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An Abstract of the Thesis of

Mohamad Hassan Saab for Master of Engineering
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Title: Signal Estimation and Reconstruction at Sub-Nyquist Rates

Frequency estimation is a very important step to correctly detect a signal
components. Nowadays, frequency estimation is required in many applications
such biomedical signals, spectrum sensing, and military systems. However, as
most of these applications require wide bands signals, the implementation of
conventional sampling schemes at the Nyquist rate becomes very challenging.
Hence, it is primordial to propose advanced frequency estimation methods at
subNyquist sampling rates. In literature, Chinese remainder theorem (CRT) has
been proposed to estimate the components of a single frequency signal. How-
ever, its extension to multiple components has not been addressed due to the
complexity of the estimation algorithm. In this proposal, we extend the CRT
further by proposing a new approach for frequency estimation of a signal with
multiple components as long as they have a particular pattern. The results have
been validated by Monte-Carlo simulations and compared with the well-known
MUSIC algorithm.
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Chapter 1

Introduction

Frequency estimation and sensing has recently attracted many researchers due to
its large number of applications. Among others, signal sensing in communication
systems is currently an integral part for spectrum sharing. Also, other appli-
cations such as audio, and electric systems highly rely on frequency estimation
[1, 2, 3].
In the literature, three different approaches have been adopted for frequency esti-
mation. The first one is based on the classical discrete Fourier transform (DFT)
[4, 5]. The second approach, called multiple signal classification (MUSIC), re-
quires an advanced processing as it converts the signal into another subspace and
then uses the eigen values of the converted signal to separate between the signal
and the noise. MUSIC has been implemented in different forms and applications
but we cite here the pioneering work of [6]. The third approach is also an ad-
vanced technique, based on the estimation of the signal parameter via rotational
invariance techniques (ESPRIT) [7]. Other approaches exist in literature; the
reader may refer to [8, 9].
In 5G technologies, the millimeter wave band has gained great research interest
as it offers a large Bandwidth (1-2 GHz) that would heavily increase the bit rate
to many Gb/s [10]. However, the main problem of these bands resides in very
advanced Analog to Digital Converters (ADCs) whose sampling rate is at least
to 2-4 Gsamples/s [11]. ADCs with high speed sampling rate are either unavail-
able, or too costly and power hungry [11, 12]. Therefore, there is a need to find
alternate ways for frequency estimation that are based on sub-Nyquist sampling.
Many methods are proposed in the literature for sub-Nyquist sampling. In [13],
time delay method between the sampling channels is used to avoid the ambiguity.
In [14], the ambiguity in the frequency estimation is resolved with low rate ADCs
by choosing proper delay times and by using sparse linear prediction. Moreover,
the Chinese remainder theorem (CRT) is useful to correctly estimate only one
frequency [15]. Other methods benefited from the compressed sensing theory to
design sub-Nyquist sensing algorithms to estimate the power spectrum of wide
band signal [16, 17, 18]. In [19], three co-prime undersampling ratios are used to
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correctly estimate the frequencies of a signal of three components. The estima-
tion is done using MUSIC algorithm.
All these sub-Nyquist approaches are either limited to one frequency or complex
to be implemented [19, 15].
In this thesis, we propose a novel signal estimation and reconstruction technique
by dividing the signal band into multiple bands. In each of which, the compo-
nents follow the following fixed pattern: the separation between two consecutive
frequencies is fixed. Moreover, this separation must not be a priori known as in
[20]. The proposed method is validated on different number of components. A
study on the probability of detection is also included and the results are com-
pared with those obtained by the conventional MUSIC algorithm in [19].
The rest of the thesis is organized as follows. Chapter 2 represents a literature
review of the Residue Number System (RNS) and different techniques of treat-
ing the residues of a signal. Thereafter, chapter 3 is a review on the Chinese
Remainders Theorem (CRT) and its recovery techniques. Then in chapter 4, the
proposed technique is explained. Then, the simulation scenarios and results are
discussed. Finally, conclusions are drawn in chapter 5.
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Chapter 2

Residue Number System (RNS)

2.1 Definition

Residue Number System (RNS) represents an integer in form of a set of residues
obtained as the remainders of the division over a set of moduli. It can provide
carry-free operations between the residues, fault-tolerance, and parallelism [21].
RNS can solve the problem of many applications that demand high speed com-
putations and increasing complexities as the range of numbers increases, such as
cryptography and analog to digital converters [22].

2.2 Problem Formulation

Let (m1,m2, . . . ,mL) L co-prime moduli. The residues (x1, x2, . . . , xL) of a num-
ber X over these moduli can be given by:

x1 = X mod m1,

x2 = X mod m2,

...

xL = X mod mL,

0 ≤ xi ≤ mi − 1.

The residue set (x1, x2, . . . , xL) is a unique representation of X over the range
[0,M − 1], where M =

∏L
i=1mi is the dynamic range [23, 24].

To solve this problem, two main methods are presented in the literature: Mixed
radix conversion (MRC) technique [25, 26, 27, 28], and Chinese remainder theo-
rem (CRT) and its derivations [29, 23, 15].
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2.3 Mixed Radix Conversion (MRC)

Mixed Radix Conversion (MRC) is a sequential process to solve for X given
its residues (x1, x2, . . . , xN) and moduli (m1,m2, . . . ,mN). In MRC, X can be
written as [28]:

X = a1 + a2m1 + a3m1m2 + . . .+ anm1m2 . . .mN−1 (2.1)

Where the set (a1, a2, . . . , aN) are the mixed radix digits (MRD). They can be
computed through the following sequence [27]:

a1 = x1

a2 = |(x2 − a1) |m−1
1 |m2 |m2

a3 = |
(
(x3 − a1) |m−1

1 |m3 − a2
) | |m−1

2 |m3 |m3

...

aN = | (((xN − a1) |m−1
1 |mN

− a2)| |m−1
2 |mN

− . . .− aN−1
) |m−1

N−1|mN
|mN

|m−1
i |mj

is the modular multiplicative inverse of mi, and can be calculated by:

|m−1
i |mj

= Ni mod mj, s.t. Nimi = 1 mod mj (2.2)

2.4 Chinese Remainder Theorem

A second method to recover X is the chinese remainder theorem (CRT). It is a
parallel computation method, where each residue is treated separately. In CRT,
X can be written as [29]:

X = |M1|x1M−1
1 |m1 + |M2|x2M−1

2 |m2 + . . .+ |MN |xNM
−1
N |mN

|M (2.3)

X = |
N∑
i=1

Mi|xiM
−1
i |mi

|M (2.4)

where Mi = M/mi and M−1
i is the modular multiplication inverse of Mi calcu-

lated using Extended Euclidean algorithm [30].
CRT is more desirable over MRC because of the ability of performing parallel
computational process.

2.5 New CRT

To enhance the performance of the CRT, three new theorems were proposed in
[29].
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1. New CRT-I:
New Chinese Remainder Theorem I is a parallel MRC. Its advantage over
the conventional CRT is in the usage of smaller weights.
In new CRT-I, X can be computed as:

X = |x1 + k1m1(x2 − x1) + k2m1m2(x3 − x2) + . . .

+ kN−1m1m2 . . .mN−1(xN − xN−1)|m1m2...mN

where

k1m1 = 1 mod m2m3 . . .mN ,

k2m1m2 = 1 mod m3 . . .mN ,

...

kN−1m1m2 . . .mN−1 = 1 mod mN ,

This theorem does not require sequential process like MRC. Therefore, the
MRDs (k1, k2, . . . , kN−1) can be found separately in parallel.

2. New CRT-II:
The main objective of the new Chinese Remainder Theorem II is to compute
X using modulo operations of smaller size.
Let the moduli set (m1,m2, . . . ,mN) with m1 < m2 < . . . < mN . The
algorithm of the new CRT-II is the following:

• translate ((x1, x2, . . . , xN), X)

(a) if N > 2, t = �N/2�, then
translate ((x1, x2, . . . , xt), N1), M1 = m1m2 . . .mt

translate ((xt+1, x2, . . . , xN), N2), M2 = mt+1 . . .mN ,
findno (N1, N2,M1,M2, X).

(b) if N = 2, then findno (x1, x2,m1,m2, X).

• findno (x1, x2,m1,m2, X)

(a) find k0 s. t. K0m2 = 1 mod m1

(b) X = x2 + |k0(x1 − x2)|m1m2.

In New CRT-II, the modulo multipliers are bounded by
√
M .

3. New CRT-III:
The New Chinese Remainder Theorem III is an extension of the New CRT-
II to the case where the moduli set (m1,m2, . . . ,mN) are not pair-wisely
co-prime.
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The same algorithm of New CRT-II is used in CRT-III with minor modifi-
cations as follows:

N ≥ 2, t = �N/2�, M1 = lcm(m1, . . . ,mt), M2 = lcm(mt+1, . . . ,mN).

GCD(M1,M2) = d =⇒ M1 = dc1, and M2 = dc2,

GCD(c1, c2) = 1, k1c2 = 1 mod c1

N1 = yi mod mi, 1 ≤ i ≤ t,

N2 = yi mod mi, t+ 1 ≤ i ≤ N,

N1 ∈ [0,M1 − 1], and N2 ∈ [0,M2 − 1].

Therefore,

X = N2 + |k1(N1 −N2)/d|c1M2.

In literature, the focus is on special moduli sets where the modulo operation
is not needed for the conversion. Several moduli sets that have been used are
listed in [29]. In the last decade, other moduli sets have been studied, such as
(2n − 1, 2n, 2n + 1, 2n+1 − 1, 2n−1 − 1) [31], (2n + 2, 2n + 1, 2n) using MRC [28],
(2n− 1, 2n, 2n+1) [32]. Most recently, Hiasat has studied additional moduli sets

for RNS , i.e. (22n+p, 2n − 1, 2n + 1, 2n − 2
n+1
2 + 1, 2n − 2

n+1
2 − 1) with p ≤ n−5

2

[33], (2n − 1, 2n + 1, 22n + 1, 22n+p) with p ≤ n− 2 [34], and (2n+1 − 1, 2n, 2n − 1)
[24]

2.6 RNS and ADC

The main objective of using RNS ADCs is to reduce the hardware complexity
and to increase the speed of the process, by reducing the number of comparators
in the circuit [35]. With the increase of the number of output bits, the number
of comparators increases exponentially [36]. Therefore, the amount of consumed
power and the chip area increases significantly, and high speed flash ADCs have
practical limits to meet these factors [36].
RNS ADCs, also known as Folding ADCs, are based on number theory (NT).
NT can increase the resolution of the output signals and simplify the conversion
process [37]. The concept of these ADCs is to use the residues obtained from input
analog signals after sub-Nyquist sampling in order to get the binary output.
The main advantage of RNS of other techniques is that a set of residues can form
a unique representation of an integer within a large dynamic range [35].

There are several systems that make use of NT: Symmetrical Number System
(SNS) [38], Optimum Symmetrical Number System (OSNS) [39], Robust Sym-
metrical Number System [40], and Folding Number System (FNS) [37]. SNS and
OSNS processes are summarized and their performance for ADCs is compared in
[37].

6



• Symmetrical Number System (SNS):
SNS consists of using Pairwise Relatively Prime (PRP) moduli set. The
signal is converted into set of residues obtained by folding it over the mod-
ulus. The output if this operation is called Symmetrical Residues (SRs)[37].
Let 0 ≤ h ≤ m, the SNS’s SRs are of the form xh = min{h,m− h}.
For m odd,

{xm} =
[
0, 1, . . . , �m

2
�, �m

2
�, . . . , 2, 1

]
For m even,

{xm} =
[
0, 1, . . . ,

m

2
− 1,

m

2
, . . . , 2, 1

]
The dynamic range (DR) of SNS, which is the maximum number of distinct
vectors for N moduli is:

MSNS = min

{
m1

2

j∏
l=2

mil +
N∏

l=j+1

mil

}

where j ∈ [2, N − 1].
If the moduli set is all odd co-prime, then DR becomes:

MSNS = min

{
1

2

j∏
l=1

mil +
1

2

N∏
l=j+1

mil

}

where j ∈ [1, N − 1].

• Optimum Symmetrical Number System (OSNS):
The main difference between SNS and OSNS is that the folding period in
OSNS is twice the modulus (T = 2mi). The SRs formula of OSNS becomes:

{xm} = [0, 1, . . . ,m− 1,m− 1, . . . , 0]

The OSNS’s DR is:

MOSNS =
N∏
i=1

mi

• Folding Number System (FNS):
Folding Number System (FNS) is proposed in [37]. It is a modified version
of OSNS, that reduces the complexity. An additional bit is introduced at
the output. It is called Folding Bit (FB). Because of that bit, the DR of
FNS is twice that of OSNS. This also provides a better resolution of ADC.
The folding bit is used to eliminate the ambiguities coming from the folding
process. The SRs of the FNS can be calculated as below:{

s = d, f = 0 if d ≤ mi − 1

s = 2mi − d− 1, f = 1 if mi ≤ d ≤ T − 1

7



d is the decimal offset within the folding period T = 2mi, and f is the
folding bit.
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Chapter 3

Frequency Estimation Techniques
Using CRT

One of the most famous applications of the Chinese Remainder Theorem (CRT) is
the frequency estimation from undersampled waveforms. The estimation process
started by recovering only one frequency component. Nowadays, latest CRT
algorithms are able to detect and estimation multiple components even from
noisy signals. In this section, we are going to present a review of different kinds
estimation algorithms in the literature.

3.1 Estimation of One Component

The early stages of using CRT in frequency estimation started by applying the
basic CRT on a error-free signal composed from one frequency component. Then,
it was extended to cover the case of noisy signal.

3.1.1 Conventional CRT

The error free case of frequency estimation is first discussed in [41]. The CRT is
applied as following:

1. The moduli of the CRT ml(l = 1, . . . , L) are considered as the low-rate
undersampling frequencies. These frequencies should be pairwisely coprime.

2. The remainders are the indexes corresponding to the peaks of the DFT
output of each undersampled waveforms.

3. The true frequency value of the input signal is calculated using the conven-
tional CRT in Equation (2.4).
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3.1.2 Robust CRT

Real-life signals are transmitted and received in noisy environment. Therefore,
more realistic approach should be made in the estimation process in order to deal
with noisy received signals.
Several approaches are presented in the literature to deal with this kind of prob-
lems. All of them require that the maximum allowed error is upper bounded by
certain value τ .
In [42], the undersampling frequencies m1,m2, . . . ,mL assumed to have a com-
mon GCD between them Γ, where ml = ΓMl, and Ml are pairwisely coprime.
Therefore, the upper error bound becomes τ < Γ/4. Then, the relation between
exact and erroneous remainders is:

|rl − r̃l| ≤ τ (3.1)

Thereafter, several techniques are introduced, such as: single [42, 43] and multi-
stage [44] minimum distance, maximum likelihood [45], and normalized remain-
ders [46].
All of them aim to recover nl, such that:

N̂ =

[
1

L

L∑
l=1

(nlml + r̃l)

]
= N +

[
1

L

L∑
l=1

(r̃l − rl)

]
(3.2)

3.2 Estimation of Multiple Components

Signals with more than one frequency component is the most widely used in
practice. Therefore, estimation of signals with one component is not so useful
unless if the band is divided into narrower sub-bands, where each of them contain
one component. However, it is very expensive in terms of number and complexity
of filters needed. Therefore, the main question became: How can we correctly
detect more than one component using CRT? The main challenge of this problem
is the ambiguity in the association of the remainders from different undersampled
signals corresponding to the same component.
The following reviews the evolution of estimating multiple components using CRT
and the assumptions taken into consideration. It started by simply estimating
two components, then it was expanded to higher number of components under
predefined assumptions. Moreover, these new approaches covered both error-free
and noisy signals.

3.2.1 Estimation of Two Components

Let N1, N2 the two frequency components to be recovered. The first step is to
determine the largest possible value that those two components could take. In
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[47], the dynamic range of {N1, N2} where they can be uniquely determined is:

max{N1, N2} < max

{
1 +

√
1 + 4 · lcm(M)

2
,mL

}
(3.3)

where M = {m1,m2, . . . ,mL} is the set of the undersampling frequencies in the
ascending order. The only condition on M is M ≥ 5
Thereafter, the exact components can be recovered following these steps:

1. Let k1,l and k2,l the indices of the two peaks at sampling frequency ml. Let
〈k1,l + k2,l〉ml

and 〈k1,lk2,l〉ml
, the sum S and the product P of remainders

at �-th sampling frequency modulo ml.

2. Using conventional CRT, calculate the sum and the product of the true
frequencies.

3. N1 and N2 are the roots of the following second degree equation:

N2 − SN + P = 0 (3.4)

The dynamic range is extended in [48]. It becomes:

max{N1, N2} < 2
√
lcm(M) (3.5)

Then, the new estimation algorithm proposed in [48] is:

1. For each residue set, calculate

sl = 〈k1,l + k2,l〉ml
(3.6)

2. Using sl (l = 1, . . . , L), calculate S the sum of the two frequencies.

3. Let ζ = max[0, �S − 2
√
lcm(M)�]. Calculate P by applying conventional

CRT on remainders Pl, where Pl:

Pl = 〈(k1,l − ζ)(k2,l − ζ)〉ml
(3.7)

4. N1 and N2 are the roots of the following equation:

(N − ζ)2 − (S − 2ζ)(N − ζ) + P = 0 (3.8)

• Estimation of Noisy Signals
The estimation of a noisy signal with two frequency components is similar
to the robust CRT with one component described above. In [49], the first
assumption is on the GCD of the undersampling frequencies, Γ > 1. The
second one is on the upper error bound τ < Γ/8 [49].
Noisy signal components are recovered in [49] following these next steps:

11



1. Calculate r̃ck,l = 〈r̃k,l〉ml
.

2. Sort r̃ck,l is the ascending order. Then, compute Dk.

Dl = r̃cζ(l+1) − r̃cζ(l), if l = 1, . . . , 2L− 1.

Dl = r̃cζ(1) − r̃cζ(2K), if l = 2L.

3. Find l0 as:
l0 = argmax

l∈{1,...,L}
{Dl +Dl+L} (3.9)

4. Get Ω1 and Ω2 such as:

Ω1 � {ω1, . . . , ωL} = {r̃cζ(l0+1), . . . , r̃cζ(l0+L)}
Ω2 � {v1, . . . , vL}

= {r̃cζ(1), . . . , r̃cζ(L)} if l0 = L

= {r̃cζ(l0+1+L) − Γ, . . . , r̃cζ(2L) − Γ, r̃cζ(1), . . . , r̃
c
ζ(l0)
} if l0 = L

5. Get ω
′
1 and ω

′
2 such that:

ω
′
l = ωl if ωL − v1 ≤ Γ/2

ω
′
l = ωl − Γ if ωL − v1 > Γ/2

6. Calculate ω̄1 and ω̄2 as:

ω̄1 �
ω

′
1 + · · ·+ ω

′
L

L

ω̄2 �
v1 + · · ·+ vL

L

7. Determine q̂i,l:

q̂i,l =

[
r̃i,l − ω̄t

Γ

]
, i = 1, 2; l = 1, . . . , L.

t = 1, if dΓ(r̃
c
i,l, ωl1) = 0 for some l1

t = 2, if dΓ(r̃
c
i,l, vl2) = 0 for some l2

with dC(x, y) � x− y +

[
x− y

C

]
C

dC is the circular distance.

8. Determine residue sets Rl as Rl(Q̂1, Q̂2) = {q̂1,l, q̂2,l}
9. Reconstruct {Q̂1, Q̂2} using the generalized CRT algorithm in [48].

10. Recover {N̂1, N̂2} using the following equation:
{N̂1, N̂2} = {ΓQ̂1 + r̂c1, {ΓQ̂2 + r̂c2}

12



3.2.2 Generalization of Multiple Components Estimation

Recently, the estimation of a multiple components signal using the Chinese Re-
mainders Theorem (CRT) is widely explored in the research to extract the best
possible designs in terms of performance, complexity, and dynamic range. There
are two main tracks: the first one focuses on the estimation of noise free signal,
while the second aims to find a robust estimation in a noisy environment.

1. Noise-Free estimation:
One of the first estimation approaches of multiple components signal was
made in [50], where the main assumption is the following:

• LetW = max1≤i≤j≤K |fj−fi| (f1 < f2 < . . . < fL) the range of the fre-
quencies. Then, the undersampling frequencies min{m1,m2, . . . ,mL} >
2W . This ensures that there is no overlapping in the distinct remain-
ders after undersampling.

• Let αi,l are the peaks at the DFT-output after undersampling at ml,
where α1,l < α2,l < . . . < αK,l. Then, the difference between αi,l is
checked. If there exists i0 such that αi0+1,l − αi0,l > W , then the
remianders will have the following order:

r1,l = αi0+1,l . . . , rK−i0 = αK,l, rK−i0+1,l = α1, l, . . . , rK,l = αi0,l

(3.10)
This process is repeated at each undersampled signal. each of the
frequency components are recovered using the CRT formula in 2.4
following the obtained order of the remainders.

The main drawback of this approach is that the allowed band is narrow with
respect to the maximum possible dynamic rangeDR = lcm{m1,m2, . . . ,mL}.
However, a new method is proposed in [15] where no limitations have been
issued on the frequency band, but a smaller dynamic range:

DR = max{N1, . . . , NK} < max{mtotal,m1, . . .mL} (3.11)

where mtotal =
∏

m1m2 . . .mK , such that m1 < m2 < . . . < mL Frequency
estimation is done following these steps:

(a) Let Sl the residue set at each ml. Sl � {r1,l, . . . , rK,l}.
(b) Let S � S1 × S2 × . . .× SL the product set of all residues. Therefore

S includes all possible combinations between residues in sets Sl. each
entry of S is a L-dimensional vector.

(c) Take a random vector (d1, . . . , dL) from S.

(d) Let Nl = {dl + nml : dl ≤ dl + nml ≤ DR, n ∈ N}.
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(e) Form the set I � N1 ∩ . . . ∩NL. Following Lemma 1 in [15], if I = ∅,
then I has only one element I = {N̄}.

(f) Calculate the residue vector of N̄ = {d̄1, . . . , d̄L}. If this vector belongs
to S, then N̄ is a valid frequency. If not, find another vector from S
and repeat the above process.

(g) If N̄ is a valid frequency, remove from sets Sl all its corresponding
remainders. Then reform the set S and repeat the process until all
frequencies are determined.

A recent approach has been proposed in [51], where two estimation algo-
rithms were introduced. In this approach, the dynamic range is the largest
possible (DR =

∏L
l=1 = ml).The assumptions in the first algorithms are

based on theorem 1 in [51]:

• The allowed band is |maxk(Nk) − mink(Nk)| < minl{m1, . . . ,mL} =
m1 to avoid the duplication of the residues.

• GCD(K,mj) = 1.

• L ≥ K.

Therefore, the first estimation algorithm is as following:

(a) Let Bj = {r1,j, . . . , rK,j} sorted in ascending order. Calculate:

Si,j �
K∑
η=1

〈rη,j − ri,j〉mj
(3.12)

(b) Let Sj = {Si,j : i = 1, . . . , K} for 1 ≤ j ≤ L. Obtain ∩L
j=1Sj = {C}

(c) Obtain the indices i1, i2 . . . , iL such that Si1,1 = Si2,2 = · · · = SiL,L =
C. these indices should be unique in each residue set Bj.

(d) Let d1,j = rij ,j. Therefore, N1 can be reconstructed from the residues
rij ,j via the conventional CRT for a single integer.

(e) Calculate:
Ci = N1 + 〈ri,1 − ri1,1〉m1 (3.13)

Then arrange Ci for 1 ≤ i = i1 ≤ K in the ascending order. If i1 = 1,
then the remaining frequencies Ni can be obtained as Ni = Ci

In the second algorithm, the last assumption in theorem 1 (L ≥ K) has
changed to:

K2 −K(m1 + k) + (k − 1)mL > 0, for 2 ≤ k ≤ K (3.14)

Hence, the second algorithm in [51] is:
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(a) Calculate Si,j and obtain Sj as in the first algorithm.

(b) Find a unique minimum in SL. Assume that minSL = SiL,L

(c) In each Su for 1 ≤ u ≤ L−1, find a unique Siu,u such that Siu,u = SiL,L

and obtain iu.

(d) Apply steps (d) and (e) in the first algorithm to recover the desired
frequencies.

In all techniques above, the main condition so that all signal components
can be recovered is the distinction of the residues at each undersampling
frequency. In other words, if a signal has two components resulting the
same residue at the output of a such DFT, the reconstruction cannot be
done perfectly. To solve this issue, a novel estimation technique is proposed
in [52].
The estimation algorithm in [52] benefits from Viete Theorem where:
Any N-degree polynomial P (x) = aNx

N + aN1x
N1+ · · ·+ a1x+ a0 is known

to have N roots {X1, X2, ..., XN} by the fundamental theorem of algebra and
relations between roots and coefficients are:

N∑
i=1

Xi = −aN−1
aN

= c1 (3.15)

∑
1≤i<j≤N

XiXj =
aN−2
aN

= c2 (3.16)

... (3.17)

N∏
i=1

Xi = (−1)N =
a0
aN

= cN (3.18)

The estimation algorithm in [52] works as following:

(a) Let Rl = {r1,l, . . . , rK,l} the residue set at sampling frequency ml.
Calculate its corresponding vector moduli ml, cl = {c1,l, . . . , cK,l} as
following:

c1,l = 〈
K∑
i=1

ri,l〉ml
(3.19)

c2,l = 〈
∑

1≤i<j≤K
ri,lrj,l〉ml

(3.20)

... (3.21)

cK,l = 〈
K∏
i=1

ri,l〉ml
(3.22)
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(b) Recover each elements of c = {c1, . . . , cK} using conventional CRT for
one integer from its corresponding residue vector.

(c) Let c0 = 1. Construct the polynomial P (N) =
∑K

i=0(−1)iciNK−i

(d) Solve P (N) = 0. The solution gives K distinct integers which repre-
sent the desired frequency components.

Using this technique, frequency components with repeated residues can
be recovered. However, the major drawback in this technique is its small
dynamic range. The latter can be retrieved from the following equation:

max
i∈{1,2...,K}

C i
KG

i <
L∏
l=1

ml (3.23)

where G is the upper bound of frequencies Ni.
The last approach of using the Chinese Remainders Theorem in the esti-
mation of unknown signal components in an error free environment is our
preliminary proposal in [20].
In our paper, the estimation approach is based in the following assumptions:

(a) Consecutive signal components are separated by a known interval Δ
such that:

Nk+1 = Nk +Δ, 1 ≤ k ≤ K − 1. (3.24)

(b) Δ is bounded by an upper value to avoid the overlap between the re-
mainders, this bound is:

Δ ≤ min(mi)

K − 1
(3.25)

To solve the estimation problem with these conditions, it can be easily
shown:

Nk+1 mod mi = Nk mod mi +Δ mod mi (3.26)

rk+1,i = (rk,i +Δ) mod mi (3.27)

Hence, (3.26) can be used to develop the proposed estimation algorithm:

(a) At the output of each DFT after undersmapling by m�, detect the
peaks and compute the difference between each two consecutive residues.

(b) If this difference between consecutive peaks is equal to Δ, then these
two residues correspond to two consecutive frequencies. If not, then
the latter represents the remainder of the first component in the signal,
i.e. we should swap the remainders.
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(c) The order of residues is the same of the signal components. Therefore,
the recovery of each components could be then easy using (2.4).

Figure 3.1: The proposed algorithm to solve CRT with multiple components.

For the sake of clarification, Figure 3.1 shows a simple example on the
association between the frequency components and the reminders by the
division over m�. This will lead to the following:

f1,� = r4,�mod m�,

f2,� = r5,�mod m�,

f3,� = r6,�mod m�,

f4,� = r1,�mod m�,

f5,� = r2,�mod m�,

f6,� = r3,�mod m�.

In this approach, the dynamic range is:

DR =
L∏

�=1

m� − 1 (3.28)

This DR is equal to the one in single component estimation which is the
maximum possible. However, the main drawback is the limited number of
components with respect two the dynamic range and Δ. We will try to
enhance it in this thesis.
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2. Noisy Signal Estimation:
To estimate a noisy signal with multiple components using CRT, a robust
estimation technique is needed in order to deal with erroneous remainders.
In the literature, several robust techniques are proposed for robust CRT.
One of the earliest techniques was proposed in [53]. It was an extension to
that proposed in [50] and explained in the above previous section.
The dynamic range in [53] is:

DR = max{N1, . . . , NK} < max{m(ζ),mγ} (3.29)

where

m(ζ) � m1m2 . . .mζ (3.30)

for 0 > ζ < η, where

γ = ηK + θ (3.31)

for 0 < θ < K. Therefore, integers {Nk} can be uniquely determined if the
number of residue sets with errors S̃l satisfy

e ≤ (η − ζ)K + θ

2
(3.32)

according to Theorem 1 in [53]. The determination algorithm is as following:

(a) Sl the residue set at each ml. Sl � {r1,l, . . . , rK,l}.
(b) Let S � S1 × S2 × . . .× SL the product set of all residues. Therefore

S includes all possible combinations between residues in sets Sl. each
entry of S is a L-dimensional vector.

(c) Take a random vector (d1, . . . , dL) from S. There is at least L − e
correct remainders in this residue vector.

(d) Let Nl = {dl + nml : dl ≤ dl + nml ≤ m(ζ), n ∈ N}.
(e) From Equation (3.32), the number of correct remainders L− e ≥ ζK.

Since there are only K distinct integers, therefore, ζ is the minimum
number of correct remainders sharing same integer in S.

(f) If the set I � Nl1∩. . .∩Nlζ = ∅. then I has only one element I = {N̄}.
(g) Calculate the residue vector of N̄ = {d̄1, . . . , d̄L}. Let L̄ the cardinality

of the set R � {d̄l ∈ S̃l : 1 ≤ l ≤ L}.
(h) If

L̄ ≥ L− (η − ζ)K + θ

2
=

L

2
+

ζK

2
(3.33)

then N̄ is a valid integer. If not, find another index set of size ζ such
that Nl1 ∩ . . . ∩Nlζ = ∅ = {N̄}.
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(i) If N̄ is a valid frequency, remove from sets Sl all its corresponding
remainders. Then reform the set S and repeat the process until all
frequencies are determined.

Other estimation technique was proposed in [54]. It was assumed that the
maximum error bound δ satisfies δ < Γ/4 such that the undersampling
frequencies ml = ΓMlfor l = 1 . . . L. where {Ml} are pair-wisely co-prime.
The proposed estimation algorithm is:

(a) Calculate r̃cl = 〈
∑K

k=1 r̃kl〉Γ (l = 1 . . . L)

(b) Let a = minl r̃
c
l and b = maxl r̃

c
l . Calculate q̃l and ω̃l as following:

If b− a ≤ 2δ, then:

q̃l = � r̃l
Γ
�; ωl = r̃cl (3.34)

Under the condition of b− a ≥ Γ− 2δ. If r̃cl ∈ [0, 2δ), then:

q̃l = � r̃l
Γ
�; ωl = r̃cl (3.35)

and if r̃cl ∈ [Γ− 2δ,Γ), then:

q̃l = � r̃l
Γ
�+ 1; ωl = r̃cl − Γ (3.36)

(c) Reconstruct Q̃ with q̃l as residues using conventional CRT.

(d) Determine ˜̄X as:

˜̄X = Q̃Γ +

[∑L
l=1 ω̃l

L

]
(3.37)

(e) Calculate θ = 〈 ˜̄X〉ms , where ms = max{ml : l = 1, . . . , L}.
(f) Let Ω = {λ1ks = r̃ks, λ

2
ks = r̃ks − ms, λ

3
ks = r̃ks + ms|k = 1, . . . , K}.

Select elements from Ω satisfying |θ−λi
ks| < ms. Those elements from

the set {κ1, . . . , κh} in an ascending order.
(g) Find Φγ =

∑K+γ−1
i=γ κi = Q̃Γ+ω̃s−K ˜̄X+Kλ for some γ ∈ {1, 2, . . . , h−

K + 1}.
(h) Estimate desired frequencies as X̃k =

˜̄X − θ + κγ+k−1.

The latest robust CRT technique was proposed in [55]. It follows the same
assumptions on undersampling frequencies {ml = ΓMl, l = 1, . . . , L} as in
[54]. However, its upper error bound of the remainders is tighter than that
in [54] δ < Γ

4K
.

Given the erroneous remainders {r̃kl|k = 1, . . . , K.l = 1, . . . , L}, unknown
frequency components were estimated in [55] by applying the following
steps:
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(a) Calculate r̃ckl = 〈r̃kl〉Γ and arrange then in ascending order in the set
Ω = {γ1, . . . , γκ}, where κ ≤ KL

(b) According to Lemma 4 in [55], there exists ζ ∈ {1, . . . , κ} such that:

γ〈ζ+1〉 − γ〈ζ〉 + Γ1(ζ = κ) > 2δ (3.38)

Obtain r̂ckl from r̃ckl as following:
If ζ = κ, then

r̂ckl = r̃ckl (3.39)

when ζ = κ. If r̃ckl ≤ γζ then

r̂ckl = r̃ckl (3.40)

otherwise
r̂ckl = r̃ckl (3.41)

(c) Calculate q̃kl = 〈 r̃kl−r̂cklΓ
〉Ml

.

(d) Calculate 〈∑K
k=1 q̃kl〉Ml

for l ∈ {1, . . . , L} and recover q̃ =
∑K

k=1 q̃k
K

using
conventional CRT.

(e) Calculate 〈q̃〉Ml

(f) Calculate 〈{α1, . . . , αK}〉Ml
for l ∈ {1, . . . , L}, where {αk} are the

Viete coefficients of q̃k− q̃ for k ∈ {1, . . . , K}. They can be calculated
using Equations (3.15 - 3.18).

(g) Recover {α1, . . . , αK} with CRT.
(h) Let α0 = 1. Construct the polynomial P (x) =

∑K
k=0 = (−1)kαkx

K−k.

(i) Solve P (x) = 0 and get the roots {q̃k − q̃, for k ∈ {1, . . . , K}}. There-
fore q̃k are obtained.

(j) The desired components are: f̃k = q̃kΓ +
∑L

l=1 r̂
c
kl

L

In [56], the same estimation approach is used with relaxation on the number
of errors upper bounded by δ. It is allowed to have unbounded errors under
the following conditions:

• Given L co-prime moduli, (m1, . . . ,mL) sorted in ascending order, the
unknown frequencies are in the range [0,

∏K
l=1ml, K ≤ L.

• The upper bound of the number of unbounded errors is: �L−K
2
�

Under these conditions, unknown frequencies can be estimated using the
robust CRT for multiple numbers (RCRTMN) for arbitary errors in [56].
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Chapter 4

Proposed Estimation Technique

In this chapter, our proposed signal estimation technique will be explained, and
thereafter, we will discuss the simulation results. This technique is an expansion
of that published in [20], where we divide the full signal into multi bands inspired
from the Time Interleaved ADC technique in [57].

4.1 System Model

Let x(t) a noisy K-sparse signal containing K frequency components.

x(t) =
K∑
k=1

ske
j2πfkt + w(t) (4.1)

Consider a noisy complex signal x(t) containing K frequency components with
unknown amplitudes and phases, with additive white Gaussian noise w(t) with
zero mean and variance σ2:

x(t) =
K∑
k=1

ske
j2πfkt + w(t) (4.2)

In equation (4.2), fk is the k
th frequency and sk is the corresponding amplitude.

In practice, one of the major problems is to determine the frequency components
of x(t). Hence, if the bandwidth of the signal can be estimated or known, Nyquist
sampling theorem will be imposed. In this case, the signal x(t) has to be sampled
at the sampling frequency (at least equal to Nyquist rate) fs = m Hz and then
appropriate power spectral density methods have to be applied. The signal at
the sampling frequency fs Hz yields:

xm[n] = x(
n

m
) =

K∑
k=1

ske
j2πfkn/m + w[n/m] (4.3)
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Without loss of generality, the frequency components of the signal xm[n] can be
directly obtained from the m-point DFT or the PSD (Welch method) of xm[n].
Definitely, this method works perfectly when the sampling frequency is above
the Nyquist rate and the signal is a narrow-band signal resulting in a low fre-
quency rate. However, for wide and ultra-wide bands, sampling at Nyquist rate
becomes a bottleneck imposing some constraints on the quantizer when the latter
is needed.
To overcome this problem, different approaches have been proposed to under-
sample the signal at a sampling frequency lower than the Nyquist rate resulting
in processing fewer samples. However, undersampling creates frequency overlap-
ping and a cross-correlation between the signal and the noise components. Hence,
the recovery of the signal components is not straightforward approach anymore.
From the technical point of view, the spectral schematic of a signal sampled at
a rate lower than Nyquist frequency will include frequencies that have modulo
m ambiguities. To recover the frequency components, the literature has shown
that the signal has to be sampled at several undersampling frequencies ml with
1 ≤ l ≤ L. In this case, the undersampled signal can be written as:

xml
[n] = x(

n

ml

) =
K∑
k=1

ske
j2πfkn/ml + w[n/ml] (4.4)

The output of the ml- point DFT of xml
gives the residues rk,l of the frequency

components fk by the corresponding sampling frequencies ml [19]:

fk = nk,l ml + rk,l

rk,l = fk mod ml

4.2 Assumptions and Algorithm

Inspired by the TIADC architecture at sub-Nyquist rates in [57], we propose the
following signal estimation approach (Schema in Figure 4.2):

1. The signal x(t) is the input of M bandpass filters (BPF ). There is no
aliasing between the pass-bands of each of these filters. Filtered signals are
then converted to baseband.

2. Each of signals xi(t) (i = 1, . . . ,M) is the input of L Analog-to-Digital
Converters (ADCs).

3. The output of each ADC yi,l (l = 1, . . . , L) is a sub-sampled signal. Then, in
each band, these signals are the inputs of the CRT block, which is explained
in details below.

4. The output of the CRT block is the estimated signal xi,est in each band
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Figure 4.1: Schema of proposed estimation and reconstruction technique.

Since our objective is to estimate the signal components using the Chinese Re-
mainder Theorem (CRT) at sub-Nyquist rates, and to fulfill this objective we
made the following assumptions and conditions:

1. The sampling rates ml(l = 1, . . . , L) must be pair-wisely co-prime to meet
CRT requirements. Therefore, the dynamic range of the frequencies is:
DR =

∏L
l=1ml − 1.

2. The width of each subband BWi ≤ DR (i = 1, . . . ,M)

3. Consecutive signal components are separated by an interval Δ such as:

fk+1 = fk +Δi, 1 ≤ k ≤ Ki − 1 (4.5)

where Ki is the number of components within the subband i

4. The upper bound of Δi in subband i is: Δi ≤ (minml)/(Ki − 1)

4.3 CRT block

The CRT block, shown in Figure 4.2, holds our proposed technique of signal
estimation and reconstruction. It takes subsampled signals (ADCs output) as
inputs and returns at the output the detected frequency components along with
the reconstructed signal.
The CRT block consists of the following blocks: SSA, Peaks Estimation,
Delta Estimation, and CRT. Each of which will be explained below:
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Figure 4.2: CRT block in details.

4.3.1 Singular Spectrum Analysis (SSA)

Input: Subsampled Signals.
Output: Number of frequency components.
The main role of the SSA block is to estimate the number of frequency com-
ponents of the signal. The estimation process is done by applying the singular
spectrum analysis technique cited in [58] as following:

1. For each subsampled signal yi,l, create its Hankel matrix:

Hl =

⎡
⎢⎢⎢⎣
yi,l[M − 1] yi,l[M ] . . . yi,l[N − 1]
yi,l[M − 2] yi,l[M − 1] . . . yi,l[N − 2]

...
...

. . .
...

yi,l[0] yi,l[1] . . . yi,l[N −M ]

⎤
⎥⎥⎥⎦ (4.6)

Hl is M × B, N is the signal length, M is the frame length, and B =
N −M + 1

2. Calculate the normalized autocorrelation matrix:

RH,l = HlH
T
l /B (4.7)

and its eigenvalue decomposition:

RH,l = UΛlU
T (4.8)

where Λl = diag(λ1,l, . . . , λM,l). However, the normalized eigenvalues ΛNorm,l =
diag(λ1,l/M, . . . , λM,l/M) are used in this technique

3. Based on our assumptions, the maximum possible number of components in
a signal Kmax could be: Kmax = min(ml) (L = 1, . . . , L). Then, to obtain
the exact number of signal components we perform the following steps:

• Take the maximum Kmax eigenvalues from ΛNorm,l, (L = 1, . . . , L)
and sort then in the descending order.
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• Calculate the difference between each two consecutive eigenvalues in
ΛNorm,l and put them in Λl,diff = {λNorm,i − λNorm,i+1 | λNorm,i ∈
ΛNorm,l | i = 1, . . . , Kmax − 1}.

• Calculate the ratio set Λratio,l of each two consecutive elements in
Λl,diff .
Λratio,l = {λratio,d,l = λj,diff/λj+1,diff | λj ∈ Λdiff,l | j = 1, . . . , Kmax −
2}.

• To separate between the signal subspace and the noise subspace: Let
d = 1. If λratio,d,l <<< λratio,d+1,l (l = 1, . . . , L), then, the estimated

number of components K̂ = d + 1. Otherwise, make d = d + 1 and
repeat the process until the condition is satisfied.

4.3.2 Peaks Detection

Input: Subsampled Signals and Estimated Number of components K̂.
Output: Remainders and Magnitude.
After estimating the number of components in the signal, the role of the Peaks
Detection block is to detect the remainders from each sub-sampled signal yl[n].
To do so, the following steps are applied:

1. Get Yl(f) the FFT of each subsampled signal yl[n]

2. Detect the indices of K̂ peaks with maximum magnitude. The indices
represent the remainders R̂l = {r̂i,l | i = 1, . . . , K̂}, (L = 1, . . . , L) and the
magnitude sets ŝl represents the power of the signal components.

4.3.3 Delta Estimation

Input: Remainders sets R̂l.
Output: Delta Δ̂, and Remainders difference R̂diff,l.
Since our assumption is based on the existence of a fixed separation between
signal components Δ, the role of this block is to calculate the estimation Δ̂ of Δ
by applying these steps:

1. Calculate the difference between each two consecutive remainders in each
set R̂l and put them into set R̂diff,l = {r̂i,l− r̂i+1,l | i = 1, . . . , K̂−1}, (L =
1, . . . , L)

2. Get the intersection ∩L
l=1R̂diff,l.

3. If the intersection is singleton, then Δ̂ = ∩L
l=1R̂diff,l. Otherwise, Δ̂ =

min∩L
l=1R̂diff,l
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4.3.4 Chinese Remainder Theorem (CRT)

Input: Magnitude ŝl, Remainders R̂l, Remainders difference R̂diff,l,

Delta Δ̂, and Number of components K̂.
Output: Detected frequencies f̂ and Reconstructed Signal x̂.
In this block, the values of frequency components are estimated using our algo-
rithm in [20]:

1. Apply the algorithm in [20] shown in Figure 3.1 above to sort the remainders
R̂l in order along with their magnitude ŝl. Remainders difference R̂diff,l are
used to determine the correct order.

2. Apply the conventional CRT to calculate the desired frequencies f̂ from the
sorted remainders sets.

3. Having the values of frequency components and their corresponding mag-
nitudes, the signal x̂ can be reconstructed and regenerated.

4.4 Results and Discussion

In this section, we show the simulation results to validate our proposed tech-
nique. Firstly, we studied the effect of the dividing the signal into sub-band
through band-pass filters. Table 4.1 contains the simulation parameters. Three
undersampling frequencies are used along with three signal components per sub-
band. Two cases are considered, the first one is without filtering when the signal
has one band only and therefore, no need for filtering. The second case is when
filtering applied and the signal is divided into two sub-bands.

Parameters Values
Undersampling Frequencies [19, 23, 31] Hz
Frequency components per sub-band 3
Number of Sub-bands 1, 2
SNR Values −5,−10 dB

Table 4.1: CRT Simulation Parameters
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Figure 4.3: Signal Sampled at 19 Hz without filtering, SNR = -5 dB.
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Figure 4.4: Signal Sampled at 19 Hz without filtering, SNR = -10 dB.

Figures 4.3 and 4.4 show the plot at the FFT output of the signal sampled at
19 Hz without filtering (One sub-band) for SNR = [−5,−10] dB respectively,
and Figures 4.5 and 4.6 show the same output at same SNR values using filtering
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(Two sub-bands). The red line in each plot represents the same constant value
per SNR. They are used to compare the effect of the filtering on the noise level.
It is noticed that the noise level of a filtered signal is lower than that of non-
filtered signal. Therefore, by filtering, the effect of noise is reduced since only
a part of the signal is processed, and therefore, the peaks can be still detected
correctly at lower SNR values much easier than unfiltered signal.
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Figure 4.5: Signal Sampled at 19 Hz with filtering, SNR = −5 dB.

0 2 4 6 8 10 12 14 16 18 20

Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ag

ni
tu

de
 

Signal Sampled at 19 Hz, SNR = -10 dB, Number of Bands = 2

X 1.002
Y 0.9222

X 18
Y 0.9606

X 3.006
Y 0.8685

Figure 4.6: Signal Sampled at 19 Hz with filtering, SNR = -10 dB.
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Parameters Values
Undersampling Frequencies [29, 31, 37] Hz
Dynamic Range 29× 31× 37 = 33263 Hz
Sub-band Bandwidth 33263 Hz
Total Number of Components 12
Δ 2 Hz
Number of Sub-bands [1, 2, 3, 4]

Table 4.2: Monte Carlo Simulation Parameters

Table 4.2 shows the parameters of the Monte Carlo simulation done to study the
performance of the proposed technique. This simulation is done with support of
the High Performance computing (HPC) at the American University of Beirut
(AUB). The objective is to evaluate the probability of detection (POD) and the
mean squared error (MSE) of the proposed technique with respect to several SNR
values, and different number of sub-bands. Three undersampling frequencies
are considered, with total number of signal components of 12. The number of
components per sub-band depends of how many sub-bands the signal is divided
to, i.e.: the number of components per sub-band K − i, 1 ≤ i ≤ N follows:
Ki =

K
N
where K is the total number of components, and N is the number of

sub-bands. The separation Δ between consecutive signal components is 2 Hz.

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

SNR (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ro

b
ab

ili
ty

 o
f 

D
et

ec
ti

o
n

Probability of Detection vs. SNR

Number of Bands = 4
Number of Bands = 3
Number of Bands = 2
Number of Bands = 1

X -5
Y 0.6541

X -5
Y 0.8039

X -10
Y 0.5439

X -10
Y 0.6032

X 0
Y 0.8941

X 0
Y 0.7142

X 0
Y 0.4071

X -5
Y 0.07956

Figure 4.7: Probability of Detection against SNR values with different number
of bands.

29



Figures 4.7 and 4.8 show the results of the Monte Carlo simulation of the proposed
technique in terms of probability of detection (POD) and mean squared error
(MSE) respectively. It is clearly noticed how filtering enhances the estimation
process. Without filtering (One sub-band), the POD reaches 0.4 at SNR =
0 dB, whereas, with filtering, this value is easily obtained at SNR values around
−12 dB. Moreover, increasing the number of sub-bands also improves the POD
and reduces theMSE (i.e. Number of Bands = 4), since the larger the number of
sub-bands means less components per sub-band, and then less number of samples
are needed to perform correct estimation.
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Figure 4.8: Mean Squared Error against SNR values with different number of
bands.

MSE(dB) POD
SNR(dB) -10 -5 0 -10 -5 0

Paper [20] (3 Freqs) -10 -19 -25 0 0.2 0.9

Proposed
Technique

Number of Bands
(Freqs per Band)

1 (12 Freqs) -7 -10 -10 0 0.08 0.4
2 (6 Freqs) -8 -10 -12 0.54 0.65 0.71
3 (4 Freqs) -13 -15 -16 0.6 0.78 0.88
4 (3 Freqs) -23 -24 -25 0.6 0.8 0.89

Table 4.3: Performance comparison between the proposed technique and a pre-
vious work.
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Table 4.3 shows a performance comparison between the proposed technique in
this thesis, and these obtained in paper [20]. This paper is chosen because the
same CRT estimation approach (existence of interval Δ) is used in both works.
The comparison between similar situations (3 components) in terms of POD and
MSE shows the huge improvements of our proposed technique.
At SNR = −10 and −5 dB, 60% and 80% of signals can be estimated correctly,
whereas in [20] the POD was 0% and 20% respectively. Moreover, at same SNR
values, the MSE improved from −10 dB and −19 dB to −23 dB and −24 dB
respectively.
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Chapter 5

Conclusion

In this thesis, a new signal estimation and reconstruction technique is proposed.
It is based on dividing the signal into subbands, then sampling each subband
at sub-Nyquist rates, and estimating the frequency components using Chinese
Remainders Theorem (CRT) given that these components are organized in a
particular pattern. This work is the first integrated signal estimation technique
using Chinese Remainder Theorem (CRT).
Firstly, we started by a review about Residue Number Systems (RNS). There-
after, we provided and extensive description of main CRT recovery algorithms
covering all possible cases (one or multiple components, noise-free or noisy envi-
ronments). After that, we explained our proposed technique in details, and we
provided a description on the role of each block in our proposed system. Finally,
we validated our approach by using Monte Carlo simulations that gave reason-
able results in terms of probability of detection (POD) and mean squared error
(MSE).
As future work, this technique can be enhanced from multiple perspectives. One
interesting point to think about would be how to solve the overlap problem be-
tween the remainders and therefore upper bound of the number of components
in one band.
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Appendix A

Abbreviations

ADC Analog to Digital Converter
CRT Chinese Remainders Theorem
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
MRC Matrix Radix Conversion
MSE Mean Squared Error
MUSIC Multiple Signal Classification
POD Probability of Detection
RNS Residue Number Systems
SSA Singular Spectrum Analysis
SNR Signal to Noise Ratio
TIADC Time Interleaved Analog to Digital Converter
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