

AMERICAN UNIVERSITY OF BEIRUT

BEHAVIOURAL MODELING AND
ABSTRACTION OF CONCURRENT
PROGRAMS

by
CHUKRI ALBERT SOUEIDI

A thesis
submitted in partial fulfillment of the requirements
for the degree of Master of Science
to the Department of Computer Science
of the Faculty of Arts and Science
at the American University of Beirut

Beirut, Lebanon
April 2019

AMERICAN UNIVERSITY OF BEIRUT

BEHAVIOURAL MODELING AND
ABSTRACTION OF CONCURRENT
PROGRAMS

by
CHUKRI ALBERT SOUEIDI

Approved by: C\ﬁl W

Dr. Paul Attie, Professor Advisor

Computer Science ’ : —
<\ }Q\/@Q; Lor MPohsmed Tober

Dr. Mohamad Jaber, Assistant Professor Member of Committee

Computer Science

Dr. Fadi Zaraket, Associate Professor Member of Committee

Electrical and Computer Engineering

Date of thesis defense: April 30, 2019

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Comacds Clha b A Lot

Last First Middle

Student Name:

%) Master’s Thesis (O Master’s Project (O Doctoral Dissertation

D I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital reposi-
tories of the University; and (c¢) make freely available such copies to third parties for research
or educational purposes.

JE I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies
of it; (b) include such copies in the archives and digital repositories of the University; and (c)
make freely available such copies to third parties for research or educational purposes after:
One yearfromthe date of submission of my thesis, dissertation or project.
Two _ years from the date of submission of my thesis, dissertation or project.
Three -~ yearsfromthe date of submission of my thesis , dissertation or project.

(;’%’,WQK My 2, 2009

Signature Date

Acknowledgements

"If you wish to make an apple pie from scratch, you must first invent the
universe" said Carl Sagan. To solve our problems, that is what mathematicians,
logicians, engineers and pioneers of computer science have been doing for the past
century. We owe them a universe they created for us that has changed humanity
forever and is at the core of our daily lives and future.

I was granted a first-class ticket to this universe by Professor Paul C. Attie.
[am forever grateful for his exceptional pedagogical style, immense knowledge,
and careful explanations. It was a privilege working with him and being his
student. I would also like to thank Dr. Mohamad Jaber and Dr. Fadi Zaraket
for following up on my work. I am grateful for Dr. Wassim El Hajj for all his
support and for being the perfect academic advisor.

I would also like to thank the Office of Information Technology at AUB for
their constant patience and support. Finally, T thank my friends and family,
especially Lena, for their motivation, and for everyone who provided me with
helpful feedback during my work.

An Abstract of the Thesis of

Chukri Albert Soueidi for Master of Science
Major: Computer Science

Title: Behavioural Modeling and Abstraction of Concurrent Programs

We address the problem of modeling, analyzing, and repairing finite-state and
infinite-state concurrent programs. We define a textual notation for concurrent
programs and implement it in the Eshmun tool. For finite-state programs, we
automatically generate Kripke structures (transition diagrams) from the program
text. This structure can then be model checked and repaired using Eshmun
facilities. The resulting repair can then be used to guide the designer in fixing
the program itself.

For infinite-state programs, we define the notion of a finitely-representable
infinite-state Kripke structure, and we provide a semi-automatic method for
generating such a structure from an infinite-state concurrent program. This
structure models the behavior of the infinite state concurrent program. We label
the states of the Kripke structure with state predicates, and the transitions with
preconditions P and postconditions (). Each transition 7 then generates a Hoare
triple {P} 7 {Q} which we verify using the Z3 SMT solver. Hoare triples that
are not valid must be repaired. When all triples are valid, we model check to
determine if the required properties hold. If the model check fails, more repair is
needed. If the model check succeeds, we can semi-automatically extract a correct
infinite state concurrent program.

vi

Contents

Acknowledgements

Abstract

1

2

Introduction

Preliminaries

2.1 CTL Syntax and Semantics
2.2 Model of Concurrent Programs
2.3 First Order Logic

Finite-State Concurrent Programs

3.1 Text-based Notation

3.2 Kripke Structure Generation
3.2.1 Concrete Kripke Structure
3.2.2 With Shared Variable Abstractions

3.3 Program Extraction from Kripke

3.4 CTL Model Checking

Infinite-State Concurrent Programs

4.1 Finitely Representable Kripke Structure

4.2 Text-based Notation

4.3 Kripke Structure Generation
4.3.1 Hoare Logic and Strongest Postconditions
4.3.2 Kripke Structure Generation Algorithm

4.4 Model Checking o
4.4.1 Weakest Preconditions
4.4.2 Hoare Triples Check

Case Studies

5.1 Finite State
5.1.1 2-process Mutex with a shared variable
5.1.2 Peterson’s Algorithm
5.1.3 Producer-Consumer Example

Vil

vi

o O W= W

10
10
11
11
11

12
12
13
13
14
15
19
19
19

5.2 Infinite State

5.2.1 Simplified Bakery Example
5.2.2 Bounded Bakery Example
Implementation
6.1 Eshmun
6.1.1 Changes on Existing Modules
6.1.2 New Modules Added
6.2 Parsing Programs o 0oL
6.3 Parsing Guards oo
6.3.1 Finite State Guards
6.3.2 Infinite State Guards
6.4 Parsing Effects o oo
6.4.1 Finite State Syntax
6.4.2 Infinite State Syntax 0oL
6.5 Kripke Structure Generation
6.5.1 Finite State L o
6.5.2 Infinite State L o
6.6 Program Extraction. 0L,
6.6.1 Finite State L oo
6.7 Hoare Triples Check for Infinite State
Related Work
7.1 Predicate Abstraction.
7.2 Alloy Model Checker
7.3 Temporal Verification Diagrams

Conclusions and Future Work
8.1 Summary of Contributions
8.2 Future Work

List of Figures

2.1
2.2
2.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6

6.1

CTL semantic visualization taken from CTL Teaching slides [1]
Synchronization skeletons for two-process mutual exclusion
Kripke structure for two-process mutual exclusion

Transition in finitely-representable Kripke structure (FRKS) .
Generating temporary state ¢s-. Step 1.
Finding states that intersect with ¢s,. Step2
Adding transitions from s. Step 3o
Check if ¢, ; is contained. Step 4
Create a new state. Step b
Hoare Triple Check

Two-process mutex
Two-process mutex with shared variable abstraction
Peterson Algorithm Kripke Structure
Three buffered size producer consumer example
Weakening state predicate interaction
A simplified Bakery example with upper bound ticket number of 5

Eshmun Modules

X

N

13
15
16
16
17
17
20

23
24
26
28
29
33

List of Tables

6.1 Sample transitions from Kripke Structure in Figure 5.2

List of Algorithms

1 Generate Finite State Kripke Structure
2 Generate Finitely Representable Kripke Structure

3 Solve And Simplify

xi

Chapter 1

Introduction

There is an obvious advantage in verifying that a computer program behaves
correctly according to its intended purpose. Today programs are the most complex
machines built by humans, and have huge responsibilies for human safety, security,
health, and well-being [5]. As the ubiquity and complexity of software systems
continue to grow, there is a clear growing demand for formal software verification.
This demand is vital in the case of safety-critical systems, for example, where
software bugs may possibly lead to catastrophic results. Two main classes of
properties, we are mostly interested in verifying, that are usually required in
a software: safety properties to assert that nothing bad happens, and liveness
properties to assert that something good will eventually happen.

Verifying software correctness often requires to show that a bad state cannot
be reached from a good state. That is because the detection of bugs in programs
is often easier than proving their absence due to the undecidable nature of the
latter problem. For example, if your program has an array of integers of fixed
length 10, and you have an integer expression calculating an index onto the array.
A good state may be one where the integer expression evaluates into a safe index,
while a bad state is a one that evaluates to an out of bound index causing your
program to halt.

Verification techniques mainly compromise of three parts: a framework for
modeling and describing the behaviour of systems, a specification language for
describing what properties i.e., specification need to be verified, and a verficiation
method to establish if a model satisfies that specification . The methods vary
based on the many different critieria, some of them are: proof-based vs. model-
based, degree of automation, full vs. property verification, pre vs. post development
[11]. In this paper, we take a model-based property-verification approach to
deal with concurrent programs. We seperate between two types of concurrent
programs: finite state programs, by which we mean programs that upon execution
produce a finite number of states, and infinite state programs by which upon
execution produce a state space that is not finite e.g., programs that may contain
numeric variables that are being unboundedly incremented and decremented.

A formula ¢ often written in temporal logic represents a specification i.e., one
or many properties. A program model M can be described in terms of a directed
graph representing a transition relation R over a concrete set of “states”. The
model checking task is then to say if M |= ¢. If not, model checkers output
counterexamples that witnesses the violation of ¢ by M. These counterexamples
prove the existence of bugs since they identify behaviours that violate the formula
being checked. However, there could be many counterexamples, and they may
have to be dealt with by making different fixes manually, thus increasing debugging
effort. Attie et al [2] deal with all counterexamples at once, by automatically
repairing a model with respect to CTL specs. Attie et al present an algorithm
for repairing finite state Kripke structures and programs, so that they satisfy
a specification written as a formula of the temporal logic CTL (see Section 2.1
and [8]). The repair algorithm is subtractive in nature; it fixes the model by
removing transitions and states. Given a finite state Kripke structure M and
a CTL formula n, their repair algorithm generates a boolean formula, which is
then sent to a SAT solver. A satisfying assignment, if it exists, gives a solution
to the repair problem: all states and transition receiving an assignment of “false”
must be deleted, and the resulting structure will then satisfy 7. Since the repair
problem is mapped to a boolean formula, this approach can handle only finite
state programs and structures.

When analyzing a shared memory concurrent program, running on multiple
processes, we are only interested in the parts of this program that are significant to
the synchrnoization between these processes. Hence, we reduce it by abstracting
away parts that are only performing local computations. In our model, we
only represent parts that we see important and that can result in unwanted
behaviour. A challenge that emerges immediately when trying to model infinite
state concurrent programs, is how to represent an infinite number of states
explicitly. That is why we define the notion of a finitely-representable infinite-
state Kripke structure, and we provide a semi-automatic method for generating
such a structure from an infinite-state concurrent program. Thus, the objectives
of the current work are:

1. Implementing a general text notation to represent finite and infinite state
concurrent programs.

2. Devising the algorithms needed to generate the Kripke structures out of
finite and infinite state text programs.

3. Extending the model checking algorithm to handle our new finitely-representable
infinite-state Kripke structure.

4. Extending the model repair algorithm to a semi-automatic method for
repairing infinite state structures and programs.

5. Extracing back the text notation, this is needed after we do model checking
and repairing.

The rest of this thesis proceeds as follows: In Chapter 2, we give a preliminary
description of the theoretical framework of our work. In Chapter 3, we describe
our work on finite state concurrent programs: text based notation, Kripke Structure
generation, and program extraction. In Chapter 4, we describe our work on
infinite state concurrent programs. In brief, text based notation, our newly
introduced finitely-representable infinite-state Kripke structure generation, and
how we model check these structures. In Chapter 5, we undertake different case
studies to show the how our work can be used. In Chapter 6, we carefully describe
our implementation in Eshmun. In Chapter 7, we conclude and discuss our future
work.

Chapter 2

Preliminaries

2.1 CTL Syntax and Semantics

Let AP be a set of atomic propositions, including the constants true and false.
We use true, false as “constant” propositions whose interpretation is always the
semantic truth values tt, ff, respectively. The propositional branching-time
temporal logic CTL [7, 8] is given by the following grammar:

pu=true[false [p |~ |9 Ap |V |AXp | EXp | AlpRy] | E[pRy)]

where p € AP, and true, false are constant propositions with interpretation tt, ff
respectively (i.e., “syntactic” true, false respectively).
The semantics of CTL formulae are defined with respect to a Kripke structure.

Definition 1. A Kripke structure is a tuple M = (So, S, R, L) where S is a finite
state of states, Sy C S is a set of initial states, R C S x S is a transition relation,
and L : S + 247 is a labeling function that associates each state s € S with a
subset of atomic propositions, namely those that hold in the state. State t is a
sucessor of state s in M iff s,t € R.

We assume that a Kripke structure M = (Sp, S, R, L) is total, ie., Vs €
S,3s" € S : (s,8') € R. A path in M is a (finite or infinite) sequence of states,
T = Sp, S1, ... such that Vi > 0: (s;,s;11) € R. A fullpath is an infinite path. A
state is reachable iff it lies on a path that starts in an initial state. Without loss
of generality, we assume in the sequel that the Kripke structure M that is to be
repaired does not contain any unreachable states, i.e., every s € S is reachable.

Definition 2. M, s = ¢ means that formula ¢ is true in state s of structure M
and M, s = ¢ means that formula ¢ is false in state s of structure M. We define
= inductively as usual:

1. M, s |= true

M, s £~ false

M,s = piff p € L(s) where atomic proposition p € AP
M,sE—p iff M,s}= ¢
M,sEpANYiff M,s = ¢ and M, s =
M;sEpVy iff M;s =g or M,s =1

M, s = AXg iff for all t such that (s,t) € R: (M,t) = ¢

M, s = EXy iff there exists t such that (s,t) € R and (M,t) = ¢

ST S N S A I

M, s = AlpRy] iff for all fullpaths m = sg, $1, ... starting from s = sq:
VE>0:(Vj<k:(M,s;) implies M, sy =1

10. M, s = E[pRY] iff for some fullpath m = so, s1,. .. starting from s = sp:
Vk>0: (V) <k:(M,s; o) implies M, s, =

We use M |= ¢ to abbreviate M, Sy = ¢, ie., for all s € Sy, M,s = .
We introduce the abbreviations A[pUv)] for =E[-¢R—v], E[¢pUy] for =A[-pR-1],
AFp for AltrueUy], EFp for E[trueUyp], AGyp for AlfalseRyp], EGyp for E[falseRyp].

finally p globally p next p P until q
A[pUq]
E[pUq]

Figure 2.1: CTL semantic visualization taken from CTL Teaching slides [1]

Figure 2.1 shows a graphical visualization of the different CTL modalities.
Program execution is represented as computation tree, where each node is a

5

single program state and each edge is a transition to the next possible state. For
each modality, it highlights the states that satistfy the CTL formula ¢ starting
from the root node.

2.2 Model of Concurrent Programs

We consider shared-memory concurrent programs P = (Stp, P || -+ || Pxk)
consisting of K sequential processes P, ..., Px running in parallel, together with
a set Stp of starting global states. For each P;, there is a finite set AP; of
atomic propositions that are local to P;: only P; can change the value of atomic
propositions in AP;. Other processes can read, but not change, these values.
Local atomic propositions are not shared: AP; N AP; = () when ¢ # j. We also
admit a set SH = {xy,...,z,,} of shared variables. These can be read/written by
all checks that processes, and have values from domains D, ... D,, respectively.
When domains D, ... D,, are finite, the program is finite state.

We define the set of all atomic propositions AP = AP, U--- U APk.

Each P, is a synchronization skeleton [8], that is, a directed multigraph where
each node is a local state of P;, which is labeled by a unique name s;, and where
each arc is labeled with a guarded command [6] B; — A; consisting of a guard B;
and corresponding action A;. We write such an arc as the tuple (s;, B; = A;, s%),
where s; is the source node and s, is the target node. Each node must have at
least one outgoing arc, i.e., a synchronization skeleton contains no “dead ends.”

The read/write restrictions on atomic propositions are reflected in the syntax
of processes: for an arc (s;, B; — A;, s;) of P;, the guard B; is a boolean formula
over AP — AP;, and the action A; is any piece of terminating pseudocode that
updates only the shared variables SH.

Let S; denote the set of local states of P;. boolean valuations over AP;: for
pi € AP;, Vi(s;)(p;) is the value of atomic proposition p; in s;. Hence, as P;
executes transitions and changes its local state, the atomic propositions in AP;
are updated, since V;(s;) # V;(s}) in general.

A global state is a tuple (s1,...,Sk,v1,...,0y) where s; is the current local
state of P; and vy, ..., v, is a list giving the current values of the shared variables
in SH.

Let s = (S1,...,8i,...,58K,V1,...,0n) be the current global state, and let P;
contain an arc from node s; to node s} labeled with B; — A;. If B; holds in s, then
a possible next state is s’ = (s1,...,8},...,8k,v],...,v.) where v],... v/ are
the new values, respectively, for the shared variables x4, ..., z,, resulting from the

execution of action A;. The set of all (and only) such triples (s, i, s") constitutes
the next-state relation of program P. As stated above, local atomic propositions
AP; are implicitly updated, since P, changed its local state from s; to s..

The appropriate semantic model for a concurrent program is a multiprocess
Kripke structure, which is a Kripke structure that has its set AP of atomic

propositions partitioned into AP, U ---U APk, and every transition is labeled
with the index of a single process, which executes the transition. Only atomic
propositions belonging to the executing process can be changed by a transition.
Shared variables may also be present. The semantics of a concurrent program
P = (Stp, P, || --- || Px) is then given by its global state transition digram
(GSTD): the smallest multiprocess Kripke structure M such that (1) the start
states of M are Stp, and (2) M is closed under the next state relation of P.
Effectively, M is obtained by “simulating” all possible executions of P from its
start states Stp. A program satisfies a CTL formula 7 iff its GSTD does.

For example, Figure 2.2 gives a synchronization skeleton concurrent program
consisting of two processes, P, and P,. Each process has three local states, so
e.g., P; has local states labeled with N1, T1, and C1, respectively. Similarly for
Ps. In Py, the transition from T1 to C1 has guard N2V T2. There are no shared
variables. Figure 2.3 gives a Kripke structure that is generated by the execution
of this concurrent program. The transitions of each process are colored in the
same color.

1 (N2oT2)
Ni (N26T20C2) @ (N20T2) c1
2
(N1eT1)
N2 (N1eT1eCl1) @ (N1eT1) C2

Figure 2.2: Synchronization skeletons for two-process mutual exclusion

S2
(N1,T2)

S1
(T1,N2) ‘
S6
(C1,T2)

S7
S3 (T1,C2) S5
(C1,N2) (N1,C2)

Figure 2.3: Kripke structure for two-process mutual exclusion

2.3 First Order Logic

We use standard first order logic as described in Enderton “A Mathematical
Introduction to Logic” [9] Chapter 2, Sections 2.1 and 2.2. We omit the standard
definitions of validity and truth in a structure and state, for which we use the
following notations:

skEp means that ¢ is true in s
= ¢ means that ¢ is satisfiable i.e., 3s: s = ¢

In all cases, the underlying first order structure is the standard model of arithmetic.

Chapter 3

Finite-State Concurrent Programs

A finite state concurrent program is a program that produces a finite number of
different states upon execution. Our work on finite state allows us to describe
such programs in a text-based format. We deal with concurrent programs by
keeping the details only relevant to synchronization between different processess.
Specifying a program as text is often more simple that creating a state-transition
diagram for it. The text program can then be imported into Eshmun as a Kripke
structure where model checking and repair will be performed. After interacting
with the model, the user can then export the system again into a text program,
this facilitates and speeds up in general the process of model-checking and saves
a lot of time for the user.

3.1 Text-based Notation

Our text-based program is constructed by specifying synchronization skeletons
for its processes. The synchronization skeleton is an abstraction of the actual
program where detail irrelevant to synchronization is suppressed [8]. In the
following sections, we shall see how these programs can be constructed. The
model of a program P is discussed in the preliminaries section 2.

Our program consists of the following declarations:

1. initial states: a boolean formula over AP and shared variables,
2. the domains of shared variables (which must be finite), and
3. the set of processes.

For each process, we define a collection of actions such that each action contains
of the following definitions:

1. local guard: a boolean formula over AP; (atomic propositions of P;).

2. global guard: a boolean formula over AP — AP, and shared variables.

3. local effect: assignment statements to update AP;.

4. global effect: assignment statements to update shared variables.

3.2 Kripke Structure Generation

To generate a Kripke structure that represents the behavior of a finite state
concurrent program, we simply simulate all possible behaviors of the program
until no new states and transitions are generated. The text based notation,
described in Section 3.1, allows us to define for each process P; a set of arcs i.e.,
actions. We need to simulate every action on the set of all possible states, the
state space is generated by doing a cartesian product of n sets of labels, each
set belongs to a process and n is the number of processes. If there are shared
variables, then we add to the product all possible values of shared variables.
Then, for each action a belonging to P;, we check if the local guard and global
guard hold in every state s of the state space. If the guard holds, the state s is
enabled, thus we apply the effects to get the resulting state ¢.

Algorithm 1: Generate Finite State Kripke Structure
let K be the currently generated structure
K.states = states in K, starting with initial state
K.steps = transitions in K
Actions = set of all parsed program actions

while new states or transitions are generated do
foreach a in Actions do
E = states that satisfy guards of a
foreach s in E do
t := simulate action a on s to get a new state ¢
K.states + =t
K .steps + = (s,t)
end
end
end

We implement two variations on this basic idea, one produces conrete Kripke
structures and the second produces structures with shared variable abstractions.

3.2.1 Concrete Kripke Structure

The most concrete structure possible is obtained when all the global states are
differentiated, i.e., if two states differ in even a single shared variable or atomic
proposition, then they are rendered as different states in the Kripke stucture.

10

This gives the most faithful representation of the program’s behavior, but also
the largest.

3.2.2 With Shared Variable Abstractions

A shorter representation of the program’s behavior can be obtained by using
abstraction, i.e., by considering some global states to be equivalent. Specifically,
we consider some global states that differ in the value of shared variables to be
equivalent. These states are indicated by user annotations, which have the form
of setting a shared varaible x to null. This means that the current value of the
shared variable should be “forgotten”; so that subsequent global states that differ
only in the value of z are considered equivalent, and are merged into a single
global state.

3.3 Program Extraction from Kripke

We implemented the program extraction such that: Given a multiprocess Kripke
structure M, we can extract a concurrent program by projecting onto the
individual process indices [8]. If M contains a transition from s = (sq,...,8;, ...,
SKyULy ..oy Um) t0 8 = (S1,...,8, ...,8k,v],...,v,), then we can project
this onto P, as the arc (s;, B; — A;,s;), where B; checks that the current
global state is (s1,..., S, ..., Sk, V1,...,Un), and A; is the multiple assignment
Tlyenoy Ty 1= VY, ..., 0, Le., it assigns v, to zy, £ =1,...,m.

Our implementation is formally described by Attie and Emerson [3] (see
Section 2.6 Synthesis of Programs), after extracting all transitions we group
them by families that can collapse into one single action. This works for finite-
state Kripke structures. For infinite-state structures, we will implement a semi-

automatic method, i.e., based on interaction with the user.

3.4 CTL Model Checking

To verify properties of Kripke structures, we use the CTL model checking
algorithm of Clarke, Emerson, and Sistla [4, 7]. Given a Kripke strcuture
M = (Sy, S, R, L) and CTL formula ¢, the model checking algorithm determines
whether M, Sy = ¢, in time linear in the size of M and the size of ¢. If the

11

Chapter 4

Infinite-State Concurrent Programs

Infinite-state programs are programs that produce an infinte state space upon
execution. Examples of these programs are such with unbounded arithmetic
expressions. The transition diagram i.e., concrete Kripke strucutre of an infinite-
state concurrent program is, in general, infinite.

4.1 Finitely Representable Kripke Structure

We seek a finite representation of this infinite Kripke structure, which will call
a finitely-representable Kripke structure (FRKS). An FRKS is, of necessity, an
abstraction of the corresponding infinite concrete Kripke structure.

To construct an FRKS, we extend finite-state Kripke structures with variables
and statements, as follows:

1. Each state s is labeled with a state predicate, given by a formula of first
order logic

2. Each transition is labeled with
(a) a block of statements, each of which is either an assignment or an if
statement, i.e., straight-line code.
(b) a predondition

(¢) a postcondition

s now represents the set of concrete states that satisfy its state predicate s.p.
Transition 7 from s generates Hoare triple verification condition usign strongest
postconditions sp (see Section 4.4.2). Figure 4.1, shows a visual representation
of a transition 7 from state s to state ¢.

12

w, U.p \is.p {sp A\ T.g} 7b {gs,+}
T.g
TiTw

qS,T = sp(s.p A T.g, T.b)

@

Figure 4.1: Transition in finitely-representable Kripke structure (FRKS)

T @ T.g— T.b(transition) T.g : precondition (guard) of 7
s.p : state predicate of s 7.6 : body of 7
t.p : state predicate of t qs, : strongest postcondition for 7 from s

4.2 Text-based Notation

An infinite-sate program is constructed similarly to the finite-state program with
two additions: optional local variables for each process and first-order logic state
predicates. In addition, the domains of all variables can now be infinite. For each
process, we define a collection of actions such that each action contains of the
following definitions:

1. local guard: a first-order formula over AP; (atomic propositions of P;) and
process local variables of P;.

2. global guard: a first-order formula over AP — AP;, shared variables, and all
local variables.

3. local effect: boolean value assignments to update AP;. Straight-line code
blocks of assignments, if and if-else statements over process local variables.

4. global effect: straight-line code blocks of assignments, if and if-else
statements over shared variables and process local variables.

4.3 Kripke Structure Generation

We implemented the generation algorithm that converts the text-based program
to a FRKS. The algorithm starts from the declared initial state and uses forward

13

reasoning to generate new states by calculating the strongest postconditions of
states on actions. The algorithm runs until no new states and transitions are
generated. The key idea is that the resulting structure represents all possbile
behaviors of the program faithfully.

4.3.1 Hoare Logic and Strongest Postconditions

Our algorithm starts from an initial state labelled with a predicate and will
proceed to produce new states and transitions between these states. Each
transition in our structure is defined by a Hoare triple of the form {P}S{Q}.
P and @) are predicates representing the precondition and postcondition i.e., the
predicate of the starting state and the resulting state respectively. S is a straight
line code statement. The conditional correctness of a triple { P}S{Q} (assuming
termination ') means that if we start in a state where P is true and execute S, it
terminates in a state where () is true. For example, starting from a state labelled
with predicate P, a program perfroming an assignment statement z := e, will
generate a new resulting state as follow:

{P} z:=e {3x¢ : (Plxo\z] Az = e[xo\z]}

We can use predicate transformer semantics to produce these new states by
deducing the predicate); that represents the resulting state. We do this by
finding the strongest postcondition sp(Ps,S) = @Q; . The function sp takes a
precondition P and a statement S and returns a postcondition. sp is the strongest
such postcondition i.e., take any P, @ such that {P}S{Q}, then sp(P,S) = Q.

In our implementation an action can have effects which are statments of the
form of:

e a skip operation

a single assignment statement

an if-then statement

an if-else statement

a block of sequential statements

In our notation, a transition 7 : 7.g— 7.5 will have 7.5 as effect i.e., statement.

!Termination is guaranteed since s is straight-line code

14

Definition 3. The strongest postcondition for each statement type is as follows:

sp(P, skip) = P

sp(P,x =€) = Jzg : (Plro\z] A x = e[zo\x])

sp(P,if B then S) = (B = sp(P,S)) N (-B=P)

sp(P, if B then Sy else Sy) = (B = sp(P,S1)) N (=B = sp(P,5,))
sp(P, S1;S2) = sp(sp(P, S1), S2)

The predicate Ple\z] is equivalent to P where every free occurrence of x is replaced
by e. x denotes a variable and e is an expression.

4.3.2 Kripke Structure Generation Algorithm

The Kripke stucture generation algorithm will aim to generate a Kripke structure
for an infinite program with a finite number of nodes. In general, we will not be
able to do that automatically for all cases. User intervention may be needed and
we will discuss this after decribing the main ideas of the algorithm.

At the beginning, the Kripke structure contains one initial state which is
represented by a formula of first order logic declared in the program text. We
start simulating all actions on the initial state, and when the algorithm generates
new states, we need to simulate all actions again on exisiting and new states.

@ = spATyg

T :T.g— T.b

O,
O,

U

O

sp(SpAT.g,T.b)

Figure 4.2: Generating temporary state gs .. Step 1

Step 1: For each state s, on each action 7 : 7.9 7.b, we check if = s.p A 7,
we calculate the postcondition g¢s, = sp((s.p A T.g),7.b) by using the 7, as the
body and the conjunction of guard and state predicate as precondition?. We

2By 5 ¢ we mean that ¢ is satisfiable i.e., 3s: s = ¢

15

then create a new temporary state with a state predicate g, with a temporary
transition from s to ¢ ,.

10

////:' qs,t /\t3~p

-

:‘ ds,r Ata.p

1
1
66____________________@
\
A\
\

sp(s.pAT.g,7.b)

Figure 4.3: Finding states that intersect with g, ,. Step 2

Step 2: From the temporary state g¢,,, we find all states (;...t,) in our
structure satisfying = ¢, A t.p. We add a temporary transitions from g, , to
those (t;...t,), labelled in green in Figure 4.3.

= ¢s,r Nl3.p

©

o ¢s,r Nlap

) S—

sp(s.p A T.g,T.b)

Figure 4.4: Adding transitions from s. Step 3

Step 3: For all states labeled in green from Step 2, we add a transition from
s. These states will be the successors of s. If there are no states satisfying
= ¢s- At.p, we will add a new state u with u.p = () and add a transition labelled

16

7 from s to u. If u is added, we are done and we move to the next state starting
from Step 1.

:| Qs N\ t3.p

) :
:‘ q(s,'r /\t2~p

= ¢s,» A —(Vt.p in green) ?

Figure 4.5: Check if ¢, ; is contained. Step 4

Step 4: If we have successors for s at Step 3, we need to check that g; , is fully
contained by these states. We do this by checking if 5 g5, A =(Vt.p in green). If
no then g, . is contained and we delete) and move to next state at Step 1. If
yes, we move to Step 5.

Step 5: If g, » is not contained in all successros of s in Step 4. We then create
a new state v with a state predicate u.p = g5 A =(Vt.p in green) and transition
from s to u labelled with 7.

©
o :
©

@ :‘ qs,m A t3-p
:' qs,t A t2-p @

u.p = ¢s,r A 2(Vt.p in green)

Figure 4.6: Create a new state. Step 5

17

We now give the pseudocode for the generation algorithm described above.

Algorithm 2: Generate Finitely Representable Kripke Structure

let K be the currently generated structure

K.states = states currently in K // Initially, K consists of a single
initial state

K.steps = transitions currently in K

for s in K.states do
s.succ = the states in K that are reachable from s by a single

transition, i.e., (s,t) in K.steps
s.newsucc = successors to be added in the current iteration of the
main loop
s.pred = the state predicate of s
end

//Now, the main loop
for a in Actions do
B = a.localGuard A a.global Guard
for s in K.states do
s.newsucc := ¢
if o B A s.pred then
Q) = strongestPostCondition((B A s.pred), a.Action)
for t in K.states do
if o g5 Nt.pred then
‘ s.newsucc +=1

end
if s.newsucc = ¢ then
‘ s.newsucc ;= new t where t.pred =)
else if = ¢, A —~(Vt in s.succ : t.pred) then
s.newsucc += new t such that t.pred = ¢;, A —(Vt in
s.succ : t.pred)

end
for t in s.newsucc do
K.states +=1
K .steps += (s,t)
end
end
end

Our algorithm is not guaranteed to terminate at all times. That is why we
introduced, the Interactive mode where we can configure the number of iterations
to be perfromed before asking for user interaction. Then the user can intervene

at the stage of adding new states, by weakening the new state predicate carefully.

This will lead to an abstract representation, and will allow the algorithm to

18

terminate. In other cases, mentioned in Chapter 5, our algorithm terminates due
to the bounded domain or to the bounded value a shared variable can have.

4.4 Model Checking

We model check an FRKS on two steps. The first step checks that every Hoare
triple is valid using Z3. The second step then treats the FRKS as finite state,
i.e., only uses the atomic propositions, and model checks it using the standard
CTL model checking algorithm, which is implemented in Eshmun.

4.4.1 Weakest Preconditions

To reason about our program correctness, we use Hoare logic to verify the
Kripke structure transitions.To build a valid deduction, we use predicate semantic
transformers namely weakest-preconditions to reduce the problem of verifying a
triple to a problem of proving a first-order formula. We can then use a SMT
solver to prove the formula’s validity.

If {P} S {Q} and for all P’ such that {P} S {Q}, P = P’, then P’ is the
weakest precondition wp(S, Q) of S with respect to Q.

Definition 4. We define a function yielding the weakest precondition with respect
to some postcondition Q) for statement S as follows:

wp(skm Q) =Q

p(z = e,Q) = Qle\x]

p(S1; 527 Q) = wp(S1, wp(Ss, Q))
(

(

S

S

wp(if B then S,Q) = (B = wp(S,Q)) N (-B = Q)
wp(if B then Sy else Sy, Q) = (B = wp(S1,Q)) N (=B = wp(Ss, Q))

The predicate Qle\x] is equivalent to Q) where every free occurrence of x is
replaced by e. x denotes a variable and e is an expression.

4.4.2 Hoare Triples Check

The first step in model checking the introduced finitely-representable Kripke
Structure (FRKS) is Hoare Triples Check. In FRKS, each state is an abstraction
of concrete states represented by a first-order logic predicate which labels the
state. Recall, from Section 4.1, that we added for each transition: a precondition
P and postcondition @) predicate, and a statement block S. An empty predicate
is interpreted as true, and an empty statment is iterpreted as skip.

Figure 4.7, shows how to perform a Hoare triple check on transition 7 from
state s to state t. All transitions labelled with 7 from s should be considered for

19

{s.p A T.g} Tb {_\;71 ti.p}

! "
@

Figure 4.7: Hoare Triple Check

each transition from s. We get the successors of s by 7 and do a disjunction of
their states predicates. This disjunction will be our postcondition.

Definition 5. (Hoare Triples Check) For each transition (s,t) : T

1. s.p = T.q is satisfiable, else warning
2. {s.p A T.g} T.b {V t;.p} triple is valid.
=1

o t1...t, are all successors of s by transition T : T.g — T.b

® 5.0 A T.gmup(T.b,\ tip) (weakest precondition)
i=1
n
3. ¢sr =\ ti.p is valid.
i=1

Each check from above is sent to Z3 SMT solver and the transition is labeled
valid if and only if Step 2 and Step 3 are valid.

20

Chapter 5

Case Studies

5.1 Finite State

5.1.1 2-process Mutex with a shared variable

In concurrent programming, access to a shared resource by mulitple process can
lead to a erroneous behaviour, thus exclusive access of each process to the shared
resource is required. This resource can be a shared memory variable, a peripheral
device, or a network connection. We call the block of code accessing this shared
resource, the critical section. Mutual exclusion (Mutex) means that at any point
of time only one process should be present inside its critical section. Since our
programs are abstractions of real programs, we intend to only represent states
that are important for the synchronization of processes. For mutex programs we
define 3 main sections for process P;, these will be the labels for a process local
state:

e N; : a process is in a Neutral state performing local computations

e T} : a process is Trying state, requested access to critical section

e (; : a process is inside the Critical section

Listing 5.1 shows a text-based two-process mutual exclusion example program.
We added a shared memory variable x with a domain [1,2] that can be read by

both processes, this variable will help decide which process enters the critical
section if both both processes are at a Trying state.

Concrete Kripke Structure

Figure 5.1 shows the concrete structure generated from the mutex program listed
in page 22. Process 1 in blue and Process 2 in red.

21

program {

initial : N1 & N2
sharedvariables : x :{ 1,2}
process 1 {
action {
1_grd : N1
g_grd : N2 | C2
1_eff : N1,T1 := ff, tt
g_eff : x := null
action {
1_grd : N1
g_grd : T2
I_eff : N1,T1 := ff, tt
g_eff : x :=
action {
lgrd : T1
g_grd : N2 | (T2 & x=2)
I_eff : T1,C1 := ff, tt
g_eff : x := null
action {
1 grd : C1
grd : N2 | T2
_eff : C1,N1 := ff, tt
g_eff : x := null
}
}
process 2 {
action {
1_grd : N2
g_grd : N1 | C1
1_eff : N2,T2 := ff, tt
g_eff : x := null
action {
1_grd : N2
g egrd : T1
1_eff : N2,T2 := ff, tt
geff : x :=1
action {
1 grd : T2
grd : N1 | (T1 & x=1)
_eff : 72,02 = ff, tt
g_eff : x := null
}
action {
1_grd : C2
grd : N1 | T1
_eff : C2,N2 := ff, tt
g_eff : x :=null
}
specifications : { AG('(C1 & C2)) }
}

Listing 5.1: Text-based two-process mutual exclusion program

s7
(C1,N2,x=2)

(N1,C2,x=1)

812
(T1,C2,x=1)

S15 S11
(C1,12,x=1) (T1,C2,x=2)

Figure 5.1: Two-process mutex

With Shared Variable Abstraction

Figure 5.2 shows the structure generated with shared variable abstraction, from
the mutex program listed in page 22. Process 1 in blue and Process 2 in red.
We can see how the number of states was reduced from 16 states to 9 states by
collapsing together states where the value of the shared variable is not important,
i.e., it does not affect future execution (indicated by annotations in the text
program).

23

.
(T1,72,x=1) (T1,72,x=2)

Figure 5.2: Two-process mutex with shared variable abstraction

5.1.2 Peterson’s Algorithm

Listing 5.2 shows a text representation of Peterson’s algorithm, a concurrent
programming algorithm for mutual exclusion. The local states for each process
are N;, T;, and C; similar to the example at Section 5.1.1, an new label SP; was
introduced and indicates that P; is in spinning mode i.e., busy-waiting. This
program uses 3 shared memory variables, f; (a flag of Process 1), f; (a flag of
Process 1), and t. f; = 1 indicates that the P; wants to enter the critical section.
Entrance to the critical section is granted for process Py if P, does not want to
enter its critical section or if P, has given priority to Py by setting turn to 0

Figure 5.3 shows the concrete structure generated from the Peterson program
text program above.

24

|program {

}

sharedvariables
process 1 {
action {
1l grd : N1
g_grd : true
I eff : N1,T1
g_eff : f1 :=
action {
lgrd : T1
g_grd : true
I _eff : T1,SP1
geff : t :=
action {
1l grd : SP1

g_eff : skip
action {
lgrd : C1
%_grd : true
_eff : C1,N1
g_eff : f1 :=
+}
process 2 {
action {
1l grd : N2
%_g‘rd : true
_eff : N2,T2
g_eff : f2 :=
action {
1l grd : T2
g_grd : true
1 _eff : T2,SP2
g eff : t :=
action {
1 _grd : SP2

g_eff : skip
action {

1 grd : C2

g_grd : true

1 _eff : C2,N2

g eff : £2 :
+}
specifications

initial : N1 & N2 & (£1=0) & (£2=0) & (t=0)

fi:{ o0o,1}r,f2:{ 0,1},t:{ 0,1}

= ff, tt

= ff, tt

g_grd : (£2=0 | t=0)

1_eff : SP1,C1 := ff, tt

= ff, tt

= ff, tt

= ff, tt

_grd : (f1=0 | t=1)
%_§§f : SP2,C2

= ff, tt

= ff, tt

L CAGC!'(CL&C2))) & (AG(TL=> (AF(CL1))))
& (AG(T2 => (AF(C2))))}

Listing 5.2: Peterson’s algorithm two-process mutual exclusion

25

S5 i
T1,N2,f0=1,f1=0... o
1f0:=1

N

S8
T1,72,f0=1,1=1... @

s$10
N1,N2,f0=0,f1=0...

SP1 ,SP2, fO 1,f1..

T1 SP2, fO 1 =

z

=

N

g

ia

S

[

bl
V=0

s11
C1,T2,f0=1,f1=1...

S9
T1,72,f0=1,M=1...

(%)
(%)

| - ‘
£
1, N2f0 1f1 0...

(2

s19
C1,5P2,f0=1,f1=...

@
N1 T2,0=0,f1=1... s1
SP1,5P2,f0=1,f1...

T1C2f0 1f1 1..

%
(2,

s15
@ N1,C2,f0=0,f1=1...

Figure 5.3: Peterson Algorithm Kripke Structure

5.1.3 Producer-Consumer Example

The producer consumer problem is a classic example of conncurent programming
synchronization problem. In this probelm we have two processes, a producer and
a consumer. They both share a fixed-size buffer. The producer adds data to the
buffer and the consumer will consumer this data. The problem is to make sure
that the producer does not add data to the buffer if it is full, and the consumer
does not consume data from an empty buffer. A; represents the local state where
P; is in sleeping mode, B; represents the local state where P, is awake. x represents
the item count in the buffer.

26

QOO0 O Ui QN —

program {

initial : Al & A2 & (x=0) & 'B1 & !B2
process 1 {

}

action A

1l grd : Al

g_grd : (x<3)

1 _eff : { A1l :=ff; Bl :=tt; 1}
g_eff : {}

}
action A

l grd : Bl

g_grd : true

1 eff : { Al :=tt ; Bl := ff; }
geff :{ x:=x+1;1%}

process 2 {

action A

1 _grd : A2

g_grd : (x>0)

leff : {B2 :=tt ; A2 := ff; }
g_eff : {}

}

action {

1_grd : B2

g grd : true

leff : { B2 :=ff ; A2 := tt; ¥
geff : {x :=x-1;1}

Listing 5.3: A producer-consumer example with a buffer size—3

27

Figure 5.4: Three buffered size producer consumer example

28

5.2 Infinite State

5.2.1 Simplified Bakery Example

The Bakery Algorithm was devised by Leslie Lamport and it is a solution to
the mutual exclusion problem for 2 or more processes. The local states for each
process are N;, T;, and C; similar to the previous examples. This algorithm
preserves the first come first serve property. Whenever a process wants to enters
the trying section, they receive a ticket number which is the max ticket number
plus one, just like in a bakery shop. The holder of the smallest number will be
eligible to enter its critical section. We have create 2 local variables t; for P, and
t2 for P,. These local variables can be read by both processes. Listing 5.4 shows
the program text we created for this example.

The ticket number in this program is unbounded and can keep on incrementing
till infinity. Generating a Kripke structure automatically will not terminate and
here is where the user is prompted to interact with the algorithm. Figure 5.5
shows such an interaction.

! Action 1 is adding a new transition
From state: (and N1 (not N2) (not T1) (not C1) T2 (not C2) (=11 0) (=2 6))

To state:

(and (not N1l) (not N2) Tl (not Cl) T2 (not C2) (= tl 7) (= t2 6))

Figure 5.5: Weakening state predicate interaction

29

—
OO~ O WN =

13

—
(S JIEN

Below is

our interaction for program in Listing 5.4, on first line is the generated

transition and the second line is our modification:

N17 T27 tlZO, t2:6_)T17 T27 t1:7a t2:6
N17 T27 tlzoa t2:6_>T17 T27 tlz]-u t2:6
T17 NQy t1:6a t2:0_>017 N27 t1:6a tQZO
T17 N27 t1:67 t2:0_>017 N27 tlzlu t2:0
T17 N27 t1:6a t2:0_>T1> T27 t1:6a t2:7
T17 N27 t1:67 t2:o_>T17 N27 tlzoa tZIO

program {
initial
process
action

1 grd :

g-grd :

1_eff :

g_eff :

action
1 grd :
g-grd :
1 _eff
g_eff :

action
1 grd :
g-grd :
1_eff :
g_eff :
}

}

process
action
1 _grd :
g-grd :
1_eff :
g_eff :
+
action
1 grd :
g_grd :
1_eff :
g_eff :

action
1 grd :
g_grd :

:{T1

: N1 & N2 & (t1=0) & (t2=0) & !C2 & !C1 &!T1 & !T2
14{

{

N1

N2 | T2 | C2
{ N1 :=ff; T1 :=tt;
{}

{
T1

(t1 < t2) | N2
:=ff;, C1 :=tt;

tl :=t2+1; }

b
{3

{

C1

N2 | T2 | C2
{N1 :=tt ; C1:
{3

ff; t1 := 0; }

2 {
{
N2

N1 | T1]C1
{ N2 :=ff; T2 :=tt;
{3

{
T2

(t2 <t1) | N1
{ T2 :=ff; C2 :=tt;
{3

{
C2
N1 | TL | CL

t2 :=t1 +1; }

+

30

leff : { N2 :=tt ; C2 := ff; t2 := 0; }
g_eff :{}

Listing 5.4: Simplified Bakery Example

5.2.2 Bounded Bakery Example

This is an example to show the expressive power of our language, we added
conditional statements which gives an upper bound on the the ticket number in
the Bakery algorithm. Listing 5.5, shows at Lines 7 and 27 the if-else statement.
Our Kripke generation algorithm will terminate when running this program and
Kripke structure will be automaticaly generated.

Figure 5.6 shows the concrete structure generated from the simplified bakery
example.

31

=
T W —=O O SO U W =

ac
1

1

}

ac
1

1

ac
1

1

}
}

}

}
}
}

initial
process

tion

_grd :
g_grd :

_eff
1}

g_eff

tion

_grd :
g_grd :

_eff

g_eff

tion

_grd :
g_grd :

_eff

g_eff

process
action
1 _grd :

g-grd :
1_eff :

s

g_eff :

action
1 _grd :
g-grd :
1 eff :
g_eff :

action
1 grd :
g-grd :

1_eff
g_eff

[program {

: N1 & N2 & (t1=0) & (t2=0) & !C2 & !C1 &!T1 & !T2

14

{

N1

N2 | T2 | C2

: { N1 :=ff; T1 :=tt;

: {r

{
T1

(t1 <= t2) | N2
: { T1 :=ff; C1 :=tt;
: {}

{
C1

N2 | T2 | C2
{N1 :=tt ; C1:
}

{

2 {
{
N2

N1 | TL] Cl
{ N2

{}

{
T2

(t2 <t1) | N
{T2
{3

{

C2

N1 | TL]| C1

: { N2 :=tt ; C2 :
{3

ff;

=ff;, T2 :=tt;

=ff;, C2 :=tt;

if (2 < 5){ t1

}

t1l :

if(t1 < 5){ t2

+

ff; t2 := 0; }

= t2+1; } else { t1:= 5;

:=tl +1; } else { t2:= 5;

%isting 5.5: Simplified Bounded Bakery Example Program with a max ticket =

32

S0
€Ny

2,
D
N

Figure 5.6: A simplified Bakery example with upper bound ticket number of 5

33

Chapter 6

Implementation

In this chapter we will detail our implementation and put all theoretical work into
action. The text program semantics, Kripke structure generation and extraction
algorithms, and model checking has been discussed in Chapters 3 and 4. Here
we will focus more on syntax and Java implementation. We start with a brief
summary of Eshmun, then we proceed by describing our work for finite and
infinite state programs by topic.

6.1 Eshmun

We have implemented all of our work in Eshmun, a GUI-based tool available at
http://eshmuntool.blogspot.com/. Eshmun is an interactive GUI tool created
by Attie et al [2]; it allows users to create a Kripke structure M by adding states
and transitions, do model checking and repair, export structures and import them
as needed. It has many other facilities that are outside our current scope. Below
is a brief description of modules we used from Eshmun in our current owrk.

1. CTL Parser: parses a CTL formula ¢ to generate a CTLParsedTree object
which is a tree data structure representing ¢ .

2. Ul implements GUI interface between user and the other modules.

3. Model Checker: takes as input a Kripke structure M = (Sy, S, R, L, AP),
and a CTL formula ¢ and verifies if M satisfies .

4. Model Repairer: takes as input a Kripke structure M and a CTL formulae
@ and return a repaired model with respect to .

5. SAT Solver: specifies whether a CNF formulae is satisfiable or not. In case
it is satisfiable it also returns the satisfying valuation.

34

http://eshmuntool.blogspot.com/

6.1.1 Changes on Existing Modules

We only modified one pre-existing module in Eshmun which is the UI module.
We needed to extend a Kripke structure GUI component to be able to represent
a FRKS. Under eshmun.qui.utils.models.vanillakripke we added the following:

1. State : we added a property to hold the state predicate in string format

2. Transition : we added 3 string properties for: precondition, postcondition
and statement block.

Under eshmun.gui.kripke.dialogs we modified StateDialog to allow the user
to modify the above added properties. Under eshmun. gui.kripke.bars we modified
EshmunMenuBar, we added the following buttons:

1. Import Program: to import a finite program

2. Import Program (Abstract View): to import a finite program with shared
variable abstraction

3. Import Infinite Program: to import an infinite state program

4. To Program (Text): to convert a Kripke Structure back to porgram text

6.1.2 New Modules Added

Our addition to Eshmun comes in 2 new modules that were added to it. Also,
we integrated with Z3 SMT Solver to solve formulas of first order logic.

1. Text Representation: this module contains finite and infinite state
implementation. It includes parsing text programs, Kripke structure
generation, and program extraction.

2. Hoare Triple Check: implements verifying the validitiy of Hoare Triples
found on Kripke structure transitions.

3. 78 Solver: a state-of-the art theorem prover from Microsoft Research. Used
by both modules above.

Figure 6.1 shows in blue the previously existing modules and in green the

new modules we added. Below is a brief description of the modules that already
existed in Eshmun and used in our implementation:

35

CTL Parser - -«——String spec:
CTLParsedTree——p»|

<¢——Kripke & CTL.

Model Checker

Model correct———p»|

|-¢——Kripke & CTL-

l.«——Boolean Formula:
SAT Solver Model Repairer

SAT? Model—] G

Deleted Trans———p»|

| <«———Program Extracted——p»|
~<——FOL Formula Text Representation

SAT——— | |<«——— Kripke Structure——p»|

Z3 SMT Solver

l-«——FOL Formula.

| «——Transition

SAT——p| Hoare Triple Check True/False———p|

Figure 6.1: Eshmun Modules

6.2 Parsing Programs

Our text notation allows users to define a multi-process program in a text file and
then import to Eshmun to generate the representing Kripke structure. Import
can be chosen from File — Import — Program | Infinite Program. We have
implemented 2 different parsers: FiniteProgramParser for parsing finite state,
and InfiniteProgramParser for infinite state programs, both under package
eshmun.skeletontextrepresentation. We start with parsing the basic structure
which is shared between both types of programs and proceed with sections that
distinct rules.

Each program starts with the keyword program and must declare an initial
state, which is a logic formula, and a collection of processes. For this part, parsing
the program skeleton, we are only concerned in 2 things: saving the initial state,
and storing the action definitions. Parsing stores the initial state and keeps it in
a static variable to be shared by within the scope of our operation. An action will
be parsed and stored in a Type we created, named SingleAction defined under
package eshmun.skeletontextrepresentation.actions. Each instance will contain
local and global guards, and local and global effects definitions. The "?" in
ANTLR means that this rule is optional, you can see that guards and actions are
optional; which means that ommitting them will be the equivalence of true for

36

guards and skip for effects. CTL will be handled to CTL Parser module.

prog: ’program’ LCURLY intial processes RCURLY;
intial: ’initial’ COLON formula;
processes: (process)+;

process: ’process’ name? LCURLY (action)* RCURLY,
name: IDENT | NUM_INT;
action: ’action’ name? LCURLY localGuard?
lobalGuard?
ocalEffect?
globalEffect?
RCURLY;

localGuard: ’1_grd’ COLON formula SEMI?;
globalGuard: ’g_grd’ COLON formula SEMI?;
localEffect: °’1_eff’ COLON statement SEMI?;
globalEffect: ’g_eff’ COLON statement SEMI?;
ctlFormula: a valid CTIL formula

Listing 6.1: Program structure ANTLR

Listing 6.1, shows the ANTLR grammar rules to declare a program skeleton.
For finite state programs, we need to declare the finite domains of shared
variables. This is achieved by introducting a new section, sharedvariables, to
be added before declaring processess. These domains will be parsed and stored in
a Map<String, HashSet<String» dictionary. Listing 6.2, shows the ANTLR
grammar rules for adding shared variables.

prog: ’program’ LCURLY intial sharedvariables? processes RCURLY;

sharedvariables: ’sharedvariables’ COLON vardomainassignment (COMMA?
vardomainassignment) * ;

vardomainassignment: variablename COLON vardomain;

vardomain: LEFT_CURL variablevalue (COMMA variablevalue)* RIGHT_CURL;

Listing 6.2: Shared Variables in Finite State

6.3 Parsing Guards

A SingleAction defines a transition between two local states for process P; and
is guarded by local and global conditions. Our program is defined to abstract
away any sequential executions not related to interprocess synchronization.
Synchronization happens by evaluating the guards on each state in our model
to check if it is enabled by a specific action. We will need to parse these guards
and save them within each SingleAction.

6.3.1 Finite State Guards

Recall from Section 3.1, guards in finite programs are boolean formulas defined
over the set of atomic propositions AP; and shared variables. Below is the

37

grammar rule for such formulas.

formula — G)

(G &
(G | G)
[(z = ¢)
| G
| boolean Literal
|

atomicProp

atomicProp — AP starts in a capital, ends with integer representing
proccess id
booleanLiteral — ¢t true ff false

We use ! for the negation, & for conjunction and | for disjunction of boolean
expressions. Literals true and false can be replaced by tt and ff respectively.
Shared variables x can be any valid identifier and can be checked for equality
with any constant value c¢ from the set of finite domain. In local guards, AP
can only range on local atomic propositions (labels) of process i, and any shared
variable test for equality (x=c) is discarded. In global guards, AP ranges on all
AP; where j # i, and shared variable equality checks are allowed.

The guards are parsed to a tree data structure where each
node is of the abstract type Guard defined under package
eshmun.skeletontextrepresentation. guards. Concrete types implementing
Guard are:

1. AndGuard: stores a conjunction of guards and can have a collection of
children.

2. OrGuard: stores a disjunction of guards and can have a collection of
children.

3. NotGuard: stores a negation of a guard.
4. AtomicGuard: stores AP or shared variable equality checks.

5. LiteralGuard: stores a boolean literal, true or false.

6.3.2 Infinite State Guards

Recall from Section 4.2, in infinite state programs, states are represented by
predicate logic formulas. Hence, our guards need to be more expressive thus we
implement first-order logic syntax and semantics.

38

Below is the grammar rules for first-order logic guards:

guard — formula

formula — primitiveFormula
| formula connective formula
| quantifier variable formula

| I formula

primitiveFormula — term relOp term
| atomicProp

| boolean Literal

term — (term arithmeticOp term)
| variable

| constant

connective — & | =

quantifier — forall exists
relOp — = = < <= > >=

arithmeticOp — — + x /
variable — any valid identifier string

constant — any numeric value from N

A formula states a property that will eventually be interpreted as true or false.
Formulas are defined recursively as:

e primitive formulas or atoms
e a logical combination of formulas
e a quantified formula using the universal or existential quantifiers

Logical connectives (| , & , and =) will be used to recursively build complex
formulas, connectives like — can be constructed using | and ! . Terms are used
to reference concrete objects: a constant, a variable, or an arithmetic operation
in our case. Our implementation will parse guards to a Z3 BoolExpr object and
save it in local or global guarded respectively. BoolExpr is a flexible tree data
structure defined under defined under com.microsoft.z3. BoolEzpr, it alows us to
easily to manipulate and evaluate such expressions.

39

6.4 Parsing Effects

An action defines 2 types of effects: local effect and global effect. Local effects
alter only the local state of a process owning the transition, while global effects
alter globally shared variables. An effect is a command that needs to be executed
during a transition between 2 states.

6.4.1 Finite State Syntax

Recall from Section 3.1 how a local effect for finite state programs will assign a
true or false value for AP;; which means it only have a local effect on the process
perfroming an action. A global effect will only effect shared variables, it assigns
values to shared variables from a predefined finite domain. We show the syntax
for local effects, then for global effects.

localEffect — atomicProp (, atomicProp)x
:= booleanLiteral (,booleanLiteral) x SEMI
globalEffect — variable (, variable)x := constant (, constant)x SEMI

Both effects will be parsed to type AssignmentStatement, a subtype of
Statement, and stored within a SingleAction as LocalEffect and GlobalEffect
of super type Effect. This statement contains an emum to define the assignment
type as either: BoolAssignment for local effects , or VariableAssignment
global effects.

It also contains a dictionary that keeps the values of each variable.

6.4.2 Infinite State Syntax

In finite state, effects had only assignments over AP and shared variables

For infinite state, recall from Section 4.2, we will add integer
expressions, boolean expressions, and commands in the form of if-statements
and sequential compositions. A command C will be parsed into a type
Statement. A statement can be of subtype AssignmentStatement,
IfStatement, and BlockStatement. These subtypes are all defined under
package eshmun.skeletontextrepresentation.commands Below is the grammar,
disregarding left-recurion to simplify the syntax.

40

C— if(B){C}(else{C})?
| C;C
|z = F

B — B connective B
| (E relop E)
|!' B
| true

| false

E — (E arithmeticOp E)

| (= E)
| z
| n
In grammar rule E, n is any numeral in {...,—2,—1,0,1,2,...} and x is any

variable. FE represents integer expressions and supports basic operations like
multiplication and addition. For command conditions, we introduced a syntactic
rule for Boolean expressions B, which is freely expanded by relational operators
and logical connectives. Now that we have expressions and boolean conditions,
we define commands C, built from assignments and control structures.

6.5 Kripke Structure Generation

The purpose of defining text programs is to convert them to Kripke Structures
where we can do CTL Model Checking. Generation is directly executed when
a new program is imported to Eshmun. At this stage, the parsers has already
saved the collection of Actions, initial state, and CTL specification formula.

We introduce 2 new types to define states and transitions:

1. State : a data structure for a Kripke stucture states. A state has a
name, and a label which is a comma seperated string over AP defining
true propositions in state. For infinite state, we introduce a subtype
InfiniteState which has a BoolExpr to hold the state predicate.

2. Transition : a data structure that represents a single transition containing
a From state and To state. It also stores a reference to the SingleAction
responsible of the transition.

41

6.5.1 Finite State

Recall from Section 3.2 the description of constructing the Kripke structure of
a program. We start by listing the most important functions and classes from
parsing the program text to Kripke generation:

GuardVisitor

In order to evaluate if a state is enabled by a guard, we implemented a visitor
pattern that traverses the Guard tree structure to evaluate a specific state on the
guard. This visitor will help us in getting all states satisfying a guard. A state
satisfies a guard by simply inserting the values of the APs and shared variables
from the state and checking if a guard evaluates to true or false. Note that if a
state does not contain an AP in its labels, then the value of this AP is evaluated
to false. The visitor visiting an OrGuard, will evaluate all children gaurds and
return the disjunction of the guard evaluations. For AndGuard, the result will
be a conjunction of the children visiting result. The NotGuard, does a negation
to the single child it has. The AtomicGuard, will check if the state has that same
label or same variable equality check and return True, else returns False. The
LiteralGuard will evaluate true or tt as True, and ff or false as False.

public static interface GuardVisitor {
/* Defines the interface for any visitor operating on Guard types */
public boolean visit(OrGuard or, State state);
public boolean visit(AndGuard and, State state);
public boolean visit(NotGuard not, State state);
public boolean visit(AtomicGuard label, State state);
public boolean visit(LiteralGuard literalGuard, State state);

Listing 6.3: Guard Visitor

EffectsFiniteStateVisitor

In order to find the list of successor states of a specific state enabled by a guard,
we implemented a visitor pattern to traverse the effects. Note that, in finite state
implementation, the effects are not composed structures but we still implemented
a visitor to apply the same design on infinite state effects later, which are tree
like structures. On an action enabled state s, the LocalEffect visitor is invoked
first and will produce a new state t with different labels, note that this new state
already exists in the state space. After that, the GlobalEffect visitor is invoked
on T and will apply all changes in the shared variables values. Thus the result
will be to find the state ¢ that satisfies the new values indicating that a transition
to this state is valid starting from state s.

ipublic static interface EffectsFiniteStateVisitor {

42

|/* Defines the interface for any visitor operating on Finite State Effects |
| */ |
\ public State visit(GlobalEffect effect, State state); \
‘ public State visit(LocalEffect effect, State state); ‘

}

Listing 6.4: Effects Visitor

Our implementation allows the user to import a program in Abstract mode,
which is reflected in visiting global effects. While in Abstract mode, if a user
annotates the action by setting a variable to null in a global effect e.g., x:=null,
the visitor will discard the variable from the state. In all other cases, setting the
variable to null does nothing.

ProgramToKripkeConverter

ProgramToKripkeConverter handles dealing with Ul and is called by
EshmunMenuBar for converting an imported text program to a Kripke
Structure. The main method is convert(String args, boolean isAbstractView),
it first calls the FiniteProgramParser to parse the program and then calls
generateFiniteStateKripke(), defined below. The latter produces a set of
transitions that will be passed to the KripkeGenerator class that contains
the method generateKripkeUIDefinition to convert a Kripke to a string format
to be sent to Eshmun UI module. This string format is defined by Eshmun help
pages under Scripting — Structure Definition.

GenerateFiniteStateKripke()

This is the main method in generating the Kripke Structure, described in eSection
3.2. Its final result is a collection of all the valid transitions of the Kripke
structure. Below is the pseudo code for the algorithm:

It includes a method a.getEnabledStatesByGuards(allStates) loops on all the
state space and foreach state invokes the GuardVisitor on the action local guard
first, if a state is enabled then it checks the global guard. If the local guard and
global guard are satisfied together, then a state is enabled by an action, meaning
this state has a transition going out of it. The method a.generate Transitions(s)
will then invoke the local effect and then the global effect visitor to produce the
resulting state ¢, and create the transition (s, t)

DeleteNodesWithNoIncomingEdges(T)

This is the final method before converting the generated structure to the string
format the Ul understands. Deletion runs recursively on the set of all generated
transitions and delete all nodes i.e., states with no incoming edges. If a node is

43

deleted, by default all its transitions are deleted. The method will keep running
until no states are being deleted.

6.5.2 Infinite State

We now move to detail the implementation of generating the Kripke structure
for infinite state programs. The main difference between the finite and infinite
algorithm is that in finite state we can generate all thestate space by simulating
the program actions and produce a finite number of the transitions. In infinite
state, this may not be the case. Starting from the initial state, we start generating
new states and transitions. These states will be represented by predicates and if
our algorithms finds that it is not terminating, it might alert the user to enter
weaker predicates for new states. In Section 4, we defined the theory behind the
work. We now proceed to give brief a description of the main methods and classes
involved.

StrongestPost ConditionVisitor

This visitor implements Hoare logic predicate semantics to calculate a new
predicate out of a post condition and a Command i.e., Statement. Recall our
semantics from Section4.3.1, that action effects are more than just assignment
statements. We add 2 new Commands: if-else statements, and sequential
compoisitions of other statements. To generate the new predicates we
traverse these Statements by calling method getStrongestPostCondition() using
StrongestPostConditionVisitor visitor we implemented which implements
CommandLogicVisitor.

public interface CommandLogicVisitor {
/* Defines the interface for any visitor operating on Infinite State
Effects */
BoolExpr visit(IfStatement statement, BoolExpr p, Context ctx);
BoolExpr visit(BlockStatement statement, BoolExpr p, Context ctx);
BoolExpr visit(AssignmentStatement statement, BoolExpr p, Context ctx);

+

Listing 6.5: Effects Visitor

BoolExpr is the data structure holding the state precondition. Context object
is a Z3 type. The main interaction with Z3 happens via the Context. This object
maintain all data structures related to objects and formulas that are created
within the scope of our operation.

Solve AndSimplify ()

The generation of the strongest postconditions introduces an existential quantifier
on each assignment statement. This leads to very large formulas after few

44

iterations of our Kripke generation algorithm. We implemented this method
to simplify the produced formulas. The method tries to solve the formula first, it
does so by asserting it to a the Z3 solver and then checking for its satisifability.
If it is satisfiable, we get the model and rebuild a simpler formula by creating
a conjunction of all values. If not, we simply call Z3 simplify which is just a
bottom-up rewriter.

Algorithm 3: Solve And Simplify
input : A predicate logic formula @
output : A simplified Q)

solver := new Z3 Solver instance
solver.assert(Q)
if solver is SAT then
Q := True
for m in Model do
| Q:=Q A (m.variable = m.value)
end
return Q
else
‘ return Q with Z3 default simplification
end

GenerateFRKS()

The details of generation algorithm are described in Section 4.3.2, and all
previously mentioned methods, in this section, are used in the its main loop.
For optimization, all satisfiability results are stored in memory to be used in
later iterations. The algorithm uses Z3 Java API whenever it is checking for
satisfiability, solving, or simplifying formulas.

We mentioned earlier that this algorithm is semi-automatic, meaning that
item may not terminate, and this depends on the program we are trying to
represent. The interactive mode will be using JOptionPane.showMessageDialog
to allow users to weaken the predicates being generated on new states and possibly
leading to termination.

6.6 Program Extraction

We only implemented program extraction for finite state programs, for inifinte
state this will be in our future work.

45

6.6.1 Finite State

The aim of model checking a repair is to verify to the user wether a program is
correct or not. After generating the Kripke Structure and interacting with, by
model checking and model repairing, we provide the feature to extract back the
program into text format. This will guide the user in implementing the program.

Recall from Section 3.3, the Kripke structure is a global-state transition
diagram of a program, and this program can be extracted from M by “projecting”
onto the individual processes. We do this by first projecting all transitions and
then grouping the transitions by process families.

H s T 11 = start ‘ tTi—=end ‘ label = i,A | f.assign = A B H
N1 T1 1 Sklp N2
N1 T1 1 Skip CQ
N1 T1 1,XZ:2 x=2 TQ &r=2

Table 6.1: Sample transitions from Kripke Structure in Figure 5.2

Table 6.1 shows the transitions of Process 1 from N; — T; in the Kripke
Structure of Figure 5.2. This gives rise to 2 actions in our text program, since by
definition an action is a family of transitions having F.start = s;, F.finish = t;,
F.assign = A, F.quard = B. The 2 action produces hence are:

Ny , NQ\/OQ—> Skip, T
Nl,T2—> $222, T

This work is implemented in class KripkeToProgramConverter under
package eshmun.skeletontextrepresentation.

6.7 Hoare Triples Check for Infinite State

Recall from Section 4.3.1 how each transition, in FRKS, is a Hoare Triple of the
form {P}S{Q}.

In Seciton 4.4.1, we described how weakest preconditions gets generated. For
this purpose we implemented a new visitor WeakestPreConditionVisitor that
implements CommandLogicVisitor show in Listing 6.5. This visitor traverses
the command S of each transition carrying with it the postcondition) and
produces the weakest preconiditon.

For checking validity and satisfiability as described in 4.4.2 , we use Z3 SMT
solver to and the above results to flag that a transition is valid or not valid. This
result is retuned to the UI for the user to see it.

46

Chapter 7

Related Work

Our work combines deductive and model checking approaches to achieve better
expressivity and handle infinite state programs while providing a high level of
automation. Several abstraction methods have been devised to approximate
infinite state spaces by models of finite state spaces.

7.1 Predicate Abstraction

In predicate abstraction |10], a concrete transition system is approximated by
an abstract transition system. Properties can be verified by observing specific
predicates over the concrete transition system. In the case of Lamport’s Bakery
algorithm, for example, we know that it is an infinite-state program since the
ticket value may grow without any bound, e.g., when two processes alternately
enter and exit the critical section. Predicates like t1 < ¢2 (t1 and t2 are
ticket numbers of process 1 and 2), t1 = 0, {2 = 0 can be abstracted as
boolean variables and used to build the abstract transition system. Also, states
can be represented using these predicates. Properties verified of the abstract
system can then be “concretized” by replacing the abstract booleans with their
corresponding concrete predicates, and these concrete properties will hold of the
concrete system.

7.2 Alloy Model Checker

Alloy [12] is a modelling notation that lets you enter specifications in restricted
first order logic. The associated Alloy tool can then check validity by allowing the
user to restrict the range of all variables to finite domains. It offers a decalaration
syntax that can express complex constraints. It uses SAT solvers to verify the
satisfiability of axioms defined in a model and to find counter examples.

47

7.3 Temporal Verification Diagrams

A verification diagram [13] is a way to visualize transitions between nodes labelled
with assertions. A verification diagram is a directed labeled graph constructed
as follows:

e Nodes: each node is labeled by an assertion.

e Edges: a directed edge between two nodes represents a transition between
those nodes.

e Terminal nodes: a terminal node has no outgoing edges, and is used, e.g.,
for liveness properties.

Each directed edge generates a Hoare-triple, which must be proven valid, e.g., by
proving the associated verificaiton condition, this can be done manually or with
the aid of a theorem prover or SMT solver.

48

Chapter 8

Conclusions and Future Work

8.1

Summary of Contributions

The major results of this thesis are:

1.

8.2

We implemented a textual notation for finite and infinite state concurrent
programs. This is more flexible and easier to edit than the previous
graphical synchronization skeleton notation. In the infinite state case, it
is also much more expressive.

. We implemented shared variable abstraction for finite state concurrent

programs. This allows a user to indicate (using x := null) that the value
of a shared variable can be subsequently ignored. This enables the use
of significantly smaller Kripke structures to represent the behavior of a
concurrent program.

. We implemented finitely representable (infinite state) Kripke structures,

along with Hoare-triple checking and model checking. We also implemented
a semi-automatic method for generating a finitely representable Kripke
structure from an infinite-state concurrent program.

. We presented several case studies in finite state and infinite state to

illustrate our methods.

Future Work

Future work includes:

1.
2.

Undertake more case studies.

Developing theoretical results on the correctness of the semi-automatic
method for generating a finitely representable Kripke structure from an
infinite-state concurrent program.

49

. Semi-automatically repairing a finitely representable Kripke structure and
extracting back the infinite state program from the resulting Kripke.

. Extracting low atomicity and distributed concurrent programs from finite
and infinite-state Kripke structures.

20

Bibliography

[1] Alessandro Artale. Formal methods lecture iv: Computation tree logic (ctl),
2010.

[2] Paul C. Attie, Kinan Dak Al Bab, and Mouhammad Sakr. Model and
program repair via sat solving. ACM Trans. Embed. Comput. Syst.,
17(2):32:1-32:25, Dec. 2017.

[3] P.C. Attie and E.A. Emerson. Synthesis of concurrent programs for an
atomic read/write model of computation. TOPLAS, 23(2):187-242, 2001.

[4] E. M. Clarke, E. A. Emerson, and P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. TOPLAS,
8(2):244-263, 1986.

[5] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick
Bloem, editors. Handbook of Model Checking. Springer, 2018.

[6] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Inc., Englewood
Cliffs, N.J., 1976.

[7] E. A. Emerson. Temporal and modal logic. Handbook of Theoretical
Computer Science, B:997-1072, 1990.

[8] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Science of Computer Programming,
2(3):241-266, 1982.

[9] Herbert Enderton. A mathematical introduction to logic. Academic Press,
San Diego, Calif, 2001.

[10] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In
CAV, volume 1254 of LNCS, pages 72—-83. Springer, London, UK, 1997.

[11] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, 2012.

o1

[12] D. Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology, 11(2):256-290,
2002.

[13] Zohar Manna and Amir Pnueli. Temporal verification diagrams. In Masami
Hagiya and John C. Mitchell, editors, Theoretical Aspects of Computer
Software, International Conference TACS 94, Sendai, Japan, April 19-22,
1994, Proceedings, volume 789 of Lecture Notes in Computer Science, pages
726-765. Springer, 1994.

52

	Acknowledgements
	Abstract
	Introduction
	Preliminaries
	CTL Syntax and Semantics
	Model of Concurrent Programs
	First Order Logic

	Finite-State Concurrent Programs
	Text-based Notation
	Kripke Structure Generation
	Concrete Kripke Structure
	With Shared Variable Abstractions

	Program Extraction from Kripke
	CTL Model Checking

	Infinite-State Concurrent Programs
	Finitely Representable Kripke Structure
	Text-based Notation
	Kripke Structure Generation
	Hoare Logic and Strongest Postconditions
	Kripke Structure Generation Algorithm

	Model Checking
	Weakest Preconditions
	Hoare Triples Check

	Case Studies
	Finite State
	2-process Mutex with a shared variable
	Peterson's Algorithm
	Producer-Consumer Example

	Infinite State
	Simplified Bakery Example
	Bounded Bakery Example

	Implementation
	Eshmun
	Changes on Existing Modules
	New Modules Added

	Parsing Programs
	Parsing Guards
	Finite State Guards
	Infinite State Guards

	Parsing Effects
	Finite State Syntax
	Infinite State Syntax

	Kripke Structure Generation
	Finite State
	Infinite State

	Program Extraction
	Finite State

	Hoare Triples Check for Infinite State

	Related Work
	Predicate Abstraction
	Alloy Model Checker
	Temporal Verification Diagrams

	Conclusions and Future Work
	Summary of Contributions
	Future Work

