝟑𝟕, 𝟔𝟒𝟗,

 𝑪𝑨
𝟐 = 𝟏, 𝑪𝑺

𝟐 = 𝟏𝟐. 𝟓𝟐

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU

Time

PAQS

CPU

Time

Arena

M/H2/1 0.816 1,301,900.52 2,125,551.88 14.772 14.700 61.825 965

M/H2/5 0.918 1,029,802.50 9,452,132.10 6.415 6.400 271.923 3,803

M/H2/10 0.942 977,867.54 18,421,408.10 4.570 4.425 542.818 9,393

M/H2/20 0.959 943,479.33 36,189,201.29 3.045 - 1037.28 >3hrs

Table 24 - CPU time for Er/M/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓 , 𝑪𝑺

𝟐 = 𝟏

𝝁 = 𝟐, 𝒌 = 𝟒 𝝀𝒆 = 𝒌 × 𝝀 , 𝝀 = 𝟏. 𝟔𝟎𝟏, 𝟗. 𝟎𝟎𝟖, 𝟏𝟖. 𝟒𝟖𝟗, 𝟑𝟕, 𝟔𝟒𝟗, 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓 , 𝑪𝑺

𝟐 = 𝟏

 𝝀𝒆 ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU

Time

PAQS

CPU

Time

Arena

Er/M/1 6.4 0.8 105,704.10 169,126.56 1.135 1.104 4.981 78

Er/M/5 36.422 0.910 81,593.82 742,958.48 0.513 0.505 21.92 326

Er/M/10 74.94 0.936 77,093.95 1,444,361.97 0.367 0.344 42.697 577

Er/M/20 152.844 0.955 74,133.02 2,832,707.53 0.263 0.256 84.243 1,250

Table 25 - CPU time for Er/Er/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓 , 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟓

𝝁 = 𝟐, 𝝁𝒆 = 𝟖, 𝒌 = 𝟒, 𝒌 = 𝟒 , 𝝀𝒆 = 𝒌 × 𝝀 , 𝝀 = = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓 ,

𝑪𝑺
𝟐 = 𝟎. 𝟐𝟓

𝛌𝐞 ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU

Time

PAQS

CPU

Time

Arena

Er/Er/1 6.4 0.8 42,281.64 67,650.63 0.415 0.410 1.998 31

Er/Er/5 36.423 0.91 32,637.53 297,183.39 0.198 0.194 8.941 131

Er/Er/10 74.94 0.937 30,837.58 577,744.79 0.140 0.135 17.049 250

Er/Er/20 152.844 0.955 29,653.21 1,133,083.01 0.097 0.096 33.517 486

Table 26 - CPU time for Er/H2/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟎. 𝟐𝟓 , 𝑪𝑺

𝟐 = 𝟏𝟐. 𝟓𝟐

𝝁𝟏 = 𝟎. 𝟐𝟒𝟒, 𝝁𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏 𝒑𝟐 = 𝟎. 𝟗, 𝒌 = 𝟒 , 𝝀𝒆 = 𝒌 × 𝝀, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 =

𝟎. 𝟐𝟓, 𝑪𝑺
𝟐 = 𝟏𝟐. 𝟓𝟐

𝝀𝒆 ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU

Time

PAQS

CPU

Time

Arena

Er/H2/1 6.4 0.8 1,079,873.10 1,727,796.96 12.393 12.479 50.875 690

Er/H2/5 36.423 0.91 833,562.47 7,590,063.79 5.148 5.336 225.24 2,933

Er/H2/10 74.94 0.937 787,591.77 14,755,601.91 3.605 - 428.86 >3hrs

Er/H2/20 152.844 0.955 757,342.91 28,938,940.15 2.532 - 842.474 >3hrs

52

Table 27 - CPU time for H2/Er/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐 , 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟓

𝝁 = 𝟐, 𝝁𝒆 = 𝟖, 𝒌 = 𝟒, 𝝀 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐, 𝑪𝑺

𝟐 = 𝟎. 𝟐𝟓

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU

Time

PAQS

CPU

Time

Arena

𝝁𝟏 = 𝟎. 𝟐𝟎𝟓, 𝝁𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏𝟏 𝒑𝟐 = 𝟎. 𝟖𝟗

H2/Er/1 0.8 1,071,238.42 1,713,981.47 14.554 15.38 49.858 631

𝝁𝟏 = 𝟎. 𝟏𝟒𝟏𝟎𝟓, 𝝁𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟎𝟎𝟏𝟒 𝒑𝟐 = 𝟎. 𝟗𝟗𝟖𝟔

H2/Er/5 0.910 826,550.07 7,526,211.82 2.339 2.278 217.983 2,750

𝝁𝟏 = 𝟗𝟓. 𝟗𝟗𝟐, 𝝁𝟐 = 𝟐. 𝟐𝟕𝟐, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏

H2/Er/10 0.937 796,190.80 14,916,705.51 4.752 4.677 436.08 5,693

𝝁𝟏 = 𝟏𝟗𝟐. 𝟕𝟎𝟒, 𝝁𝟐 = 𝟒. 𝟔𝟓𝟏, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏

H2/Er/20 0.955 760,267.95 29,050,709.41 3.397 3.295 837.247 702,051

Table 28 - CPU time for H2/M/s Systeme, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐 , 𝑪𝑺

𝟐 = 𝟏

𝝁 = 𝟏. 𝟔, 𝟗. 𝟏𝟎𝟓, 𝟏𝟖. 𝟕𝟑𝟓, 𝟑𝟖. 𝟐𝟏𝟏, 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐, 𝑪𝑺

𝟐 = 𝟏

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU

Time

PAQS

CPU

Time

Arena

𝝀𝟏 = 𝟎. 𝟐𝟎𝟓, 𝝀𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏𝟏 𝒑𝟐 = 𝟎. 𝟖𝟗

H2/M/1 0.8 1,134,660.88 1,815,457.41 16.136 15.599 51.721 1,354

𝝀𝟏 = 𝟎. 𝟏𝟒𝟏𝟎𝟓, 𝝀𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟎𝟎𝟏𝟒 𝒑𝟐 = 𝟎. 𝟗𝟗𝟖𝟔

H2/M/5 0.910 875,506.36 7,971,986.91 3.049 3.073 227.267 3,670

𝝀𝟏 = 𝟗𝟓. 𝟗𝟗𝟐, 𝝀𝟐 = 𝟐. 𝟐𝟕𝟐, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏

H2/M/10 0.937 842,447.17 15,783,322.70 5.021 5.025 451.635 7678

𝝀𝟏 = 𝟏𝟗𝟐. 𝟕𝟎𝟒, 𝝀𝟐 = 𝟒. 𝟔𝟓𝟏, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏

H2/M/20 0.955 804,747.76 30,750,333.93 3.557 - 888.833 >3hrs

Table 29 - CPU time for H2/H2/s System, PAQS vs. Arena, 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐 , 𝑪𝑺

𝟐 = 𝟏𝟐. 𝟓𝟐

𝝁𝟏 = 𝟎. 𝟐𝟒𝟒, 𝝁𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏 𝒑𝟐 = 𝟎. 𝟗, 𝝁 = 𝟐 𝑪𝑨
𝟐 = 𝟏𝟐. 𝟓𝟐, 𝑪𝑺

𝟐 = 𝟏𝟐. 𝟓𝟐

ρ tr Ns �̂�𝑞(PAQS) �̂�𝑞(Arena)

CPU

Time

PAQS

CPU

Time

Arena

𝝀𝟏 = 𝟎. 𝟐𝟎𝟓, 𝝀𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟏𝟏 𝒑𝟐 = 𝟎. 𝟖𝟗, 𝝀 = 𝟏. 𝟔

H2/H2/1 0.8 2,108,829.88 3,374,127.81 27.862 27.425 96.313 1,900

𝝀𝟏 = 𝟎. 𝟏𝟒𝟏𝟎𝟓, 𝝀𝟐 = 𝟏𝟎, 𝒑𝟏 = 𝟎. 𝟎𝟎𝟏𝟒 𝒑𝟐 = 𝟎. 𝟗𝟗𝟖𝟔, 𝝀 = 𝟗. 𝟏𝟎𝟓

H2/H2/5 0.910 1,627,475.01 14,819,092.22 9.902 9.838 423.334 7,921

𝝀𝟏 = 𝟗𝟓. 𝟗𝟗𝟐, 𝝀𝟐 = 𝟐. 𝟐𝟕𝟐, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏, 𝝀 = 𝟏𝟖. 𝟕𝟑𝟓

H2/H2/10 0.937 1,552,945.00 29,094,562.63 8.233 - 836.805 >3hrs

𝝀𝟏 = 𝟏𝟗𝟐. 𝟕𝟎𝟒, 𝝀𝟐 = 𝟒. 𝟔𝟓𝟏, 𝒑𝟏 = 𝟎. 𝟗 𝒑𝟐 = 𝟎. 𝟏, 𝝀 = 𝟑𝟖. 𝟐𝟏𝟏

H2/H2/20 0.955 1,487,957.65 56,856,566.54 5.893 - 1626.345 >3hrs

53

Table 30 - Mean waiting time in queue and CPU time for M/H2/10 system, PAQS

 QNA PAQS

ρ tr Ns �̂�𝒒

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

µ1 = 0.125, µ2 = 10, 𝑃1 = 0.051, 𝑃2 = 0.949, µ = 2, 𝜆 = 18.83, 𝐶𝑆

2 = 25, 𝐶𝐴
2 = 1

M/H2/10 0.942 1,880,511.31 35,425,724.53 8.04 8.097 8.568 9.038

µ1 = 0.0633, µ2 = 10, 𝑃1 = 0.025, 𝑃2 = 0.975, 𝜆 = 18.83. 𝐶𝑆

2 = 50, 𝐶𝐴
2 = 1

M/H2/10 0.942 3,688,907.02 69,492,910.35 15.77 15.825
16.63

7
17.448

µ1 = 0.03181, µ2 = 10, 𝑃1 = 0.013, 𝑃2 = 0.987, 𝜆 = 18.83, 𝐶𝑆

2 = 100, 𝐶𝐴
2 = 1

M/H2/10 0.942 7,305,075.63 137,615,549.44 31.23 31.608
33.30

9
35.009

µ1 = 0.0064, µ2 = 10, 𝑃1 = 0.0025, 𝑃2 = 0.9975, 𝜆 = 18.83, 𝐶𝑆

2 = 500, 𝐶𝐴
2 = 1

M/H2/10 0.924 22,173,262.90 417,707,687.16 118.47 109.976
114.0

85
118.194

Table 31 - Mean waiting time in queue and CPU time for M/G/10 system, PAQS

 QNA PAQS

ρ tr Ns �̂�𝒒

�̂�𝒒

− 𝑯𝑾
�̂�𝒒

�̂�𝒒

+ 𝑯𝑾

𝛼 = 0.04, 𝛽 = 12.5, µ = 2, = 18.735, 𝐶𝑆

2 = 25, 𝐶𝐴
2 = 1

M/G/10 0.937 1,603,554.12 30,042,729.02 8.04 7.934 8.424 8.914

𝛼 = 0.02, 𝛽 = 25, µ = 2, = 18.735, 𝐶𝑆

2 = 50, 𝐶𝐴
2 = 1

M/G/10 0.937 3,145,433.08 58,929,968.46 15.77 14.816 15.722 16.628

𝛼 = 0.01, 𝛽 = 50, µ = 2, = 18.735, 𝐶𝑆

2 = 100, 𝐶𝐴
2 = 1

M/G/10 0.937 6,229,191.00 116,704,447.33 31.23 28.511 29.633 30.755

𝛼 = 0.002, 𝛽 = 243, µ = 2, = 18.735, 𝐶𝑆

2 = 500, 𝐶𝐴
2 = 1

M/G/10 0.911 16,340,870.01 306,147,653.00 95.28 86.663 91.157 95.651

Table 32 - Mean waiting time in queue and CPU time for M/W/10 system, PAQS

 QNA PAQS

ρ tr Ns �̂�𝒒 �̂�𝒒 − 𝑯𝑾 �̂�𝒒

�̂�𝒒

+ 𝑯𝑾

𝛼 = 0.311, 𝛽 = 0.063, 𝜇 = 2, 𝜆 = 18.755, 𝐶𝑆

2 = 25, 𝐶𝐴
2 = 1

M/W/10 0.935 1,541,596.14 28,911,997.27 7.82 7.021 7.468 7.915

𝛼 = 0.2667, 𝛽 = 0.0302, 𝜇 = 2, 𝜆 = 18.755, 𝐶𝑆

2 = 50, 𝐶𝐴
2 = 1

M/W/10 0.938 3,242,006.68 60,802,492.68 12.87 10.443 11.007 11.571

𝛼 = 0.233, 𝛽 = 0.013, 𝜇 = 2.054, 𝜆 = 18.755, 𝐶𝑆

2 = 100, 𝐶𝐴
2 = 1

M/W/10 0.917 3,757,396.64 70,468,417.96 20.19 16.935 18.824 19.633

𝛼 = 0.1808, 𝛽 = 0.0016, 𝜇 = 2.054, 𝜆 = 18.755, 𝐶𝑆

2 = 500, 𝐶𝐴
2 = 1

M/W/10 0.913 17,301,422.09 324,481,006.72 99.75 67.939 73.237 78.535

54

Figure 19 - CPU time for M/H2/10 system, PAQS vs. Arena

Figure 20 - CPU time for M/G/10 system, PAQS vs. Arena

0 20 40 60 80 100

25

50

100

500

CPU time in seconds

Thousands

C
o

e
ff

ic
ie

n
t

o
f

V
ar

ia
ti

o
n

 f
o

r
Se

rv
u

ce
 T

im
e

s

CPU Time
(ARENA)

0 20 40 60 80 100 120 140

25

50

100

500

CPU time in seconds

Thousands

C
o

e
ff

ic
ie

n
t

o
f

V
ar

ia
ti

o
n

 f
o

r
Se

rv
u

ce
 T

im
e

s

CPU Time
(ARENA)

55

Figure 21 - CPU time for M/W/10 system, PAQS vs. Arena

0 50 100 150 200 250

25

50

100

500

CPU time in seconds

Thousands

C
o

e
ff

ic
ie

n
t

o
f

V
ar

ia
ti

o
n

 f
o

r
Se

rv
u

ce
 T

im
e

s

CPU Time (ARENA)

CPU Time (PAQS)

56

CHAPTER VI

CONCLUSION AND FUTURE WORK

The purpose of this thesis is to design and implement a simulation software,

PAQS, with a graphical user interface, to efficiently and effectively estimate the mean

delay time, and related metrics, in a single-node queueing system. PAQS could be used

with a text command line interface with a high efficiency. However, to provide

usability and accessibility, a graphical user interface is created. The graphical user

interface is implemented based on Nielson’s (1993) guidelines. The designed GUI is

easy to use, and it does not need to have any prior software or technical knowledge.

PAQS is built based on cutting-edge tools and results from the recent literature

that, to our knowledge, are put together in simulation software for the first time. These

constructs are mainly (i) an efficient Monte Carlo simulation technique based of the

workload vector method of Kiefer and Wolfowitz (1956) as recently enhanced by a

sorting technique in El-Taha and Maddah (2006), (ii) the efficient approach to

determine the suitable length for one-long-replication G/G/s simulation of Whitt (1989),

and (iii) the long-period, composite, random number generator of L’Ecuyer et al.

(1999). It is worth mentioning that a recent work, Ebert et al. (2017), seems to have

picked-up on the benefits of using workload vector method of Kiefer and Wolfowitz

(1956) in Monte Carlo simulations. However, the work of Ebert et al. (2017) lacks

many of the distinguishing features of PAQS, mainly the improvement proposed in El-

Taha and Maddah (2006).

The superior performance of PAQS was demonstrated via comparison to the

standard simulation package Arena. In an extensive numerical testing, PAQS produced

57

results which are statistically indistinguishable than those of Arena, but with a

significantly lower CPU time, reaching 1/20 of that of Arena in some simulations.

Moreover, for simulating high-variability queues, where Arena could not produce valid

results within a reasonable time, PAQS ran in a reasonable time. The abundance of such

high-variability queues in modern Internet and communication networks testifies to the

timelines and usefulness of PAQS.

A direction for the future work is to incorporate new functionalities to the GUI

of PAQS. For example, the GUI could generate graphs of the chosen inter-arrival and

service time distributions and the distribution of waiting time in queue. Another feature

is to allow simplified inputs like mean and variance of inter-arrival and service times,

instead of requiring the specification of a complete distribution. This can be achieved

by an automated fitting of appropriate distributions. The approach of Seelen et al.

(1985) of fitting a two-phase Hyperexponential distribution for data with a coefficient

of variation > 1, and an Erlang when the coefficient of variation < 1, could be useful

here. Finally, a worthwhile future research is to investigate the applicability of PAQS

in a queueing network setting, instead of being limited to a single node. Ebert et al.

(2017) present some useful ideas along this direction.

58

REFERENCES

Adan, I., and Zhao, Y. (1994). Analyzing GI/Er/1 queues. Nuclear Fusion - NUCL

FUSION

Arabo, F. (2011). High Availability Queing System (Master’s Thesis). Retrieved from

http://sdsu-dspace.calstate.edu/bitstream/handle/10211.10/1029/Arabo_Firas.pdf

Banks, J., Crason, J., Nelson, B., and Nicol D. (2010). Discrete-Event System

Simulation, 5th ed., Pearson Education, Inc. Uppoer Saddle River, New Jersey.

Baskett F, Chandy K, Muntz R, Palacios F (1975). Open, closed and mixed networks

of queues with different classes of customers. Journal of the ACM22(2):248–260

Bitran, G. and Tirupati, D. (1988). Multiproduct queueing networks with deterministic

routing: decomposition approach and the notion of interference, Management

Science, 34 (1988) 75-100.

Cooper, R.B. (1981). Introduction to Queueing Theory, 2nd ed., Elsevier North Holland,

New York, 347pp.

Characteristics of the Weibull Distribution. (2002, April). Reability Hot Wire. Retrieved

from http://www.weibull.com/hotwire/issue14/relbasics14.htm

Dai, J.G, Harrison, J.M. (1993) The qnet method for two-moment analysis of closed

manufacturing systems. Annals of Applied Probability 3(4):968–1012

Dai, J.G, Nguyen, V. and Reiman, M.I. (1994). Sequential Bottleneck Decomposition:

An Appoximation Method for Generalized Jackson Networks. Operations Research

(v42,n1,1994), ppl199-136

De Smit, J.H.A. (1983). A numerical solution for the multi-server queue with

hyperexponential service times. Operations Research Letters, Vol.2/No.5

Ebert, A., Wu, P., Mengersen, K. and Ruggeri, F. (2017). Computationally efficient

simulation of queues: The R package queuecomputer. arXiv preprint

arXiv:1703.02151.

El-Taha, M. and Maddah B. (2006). Allocation of Service Time in a Multi-Server

System . Management Science, 52: 623-637

Erlang, A.K. (1917), Solution of some problems in the theory of probabilities of some

significance in automatic telephone exchanges. Post Office Electrical Engineer's

Journal, 10, 189 -197

Feldmann, A. and Whitt, W. (1998). Fitting mixtures of exponentials to long-tail

distributions to analyze network performance models. Performance

Evaluation. 31(3–4): 245.

Fowler, T. B. (1997). A short tutorial on fractiles and internet traffic. The

Telecommunications Review, 10 , 1–14 .

Gamma Distribution. Rocscience. Retrieved from https://www.rocscience.com

http://sdsu-dspace.calstate.edu/bitstream/handle/10211.10/1029/Arabo_Firas.pdf
http://www.weibull.com/hotwire/issue14/relbasics14.htm
http://www.wikiwand.com/en/Anja_Feldmann
http://www.wikiwand.com/en/Ward_Whitt
https://www.rocscience.com/help/swedge/index.htm%23t=swedge%2FGamma_Distribution.htm

59

Gross, D., Harris, C. (1998). Fundamentals of Queueing Theory, 3rd ed. John Wiley and

Sons, New York.

Gross, D., Shortle, JF, Thompson, JM., Harris, CM. (2008). Fundamentals of Queueing

Theory, 4th edn. John Wiley & Sons, Inc.

Govil M., Fu M. (1999) Queueing Theory in Manufacturing: A Survey. Journal of

Manufacturing Systems, Vol.18/No.3

Gordon W, Newell G (1967) Closed queueing systems with exponential servers.

Operations Research, 15(2):254–65

Harrison, J.M., Nguyen, V. (1990). The qnet method for two-moment analysis of open

queueing networks. Queueing Systems 6(1):1–32

Harchol-Balter, M., & Downey, A. B. (1997). Exploiting process life time distributions

for dynamic load balancing. ACM Transactions on Computer Systems, 15 , 253–285

.

Harchol-Balter, M. , Crovella, M. E. , & Murta, C. D. (1999). On choosing a task

assign- ment policy for a distributed server system. Journal of Parallel and

Distributed Computing, 59 , 204–228 .

Harchol-Balter, M. (2002). Task assignment with unknown duration. Journal of the

Association for Computing Machinery, 49 , 260–288 .

Kamath, M., Sivaramaksrishnan, S., Shirhatti, G. (1995) Raqs:A software pacakage to

support instruction and research in queueing systems. Proceedings of 4th Industrial

Engineering Research Conference, IIE, Norcross, GA pp 944-953

Kiefer, J., Wolfowitz J. (1956). On the characterization of the general queueing process

with applications to random walk. Ann. Math. Statist. 27 147–161.

Jackson, JR. (1957) Networks of waiting lines. Operations Research 5(4):518–521

Jackson, J. (1963) Jobshop-like queueing systems. Management Science 10(1):131– 142

Kelly FP (1975) Networks of queues with customers of different types. Journal of

Applied Probability 12(3):542–554

L’Ecuyer, P. (1999). Good parameter sets for combined multiple recursive random

number generators. Operations Research, 47:1 (159-164)

L'Ecuyer, P., Blouin, F. and Couture R. (1999). A search for good multiple recursive

random number generators, ACM Transactions on Modeling and Computer

Simulation 3, no.2, 87-98

L’Ecuyer P. (2017). History of uniform random number generation. WSC 2017 - Winter

Simulation Conference, Las Vegas, United States.

Law, A. M. (2015). Simulation Modeling and Analysis, 5Th ed., McGraw-Hill, New

York

Law, A.M. and Carson, J.S. (1979). A Sequential Procedure for Determining the Length

of a Steady-State Simulation. Operations Research, Vol.30, pp.556-568

60

Leland, W. , Taqqu, M. , Willinger, W. , & Wilson, D. (1994). On the self-similar

nature of ethernet traffic. IEEE Transactions on Networking, 2, 1–15 .

Liu, J. , Shu, Y. , Zhang, L. , Xue, F. , & Yang, O. (1999). Traffic modeling based on

FARIMA models. In Proceeding of the IEEE 1999 Canadian conference on

electrical and computer engineering

Maddah, B, El-Taha, M, and Tayeh, R. A. (2010). Optimal allocation of servers and

processing time in a load balancing system. Computers and Operations Research,

37 , 2173–2181

Maddah, B, Nasr W., and Charanek A. (2017). A Multi-Station System for Reducing

Congestion in High-Variability Queues. European Journal of Operational

Research, 262: 602-619.

Nielsen J. Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 1993. isbn: 0125184050.

Nielsen, J., 2003. Usability 101: Introduction to Usability. Nielsen Norman Group.

Available at https://www.nngroup.com/articles/usability-101-introduction-to-

usability/.

Ongaro, A. and Orsi, C.(2015).Some Results on Non-Central Beta Distribution.

STATISTICA, anno LXXV, n. 1

Paxson, V. (2000). Why measuring the internet is painfully hard. In Proceedings of the

fifth informs telecommunications conference. Boca Raton, Florida.

Random House Webster’s College Dictionary, Glencoe Edition. Random House, Inc.,

New York, 1991

Reiser M and Lavenberg S. S. (1980). Mean value analysis of closed multi-chain

queueing networks. Journal of ACM, Vol. 27, No. 2, PP. 313-322.

Ross, S. (2014). Introduction to Probability Models, 11th ed., Elsevier Inc.

Schmeiser, B. (1982). Detecting Initialization Bias in Simulation Output. Operations

Research, Vol.30, p. 569-590

Scheller-Wolf, A. , and Sigman, K. (1997). New bounds for expected delay in FIFO

GI/GI/c queues. Queueing Systems, 26 , 169–186 .

Schneiderman, B., and Plaisant C., (2005).Designing the User Interface, 4th ed., Pearson

Education, Inc. Uppoer Saddle River, New Jersey.

Seelen, L.P., Tijms, H.C and Van Hoorn, M.H. (1985). Tables for Multi-Server Queues.

Elsevier Science Ltd., 455 pp.

Willinger, W. , Taqqu, M. S. , Sherman, R. , & Wilson, D. V. (1997). Self-similarity

through high-variability: statistical analysis of ethernet LAN traffic at the source

level. IEEE Transactions on Networking, 5, 71–86.

Whitt, W. (1983). The queueing network analyzer. Bell System Tech. J. 62 2779–2815.

Whitt, W. (1989). Planning queueing simulations. Management Science. 35 1341–1366.

https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/

61

Whitt, W. (1993). Approximations for the GI / GI / m queue. Production and

Operations Management, 2, 114–161 .

Wickens, Christopher D., Lee, John D., Liu, Y. and Boyle, L. (2017). An Introduction

to Human Factors Engineering. Third ed. CreateSpace ISBN: 1539808009.

62

APPENDICES

63

APPENDIX I

C++ Code

 /********** |PAQS - Pragmatic Algorithms for Queueing Simulation| **********

 By Hoda El Halabi and Bacel Maddah(bm05@aub.edu.lb) */

#include "pch.h"
#include <iostream>
#include <random>
#include <ctime>
#include <random>
#include <math.h>
#include <limits>
#include <memory>
#include <time.h>
#include <chrono>
#include<fstream>
#include <stdio.h>
#include <tuple>
#include <string>
#include <map>
#include <deque>
#include <vector>

using namespace std;

/******************* L'Ecuyer Random Number Generator *********************/

#define norm 2.328306549295728e-10
#define m1 4294967087.0
#define m2 4294944443.0
#define a12 1403580.0
#define a13n 810728.0
#define a21 527612.0
#define a23n 1370589.0

/***
The seeds for s10, s11, s12 must be integers in [0, m1 - 1] and not all 0.
The seeds for s20, s21, s22 must be integers in [0, m2 - 1] and not all 0.
***/

#define SEED 12345

static double s10 = SEED, s11 = SEED, s12 = SEED,
s20 = SEED, s21 = SEED, s22 = SEED;

double MRG32k3a(void)
{
 long k;
 double p1, p2;
 /* Component 1 */
 p1 = a12 * s11 - a13n * s10;
 k = static_cast<long>(static_cast<double>(p1) / m1);
 p1 -= k * m1;
 if (p1 < 0.0)
 p1 += m1;

64

 s10 = s11;
 s11 = s12;
 s12 = p1;

 /* Component 2 */
 p2 = a21 * s22 - a23n * s20;
 k = static_cast<long>(static_cast<double>(p2) / m2);
 p2 -= k * m2;
 if (p2 < 0.0)
 p2 += m2;
 s20 = s21;
 s21 = s22;
 s22 = p2;

 /* Combination */
 if (p1 <= p2)
 return ((p1 - p2 + m1) * norm);
 else
 return ((p1 - p2) * norm);
}

/************************* Uniform Distribution **************************/
double Uniform(double a, double b)
{
 double U = MRG32k3a();
 U = a + (b - a)*U;
 return U;
}

/********************** Exponential Distribution *************************/
double Expntl(double lambda)
{
 double U = MRG32k3a();
 U = log(U) / (-lambda);
 return U;
}

/************************ Triangular Distribution *************************/
double Triangular(double a, double b, double m)
{
 double U = MRG32k3a();
 double Y;
 if (U < m) { return Y = pow(m*U, 0.5); }
 else { return Y = 1 - pow((1 - U)*(1 - m), 0.5); }
}

/******************** Hyperexponential Distribution **********************/
double Hyperexpntl(double mu1, double mu2, double p1)
{
 double he = 0;
 double U1 = MRG32k3a();
 double U2 = MRG32k3a();

 if (U1 <= p1)
 he = log(U2) / (-mu1);
 if (U1 > p1)
 he = log(U2) / (-mu2);
 return he;
}

65

/********************** Weibull Distribution ************************/
double Weibull(double alfa1, double beta1)
{
 double U = MRG32k3a();
 double Wbl;
 Wbl = beta1 * pow(-log(U), 1 / alfa1);
 return Wbl;
}

/********************** m-Erlang Distribution *************************/
double kErlang(double mhue, int k)
{
 double RESULT = 0;
 for (int i = 1; i <= k; i++)
 {
 RESULT = RESULT + expntl(mhue);
 }
 return RESULT;
}

double Round(double x)
{
 if ((x - floor(x)) < 0.5)
 x = floor(x);
 else
 x = ceil(x);
 return x;
}

/************************ Gamma Distribution *************************/
double Gamma(double Alfa, double Beta)
{
 double a, b, d, q, P, U1, U2, Y, X, V, Z, W, teta;
 bool Ftest = false;

 if (Alfa < 1)
 {
 b = (exp(1) + Alfa) / exp(1);

 do
 {
 U1 = MRG32k3a();
 P = b * U1;

 if (P <= 1)
 {
 Y = pow(P, 1 / Alfa);
 U2 = MRG32k3a();

 if (U2 <= exp(-Y))
 {
 return X = Beta * Y;
 Ftest = true;
 }
 else Ftest = false;
 }

 else if (P > 1)
 {

66

 Y = -log((b - P) / Alfa);
 U2 = MRG32k3a();
 double test = pow(Y, Alfa - 1);

 if (U2 <= test)
 {
 return X = Beta * Y;
 Ftest = true;
 }
 else Ftest = false;
 }

 } while (Ftest == false);

 } // end if (0 < Alfa < 1)

 else if (Alfa > 1)
 {
 a = 1 / pow(2 * Alfa - 1, 1 / 2);
 b = Alfa - log(4);
 q = Alfa + 1 / a;
 teta = 4.5;
 d = 1 + log(teta);
 do {
 U1 = MRG32k3a();
 U2 = MRG32k3a();
 V = a * log(U1 / (1 - U1));
 Y = Alfa * exp(V);
 Z = U1 * U1*U2;
 W = b + q * V - Y;

 if ((W + d - teta * Z) >= 0)
 {
 return X = Beta * Y;
 Ftest = true;
 }
 else
 if (W >= log(Z))
 {
 return X = Beta * Y;
 Ftest = true;
 }
 else Ftest = false;

 } while (Ftest == false);

 } // end if (Alfa > 1)

 else if (Alfa == 1)
 {
 return X = Beta * expntl(1);
 }

}

/*********************** Beta Distribution **************************/
double Beta(double alfa1, double alfa2)
{

67

 double Y1, Y2, X;
 Y1 = Gamma(alfa1, 1);
 Y2 = Gamma(alfa2, 1);
 return X = Y1 / (Y1 + Y2);
}

static enum string_code {
 eDeterministic,
 eUniform,
 eExpntl,
 eTriangular,
 eHyperexpntl,
 eWeibull,
 emErlang,
 ekErlang,
 eEH2,
 eGamma,
 eBeta,
};

string_code StringValue(std::string const& inString)
{
 if (inString == "D") return eDeterministic;
 if (inString == "U") return eUniform;
 if (inString == "M") return eExpntl;
 if (inString == "T") return eTriangular;
 if (inString == "H2") return eHyperexpntl;
 if (inString == "E") return ekErlang;
 if (inString == "W") return eWeibull;
 if (inString == "G") return eGamma;
 if (inString == "B") return eBeta;
}

static std::map<std::string, string_code> s_mapStringValues;
static char ATInput[_MAX_PATH];
static char STInput[_MAX_PATH];

void main()
{
 _CrtMemDumpAllObjectsSince(NULL);
 int c;
 double Zb = 0.524;
 double ε = 0.1;

 int i, ns;
 double Tn, Sn, dummy;
 double Wn[1000];
 double D = 0;
 double w1 = 0;
 std::vector <float> testtable;
 std::clock_t c_start = std::clock(); //CPU Time
 auto t_start = std::chrono::high_resolution_clock::now(); // Wall Clock
 double lambdaA;
 double mhueS;
 double a, m, b, aS, mS, bS;
 double alfaA, betaA, alfaS, betaS;
 double mhue1, mhue2, p1, mhueS1, mhueS2, pS1;
 double meanESA, SquaremeanESA, meanES, SquaremeanES;
 double variance, mean;

68

 double A_csquare, S_csquare;
 double rho = 1.5;

 /****************Testing the Server Utilization Coefficient ***************/
 do

{
std::cout << " \n Please enter valid ratios where the traffic intensity is
should be less or equal to 1 \n";

 std::cin.clear();
 std::cin.ignore(1000, '\n');
 std::cout << " \n Inter - Arrival Distribution \n Enter M =

Exponential, D = Determinisitic, E = Erlang wiht k phases, G
= Gamma, H2 = Two-Phase Hyperexponential, U = Uniform, T =
Triangular, W = Weibull \n ";

 std::cin.getline(ATInput, _MAX_PATH);
 std::cout << "\n\n";

 std::cout << " \n Service Distribution \n Enter M =
Exponential, D = Determinisitic, E = Erlang wiht k phases, G
= Gamma, H2 = Two-Phase Hyperexponential, U = Uniform, T =
Triangular, W = Weibull \n ";

 std::cin.getline(STInput, _MAX_PATH);
 std::cout << "\n\n";
 std::cout << " \n Number of Servers \n";
 std::cin >> c;
 std::cout << "\n\n";

switch (StringValue(ATInput))
 {
 case eDeterministic:
 std::cout << "Enter Inter-arrival Rate, Lambda \n";
 std::cin >> lambdaA;
 A_csquare = 0;
 std::cout << "Int-Arrival_csquare = " << A_csquare;
 std::cout << "\n\n";
 break;

 case eExpntl:
 std::cout << "Enter Inter-arrival Rate, Lambda \n";
 std::cin >> lambdaA;
 A_csquare = 1;
 std::cout << "Int-Arrival_csquare = " << A_csquare;
 std::cout << "\n\n";
 break;

 case eTriangular:
 std::cout << "Enter first parameter a _Int-Arrival-Dist. \n";
 std::cin >> a;
 std::cout << "Enter second parameter m _Int-Arrival-Dist. \n";
 std::cin >> m;
 std::cout << "Enter third parameter b _Int-Arrival-Dist. \n";
 std::cin >> b;
 lambdaA = 3 / (a + m + b);
 variance = (pow(a, 2)*pow(m, 2)*pow(b, 2) - a * b-a * m-m * b) / 18;
 A_csquare = variance / pow(1 / lambdaA, 2);
 std::cout << "Int-Arrival_csquare = " << A_csquare;
 std::cout << "\n\n";
 break;

 case eUniform:

69

 std::cout << "Enter first parameter a _Int-Arrival-Dist. \n";
 std::cin >> a;
 std::cout << "Enter second parameter b _Int-Arrival-Dist. \n";
 std::cin >> b;
 lambdaA = 2 / (a + b);
 variance = pow((b - a), 2) / 12;
 A_csquare = variance / pow(1 / lambdaA, 2);
 std::cout << "Int-Arrival_csquare =" << A_csquare;
 std::cout << "\n\n";
 break;

 case eGamma:
 std::cout << "Enter first parameter alfa _Int-Arrival-Dist. \n";
 std::cin >> alfaA;
 std::cout << "Enter second parameter beta _Int-Arrival-Dist. \n";
 std::cin >> betaA;
 lambdaA = 1 / (alfaA*betaA);
 variance = alfaA * pow(betaA, 2);
 A_csquare = variance / pow(1 / lambdaA, 2);
 std::cout << "Int-Arrival_csquare =" << A_csquare;
 std::cout << "\n\n";
 break;

 case eBeta:
 std::cout << "Enter first parameter alfa _Int-Arrival-Dist. \n";
 std::cin >> alfaA;
 std::cout << "Enter second parameter beta _Int-Arrival-Dist. \n";
 std::cin >> betaA;
 lambdaA = (alfaA + betaA) / alfaA;
 variance = 1 / lambdaA * betaA/((alfaA + betaA)*(alfaA + betaA + 1));
 A_csquare = variance / pow(1 / lambdaA, 2);
 std::cout << "Int-Arrival_csquare = " << A_csquare;
 std::cout << "\n\n";

break;

 case ekErlang:
 std::cout << "Enter first parameter k _Int-Arrival-Dist. \n";
 std::cin >> a;

std::cout << "Enter second parameter the inter-arrival rate of erlang
_Int-Arrival-Dist. \n";

 std::cin >> b;
 lambdaA = b / a;
 A_csquare = 1 / a;
 std::cout << "Int-Arrival_csquare = " << A_csquare;
 std::cout << "\n\n";
 break;

 case eHyperexpntl:
 std::cout << "Enter First rate mhue1 _Int-Arrival-Dist. \n";
 std::cin >> mhue1;
 std::cout << "Enter Second rate mhue2 _Int-Arrival-Dist. \n";
 std::cin >> mhue2;
 std::cout << "Enter Probability _Int-Arrival-Dist. \n";
 std::cin >> p1;
 meanESA = p1 / mhue1 + (1 - p1) / mhue2;
 lambdaA = 1 / meanESA;
 SquaremeanESA = p1 * 2 / pow(mhue1, 2) + (1 - p1) * 2/pow(mhue2, 2);
 A_csquare = (SquaremeanESA - pow(meanESA, 2)) / (pow(meanESA, 2));
 std::cout << "Int-Arrival_csquare = " << A_csquare;
 std::cout << "\n\n";

70

 break;

 case eWeibull:
 std::cout << "Enter Shape Parameter Alfa _Int-Arrival-Dist. \n";
 std::cin >> alfaA;
 std::cout << "Enter Scale parameter Beta _Int-Arrival-Dist. \n";
 std::cin >> betaA;
 double mean = lgamma(1 / alfaA) * betaA / alfaA;
 lambdaA = 1 / mean;
 variance = (pow(betaA,2)/alfaA) *(2*lgamma(2/alfaA)-(1/

alfaA)*(pow(lgamma(1/alfaA),2)));
 A_csquare = variance / pow(mean, 2);
 break;

 }

switch (StringValue(STInput))
 {
 case eDeterministic:
 std::cout << "Enter Service Rate, Mhue \n";
 std::cin >> mhueS;
 S_csquare = 0;
 std::cout << "Service_csquare = " << S_csquare;
 std::cout << "\n\n";
 break;

 case eExpntl:
 std::cout << "Enter Service Rate, Mhue \n";
 std::cin >> mhueS;
 S_csquare = 1;
 std::cout << "Service_csquare = " << S_csquare;
 std::cout << "\n\n";
 break;

 case eTriangular:
 std::cout << "Enter first parameter a _Sevice-Dist. \n";
 std::cin >> aS;
 std::cout << "Enter second parameter m _Sevice-Dist. \n";
 std::cin >> mS;
 std::cout << "Enter third parameter b _Sevice-Dist. \n";
 std::cin >> bS;
 mhueS = 3 / (aS + mS + bS);
 variance = (pow(aS, 2)*pow(mS, 2)*pow(bS, 2)-aS*bS-aS*mS-mS*bS)/18;
 S_csquare = variance / (1 / mhueS, 2);
 std::cout << "Service_csquare = " << S_csquare;
 std::cout << "\n\n";
 break;

 case eUniform:
 std::cout << "Enter first parameter a _Sevice-Dist. \n";
 std::cin >> aS;
 std::cout << "Enter second parameter b _Sevice-Dist. \n";
 std::cin >> bS;
 mhueS = 2 / (aS + bS);
 variance = pow((bS - aS), 2) / 12;
 S_csquare = variance / pow(1 / mhueS, 2);
 std::cout << "Service_csquare = " << S_csquare;
 std::cout << "\n\n";
 break;

71

 case eGamma:
 std::cout << "Enter first parameter alfa _Sevice-Dist. \n";
 std::cin >> alfaS;
 std::cout << "Enter second parameter beta _Sevice-Dist. \n";
 std::cin >> betaS;
 mhueS = 1 / (alfaS*betaS);
 variance = alfaS * pow(betaS, 2);
 S_csquare = variance / pow(1 / mhueS, 2);
 std::cout << "Service_csquare = " << S_csquare;
 std::cout << "\n\n";
 break;

 case eBeta:
 std::cout << "Enter first parameter alfa _Sevice-Dist. \n";
 std::cin >> alfaS;
 std::cout << "Enter second parameter beta _Sevice-Dist. \n";
 std::cin >> betaS;
 mhueS = (alfaS + betaS) / alfaS;
 variance = ((1/mhueS)*betaS)/((alfaS + betaS)* (alfaS + betaS + 1));
 S_csquare = variance / pow(1 / mhueS, 2);
 std::cout << "Service_csquare = " << S_csquare;
 std::cout << "\n\n";
 break;

 case eHyperexpntl:
 std::cout << "Enter First rate mhue1 _Sevice-Dist. \n";
 std::cin >> mhueS1;
 std::cout << "Enter Second rate mhue2 _Sevice-Dist. \n";
 std::cin >> mhueS2;
 std::cout << "Enter Probability _Sevice-Dist. \n";
 std::cin >> pS1;
 meanES = pS1 / mhueS1 + (1 - pS1) / mhueS2;
 mhueS = 1 / meanES;
 SquaremeanES = pS1*2/(mhueS1*mhueS1)+(1-pS1)*2/(mhueS2*mhueS2);
 S_csquare = (SquaremeanES - pow(meanES, 2)) / pow(meanES, 2);
 std::cout << "Service_csquare = " << S_csquare;
 std::cout << "\n\n";
 break;

 case ekErlang:
 std::cout << "Enter first parameter k _Sevice-Dist. \n";
 std::cin >> aS;

std::cout <<"Enter second parameter the service rate of erlang
_Sevice-Dist";

 std::cin >> bS;
 mhueS = bS / aS;
 S_csquare = 1 / aS;
 std::cout << "Service_csquare = " << S_csquare;
 std::cout << "\n\n";
 break;

 case eWeibull:
 std::cout << "Enter Shape Parameter Alfa _Sevice-Dist. \n";
 std::cin >> alfaS;
 std::cout << "Enter Scale parameter Beta _Sevice-Dist. \n";
 std::cin >> betaS;
 mean = exp(lgamma(1 / alfaS)) * betaS / alfaS;
 mhueS = 1 / mean;
 std::cout << "mhueS" << mhueS;

72

 variance = (pow(betaS, 2) / alfaS) *(2 * exp(lgamma(2 / alfaS)) - (1
/ alfaS)*(pow(exp(lgamma(1 / alfaS)), 2)));

 std::cout << "variance = " << variance;
 S_csquare = variance / pow(mean, 2);
 std::cout << "Service_csquare = " << S_csquare;
 std::cout << "\n\n";
 break;

}
rho = (lambdaA / (c*mhueS));

 } while (lambdaA > (c*mhueS));

std::cout << " \n rho \n = " << rho;

/************************ Calculation of First Component of the Workload Vector
that Represents the Delay ***********************/

double NSR = lambdaA * 8 * (A_csquare + S_csquare) *Zb*Zb / (c*rho*rho*(1 -
rho)*(1 - rho)*ε*ε);
double intNSR;
double fractpart = modf(NSR, &intNSR);
int number = (int)round(NSR);
testtable.reserve(number);
clock_t CT;
CT = clock();

for (i = 1; i <= c; i++)
 {
 Wn[i] = 0;
 }
 Wn[c + 1] = 1e+30; // to stop the while loop

double sum = 0;
for (i = 1; i <= intNSR; i++)
 {
 switch (StringValue(ATInput))
 {
 case eDeterministic:
 Tn = 1 / lambdaA;
 break;

 case eExpntl:
 Tn = expntl(lambdaA);
 break;

 case eTriangular:
 Tn = triangular(a, m, b);
 break;

 case eUniform:
 Tn = Uniform(a, b);
 break;

 case eGamma:
 Tn = Gamma(alfaA, betaA);
 break;

 case eBeta:
 Tn = Beta(alfaA, betaA);

73

 break;

 case ekErlang:
 Tn = kErlang(b, a);
 break;

 case eHyperexpntl:
 Tn = Hyperexpntl(mhue1, mhue2, p1);
 break;

 case eWeibull:
 Tn = Weibull(alfaA, betaA);
 break;
 }

 switch (StringValue(STInput))
 {
 case eDeterministic:
 Sn = 1 / mhueS;
 break;

 case eExpntl:
 Sn = expntl(mhueS);
 break;

 case eTriangular:
 Sn = triangular(aS, mS, bS);
 break;

 case eUniform:
 Sn = Uniform(aS, bS);
 break;

 case eGamma:
 Sn = Gamma(alfaS, betaS);
 break;

 case eBeta:
 Sn = Beta(alfaS, betaS);
 break;

 case ekErlang:
 Sn = kErlang(bS, aS);
 break;

 case eHyperexpntl:
 Sn = Hyperexpntl(mhueS1, mhueS2, pS1);
 break;

 case eWeibull:
 Sn = Weibull(alfaS, betaS);
 break;
 }

sum = sum + Sn;
if ((Wn[1] + Sn - Tn) > 0)
Wn[1] = Wn[1] + Sn - Tn;
else
Wn[1] = 0;

74

testtable.push_back(Wn[1]);

for (int j = 2; j <= c; j++)
 {
 if ((Wn[j] - Tn) > 0)
 Wn[j] = Wn[j] - Tn;
 else
 Wn[j] = 0;
 }

 if (Wn[2] < Wn[1])
 {
 ns = 2;
 do
 {
 ns += 1;
 } while (Wn[ns] < Wn[1]);

 w1 = Wn[1];
 dummy = Wn[2];
 for (int k1 = 1; k1 < ns - 1; k1++)
 {
 Wn[k1] = dummy;
 dummy = Wn[k1 + 2];
 }
 Wn[ns - 1] = w1;
 }

 D += Wn[1];

 if (i % 1000000 == 0)
 {
 clock_t KT;
 KT = clock();
 std::cout << i << " Services Completed for: " << ((KT - CT) /

CLOCKS_PER_SEC) << " Seconds \n ";
 }
}

std::clock_t c_end = std::clock();
auto t_end = std::chrono::high_resolution_clock::now();
CT = clock() - CT;

/***********Calculation of the Autocorrelation and Halfwidth *************/
 int k1 = 100;
 int k;
 int M;
 std::vector<float> V;
 V.reserve(k1);
 float *U = V.data();
 float *averagebatch = V.data();
 float *sumbatch = V.data();
 double sum2 = 0;
 double average = 0;
 double getrho;
 double varianceSM = 0;
 double variance2 = 0;
 double covariance = 0;
 double param = NSR / k1;
 double intpart;

75

 fractpart = modf(param, &intpart);
 double batchsizemax1 = intpart;

 for (k = 0; k < k1; ++k)
 {
 sumbatch[k] = 0;

 for (M = 0; M < batchsizemax1; ++M)
 {
 int a = static_cast<int>((k)*batchsizemax1 + M);
 sumbatch[k] = sumbatch[k] + testtable[a];
 }
 averagebatch[k] = sumbatch[k] / (batchsizemax1);
 sum2 = sum2 + averagebatch[k];
 }
 average = sum2 / k1;

 for (k = 0; k < k1; k++)
 {
 variance2 = variance2 + (averagebatch[k]-average)*(averagebatch[k] - average);
 }
 variance2 = variance2 / (k1 - 1);
 std::cout << "1st variance2= " << variance2;
 std::cout << "\n";
 varianceSM = variance2 / k1;
 std::cout << "1st time variance of sample mean varianceSM=" << varianceSM;
 std::cout << "\n";
 for (k = 0; k < k1 - 1; k++)
 {
 covariance =covariance+(averagebatch[k]-average)*(averagebatch[k + 1] -

average);
 }
 covariance = covariance / (k1 - 1);
 double t= 1.645;
 double halfwidth = t * sqrt(varianceSM);
 getrho = covariance / variance2;

 if (getrho <= 0.2)
 {
 sum2 = 0;
 average = 0;
 varianceSM = 0;
 variance2 = 0;
 covariance = 0;
 k1 = 30;
 t = 1.699;
 param = NSR / k1;
 fractpart = modf(param, &intpart);
 batchsizemax1 = intpart;

 for (k = 0; k < k1; ++k)
 {
 sumbatch[k] = 0;
 for (M = 0; M < batchsizemax1; ++M)
 {
 int a = static_cast<int>((k)*batchsizemax1 + M);
 sumbatch[k] = sumbatch[k] + testtable[a];
 }
 averagebatch[k] = sumbatch[k] /(batchsizemax1);
 sum2 = sum2 + averagebatch[k];

76

 }
 average = sum2 / k1; // average of all batches
 for (k = 0; k < k1; ++k)
 {
 variance2=variance2+(averagebatch[k]-average)*(averagebatch[k] - average);
 }
 variance2 = variance2 / (k1 - 1);
 varianceSM = variance2 / k1;

 for (k = 0; k < k1 - 1; k++)
 {
 covariance=covariance+(averagebatch[k]-average)*(averagebatch[k + 1] -

average);
 }
 covariance = covariance / (k1 - 1);
 double halfwidth2 = t * sqrt(varianceSM);
 double getrho2 = covariance / variance2;
 std::cout << "Autocorrelation for 30 batches = " << getrho2;
 std::cout << "\n";
 std::cout << "Halfwidth for 30 batches = " << halfwidth2;
 std::cout << "\n";

std::cout << "CPU Time Used =" << 1000.0 * (c_end - c_start) /
CLOCKS_PER_SEC << " ms\n";

 std::cout << "Wall clock time passed =" <<
 std::chrono::duration<double,
 std::milli>(t_end-t_start).count() << " ms\n";
 printf("Time need to calculated Wq is(%f seconds).\n",((float)CT) /

CLOCKS_PER_SEC);

 /************** Calculation of System Performance Measures ***************/
 double Wq = Round(D / i * 1000) / 1000;
 std::cout << "Mean Waiting Time in Queue, WQ =" << Wq;
 std::cout << "\n";
 std::cout << "Confidence Interval as follows: " << Wq - halfwidth2 << " <

Wq < " << Wq + halfwidth2;
 std::cout << "\n";
 double ConfiTest = sqrt(k1*k1 - 1) / sqrt(k1 - 2)*(getrho +

(pow((averagebatch[0] - average), 2) + pow((averagebatch[k1] -
average), 2)) / (2 * (k1 - 1)*variance2));

 std::cout << "Test_Confidence= " << ConfiTest;
 std::cout << "\n";
 std::cout << "Mean Queue Length, Lq =" << lambdaA*Wq;
 std::cout << "\n";
 std::cout << lambdaA * Wq - lambdaA * halfwidth2 << " < Lq < " << lambdaA

* Wq + lambdaA * halfwidth2;
 std::cout << "\n";
 std::cout << "Mean Time in System, W =" << Wq +1/mhueS;
 std::cout << "\n";
 std::cout << Wq + 1 / mhueS - halfwidth2 << " < W < " << Wq + 1 / mhueS -

halfwidth2;
 std::cout << "\n";
 std::cout << "Mean Number in System, L =" << lambdaA * Wq + lambdaA /

mhueS;
 std::cout << "\n";
 std::cout << lambdaA * Wq + lambdaA / mhueS - lambdaA * halfwidth2 << " <L

<"<< lambda *Wq +lambdaA/mhueS +lambdaA *halfwidth2;
 std::cout << "\n";
 }
if (getrho > 0.2)
 {

77

 sum2 = 0;
 average = 0;
 varianceSM = 0;
 variance2 = 0;
 covariance = 0;
 k1 = 10;
 t = 1.833;
 param = NSR / k1;
 fractpart = modf(param, &intpart);
 batchsizemax1 = intpart;

 for (k = 0; k < k1; ++k)
 {
 sumbatch[k] = 0;
 for (M = 0; M < batchsizemax1; ++M)
 {
 int a = static_cast<int>((k)*batchsizemax1 + M);
 sumbatch[k] = sumbatch[k] + testtable[a];
 }
 averagebatch[k] = sumbatch[k] /(batchsizemax1);
 sum2 = sum2 + averagebatch[k];
 }
 average = sum2 / k1; // average of all batches
 for (k = 0; k < k1; ++k)
 {
 variance2=variance2+(averagebatch[k]-average)*(averagebatch[k] - average);
 }
 variance2 = variance2 / (k1 - 1);
 varianceSM = variance2 / k1;

 for (k = 0; k < k1 - 1; k++)
 {
 covariance=covariance+(averagebatch[k]-average)*(averagebatch[k + 1] -

average);
 }
 covariance = covariance / (k1 - 1);
 double halfwidth2 = t * sqrt(varianceSM);
 double getrho2 = covariance / variance2;
 std::cout << "Autocorrelation for 10 batches = " << getrho2;
 std::cout << "\n";
 std::cout << "Halfwidth for 10 batches = " << halfwidth2;
 std::cout << "\n";

std::cout << "CPU Time Used =" << 1000.0 * (c_end - c_start) /
CLOCKS_PER_SEC << " ms\n";

 std::cout << "Wall clock time passed =" <<
 std::chrono::duration<double,
 std::milli>(t_end-t_start).count() << " ms\n";
 printf("Time need to calculated Wq is(%f seconds).\n",((float)CT) /

CLOCKS_PER_SEC);

 /************** Calculation of System Performance Measures ***************/
 double Wq = Round(D / i * 1000) / 1000;
 std::cout << "Mean Waiting Time in Queue, WQ =" << Wq;
 std::cout << "\n";
 std::cout << "Confidence Interval as follows: " << Wq - halfwidth2 << " <

Wq < " << Wq + halfwidth2;
 std::cout << "\n";
 double ConfiTest = sqrt(k1*k1 - 1) / sqrt(k1 - 2)*(getrho +

(pow((averagebatch[0] - average), 2) + pow((averagebatch[k1] -
average), 2)) / (2 * (k1 - 1)*variance2));

78

 std::cout << "Test_Confidence= " << ConfiTest;
 std::cout << "\n";
 std::cout << "Mean Queue Length, Lq =" << lambdaA*Wq;
 std::cout << "\n";
 std::cout << lambdaA * Wq - lambdaA * halfwidth2 << " < Lq < " << lambdaA

* Wq + lambdaA * halfwidth2;
 std::cout << "\n";
 std::cout << "Mean Time in System, W =" << Wq +1/mhueS;
 std::cout << "\n";
 std::cout << Wq + 1 / mhueS - halfwidth2 << " < W < " << Wq + 1 / mhueS -

halfwidth2;
 std::cout << "\n";
 std::cout << "Mean Number in System, L =" << lambdaA * Wq + lambdaA /

mhueS;
 std::cout << "\n";
 std::cout << lambdaA * Wq + lambdaA / mhueS - lambdaA * halfwidth2 << " <L

<"<< lambda *Wq +lambdaA/mhueS +lambdaA *halfwidth2;
 std::cout << "\n";
 }

 _CrtMemDumpAllObjectsSince(NULL);
 getchar();
 cin.ignore();

}

	Hoda
	SHamramain-19020713550
	Thesis_Hoda 2019.02.07_To Print

	SHamramain-19020715470

