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  Diabetes is one of the most prevalent chronic diseases. The exponential rate of 

increase in the number of diabetics urged researchers to search for new methods of 

measuring blood glucose continuously and non-invasively. The ability of microwave 

devices to extract the electrical parameters of material accurately and without direct 

contact, makes them ideal for measuring glucose concentrations non-invasively. 

Therefore, since the past decade, a lot of research work has focused on designing 

microwave sensors that are capable of sensing the variation of glucose in blood. 

Although some of the proposed devices have shown good sensitivity, however none of 

them is accurate enough to replace the currently used glucometers.   

  This thesis addresses the design of non-invasive glucose sensors by relying on 

microwave based components. Hence, the design of various types of radio frequency 

(RF) circuits is presented to tackle this challenge. The behavior of the proposed RF 

circuits as glucose sensing systems is tested using simulation in addition to in-vitro, ex-

vivo and in-vivo studies. A good correlation between the scattering parameters of 

proposed sensors and the variations in glucose levels is attained. Several regression 

models are also developed and applied on the collected data, where a selection of the 

optimal model with the least prediction error is identified. Examined results using the 

Clarke error grid demonstrate that 100% of the predicted glucose levels lie within the 

clinically acceptable regions for the various proposed sensors. 
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CHAPTER 1 

INTRODUCTION 
 

1.1. Background 

During the past few decades, changes in lifestyle and nutrition made diabetes 

one of the most prominent diseases among chronic conditions. By 2014, the number of 

people diagnosed with diabetes reached 422 million worldwide. This number is 

expected to increase dramatically in the upcoming years due to the exponential growth 

of this disease [1]. In fact, diabetes is considered one of the most common metabolic 

diseases. There are two main types of diabetes: type 1 and type 2, with type 1 being the 

most serious condition. For patients with type 1 diabetes, the auto-immune system 

destroys the cells that produce insulin. Consequently, the production of insulin 

decreases or stops completely and hence the blood glucose level (BGL) increases. Only 

10% of diabetics are diagnosed with type 1. Around 90% are diagnosed with type 2 

diabetes, and they suffer from a slow production rate of insulin in the body, which in 

turn decreases the effects of insulin resulting in chronic hyperglycemia [2]. 

Although the causes of these two categories are different, however their 

consequences are dangerous and much alike. In fact, advanced stages of both types of 

diabetes are associated with several complications such as kidney failure, blindness and 

limb amputation. In addition, diabetes increases the risk of stroke and coronary heart 

disease. In 2015, around 1.6 million deaths were caused directly by this condition. An 

additional 3 million deaths were caused by the complications of the disease [1].  
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For treatment, accurate determination of BGL is a necessity. Currently, BGL is 

measured using a glucometer. Although this device is highly accurate, however, it is 

invasive. In fact, the patient has to prick a finger each time a glucose measurement is 

required. This process is painful for diabetics especially with the need to measure 

glucose levels several times during the day. In the long term, this method increases the 

risk of infection and may damage the underlying tissue.  Additionally, this measurement 

technique does not provide continuous monitoring, which can result in missing serious 

hypo/hyper-glycemic incidents that can happen between two measurements [3].  

In the past decade, several new blood glucose measurement techniques have 

been investigated, which fall within one of the two categories: minimally invasive and 

non-invasive. In [4] and [5], a review of the most popular non-invasive techniques is 

presented. This review includes infrared spectroscopy, excreted physiological fluid 

analysis, electrodes, microcalorimetry and optical sensors. Additionally, minimally 

invasive methods for BGL monitoring such as sonophoresis and iontophoresis aim to 

extract the level of glucose from the skin [3]. All the proposed sensors have failed to 

replace the current measurement method as they lacked accuracy. More recently, 

alternative solutions are developed using electromagnetic measurement techniques, as a 

mean to provide continuous and non-invasive monitoring of BGLs. These methods rely 

on coupling EM waves on precise spots of the human body. The reflected waves are 

collected back and monitored, as they include information concerning the electrical 

properties of the underlying biological layers. Any variations in the collected waves 
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directly relates to parameters of blood.  This information can be used to provide non-

invasive and continuous monitoring of BGLs [6].  

The ability of EM-based devices to extract parameters accurately, without 

perturbing the MUT, makes them ideal for measurements that require no direct contact 

with the material. The robustness and accuracy of these devices have encouraged 

researchers to investigate the possibility of designing microwave sensors for biomedical 

applications. Consequently, multiple wearable devices are developed that are capable of 

monitoring cardiac and respiratory activities [7], sensing bodies’ abnormalities and 

disease prediction [8][9].  

 

1.2. Project Motivation 

In this research, we propose the design of three microwave sensors to detect 

variations in BG. These sensors are designed and tested in several in vivo and in vitro 

studies. A comparative study is also established to associate the performance of the 

different devices. A regression model is finally built in the aim of predicting glucose 

levels. 

 

1.3. Thesis Structure 

This thesis is divided into eight chapters. Chapter one includes an introduction. 

Chapter two provides a literature review that presents the most recent research work on 

non-invasive glucose monitoring. Chapter three discusses the electrical properties of 

different human tissues and the corresponding safe absorption rates of electromagnetic 
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(EM) energy. Chapter four presents a theoretical background on the electrical properties 

of lossy material. Chapter five discusses material characterization techniques that are 

developed in literature. Chapter six presents the proposed sensors. Chapter seven 

discusses all the conducted in vivo and in vitro studies. Chapter eight presents the 

established regression model. Chapter nine concludes this work and presents future 

research steps. 
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1. Introduction 

 Throughout the last decade, research effort has focused on proposing microwave 

devices that can be employed for the monitoring of blood glucose concentrations in a 

continuous and non-invasive manner. These approaches include EM based waveguides, 

antennas and resonators operating at different frequencies. In the following, a literature 

review is provided. Topics associated to finding a relation between BGL and the 

electrical parameters, in addition to investigating the sensitivity of several microwave 

devices in sensing the BGL are covered in this section. 

 

2.2. Three Dimensional Measurements 

2.2.1. Waveguides 

Using the setup in Fig. 1, a correlation between BGL and the electrical 

properties of tissues is presented in [10] and [11]. This relation is generated based on 

the fact that the relative permittivity of blood is directly related to the concentration of 

glucose. In these experiments, electromagnetic waves operating at 30 GHz are incident 

on body tissue. By monitoring the reflected waves from the tissue, it is shown that the 

dielectric constant of blood is altered for various BGLs. The variation in the dielectric 

constant are noted as a shift in frequency operation of the reflection coefficient. 
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Figure 1: MMW measurement setup [10]. 

Two rectangular waveguides operating between 50 – 75 GHz are designed and 

tested in [12] using water-salt-glucose solutions as shown in Fig. 2. Glucose 

concentrations as small as 0.025 (wt%) are detected with an accuracy of 0.22 dB per 

wt%. The sensitivity of the system varies for different frequencies, and the best results 

are reached at two different bands between 59-64 GHz and between 69-73 GHz. 

 

Figure 2: Proposed waveguides and measurement setup [12]. 

Real-time direct correlative measurements of the blood glucose concentration is 

performed using commercial blood test strips and millimeter-wave absorption for 

several injections of glucose, insulin, and saline in a live anesthetized animal [13]. The 

results of this work (Fig. 3) show an increase in the wave transmission after glucose 

injection, and a decrease in transmission after insulin injection. The relatively slow time 
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for the observed changes (10-15 minutes for glucose and 20-40 minutes for insulin) 

correlates well with the expected speed of glucose and insulin metabolism. The lack of 

significant changes in MMW transmission upon injection of saline indicates the 

selectivity of mm-wave absorption to the tissue concentration of glucose. 

 

Figure 3: Transmission variations with time [13]. 

 

2.2.2. Antennas  

A device is developed in which two antennas operating within the V-band are 

placed around a pig’s ears as shown in Fig. 4 [14]. Transmission and reflection 

parameters are measured using a Vector Network Analyzer (VNA). The frequency 

range of interest is between 58.5 GHz and 61.5 GHz. It is reported that the best results 

are obtained when the antennas are closest to the tissues and are placed in an area rich 

with veins. Furthermore, results demonstrate that an increase in glucose concentration 

produces an increase in transmission at specific frequencies. 

Following the integration of temperature and motion sensors, the patch is tested 

using a water-glucose phantoms. The proposed system is able to detect changes in 
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glucose as low as 24 mg/dl. Furthermore, the system is tested on 10 healthy male 

subjects in [15]. These experiments verified its ability to successfully detect glucose 

spikes. 

 

Figure 4: Tx and Rx antennas placed around pig’s ear [14]. 

 

2.2.3. Resonators  

The use of split ring resonators for glucose monitoring is examined in [16]. The 

system consists of two rings operating at 1.4 GHz as shown in Fig. 5. One ring is used 

for sensing and is placed at close proximity to the skin. The second one is placed far 

away and is considered as a reference to regulate the temperature effect. Both in-vitro 

and in-vivo measurements are carried out on one healthy patient and the results reached 

are comparable to those attained by the commercial glucometer. Furthermore, the 

proposed sensor is verified to be extremely selective, as it offers high sensitivity to 

glucose variations, limited sensitivity to other sugars and no sensitivity to vitamins [17]. 

The device is then clinically tested on 24 volunteers. Promising results are reached as 

210 of 214 data points lay in the clinically acceptable regions [18]. 
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Figure 5: Double ring resonators system [16]. 

 

2.3. Planar Microwave Circuits 

 Planar circuits are also discussed in the literature. These structures offer a 

considerable reduction in size compared to the previously discussed three dimensional 

systems. 

 

2.3.1. Antennas  

  One suggested system for planar circuits consists of implementing microstrip 

antennas as in [19], [20]. Several types of planar antennas including spirals, serpentines 

and dipoles are designed and tested in order to assess their ability to sense variations in 

glucose levels. In one embodiment, the reflection coefficient of the proposed antennas is 

monitored by placing the device near several glucose/water solutions of different 

concentrations. This experiment proved the ability of the antennas to sense variations in 

glucose concentration interpreted as shifts in the resonance frequency within the 

reflection coefficient. It is also reported that the dipole outclassed the remaining types 

of antennas. In another embodiment, the suggested device is mounted on the hand of a 
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diabetic patient and the volunteer’s glucose levels are monitored as shown in Fig. 6. A 

good correlation is noted between the resonance frequency of the antenna and the 

reference BGLs measured with a traditional glucometer. A sensitivity of 1 MHz per 

14.62mg/dl is also reported. Another observation made relates to the high dependency 

of the antenna’s response on the biological variables of each subject such as 

metabolism, skin color, BMI and other elements. 

 

Figure 6: a) Antenna wrapped around subject's hand, and b) reference and estimated 

glucose variations with time [20]. 

 

 The design of two ultra-wideband slot antennas of bandwidth equal to 12.5 GHz 

is also considered in [21]. The proposed sensing structures are envisioned to be placed 

around human’s earlobe to continuously monitor BGLs. Testing the suggested antennas 

on glucose-water phantoms showed a linear correlation between the antenna parameters 

and various glucose levels. Note that the range considered for glucose concentrations is 

quite high (0-4000 mg/dl). 
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2.3.2. Resonators 

A spiral sensor is presented in [22] to determine the BGL non-invasively (Fig. 

7). In this research study, the relative permittivity of blood is investigated at different 

frequencies between 0 and 2 GHz. One volunteer performed a soda test by fasting for 

over eight hours before placing the device on his wrist. Then, the subject consumed a 

sugared soft drink. Results show that variations in glucose levels caused shifts in the 

resonance frequency of the sensor (Fig. 8). The fact that the shifts in frequency are not 

linear over the whole range implies that some frequencies may be more sensitive to the 

changes in BGL.  

Another research is performed on the spiral sensor in [23]. In this experiment, 

the concentration of sugar in water is varied by adding sugar into the solution. Results 

of this work prove that the permittivity of the water decreases while adding sugar as 

displayed in Fig. 8. 

 

Figure 7: Spiral resonator sensor [22]. 
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Figure 8: Relation between permittivity and glucose concentrations in function of 

frequency [23]. 

 

A half-wavelength resonator operating at 2 GHz is designed in [24] to sense the 

changes of glucose levels in water as shown in Fig. 9. By varying the concentrations of 

glucose from 0 to 300 mg/dl, the magnitude and phase of the reflection and transmission 

coefficients are recorded. 

 

Figure 9: Sensor structure embedded in the measurement setup [24]. 
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  Fig. 10 presents the magnitude and phase of the S21 parameter for the various 

concentrations of glucose. It is clear that the proposed structure is capable of detecting 

changes in the concentrations of glucose with an accuracy in the range of 50 mg/dl.  

 

Figure 10: S21 magnitude and phase responses for different glucose concentrations 

[24]. 
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2.3.3. Filters 

  A planar BPF is also proposed and is illustrated in Fig. 11 [25]. Parameters of 

this structure such as resonant frequency and insertion loss are sensitive to the dielectric 

constant of the superstrate. When contacted by a thumb, results show that the response 

of the sensor changes.  

 

Figure 11: Prototype of the designed filter loaded by a human thumb [25]. 

  An experiment is conducted on the suggested sensor in which a volunteer 

consumes sugar water with a high concentrations of glucose. Measurements show that 

the permittivity of blood decreased continuously, which causes an increase in the 

resonant frequency of the BPF (Fig. 12). After 600 seconds, a stable state is detected. It 

is important to indicate that a linear operation is reported between 1.5 and 2 GHz. 

 

Figure 12: S11 and S21 parameters variations with time [25]. 
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CHAPTER 3 

THE CORRELATION BETWEEN MICROWAVE AND 
BIOLOGICAL TISSUES 

 

3.1 Introduction 

This chapter includes two main sections that illustrate the relation between 

electromagnetic waves and human science. The first section addresses the safe levels of 

human exposure to EM energy. The second section discusses the electrical properties of 

the biological tissues, and the response of these tissues when excited with EM energy.  

 

3.2. Human Safety from Exposure to Electromagnetic Waves 

From a physiological point of view, concerns about the exposure of the human 

body to electromagnetic waves have risen recently due to the abundance of such waves 

within the ambient environment. In fact, nowadays, multiple EM sources such as cell 

phones, routers and satellites are widely used. As a result, the human body is exposed 

abundantly and more frequently to such radiation. In fact, several standards and 

protocols are developed, by many researchers and health experts to limit as well as 

control the exposure of the human body to EM waves. 

The safe exposure standards are set by the Institute of Electrical and Electronics 

Engineers (IEEE). According to the standard ‘C95.1-2005’, the specific absorption rate 

is defined as “the time derivative of the incremental energy (dW) absorbed by an 

incremental mass (dm) contained in a volume element (dV) of given density (ρ)” as 

demonstrated in Eq. 1 [26]. 
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 SAR =
d

dt
(
dW

ρdV
) (W Kg⁄ ) (1) 

Also, a relation between the absorption rate and the electric field at a specific 

point is presented in Eq. 2, where σ and ρ are the conductivity (S/m) and mass density 

(kg/m3) of the tissues and E  represents the rms value of the electric field strength in the 

tissues (V/m). 

SAR =
σ|E|2

ρ
(W Kg⁄ ) (2) 

Accordingly, the safe levels of human exposure to RF fields in the spectrum 

ranging between 3 kHz and 300 GHz are measured and tabulated in the standard [26]. 

Table 1 summarizes the SAR limits for several body parts, in both public and controlled 

environments. Note that the SAR values in Table 1 are restricted for frequencies below 

3 GHz. For higher frequencies, these values may differ and are beyond the scope of this 

thesis work. 

 

Table 1: Standards values of specific absorption rate [26]. 

Exposure Frequency 

Range 

Whole-

Body 

(W/Kg) 

Partial-

Body 

(W/Kg) 

Hands, Wrists, 

Ankles and Feet 

(W/Kg) 

Controlled 

Environment 

100 KHz - 

3 GHz 

0.4 10 20 

General Public 100 KHz -   

3 GHz 

0.08 2 4 
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3.3. Dielectric Properties of Tissues 

Understanding the behavior of human tissue when exposed to EM energy is of 

great importance for several areas of investigation such as electrical impedance 

imaging, microwave hyperthermia and radiofrequency to name a few. Accordingly, 

many researchers have focused on deriving a relation between the electrical properties 

of the human tissues over a wide range of frequencies. In this process, it has been noted 

that water is the major component of biological materials. Consequently, when 

considering any part of the human body, water represents the main contributor to 

permittivity. However, since biological materials are complex mixtures, therefore their 

electrical response is not limited to only one component. In fact, each tissue has its own 

contribution depending on the electrical properties and thickness of the layer.  

In this section, the concepts of electrical polarization and dispersion for 

biological tissues are presented, in addition to tables that summarize the dielectric 

constants and thickness of several biological tissues.  

 

3.3.1. Polarization and Relaxation  

An induced electric field applied on biological tissues disturb the distribution 

charges. This effect is known as electric polarization. The relation for the polarization 

density in terms of the electric field and the dielectric constants of the material is given 

by Eq. 3, where E is the induced electric field, P the dielectric polarization density, ε0 

the permittivity of free space and χe the susceptibility of the tissues [27]. 

P = ε0χeE  (3) 

https://en.wikipedia.org/wiki/Polarization_(electrostatics)
https://en.wikipedia.org/wiki/Vacuum_permittivity
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When an electric field is applied on a structure, several non-idealities cause a 

deferral between the polarization and the variations in the electric field. This delay is 

recognized as a dielectric relaxation.  To measure the relaxation time of a system, an 

excitation should be applied on the structure. Then the relaxation time towards reaching 

a new equilibrium is recorded [27].  

 

3.3.2. Dispersion 

Dielectric dispersion is the dependence of the permittivity of a structure on the 

frequency of an applied electric field. Consequently, the dielectric constant value of a 

given material is not fixed, but rather frequency dependent. For biological tissues, 

dispersions are apparent. In [28] the electrical properties of human tissues are 

categorized by three main dispersions: (1) the low frequency α-dispersion that is linked 

with ionic diffusion processes, (2) the β-dispersion for radio frequencies, associated 

with the polarization of cellular membranes, proteins and additional organic 

macromolecules, and (3) the ϒ-dispersion for microwave frequencies, produced by the 

polarization of water molecules. Additional dispersions may exist such as the δ-

dispersion which is a subset of β-dispersion (Fig. 13). Another observation from Fig. 13 

concludes that biological tissues exhibit a relatively high dielectric constant at low 

frequencies, and these values decrease at higher frequencies. 
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Figure 13: Dispersion of biological tissues [28]. 

 

3.3.3. Dielectric Constants of Biological Tissues 

For glucose sensing, the objective is to detect the variations in blood glucose 

while suppressing the effects of minerals in the blood as well as minimizing the 

influence of the tissues surrounding the arteries and veins. Therefore, understanding the 

characteristics and behavior of tissues such as skin, fat, blood, bones and muscle is of 

great importance.  

 

3.3.3.1. Experimental extraction of dielectric constants 

Several researchers have investigated the extraction of the dielectric constants of 

biological tissues in function of frequency. At first, experiments are conducted on 

animals. In Fig. 14 for instance, the relative dielectric constants for rat muscle, rat brain 

and canine fat with respect to frequency are shown [29]. For these tissues, the 
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permittivity of fat is the most consistent along the spectrum. However for the brain and 

muscles, the values of permittivity dropped noticeably. 

 

Figure 14: Permittivity of muscle, fat and brain of rats in function of frequency [29]. 

  Later on, using advanced imaging techniques, researchers have been able to 

characterize the dielectric constants of humans. Tables 2 and 3 summarize the values of 

permittivity and conductivity for several biological tissues of the human body [30]. 

These values are collected from the most advanced researches in the field. From table 2, 

it is again clear that permittivity drops at high frequencies. 

 

Table 2: Permittivity of human biological tissues at specific frequencies [30]. 

 

Tissue f  = 433 MHz f  = 915 MHz f  = 2.45 GHz 

Skin 47 45 44 

Fat 15 15 12 

Blood 66 62 60 

Muscle 57 55.4 49.6 

Artery - - 43 
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Table 3: Conductivity (S/m) of human biological tissues at specific frequencies [30]. 

Tissue f  = 433 MHz f  = 915 MHz f  = 2.45 GHz 

Skin 0.84 0.97 - 

Fat 0.26 0.35 0.82 

Blood 1.27 1.41 2.04 

Muscle 1.12 1.45 2.56 

Artery - - 1.85 

 

Several other researchers have worked on modeling the human tissues at pre-

defined locations in the body such as the neck, the ear, the leg and the arm. This 

methodology is employed in order to improve the accuracy of the results [31], [32].  

 

3.3.3.2. Mathematical extraction of dielectric constants 

  In addition to experiments, mathematical models are also developed to predict 

the variation of the tissues’ permittivity as a function of frequency. The Cole-Cole 

model is perhaps the most known model for dielectric relaxation. Using the Cole-Cole 

as shown in Eq. 4, and with the appropriate choice of parameters for the tissue, the 

dielectric behavior can be predicted over the desired frequency range. 

 ε = εc
' (w)-jεc

''(w) = ε∞ +∑
Δεn

1+(jwτn)
(1-αn)

+
σi

jwε0
 (4) 

ω: Angular frequency. 

εc
′ (w): Frequency-dependent dielectric constant. 

εc
′′(w): Frequency-dependent dielectric loss. 

n: Order of model. 
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ε∞: High frequency permittivity. 

Δεn:Dispersion magnitude 

τn: Relaxation time constant, 

αn: Dispersion broadening parameter. 

σi: Static ionic conductivity. 

  The values of ε∞, Δεn, τn, αn, σi for the first four orders of the model are 

summarized in [33]. In this reference, a study is conducted in order to build a relation 

between the electrical properties and the BGLs. Measurements on blood samples are 

performed using a dielectric probe kit and a vector network analyzer (Fig. 15). The 

measurements are implemented at frequencies between 500 MHz and 20 GHz. 

 

Figure 15: Measurement setup [33]. 

The glucose levels of the samples are varied between eight different glucose 

concentrations, ranging from 0 mg/dl to 16,000 mg/dl. The resultant dielectric constant 

and conductivity in function of frequency are presented in Fig. 16. Results show that the 

real part of the permittivity in blood decreases for high concentrations of glucose. On 

the other hand, the conductivity does not vary much between 0.5 GHz and 9 GHz. 

However, for higher frequencies, small deviations are noticed.  
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The collected data is then fitted into the Cole–Cole model in order to build a 

relation between the electrical properties of the blood and the glucose concentration. 

The formulated model is able to successfully predict the dielectric properties in function 

of frequency. Consequently, this work prove that the Cole-Cole model is a powerful 

mathematical tool that can be used to extract the dielectric constants of the blood. 

   

Figure 16: Dielectric properties of blood for different concentrations of glucose [33]. 

 

3.3.3.3. Thickness of biological layers 

Concerning the thickness of the layers, it is hard to create a general relation that 

includes all the population. In fact tissues such as fat and muscles are highly dependent 

on age, gender and lifestyle. However, some approximations may be found in [34]. 

Also, a summary of the work developed in this process can be found in [35]. Table 4 

presents the tissue layers’ thicknesses for some body parts. All the values are in 

millimeters. 
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Table 4: Thickness of some biological tissues [34]. 

Tissue Limb Thorax Forehead Abdomen 

Skin 2.5 2 2 2.5 

Fat 8 - 2 10 

Muscle 25 3 - 20 

Bone - 10 7 - 

 
 

3.4. Discussion 

 This chapter addressed the electrical properties of the biological tissues, and 

the response of these tissues when excited with EM energy, evaluated using both 

experimentations and mathematical equations such as the Cole-Cole model. These 

procedures shows that the electrical properties of the biological tissues highly depend 

on the frequency in addition to the physical and physiological conditions of the subject. 

Accordingly, the design of any RF glucose sensor must account for these variations, 

while respecting the standard safe absorption rates set by IEEE. 
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CHAPTER 4 

HIGH LOSS MATERIAL 
 

 
4.1. Introduction 

Chapter 3 demonstrates that biological tissues have the characteristics of lossy 

materials due to their relatively high permittivity. This chapter provides an overview on 

high loss materials, which are defined by their complex permittivity. Furthermore, the 

effect of having multi-layered high loss materials is considered. 

 

4.2. Complex Permittivity 

In a lossy media, the effective complex permittivity is given in Eq. 5 where ε'r is 

the real permittivity that signifies the stored electric field energy, ε′′r is the imaginary 

permittivity that accounts for the losses in the medium and tanδ is the loss tangent of 

the medium expressed in Eq. 6. 

εeff = ε′r − jε′′r(1 − jtanδ) (5) 

tanδ =
ε′′r

ε′r
 (6) 

At resonance, the electric and magnetic field energy stored in any resonant 

structure must be equal. When a material perturbs the stored energy, the field 

distribution is perturbed and hence the resonance frequency shifts. This shift in the 

resonance frequency is related to the properties of the sample based on Eq. 7. 

Δfr

fr
=

∫(ΔεE1.E0+ ΔµH1.H0)dv

∫(ε0.|E0|
2+ µ0.|H0|

2)dv
 (7) 
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fr and Δfr are the resonance frequency and the shift in the resonance frequency 

respectively, Δε and Δµ  represent the change in the permittivity and permeability. 

E0 and H0 represent the field distributions in free space and E1 and H1 are the field 

distributions with the perturbation of the MUT [36]. 

 

4.3. Extraction of the Real Permittivity 𝛆′𝐫 

The resonant frequency is related to the structure’s properties using Eq. 8.  

fr =
1

2π√L(CSubtrate+CSUT)
 (8) 

Where L is the total inductance, CSubtrate is the substrate capacitance, and CSUT 

is the capacitance of the sample under test. The only unknown in this equation is the 

capacitance of the sample under test which is directly proportional to its real 

permittivity ε′r according to Eq. 9. Consequently a relation between ε′r and fr can be 

generated. The generated relation allows the characterization of the permittivity based 

on the shifts in the resonant frequency [37]. 

C =
ε′rd

A
 (9) 

 

4.4. Extraction of the Imaginary Permittivity 𝛆′′𝐫 

The quality factor Q is related to the loss resistance using Eq. 10. 

Q =
R

2πfrL
 (10) 
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The variable in this case is the loss resistance of the sample under test R which 

is directly proportional to its loss tangent tanδ according to Eq. 11. Consequently a 

relation between ε′′r, fr and the S-parameters can be generated [37].  

tanδ =
2πfrL

R
 (11) 

 

4.5. Effective Dielectric Permittivity 

For a stacked multi-layered structure (Fig. 16), the relative permittivity ‘εr’ of 

each layer is unique (εr = εMaterial). However, the effective permittivity ‘εeff’ of the 

whole structure depends on the permittivity and thickness of each layer. Eq. 12 was 

developed to compute the effective dielectric constant of multilayered structures with 

thickness h ≅ λ
10⁄  [38]. 

εeff =
|d1|+|d2|+⋯+|dn|

|
d1
ε1
|+|

d2
ε2
|+⋯+|

dn
εn
|
  (12) 

  With εn being the dielectric constant of the top layer. dn is calculated using Eq. 

13, kn is given in Eq. 14 and 
K(kn)

K′(kn)
 in Eq. 15. hn refers to the thickness of the top layer 

[38]. 

dn =
K(kn)

K′(kn)
−

K(kn−1)

K′(kn−1)
−

K(k1)

K′(k1)
 (13) 

kn =
1

cosh(
πw

4(hn+hn−1+⋯+h1)
)
 (14) 

K(kn)

K′(kn)
=

1

π
ln (2

1+√kn

1−√kn
) for 0.7 ≤ kn ≤ 1 (15) 
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4.6. Discussion 

  This chapter presented, from an EM perspective, the equations that define high 

loss materials and their effect on any EM wave. Furthermore, it assessed the effect of 

placing several high loss layers on waves’ propagation.  
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CHAPTER 5 

MATERIAL CHARACTERIZATION 
 

5.1. Introduction 

Material characterization signifies measuring the structure and electrical 

properties of a material under test (MUT). In Applied electromagnetics and RF systems, 

two techniques are developed for material characterization purposes. The two 

techniques are divided as: the resonant and non-resonant methods. These methods are 

applied using waveguides or using planar circuit boards. However, since the objective is 

to design a wearable device for BGL monitoring, the device must be as small as 

possible. Consequently, it is essential to use printed circuit boards’ techniques in order 

to decrease both the size and cost of the device [39].  

The most known and used planar method relies on microstrip technology. This 

chapter presents this approach and provides a review on the most common material 

characterization methods using microstrips. 

 

5.2. Microstrip Lines 

Microstrip lines are planar transmission lines that are easy to manufacture and 

integrate on low cost substrates. Fig. 17 shows the geometry of a microstrip line. The 

conductor of width (W), is printed on the substrate of thickness (d) and dielectric 

constant (ϵr) [36].  
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Figure 17: The geometry of microstrip transmission line. 

The effective dielectric constant of a microstrip line depends on the conductor 

width and the thickness of the substrate as in Eq. 16 [36].  

εe =
εr+1

2
+

εr−1

2
×

1

√1+12d W⁄
 (16) 

The characteristic impedance of a microstrip line depends on the substrate 

thickness and dielectric constant and the conductor width. It is calculated using Eq. 17 

[36]. 

 Z0 = {

60

√εe
ln (

8d

W
+  

W

4d
)                                                              for

w

d
≤ 1

120π

√εe [
W

d
+1.393+0.667 ln (

W

d
+1.444))]

                                     for
w

d
≥ 1

 (17) 

  The width to depth ratio is computed as shown in Eq. 18, and the parameters A 

and B are provided in Eq. 19 and Eq. 20 respectively [36]. 

W

d
= {

8eA

e2A−2
for

w

d
< 2

2

π
[B − 1 − ln(2B − 1) +

εr−1

2εr
{ln(B − 1) + 0.39 −

0.61

εr
}] for

w

d
> 2

 (18) 

A =
Zo

60
√
εr+1

2
+

εr−1

εr+1
(0.23 +

0.11

εr
)  (19) 

B =
377π

2Zo√εr
 (20) 
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5.3. Characterization Methods 

5.3.1. Non-Resonant Methods 

Non-resonant characterization methods provide a general knowledge of EM 

properties over a wide range of frequencies. For that, either the reflection or the 

reflection/transmission parameters are used to extract either one or two EM properties 

of the MUT [39].  

 

5.3.1.1. Reflection method 

This method uses a planar transmission line built on a substrate filled with the 

MUT (Fig. 18). The EM properties of the sample are extracted from the S parameters. 

The disadvantage of this method lies in the fact that it cannot be used for samples of 

different thicknesses. 

 

Figure 18: Transmission line setup [39]. 

 

5.3.1.2. Transmission/reflection method 

This is another non resonant technique that is adequate for all the samples 

regardless of the thickness. The determination of the complex permittivity and 
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permeability requires the measurement of the S11 and S12 parameters. During 

measurement, the microstrip line is loaded by a film and its support (Fig. 19). The film 

occupies a part of the cross section of the microstrip line. After determining the S11 and 

S12 parameters, the transmission and reflection coefficients are calculated from Eq. 21 

and Eq. 22. Consequently εr and µr can be extracted [39]. 

S11 = S22 = r1exp (−2jγolo) (21), where r1 is the reflection coefficient. 

S21 = S12 = t1exp(−2jγolo) (22), where t1 is the transmission coefficient. 

 

Figure 19: Transmission/Reflection setup [39]. 

 

5.3.2. Resonant Methods 

Resonant methods provide accurate knowledge of the EM properties over one or 

multiple discrete frequencies. Two techniques lie within the resonant methods, these 

techniques are known as: the resonator and the resonant perturbation method. 

 

5.3.2.1. Resonator method 

The resonator method is used to extract the permittivity and the loss tangent 

values based on the measurements of the resonant frequency and the quality factor. It 
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consists of placing the MUT between two conducting plates of a resonator.  This 

technique is highly accurate for only low loss dielectrics. For high dielectric constants’ 

materials, the resonant perturbation method is the most preferred. 

 

5.3.2.2. The resonant perturbation method 

This method consists of placing a dielectric MUT near a resonator, which causes 

a shift in frequency and quality factor. Based on this shift the EM properties of the 

material can be extracted. The sensitivity of this technique is highly dependent on the 

type of resonator used. Several planar resonators are discussed in the following section 

[39]. 

 

5.4. Planar Resonators 

In microstrip technology, multiple resonators are used for material 

characterization such as the straight ribbon, the T resonator and the ring resonator. 

 

5.4.1. Straight Ribbon Resonator 

The straight ribbon resonator (Fig. 20.a) is an open ended line of length
 
l = n ×

λ

2
, n=1,2… The fields in a straight ribbon resonator extend beyond the ends of the line 

causing radiation losses (fringing effect). This effect is modeled as a grounding 

capacitance or consequently as a transmission line. As a result, the quality factor of such 



 

 

 

 

34 

 

 

 

type of resonators is relatively low. The ribbon resonator can be adjusted, as shown in 

Fig. 20, to increase the quality factor [40].  

 

Figure 20: Typical one-dimensional microstrip resonators: a) half-wave length line 

resonator, b) hairpin resonator, and c) to f) other open loop resonators. [40]. 

 

 

 

5.4.2. T- Resonator 

The T-resonator method is introduced as a technique that enhances the 

transmission line characterization, reduces the radiation losses, and decreases the size of 

the device.  A T-resonator is a quarter wave long transmission line shown in Fig. 21. 

The T pattern is an open-end transmission stub that resonates at odd integer multiples of 

λ/4. By coupling the structure directly to the transmission line, and by having only one 

open end, inaccuracies of the gaps are eliminated and the radiation and discontinuity 

losses are reduced. 
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Figure 21: T-resonator [39]. 

  Using this resonator, εreff  is determined from fr using εreff =

(
nc

4fr(l+lc)
)  with n = 1,3,5… and hence the permittivity of the material is determined. 

The loss tangent is also determined from the quality factor using tanδ =
εreff(εr−1)

Qdεr(εreff−1)
 

with Qd =
QQc

Qc−Q
, Q being the measured quality factor and Qc the calculated quality 

factor. 

  

5.4.3. Ring Resonator 

  The ring resonator, shown in Fig. 22, does not have open ends, which decreases 

its radiation loss and enhances its quality factor even more. This fact made the ring 

resonator one of the most accurate and sensitive planar resonators in material 

characterization. The resonant condition for the first resonant mode is given by Eq. 23, 

where r is the ring’s mean radius [39]. Therefore for a given radius of the ring, the 

wavelength that produces the first resonant mode can be determined. 

2πr = λg (23) 
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Figure 22: Ring resonator [41]. 

When loaded by a material with a specific dielectric constant, the resonant 

frequency of the ring, where the peak occurs, decreases [41]. The larger the dielectric 

values the higher is the shift. This behavior is due to the fact that the energy coupled 

into the ring splits equally over the top and bottom sections of the ring. Therefore, a 

standing wave will develop in a way such that when the ring is in resonance, the 

maxima occur at the coupling gaps and the nulls are noticed at the top and bottom of the 

ring [41].  

  To determine the properties of a sample, a single layer substrate can be used in 

which the MUT is used as the substrate. Another possibility is multi-layer substrate in 

which the ring acts as a measurement device and the MUT is placed as a cover on top of 

the circuit. A PTFE block can be used to eliminate the air gap between the circuit and 

the MUT. For the setup in Fig. 23, the permittivity ε1 and the thickness h of the 

substrate are known. With no loading, ε2 = ε3 = 1. Therefore f0 can be measured and 

εreff,0 is calculated from the substrate properties. With loading ε3 is known and ε2 must 

be determined. To determine ε2, εreff,1is calculated using Eq. 24 and f1  is calculated 

using Eq. 25 [39]. 

εreff,1 = εreff,0 (
fo

f1
)
2

(24) 
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πD =
nc

fo√εreff,0
=

nc

f1√εreff,1
 (25) 

 

Figure 23: Ring resonator measurement setup [39]. 

   Several resonator-based sensors are proposed in literature as highly sensitive 

sensors for the aim of characterizing materials’ dielectric constant variations. The focus 

has always been on designing narrow-band sensors with a high quality factor as in [42]. 

Such response increases the intensity of electric fields. The use of complementary split 

ring resonators (CSRRs) with narrow responses has been examined in [42], and [43]. 

The proposed resonators are able to sense and predict the dielectric constant values of 

low loss substrates with a percentage error that does not exceed 10% [42]. Also, by 

increasing the number of resonators from two to three, the sensor is able to predict both 

the dielectric constant and thickness of the substrates with lower error [43], compared to 

[42]. 

 

5.5. Discussion 

  This chapter addressed several planar methods for materials characterization. 

The resonant perturbation technique has the advantage of extracting the electrical 

properties without perturbing the MUT. Its sensitivity however is highly dependent on 
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the type of resonator employed. Accordingly, several resonators are also presented in 

this chapter, such as the open loop and ring resonators. Modified versions of these two 

structures are considered in this thesis as discussed in the following chapter.  
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CHAPTER 6 

DESIGN OF EM-BASED GLUCOSE SENSORS 
 

6.1. Introduction 

 In this chapter, several two port RF filters that act as glucose sensors are 

designed and tested. The performance of a narrow band SRR based band-pass filter is 

initially evaluated. Also two novel broad-band and tunable octa-band reject filters are 

proposed. The narrowband BPF operates at 2.4GHz. The broad-band reject filter covers 

the whole frequency range between 1.25 GHz and 2.25 GHz. Finally, the tunable octa-

band reject filter covers multiple bands ranging between 1.5 GHz and 2.4 GHz. 

 The designs characteristics of these filters are discussed in this chapter. The 

proposed structures are fabricated and tested using different substrates. A comparison 

between the simulated and the measured results is also presented, and a good agreement 

is noticed. 

 

6.2. Methodology 

The proposed sensors are initially designed, simulated and tested in free space 

scenarios. To examine the performance of the filters, the scattering parameters, S11, 

S21, and S22, are selected. S11 and S22 represent the reflection losses at ports 1 and 2, 

and S21 refers to the insertion loss from port 1 to port 2. From an RF point of view, for 

the design of a band stop filter, in the operating band, it is desirable to have the 
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magnitude of |S21| value lower than − 10 dB and a |S11| value near 0 dB. For the case 

of band pass filters, these requirements are the opposite. 

After reaching the required response, the filters’ behavior near human tissues 

was examined. This allows to estimate and compare the performance of these sensors as 

glucose measurement devices. For this purpose, a model of the human body is 

considered within the simulator as shown in Fig. 24 [44]. To reduce the simulation time, 

the human model is dissected into smaller and simpler layers as explained in the 

following chapter. 

 

Figure 24: Human model in ANSYS [44]. 
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6.3. Design Considerations 

Many challenges need to be addressed, while developing any non-invasive and 

continuous glucose measurements technique. First, high sensitivity and selectivity to 

glucose variations is needed; it is essential that the proposed system is capable of 

sensing and detecting BGLs in spite of possible variations in other biological 

constituents that may induce undesired effects on the measurements. The sensitivity of 

the sensors is linked to both distribution and magnitude of the induced electric field 

across the resonating structure. In fact, better sensitivity is achieved by inducing 

strengthened fields across the largest possible area [42]. The main target of this research 

is to maximize the sensitivity of the proposed sensors by increasing the distribution and 

intensity of the induced electric fields.   

The proposed device must also meet the standard accuracy as required by the 

international organization for standardization (ISO). The most recent version, 

ISO:15197:2013, specified that for BGLs lower than 100 mg/dL, an accuracy of ± 15 

mg/dl should be reached and for BGLs of 100 mg/dL or more, an accuracy of ± 15% is 

acceptable as shown in Table 5 [45]. 

 Additionally, the suggested device should be compact, light and wearable. 

Furthermore, several environmental factors must also be considered, including ambient 

and body temperature, humidity as well as body movements.   
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Table 5: FDA's accepatable accuracy for glucose measurements devices [45]. 

 Glucose Concentrations Criteria 

Requirements 

for blood 

glucose 

monitoring 

systems for 

self-testing 

≥ 100 mg/dL 

 

95% within ± 15% 

 

< 100 mg/dL 
 

95% within ± 15 mg/dl 
 

Consensus error 

grid analysis 

Entire Range 99% in Zones A and B 

 

 

 

 

6.4. Proposed Sensor #1 

Initially, a narrow band pass filter is designed and tested. This sensor is an SRR-

based band pass filter that consists of two gap-coupled split ring resonators. SRRs are 

left handed metamaterials that exhibit negative values of magnetic permeability and 

permittivity near the resonant frequency. These resonators are electrically small 

structures, which means that the ring’s perimeter is less than λ/2 at resonance. For these 

small quasi-static resonators, resonances are initiated due to a combination of 

inductances and capacitances [46]. The equivalent circuit of the structure is illustrated in 

Fig 25. In addition, the resonant frequency is calculated using Eq. 26 [47]. For the 

proposed design, Ls = 20.6 nH, Cs = 0.21 pF and f = 2.4 GHz. 

f =
1

2π×√Ls×Cs
  (26) 
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Figure 25: Equivalent circuit model of SRRs [47]. 

In order to maximize coupling, the gap between the adjacent structures must be 

minimized. However, due to fabrication constraints, we are restricted to a minimum 

value of 0.18 mm. To further increase coupling from the transmission line to the largest 

resonator, an enhanced coupling periphery is considered as shown in Fig. 26. This 

structure improves coupling by increasing the coverage area between the two entities 

[41]. The dimensions of proposed design using a 1.6 mm-thick Rogers 5880 substrate 

are summarized in Table 6. The distribution of the induced fields over the top layer is 

illustrated in Fig 27. The maximum achieved electric field intensity is 4.85 × 104 𝑉/𝑚.  

 

Figure 26: Proposed split ring resonator design with enhanced coupling on periphery. 

Image obtained from HFSS simulations. 
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Table 6: Dimensions of the proposed BPF. 

Parameter Dimensions (mm) 

𝐿 16 

𝑊 16 

𝑟𝑜 5.2 

𝑟𝑖 4.6 

𝑔 0.2 

𝑠 2 

𝑊𝑜 5 

 

 

Figure 27: Electric field distribution on the top layer of the proposed SRR-based filter. 

A prototype of the SRR-based BPF is realized for verification of the simulated 

results. The prototype is fabricated through chemical etching technique on a Roger 

RT/Duroid5880 substrate as shown in Fig. 28. Fig. 29 demonstrates a good agreement 
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between the simulated and measured results of the transmission and reflection 

coefficients. 

 

Figure 28: Fabricated prototype of the SRR-based filter. 

 

Figure 29: Simulated and measured response of the SRR-based filter. 
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6.5. Proposed Sensor #2 

 The second proposed sensor is a novel broad-band reject filter design that 

employs log-periodic distributed complementary open loop resonators (OLRs). The 

proposed filter is designed to be implemented as a sensitive, non-destructive and 

compact sensor for BG monitoring over a broad-band frequency range. It also enables 

estimating the dielectric constant using multiple features, which leads to a low 

prediction error. 

 Log periodic structures are widely used in order to increase the bandwidth of a 

microwave structure. In the literature, one design that is discussed in [48] resorts to 

three complementary circular rings that are etched at the top layer in order to produce a 

broad rejection band. The filter in the corresponding study exhibits a large scaling factor 

of 0.98, which limits its bandwidth (fractional bandwidth ~ 20%). 

 

6.5.1. Design Structure  

The proposed design is a double-sided microstrip structure that operates as a 

broad-band reject filter. The top and bottom layers of the design are shown in Fig. 30.  

 

6.5.1.1. Top layer 

The top layer consists of an exponentially tapered transmission line that 

couples the magnetic flux density to the underneath resonators. The feed line is 

optimized based on the tapering techniques discussed by the author in [36] to better 
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enhance the broad-band operation of the filter based on Eq. 27 and Eq. 28.  

Z(z) = Zoea×z (27) 

a =
1

L
× ln(

Zl

Zo
) (28) 

Zl and Zo are the impedances to be matched and 𝐿 is the length of the line. By 

setting Zl = 100 ohms, Zo = 50 ohms  and L = 3cm, the impedance and width of the 

line at a specific position can be calculated. The values of Z and W for some positions 

along the line are shown in Table 7. The width is computed based on Eq. 18. 

 

Figure 30: Proposed log-periodic broad-band reject filter. 

Table 7: Dimensions of the designed tapered line. 

L (cm) Z (ohms) W (mm) 

0 50 1.88 

1 63 1.208 

2 79.37 0.709 

3 100 0.367 
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6.5.1.2. Bottom layer 

The bottom layer of the filter is a defected ground plane (DGS) that includes 

four complementary OLRs. A DGS has a defect integrated in the ground plane which 

alters the uniformity of the plane. This defect manifested as a slot disturbs the shielding 

current distribution, which increases the inductance and capacitance of the line. The 

circuit area of DGS is relatively small compared to other structures. DGS provides 

sharp selectivity at cutoff frequencies with excellent rejection in the stop band and 

minimum ripples in the pass band. The stop band response can be further enhanced by 

increasing the number of cells (slots). In this design the number of cells is equal to four. 

DGS is modeled as RLC equivalent components in series with the transmission line to 

which it is coupled as demonstrated in Fig. 31. The input and output impedances are 

those of the line section, and the values of the RLC model are determined by the 

dimensions of the introduced slots as well as their positions relative to the transmission 

line. The LC components determine the resonant frequency of the structure. 

 

Figure 31: Equivalent model of a defected ground structure. 
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In the proposed design, the dimensions and spacing of the OLRs follow a log-

periodic distribution as given in Eq. 29, where τ is a scaling factor that affects the 

desired impedance bandwidth B for the four required OLRs in the proposed design [49]. 

Moreover, the electrical length of the largest OLR is taken to be one-half the 

wavelength of the lowest desired frequency of operation as shown in Eq. 30. The 

dimensions of the suggested filter configuration, for τ=0.88 , and using a 1.27 mm-thick 

Rogers 3006 substrate are presented in Table 8. 

Wn+1

Wn
=

Ln+1

Ln
=

Sn+1

Sn
=

1

τ
    (29) 

Lmax =
λmin

2
=

vp

2×f
   (30) 

Table 8. Dimensions of the proposed log-periodic BRF designed on a 1.27 mm-thick 

Rogers 3006 substrate. 

Parameter Dimensions (mm) Parameter Dimensions (mm) 

L 60 W1 20 

W 18 W2 17.6 

WO 1.9 W3 15.5 

WI 0.35 W4 13.6 

L1 14.7 S1 13.2 

L2 13 S2 11.6 

L3 11.4 S3 10.2 

L4 10 𝑔 2 

 

 

 



 

 

 

 

50 

 

 

 

6.5.2. Design Features 

6.5.2.1. Electric field distribution 

To upsurge the distribution of fields, the configuration of the embedded resonators is 

modified as shown in Fig. 32. This helps spread the induced fields across the ground 

plane, and hence causes a higher interaction with the loading MUT. Furthermore, by 

perturbing the resonators, the magnitude of the induced fields tends to increase thereby 

leading to enhanced sensitivity levels. The advantage of the modified OLR in terms of 

sensitivity is illustrated in Fig. 32, where the maximum attained value of electric fields 

increased from 8 × 103 𝑉/𝑚 to 5 × 105 𝑉/𝑚. 

 

Figure 32: Electric field distribution of the traditional and modified OLR. 
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6.5.2.2. Size reduction 

 Reducing the overall size of the filter requires the implementation of 

miniaturization techniques such as line meandering. This concept is based on folding a 

conductor back and forth to have a miniaturized structure. By executing this approach, 

the wave is not able to cross the specified distance in a straightforward fashion. Instead 

it must traverse the straight-line several times. This increases the curvature of the lines 

resulting in an increase in the fringing of fields, which makes the microstrip line appear 

electrically longer. Therefore, a smaller physical length is required for the same 

resonant frequency, leading to a smaller, more compact structure. A Meander line 

includes multiple turns comprising vertical and horizontal sections (Fig. 33). In this 

design, the proposed resonators consist of eight turns uniform meander lines and the 

dimensions of the turns are optimized by simulation. The size of the modified OLR is 

30 % less than that of the conventional structure at 1.43 GHz. In addition, the relatively 

high dielectric constant of the substrate reduces further the size of the filter.  

 

Figure 33: Four turns uniform meander line. 

 

6.5.3. Fabrication and Measurements  

To validate the performance of the proposed filter in carrying out glucose 

sensing processes, a prototype is fabricated using the Computer Numerical Control 
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milling machine on a 1.27 mm-thick Rogers 3006 substrate as shown in Fig. 34. The 

complete size of the design is 1.8 cm × 6 cm. A good agreement between the simulated 

and measured S-parameters of the fabricated filter is attained as demonstrated in Fig. 

35. 

 

Figure 34: Top and bottom layers of a fabricated prototype of the proposed log-periodic 

BRF built on a 1.27 mm-thick Rogers 3006 substrate. 

 

 

Figure 35: Simulated and measured response of the proposed log-periodic BRF built on 

a 1.27 mm-thick Rogers 3006 substrate. 
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6.5.4. Alternative Design 

The proposed filter is envisioned as a future wearable glucose sensor to be 

placed on the human body. Although the size of the device is quite compact, however it 

is interesting to build it on a thinner and more flexible substrate. For this purpose, a 

modified version of the design was simulated on three different substrates: Rogers 3003, 

Polyethylene and Polyimide. The properties of these substrates are presented in Table 9. 

The dielectric constants of the considered substrates are quite similar. However, the 

properties of these substrates highly differ in terms of thickness and loss tangent. 

Accordingly, the dimensions of the feeding line and resonators are adjusted and 

optimized using HFSS in order to achieve a similar response to the one realized with 

Rogers 3006. It is worthy to mention that for PET and polyimide, silver is used instead 

of copper to model the conductive traces. This is due to the fact that traditional 

manufacturing methods cannot be used to etch designs on these substrates. Instead, 

inkjet printing could be considered as a fabrication method and this process uses silver 

nanoparticle as a conductive ink. This ink has a lower conductivity (5 × 106 𝑆/𝑚) 

compared to copper (5.8 × 107 𝑆/𝑚). 

 

Table 9: Characteristics of several flexible substrates. 

Substrate Thickness ( ) Permittivity Tan ( ) 

Rogers 3003 250 3 1e-3 

PET 136 2.99 5.7e-3 

Polyimide 25 3.5 8e-3 
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  The return loss and insertion loss responses of the filter designed using the three 

substrates are shown in Fig. 36. The filter designed using the Rogers 3003 substrate 

provides the best response in terms of bandwidth and return loss levels. This is mainly 

attributed to the relatively lower loss tangent of the substrate and the high conductivity 

of copper compared to silver ink. 

 

Figure 36: Response of the log-periodic BRF using three flexible substrates. 
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A prototype of the log-periodic filter is therefore realized on a 0.25 mm-thick 

Rogers 3003 substrate as shown in Fig. 37. The dimensions of the design are presented 

in Table 10. A good agreement between the simulated and measured S-parameters of 

the fabricated filter is attained as illustrated in Fig 38. 

 

Figure 37: Top and bottom layers of a fabricated prototype of the proposed log-periodic 

BRF built on a 0.25 mm-thick Rogers 3003 substrate. 

 

Figure 38: Simulated and measured response of the proposed log-periodic BRF built on 

a 0.25 mm-thick Rogers 3003substrate. 
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Table 10: Dimensions of the proposed log-periodic BRF designed on a 0.25 mm-thick 

Rogers 3003 substrate. 

Parameter Dimensions (mm) Parameter Dimensions (mm) 

L 65 W1 16.15 

W 30 W2 14.2 

WO 0.63 W3 12.5 

WI 0.35 W4 11 

L1 22.8 S1 15.7 

L2 20 S2 13.8 

L3 17.6 S3 12.15 

L4 15.5 𝑔 1.3 

 

 

6.6. Proposed Sensor #3 

The third sensor proposed in this thesis is a biologically inspired tunable octa-

band reject filter which consists of a feed line on the top layer and eight slots embedded 

in the defect ground plane. These complementary resonators are oriented in such a way 

to produce multiple narrow bands instead of just one wide band. The eight stop bands 

are distributed between 1.5 GHz and 2.4 GHz and are separated by seven pass bands. 

These multiple bands are used to sense glucose variations. 

As a first design iteration, only two slots are employed as illustrated in Fig. 39. 

These slots follow the distribution of the arms’ ulnar arteries.  Accordingly, the width of 

each resonating structure must relate to the diameter of the arteries. In [50], a research 

study conducted on 251 adult patients showed that the average diameter of the ulnar 

artery is 2.4 ± 0.4 mm for the right arm and 2.3 ± 0.3 mm for the left one. Furthermore, 
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the minimum diameters encountered for this artery are 1.3 mm and 1.5 mm for the right 

and left arms respectively. Based on that, the dimensions of the slots are optimized and 

are presented in Table 11. This structure exhibits a dual-band reject response as 

illustrated in Fig 40. 

 

Figure 39: Top and bottom layers of the proposed dual-band reject filter. 

 

Figure 40: Response of the dual-band reject filter. 

L

W
0

W

Wss

Wsb

L

W



 

 

 

 

58 

 

 

 

Table 11: Dimensions of the dual-band reject filter. 

Parameter Dimensions (mm) 

L 30 

W 25 

Wo 1.9 

Wsb 1.8 

Wss 1.6 

 

 

 

 

6.6.1. Design Structure  

To increase the number of bands, each slot is subdivided into four slots of equal 

width but different lengths. This configuration increases the number of resonances for 

the same physical size. Further increase in the number of slots within the same space 

(diameter of veins) would require decreasing the width of the slots below 0.18 mm, 

which makes the fabrication process quite complex. The length of each resonator is 

optimized to achieve the target resonant frequency. The modified ground plane structure 

is presented in Fig. 41. The same structure is superposed with the distribution of arteries 

of a human arm as shown in Fig. 42.  



 

 

 

 

59 

 

 

 

 

Figure 41: Bottom layer of the proposed octa-band reject filter. 

 

Figure 42: Proposed sensing structure superposed with the topology of the lower human 

arm. 

 

The simulated response of the proposed structure using the previously used 

transmission line is shown in Fig. 43. From this figure, it is clear that the S11 level 

drifted apart from the desired 0 dB level, especially for higher frequencies. This could 

only mean that the regular 50 ohms transmission line is not suitable to feed the eight 
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slots. Accordingly, the challenge in this design is to provide a simple structure capable 

of efficiently feeding the slots in order to enhance the return loss levels. This is 

addressed by relying on two approaches.    

 

Figure 43: Response of the proposed octa-band filter using a regular 50-ohms 

transmission line. 

 

The first approach is based on increasing the width of the transmission line from 

1.9 mm to 3.4 mm as illustrated in Fig. 44. This is equivalent to decreasing the 

impedance of the line from 50 ohms to 35 ohm. The dimensions of the proposed 

structure are presented in Table 12. Using this topology the feedline is able to cover all 

the slots. This is essential to enhance the levels of the reflection coefficients. 
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Figure 44: Tapered feeding line topology. 

Table 12: Dimensions of the proposed tapered feeding line topology. 

Parameter Dimensions (mm) 

Wo 1.9 

Wi 3.4 

 

  Another topology used to enhance the response of the octa-band filter consists of 

implementing a rectangular resonator at the top layer near the transmission line as 

illustrated in Fig. 45. This resonator acts as a relay that receives the electric field from 

the 50 ohms line in order to feed the eight slots in the ground plane. The dimensions of 

this feeding network are presented in Table 13. 
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Figure 45: Proposed resonator-based feeding line topology. 

Table 13: Dimensions of the proposed resonator-based feeding line topology. 

Parameter Dimensions (mm) 

𝐿 35 

𝑊 20 

𝐿𝑓 20 

𝐿𝑐 7.5 

𝑊𝑜 0.63 

𝑊𝑐  4.66 

𝑔 0.2 
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6.6.2. Sensitivity  

The electric fields distribution of the two-slot structure and the proposed design 

are illustrated in Fig 46 at several resonant frequencies. This distribution proves that the 

proposed eight-slot configuration increases the electric field intensity of the structure. 

This is mainly attributed to the high density of the eight concentrated nested slots. In 

fact, each slot, on its own, contributes to a high field intensity at a specific frequency 

band. Some values of the electric field intensity for the octa-band structure are 

summarized in Table 14.  

 

                      

                      

Figure 46: Electric field distribution of the dual-band at f= 2.12 GHz and f= 2.34 GHz 

and octa-band filters at f=1.8 GHz and 2.2 GHz. 



 

 

 

 

64 

 

 

 

Table 14: Maximum attained electric field intensity for the octa-band filters at different 

frequencies. 

Frequency (GHz) E-Field (V/m) 

1.6 2.79 × 105 

1.85 3.76 × 105 

2 5.6 × 105 

2.1 6.97 × 105 

2.25 1 × 105 

2.5 1.35 × 105 

 

6.6.3. Performance 

From an RF point of view, the performance of the octa-band filter can only be 

compared with some quint-band and sext-band filters implemented in wireless 

communication systems. The proposed methods suffer in simultaneously satisfying all 

the required design conditions. This is mainly attributed to the limited degrees of 

freedom in the design parameters. In some publications, researchers have worked on 

enhancing the system performance, but at the expense of large circuit sizes [51], or 

complex structures [52], [53] and [54] or both [55] as they usually rely on implementing 

a pair of resonators to generate each band. The characteristics and performance of 

several multiband filters and our proposed design are summarized in Table 15. 

Compared to the literature, the design developed in this work provides higher number of 

bands with comparable levels of S-parameters, using a simple and more compact 

configuration.  
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Table 15: Performance of different multi-band filters found in the literature. 

 Bands (GHz) IL (dB) Bands / 

Resonator 

Size (cm) 

[51] 0.6/0.9/1.2/1.5/1.8 2.8/2.9/2.9/2.6/2.3 1 17.1x1.49 

[52] 1.5/2.5/3.5/4.5/5.8 1.5/1.8/0.9/1.2/2.5 0.5 3.55x2.52 

[53] 0.9/1.2/1.4/1.7/2/2.4 2.3/2/2.3/2.7/2.2/2 0.5 5.1x3.1 

[54] 2.1/3/4/4.7/7.2 0.98/1.78/1.22/1.77/2.39 1 2.28x1.07 

[55] 0.8/1.2/1.4/1.8/2.2/2.5 2.9/2.34/2.59/2.24/2.67/2.64 0.5 17.1x1.43 

Proposed 

Design 

1.55/1.66/1.75/1.84/ 

2/2.15/2.3/2.4 

<2 dB 1 2x1.5 

 

 

 

6.6.4. Fabrication and Measurements 

  The first feeding topology is used to realize a prototype of the proposed octa-

band filter on a 1.27 mm-thick Rogers 3006 substrate as shown in Fig. 47. The second 

feeding topology is used to realize a prototype of the proposed filter on a 0.25 mm-thick 

Rogers 3003 substrate as shown in Fig. 48. A good agreement between the simulated 

and measured scattering parameters is reached as shown in Fig 49 and Fig. 50.  

 

Figure 47: Top and bottom layers of a fabricated prototype of the proposed octa-band 

filter built on a 1.27 mm-thick Rogers 3006 substrate. 
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Figure 48: Top and bottom layers of a fabricated prototype of the proposed octa-band 

filter built on a 0.25 mm-thick Rogers 3003 substrate. 

 

 

Figure 49: Simulated and measured response of the proposed octa-band reject filter built 

on a 1.27 mm-thick Rogers 3006 substrate. 
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Figure 50: Simulated and measured response of the proposed octa-band reject filter built 

on a 0.25 mm-thick Rogers 3003 substrate. 

 

6.6.5. Tuning and Reconfiguration 

The eight bands of the filter are reconfigured by implementing a varactor diode 

as discussed in this section. 
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6.6.5.1. Reconfigurable microwave circuits 

Reconfigurable microwave circuits are multifunctional devices that have the 

ability to change their characteristics such as the frequency of operation, and are used in 

many applications that require agility and dynamic response. Reconfiguration is 

achieved using electronic components such as PIN diodes, RF- (Micro Electro 

Mechanical Switches) MEMS and varactors that are connected to the circuitry in order 

to change the electromagnetic behavior of the device. These electronic components 

change the electrical length of the RF structure by either redistributing the currents (PIN 

diode, RF-MEMS) or loading the structure by a variable capacitance (varactor). The 

change in the electrical length of the RF circuit causes a shift in the frequency of 

operation. The switch position and the biasing network are critical in order to achieve 

the best possible tuning. 

For the proposed filter design, the equivalent circuit of the bottom layer is a 

parallel RLC resonator. This suggests that by adding a varactor diode between the 

internal and external metallic regions of the slots, the equivalent capacitance of the 

structure can be tuned. In practice this can be better achieved by placing the varactor 

diode on the top substrate side and connection to the bottom side through metallic vias.  

 

6.6.5.2. Proposed tunable structure circuits 

In the proposed design, the SMV 1705-079LF is used to reconfigure the 

operating frequencies [56]. Fig. 51 shows the spice model of the varactor. The values of 

the components are Ls = 0.8 nH, Rs = 0.32 ohms and Cp = 0.5 pF. The capacitance 
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value of the varactor diode Cj can be tuned from 31.5 pF to 5.2 pF, by varying the 

reverse voltage from 0 to 5 Volts. Biasing the varactor diode requires the use of 

an 470 nH inductor and a 10 pF capacitor. The basic function of the inductor is to 

prevent the RF signal from passing to the power supply, and the capacitor is used 

prevent shorting DC current. 

 

Figure 51: Spice Model of the SMV 1705-079LF [56]. 

The topology of the proposed tunable filter is represented in Fig. 52. It 

comprises the previously discussed eight slots etched in the ground plane beneath the 

feeding line, a varactor diode with a variable capacitance, an RF choke and a lumped 

capacitance for biasing. All the electrical components are soldered in the upper substrate 

side to prevent any interference with the sensing area. The varactor diode and the 

capacitance are connected in parallel and this combination is placed between the 

internal and external metallic regions of one set of slots using two vias. The Cathode of 

the varactor is connected to the power supply through the RF choke. The equivalent 
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circuit of this structure is demonstrated in Fig. 53. The fabricated prototype is presented 

in Fig. 54, and the simulated and measured results are presented in Fig. 55. 

 

Figure 52: Topology of the proposed tunable filter. 

 

Figure 53: Equivalent circuit of the proposed tunable filter. 
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Figure 54: Fabricated Prototype of the proposed tunable filter. 

 

(a) 

 

(b) 

Figure 55: Simulated and measured response of the proposed reconfigurable octa-band 

reject filter built on a 1.27 mm-thick Rogers 3006 substrate. The transmission 

coefficient is shown for a) V=0 Volts, b) V=5 Volts and c) several voltage values. 
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6.7. Discussion 

  This chapter presents the design of three different RF filters. These circuits are 

initially designed using HFSS and then built on a variety of flexible and rigid substrates. 

The performance of these filters as glucose sensors is assessed by monitoring their E-field 

distribution over the sensing area. It was noted that the octa-band filter achieved the 

highest E-field intensity, followed by the broad-band filter. The reflection and 

transmission coefficients of the different filters were also validated by measurements. 
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CHAPTER 7 

SIMULATION AND MEASUREMENT OF THE PROPOSED 
EM-BASED GLUCOSE SENSORS 

 

7.1. Introduction 

  This chapter presents the simulation results of the proposed RF sensors along 

with the measurement results for in-vitro and ex-vivo and in-vivo studies. Simulation 

results include the integration of both a single and multi-layered tissues model. For in-

vitro measurements, serum is used to mimic the blood. For ex-vivo studies, rat tissues 

are placed as a separation between serum and the sensor. Finally, for in-vivo studies, 

OGTT is performed twice for six different patients. 

 

 

7.2. Simulation 

  To investigate the ability of the filters to perform as glucose meters, several 

human tissue models were considered for analysis. The common act in these 

simulations is to vary the relative permittivity of the blood layer, so that it corresponds 

to the change of the BGL. For the simplest single-layered model, blood is modeled as a 

rectangular box of height h=4mm placed at a distance of 2 mm from the sensing area of 

the filter. Rectangular shapes are utilized for purposes of reduced simulation time. A 

more complex model is the one shown in Fig 56. It includes the main biological layers 

encountered in a human arm: skin, fat, blood, and bones. The thickness of each of these 

four layers is presented in Table 16. This model was placed 4.4 mm away from the 
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sensing area of the filter, meaning that the blood layer is distanced by 7.4 mm away 

from the sensor.  

 

 
Figure 56: Multi-layered human tissues model. 

 

Table 16: Thickness of the layers used in the model. 

Layer Height (mm) 

Skin 1.5 

Fat 1.5 

Blood 4 

Bones 10 

 

 

  Placing these layers as superstrates near the sensors causes a shift in the 

operating frequency of the device under test.  When analyzing the device response, we 

sweep the dielectric constant of the blood layer from 60 to 75 to reflect some variations 

in the BGLs. The S21 responses of the sensors for the different values of the dielectric 

constant are presented in Fig. 57. These include the results for both cases of the device 

loaded by the single-layered and multi-layered models. The S21 phase and magnitude 

variations of the proposed sensors, when loaded by the multi-layered model, are 

illustrated in Fig 58 at one of the operating frequencies. It is worth noting that similar 

trends were obtained at other operating frequencies (not illustrated here).    
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  Figure 58 demonstrates a linear and monotonic behavior for the proposed 

sensors in response to the variations in relative permittivity; the sensors’ responses 

exhibit a clear correlation with the material’s dielectric constant. For the SRR-based 

filter, this behavior is restricted to the narrow operating band. For the broad-band filter, 

this linear trend is observed over a wide range of frequencies especially between 1.75 

GHz - 2.75 GHz. In the case of the multi-band filters, the linear behavior is observed 

around all the resonant frequencies. Based on the observed trends, we find that the 

performances of the broad-band and octa-band sensors to be very favorable for purposes 

of glucose sensing applications. Furthermore, their sensitivity can be sampled across 

several frequencies in comparison to narrowband filters. Accordingly these two sensors 

are considered for further analysis as discussed in the following sections. 

 

7.3. Experimental Setup 

  The proposed broad-band and octa-band sensors are tested in in-vitro, ex-vivo 

and in-vivo scenarios. The basic experimental setup consists of three elements, a 

portable vector network (VNA, N9914A, Keysight Technologies), RF cables and a 

sensor. The VNA applies to the sensor an RF signal whose frequency is swept over a 

predefined frequency range with an output power of about -15 dBm.  For each 

frequency in the specified range, the VNA measures the reflected signal at both ports of 

the sensor along with the transmitted signal between the two ports. The changes in the 

microwave parameters such as resonance frequency, reflection coefficient and insertion 
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loss are then tracked using an algorithm. The S-parameters data is represented using 

smith chart formats, and is collected in Cartesian forms. 

  
(a) 

  
(b) 

  
(c) 

Figure 57: S21 response of the proposed sensors for the single-layered (left) and multi-

layered models (right), a. narrowband sensor, b. broad-band sensor, c. octa-band sensor. 
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(a) 

  
(b) 

  
(c) 

Figure 58: Magnitude and phase variation of the proposed sensors when loaded by the 

multi-layered model, a) the narrowband sensor, b) the broad-band sensor, and c) the 

octa-band sensor. 
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  At each frequency, ten different measurements and hence microwave data points 

are obtained from the VNA and their average is reported in order to minimize noise 

effects and reduce the randomness in the measurements. The same process was repeated 

for three different experiments.  

 For the first experiment, the sensor is calibrated to monitor variations in 

glucose inside a foam container filled with 7 mL of serum whose glucose 

density is being varied gradually.  

 In the second experiment we introduced rat tissue as a separation layer 

between the serum and the sensor.  

 Finally, in the third experiment we tested the ability of the sensors to detect 

variations in human BGLs. This experiment was conducted for six different 

volunteers.  

 

7.3.1. Serum Measurements 

 We propose for our setup placing a fixed, serum-filled foam container on top of 

the sensor as shown in Fig. 59. Serum is a liquid that is similar in composition to the 

blood plasma; however, it excludes the clotting factors of blood. Dextrose powder is 

then added to the solution to alter the glucose concentrations. The considered 

experimental procedure consists of extracting part of the liquid, adding dextrose, 

applying vortex mixing to accelerate the dissolving process, adding the mixture to the 

container, manually mixing the whole solution, and finally wait ten minutes to ensure a 

homogeneous entity before reading the S-parameters. This process ensures that the 
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setup and volume of the serum remains almost fixed during the whole experiment, 

while the glucose level is incremented gradually. 

 

 

 
Figure 59: Experimental setup for serum measurements. 

 

As a first test, baseline measurements were performed. This was conducted by 

measuring the sensors’ S-parameters in the absence of the foam container, then by 

placing an empty container on the sensor, and finally by filling the container with 

serum. From these measurements, it was verified that the sensors under test maintain 

their free space responses, with and without the empty foam container. The shift in 

frequency occurs only when serum is added. 

The response of the proposed sensors for different glucose concentrations is 

shown in Fig. 60. Their response displays a clear correlation with glucose levels at 

different frequencies as illustrated in Fig. 61 for the broad-band and in Fig. 62 for the 

octa-band sensors.   

VNA

Serum

Container

Proposed (Filter) Sensor
2 mm-thick Foam

7 mL of Serum

Foam
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(a) (b) 

  
(c) (d) 

 

Figure 60: Response of the proposed sensors for different glucose concentrations, a) 

S21 magnitude of the broad-band sensor, b) S21 phase of the broad-band sensor, c) S21 

magnitude of the octa-band sensor, d) S21 phase of the octa-band sensor. 



 

 

 

 

81 

 

 

 

  

  

Figure 61: Correlation between the response of the broad-band sensor and the glucose 

concentrations at different frequencies. 
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Figure 62: Correlation between the response of the octa-band sensor and the glucose 

concentrations at different frequencies. 

 

 

7.3.2. Animal Tissues and Serum Measurements 

  The setup of this experiment is almost identical to the one presented in the 

previous section. The same foam container was considered, and glucose levels were 

varied in the exact fashion. The only difference is that now the serum-glucose solution 

is being tested in a multi-layer setup, where the animal tissues separate the sensor from 
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the liquid. The magnitude and phase variations are shown in Fig. 63, and it’s clear that 

the linear correlation is still maintained.  

 

  

(a) 

  

(b) 

Figure 63: Magnitude and phase variations of a) broad-band, and b) octa-band sensors. 
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7.3.3. Clinical Measurements 

7.3.3.1. Study design 

Subjects were recruited to participate in the clinical trial after signing a consent 

form, previously approved by the Institutional Review Board. 

 

7.3.3.2. Study subject 

Subjects were considered eligible for the study if they were between 18 and 70 

years of age, and able to provide informed consent. There were no restrictions on either 

race, sex or ethnicity. Substance abuse, lactation, pregnancy, and being part of an 

interventional trial were the exclusives criteria. In phase one of the study, only healthy 

subjects with HbA1c levels less than 6%, normal blood pressure and no sign of 

dyslipidemia were included.  

 

7.3.3.3. Procedure 

The patients arrived to the clinical study unit in the morning after fasting for at 

least 8 hours. Measurement of the blood glucose levels was initially performed using 

the standard techniques that assess glycemia, using a glucometer of ACCU-Check. 

Afterwards, the sensor under test was attached to the lower arm of the volunteer as 

illustrated in Fig. 64. Subsequently, glucose was orally ingested as a concentrated 

glucose drink that contains 75 g glucose dissolved in 200 mL of water. This induces a 

hyperglycemic excursion to a target BGL of 170 -220 mg/dL. These levels are expected 

to fall back within 2 hours. Readings from the sensor were collected each 5 min, and 
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reference BGLs were measured at intervals of 15 minutes using the glucometer. During 

the process, patients were asked to stay tranquil and with no physical movements. The 

room temperature was 23 ± 0.5 ◦C.  

 

 
Figure 64: Clinical trials setup. 

 

 

7.3.3.4. Results 

  The response of the proposed sensors showed a clear correlation with the BGLs 

as demonstrated in Fig. 65 and Fig. 66 for all the patients. The solid red line represents 

the reference glucose levels, and the dashed blue line represents the normalized 

response of the sensor at one frequency. Moreover, we note that for a given patient there 

was a clear correlation between the response at some specific frequencies and the 

glucose levels not only for the first OGTT but also for the second test as demonstrated 

in Fig 67.   

  Furthermore, a statistical prediction model was generated on the basis of the 

sensor signals collected during the two visits of the volunteers and is discussed in the 

next chapter. 
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Figure 65: Correlation between the response of the broad-band sensor and the blood 

glucose concentrations. 
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Figure 66: Correlation between the response of the octa-band sensor and the blood 

glucose concentrations 
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(a) 

  

(b) 

Figure 67: Correlation between the response of a. broad-band sensor, and b. octa-band 

sensor between two different OGTTs for the same subject and for the same frequency a) 

f=1.4 GHz and b) f=1.33 GHz. 

 

7.3.4. Measurements Accuracy 

In the presented experimentation, there exist several sources of error. For 

instance the position of the sensor might vary between the measurements. Furthermore, 

the data collected is always bounded to the accuracy of the underlying measurement 

tools both in terms of the utilized glucometer and the lab vector network analyzer.  
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7.3.4.1. Glucometer  

The ACCU-CHEK Performa glucometer is a calibrated system used to measure 

blood glucose concentrations within the 10-600 mg/dL range [57]. However, the meter's 

accuracy depends upon a lot of physical and pharmacological factors in addition to the 

condition of the patient and the strips used. For the considered meter, the accuracy of 

the system is shown in Table 17. 

Table 17: Accuracy of the ACCU-CHEK Performa glucometer [57]. 

Glucose Concentrations 

< 𝟏𝟎𝟎 𝒎𝒈/𝒅  

Glucose Concentrations 

≥ 𝟏𝟎𝟎 𝒎𝒈/𝒅  

Within  
±5 mg/dL 

Within 

±10 mg/dL  

Within 

±15 mg/dL  

Within 

±𝟓 𝒎𝒈/
𝒅   

Within 

±10 mg/dL  

Within 

±𝟏𝟓 𝒎𝒈/
𝒅   

81.5% 97.0% 99.4% 59.3% 91.0% 99.1% 

 

 

7.3.4.2. S-parameters 

  The accuracy of S-parameters measurements depends on the precision of the 

VNA, the calibration, in addition to the quality of the cables.  

 

7.3.4.2.1. Vector Network Analyzer 

  Keysight FieldFox RF analyzer N9914A was used for the measurements.  The 

S-parameter value for a given frequency may fluctuate around the correct one. We 

treated this as a random source of error, and to eliminate this randomness, ten readings 

of the signal were collected subsequently at a specific frequency. The averaged value 

was then considered for further analysis. 
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7.3.4.2.2. Calibration 

A typical calibration will move the measurement reference planes to the very 

ends of the test cables to account for the phase difference and losses in the cables. 

However, when dealing with lengthy measurements as the ones presented in this work, 

the quality of calibration deteriorates with time courtesy of large cables’ movement and 

bending. The collected data is therefore smoothed by applying a moving average filter. 

 

7.4. Discussion 

  In this chapter, the previously designed RF sensors are tested using simulation 

models and measurements. The responses of the proposed sensors showed good 

correlation with the variations in the dielectric constant and glucose levels. The 

collected data from the in-vitro and in-vivo studies will be used to develop and test 

several regression models in chapter eight.  
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CHAPTER 8 

DEVELOPMENT OF A REGRESSION MODEL 
 

8.1. Introduction 

  This chapter addresses the development of a mathematical model for predicting 

glucose levels from the data recorded by the proposed sensors. Particularly, several 

linear and nonlinear methods are applied to the collected data to build the model. The 

aim here is to assess the performance of these regression methods, and to find the best 

prediction model.  

 

8.2. Regression Analysis 

Regression is the estimation of an output variable (blood glucose level in our 

case) from a set of measured input variables (measured sensor device physical 

parameters such as the S-parameters phase and magnitude at different frequencies). This 

is performed by establishing a mathematical relation between the input and output 

variables. In case of linear regression, the mathematical relation is a simple linear 

equation that uses either one (univariate) or several (multivariate) explanatory variables 

x to describe the behavior of the dependent variable y. For the case of k explanatory 

variables, the linear function is denoted as in Eq. 31.  

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘 +  𝑒(𝛽1, … , 𝛽𝑘) (31) 

  Alternatively, assuming a sample of 𝑇 observations, Eq. 31 can be expressed in 

its general form as in Eq. 32. Each column of 𝑿 contains 𝑇 observations of an 
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explanatory variable xk. 𝒚 is the vector of responses, 𝑒(𝛽) is the vector of error terms, 

and 𝛽 is the vector of unknown parameters to be estimated. The objective of regression 

is to find the most suitable values for 𝛽 that minimize the resultant prediction error. 

𝒚 = 𝑿𝛽 +  𝑒(𝛽) (32) 

 

𝒚 = [

𝑦1
𝑦2
⋮
𝑦𝑇

], 𝑿 = [

𝑥11 ⋯ 𝑥1𝑘
⋮ ⋱ ⋮
𝑥𝑇1 ⋯ 𝑥𝑇𝑘

] 

  

For the case of ordinary least squares (OLS), the parameters are estimated by 

minimizing the residual sum of squares ||𝒚 − 𝑿𝜷||𝟐
𝟐.  When the system is 

overdetermined and 𝑿𝑻𝑿  is nonsingular, and hence can be inverted, the unknown 

parameters vector β can then be obtained according to Eq. 33. 

𝜷̂ = (𝑿𝑻𝑿 )−𝟏𝑿𝑻𝒚 (33) 

 For the case of glucose sensing, it is quite difficult to collect a large number of 

reference glucose points. Accordingly, while the number of covariates is high, the 

number observation points is quite low. This means that we are dealing with an 

undetermined system where K>>T. Consequently, OLS can’t be used for prediction. To 

deal with this problem, sparse regression and/or feature selection methodologies are 

employed. We particularly focus on linear regression techniques such as partial least 

squares (PLS) [58], and the least absolute shrinkage and selection operator (LASSO) 

[59] method as well as non-linear regression methodologies such as the Gaussian 

processes (GP) [60]. Furthermore, dimensionality reduction methods such as principal 

component analysis can be employed [61]. 
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The procedure used to develop the mathematical regression model is presented in 

the following. The main steps include preprocessing, dimensionality reduction 

processes, model generation, and model performance evaluation. 

 

8.2.1. Preprocessing 

  Real measurements data may be inconsistent, incomplete, and containing 

measurement errors. The data preprocessing step assembles raw data and transforms it 

into a clear format for additional processing. Preprocessing includes multiple steps such 

as data collection, transformation and reduction. For purposes of measurement error, we 

rely on averaging and smoothing techniques to eliminate random sources of error. 

In our case, measurements are performed over 201 frequencies taken over the 

operating regions of the sensors. These frequencies range between 0.5 GHz and 3.5 

GHz for the broad-band filter, and between 1 GHz and 3 GHz for the octa-band filter. 

However, we noticed that neighboring frequencies have similar trends, and to eliminate 

redundancy, we sampled uniformly 20 frequencies over the operating ranges. This 

resulted in a total of 120 features corresponding to the magnitude and phase of the 

sensor S11, S21, S22 parameters at the different frequencies over the operating range of 

the device.  

Sampled data is then normalized for consistency between the different feature 

vectors. The filter’s measured data are scaled and shifted to [0 1]. This is performed for 

each measured physical parameter at a given frequency, by subtracting for each 

observation point the value of the physical parameter at that frequency from the 
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reference (fasting) glucose level of a specific OGTT at the same frequency. The value is 

then divided by the absolute maximum of the difference for all the observation points at 

that frequency.  

 

8.2.2. Modeling Techniques 

Several regression techniques like Partial Least Squares (PLS), Least Absolute 

Shrinkage and Selection Operator (LASSO) and Gaussian Processes (GP), were 

considered for prediction. Cross-validation methods were then employed to find the best 

model for purposes of prediction.   

PLS aims to predict a set of dependent variables (target), from a set of 

independent variables (predictors). This is realized by extracting, from the predictors, a 

reduced set of orthogonal features while maximizing correlation with the dependent 

variable Y. These factors are linearly combined from the original variables, and are used 

for estimation [58]. A more advanced version of PLS is locally weighted PLS [62]. 

LASSO is a linear estimation method that uses the 𝐿1 penalty as a regularization 

technique. This penalized regression process shrink the regression coefficients toward 

zero, introducing some bias to reduce variability. This is performed by adding a penalty 

term to the residual sum of squares as in Eq. 34. The tuning parameter λ controls the 

amount of shrinkage. Choosing the right λ is essential to minimize the error in 

prediction [59]. 

𝜷̂ =  𝒂𝒓𝒈𝒎𝒊𝒏{ ||𝒚 − 𝑿𝜷||𝟐
𝟐 +∑ 𝑱𝝀

𝑷
𝒋=𝟏 |𝜷𝒋|}, 𝜷 ∈ ℝ𝑷 (34) 
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GP produces flexible, nonlinear, and nonparametric Bayesian models. Prediction 

using this method is probabilistic and is related to uncertainties. In contrast to traditional 

regression methods, GP does not regulate a unique function on the dataset, but rather 

produces a probabilistic distribution over a space of functions with respect to the 

dataset. To achieve this objective, the covariance function parameters are adjusted to 

maximize the likelihood of the observation points. Consider a GP function h(x), the goal 

is to predict its value for a random input vector x. A Gaussian process, like a Gaussian 

distribution, is completely specified by a mean and a covariance (kernel) function. 

Consequently, the predictive distribution is also Gaussian distributed with mean and 

variance [60]. 

 

8.2.3. Model and Features Selection 

From section 8.2.1., it is obvious that we have a large number of features (120 

features compared to 35-46 observations) and we have an undetermined system. 

Accordingly, to build a good model, we need to identify the critical features to build our 

model. 

 LASSO inherently identifies the critically features iteratively.  For PLS and GP 

we rely respectively on feature extraction and selection methods such as the wrapper or 

the filter method (based on correlation significance for example. For all these methods, 

K-fold cross validation can be employed to identify the model, i.e., set of features (and 

kernel functions in case of GP) that result in the lowest error. 
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Feature extraction translates the features from the high-dimensional space into a 

lower dimensional space by a set of linear or nonlinear transformations. The most 

common linear feature extraction method is principal component analysis (PCA) [61].  

Feature selection concentrates on selecting a small subset of features based on 

some predefined criteria. For this purpose, we rely on a wrapper method that identifies 

the next best feature for a given kernel function in case of GP. We then determine, 

based on cross-validation error, the minimum number of features and best kernel 

function that results in lowest cross-validation error and hence that determine the best 

model. Alternate feature selection methods include sorting the features based on their 

maximum correlation or maximum relevance and then performing cross-validation to 

find the best set of features. This is referred to as the filter method (not shown here. 

 

8.2.4. K-fold Cross-validation  

K-fold cross-validation divides the dataset D into K partitions (folds) of nearly 

equal size. For  K iterations,  K-1 folds are used to train the model, and the remaining 

fold is used for testing. During each iteration, the error of the testing fold is calculated. 

By averaging these values, the average error is used to help select the best model with 

minimum cross-validation error. 
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8.3. Results  

8.3.1. Serum Measurements   

The data collected from serum measurements using the rigid and flexible broad-

band and octa-band filters were used for testing the different modeling techniques. 

Preliminary results showed that GP offers the best performance among the considered 

approaches. This is visualized in Fig. 68 where the estimated glucose levels are plotted 

versus the reference glucose levels using LW-PLS, GP and LASSO are presented. 

Moreover, the mean percentage error for the different modeling methods is shown in 

Table 18.   

 

Table 18: Mean percentage error for the glucose levels estimated using LW-PLS, GP, 

and LASSO. 

Sensor Type LW-PLS GP LASSO 

Broad-band  Rigid 25.12 16.95 26.07 

Broad-band 

Flexible 

22.88 11.37 16.18 

Octa-band Rigid 44.13 16.37 112.53 

Octa-band Flexible 19.85 12.82 15.07 
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(a) 

  
(b) 

  
(c) 

  
(d) 

 

 

Figure 68: Estimated versus reference serum glucose levels using LW-PLS, GP and 

LASSO, a. rigid broad-band, b. flexible broad-band, c. rigid octa-band, and d. flexible 

octa-band. 
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8.3.2. Clinical Measurements 

We developed a statistical prediction model using the sensor signals collected 

from in-vivo measurements during the two visits of the volunteers. The model considers 

the BGLs as the dependent variable. Without loss of generality in this initial 

implementation we do not consider the physical and physiological status of the patients. 

The number of observations per patient was quite small in comparison to the number of 

features (S-parameter magnitude and phase obtained at the different frequencies). We 

had a total of 23 observations per test. For the corresponding glucose levels obtained 

from the ACCU-Check glucometer, we have measured only 9 value points recorded 

corresponding to 9 out of the 23 observations. The remaining 14 reference glucose 

points are interpolated using cubic spline interpolation. The measured sensor data 

includes some fluctuations or ripples, courtesy of bending the RF cables for a long 

duration. The S-parameters are therefore smoothed by applying a moving average filter 

with a span equal to 5%.  

We rely on the wrapper method and 10-fold cross-validation to determine the 

best features and best suitable kernel functions for a given patient in order to come up 

with the best model (lowest error). Five different kernel functions are considered in the 

simulations exponential, squared exponential, matern32, matern52, and rational 

quadratic. Around 8 to 15 critical features were identified for a given patient to build the 

model. To test the performance of the model, we randomly divide the observation points 

into 2/3 for training and 1/3 for testing. We report the test error for ten random data sets 

using the predetermined features and kernel functions. For this step, the data is initially 
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stratified into three homogeneous groups. This step is essential to make sure that each 

partition includes low, medium and high values of reference glucose levels. Following 

that, the data is randomly divided into two thirds (31 points) for training and one third 

(15) for testing. The 46 points correspond to two OGTT experiments. This step is 

repeated ten times to make sure that the majority of the data is used for both training 

and testing.  

  The results of the model for individual BGL profiles are shown in Fig. 69 and 

Fig. 70, plotted as function of time and compared with the reference blood glucose 

concentration. These profiles show two successive peaks corresponding to the two 

OGTT experiments. For each OGTT, we note a rapid increase in glucose values from 

the fasting level to a maximum value, and then a decrease. The solid lines are the 

invasively measured BGL, and the dashed lines are the estimated values using Gaussian 

Process; the dots correspond to the prediction using the different experiments. It is 

obvious that the estimated glucose concentration by the proposed sensor matches well 

the rate of increase and decrease of glucose concentration. It is also noted that there is 

no time delay between the two measurement systems. This proves that the proposed 

sensor directly interacts with blood. Furthermore, the mean average percentage error in 

prediction is noted to be 3.19% for the broad-band sensor and 1.83% for the case of the 

octa-band sensor. 
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Figure 69: BGL profiles of all the patients collected using the broad-band sensor and 

estimated using GP. Each plot includes the invasively measured BGL (solid lines), the 

estimated BGL using Gaussian Process (dashed lines) and the prediction using the 

different experiments (dots). 
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Figure 70: BGL profiles of all the patients collected using the octa-band sensor and 

estimated using GP. Each plot includes the invasively measured BGL (solid lines), the 

estimated BGL using Gaussian Process (dashed lines) and the prediction using the 

different experiments (dots). 
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  To better assess the results, the Clarke Error Grid is considered [63]. This 

approach is used to evaluate the clinical significance of differences between a given 

glucose measurement technique under test (RF sensor in this case) and the intravenous 

blood glucose reference measurements. In this work, the reference measurements are 

considered to be those detected using the commercial glucometer. The Clarke Grid is a 

two-dimensional Cartesian illustration, where the reference values are displayed on the 

x-axis and the predicted values are presented on the y-axis. The points laying on the 

diagonal signify a perfect agreement between the reference and predicted values. The 

points below and above this line designate, respectively, overestimation and 

underestimation of the actual values. The grid is also divided into five zones. Points 

might lay within region A when the deviancy in the predicted values from the 

references doesn’t exceed 20%, or when both the predicted and reference values are in 

the hypoglycemic range (<70 mg/dl). The values of this zone are labeled clinically 

exact, and are thus described by correct clinical treatment. Region B is linked to benign 

errors and is located around zone A.  This area includes points that deviates by more 

than 20% from the reference values, but don’t lead to inappropriate treatment. Points in 

region C lead to unnecessary treatment. Points in region D indicate failure in detecting 

hypoglycemia and or hyperglycemia (>180 mg/dl). Finally, points in region E are those 

that confuse the treatment of hypoglycemia for hyperglycemia or the other way around. 

Clinically, all the values within areas A and B are considered acceptable, whereas the 

values in zones C, D and E are potentially dangerous [63]. 
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  The generated Clarke grids using the data collected from the two sensors are 

shown in Fig. 71.  For the broad-band log-periodic filter 89.5% of the data are lying in 

zone A and only 1.5% in zone B. For the octa-band filter, all the data are in zone A. 

These results show exceptional accuracy of the proposed measurement and prediction 

methods. 

 

(a) 

 

(b) 

Figure 71: Clarke error grid for the data collected using a) broad-band sensor, and b) 

octa-band sensor. 
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8.4. Discussion 

  Several regression models were used in this chapter for estimation purposes. 

Gaussian process showed better abilities to predict the glucose levels, in comparison to 

LW-PLS and LASSO, based on in-vitro measurements. Furthermore, GP was applied 

on the data collected from the clinical trials. The Clarke error grid was used to assess 

the results. All the predicted points are clinically acceptable, proving the high sensitivity 

of the proposed sensors and the accuracy of GP as a modeling method.   
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CHAPTER 9 

CONCLUSION AND FUTURE WORK 
 

  There is a need for a method of measuring blood glucose continuously and non-

invasively. The ability of microwave devices to extract the electrical parameters of 

material accurately and without direct contact, makes them ideal for this application. In 

this thesis several microwave sensors are designed and tested: an SRR-based narrow 

band filter, a log-periodic based broad-band reject filter and a biologically inspired 

tunable octa-band reject filter. The behavior of the proposed RF circuits as glucose 

sensing systems is tested using simulation in addition to in-vitro, ex-vivo and in-vivo 

studies. A good correlation between the scattering parameters of proposed sensors and 

the variations in glucose levels is attained. Several regression models are also developed 

and applied on the collected data. In this context, Gaussian Processes helped achieved 

the lowest error in prediction. Examined results using the Clarke error grid demonstrate 

that for the broad-band and octa-band sensors 100% of the predicted glucose levels lay 

in the clinically acceptable regions. 

For future work, the broad-band and reconfigurable octa-band sensors will be 

clinically tested on a larger number of volunteers. The regression model can also be 

developed further based on the newly collected data. Furthermore, a miniaturized mean 

to analyze the data and visualize glucose levels will be considered. 
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