
AMERICAN UNIVERSITY OF BEIRUT

On-Demand Deployment Of Containerized
Micro-Services On Vehicular Fogs

by

Hani Osamah Sami

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Computer Science
to the Department of Computer Science
of the Faculty of Arts and Sciences

at the American University of Beirut

Beirut, Lebanon
May 2019

Acknowledgements

I first would like to thank my supervisor Dr. Wassim El-Hajj, Chair of the Computer
Science Department, for his continuous support and guidance throughout this work.
Without his passionate participation and input, this thesis could not have been success-
fully conducted.

I would also like to thank my co-supervisor Dr. Azzam Mourad, chair and associate
professor at LAU. I always found the door of his office opened whenever I ran into
trouble or I have any questions and concerns about my research. He always steered me
in the right direction whenever he thought I needed help.

I would also like to acknowledge Professor Haidar Safa of the Computer Science De-
partment at AUB as the second reader of this thesis, and I am gratefully indebted to his
valuable comments on this thesis.

Finally, I am very grateful to my parent and friends who endured this long process
with me and always offered love and support.

v

An Abstract of the Thesis of

Hani Osamah Sami for Master of Computer Science
Major: Computer Science

Title: On-Demand Deployment Of Containerized Micro-Services On Vehicular Fogs

With the vehicular manufacturing advancement, real-time vehicular applications
require fast processing of the vast amount of generated data by vehicles, thus a main-
tained service availability and reachability while driving. These applications use sensed
data generated by IoT devices on board to support vehicular applications such as, the
self-driving cars, real-time traffic signs updates, or even video surveillance and analy-
sis applications. Fog devices are capable of bringing cloud intelligence near the edge,
making them a candidate to such requests. However its location, processing power,
and technology used to host and update services affect its availability and performance
while considering the mobility patterns of vehicles. Contemporary work in the litera-
ture examines the use of virtual machines (VM) to host the essential services on Road
Side Units (RSU). The RSU usage raises many limitations including the difficulty of
updating services hosted in VMs, RSUs range of coverage, and other handover prob-
lems when considering SDN controller to route traffic between RSUs. On the other
hand, the evolvement of the On-Boarding Units helps in performing some of the re-
quired processing locally. However, one OBU is still not enough to perform real-time
processing of generated data and to enable efficient decision making in critical appli-
cations like self-driving cars. In this thesis, we overcome the mentioned limitations
by introducing a Kubeadm OBUs clustering technique to enable on-demand micro-
services deployment with the least costs possible. Docker Containerization technol-
ogy is adapted to offer light service installment and smooth services updates based on
the application’s needs. A hybrid multi-layered networking architecture is proposed to
maintain network reachability between the requesting user and available Kubeadm fog
cluster. We present a master node election algorithm to select the cluster orchestrator
in the most effective way taking into consideration the mobility conditions of vehicles.
Cluster failures can be recovered following a proposed recovery algorithm. Moreover,
our framework leverages a vehicular container placement scheme that produces opti-
mal vehicles selection and services distribution. An Evolutionary Memetic Algorithm

vi

is elaborated to solve our multi-objective vehicular container placement problem. We
also present a simulated testing environment with real datasets to demonstrate various
improvements interpreted by the relevance and efficiency of (1) forming Kubeadm ve-
hicular fog clusters with maximum time availability and user support, and (2) deploy-
ing services on selected OBUs based on the vehicular container placement approach.

Keywords — Vehicular Fog Computing, Vehicular Clustering, Orchestration, Con-
tainer, Micro-Services, Kubeadm, Docker, Memetic Algorithm

vii

Contents

Acknowledgements v

Abstract vi

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Objectives . 4
1.3 Methodology . 5
1.4 Thesis Organization . 6

2 Background and Related Work 8
2.1 Introduction . 8
2.2 Applications in Vehicular Fog Network 9
2.3 On-Board Units and Personal Devices 10
2.4 RSU and RSUC . 11
2.5 LTE, 5G and 802.11p . 12
2.6 IoT and Fog Computing . 14
2.7 Virtual Machines and Containers . 15
2.8 Containers’ Orchestration . 16
2.9 Multi-Objective Optimization Problem 18
2.10 Genetic and Memetic Algorithms . 20
2.11 Related Work . 21
2.12 Conclusion . 26

3 Kubeadm Vehicular Fog Clustering Using Hybrid Network Architecture 28
3.1 Introduction . 28
3.2 Approach Overview and Architecture 29
3.3 Architecture Components . 32
3.4 Architecture Components Interactions 41
3.5 Masters Election . 45
3.6 Cluster Recovery Algorithm . 48
3.7 Experiments Showing Architecture Advantage 49
3.8 Conclusion . 64

viii

4 Vehicular Container Placement 66
4.1 Introduction . 66
4.2 VCP Problem Formulation . 68
4.3 Memetic Algorithm To Solve VCP 75
4.4 VCP Experiments . 78
4.5 Conclusion . 88

5 Conclusion 90
5.1 Conclusion . 90
5.2 Future Work . 91

ix

List of Figures

2.1 OBU Internal Architecture [4] . 10
2.2 Fog Layer Supporting IoT [19] . 15
2.3 Containers vs VMs [29] . 17
2.4 Kubeadm Orchestration Architecture [28] 18

3.1 Proposed Architecture . 32
3.2 Node Architecture Per Layer. 33
3.3 Components Interaction While Initializing Kubeadm Cluster 42
3.4 Components Interaction When a User Requests Services - QoS im-

provement . 44
3.5 Cloud of rsu using VM vs. Container. 53
3.6 Container vs. VM installment on a vehicle. 55
3.7 RSU Handover Issue vs. Vehicular Fogs. at a speed of 10m/s 57
3.8 RSU Handover Issue vs. Vehicular Fogs. at speed of 20m/s 58
3.9 Experiment Screenshot . 58
3.10 RSU limited network coverage drawback vs. vehicular fogs. 60
3.11 Approach Advantage in Combined Scenarios - No Recovery 62
3.12 Approach Advantage in Combined Scenarios - Recovery 63

4.1 Maintain micro-services connection using VCP. 82
4.2 Maximize number of pushed services using VCP. 85
4.3 Maximize cluster availability using VCP 87

x

List of Tables

3.1 Performance Comparison Between Our Approach vs Cloud of RSUs . 64

4.1 Table of Notations . 66
4.2 Vehicles Dataset . 80
4.3 Services Dataset . 80
4.4 Scenarios . 81
4.5 Objective Functions Evaluation - Scenario 1 83
4.6 Objective Functions Evaluation - Scenario 2 86
4.7 Objective Functions Evaluation - Scenario 2 88

xi

Chapter 1

Introduction

1.1 Motivation and Problem Statement

The OBU evolved from a simple device that can track the vehicle location and speed, to

a networking device capable of communicating with neighboring vehicles and open-

ing a stable connection with servers on the cloud. The OBUs are now also capable

of performing various computation tasks depending on their CPU capabilities. Buses

in modern cities are now equipped with multiple OBUs that can support applications

helping drivers and providing luxury to passengers. An example of these applications

is the recording of violating cars driving on buses lines, letting drivers abide by the

speed limit, calculating the number of passengers, measuring air pollution, voice com-

munication with passengers and drivers, etc. This type of applications requires enough

resources which one OBU only cannot handle.

The improvement in the wireless technology, new development of services, and the

evolution in onboard unit’s (OBU) physical resources capabilities, disclosed a poten-

tial in enhancing the vehicular applications by employing the available technologies

and resources into vehicular fog computing clusters that can enrich the user experi-

1

ence and allow a new development paradigm targeting vehicular market. One of the

essential applications that can be supported in this case is self-driving cars. This ap-

plication is very time sensitive, and more processing power is needed to provide more

accurate analysis of sensed data from all vehicles around to perform lane changing,

detect humans or objects crossing the roads, and be alarmed by any accident happened

in front.

Vehicles are mobile sensors generating a lot of data that should be processed in

real time. For this reason, it is not feasible for time-critical applications to receive their

support from servers on the cloud. Here arises the concept of fog computing capable

of bringing cloud intelligence near the edge by hosting services next to the user. Fog

devices minimize the load on the cloud by doing the major work, reducing networking

delay, enhancing user’s devices battery life, improving QoS for various types of appli-

cations.

This being said, vehicular devices should be supported by fog servers whom the appli-

cations can rely on to provide the best user experience and meet the networking and

processing needs. Many literature works tried to develop a workaround to solve the

below-mentioned limitations; however, there is no architecture until now that can pro-

vide full support for vehicles all the time with any service required. These limitations

can be summarized as follows:

1. The limited resources on the OBUs makes it impossible to download a VM and

start it. So there is a need for a technology that can better utilize disk space

and provide the ability to update services with the least delay possible to host

these services on cars themselves. Besides, very few works considered the use

of electronic devices carried by passengers.

2

2. The dynamic car mobility and erratic behavior of drivers make it a challenge to

maintain a stable network connection between cars and service provider, which

is in most cases the RSU. The limited capabilities of base stations that use cur-

rent cellular technologies is another challenge to host services on cars. If every

vehicle connects to the BS, the base stations are overwhelmed with requests and

can suffer from computational and networking problems (performance issues).

So there is a need for a networking architecture that can keep vehicles connected

all the time.

3. RSU concept was developed to partially overcome the challenges mentioned

above by hosting services on them and keep the car attached to it while in range

to access the required services. Several problems arise here, such as, the limited

coverage of RSUs on the road where it is costly to deploy RSU server every-

where, the limited number of vehicles that an RSU can serve, the cost of pushing

new VMs every time the user request a new service.

On the other hand, the usage of containerization technology is rising because of its

capability of replacing VMs with low deployment costs and faster booting time. This

is because containers use the actual operating system of the device, can share the bin

and lib files, and occupy much smaller OS image sizes on disk. On the other hand,

the VM uses their copy of the operating system with large OS files and denser deploy-

ment on the machine. Also, companies are shifting to re-engineering their services as

microservices to improve the deployment costs, enhance distributed computing, and

provide easiness in maintenance and upgrading procedures.

In this paper, we make use of one of the well-known containerization technology

Docker to deploy our services on cars on the fly, making cars as fog devices support-

ing other users. Vehicles in our architecture form a cluster that can host micro-services

3

related to one service or more. These clusters are managed by a cluster node using

Kubernetes utility Kubeadm developed recently by Google. We also adopt a technique

proposed in [33] to provide a long time stable connectivity between the user and the

serving cluster. To the best of our knowledge, we are the first to propose a method-

ology that uses vehicles and devices on-board as fog devices to push containers of

micro-services on the fly on them, and at the same time provide long term support

for moving users regardless of their connection status. Through our approach, we

can open the door for a new development area serving a new generation of vehicle’s

applications.

1.2 Objectives

The main objective of this thesis is to provide real-time support for vehicular appli-

cations by pushing services next to vehicles when needed, and to be able to keep the

car connected to its service provider all the time after achieving a tolerable end to end

delays and an enhanced quality of service with negligible delay and fast processing

when possible. Our main objectives are:

1. Develop a framework that efficiently initializes clusters of vehicles to benefit

from OBUs and onboard resources to push services most efficiently with the

least initialization time possible.

2. Build a networking architecture combining cellular technology and 802.11p for

an ad-hoc wireless network to keep cars connected at all times.

3. Elaborate an efficient resource selection and micro-services assignment when

deciding to use a mobile cluster to serve a particular user.

4

1.3 Methodology

In this thesis, we take advantage of the OBUs and onboard devices availability into

becoming fog devices that can serve nearby or far users. We make use of an orches-

tration technology that can manage containers pushed to worker vehicles, so we first

start by preparing Kubeadm clusters of vehicles after electing the orchestrator. We

then elaborate an efficient on-demand deployment approach on vehicles using Docker

technology. Second, we build five layers of networking architecture that connect ve-

hicular fogs with users to achieve a stable connection between users and serving fogs.

Third and last, we formulate and provide a solution for the intelligent vehicular con-

tainer placement which selects the best vehicles that can host a group of requested

micro-services by the user. Below we list the fundamental contributions of this thesis:

1. Introducing the on-demand vehicular fog clusters creation and management count-

ing on OBUs and personal devices using containerization and orchestration tech-

nologies for pushing and monitoring micro-services.

2. Introducing a networking architecture leveraging the use of LTE and 802.11p

under five layers of communication including BS, RSUC, RSU, orchestrator,

workers (fog devices), and users.

3. Formulating the Vehicular Container Placement problem (VCP) as a multi-objective

optimization problem after proving its complexity, and providing a heuristics to

solve it.

4. Presenting a local master election algorithm and introducing a recovery algo-

rithm to overcome potential cluster failures.

5. Showing the architecture feasibility and the VCP solution advantage by building

5

our customized testing environment. This is done by merging Containernet,

Mininet-Wifi, and SUMO simulators functionalities.

1.4 Thesis Organization

The remainder of this thesis is organized as follow:

In chapter II, we provide a piece of background information about the OBU, RSU,

RSUC, Docker, Kubernetes, Kubeadm, 802.11p, base stations, cellular technology

LTE and how 5G can improve the performance of our framework. We also go over

some surveys and reviews that point out the need for creating vehicular fog clusters

including the main challenges solved by our proposed methodology. Some of the lit-

erature work from where we inspired parts of our architecture is provided, and others

in the area of vehicular fogs.

In chapter III, we describe our on-demand vehicular fog clusters creation, the

methodology used, and detailed writing of each component functionalities per layer.

This also includes the networking architecture proposed to keep vehicles connected.

Finally, we evaluate the performance of our primary approach using Containernet,

Minient-Wifi, and SUMO simulators.

In chapter VI, we mathematically formulate our vehicular container placement

problem by providing the input, output, constraints and objective functions. A Memetic

algorithm that solves this problem is provided. Finally, we evaluate the proposed VCP

solution and show its impact on our framework performance.

6

In Chapter V, we conclude our work and summarize the thesis contribution. Future

goals are also discussed.

7

Chapter 2

Background and Related Work

2.1 Introduction

In this chapter, we start first by presenting some of the well known time sensitive ve-

hicular applications that are not fully supported yet. We then explain the terminologies

used in this paper and the technology behind them. We start by defining the On-Board

Unit (OBU) and its revolution throughout the years including the smart devices car-

ried by passengers. Next, we present the common usage of the roadside unit (RSU)

and roadside unit controller (RSUC) to help vehicular communication and enhance the

performance of their applications. In addition, the LTE and 5G cellular networks that

we count on in our architecture are reviewed.

Moreover, we explain the motivation behind using the 802.11p networking protocol

in VANET communications. We define virtual machines and containers and divulge

into the difference between them. After that, we discuss the concept and need be-

hind orchestration technologies available nowadays and compare them. We describe

the multi-objective optimization problem and the multiple methods used to solve it.

We then discuss the Memetic algorithm and the improvements achieved over the Ge-

8

netic algorithm, as well as the different steps that build such an algorithm. Finally, we

present a literature review of recent surveys that mention the vehicular environment

limitations and others that try to serve vehicular applications using VMs deployed on

RSUs or OBUs to perform basic tasks. We also review a work that proposed the use

of hybrid network architecture to maintain vehicular connections.

2.2 Applications in Vehicular Fog Network

Some applications heavily rely on vehicular computational resources to achieve their

purpose. These applications are categorized into safety, traffic control, and infotain-

ment applications[15]. Route navigation updates use real-time road congestion updates

from cars on the road to defining the shortest path for the user in terms of traffic con-

gestion to reach their destination, where e-road signs can be adjusted to redirect traffic

flows accordingly. This application requires the sensing and data processing services

to be installed near a group of cars on each suggested road on the way. Video surveil-

lance is another application that can be used to report accidents on the street, track

vehicles or people, or report any traffic violations. This also requires applications to

be hosted on cars to capture and process videos and to report them to the concerned

security department. Re-scheduling traffic lights in case of an emergency car passing

or traffic jam problems requires processing the sensed data to study road conditions to

make proper and accurate decisions on changing the traffic light in real time. In these

cases, we need an architecture that builds vehicular fog cluster formed using the vehic-

ular infrastructure to collect and process sensed data using the micro-services hosted

as containers on them. This way, the processing is no longer done on RSUs or the

cloud, as well as utilizing available vehicular resources.

9

Figure 2.1: OBU Internal Architecture [4]

2.3 On-Board Units and Personal Devices

On-board units (OBUs) started from simple devices that can track vehicles locations

and monitor their speeds, to networking devices capable of connecting to servers

placed on the cloud. Even-though one OBU is not enough to perform fast processing;

some modern cities are equipping buses with more than one OBU to enable the inte-

gration of smart vehicular applications to positively enhance passengers’ and drivers’

experience by improving its processing capabilities. Therefore, the buses can iden-

tify violating cars driving on its lanes, counting the number of passengers, alarming

the driver of any traffic violations, measuring air pollution, and opening conversations

with passengers. According to a study conducted in 2017 1, on average, every per-

son nowadays uses at least two smart mobile devices a day. These smart devices are

becoming more powerful with up to six cores [30] in one phone. These devices can

be a great source of computation, especially when combined with the power of clus-

tered OBUs. As discussed in the next section, researchers are counting on RSUs to

do the heavy processing required to maintain a fast response time when serving ve-

1https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680647/

10

hicular applications. Although RSUs are the only solution to support heavy vehicular

computations, their limitations are affecting the development of other applications that

are non-delay tolerant and must be supported in real time. An example of these ap-

plications is self-driving cars. This application requires a real-time update on the road

conditions from its sensors and neighboring cars. This vast amount of data generated

by these cars should be processed fastly for the car to take an instant decision of lane

changing, identify an object is crossing the road, or if an accident is happening in front

to change directions. Separate applications can be real time traffic update, and video

surveillance applications to analyze accident scenes, to identify traffic violations, or

for police officers to track criminals. In this paper, we count on OBUs and passengers’

smart devices to form a fog computing infrastructure to process the huge amount of

data in a distributed way.

2.4 RSU and RSUC

Roadside units can be any device embedding processing unit(s) with the ability of wire-

lessly covering parts of the road by connecting with mobile vehicles using 802.11p

protocol. In some contexts, an RSU can be a fog device that processes the sensed

data generated by cars. The main purpose of an RSU is to host services that process

vehicular requests in range. Usually, virtual machines are hosted inside RSUs to pre-

configure and run required services [1]. There are many limitations behind the use of

RSUs which limit their ability to support some applications. These restrictions can be

summarized as, the limited resources to serve a huge number of vehicles, the restricted

range of coverage, and the high delay of updating services when needed. To overcome

these limitations, some workarounds were proposed in the literature such as, solving

an optimization problem to find the best distribution of RSUs on the roads in a way

11

that maximizes its range of coverage to continuously serve vehicles [17], however it

is very expensive to deploy RSUs everywhere, so it is not feasible to fully count on

them to cover all vehicles moving on the roads. A different work proposed the integra-

tion between the SDN controller to manage the route between RSUs and minimize the

number of service migrations. SDN was also used to manage routes between cars to

maximize the chance of reaching the RSUs through other neighboring vehicles. On the

other hand, SDN controllers are subject to networking and computational delays that

prevent them from being a good candidate to redefine routes in some time-sensitive

vehicular environments.

In case an RSU has limited computational resources, the sensed data of the vehicles

are forwarded to a roadside unit controller (RSUC) which is a centralized server linked

to more than one RSU using Ethernet with more processing power. The RSUC reports

the analyzed data to the cloud and can control the behavior of other RSUs.

Depending on the processing power available on the RSU or RSUC, they can play

the role of fog devices capable of processing the sensed data generated by vehicles,

provided the mentioned limitations.

2.5 LTE, 5G and 802.11p

LTE (Long Term Evolution) is a 4g wireless communication technology that is de-

signed to overcome 3G limitations and provide a better quality of service compared to

WiMAX while benefiting from the existing cellular network infrastructure. LTE was

invented because of the constant user demand for higher data rates at lower costs with

fewer delays. 3G networks introduce delays of around 100ms; this causes great dif-

ficulties for more demanding time-sensitive applications. LTE is now able to deliver

data rates at peaks of 300 Mbps on the downlink, and 75 Mbps on up-link with a delay

12

of 1ms. More importantly, mobility is better supported with LTE and can offer high

performance up to 120 km/h. Moreover, coverage is enhanced with lower latency and

simultaneous user support [9].

Higher data rates and greater capacity continue to be the key driver behind the network

evolution in 5G, in addition to energy consumption on devices, spectrum, and latency.

5G is expected to provide a peak download data rate of 20Gbps and an upload rate

of 10Gbps. Moreover, 5G reduces network energy usage by 90%. A high number of

user can access simultaneous connection at a maintained high rate. 5G will positively

impact a user’s experience and opens new opportunities for the development of new

technologies and eras. Self-driving cars performance and time to take decision can now

be improved because of the fast data transmission it can achieve. 5G uses mmWave

that refers to a specific part of the radio frequency that has a very short wavelength

spectrum to achieve high bandwidth. mmWave in 5G can be used to enhance Vehicles

to everything communications (V2X) to incorporate low latency links between moving

vehicles themselves and cloud servers [8].

802.11p is another amendment of the 802.11 standard to offer vehicular wireless com-

munications by allowing the vehicle to vehicle (V2V) communication even when mov-

ing at fast speeds, and vehicle to infrastructure (V2I) like from a vehicles to an RSU

in range. 802.11p operates in an ad-hoc mode, where there is no need to establish a

basic service set between the two connecting entities because cars can be moving at

fast speed and require a short time connection. The building block of the dedicated-

short range communication DSRC is the 802.11p. This protocol was deigned from the

beginning to support all the intelligent transport systems requirements.

LTE can be used to support V2I applications, but not V2V low delay communi-

cation. Roaming can cause problems when connecting two vehicles through eNodeB.

13

Moreover, the high number of vehicles connections to the LTE BS can cause perfor-

mance degradation issues. Furthermore, 5G will not completely replace 802.11p until

it is widely adopted and its vehicular advantage overcomes that of 802.11p. 5G offers

fast data transmission speeds. However, this does not mean that the computation can

be sent to the cloud for processing. These data should be processed on vehicles to

neglect any additional network or computational delay by decreasing the load on the

cloud. 5G can improve the way data are processed locally with faster communication

between vehicles.

In this work, we consider the use of 802.11p and LTE because of their current wide

availability that can be maintained and enhanced in the future.

2.6 IoT and Fog Computing

Devices with available connection to the internet can be an IoT device. The number

of IoT devices are expected to reach 24 billion in 2020 [10]. A sensor that is able to

transmit data is considered as IoT devices. These data are considered very valuable

for analysis to form what is known as Big Data. Current technologies are not able to

support data generated by the new generation of vehicles at a rate of one terabyte per

hour [10]. The battery and energy level of consumption are considered one of the major

challenges in IoT devices. These devices should serve for a long period with negligible

energy consumption to extend its working time. Moreover, sending all these data to the

cloud directly is not feasible in terms of energy consumption, and can overwhelm the

cloud with requests. For this reason, we have the rise of many networking protocols

and the Fog Computing concept by Cisco in 2011. Fog devices are meant to reduce

energy consumption on IoT devices, do the processing on the data before sending it to

the cloud, and serve IoT devices and users in need of better QoS[3]. In other words,

14

Figure 2.2: Fog Layer Supporting IoT [19]

fog computing (or what is known as edge computing) brings cloud intelligence near

the edge, by hosting cloud services on devices or server placed as close as possible to

the sensors.

In our work, these fog devices are the OBU and smart devices carried by passengers.

At the same time, these are the IoT devices capable of generating a vast amount of data

that we can process on the same and other cars using our approach.

2.7 Virtual Machines and Containers

Virtual machines are used to host services on computers without worrying about hard-

ware maintenance costs. A virtual machine uses its copy of the operating system,

where each VM is seperated from the other. In vehicular environments, the service

requirement changes a lot. The RSU usually host a VM and adapt the services run-

ning based on vehicles requests for applications. When using a VM, updating service

will either need human intervention or a full download of another VM containing the

requested service. Because a VM uses a full copy of the OS, the file to download a

15

VM image is too big. This will result in delays when trying to download new VMs to

update the running services.

On the other hand, containerization technology is becoming more important because

of its capability to overcome VMs limitations while maintaining a better performance.

Containers are more lightweight than VMs because they share the same OS of the ma-

chine they are running on. Besides, containers on a machine can share not only the

base OS image but also the bin and lib files associated with the services. The defacto

technology that implements containers is Docker [23]. Services run inside containers

on the machine. Each container is a running copy of a downloaded image. This image

is created using Docker commands and pushed to an image repository. One of the

well-known repositories is DockerHub [24]. Furthermore, the size of an OS Docker

image is much smaller than any VM instance because containers can integrate with

another component on the kernel level of the machine. This does not only add to the

performance, but also to the size of the image that should be pushed every time an

update of the service is required [7].

In this work, we use Docker as the main containerization technology to offer a fast

and lightweight deployment on fog devices that are OBUs and smart devices in our

context.

2.8 Containers’ Orchestration

Every day, Google pushes more than two million containers; this causes a large num-

ber of containers running everywhere without monitoring or management. Different

implemented container orchestration technologies solve this problem.

Kubernetes is an orchestration technology implemented by Google for pushing ser-

vices and managing containers. It is a framework designed to monitor the life cycle

16

Figure 2.3: Containers vs VMs [29]

of containers through methods that provide predictability, scalability, and high avail-

ability [28]. The architecture of Kubernetes is based on clustering the available server

that host the containers with a master node or an orchestrator that manages its worker

nodes and monitors their performance. A request to push service is sent to the master

node in the form of a Yaml file. This service is then pushed to an available worker

node. The worker nodes can run multiple pods. A pod resembles a group of containers

that are related. A failure in the service leads to an automatic restart and a report sent

to the orchestrator. Kubeadm is a Kubernetes utility that provides the ability to create

custom Kubernetes cluster formed of heterogeneous devices. Additionally, Kubeadm

offers the high cluster availability feature that allows the creation of Kubeadm cluster

with multiple orchestrators. In order to run Kubeadm on a machine, there are specific

packages that should be installed like Docker, Kubelet, Kubectl, and a networking so-

lution like Flannel to let pods communicate together.

Another containers orchestration technology is Docker Swarm by Docker. This tech-

nology offers the same functionality as Kubernetes, but it is much simpler to use.

17

Figure 2.4: Kubeadm Orchestration Architecture [28]

However, Kuberenetes is a more advanced tool that supports auto-scaling and cluster

customization features which are not offered by Swarm out of the box.

In this work, we cluster the vehicles to form a Kubeadm cluster with an orchestrator

that pushes and manages containerized services life-cycle.

2.9 Multi-Objective Optimization Problem

In an optimization problem, the objective is to find the optimal solution from a set of

possible ones. This includes minimizing or maximizing a single or a set of objective

functions. These functions are evaluated based on a set of permitted inputs that are

selected based on a set of constraints that are defined. A single optimization problem

contains one objective function that should be maximized or minimized to retrieve the

best solution. Function F is an example of a single objective optimization problem.

The aim is to maximize the function x3+2x2+1 where: x ∈ R

F = max(x3+2x2+1)

18

In contrast of the single objective optimization, a multi-objective optimization tries

to minimize or maximize a set of objective functions at one time where it is hard to

decide on a solution that best optimizes all the provided functions. Function G be-

low is a multi-objective optimization function that finds the value of x that minimizes

g1,g2, ...,gk such that k > 2ob jective f unctions,andXistheseto f decisionvariables :

G = min (g1(x),g2(x)...gk(x)) where x ∈ X

The multi-objective optimization problem finds the optimal solution based on a trade-

off between all the objective functions. Sometimes, no solution optimizes the evalua-

tion of all the functions. Therefore, these functions are considered as conflicting oper-

ations. Here comes the concept of a Pareto solution where the improvement of one ob-

jective will affect at least one other objective. Therefore, solving a multi-objective op-

timization problem is not as straightforward as solving a single objective because there

might be more than one optimal Pareto solution [6]. Accordingly, several methodolo-

gies were defined to solve multi-objective optimization problems such as scalarization,

lexicographic, and evolutionary algorithms. Scalarization aims to transform a multi-

objective optimization problem to a single objective problem where its solution is the

Pareto solution for the multi-objective problem. The lexicographic method uses the de-

cision maker to order the objective functions by importance and solve each one starting

from the highest rank. The evolutionary algorithm uses the Pareto-ranking scheme to

solve the problem by generating all Pareto optimal solutions in one run so that each

solution is better than any solution not within the front.

19

2.10 Genetic and Memetic Algorithms

When the problem faced is an NP-hard problem, there is no algorithm capable of solv-

ing it. However, in another issue, there is a solution for the problem that an algorithm

can reach, but this requires a lot of processing and might take a long time to reach

a solution or a set of them. Hence, heuristic algorithms are the escaping solution to

such a problem where speed is favored over accuracy and completeness of the solu-

tion. When an ideal solution fails to provide an exact answer or is too slow to reach

it, heuristic approaches, based in randomness, can give an approximation of the solu-

tion or near-optimal solutions. Genetic algorithms are meta-heuristics and a class of

evolutionary algorithms that are adapted to solve hard search-problems by emulating

natural selection. Genetic algorithms build a set of individuals and try to enhance them

by generating more fitted solutions using natural evaluation techniques such as selec-

tion, crossover, and mutation. An individual having a high fitness value is more likely

to be selected for refinement in the new generation. In the crossover, the algorithm

select two parents from the previous generation to create a new child having a higher

average fitness in the new offspring. The mutation is meant to diversify the generation

by altering one to more genes via mutating some children.

The genetic algorithm works as follows: a set of individuals is randomly selected first.

These individuals are then evaluated using the objective functions provided. The fit-

ness value is determined based on the criteria of minimization or maximization of the

objective functions. Selection and mutation are applied to the fittest solution to re-

produce a new population. Individuals having better fitness value are most likely to be

considered in the offspring. A new offspring is then reproduced by placing the selected

individuals in a mating pool and applying crossovers between two parents. The two

parents might undergo a mutation process before a crossover to maintain diversity in

20

the population. The number of iterations the individual undergoes is specified by stop-

ping criteria like a maximum number of iterations, reaching a desired optimal solution,

or a manual intervention by a decision maker. Consequently, a better set of optimal

solutions is generated to solve the given problem. Genetic algorithms are adopted in

many research problems to solve sophisticated search, scheduling, and optimization

problems benefiting from its evolutionary process [5].

On the other hand, genetic algorithm is well known for their premature convergence.

This prevents such algorithm from exploring and searching through other solutions and

might get stuck in a local optimal. Memetic algorithms are built on top of the genetic

algorithms to reduce the prospect of premature convergence. This is done using a local

search algorithm that allows a broader exploration of possible solutions that can lead to

better results. Memetic algorithms are proven to generate more accurate and improved

results than genetic algorithms [21]. In this work, we build a Memetic algorithm that

combines genetic with probabilistic local search[22] to solve our vehicular container

placement (VCP) NP-hard problem.

2.11 Related Work

In this section, we explain the contribution of several related literary works and present

their limitations that are thoroughly explored in our experiments later. The areas dis-

cussed are related to supporting vehicular applications through the use of the cloud

and RSUs as processing power, the use of vehicular nodes as computing infrastructure

to serve other vehicles, the use of containerization in a fog-related contexts to serve

IoT devices, a related work that proposes the use of hybrid network architecture to

keep vehicles connected, and finally a review of a research idea that uses the Memetic

algorithm to solve a cloud virtual machine problem which can be mapped to our VCP.

21

Methods Supporting Vehicular Applications

Several architectures were proposed in the literature to integrate SDN in VANET, such

as [32] and [27].

An architecture that supports vehicular devices in providing them with services at any

time was proposed in [32]. The problem it tackles is how to maintain a stable connec-

tion between vehicles and RSUs even if the topology of the vehicles is dynamically

changing. This approach assumes that SDN is placed away on the cloud hosting the

controller and a fog orchestrator. The fog orchestrator is responsible for deciding upon

the distribution of services on the RSUs, as well as managing and updating them based

on the user’s needs. Vehicles are treated as switches, where they can communicate

to reach their nearest RSU. We believe that this architecture is not applicable in all

real-life scenarios and thus cannot be considered as a good solution for VANET en-

vironments. Indeed, SDN being on the cloud is an issue by itself where it is subject

to networking delays. Moreover, Controller on the cloud is subject to a single point

of failure and cannot handle all user’s requests because of the humongous number of

vehicles and the fast-changing network topology while randomly moving. In addition,

this work fails to provide any real-life simulations to prove their claim.

The authors in [27] proposed the idea of RSU clouds that are controlled by an SDN

controller to support the internet of vehicles. Services on RSUs are running inside vir-

tual machines. When a user connects to an RSU to get services, it asks the controller

for a route to the service if running on any other RSU in its area, if not, the RSU has

to update the service running on its VM to start serving the user. It is not feasible to

update services on VMs especially in a dynamic environment like VANET because

human intervention is needed to update the service manually, or a new VM has to be

downloaded on the RSU again. This behavior repeats when the user moves from one

22

cloud of RSUs to another. Another limitation is the load that can be caused on the

SDN controller in terms of computational delay. Hence, in some scenarios where the

user is moving at a fast speed, when the RSU range of coverage is small, or when the

virtual image size containing the service is big, the user might leave the cloud of RSUs

without being able to reach the requesting service hosted on that RSU. Time-sensitive

applications malfunctions under any of the mentioned circumstances.

Volunteering Vehicular Fogs as Infrastructure

The authors in [31] proposed the use of vehicular fogs as infrastructure named by ve-

hicular fog computing (VFC) where a central main fog covering a shopping mall can

benefit from volunteering cars present in the parking area. This paper was limited to

the use of known resources such as cars’ computation power only, and the authors did

not mention what technology they counted on to push and run services on newly join-

ing fog volunteers.

Authors in [14] proved an elaboration on the ability to use vehicular nodes as infras-

tructure to build the fog environment. They illustrated the ability to use moving and

parked vehicles as infrastructure to support moving users using VFC. This paper is

limited to proposing a new idea of having vehicles on the road as infrastructure to

build the fog environment for computation and communication purposes without any

knowledge of the underlying technology of how the services are pushed to cars, man-

aged/orchestrated, and distributed on them based on the resources requirements and

available capacities.

In [18], the authors make use of the vehicular infrastructure by forming vehicular cloud

on-demand counting on the RSUs present on the roads. Finding a Star on the road is

the key idea. This star is the one offering the computation and storage power while

23

moving on the road. This information is published by the nearest RSU so that any

user can reserve the star’s resources to host its requested services. The idea of profit is

added where every star offers its resources for a time asking for money in return. If the

star moves out of range of the RSU, the requesting user will lose connection with the

service. In their proposed architecture, they try to find the best match of a star node to

the user requirement by looking at its available resources, distance, and time to serve

inside this VANET. This work lacks a method of recovery when the star moves out of

the VANET. Moreover, the work does not consider the feasibility and time required to

push the required services on the star.

Fog Containerization

None of the available work in the literature considers the use of containerization tech-

nology to host services on vehicles. However, many others considered the use of

containers in the context of fog devices to serve IoT having statically fixed locations.

In this section, we discuss some of these contributions.

The authors in [2] prove the potential of using Docker technology to run containers on

fog devices with the ability to adjust services hosted whenever needed. The authors

in [13] proposed a framework to cover the limitations present by the fog orchestrator

technology after comparing them with the help of the OpenIotFog toolkit. To build

their framework, they used Docker Swarm as an orchestration technology. This work

was limited to having the fog running on the device generating data itself and request-

ing the services it needs rather than considering limited resource devices that should

have a serving fog nearby. The difference is that our framework can let the fog run

on-demand on any vehicle anywhere and anytime whenever needed without user inter-

vention.

24

A model was proposed by the authors in [12] where dynamic deployment of services

on helper nodes of the main server using Docker is possible. They called these helper

nodes ”fogs”. So it is feasible to remove, add, stop, and run any service on a physically

known fog anytime.

In the recent work done in [20], the authors focused on the ability to use lightweight

Docker containerization technology to support service provisioning over IOT devices.

Their main contribution is to show how lightweight containerization technology can

manage IOT resources by hosting services on them.

Vehicular Hybrid Network Architecture

A promising work done by the authors in [33], that uses 802.11p and LTE in hybrid

architecture to keep the cluster connected all the time with the help of the e-NodeBs

even if topology changes. The master node uses two network adapter. LTE to connect

to other vehicles outside its range, and 802.11p to connect to other vehicles in its clus-

ter. Even-though all work is counting on services being installed on cars (fogs) when

needed, and it is still unclear in what form each computing service is installed or re-

alized by requesting vehicles. In this thesis, we are going to solve the aforementioned

problems of having a stable vehicular infrastructure to serve cars requesting time-

sensitive applications and fast sensed data processing by proposing a framework that

benefits from the containerization, micro-services and orchestration technologies, and

adopt a variation of the Vehicular Multi-hop algorithm for Stable Clustering (VMaSC)

[33]

25

Vehicular Container Placement Problem

Lopez-Pires et al. [16] proposed an interactive Memetic Algorithm to solve the pro-

posed multi-objective formulation of the virtual machine placement problem. The goal

is to find the optimal distribution of VMs on corresponding available hosts concern-

ing the conflicting objective functions. This problem can be mapped to our vehicular

container placement problem by considering the VMs as containers, and the available

hosts to run the VMs as the vehicular fog devices. Vehicular fog devices have the mo-

bility feature that is taken into consideration during the formulation of our placement

problem.

2.12 Conclusion

In this section, we explain the importance of supporting vehicular applications with

some examples. Then, we present background information about some terminolo-

gies, technologies, and algorithms needed in our proposed architecture, such as OBUs,

RSU, RSUC, IoT, fog, LTE, 5G, 802.11p, containerization, containers orchestration,

Multi-Objective Optimization problem, and Memetic Algorithm. Finally, we review

some related work showing limitations that we aim to solve in our approach, and other

contributions that we used to build our architecture. In summary, the main limitations

that we try to overcome in our approach are:

• RSUs are limited to supporting vehicular applications because of their constraint

range of coverage, limited resources in case of congested traffic, and heavy VM

deployment. All of these factors can lead to non availability of the service and

poor user experience, especially that real time vehicular applications require low

networking delay and high processing power.

26

• VMs are heavy on the machine, therefore updating a service on it might need

user’s intervention or another deployment of a new VM having the newly re-

quested service hosted.

• Hosting a service on one OBU is a problem because of the constraint resources

on such devices.

• Vehicles follow random patterns, which makes it difficult to cluster vehicles and

keep the requesting and serving fogs connected.

To the best of our knowledge, none of the previous work can fully support vehicular

applications by hosting containerized micro-services with an orchestration layer and

a multi-hybrid network approach. We are the first also to formulate and solve the

vehicular container placement problem.

27

Chapter 3

Kubeadm Vehicular Fog Clustering

Using Hybrid Network Architecture

3.1 Introduction

Vehicular applications are emerging at rapid speed and require fast and real-time pro-

cessing of sensed data generated by cars. As discussed in the previous chapter, RSUs

(if available) are a good candidate to serve non-time sensitive applications only. There-

fore, there is a need for an architecture capable of serving time-sensitive applica-

tions taking into consideration vehicles mobility. To consider the mobility factor,

it is a good idea to host services on neighboring cars having the same driving pat-

terns.Vehicles must be connected for the maximum time possible in case they are used

as fogs. The connection time should be maximized in order to maintain a high rate

of request/response packets delivery. Furthermore, one OBU is not enough to host

heavy services requiring a lot of resources. For this reason, OBUs must be clustered

and monitored in a Master-Slave approach in order to increase resources capacity, and

services should be divided into smaller and lighter micro-services. Another problem

28

arises while trying to initialize the vehicular Kubeadm cluster is the master node elec-

tion for a group of available OBUs. Also, whenever a failure or disconnection happens

in the cluster, it is costly to re-initialize a new cluster while the user is waiting for the

service. Therefore, a recovery method must be applied to maintain service availability

and cluster connectivity.

In this section, We address the problems as mentioned earlier by elaborating a Kubeadm

Vehicular Fog Clustering methodology that consists of OBUs connected using a hybrid

network architecture. Our approach uses Docker containerization technology to push

micro-services on OBUs when needed. A master election algorithm to improve clus-

ter monitoring and connectivity is presented. We also propose a recovery algorithm

to help in maintaining cluster connectivity when possible. Our approach guarantees a

long time service availability on vehicular devices initialized on the fly with fast de-

ployment on pre-configured clusters according to users’ needs.

The rest of this chapter is organized as follows: Section 3.2 shows the overall proposed

architecture. Section 3.3 explains the components of each layer inside the architecture

and how they interact together. Section 3.4 presents the master node election algo-

rithm. In section 3.5 we propose our cluster connectivity recovery algorithm. We

dedicate section 3.6 to show the experimental setup and analysis. We finally conclude

in section 3.7.

3.2 Approach Overview and Architecture

Literature work supporting users through VANET resources suggests him being present

in the RSU/VANET range to access its services. Because of the high and random

car mobility in VANETs, this approach is only feasible when cars are moving at low

speeds. For this reason, [33] suggests the use of cellular technology with 802.11p to

29

support users all the time even if not within the VANET range. To make the archi-

tecture more realistic and to avoid wireless collisions, they proposed that only master

nodes of clusters are connected to the BS using LTE and to the worker nodes using

802.11p. This minimizes the load on the BS compared to all cars connected to it. In

case all cars are connected to the BS, the master and worker nodes have to keep an open

connection with the BS which leads to an increase in the complexity of supporting mo-

bility and handovers. In our work, we added another connection layer in case of RSUs

presence on the road. If RSUs are covering users and VANETs, the user can connect

through them without the need of passing through the BS. For each group of connected

RSUs, there is a roadside unit controller (RSUC) that manages them. The purpose of

adding this layer of communication is to connect RSUs and minimize the traffic load

on the BS. On RSUs, there is a service registry that minimizes micro-services migra-

tion costs on nearby fogs. Our architecture also offers a lightweight services migration

technique benefiting from the containerization, orchestration, and micro-services tech-

nologies. The architecture runs independently of the cloud and is made functional

without the need for user intervention. The clusters are formed based on purely ve-

hicular resources on board like OBUs or any computational device capable of hosting

one or more micro-services carried by the passengers. Devices are required to support

containerization and orchestration technologies: Docker and Kubeadm. Upon user’s

request of a service, micro-services are deployed on a nearby pre-built Kubeadm clus-

ter.

The architecture shown in Figure 1 is composed of five linked layers: base stations,

RSUCs-RSUs, Kubeadm masters, fog devices (Kubeadm worker nodes), and request-

ing users. This architecture is layered by power and importance from top to bottom. In

other words, a layer above has supervision of what is happening on the layers below.

Moreover, if a layer below fails to maintain a connection between a fog and a user,

30

the request is escalated to the layer above. A connection between BS-RSUC-RSU is

called infrastructure to infrastructure (I2I). The top layer is composed of the base sta-

tions (BS) or cellular towers that are connected using Ethernet. In our architecture,

the BS tasks are to connect a requesting user to a cluster master node in another BS

range and to broadcast a request for service hosting to the underlying RSUs through

RSUCs using Ethernet. The RSUC routes requests between RSUs and shares their

information including the position of master nodes they have in range, the services

hosted by every Kubeadm cluster, and the list of Docker images they have. The third

layer is composed of RSUs storing images of users’ requested services and tracks the

position of the serving Kubeadm master node to connect users with services using

802.11p. This type of connection is called infrastructure to vehicle (I2V). The next

layer comprises the Kubeadm master nodes that are dual interface devices able to con-

nect using 802.11p or through the cellular network. Master cars are elected locally

and keep vital connection with the BS, RSU (V2I) and fogs (V2V) in the range all the

time. The main job of the master node is to decide on the best distribution of services

on the set of selected vehicular fogs, and monitor the status of the containers running

on them. The master node sends resources offers to the user and waits for approval be-

fore pushing services on vehicular fogs. A failure on the master node can be recovered

whenever enough resources on the cluster are available to enable the high availabil-

ity feature implemented in Kubeadm. This feature allows the creation of a secondary

master node that replaces the primary one in case of failure. A device in the fog layer

can communicate to a nearby car or the RSU using 802.11p only. It is responsible

for hosting the assigned micro-services by the master node. The fog also updates its

master node with its profile and availability. The communication between the master

and fog nodes is kept through exchanging ”Hello” packets (This feature is by default

provided in Kubeadm, any failure in a worker node is reported to the master). The user

31

initiates the request of hosting a service nearby; he then receives several offers coming

from an available nearby cluster. A special decision algorithm running on the user side

decides to accept the most suited cluster to maximize his support time. The user can

send another request to host other or similar services if not satisfied with the QoS level

received by the serving cluster.

Figure 3.1: Proposed Architecture

3.3 Architecture Components

In this section, we discuss the functionalities of each component per layer in our

proposed approach. The BS, RSUC, and RSU communicate together to keep the

user connected with the master node by running the Master Manager. Moreover, the

RSUC runs the Container Registry Manager responsible for providing Docker images

to vehicular fogs. The Kubeadm Master and Fog nodes coordinate to form a stable

Kubeadm cluster with high service availability and maximum duration of user support

32

while driving. The master manages fogs and containers running on them through the

Fog/Micro-Service Manager, and decides on the best distribution of services on the

set of available vehicles in its cluster. Containerization required modules should be

already installed on the cluster nodes. The user accepts an offer using the Decision

Module for Offer Acceptance and monitors the performance of the serving Kubeadm

cluster through the QoS manager. The components of our architecture per layer are

depicted in figure 2.

In the following; we provide a detailed explanation of the functionalities within each

component.

Figure 3.2: Node Architecture Per Layer.

33

Master Manager

The RSU shares the master node information in range with the RSUC and BS. When

the master node moves into the coverage range of a new RSU on the road, the old

RSU notifies its neighboring RSU of the joining master node. The new RSU, in turn,

starts sending ”Hello” packets to the master to ensure a vital connection. The Hello

reply messages contain the master node profile. The main functionalities of the master

manager are to

Connect User and Master Node

1. In case the module is running on BS: The BS receives a connection request from

a user to a master node in two cases, either they are in the range of the BS but

cannot communicate through an RSUC/RSU, or they are in the range of two

different BSs. This connection uses the wireless cellular network.

2. In case the module is running on RSUC/RSU: the RSUC/RSU is used to connect

a user with a master node even if they are under different RSU ranges. The RSU

knows if a master node is under its range via periodic updates from the master

node profiler. Knowing the master node location within an RSU range minimizes

the network load by limiting the broadcast messages into one RSU range. This

connection uses 802.11p.

Send Requests and Collect Offers

The BS, RSUC or RSU can receive a request from a user to allocate resources in

available Kubeadm VANET clusters. This request is broadcasted to all master nodes

either through the BS, or the RSU. The master nodes reply with the available resources.

34

The BS or RSU, in turn, replies to the user with the available clusters to serve (offers

sent from the masters) and waits for an acceptance or rejection decision from him.

Master status monitor and failure recovery

In the case of the master node leaving the cluster, a recovery algorithm (present in

section 3.5 - algorithm 5) is triggered by the master manager to maintain the cluster

connectivity and service availability.

Container Registry Manager

Usually, the container registry is placed on the cloud for users to push and pull images

from. In our architecture, we bring these registries closer to the user to minimize the

time of pulling the required micro-services. The RSU has a container image registry

holding micro-services requested by users. All RSUs hosting images of services share

information about what services they are hosting to their RSUC by replying to the

container registry manager’s request. In case a fog node asks the RSU for an image it

does not have, it asks the RSUC for the location of this service on another RSU. Once

found, the RSUs uses Ethernet to transfer the image between them and 802.11p at a

maximum rate of 54Mb/s between the RSU and fog.

Containerization Required Modules

Kubeadm is a Kubernetes utility that allows the formation of the cluster on any de-

vices. Kubeadm is a suitable orchestration technology in our architecture because of

the various type of devices forming the cluster. Kubeadm orchestration uses the de-

facto containerization technology, Docker. Kubelet should be installed on the device

to ensure communication with the master node and allows different pods to communi-

35

cate together. Kubelet also helps the master node in checking services health. Kubectl

is used to run Kubeadm commands on the master and worker nodes. Docker and

Kubeadm with the mentioned dependencies should be installed on the vehicles to form

the clusters.

Profiler

This component runs on the master and worker nodes (fog) of a Kubeadm cluster. The

module uses GPS to get information about the current vehicle coordinates to calculate

the speed and get its location. The profiler also gathers information about the available

CPU, memory, and disk space on the vehicle. The route is followed to reach the des-

tination is also provided through the car system. The car might also offer its services

for a specific period (can be used for billing purposes), so the time availability is also

provided by the profiler.

Fog/Micro-Service Manager

This component runs on the master node and is responsible for managing the worker

nodes in the Kubeadm cluster as well as the containers running on them. The purpose

of this component is to keep the fog nodes available and to overcome any physical or

service failures. The main functionalities can be described as follows:

Keep connection alive

Because of the unpredicted random behavior of cars on the road, a connection has to

be checked periodically between fogs and master nodes. Similar to the level of RSU

- Master, Hello packets are exchanged periodically containing the current profile of

the fog extracted from the profiler module. Connection checks functionality is imple-

36

mented in Kubeadm.

Assign services to fogs

After getting the offer approval from the user, the master assign services to fogs based

on the output of the vehicles selection and services assignment model. The master

node sends a pull command containing the list of micro-services to be installed on

each node. Each worker node either directly communicates with the RSU if possible,

or uses the master node to reach the RSU to download a copy of the Docker image

using 802.11p.

Fog status monitor and failure recovery

This functionality is triggered in two cases. Either a container on the fog stopped

running and failed to restart, or the fog suddenly went out of the cluster. In this case,

the master calls the recovery algorithm. This algorithm is discussed in details in section

3.6, algorithm 4.

Load balancing on fogs

The master node is also responsible for monitoring the load of requests on fog devices.

When needed, the master node either creates more copies of the overloaded containers

on the same machine or another one in its cluster. This functionality is already pro-

vided by Kubeadm to use.

Cluster Resources Manager

After receiving a service installment request from a user, the master calls the Resources

Manager component to get a matrix containing the resources available and if they meet

37

the user requested service requirement, the maximum time availability of the cluster

for the given resources requirement, cluster speed, and maximum destination reached

by all nodes in the current cluster. This information is received from the decision

module to select vehicles and assign services to form an offer message to be sent as a

reply to the user. The user based on this data can accept or reject the offer.

The user also informs the master node if the services are not in use anymore to release

the allocated resources.

Decision Module For Vehicles Selection and Micro-Services Distri-

bution

The input to this module is a list of services with CPU, memory, disk requirements,

and a set of available cars with the CPU, memory and disk resources offered, an av-

erage speed, the route followed, the destination, the time availability, and the elected

orchestrator. Trying to find a linear solution to this problem is impossible. The prob-

lem can be reduced to the bin packing problem to prove it is NP-hard. In this work, we

formulate this vehicular container placement problem as a multi-objective optimiza-

tion problem, where we can find an optimal selection and distribution using heuristics.

The problem formulation and solution are explained in Chapter Four.

Kubeadm Cluster Initializer

Kubeadm cluster initialization contains the time to initialize a master node and the

time to let worker nodes join the cluster and have all required pods and modules in-

stalled. We avoid this initialization cost by making the cluster ready beforehand. For

any group of available vehicles, we create the cluster and make it ready to host ser-

vices. The master node is elected locally by cars based on some parameters. Some

38

issues should be taking into consideration while running the cluster and maintaining

its connectivity/availability such as the state transition of the nodes and the possibility

of merging master nodes.

Vehicles States

Inspired from work in [33], we define four different states for the vehicles as follows:

1. Undecided: The car does not participate in any cluster. This scenario can also

happen when the node failed to connect to the master node.

2. Master: The car becomes a Kubeadm master.

3. Fog: The car becomes a Kubeadm worker.

4. Isolated: The car is a master node but without fogs.

State Transition

Because of the highly dynamic and mobile nature of the vehicle, they transition be-

tween states a lot. The possibilities are: An Undecided car can decide to join a

Kubeadm cluster and offer some of its resources, so the node becomes a fog. If the car

was a master node but lost all the worker nodes, it becomes undecided and vice versa.

A fog device can become a master node when it is elected before the master leaves the

cluster. A master node can become a fog as well in case of merging masters. A cluster

can lose all of its worker nodes in case of the master changing direction or going out of

the worker nodes range. In this case, the master becomes isolated waiting for worker

nodes to join.

39

Master Election

To have a more stable cluster, the master has to have speed close to the average cluster

speed. Master node election is not only based on speed, but also on the time availabil-

ity and resources offered. Because the master is overloaded with request and has to

monitor all worker nodes and containers, the elected node should meet the minimum

requirement in terms of available resources. Furthermore, if the master node goes

down, a new cluster has to be created, so we also check the time availability while

electing the master. A detailed algorithm is discussed in section 3.5.

Cluster Formation

After electing the master node, Kubeadm init command is executed on the master.

Kubeadm init outputs a unique token for the cluster to be shared with any node willing

to join. The required modules in our architecture are installed on the master node.

Every one-hope away the vehicle from the master is asked to join the cluster using

Kubeadm join command and the provided token. The architecture modules on the

fog layer are also installed on the worker nodes to makes them ready to pull and run

services on the fly.

Masters Merging

To avoid clusters interference and for larger services deployments, the master nodes

detect potential interference and ask for merging. Worker nodes vote for one of the

master nodes that better support them. After a decision is taken, the RSUC updates its

database about the new status of the cluster.

40

Decision Module for Offer Acceptance

A user receives multiple offers from different master nodes. The user has to accept

the offer that best supports him to achieve his minimum required QoS for the longest

period while moving towards his destination following the predefined path. A hybrid

reinforcement, time series machine learning model, is useful in this situation to study

the history of user’s activities that includes accepting different offers. This is out of the

scope of this work. For now, we assume that the user accepts the best offer by default.

QoS Monitor

The user checks the processing and networking delays happening on the serving clus-

ter to estimate the QoS received. If the minimum QoS required by the service is not

met, the user releases the resources on the serving cluster and initiates another request

to host a service on a closer cluster with higher computation power.

3.4 Architecture Components Interactions

In this section, we give two examples of how the components in our architecture in-

teract together in case of cluster initialization step or a request from the user to push a

fog is sent.

Cluster Initialization Setup

When several cars group together and realizes a potential of creating a Kubeadm clus-

ter, the components of our architecture starts interacting together to form that cluster

41

automatically without user intervention as shown in Figure 3.3. In the cluster initial-

ization case, the components start acting as follows:

Figure 3.3: Components Interaction While Initializing Kubeadm Cluster

1. Kubeadm cluster initializer extracts the profile information of its node to be con-

sidered for the master node election.

2. When the master is elected, the initializer calls the Containerization Required

Modules to start the process of initializing the Kubeadm cluster on the master

node using Kubeadm Init command. This command generates a unique token to

be sent to electors or future fog devices to run the following command: Kubeadm

Join token and join the created cluster.

3. After cluster formation, the orchestrator sends asks for profile updates from its

worker nodes to keep itself posted with the resource and the time availability.

4. Assuming that the vehicles are connected to an RSU, the information about the

42

cluster are then shared with that RSU. The master manager of the RSU asks for

a periodic update about the cluster profile.

5. The information about the newly created cluster are propagated and keeps on

updating from the RSU to its RSUC.

6. The RSUC, in turn, keeps the BS posted with the latest information about the

cluster.

In case of the orchestrator connected to the base station, the base station then propa-

gates the information to the neighboring BSs and underlying RSUs. In this case, a user

can ask for services hosted on the newly created cluster form any place.

Flow of User’s Request To Improve QoS

For the clusters created to host service and start serving users, they wait for a service

request from the users. The components interaction in such a scenario from the starting

point of receiving a service request from the user until the point of hosting it are shown

in Figure 3.4. When the user initiates the request, the components work as follows:

1. The QoS manager on the user side studies the application performance running

on its side and decides if an improvement is required. In case the QoS manager

wants to improve the QoS level, it initiates a request to host one or group of

services to the nearest RSU and already serving orchestrators if any.

2. Assuming that the user and the available cluster are under the coverage range of

an RSU. The master manager of this RSU receives the request of the user and

looks for the list of available master nodes it has. The RSU then broadcasts the

user’s request including the service resources and availability requirements to

the master nodes available.

43

Figure 3.4: Components Interaction When a User Requests Services - QoS improvement

3. The master node of the cluster receives the service request and asks the cluster

resources manager to calculate its profile and availability.

4. The cluster resources manager collects all the worker’s profile information from

the fog/micro-services manager and asks the vehicular container placement com-

ponent (VCP) to prepare the output containing the cluster’s resource and time

availability. This information is sent back to the user in the form of an offer

message.

5. At this point, the RSU informs the orchestrator of the offer acceptance to reserve

the resources and sends the offer message to the user. The offer acceptance

decision module studies this offer. When the user accepts the offer, the RSU

starts preparing the micro-services that should be hosted on the new fogs.

6. In case the RSU does not have the required services, it asks for them from the

RSUC’s container registry manager.

44

7. The container registry forms the Yaml file containing the list services to push.

This file is then sent to the nominated cluster master node to start pushing those

services on its available fogs.

8. The fog/micro-services manager uses the placement matrix generated by the

VCP to select the vehicles and push the proper micro-services on each one.

The same scenario can happen in case the user and the master node is connected

through the BS. However, the micro-service has to be downloaded from the cloud

in the case because RSUs are not available on these roads.

3.5 Masters Election

One certain car approaches each other; a master node election takes place to initialize

the Kubeadm master node on the proper device taking into consideration its band-

width, the speed, and distance concerning the neighboring cars, the serving time, and

the resources available to host the required orchestration modules. High bandwidth to

ensure reliability with the base station, the speed, distance, and serving time to main-

tain cluster stability. Implementation of the master election algorithm is provided in

algorithms 1, 2, and 3.

Our Kubeadm master election algorithm is inspired by [34]. The election between ve-

hicles is happening locally, and each car calculates its QoS score. Every car receives

all QoS scores from neighboring cars and based on the highest; a master node is nom-

inated. The QoS is calculated based on the proportional bandwidth and proportional

speed as follows:

QoS j =
BWj

N j
×

RatioD j

RatioAvgS j
(3.1)

45

where:

j corresponds to a vehicle in the set of available ones.

BWj is the bandwidth that j can offer.

N j is the set of neighbors of j.

RatioD j is the ratio distance Bypassed by j before reaching its destination.

RatioAvgS j is the average ratio speed of j.

In the first algorithm, the average ratio speed is calculated. Therefore, we used the time

spent on the onward and backward trips to get an ideal average speed. The minimum

and maximum speed parameters are set based on the speed of the gathered cars. These

cars should be grouped for more than a certain period, so the minimum and maximum

speed are extracted. When calculating the ratio speed, if the value is less than one (¡

1), this means that the car is moving with its neighboring cars. This also increases the

QoS score of this car (dividing by RatioAvgS j). As for the average distance, the ratio

of the residual distance towards the destination is calculated in algorithm 2.

In algorithm 3, the master election process takes place. The algorithm pass through

the available vehicles and checks if a particular one meets the resource requirements

to be considered for the QoS score calculation. If a vehicle meets the requirement, the

QoS is calculated based on equation 3.1; otherwise, the QoS of this vehicle is zero.

This vehicles receives all the QoS vehicles from N2 and selects the one having the

maximum QoS. The vehicles then broadcast its nomination to all its neighbors. Once

the master is elected, the Kubeadm master is initialized, and an ack message is sent to

all electors. The election is done on every node to select the highest QoS value from

its neighbors, therefore the complexity of this algorithm is O(logN j) where N j is the

number of neighbors of j.

46

Algorithm 1 Average speed of Vj

1: Input:
2: D: Distance traversed by the car in each direction
3: t1: Time spent on onward trip
4: t2: Time spent on backward trip
5: Output: RatioAvgS j
6: AvgS = 2D/(t1+ t2)
7: foreach j in m
8: Vs j = random value between minSpeed j and maxSpeed j of the road
9: RatioAvgS j = Vs j/AvgS

Algorithm 2 Average Distance of Vj

1: Input: MaxD j = Distance traversed by the car j from the starting point until
2: reaching its destination

Output: RatioD j
3: foreach j in m
4: Vl j = current position of Vj
5: ResidualDistance j = MaxDJ−Vl j

6: RatioD j = ResidualDistance j/MaxD j

Algorithm 3 Kubeadm Master Election Algorithm
1: for each j ∈ m :
2: if Vcpu j >= MinRequiredOrchCPU and Vm j >= MinRequiredOrchMem and
3: Vd j >= MinRequiredOrchDisk
4: RatioAvgS j = Average Speed of Vj
5: RatioD j = Average Distance of Vj
6: let N2 j = two hops neighbors of j
7: Calculate QoS j
8: Broadcast hello message containing QoS j to N2 j
9: else

10: QoS j = 0
11: let k ∈ {N2 j}∪{ j} be s.t.
12: QoS(k) = max{QoS(x) | x∈ {N2 j}∪{ j}
13: Vote for k through Election Messages
14: for each elected k:
15: Run Kubeadm Init command to inititalize orchestrator
16: Broadcast ack messages to N2 of k

47

3.6 Cluster Recovery Algorithm

Vehicles inside a Kubeadm cluster can host one service/micro-service or more. If a

serving fog or master leaves the cluster, the user loses its connection with the service.

Hence he is back to the default case of requesting the service either from an RSU or

from the cloud. To avoid such scenarios from happening, we propose the Kubeadm

cluster recovery algorithm.

Because the master node detects any potential cluster communication breaks with any

of the fog devices, it can identify the vehicle that will soon leave the cluster by tracking

its speed and location. Whenever an alarm is raised, the master node calls the Kubeadm

fog recovery.

Furthermore, it is possible for the master node to disconnect from the fog devices

and leave the cluster. However, the RSU’s track the master availability and can raise

the alarm whenever a potential cluster leave is about to happen. The RSU uses the

Kubeadm Master recovery algorithm.

In this section, we propose a Kubeadm Fog Recovery Algorithm (algorithm 4), as well

as a Kubeadm Master Recovery Algorithm (algorithm 5).

Kubeadm Fog Recovery - Algorithm 4

If a fog vehicle is about to leave the cluster, or a connection is lost, the master node

runs Algorithm 4 to recover from any failures that are possible to happen. The master

tries to check if another fog in its cluster can host the service of the leaving car. In

case there are no resources available on the workers, the master uses its resources

to host the service if possible. If not, the master asks the RSU or BS for temporary

resources to host the missing service and maintain its availability. As a last resort, the

RSU examine the available clusters it has and sends additional offer messages to the

48

user for acceptance. Once the user accepts the offer of the new cluster, the missing

service(s) is/are migrated to the new cluster.

Algorithm 4 Kubeadm Fog Recovery Algorithm
1: procedure: Fog Recovery
2: The master Searches for another fog availability by following these checks:
3: Run VCP to check if another fog node can host the service
4: Check if the master node can host the service
5: Check if another cluster or a single vehicle can temporally host

the service by contacting the RSU or BS
6: if checks fail, then:
7: The RSU prepares a backup cluster: generate new offer messages and

ask for the user acceptance.
8: end procedure

Kubeadm Master Recovery - Algorithm 5

In Kubeadm, if the master node leaves its cluster, the cluster goes down. The RSU

monitors the behavior of all the underlying master node. If a potential leave for a

master node is detected, the RSU calls algorithm 5 to recover from cluster failures

before occurring. The algorithm check first if a secondary master node is running to

replace the primary. If no secondary is found, the RSU asks for the election algorithm

to run locally and elect a new master node in case available resources are found. As a

last resort, the RSU collects offers from another available Kubeadm cluster. Once an

offer is accepted from the user side, the services are migrated to the new cluster. After

that, there is a backup cluster that can replace the original one in case of failures.

3.7 Experiments Showing Architecture Advantage

In the following section, we show a list of experiments to prove the advantage and

feasibility of adapting our architecture to support real time vehicular applications. We

49

Algorithm 5 Kubeadm Master Recovery Algorithm
Procedure: Master Recovery

1: The RSU searches for another master availability by following these checks:
2: Check for a running secondary master
3: Run master election and Check for a fog ability to transition

for a master state
4: if checks fail, then:
5: The RSU prepares a backup cluster: generate new offer messages and

ask for the user acceptance.
6: end procedure

start first by reproducing the work of [27] and prove that if the authors used the con-

tainers instead of VMs, they would get better results. We then then show that VMs

are not feasible to be hosted on vehicles, however, lightweight containers can. We then

move to show the advantage of our approach vs using RSUs to serve vehicular applica-

tions. This is done by showing the drawbacks caused by RSUs when SDN delays are

high and handovers take place, and the consequences of not having an RSU covering a

certain part of the road. At the end, we create an experiment combining all of the above

mentioned scenarios, and provoked a worst case scenario when the vehicular cluster

in our approach fails to maintain connection. In this case, we show the importance of

using our recovery algorithm to maintain serving cluster’s connectivity. In some of our

experiments, we compare our approach to the work of authors in [27]. This implies

that our architecture works better than any other approach using RSUs to host services.

We assume in our experiments that whenever the requesting vehicle is not able to ac-

cess its services from the RSU or neighboring vehicle, the requests of the user are

redirected to the cloud. For this reason, simulated the cloud behavior by deploying a

tier t2.small VM instance on amazon web service. This instance is running our pinging

service.

In our experiments, we use Containernet simulator as a base environment. Our

50

proposed methodology counts on containerization technology to push and run services

on demand for moving cars. Simulating this technology is made possible with the

flexibility of the open source simulator Containernet built on top of Mininet to sup-

port the use of Containers. Mininet offers the ability to run a full network on one

machine. This is done using the notion of processes as hosts where each one can con-

nect and ping the other. Therefore, Wireshark can be used on the machine to see the

processes interactions during a simulation. Containernet uses Mininet to allow hosts

(processes) to run Docker containers. Because of the need to represent VANETs and

simulate them in real life scenarios, we enhanced the integration between Container-

net and Mininet-Wifi with the help of SUMO simulator to build real-life scenarios of

moving cars. Sumo is a road traffic simulator capable of programming and displaying

the movement of cars on any chosen map.

After all, we can build any scenario required to show the advantage of our main ap-

proach. Cellular Networks and RSUs are represented in SUMO as well as the moving

cars at predefined speeds and routes to follow. The car’s behavior is predefined in a

Container not script. The networking connection and access to any simulated node’s

terminal are possible. Automated python scripts using Containernet libraries are used

to build experiments discussed in the following Sections. A ping web service is built

using the Flask framework and pushed to the container’s registry Docker Hub. In this

service, the hosting device listens on a certain port waiting for the user’s request. The

fog then replies with a string message. The aim of this service is to measure the net-

working delays between users and serving vehicles. The networking delays are enough

to show the ability of our approach to hosting services on the fly on fogs.

51

Experiment 1: Proving Containers Advantage Over Virtual Ma-

chines

Proof of containers’ performance enhancement over VMs

This experiment aims to show the importance of using containers over VMs on an

RSU. The comparison is based upon image files sizes, booting time, and ability to

change services smoothly.

Most of the proposed architectures serving vehicular nodes in the literature count on

VMs on RSUs to serve vehicles, such as [27] who proposed the creation of a cloud of

RSUs. In this section, we reproduced the work of [27] to prove that their approach can

perform better if using containers instead of VMs.

Experiment Setup

In this experiment, a core i7 machine with 32 GRAM is used. We fixed the bandwidth

rate coming into the machine to 50Mb/s to make a fair comparison. 50Mb/s is the

peak download rate for LTE cellular technology. An image of minimal Ubuntu VM

having a size of 520 MB holding the flask service is placed on Google Cloud Platform

(GCP) to be downloaded on the machine. A container image of size 30MB holds a

copy of the same Ubuntu minimal image with the service installed. The virtualized

and containerized images are downloaded with the same bandwidth. A moving car

with a speed of 10m/s in Sumo is implemented and connected to an RSU offering a

300m range of coverage. Three RSUs are placed next to another on the same road in

SUMO. Moreover, an SDN controller is connecting all RSUs. This controller is used

to configure routes between RSUs when needed. No delays are added to the controller.

Afterward, we let the car send simultaneous HTTP requests to the RSU. After one

minute from the simulation time, we let the user request a new service from the RSU.

52

This service is another copy of the original one.

The response time of each HTTP request sent by the vehicle is recorded. When the

RSU receives the first user’s request of the web service, it starts downloading the VM

vs. the Container in two scenarios. The results are displayed in the form of a signal in

Figure 3.5.

Figure 3.5: Cloud of rsu using VM vs. Container.

Experimental Results

In figure 3, the service reachability is represented as a signal of zero (reachable) or one

(not reachable). The x-axis represents the simulation time. The user does not receive

a response for the request sent until the signal in the graph is 1. It takes around 4

seconds for the container to install and boot on the RSU. However, around 50 seconds

are needed to install and launch the VM Ubuntu minimal instance. The user requests a

new service after one minute. As shown in the signal output, it takes less than a second

to download the service files in the case of the container and launch it; on the other

hand, the RSU has to install another full copy of the VM for it to run the new service.

This is another advantage of containers over VM where containers can share the base

53

image hosted on the machine. There is no need to install a container base image in

case the OS of the machine itself is compatible with services requirements. Containers

can also share the lib and bin files. On the other hand, each VM uses its copy of the

operating system. Therefore, a new copy of the VM has to be downloaded again on

the device (without user intervention).

The car is moving at a constant speed of 10m/s. This vehicle leaves the first RSU after

the 30s and joins the second one. In this case, the RSU receives the request of the

user and tries to connect to the original RSU hosting the service with the help of the

SDN controller. The time for the RSU to receive the new configuration of its routing

table is not shown in the results of figure 3.5 because there are no delays added to the

controller. It took 0.34s for the controller to get back to the RSU with its routing table.

However, if delays are considered, which is the case in most real-life scenarios, the

approach of [27] suffers from delays reaching the service as proved in the experiment

of section 3.7.2.

Feasibility to Host Containers On Vehicles vs. Virtual Machines

In this experiment, we illustrate the irrelevance of pushing virtual machines to vehicles

vs. the advantage of pushing containers in terms of image size and booting time.

Experiment Setup In this experiment, we use the SUMO-Containernet testing en-

vironment to simulate the advantage of migrating a container on vehicles vs. a VM.

The car is moving at a speed of 10 m/s. VM and Docker images use Ubuntu as a base

image with the pinging service installed. We assume that the disk space on the vehi-

cles can handle the large image size of the VM. The vehicle tries to download the VM

image from the GCP when the simulation starts. The other serving vehicle downloads

the Docker image of the service from Docker Hub also when the simulation starts.

54

To show the effectiveness of using containers on vehicles, we let the user request the

service from the serving car running a VM vs. the one using hosting a container. The

response time of each HTTP request sent to the serving car is shown in Figure 3.6. If

the serving vehicle does not have the requested service, we let the user redirects his

requests to the cloud.

Figure 3.6: Container vs. VM installment on a vehicle.

Experimental Results The x-axis in the graph corresponds to the simulation time in

seconds, vs. the response time at different stages or time of the simulation.

A VM instance is being downloaded on the vehicle, and it takes around 50s to get

the download. Therefore, all vehicle’s requests of the user are served by the cloud in

case of pushing the VM. Following our approach, the container contains the Ubuntu

instance as a base image with the pinging service. It takes 5s to download the container

of size 30MB. After the container is pulled and running, the service is always made

available on the running car. We take advantage of Docker technology in our architec-

ture to provide the flexibility of pushing services with the least costs possible. In other

words, if the Ubuntu base image were already running on the vehicles, the car would

55

only pull the required python files to run a new service. Moreover, because OBUs has

limited resources in terms of CPU, Memory, and Disk space, it might be impossible to

download or run the VM image on the car boarding unit. We also introduced the use

of micro-services to overcome the limitation of the resources.

Experiment 2: RSU Handover Costs vs. Hosting Services On Cars

In case of service hosted on RSU1, the car will at one point leave the range of this RSU

to join another one. RSU2 should know about the service running on RSU1 to forward

user’s requests to it. [27] uses the concept of an SDN controller that is responsible for

doing the routing table calculations when needed. In this experiment, we prove that

using SDN controllers to route requests between RSUs is not feasible in two scenarios

that are most likely to occur in real life. First, the controller might be hosted on the

cloud, which makes it subject to networking delays because of the distance separating

the RSU and the controller. Second, in case the controller is placed near the cloud of

RSUs where the traffic on the road is very congested, the number of services requests

will increase on the controller, making it subject to computational delays.

Experiment Setup

In our simulator’s environment, the car is set to move at a speed of 10m/s from the point

it joins the RSU range. Five RSUs are aligned next to each other without any coverage

gaps on the same road. The service needed is running on the first RSU only. The

car starts moving from the second RSU and tries to keep connected to that service.

Based on [27]’s approach, the SDN controller helps in computing the routes, so we

connected all RSUs to an SDN controller. We considered a real-life scenario where

the controller is busy doing computations causing a delay of 50 ms, and a network

delay of around 40ms. These delays are manually provoked during the simulation

56

using bash commands. In our approach, two cars are running together following the

same path on the road where they can ping each other all the way. The same service

hosted on the RSU is also running on one of the cars to serve the other. The results of

this experiment are shown in figure 3.7.

Another experiment is done in the context, but having the car moving at a speed of

20m/s. The results of this second experiment are shown in figure 3.8.

A screenshot of the setup of the experiment is shown in Figure 3.9.

Figure 3.7: RSU Handover Issue vs. Vehicular Fogs. at a speed of 10m/s

Experimental Results

The graph of figures 3.7, 3.8 displays the http response time of requests sent at differ-

ent time-stamps during the simulation. On the x-axis we have the simulation time vs

the response time of the http requests on the y-axis. In the first experiment, When the

simulation starts, and HTTP request takes around 80ms to get a response, where the

controller computation and networking delays are counted. Afterward, when the RSU

receives the HTTP requests, it can route them properly with the help of the controller.

This explains the response time drop to 1-5ms. When the car moves to a new RSU, the

controller updates the routing table on the RSU, and the same process happens again

on the two remaining RSUs. Although these jumps in the response time do not happen

57

Figure 3.8: RSU Handover Issue vs. Vehicular Fogs. at speed of 20m/s

Figure 3.9: Experiment Screenshot

58

very frequently and might not harm the overall application performance, we can see

in the results of figure 3.8 that these jumps occur more frequently because of the car

moving at a faster speed causing it to change more RSUs. Therefore, the use of SDN

controllers to route the requests between RSUs, if available, is not a good candidate

because it is subject to networking and computational delays where the car can move

at fast speeds.

In our approach, the best fog is selected and keeps moving in the user’s connection

range. Because of our proposed network architecture and the ability to push container-

ized services on the fly, the service is always available on nearby cars even if not in

the same range. Our approach achieves a stable small response time which is a critical

factor in time-sensitive applications like self-driving cars.

Experiment 3: Drawback of Limited RSU Range of Coverage

In this experiment, we show the drawback of having parts of the roads not covered

by RSU’s wireless technology (802.11p). In such a case, vehicles will not be able to

request their services as usual. In our approach, the serving car is always accessible

because of the location tracking and updated routing tables on the RSUs, RSUCs, and

base stations.

Experiment Setup

Using the same testing environment, two RSUs are aligned on the road. 300m sepa-

rates the two RSUs. Two cars are moving together on this road at a speed of 10m/s.

Our service is running on the first RSU and in the neighboring car. In this simulation,

if the car cannot reach the RSU, the request is redirected to the cloud instance running

our service. Services are already installed and running on the RSU and the vehicular

fog. The results of this experiment are shown in Figure 3.10.

59

Figure 3.10: RSU limited network coverage drawback vs. vehicular fogs.

Experimental Results

Figure 3.10 presents the response times of HTTP requests sent at different simulation

times to the RSU vs. the serving vehicular fog. The response time of user’s requests

is negligible at the beginning of the simulation because the car is served by the first

RSU. After that, the response time reached almost 200ms per request after the 30s of

the simulation time because vehicle left the RSU range and the cloud starts serving.

In some cases, the vehicles rely on RSU’s processing of the generated sensed data

by nearby cars. Whenever the RSU is not available, the car application remains idle

until joining the next RSU on its way. In our case, the user waits for 10s to join the

second RSU and regain the acceptable QoS level. On the other hand, our approach

is capable of hosting micro-services on nearby Kubeadm cluster, making the service

always available following our multi-layered network architecture. Therefore, as seen

in the results of Figure 4.10, our approach achieves a high service availability with low

response time because the serving and requesting vehicles are moving together.

60

Experiment 4: Combined Testing Scenarios Showing Our Approach

Advantage

In this experiment, we combine the three previous experiments considering more num-

ber of cars having different speeds. This leads to an unstable cluster connection. There-

fore, we try to cover a case where the car randomly changes its behavior to show how

our framework can react to it. We compare our approach to the use of the cloud of

RSUs.

As the second part of this experiment, we show the advantage of using the recovery

algorithm in the case where the cluster loses its connectivity.

Experiment Setup

Four cars are installed on the road following the same path. Also, five RSUs are

arranged next to each other on that road. All RSUs are aligned in a way that covers all

parts of the road, except RSU3 and RSU4 where we have a gap of 300m in between.

All cars start moving at a speed of 10 m/s. V1, V2, V3, and V4 starts moving at

time 5s, 10s, 5s, and 0s respectively, creating a distance of 50m between every pair

of cars. V1 is the user who starts requesting the service after 5s of the simulation

time. We assumed that V3 is elected as the master node of the cluster V2, V3, V4,

and that the Kubeadm cluster is already initialized on them, given that all vehicles

have the same resources capabilities. At 5s, the RSU starts pulling the VM containing

the flask service. At the same time, V4 starts pulling the same service from Docker

Hub. After 170s, V4 speed is doubled to reach 20m/s. This behavior was provoked

to simulate randomness in the vehicle movement. V4 leaves the cluster (range of the

master) at 197s. In this part of the experiment, we do not use any recovery algorithm

when V4 leaves its cluster. The response time of each ping request sent to RSU vs. V3

61

Figure 3.11: Approach Advantage in Combined Scenarios - No Recovery

is recorded and present in the graph of Figure 3.11.

Experimental Results

The results in Figure 3.11 are separated into four parts. Exp1, Exp2, and Exp3 results

are reproduced sequentially in this experiment. After 180s of the simulation starting

time, V4 doubles its speed to 20m/s causing it to leave the cluster at around 198s.

Because V4 is the only running fog in V3’s cluster, the service requested by V1 is

not available anymore. In this case and Following our approach, V1 has to request

the service from the cloud. In the cloud of RSUs approach, the service is available on

RSU1 and reachable through RSU5. Moreover, we can notice the jump in the response

time; this is because RSU5 is trying to update the routing table from the SDN controller

to reach RSU1. Therefore, there is a need for a recovery algorithm that can avoid any

failures in our proposed framework.

62

Figure 3.12: Approach Advantage in Combined Scenarios - Recovery

Recovery Algorithm

In the second part of this experiment, the recovery algorithm is Installed to run on V3

to avoid any cluster connectivity or physical failure. We reproduced the experiment,

and we can maintain the cluster connectivity as shown in the results of Figure 3.12

(Recovery part). V3 is now able to push the service to V2 before the current running

fog (V4) leaves the cluster. A similar scenario can happen in case of a master node

failure by running the recovery algorithm on the RSU.

In the combined experiments, our approach is compared to the RSU cloud approach

only; however, this comparison applies to all approaches trying to serve vehicular ap-

plications using RSUs and virtual machines. In table 3.1, we summarize all advantages

of our approach compared to existing ones such as the cloud of RSUs. Adapting the

containerization technique allowed us to download and update services faster. Our

approach does not consider the use of SDNs because of the timely low cost reporting

between master nodes and RSUs. In addition, the use of our proposed hybrid network-

63

ing architecture makes it possible to users and vehicular fogs to keep connected. The

recovery algorithm plays a vital role here by avoiding any potential clusters failures.

Table 3.1: Performance Comparison Between Our Approach vs Cloud of RSUs

Compare Based On Our Approach RSU Cloud

Time to download service low high

Time to update service low hight

SDN Delays None Network and Computation

Service Availability Always Only within RSU range

Push service again Use same base OS Download VM again

3.8 Conclusion

In this chapter, we addressed the problems related to the performance issues when serv-

ing vehicles through RSUs running virtual machines. We introduced an On-Demand

service deployment on Kubeadm vehicular fog clusters using vehicular resources only.

We also adopted a multi-layered hybrid networking architecture capable of maintain-

ing a stable connection between the user and serving fog vehicles. A description of

the components of the architecture is discussed. A cluster election algorithm to elect

Kubeadm orchestrators is proposed as well as the recovery algorithm that maintains

the cluster connectivity for longer service availability and user support. Through our

approach, we were able to push services on-demand on vehicles and greatly improve

the response time, service availability and cluster maintainability through time

A testing environment was built using Containernet and SUMO simulators. Promising

results were shown through a series of deducted experiments studying the feasibility

and advantage of adapting our approach over other existing ones. More than 90%

improvement in image size and booting time is shown to be achieved when using con-

64

tainerization technology for pulling and running services. RSUs limitations such as

handover and range of coverage are solved in our approach because of the ability to

host services on vehicles by forming a cluster and electing the right orchestrator. An

improvement in cluster connectivity is also illustrated in the last experiment by running

our recovery algorithm.

65

Chapter 4

Vehicular Container Placement

4.1 Introduction

Vehicles in VANET tend to change their speed randomly, making it a challenge to

maintain cluster stability. In our architecture, vehicles are the primary source of com-

putational power including any devices on board to host micro-services. Furthermore,

fog nodes are asked to host different services based on users request, which makes

it another challenge of mapping each micro-service to the proper car. Finding the

optimal migration of micro-services to available cars is an NP-hard problem. The ob-

jectives of getting the optimal solution of this problem are to maximize the cluster

stability/connectivity or serving time, maximize the connection time between micro-

services, maximize the number of pushed services, and minimize the number of active

vehicles. This is done after checking if the solution meets the given constraints.

In this section, we define the Vehicular Container Placement Problem (VCP) and prove

it is NP-Hard. We mathematically formulate our problem by identifying the input,

output, constraints, and the objective functions for our multi-objective optimization

problem. A table of notations is provided in table 1.

66

Table 4.1: Table of Notations

Variable Description

m Set of available vehicles

n Set of requested services

orch j Kubeadm master node of Vj

Eid Number of micro-services of service having id

S Set of services

V Set of vehicles

L Set of serving vehicles

R wireless coverage range in 802.11p

Si
id Micro-service i of service id

Ci
id CPU usage of Sid,i

Mi
id Memory usage of Sid,i

Di
id Disk usage of Sid,i

Tid Minimum time to host Sid

Vcpu j CPU available on Vj

Vm j Memory available on Vj

Vd j Disk space available on Vj

Vl j Current position of j as long and lat

VS j Current speed of Vjs

Tj Time for Vj to reach its destination

AvgS j The average speed of worker Vj

Ud Current location of the user

Tcluster Minimum guaranteed cluster time availability without any recovery techniques

Dcluster Minimum guaranteed end distance between user and Kubeadm cluster

67

VCP Problem Definition

In this problem, we have a set of services with different requirements and a set of avail-

able vehicles that would potentially host a micro-service or more. The aim is to find

the best distribution of these services on the set of available cars taking into account the

resources available on them, requirements of services, the networking stability of the

moving cluster, the maintenance of attached micro-services, and the proximity from

the user during the serving time (required for some applications). This problem is

complex to solve and is an NP-hard problem.

By reducing our problem to the Bin-Packing problem, we can prove that our problem

is NP-Hard. The traditional bin packing problem is described as follows. Suppose we

have a set of objects with different volumes that you need to pack inside a finite num-

ber of bins of some capacity or volume. The aim is to try to maximize the total object

packed in the bin, and to minimize the number of used bins. This problem can be

mapped to our problem as follows. Each bin is our available vehicle that has resources

capacities, and the objects are the service images we need to assign for these cars. Our

objective is to maximize the number of pushed service while minimizing the number

of active fog/vehicles, in addition to other objective functions. Thus our problem is

NP-hard.

4.2 VCP Problem Formulation

We aim to optimize the number of pushed services, the number of actively serving

vehicles, the stability of the cluster, and the attachment of related micro-services under

similar vehicular conditions.

68

Input Data

For the input data, we have a set of available services S with different requirements,

a set of available vehicles V with different offerings, and the mobility parameters to

locate the user U.

Vehicle:

The set of vehicles V is represented as a matrix V ∈ Rn∗7 that illustrates the seven

attributes of each car moving on the road. Each car is described as follows: Vj =

[Vl j ,Tj,AvgS j,Vcpu j ,Vm j ,Vd j ,orch j]. For simplicity, we assume that all vehicles form-

ing the cluster are moving in the same direction until reaching their destinations and

that they are available all the time during their trip.

Service:

The set of micro-services S, each with a service id, is represented as a matrix S ∈

Rn∗5 having five attributes for each micro-service. A row in the matrix represents the

microservice requirement as Si
id = [Ci

id,M
i
id,D

i
id,Tid, id]. We assume that all cars have

the same resources specifications, so a service performs the same on any device.

User:

The user is represented as an array of length two that describes the mobility factors of

the user and helps VCP in keeping the cluster close to the user when needed (depending

on the application). A user U is represented as [AvgSu, Tu] where AvgSu is the average

speed of the user and Tu is the time for the user to reach his destination.

69

Output data

The optimization solution aims to map each requested service to a vehicle node in its

cluster. The output is a binary matrix Ki j of size (n×nid)×m where Ki j ∈ 0,1. i and

j represent the service S and the vehicle V that will host Si respectively. Moreover, an

offer message is constructed by Ki j and represents the serving time of the cluster for

one requested service at a time, as well as the predicted distance from the user. Each

component of the offer message is calculated as follows:

Cluster Serving Time

Either the time for the master node to reach the destination is returned, or the time

until a worker node goes out of the cluster. This approach is formulated to calculate

the minimum guaranteed availability time to serve (without any recovery pattern) such

that the distance between this node and master is R given that the master node is also

moving.

Tcluster = min{ R
|AvgSorch j −AvgS j|

− |Vporch−Vp j |} ∀ j | L j = 1 (4.1)

If Tcluster > Torch then Tcluster = Torch

Where Vp j is departure time of the vehicle.

Cluster Distance from user (current and end)

The end distance between the cluster and the user is calculated. In other words, we use

the cluster serving time and the master node average speed to get the end position of

the master without any recovery techniques. The calculated end orchestrator position

is then subtracted from the end user’s position to get the distance. This requires ge-

70

ographical coordinates calculations. Therefore, we used nvector python library. The

end distance between the cluster and requesting user is calculated as follows:

OrchestratorEndDistance = AvgSorch×Tcluster

UserEndDistance = AvgSu×Tcluster

OrchestratorEndPosition = getNewPosition(Vlorch,OrchestratorEndDistance)

UserEndPosition = getNewPosition(Vlu,UserEndDistance)

Dcluster = calculateDistance(OrchestratorEndPosition,UserEndPosition)
(4.2)

Where:

getNewPosition: takes the inital coordinate position and the end distance, and cal-

culates the new position’s coordinate.

calculateDistance: takes two positions and calculates the distance between them.

The initial distance between orchestrator and user is calculated using the inital po-

sition of the orchestrator and user.

The current and end distance between the user and orchestrator are sent in the offer

message. During the offer acceptance decision, the user takes into consideration the

orchestrator’s proximity to the cluster in case the application is time sensitive.

Constraints

In this section, we present the different constraints that makes a solution feasible.

71

Resources Limit

The total CPU, Memory, and Disk resources required by the hosted service on a ve-

hicle should be less than its available resources. This constraint can be formulated as

follows:

n

∑
id=1

nid

∑
i=1

Ci
id×Ki j ≤Vcpu j (4.3)

n

∑
id=1

nid

∑
i=1

Mi
id×Ki j ≤Vm j (4.4)

n

∑
id=1

nid

∑
i=1

Di
id×Ki j ≤Vd j (4.5)

∀ j ∈ m, i.e., for all available hosts Vj

Minimum Cluster Serving Time

To guarantee that the cluster can serve the user for a reasonable time, we set a time

threshold to be considered before sending an offer message to the user.

Tcluster > Tid ∀id ∈ n (4.6)

All Coupled micro-services to be hosted

Micro-services should be coupled together to keep them connected in the same cluster

and to avoid service availability and delay issues. If all the micro-services composing

service requirements cannot be met by a vehicular cluster, any micro-service of this

service must not be pushed to the cluster. This constraint is formulated as :

m

∑
j=1

nid

∑
i=1

Ki j = nid ∀id ∈ n (4.7)

72

Distance Threshold To User

In case the application requires the fog to be hosted near the user to avoid networking

delay, the VCP ensures that the distance between the cluster and the user does not

exceed a certain value D already set based on the application need. This cluster-user

distance constraint can be formulated as:

Dcluster < D (4.8)

Weights Summation

Each objective function is multiplied with a weight associated with it. All the weights

should add up to one. The purpose of these weights is to have a tradeoff in terms of

the importance of each objective function. For example, to push as many services as

possible no matter what the conditions are, we should set Wf 3 to a value greater than all

other weights. In this case, the evaluation of f3 is affecting the sum of the optimization

functions more than all other objective functions. It is expressed as follows:

Wf 1 + Wf 2 + Wf 3 + Wf 4 = 1 (4.9)

Objective Functions

Cluster Lifetime Maximization

Maximizing the cluster lifetime leads to maximizing the user serving time. This objec-

tive function aims to maximize the time availability of the kubeadm cluster by selecting

fog vehicles that can keep connected to the master node for a long period. We formu-

late this function by maximizing the minimum time it takes one fog to go out of the

73

cluster as follows:

F1 = max(
c

∑
p=1

Tcluster×Wf 1) (4.10)

Where c is the number of used clusters.

Maximize Micro-Services Connection Time

An alive connection between all micro-services of service is important to ensure ser-

vice availability. One micro-service does not function without the other. Therefore, in

this function, our objective is to host the micro-services in similar mobile conditions

on different cars if possible. We make sure that all micro-services are of approximately

at the same distance from the master node. This is formulated by minimizing the to-

tal sum of distances between the worker nodes hosting the micro-service and their

Kubeadm master vehicle for all given ids (services) as follows:

F2 = min(
m

∑
j=1

n

∑
id=1

nid

∑
i=id

((Vlorch j
−Vl j)×Ki j)×Wf 2) (4.11)

Maximize number of pushed services

The aim is to Maximize the number of pushed services to vehicles in the chosen pop-

ulation.

F3 = max((
m

∑
j=1

n

∑
id=1

nid

∑
i=id

Ki j)×Wf 3) (4.12)

By maximizing the number of pushed services, we guarantee that all users’ requests

for services are satisfied and that services are deployed on vehicular fogs.

Minimize number of active vehicles

The aim of this objective function is to minimize the number of active vehicles in order

to save initialization time of devices while joining the cluster, using less energy with

74

fewer vehicles running, and a better way to let the orchestrator monitor less number of

devices. It is expressed as:

F4 = min((
m

∑
j=1

L j)×Wf 4) (4.13)

4.3 Memetic Algorithm To Solve VCP

It is important to get the optimal set of solutions for the container placement problem

in a short time. The memetic algorithm is the most suitable solution for such problems.

It is built on top of the genetic algorithms. However, in addition to the optimization

operators, it has a local optimization (local search) algorithm that can guarantee opti-

mal solutions in early generations [22]. The memetic algorithm proposed in [16] and

adapted to solve our optimization problem is illustrated in Algorithm 6.

First, we check that the problem has at least a feasible solution where containers of

services can be hosted on the available vehicles before moving to step 2. Next, we

initialize a random set of solutions P0 by randomly assigning images of services to

available cars. In step 3, we look at the set of available solutions in P0, and repair any

violation of our constraints (e.g., a service to be hosted on a vehicle with resource con-

sumption greater than available capacity of this vehicle). These violations are repaired

in three ways and illustrated in Algorithm 7: (1) Moving containers to other available

vehicles in the cluster, (2) adding available vehicles to the list of running ones and

move Docker containers to them, and (3) removing containers from the list of services

to be pushed. Step 4 of the MA is to apply a probabilistic local search method pre-

sented in Algorithm 8 to optimize feasible solutions. If the probability is less than 0.5,

we maximize the number of pushed services following line 4. On the other hand, if

we have probability >0.5, we minimize the number of available volunteers. This way,

75

we are trying to converge to an optimal solution at early stages using this probabilistic

local search. Then the Pareto set approximation is generated at step 5. After the ini-

tialization of step 6, standard selection, crossover, and mutation operators are applied,

infeasible solutions are repaired, optimization of solutions is done using probabilistic

local search, iteration counter is incremented, and finally, the Pareto set is updated if

any improvements happened. After that, a new population is selected. This process

keeps on iterating until the algorithm reaches a number of iterations. Finally, the fittest

set of the solution pknown is returned. In this MA, we use the binary tournament for

selecting individuals from the population to apply crossover and mutation on them.

The crossover operator used is the single point cross-cut. For mutation, each gene is

mutated with probability 1/n where n is the number of services. This prevents stagna-

tion in a local optimum.

The complexity of this algorithm is divided into four parts as discussed in [25]: The

generation of M chromosomes, the crossover, the mutation, and the local search com-

plexity time. Let M and N be the number of chromosomes and number of nodes

respectively. The MA starts off using O(M× (n−1)× log(n−1)) time units to gen-

erate the random population. Also let pc and pm be the probability of the mutation

and crossover respectively. The number of offsprings generated by the crossover

uses O(N × pc× [M× (N + 1)]), while the ones created by the mutation consumes

O(pm× [M× (N + 1)]) of time units. The local search algorithm consumes O(n).

Therefore the combined time complexity of the MA is shown in equation 4.14 (given

pm = 1/2)

O((M×(n−1)× log(n−1))+(N× pc× [M×(N+1)])+(1/2× [M×(N+1)]+N))

(4.14)

76

Algorithm 6 Multi-objective memetic algorithm
Data: Set of containers
Result: Pareto set approximation pknown

1: Check if the problem has a solution
2: Initialize set of solutions P0
3: P′0=repair infeasible solutions ofP0
4: P′′0 = apply local search to solutions of P′0
5: Update set of non-dominated solutions pknown from P′0
6: t = 0
7: Pt = P′′0
8: While (stopping criterion is not met), do
9: Qt = selection of solutions from Pt ∪ pknown

10: Qt’ = crossover and mutation of solutions of Qt
11: Qt” = repair infeasible solutions of Qt’
12: Qt”’ = apply local search to solutions of Qt”
13: increment t
14: Update set of non-dominated solutions pknown

from Qt”’
15: Pt = fitness selection from Pt ∪Qt”’
16: End while
17: Return Pareto set approximation pknown

Algorithm 7 Infeasible solution reparation
Data: Infeasible Solution
Result: Feasible Solution

1: f easible = f alse; i = 1
2: While i≤ n and f easible = f alse do
3: if it is possible then
4: move Si to V ′j (j 6= j′)
5: else
6: if S j does not have priority level
7: Remove Si from list of services to be pushed
8: else
9: Moving Si to other available volunteers Vj

in Pknown
10: end
11: end
12: end while
13: return feasible solution

77

Algorithm 8 Probabilistic local search
Data: set of feasible solutions Pt’
Result: set of feasible optimized solutions Pt”

1: Probability: Random value between zero and one
2: While there are solutions not verified do
3: if Probability < 0.5 then
4: We remove containers placed on Vj and run them

on Vj’ if resources available are enough, and then
assign any unselected service on Vj if resources
are available after sorting them with priority level

5: else
6: We assign all services Si needed to available Vj
7: devices depending on resources requirement, and
8: then we discard all Vj and assign all services Si
9: to new set of volunteers Vj’ that can host them

10: end
11: end while
12: return set of optimized solutions Pt”

4.4 VCP Experiments

In the previous experiments, the best selection of volunteers and optimal distribution

of services on cars are taken by default. In the following experiments, we build test

cases with three scenarios to show the importance of each of our objective functions

and their effect in taking the selection and placement decision. The first experiment

illustrates the importance of keeping micro-services connected, because loosing one

micro-service before the other leads to non-availability of the main service. A decision

can be taken with the best distribution of connected micro-services; however, services

can be redistributed in a way that maximizes the number of pushes while maintaining

the same fitness value of the micro-services connectivity or tolerating a bit of fitness

loss. In the second experiment, we show the ability of the VCP to maximize the

number of pushed services. while these two objectives are maintained, the service will

not be available for a long time if the cluster is about to reach its time availability limit.

78

Therefore, maximizing cluster lifetime is another objective function considered in our

VCP solution. The advantage of this function is studied by the third experiment.

In all of the mentioned experiments, we display the fitness value of each objective

function along with the output matrix compared to an adhoc algorithm to place the

services. This is done to show the ability of our VCP to maintain an equilibrium

between all of the objective functions in one decision.

To develop our scenarios, we used two of the well-known datasets, the Google trace

2011 dataset [26], and another one generated by Mobisim tool [11]. Google trace

dataset contains data about micro-services’ resources requirements in terms of CPU,

memory, and disk, as well as data about the available cluster’s resources to host these

services. In our case, each node in this cluster is a vehicle. In their data, all nodes

have identical specs where the given values are normalized. The mobility conditions

of our scenarios are selected from a generated Mobisim dataset. In Mobisim, we can

generate a behavior of real vehicles with random directions and speeds on the roads.

From this data, we selected the average speed and distance crossed by a group of cars.

The services and vehicles datasets are shown in tables 4.2 and 4.3. Table 4.4 shows the

combination of available vehicles and services used to build our test cases.

The testing environment is created using Containernet and SUMO simulators (Similar

to the experiments of Chapter 3).

79

Datasets

Vehicles Dataset

Table 4.2: Vehicles Dataset

Starting Position Dest Time AvgS CPU Memory Disk Dep Time Orch

V1 (40.740, -73.994) 20 7.5 0.5 0.55 0.6 0 V1

V2 (40.740, -73.994) 5 7.35 0.6 0.6 0.4 1 V1

V3 (40.740, -73.994) 30 25.0 1 1 1 2 V1

V4 (40.743, -73.996) 40 7 1 1 1 1 V4

V5 (40.743, -73.996) 35 7.1 0.7 0.7 0.7 1 V4

V6 (40.743, -73.996) 30 6 0.5 0.5 0.8 0 V6

V7 (40.165, -73.736) 4 3 0.8 0.7 0.4 3 V7

V8 (40.365, -73.756) 100 20 0.2 0.3 0.1 4 V8

Services Dataset

Table 4.3: Services Dataset

Service ID CPU MEM DISK

S1 1 0.4 0.3 0.5

S2 1 0.1 0.1 0.05

S3 1 0.2 0.2 0.25

S4 1 0.5 .0.4 0.4

S5 2 0.2 0.1 0.25

S6 2 0.3 0.4 0.25

S7 3 0.6 0.5 0.58

80

User Data

The current location of the user is (40.740513, -73.994568) that depart at time 4 after

the simulation starts.

Scenarios

Table 4.4: Scenarios

Scenario Available Vehicles(s) Requested Service(s)

Scenario1 V1, V2, V3, V4, V7, V8 S1, S2, S3, S4

Scenario2 V4, V6, V7, V8 S5, S6, S7

Scenario3 V2, V4. V7, V8 S7

Experiment 4: Importance of keeping micro-services connected

All micro-services must reach each other to keep the service available. In this ex-

periment, we show the ability of our VCP algorithm in keeping the microservices

connected for the maximum time possible. We compare the performance of the VCP

algorithm to a search algorithm that looks into the available vehicles, find the first

vehicle close to the user and capable to host the service.

Experiment Setup

Scenario 1 is used in this experiment, where we have to push S1, S2, S3, S4 and we

only have V1, V2, V3, V4 available. The car has a network coverage range of 50m,

the user is moving with V1 at almost the same average speed during the first 2s and

then connects to it through the RSU. We implemented the services in a way that each

one pings the other whenever the user sends a request to V1 (selected orchestrator).

If all services can reach each other, the user receives its response. The response time

81

is recorded in the graph of Figure 4.1. Whenever a micro-service is not reachable,

we represent it as a value of -1 in the graph. This is where the user does not receive

any response from V1. We gave scenario one as input to our VCP algorithm, and

we compared its results to the ones generated by the simple search algorithm. 5ms

of networking delay is added on the link between the user and V4, V5. Concurrent

requests are sent to the serving vehicles neglecting the time of initializing the cluster

and downloading the service. The x-axis in Figure 4.1 represents the request number,

while the y-axis represents the response time of the request sent by the user to test the

service availability.

Figure 4.1: Maintain micro-services connection using VCP.

Matrix output for scenario 1 - VCP:

Ki j =

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

82

Matrix output for scenario 1 - Search Algorithm:

Ki j =

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

VCP Search weights
F1 20 3.8 0.01
F2 0 -4 0.39
F3 4 4 0.3
F4 -2 -2 0.3

Total 2 -0.922 -

Table 4.5: Objective Functions Evaluation - Scenario 1

Experimental Results

As shown in the above output matrices, the VCP algorithm assigns S1, S2 to V5 and

S3, S4 to V4, whereas the search algorithm assigns S1, S2 to V1 and S3, S4 to V3. In

the simple search case, the user is being served until sending the 25th request where

he stops receiving any response. At this time, the response drops to -1 and the service

becomes unavailable. This is because V3 is moving at a faster average speed and leaves

V1’s range after around 3s from the simulation starting time. A jump in the response

time for the search algorithm is shown during the 17th request; this is because the

user connects to V1 through RSU after a certain time rather than a direct connection

(the speed of the user is different than the cluster’s speed). VCP tries to push micro-

services to cars in a way that maximizes their time connectivity to their orchestrators.

Following the VCP decision, the service is made available for the user all the time. We

83

can notice that VCP is causing more delay when the service is available because V4 is

far from the user and connected through an RSU from the beginning.

Experiment 5: Importance of maximizing the number of services

We aim to push the maximum number of services on available cars to enhance QoS

for all requesting users.

Experiment Setup

In this experiment, we let the user move next to V1 and use scenario two as a testing

environment. To show the importance of this objective function, we compare the re-

sults of our VCP to the search algorithm. Using Containernet integration with SUMO,

we can simulate the behavior of both criteria. A networking delay of 5ms is added on

the link between the user and all the vehicles. A comparison of the response time of

each HTTP request sent to both services hosted on selected is shown in the two graphs

of figure 4.2.

Matrix output for scenario 2 - VCP:

Ki j =

0 1 0 0

0 1 0 0

1 0 0 0

Matrix output for scenario 2 - Search:

Ki j =

1 0 0 0

1 0 0 0

0 0 0 0

84

Figure 4.2: Maximize number of pushed services using VCP.

Experimental Results

As per the output matrices shown, the VCP output is to push the micro-services S5, S6

together to V6 and the service S7 to V4. In the searching selection, S5, S6 are pushed

85

VCP Search weights
F1 30 30 0.01
F2 0 0 0.29
F3 3 2 0.5
F4 -2 -1 0.2

Total 1.4 1.1 -

Table 4.6: Objective Functions Evaluation - Scenario 2

to V4 and S7 to V6. Following the VCP decision, we can notice that both services

(S5/S6 and S7) are available to the user all the time. The services response time is

high a bit because the user is connected to the fogs through RSUs. For the searching

algorithm output, S5 and S6 services are available, but S7 is not. Because S5 and S6

were pushed to V4, half of the resources are not being used. Therefore, we cannot

host S7 anymore on V6 because S7 resources requirements are more than V6 capacity.

Hosting S5/S6 to V1, allows us to utilize almost the full available resources of V6 and

allows S7 to be hosted on V4. V7 and V8 are not considered in the search algorithm

or VCP because they are further away from the user than V4 and V6. Based on the

experiment’s results, we proved that our Memetic solution is capable of maximizing

the number of pushed services.

Experiment 6: Importance of increasing the cluster lifetime

While taking the VCP decision, services can be placed on nearby cars having enough

resources that results in the least delay possible. However, if the services are be-

ing pushed to clusters that do not have a stable connection, or where the orches-

trator/worker nodes will soon reach their destinations and stop serving, this leads to

shorter serving time. In this case, the decision of selecting serving vehicles is greatly

affected by their serving time. The aim is to maximize the cluster serving time.

86

Experiment Setup

We use Scenario 3 for this experiment. Services are ready and running on the fogs

before the vehicles start moving. We also let V2 leave the cluster after 54s from its

starting time. The user drives next to V2 at the same speed following the same direc-

tion. A delay of 5ms is added between the user and V4. We assumed that the service

is already running on both cars. The response time of user’s requests sent to S7 either

hosted by V2 or V4 is shown in figure 4.3.

Figure 4.3: Maximize cluster availability using VCP

Matrix output for scenario 3 - VCP:

Ki j =

[
0 1 0 0

]
87

Matrix output for scenario 3 - Search:

Ki j =

[
1 0 0 0

]

VCP Search weights
F1 40 5 0.1
F2 0 0 0.2
F3 1 1 0.3
F4 -1 -1 0.3

Total 4 0.5 -

Table 4.7: Objective Functions Evaluation - Scenario 2

Experimental Results

The VCP decides to push S7 to V4, whereas the search algorithm pushes S7 to V2. As

shown in the results of Figure 4.3, after 1.2s, S7 is no longer available on V2 because

it reached its destination and stopped serving. We can see that S7 is available on V4

throughout the simulation time because V4 can serve for 40s with enough resources.

Depending on the available resources, user’s requirements, and services importance,

VCP tries to provide the optimal selection and distribution of services. In terms of

service importance, the user decides what services to request.

4.5 Conclusion

In this chapter, we defined the VCP as a multi-objective optimization problem and

proved its hardness. A mathematical formulation is presented stating the inputs and

expected output matrices. A solution to the problem is subject to different constraints

88

that should be considered to build feasible solutions. Various objective functions are

also formulated, such as the optimization of the number of pushed services, the num-

ber of moving vehicles, the cluster lifetime, and the micro-service time connectivity.

A Memetic algorithm built on top of the genetic algorithm is used with a combination

of a probabilistic local search algorithm to guarantee fast and optimum solution reach-

ability.

A series of experiments are conducted showing the improvement achieved by our ar-

chitecture in terms of vehicle’s selection and services assignment. Google Cluster

Traces dataset of 2011 is used to represent service resources requirements and vehi-

cles capacities. Mobisim to generate a real-life mobility data of vehicles is also used.

We first showed the ability of the VCP to improve micro-services connectivity by push-

ing them on vehicles having the same driving patterns. Second, we illustrate the gain

achieved by trying to host the maximum number of services on the set of available

vehicles. Finally, we experimented with the capability of VCP to select the group of

vehicles that leads to longer service lifetime through higher cluster availability.

89

Chapter 5

Conclusion

5.1 Conclusion

In this paper, we proved that the use of RSUs to support real-time vehicular applica-

tions is not possible. Moreover, On-Board Units are still constrained by the availability

of their resources. Therefore, one or two OBUs are not enough to handle the process-

ing of the vast amount of data generated by vehicles. There is no work in the literature

capable of hosting services on the vehicle. In case vehicles are used as fog devices,

they should keep an alive connection with the user to provide longtime support. An-

other problem arises in this context, which is finding the best fit of micro-services on

available vehicles in a way that maximizes the vehicles serving time and maintains its

reachability. This thesis focuses on addressing these concerns by elaborating a frame-

work for efficient vehicular clusters formation and service deployment on demand.

Below we present a summary of the thesis contributions:

1. Elaborating an on-demand service deployment approach on Kubeadm vehicular

clusters.

2. Adapting a hybrid multi-layered networking architecture to keep a vital connec-

90

tion between the user and available fogs.

3. Adapting a local master election procedure.

4. Introducing a vehicular recovery algorithm to overcome cluster failures.

5. Integrating a flexible multi-objective optimization model for intelligent con-

tainer placement.

6. Implementing a memetic solution for the vehicular container placement prob-

lem.

5.2 Future Work

In our approach, the recovery decision is taken 2s before the vehicle leaves the cluster.

As future work, the recovery algorithm should be improved by introducing a reinforce-

ment learning approach to identify the proper time to perform the restore the cluster

state.

We can benefit from our approach by introducing a security model for securing vehic-

ular networks. This is a susceptible area because any attacks on the network can lead

to data and decisions changes.

On the other hand, upcoming cellular network technologies like 5G are very promis-

ing towards the support of real time vehicular applications. Thus, our architecture

and methodology can be adapted and enhanced based on the networking technologies

advancements in the years to come.

91

Bibliography

[1] Saif Al-Sultan, Moath M Al-Doori, Ali H Al-Bayatti, and Hussien Zedan. A

comprehensive survey on vehicular ad hoc network. Journal of network and

computer applications, 37:380–392, 2014.

[2] Paolo Bellavista and Alessandro Zanni. Feasibility of fog computing deployment

based on docker containerization over raspberrypi. In Proceedings of the 18th in-

ternational conference on distributed computing and networking, page 16. ACM,

2017.

[3] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog comput-

ing and its role in the internet of things. In Proceedings of the first edition of the

MCC workshop on Mobile cloud computing, pages 13–16. ACM, 2012.

[4] Luca Carafoli, Federica Mandreoli, Riccardo Martoglia, and Wilma Penzo. Eval-

uation of data reduction techniques for vehicle to infrastructure communication

saving purposes. In Proceedings of the 16th International Database Engineering

& Applications Sysmposium, pages 61–70. ACM, 2012.

[5] Lawrence Davis. Handbook of genetic algorithms. 1991.

[6] Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages

403–449. Springer, 2014.

92

[7] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated

performance comparison of virtual machines and linux containers. In 2015 IEEE

international symposium on performance analysis of systems and software (IS-

PASS), pages 171–172. IEEE, 2015.

[8] Andreas Festag. Standards for vehicular communication—from ieee 802.11 p to

5g. e & i Elektrotechnik und Informationstechnik, 132(7):409–416, 2015.

[9] Borko Furht and Syed A Ahson. Long Term Evolution: 3GPP LTE radio and

cellular technology. Crc Press, 2016.

[10] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of things (iot): A vision, architectural elements, and future

directions. Future generation computer systems, 29(7):1645–1660, 2013.

[11] Jérôme Härri, Fethi Filali, Christian Bonnet, and Marco Fiore. Vanetmobisim:

generating realistic mobility patterns for vanets. In Proceedings of the 3rd inter-

national workshop on Vehicular ad hoc networks, pages 96–97. ACM, 2006.

[12] Hua-Jun Hong, Pei-Hsuan Tsai, and Cheng-Hsin Hsu. Dynamic module deploy-

ment in a fog computing platform. In Proceedings of 2016 18th Asia-Pacific on

Network Operations and Management Symposium (APNOMS), pages 1–6. IEEE,

2016.

[13] Saiful Hoque, Mathias Santos de Brito, Alexander Willner, Oliver Keil, and

Thomas Magedanz. Towards container orchestration in fog computing infrastruc-

tures. In Proceeddings of the 2017 IEEE 41st Annual on Computer Software and

Applications Conference (COMPSAC), volume 2, pages 294–299. IEEE, 2017.

93

[14] Xueshi Hou, Yong Li, Min Chen, Di Wu, Depeng Jin, and Sheng Chen. Vehicular

fog computing: A viewpoint of vehicles as the infrastructures. IEEE Transactions

on Vehicular Technology, 65(6):3860–3873, 2016.

[15] Kang Kai, Wang Cong, and Luo Tao. Fog computing for vehicular ad-hoc net-

works: paradigms, scenarios, and issues. the journal of China Universities of

Posts and Telecommunications, 23(2):56–96, 2016.

[16] Fabio López-Pires and Benjamı́n Barán. Many-objective virtual machine place-

ment. Journal of Grid Computing, 15(2):161–176, 2017.

[17] Sara Mehar, Sidi Mohammed Senouci, Ali Kies, and Mekkakia Maaza Zoulikha.

An optimized roadside units (rsu) placement for delay-sensitive applications in

vehicular networks. In 2015 12th Annual IEEE Consumer Communications and

Networking Conference (CCNC), pages 121–127. IEEE, 2015.

[18] Khaleel Mershad and Hassan Artail. Finding a star in a vehicular cloud. IEEE

Intelligent transportation systems magazine, 5(2):55–68, 2013.

[19] Thabit Sultan Mohammed, Omer F Khan, Ahmmed S Ibrahim, and Rustom

Mamlook. Fog computing-based model for mitigation of traffic congestion. In-

ternational Journal of Simulation–Systems, Science & Technology, 19(3), 2018.

[20] Roberto Morabito, Ivan Farris, Antonio Iera, and Tarik Taleb. Evaluating per-

formance of containerized iot services for clustered devices at the network edge.

IEEE Internet of Things Journal, 4(4):1019–1030, 2017.

[21] Ferrante Neri and Carlos Cotta. Memetic algorithms and memetic computing

optimization: A literature review. Swarm and Evolutionary Computation, 2:1–

14, 2012.

94

[22] Quang Huy Nguyen, Yew-Soon Ong, and Meng Hiot Lim. A probabilis-

tic memetic framework. IEEE Transactions on evolutionary Computation,

13(3):604–623, 2009.

[23] Claus Pahl. Containerization and the paas cloud. IEEE Cloud Computing,

2(3):24–31, 2015.

[24] Pethuru Raj, Jeeva S Chelladhurai, and Vinod Singh. Learning Docker. Packt

Publishing Ltd, 2015.

[25] Rahab M Ramadan, Safa M Gasser, Mohamed S El-Mahallawy, Karim Hammad,

and Ahmed M El Bakly. A memetic optimization algorithm for multi-constrained

multicast routing in ad hoc networks. PloS one, 13(3):e0193142, 2018.

[26] Charles Reiss, John Wilkes, and Joseph L Hellerstein. Google cluster-usage

traces: format+ schema. Google Inc., White Paper, pages 1–14, 2011.

[27] Mohammad Ali Salahuddin, Ala Al-Fuqaha, and Mohsen Guizani. Software-

defined networking for rsu clouds in support of the internet of vehicles. IEEE

Internet of Things journal, 2(2):133–144, 2015.

[28] Gigi Sayfan. Mastering Kubernetes. Packt Publishing Ltd, 2017.

[29] Kyoung-Taek Seo, Hyun-Seo Hwang, Il-Young Moon, Oh-Young Kwon, and

Byeong-Jun Kim. Performance comparison analysis of linux container and vir-

tual machine for building cloud. Advanced Science and Technology Letters,

66(105-111):2, 2014.

[30] Mahendra Pratap Singh and Manoj Kumar Jain. Evolution of processor ar-

chitecture in mobile phones. International Journal of Computer Applications,

90(4):34–39, 2014.

95

[31] Mehdi Sookhak, F Richard Yu, Ying He, Hamid Talebian, Nader Sohrabi Safa,

Nan Zhao, Muhammad Khurram Khan, and Neeraj Kumar. Fog vehicular com-

puting: Augmentation of fog computing using vehicular cloud computing. IEEE

Vehicular Technology Magazine, 12(3):55–64, 2017.

[32] Nguyen B Truong, Gyu Myoung Lee, and Yacine Ghamri-Doudane. Software

defined networking-based vehicular adhoc network with fog computing. In 2015

IFIP/IEEE International Symposium on Integrated Network Management (IM),

pages 1202–1207. IEEE, 2015.

[33] Seyhan Ucar, Sinem Coleri Ergen, and Oznur Ozkasap. Multihop-cluster-based

ieee 802.11 p and lte hybrid architecture for vanet safety message dissemination.

IEEE Transactions on Vehicular Technology, 65(4):2621–2636, 2016.

[34] Omar Abdel Wahab, Hadi Otrok, and Azzam Mourad. Vanet qos-olsr: Qos-based

clustering protocol for vehicular ad hoc networks. Computer Communications,

36(13):1422–1435, 2013.

96

	Acknowledgements
	Abstract
	Introduction
	Motivation and Problem Statement
	Objectives
	Methodology
	Thesis Organization

	Background and Related Work
	Introduction
	Applications in Vehicular Fog Network
	On-Board Units and Personal Devices
	RSU and RSUC
	LTE, 5G and 802.11p
	IoT and Fog Computing
	Virtual Machines and Containers
	Containers' Orchestration
	Multi-Objective Optimization Problem
	Genetic and Memetic Algorithms
	Related Work
	Conclusion

	Kubeadm Vehicular Fog Clustering Using Hybrid Network Architecture
	Introduction
	Approach Overview and Architecture
	Architecture Components
	Architecture Components Interactions
	Masters Election
	Cluster Recovery Algorithm
	Experiments Showing Architecture Advantage
	Conclusion

	Vehicular Container Placement
	Introduction
	VCP Problem Formulation
	Memetic Algorithm To Solve VCP
	VCP Experiments
	Conclusion

	Conclusion
	Conclusion
	Future Work

