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Unfortunate tragedies have previously been the result of high-density human 
crowds or pedestrian flow. In addition to, crowd behavior as a reaction to an incident 
aggravates the complexity and disruption of human flow, resulting in possible trampling 
and crushing situations. Therefore, it is important to monitor such crowd motion for 
danger warning and prevention. In this study, a frame work was established to 
provide continuous monitoring and estimation of crowd flow and load on pedestrian 
bridges, with particular focus on high crowd density enhancing operation safety. A main 
innovation under sensing instrumentation is the employment of structurally mounted 
Fiber Bragg Gratings (FBG) Fiber Optic Sensors (FOS), in conjunction 
with individually held wearable sensing devices incorporating Inertial Measurement 
Unit (IMU). Furthermore, the approach added innovation under machine learning 
employment, primarily Convolutional Neural Networks (CNN) along with conventional 
Support Vector Machine (SVM) algorithms thus generating crowd estimation models 
from gathered sensors’ data. The concept was validated using experimental 
measurements on two phases based on crowd replication scenarios on a scaled test 
bridge. Generated machine learning models demonstrated effectiveness in crowd 
attribute classification for flow activity and load characterization, along with 
regression model for load estimation. Multi-modal sensor fusion at the input and feature 
level was further applied on strain and acceleration data collected enriching the machine 
learning models, thus enhancing system efficiency and robustness against noisy and 
time shifted input data. The results showed that the monitoring solution to be highly 
effective with peak testing accuracy for single class flow activity classification at 98%, 
multi-class flow and load characterization classification at 91%, and percentage error 
for load estimation regression reaching a minimum of 9%. 
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CHAPTER I 

INTRODUCTION 
 

 

A. Problem Definition 

The issue of crowd safety is a matter of growing importance. Pedestrian 

behavior varies under different scenarios, whether in a normal everyday situation or in 

events of mass gatherings. Festivals, religious observances, sporting events, concerts 

and political rallies can be all considered as such where crowd disasters have a large 

likelihood of occurring. During high density crowds, there is a potential of injury with 

leading possibility loss of life due to the dynamics of the crowd in said events. It has 

been argued that crowd behavior is unlikely to be predicted easily for the reason that 

people are irrational and erratic. Factors such as poor crowd control, high crowd 

density, and constrained access may all contribute to unfortunate pedestrian disasters.  

Stampede and related cases 

Panic stampedes are one of the most relevant and serious concern during mass 

events. A type of threat a pedestrian may be subjected to is trampling. In these 

situations, although the density of the crowd is high, movement of the pedestrians is still 

possible and any pedestrian that falls may find that they are unable to stand again 

because of jostling from the motion of other pedestrians. Consequently, fatalities may 

occur from the percussion by the feet of those standing who are unaware of the fallen 

pedestrian or by asphyxiation by others tripping and falling on top. Another type of 

fatality caused by crowding is where pedestrians are crushed. In situations where 
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pedestrians are crushed, the density of the crowd is extremely high and the physical 

movement of pedestrians is almost impossible. When crushing occurs, the high 

pressures developed within the crowd, which has the force capable of bending steel 

barriers or knocking down brick walls, can be unbearable to some members of the 

crowd, producing fatalities from asphyxiation while still standing. 

An annual Islamic pilgrimage to Mecca, The Hajj, is attended by more than 2.5 

million visitors every year [1]. Unfortunately, the Hajj suffers from time to time tragic 

incidents occurring due to high crowd density movement at the Jamarat bridge [2], 

resulting in some of the most fatal crowd disasters in history. The notable 2015 Hajj 

stampede took the lives of 2236 pilgrims as a result from overcapacity and formation of 

shockwaves at a previously not identified converging path leading to crowd collapse 

[3].  A similar incident at the pilgrimage on January 12, 2006 via video analysis found 

trampling of people can be triggered as different crowd dynamics during high crowd 

densities can cause two sudden flow transition, leading from laminar to stop-and-go 

flow followed by turbulent crowd motion [4].  

Being one of the most populated countries in the world, India has encountered 

mass gathering casualty cases. On October 15, 2016 at least 24 people died and many 

got injured in a stampede in Varanasi, India [5]. On July 14, 2015, at least 27 pilgrims 

died in a stampede on the banks of a Godavari river during Maha Pushkaralu festival in 

Andhra Pradesh, India [6]. 

 

 

 

2 

 



Structure related crowd disaster cases 

Generally speaking, pedestrians themselves walking play a vital role of a 

transportation system. With urban area booming and developing, pedestrian bridges 

construction has risen with some matching the levels of road bridges. Today, an 

increasing number of engineers put an effort in the design stage to accommodate the 

potential threat of pedestrian induced lateral vibrations [7-10]. As a result of such 

dynamics and large lateral vibrations, pedestrian bridges around the globe have 

encountered instability during event of high crowd loading and density [11-14].  

One of the most noted incidents of induced pedestrian lateral vibrations 

occurred at the Toda Park Bridge in Toda City, Japan (T-Bridge) [15]. The large cable-

stayed bridge measuring 179m in length, carried 2000 people simultaneously (crowd 

density of approximately 2.1 pedestrian/m²) subsequently causing lateral acceleration of 

the bridge girder. Though accounting for the resonance step frequency of all pedestrians 

and mutually independent (random) phases, this was larger than expected [16].  

An infrequent yet critical crowd related disaster that may occur during mass 

gathering events is the collapse of pedestrian bridges due to overloading or aging. In 

2010 at Phnom Penh, Cambodia, about 450 casualties resulted from a stampede due to 

swaying suspension footbridge panic [2]. In 2013 at Ratangarh temple, India, stampede 

on a bridge resulted in 89 casualties with many more are published [2]. A recent 

incident on March 2018 occurred in Miami, U.S.A near Florida International University 

where at least six people lost their lives with more injured after a 53m footbridge 

collapsed over an eight-lane street [17]. A pedestrian bridge linked to an island in 
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Prague, Czech Republic collapsed entirely, with reports indicating cause being possible 

steel ropes corrosion [18]. 

Crowd experience influences 

The chaotic behavior and panic of a crowd tend to cause more injuries or 

casualties than the initial cause of the disaster as it has been investigated [2, 19]. An 

investigation into the 2010 Love Parade crowd incident in Germany via video 

recordings analysis was undertaken in [20], with the interest to understand the actual 

cause and distinguish between mass panic and coordination breakdown. Filingeria et al. 

[21] drew five overarching issues that influence crowd experience from analysis of a 

focus group and event observation data, being: physical design of crowd space and 

facilities, public order, crowd movement, communication and information, comfort and 

welfare. Yet lives are still lost in crowd associated disasters despite number of crowd 

control measures.  

 

B. Current Solutions Review 

Collecting, organizing and analyzing data of crowd attributes during an event 

execution are the essential part of any crowd management system. Such monitoring 

operation is vital in order to detect dangerous situations that may result in pedestrian 

asphyxiation by chest compression or stampeding at very high densities. Hence, 

undertaking timely decisions in avoiding potential crowd disaster [22]. 

Studying a crowd behavior can be done by synthesizing derived prediction 

models to be used as priori event planning in a simulation environment. One of the most 

popular models used is the social-force model by [23], where the crowd’s motion and 
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behavior is described and measured as a motivation to perform particular movements. 

Resulting model equations, in terms of motion velocity, spatial distance, and attractive 

and repulsive effects, all through computer simulations are realistically capable of 

describing of pedestrian behavior. 

Vision utilizing machine learning solutions 

System effectiveness relies on accurate crowd related information acquisition 

from the event. Most wildly and conventionally used crowd management systems are 

based on vision technologies, e.g. CCTV. Vision systems can gather crowd related 

information from camera image and video analysis and generate near real time crowd 

control measures. Various research directions have been explored in more advanced 

computer vision-based crowd analysis work. These methods rely on attributes that can 

describe a crowd’s status, including crowd density estimation, face recognition, head, 

pedestrian and crowd tracking from crowd events [24]. People counting or density 

estimation can be done via pixel based analysis, texture level analysis, and object level 

analysis. People tracking or main crowd flow estimation can be done via pedestrian 

tracking, and flow estimation. Understanding people’s behavior can be done via event 

detection and collective behavior [25]. 

Such based systems utilize several forms of machine learning algorithms such 

as Support Vector Machine and Neural Networks for crowd monitoring and estimation 

applications [26]. Wu et al. [27] proposed an approach to estimate the crowd density 

using texture analysis, followed by training a Support Vector Machine (SVM) to relate 

the textural features with the actual density of the scene. Zhang et al. [28], devised a 

multi-column based Convolutional Neural Network (CNN) that takes images as the 
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input and outputs a local density maps (people per square meter) via head size and 

count, thus obtaining a final crowd count. To cope with different head sizes on the same 

image, caused by perspective distortion, the authors proposed the use of filters with 

different sizes of local receptive field to learn the map from the raw pixels, integrating 

into the density maps. Instead of estimating density maps, Sindagi et al. [29] and Fu et 

al. [30] proposed a crowd count classification model. The proposed model classified 

crowd images into various density levels, which in turn can correspond to a coarse 

estimate count in an image. Complexity reduction with increase in performance was 

achieved by Shang et al. [31] following an end-to-end count estimation method using 

CNNs, were entire images are used as an input instead of dividing them into patches. 

In the context of crowd counting, that means detecting pedestrians (whole 

bodies or parts, such as heads) in images or video sequences. They tend to produce 

more accurate results when compared to pixel-level analysis or texture-based 

approaches, but identifying individuals is mostly feasible in lower density crowds. In 

denser crowds, clutter and severe occlusions make the individual counting problem 

almost impossible to solve, despite the recent advances of computer vision and pattern 

recognition techniques [25].  

Systems relying on vision technology are prone to certain limitations and 

concerns such as vision loss, whether due to night operation, smoke, or fog for example. 

Privacy, obstruction of field of view and misperception of extracted image data among 

other may further hinder such system capabilities. Researchers have developed systems 

that overcome basic vision system limitations whilst improving efficiency [32]. 
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Passive infrared sensors [33] and thermal detector sensor array [34] with 

machine learning has been researched as non-image-based crowd monitoring 

techniques. A sensory fusion model of infrared and visual data with Artificial Neural 

Network (ANN) was researched with the purpose of crowd density mapping and 

improving crowd density estimation [35] whilst expected reliability when said 

limitations may occur. A real-time thermal video sequence data acquisition based crowd 

control and monitoring system where an alarm is triggered according to different 

density levels was proposed [36]. In addition, analysis of drone or satellite based high 

resolution aerial images of the area to be monitored have been proposed for crowd 

density estimation.  An unmanned aerial vehicle (UAV) and unmanned ground vehicle 

(UGV) based joint approach was proposed for effective information gathering for 

surveillance and crowd control [37]. 

Human activity monitoring 

Conventional approaches, as per stated literature, utilize computer vision, 

relying on image and video analysis with respectable results as technology and post 

processing advances, however yet still with a few certain disadvantages. It is of interest 

to employ a system that relies on a physically measurable parameter, achieving a direct 

and thorough monitoring. Smartphones today have become an integral carry-on item in 

our daily lives. With the increase in today’s sensing technology, smartphones come 

equipped with a wide variety of sensors (such as accelerometer, gyroscope, and GPS 

among others) and wireless interfaces (such as Wi-Fi, 4G, and Bluetooth among others), 

making them interesting monitoring platforms [38].  A key attribute of a crowd to be 

monitored is recognition of their current activity status, known as Human Activity 
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recognition (HAR), as performed in [39] using a cell phone’s accelerometer. Therefore, 

smartphones and smartwatches are able with the wide range of sensing modalities to 

monitor social behavior and detect crowd dynamics such as flow and bottle necks [40]. 

Maximizing information content and reducing errors, through the approach of multi-

sensor fusion, is of interest of many researchers [41, 42]. In [43], time domain features 

from a smartphones’ triaxial accelerometer, pressure sensor and microphone were 

employed to differentiate between fifteen different activities through a nonlinear 

discriminatory analysis (KDA) approach, together with a nonlinear support vector 

machine classifier (SVM) achieving a 94% in offline subject-independent test. Ronao et 

al. [44] proposed a multi-layer convolution neural network for human activity 

recognition, based on raw time-series data from smartphone sensors. The convnet 

utilized automatic feature extraction on the onboard smartphone’s accelerometer and 

gyroscope to classify six different activities. A total of 10,299 data examples was in use 

for training and testing the convnet, with each example sensor’s axis fed into a 6-

channel 1D convolution layer. In addition, FFT extracted information was merged with 

its corresponding sensor axis at the first convolution layer. Highest accuracy of 

proposed model returned 95.75%, an increase in comparison to SVM with a returning 

accuracy of 94.61%. Jiao et al. [45] collected multi-sensor data through their smart golf 

club for CNN based golf swing classification. The smart golf club integrated two 

orthogonally affixed strain gage sensors, 3-axis accelerometer and 3-axis gyroscope, 

creating an intermediate 1D convolutional convolving 8-channel signals.  
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Structural monitoring 

Besides efforts to avoid bridge disasters by design, Structural Health 

Monitoring (SHM) techniques can be used to continuously monitor the structure’s 

health. Structural health monitoring (SHM) refers to the use of instruments in a 

nondestructive method to measure and analyze key structural parameters under 

operational and environmental conditions, with the core function of warning imminent 

irregular and/or unfortunate incidents at early stage to avoid further damage and 

casualties while also providing structure maintenance information thus increasing life 

span. A smart structure utilizing SHM achieves this with a system consisting of sensors 

or an array of sensors all connected to a central brain or processing station which 

continuously reads measured sensor data, fed into algorithms for analysis. The system is 

able to comprehend the status of the structure automatically reporting to engineers or 

controllers a warning of an anomaly, inherent failure, or damage. 

A large number of research has been focusing on the implementation of SHM 

systems in the aerospace, automotive and civil industry utilizing various sensor types 

[46, 47]. Lately employed SHM instruments namely fiber optic sensors provide accurate 

strain and temperature measurements which may be embedded or retrofitted onto 

existing structures [48]. Furthermore, applying machine learning algorithms on SHM 

systems implemented on bridges for damage detection has been tackled a great deal of 

times. In [49], a PCA baseline model was built using the signals recorded by strain 

FBGs sensors during experiments with an undamaged structure.  During subsequent 

steps, experiments were performed using the structure in the different possible states 

(undamaged and six different damage cases). The FBGs showed a very good sensitivity 
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and were able to detect small strain changes in the structure under the same load 

conditions when small damages were induced. Sohn et al. [50] used fiber optic strain 

gauges with Bragg grating to measure the dynamic response of a ship. A vibration-

based damage detection problem is cast in the context of statistical pattern recognition. 

Following an Auto-Regressive (AR) and Auto-Regressive with eXogenous inputs 

(ARX) prediction models and outlier analysis, the study successfully identifies features 

from the strain time histories that distinguish the signals recorded under the different 

structural conditions of the boat. In [51], an SVM-based procedure has been proposed 

for the detection of fatigue cracking in steel girders based on the data of the SWS. 

Detection of the fatigue cracking stages is a complicated task due to notable changes of 

the strain patterns during crack propagation. Features were inputted to SVM classifiers. 

It was observed that the SVM models can accurately classify most of the damage stages, 

specifically for cracks larger than 10 mm. In addition, tracking the performance of the 

SVM models gives an insight into the damage location. Tang et al.  [52] applied the 

field of damage identification for the whole or the main parts of a bridge. The thesis 

jointly adopts the phase space reconstruction technique and the support vector machine 

to predict the monitoring data of strain and tilt angle of the Pan Yan-zi Bridge. The 

work is of great value for the SVM-based studies of the online security alarming 

technique of the bridge structural monitoring data. In [53, 54], the authors used FBG 

fiber optic sensors to perform dynamic strain measurements, feeding them into a neural 

network in order to identify damages in a composite specimen which represented a 

typical aeronautical construction consisting of skin, frames and stringers. Abdeljaber et 

al. [55] utilized raw accelerometer vibration signals instrumented on a steel frame 
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grandstand simulator for SHM damage detection with the adaptive implementation of a 

1D CNN model. Possible adaptation of SHM systems on a bridge could be used as a 

mean for physically measuring crowd dynamics, comprehending and monitoring 

specific attributes of the crowd.  

In most cases, lack of effective crowd management mechanisms and poor 

physical infrastructure are major contributors to unfortunate pedestrian accidents that 

can lead to a significant number of casualties. A study conducted by [56] emphasized 

how the crowd managers need to be informed in advance about a spatial overview with 

information that may include density, flow and movement. Consequently, real-time 

crowd and long-term SHM is of great importance, maintaining and avoiding potential 

safety disasters. Concept system provides a solution to the simultaneously monitoring of 

both the structure and passing crowd status ensuing intelligent crowd management 

decisions while reducing associated dangers. 

 

C. Aim and Objectives 

The aim of work shown in this thesis is to develop a crowd monitoring solution 

utilizing SHM based sensors as a foundation. Precisely, we present a framework that 

allows for its bridge status monitoring objective whilst mainly focusing on 

simultaneously expanding its functions to crowd monitoring. With the appropriate 

selection, distribution, and combination of sensors, representation of a crowd’s 

characteristics via machine learning postprocessing is attainable resulting in a 

comprehensive understanding and estimation of flow and load. A main contribution in 

our solution instrumentation, is the choice of Fiber Bragg Gratings (FBG) Fiber Optic 
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Sensors (FOS) strain sensors over conventional ones due to its numerous advantages in 

measuring strains exhibited by the structure. In conjunction with FBG FOS, wearable 

devices incorporating Inertial Measurement Unit (IMU) sensors are used to record 

pedestrian physical activity acceleration forces. Strain data will perceive information of 

the crowd as a whole, while acceleration forces data will perceive information at the 

individual level. Data collected are innovatively processed through machine learning 

methods to generate models, namely Convolutional Neural Network (CNN) and the 

accustomed Support Vector Machine (SVM). Acquired data from the different sensing 

modalities are further fused for robust and efficient models’ generation. Final models 

are developed returning valuable crowd attribute information for future decision 

making, avoiding crowd safety risk.  

Following sections of the thesis are organized as follows: Chapter 2 describes 

the concept solution approach in from a broader perspective with emphasis on machine 

learning, data fusion, and FOS. Chapter 3 details initial phase of experimental setup, in 

regards to test bed, instrumentation, and crowd replication. Chapter 4 follows with 

analysis of signal data obtained including results from generated machine learning 

models. Chapter 5 subsequently builds upon initial experiment setup primarily in terms 

of instrumentation. Chapter 6, discusses results generated from SVM and CNN 

classification and regression models along with fusion approaches and noise and time 

shift variances testing accordingly. Chapter 7 concludes with the thesis’s closing 

remarks and future work. 
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CHAPTER II 

PROPOSED APPROACH AND METHODOLOGY 
 

 

The proposed approach and methodology present a framework for crowd 

monitoring and estimation of crowd attributes on data acquired from both the SHM 

system sensors (FBG FOS strain sensors) and wearable sensors (accelerometers). 

Through expanding the ability to monitor the status of a bridge structure by means of 

advanced instrumentation and machine learning techniques, the framework allows for 

possible flow activity and load characterization classifications and load estimation of 

overhead crowd. The thesis’s main focus will be on applying machine learning on data 

gathered with the purpose of crowd monitoring and safety as an application. 

The end target application comprises a pedestrian bridge equipped with a 

network of FBG FOS structurally mounted with wearable IMU sensors worn by passing 

crowds. As pedestrians travel across the bridge, dynamic vibration strain is translated 

into the structure and measured through the FBG sensors. Individuals performing a 

physical activity, such as walking induce body acceleration forces through which 

wearable accelerometers measure. Monitoring a bridge’s strain level can yield 

information of the crowd as a whole, whereas monitoring acceleration forces can yield 

information at an individual level of the crowd, with the future possibility of expanding 

functionality to include location and biometric parameters. In our approach, data 

collected from different sensing modalities serve as input and training information for 

Support Vector Machine (SVM) and Convolutional Neural Network (CNN) machine 
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learning algorithm models. With the intent to complement the sensing approach while 

advancing the capabilities of the models developed by improving reliability and 

robustness of the system during decision making, sensors’ data are further fused and 

integrated. Resulting model capabilities consist of classification models for crowd flow 

activity and load characterization and regression model for total crowd load estimation. 

 

A. Pattern Recognition and Machine Learning 

A pattern could be said as the opposite of chaos. Pattern Recognition is an 

important element for problem solving in all scientific fields. Pattern Recognition 

focuses on the learning and recognition of patterns and regularities within a data, i.e. 

small intra class variation and large interclass variations. Supervised learning is when 

pattern recognition systems train on cases with labeled training data. While in 

Unsupervised learning is when algorithms are used to learn previously unknown 

patterns due to no labeled trained data.  

Pattern Recognition systems can be used to for classification, which attempts to 

assign each input value to a given set of classes or classify data into one of the defined 

groups based on key features. Pattern Recognition systems can also be used for 

regression, which assigns a real valued output to each input whole estimating a 

relationship between among the variables, between output variables, and one or more 

input variables.  

Via statistical approach, each pattern is represented in terms of x measurements 

or features and is projected into a point x-dimensional space. The aim is to choose those 

features that allow pattern vectors belonging to different classes to occupy compact and 
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disjoint regions in an x-dimensional feature space. The effectiveness of the 

representation space (feature set) is determined by how well patterns from different 

classes can be separated. Given a set of training data patterns from each class, the 

objective is to establish decision boundaries in the feature space which separate patterns 

belonging to different classes [57]. In the statistical decision theoretic approach, the 

decision boundaries are determined by the probability distributions of the patterns 

belonging to each class, which must either be specified or learned [58, 59]. 

 

i. Support Vector Machine (SVM) 

Developed by Vapnik [60] and Cortes [61], Support Vector Machine (SVM) is 

a strong and robust algorithm in machine learning. SVM has become a well–known 

approach exploited with positive results in many pattern classification and regression 

applications [62, 63], such as face/object detection and recognition, handwritten 

digital/character recognition, speech/speaker verification and recognition, 

information/image retrieval, gender classification, prediction, and further more. It’s 

regarded as the state-of-the-art tool for resolving linear and non-linear classification 

problems, thanks to its parsimony, flexibility, prediction capacity and the global 

optimum character. The basis of their formulation is the structural risk minimization, 

rather than the empirical risk minimization which is traditionally used in Artificial 

Neural Networks [60]. 

SVM can be basically used to determine an optimal separating hyper-plane or 

decision surface by embracing a novel technique based on mapping the sample points 

into a high-dimensional feature space and it is categorized using a nonlinear 
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transformation Φ, even when the data are linearly inseparable. In other terms, SVM 

with different kernel functions can transform a nonlinear separable problem into a linear 

separable problem by projecting data into the feature space and then finding the optimal 

separate hyper-plane [60]. This transformation is carried out by kernel functions like 

linear, radial basis/gaussian function, sigmoid and polynomial. The optimal hyper-plane 

is gained by solving a quadratic programming problem which is reliant on 

regularization parameters.  

In other words, the basic idea of the SVM is to construct a hyper-plane as the 

decision plane, which separates the positive and negative classes with the largest 

margin, which is related to minimizing the VC dimension of SVM. When the two 

classes are linearly separable, we wish to find a separating hyper-plane which gives the 

smallest generalization error among the infinite number of possible hyper-planes. Such 

an optimal hyper-plane is the one with the maximum margin of separation between the 

two classes, where the margin is the sum of the distances from the hyper-plane to the 

closest data points of each of the two classes. These closest data points to the hyper-

planes are called Support Vectors (SVs), shown in Figure 1 as data points on the dashed 

line [63]. An extension to nonlinear decision surfaces is necessary since real-life 

classification problems are hard to be solved by a linear classifier. When the decision 

function is not a linear function of the data, the data will be mapped from the input 

space into a high dimensional feature space by a nonlinear transformation. In this high 

dimensional featured space, the generalized optimal separating hyper-plane is 

constructed. Cover's theorem states that if the transformation is nonlinear and the 

dimensionality of the feature space is high enough, then input space may be transformed 
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into a new feature space where the patterns are linearly separable with high probability. 

This nonlinear transformation is performed in implicit way through so-called kernel 

functions (Kernel types include linear, radial basis function, sigmoid and polynomial). 

In order to accomplish nonlinear decision function, an initial mapping of the data into 

an (usually significantly higher dimensional) Euclidean space is performed, and the 

linear classification problem is formulated in the new space with dimension d. The 

training algorithm then only depends on the data through dot product. The data can 

become linearly separable in feature space although original input is not linearly 

separable in the input space. Hence kernel substitution provides a route for obtaining 

nonlinear algorithms from algorithms previously restricted to handling linear separable 

datasets. The use of implicit kernels allows reducing the dimension of the problem and 

overcoming the so-called dimension curse. Variant learning machines are constructed 

according to the different kernel function and thus construct different hyper-planes in 

feature space [63]. In practical applications for real-life data, the two classes are not 

completely separable, but a hyper-plane that maximizes the margin while minimizing a 

quantity proportional to the misclassification errors can still be determined. This can be 

done by introducing positive slack variables. If an error occurs, a parameter C is chosen 

by the user that controls the tradeoff between the margin and the misclassification 

errors. A larger C means that a higher penalty to misclassification errors is assigned 

[63]. 
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1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (1) 

with constraints being: 

 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇 𝜙𝜙(𝑥𝑥𝑖𝑖) + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖  (2) 

 𝜉𝜉𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … … … … ,𝑁𝑁 (3) 

 

 

Figure 1. A simple linear support vector machine – hyperplane separation for 
classification 

 

The single-class classification can be extended adopting multi-class classification 

through either constructing and combining (known as one-against-one) or by 

considering all the data at once (known as one-against-all). 

Traditional/statistical regression procedures are often stated as the processes 

deriving a function that has the least deviation between predicted and experimentally 

observed responses for all training examples. One of the main characteristics of Support 

Vector Regression (SVR) is that instead of minimizing the observed training error, SVR 

attempts to minimize the generalized error bound so as to achieve generalized 
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performance. This generalization error bound is the combination of the training error 

and a regularization term that controls the complexity of the hypothesis space [64]. In ε-

SV regression [60], our goal is to find a function that has at most ε deviation from the 

actually obtained targets for all the training data, and at the same time is as flat as 

possible. In other words, we do not care about errors as long as they are less than ε, but 

will not accept any deviation larger than this. The next step is to make the SV algorithm 

nonlinear. This, for instance, could be achieved by simply preprocessing the training 

patterns by a map into some feature space, and then applying the standard SV regression 

algorithm. The input pattern (for which a prediction is to be made) is mapped into 

feature space by a map. Then dot products are computed with the images of the training 

patterns under the map. This corresponds to evaluating kernel functions. Finally, the dot 

products are added up using the weights. This, plus a constant term yields the final 

prediction output. The process described here is very similar to regression in a neural 

network, with the difference, that in the SV case the weights in the input layer are a 

subset of the training patterns [65].  

 
1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶�𝜉𝜉𝑖𝑖

𝑁𝑁

𝑖𝑖=1

+  �𝜉𝜉∗𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (4) 

with constraints being: 

 

 𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖) + 𝑏𝑏 −  𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 +  𝜉𝜉∗𝑖𝑖  (5) 

 𝑦𝑦𝑖𝑖 −  𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥𝑖𝑖) − 𝑏𝑏𝑖𝑖  ≤ 𝜀𝜀 +  𝜉𝜉∗𝑖𝑖  (6) 

 
𝜉𝜉𝑖𝑖 , 𝜉𝜉∗𝑖𝑖  ≥ 0, 𝑖𝑖 = 1, … … … . . ,𝑁𝑁 

(7) 
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The model produced by support vector classification only depends on a subset 

of the training data, because the cost function for building the model does not care about 

training points that lie beyond the margin. Analogously, the model produced by SVR 

only depends on a subset of the training data, because the cost function for building the 

model ignores any training data that is close (within a threshold ε) to the model 

prediction [64], while defining the loss function that ignores errors, which are situated 

within the certain distance of the true value as shown in Figure 2. This type of function 

is often called – epsilon intensive – loss function. 

 
Figure 2. A simple linear support vector machine – fitting for regression 
 

Detailed explanation and mathematical formulation of Support Vector Machine 

classification and regression has been thoroughly published [63-68]. 
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ii. Gaussian Process (GP) 

Gaussian Process (GP) is a collection of random variables, any finite number 

of which has (consistent) joint Gaussian distributions. A Gaussian process is fully 

specified by its mean function and covariance function. The mean is a function (which 

is often the zero function), and the covariance is a function which expresses the 

expected covariance between the value of the function at the points. The actual function 

in any data modeling problem is assumed to be a single sample from this Gaussian 

distribution. The equivalent kernel is a way of understanding how Gaussian process 

regression works for large sample sizes based on a continuum limit. In Gaussian process 

regression, the covariance between the outputs at input locations is usually assumed to 

depend on the distance [64]. This is a natural generalization of the Gaussian distribution 

whose mean and covariance is a vector and matrix, respectively [69]. Meaning: “the 

function is distributed as a GP with mean function and covariance function” [69]. 

GPR has several advantages, including adaptation to nonlinearities with kernel 

functions, robust selection of kernel hyper-parameters via maximization of marginal 

likelihoods (namely type-II maximum likelihood), and a Bayesian formalism for 

inference that enables better generalization from small training sets [70].  

Detailed explanation and mathematical formulation of GP can be found at [70, 71]. 
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iii. Convolutional Neural Network (CNN) 

A Convolution Neural Network (CNN) is a deep artificial neural network 

which possesses huge representational capacity and that automatically learns the useful 

good features at every layer of the network hierarchy. The network consists of multiple 

layers each fulfilling a specific role with learnable weights and biases. It has been 

effectively applied to many vision-based classification problems such as visual object 

recognition and handwriting digit/character recognition [41-44].  

Being hierarchical, multi-layer neural networks with a deep supervised learning 

architecture and trained with the back-propagation algorithm [43], CNNs are composed 

of an automatic feature extractor and a trainable classifier. CNN have the capability of 

extracting features information from its data without the need of manual hand-crafted 

feature-based selection. Advantage wise, it removes the element of the designer and 

relies on the algorithm to detect and extract globally relevant discriminative features in 

the data. The automatically extracted features from the input image have the benefit of 

being invariant to the shift and shape distortions such as in a case of input textual 

images [45]. In addition, CNN mixes three main hierarchical aspects such as local 

receptive fields, weight sharing and spatial sub-sampling/pooling [43]. 

CNNs are exploited to learn complex, high dimensional data, and differ in how 

convolutional and sub-sampling layers are queried into, i.e. the difference lies within 

their architecture with each designed for a specific form of application.  

The net shown in Figure 3 represents an example of a CNN architecture with a pair of 

two layers. Initially, the input is convolved with a set of filters in order to obtain values 

of the feature map. Next, in order to reduce the dimensionality of the spatial resolution 
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of the feature map, each convolution layer is pursued by a sub-sampling/pooling layer. 

Convolutional layers alternate sub-sampling layers constitute the feature extractor to 

retrieves discriminating features from the raw images. Ultimately, these layers are 

followed by a Fully Connected (FC) layer and the output layer with the output of the 

previous layer taken by each layer as the input [46]. 

 

 

Figure 3. Data processing stages in a simple convolutional neural network 
 

A convolution layer is composed of several convolution kernels which are used 

to compute different feature maps. Specifically, each neuron of a feature map is 

connected to a region of neighboring neurons in the previous layer. Such a 

neighborhood is referred to as the neuron’s receptive field in the previous layer. The 

new feature map can be obtained by first convolving the input with a learned kernel and 

then applying an element-wise nonlinear activation function on the convolved results. 

Note that, to generate each feature map, the kernel is shared by all spatial locations of 

the input. The complete feature maps are obtained by using several different kernels. 

The activation function introduces nonlinearities to CNN, which are desirable for multi-

layer networks to detect nonlinear features. Typical activation functions are sigmoid, 
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tanh and Rectified Linear Unit (ReLU). Feature representations’ complexity level 

increases with the depth of the convolutions in the network. Placed between two 

convolutional layers, the pooling layer aims to achieve shift-invariance and efficiency 

by reducing the resolution of the feature maps. It is achieved through operations such as 

average and max pooling. Each feature map of a pooling layer is connected to its 

corresponding feature map of the preceding convolutional layer. By stacking several 

convolutional and pooling layers, we could gradually extract higher-level feature 

representations. After several convolutional and pooling layers, there may be one or 

more fully-connected layers which aim to perform high- level reasoning. They take all 

neurons in the previous layer and connect them to every single neuron of current layer 

to generate global semantic information. The output layer of a CNNs is typically a 

softmax operator that computes the probability distribution over the predicted classes, 

followed by a classification layer. Whereas for regression applications, the classification 

layer is replaced by a regression layer with the exclusion of the softmax operator. 

Detailed information on CNN architecture can be found in this paper [72]. 

 

B. Data Fusion 

A major aspect of the proposed system concept relies on data fusion between 

FBG and IMU sensors. The nature of measurement from the two sensing modalities 

allows for the monitoring of both the structure and individuals in the crowd. The fusion 

aspect provides redundancy against possible failure. Data collected from different 

sensors are combined and jointly processed for machine learning model generation, 

estimating specific crowd attributes. This allows for a richer representation of the 
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crowd-structure system. Added benefits include the capability of distinguishing between 

possible crowd overloading or structure deterioration or dangerous loading. Outputs 

with increased certainty provide information, triggering any preventative protocols.  

Depending on application, data fusion is achieved at three different arbitrary 

levels; input, feature, and decision. Input-level fusion can be categorized when different 

sensors’ data are directly combined, forming a new single data array. This may be then 

used as an input for machine learning algorithms. Fusion at the feature-level occurs 

when the machine learning algorithm fuses multiple data which has been 

simultaneously fed through. Decision-level fusion occurs at the machine learning 

algorithm outputs, where they are fuse by undertaking a decisive output based on 

discriminative results. 

 

C. Fiber Optic Sensors (FOS) 

Electrical sensors have for decades been the standard mechanism for measuring 

physical and mechanical parameters. Despite their ubiquity, these sensors have inherent 

limitations such as transmission loss, susceptibility to electromagnetic interference 

(noise), sensitivity due to seasonal changes and operational conditions. With the 

addition of power supply requirement for every sensor, their usage thus becomes 

challenging or impractical in many applications. Another problematic challenge for 

SHM systems utilizing conventional sensors especially when dealing with large 

structures spanning a long distance with high number of sensing nodes, is wiring. Fiber 

optic sensing excels to these challenges, replacing light in standard optical fiber with 

electricity in copper wire. 
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Devices into which the measured object or input signal introduces 

modifications or modulations in some of the characteristics of light in an optical system 

can be considered Photonic/ Optical Sensors (OS). If fiber optic technology is used in 

any of the processes or parts, then the OS can be considered an Optical Fiber Sensor 

(OFS) or Fiber Optic Sensing (FOS) [73]. Fundamentally, a fiber optic sensor works by 

modulating one or more properties of a propagating light wave (including intensity, 

phase, polarization, wavelength, and frequency) in response to the environmental 

parameter being measured, which can range from mechanical, chemical, and biological. 

The usefulness of the fiber optic sensor therefore depends upon the magnitude of this 

change and our ability to measure and quantify the same reliably and accurately [74].  

The main advantages of FOS are derived from the particular characteristics of 

its core material, Silica which has the following benefits: passive, dielectric, low losses 

at optical frequencies, electromagnetic interference immunity, chemically inert, 

biocompatible, ability to withstand high temperatures, multiplexing capability, quasi- 

and fully distributed sensing points, small and lightweight. Although expensive when 

compared to conventional instrumentations, their multiplexing capability and capability 

to run over distances as great as 20 km outweigh the cost [73]. Even though fiber optic 

sensors are apparently expensive for widespread use in health monitoring, they are 

better approaches for applications where reliability in challenging environments is 

essential. Price is often no longer a showstopper when the security or efficient 

management of very expensive systems, such as civil engineering structures, could lead 

to catastrophic consequences. Fiber optic sensors can even become cost effective when 

involving a significant number of sensors, such as in civil engineering applications. In 
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some extreme applications, such as in the oil and gas industry, fiber-optic sensors are 

sometimes the only available solution for reliable and long-term physical parameter 

monitoring [75]. 

i. Fiber Bragg Grating 

Intrinsic optical sensors can measure temperature, strain, pressure, and other 

parameters by monitoring the resulting changes in the intensity, phase, polarization, 

wavelength or transit time of light within the fiber. One of the most common and 

technologically advanced types of FOS is based on Fiber Bragg Grating (FBG). FBG 

sensors operate in a way such that gratings or ‘wavelength selective mirrors’ are 

inscribed into the fiber which reflects only a specific wavelength, referred to as the 

Bragg wavelength (which have very small bandwidths so-called peaks), from the input 

light wavelength spectrum with the rest transmitting through. 

Stretching a strain gage sensor causes a change in resistance of the metal grid. 

When an FBG sensor, hence the grating period Λ is stretched, compressed, or undergoes 

thermal expansion and contraction, the Bragg wavelength shifts accordingly as shown 

in Figure 4.  When a broad-spectrum light beam is sent to an FBG, reflections from 

each segment of alternating refractive index interfere constructively only for a specific 

wavelength of light, called the Bragg wavelength. This effectively causes the FBG to 

reflect a specific frequency of light while transmitting all others. 
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Figure 4. FBG structure and working principle in respect to shifts in reflected Bragg 

wavelength due to strain 
 

Strain and temperature changes are identified by a data acquisition hardware 

know as an interrogator. The interrogation units are responsible for reading the Bragg 

wavelength shift of the FBGs induced by various the physical parameters [76]. The 

interrogator then uses a wavelength demodulation technique to observe the change in 

wavelength and interpret them into meaningfully correlated measurements. Because the 

Bragg wavelength is a function of the spacing between the gratings, FBGs can be 

manufactured with various Bragg wavelengths, which enable different FBGs to reflect 

unique wavelengths of light. FBG techniques can either have a handful of sensing 

points or be fully distributed as well. By manufacturing a fiber with continuously 

inscribed FBGs, engineers can analyze the changes in the way the light reflects and 

interpret this information to provide accurate measurements. This enables interrogators 

that use continuously written gratings to obtain precise measurements down to 

millimeters of spatial resolution even in harsh and dynamic environments. 

Since both strain and temperature induce reflected Bragg wavelength shift; 

therefore, their contributions have to be separated for accurate measurements of each 
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variable. The simplest one is called reference fiber method, which uses a dummy 

reference Bragg grating subjected to the same thermal environment but free from 

mechanical load.  
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CHAPTER III 

EXPERIMENTAL VALIDATION – PHASE I 
 

 

In order to proof validity of monitoring concept, a preliminary experimental 

setup is worked on to put the proposed approach and methodology to test, were a subset 

of aims and objectives are to be implemented. in Experimental Validation – Phase I will 

focus on a defined section regarding instrumentation and machine learning approach. 

FBG based FOS are used for instrumentation on a testing platform to replicate crowd 

flow on a structure. Data collected are used to classify crowd flow activity and load 

estimation using SVM and GP machine learning approach; SVM for classification, and 

SVR along with GP for regression accordingly. 

 

A. Test Bridge 

A scaled test bridge model, shown in Figure 5, measuring four meters in length 

and one meter in width and consisting of three steel C-beams is constructed. Three 

shoulder steel plates connect the three C-beam together laterally at approximately every 

0.95 meters interval along the length. The bridge is modeled as a simply supported 

beam with a pin and roller. Wood panels are placed on the top surface of the bridge 

allowing full load distribution as well as ease for a pedestrian volunteer to walk. 

Subsequent instrumentation and crowd simulation for data gathering is to be done on 

the designed test bridge. 
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(a) 

 
(b) 

 

 
(c)  

 
Figure 5. Test-bed bridge to be used for crowd data acquisition (a) technical drawing (cm) 

- top view, (b) technical drawing (cm) - front view, (c) assembled 
 

31 

 



B. Instrumentation 

Experiment instruments were sourced from Micron Optics. Sensing consisted 

of three FBG os3610 (25cm gage) surface mounted strain sensors to measure structural 

strain levels. The sensors were daisy-chained along and mounted underneath the central 

C-beam (at marked location shown in Figure 5(a)) of the bridge via epoxy bonded 

brackets, as shown in  

Figure 11 installed at the marked locations in Figure 6. Each sensor contains 

two FBGs, where one measures strain while the other measures temperature for 

compensation purposes in real-time. A Micron Optics wavelength division multiplexer 

interrogator, Hyperion si255, was employed to send, receive, and interpret light signals 

at a sampling rate of 100 Hz through the FBG sensors. A laptop with ENLIGHT 

software (Micron Optics propriety interrogator software) was used for recording and 

saving the strain data from the interrogator locally on the machine for further 

processing. The recording process is initialized by a trigger action where one of the end 

sensors read above 5 µε, with a pre-trigger recording of 100 milliseconds and total 

recording length of 10 seconds. 

C. Crowd Replication 

In order to generate a dataset for the machine learning models, emulating 

crowd flow on a pedestrian bridge is essential.  Groups of volunteers were gathered to 

walk on the test bridge under various sizes (as shown in Table 1) and two flow activity 

types: walking leisurely (slow) or walking hurriedly (fast). As a group walked across 

the bridge, strain levels from the structure’s three FBG sensors were recorded for the 

collective crowd. Each recorded observation was labeled according to the total mass of  
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Figure 6. Experiment setup demonstrating how the interrogator is connected to the three 
daisy-chained FBG strain sensors mounted below the middle C-beam  

 

pedestrian(s) walking, group size, and flow activity type; slow or fast. Each control 

group walked across the bridge forwards and back five times for each slow and fast 

respectively, resulting in a dataset of 1400 observations.  
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Table 1: Volunteer composition used in Phase 1 crowd replication; dataset indicating size 
of groups, total groups and average mass per group size 

Group Size Total Groups Average Mass (Kg) 
1 18 81 
2 8 158.7 
3 8 221.8 
4 8 289 
5 8 366.7 
6 8 449.6 
8 8 580.8 
10 4 707.4 

 

 
Figure 7. Group of eight walking fast on the test bridge  
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CHAPTER IV 

RESULTS AND DISCUSSIONS – PHASE I 
 

Recorded strain data was further processed further using MATLAB 2017b for 

generating machine learning models. Models were generated for three different inputs 

types as training data. For future application in mind, Raw strain data was used as a 

training data. In addition, Fast Fourier Transfer (FFT) function applied on the Raw 

signal was used. Furthermore, several manually extracted features from the Raw signal 

were used as training data, of which some included: Maximum Strain, Average 

Maximum Strain, Average Peaks*, Maximum Peaks*, Number of Peaks*, Area under 

Strain Curve, Maximum FFT value and location between 1.5Hz and 2.5Hz, and Mean 

Frequency.  

*(Low pass Filter was applied to the Raw signal for features related to peaks) 

 

A. Raw Signal 

Raw data signal of a group of one and a group of ten walking under both flow 

activity of Slow and Fast is shown is shown in Figure 8 and Figure 9. Visible distinction 

in terms of peaks, length, and area under signal curve can be seen between same groups 

of either Slow or Fast, in addition to between groups of different sizes and total mass. 

It was evident from the strain signal that a person’s/collective crowd steps can 

be visually differentiated and identified as the person/crowd walks pass the sensors. 

According to Figure 8, maximum read strain value per sensor occurs when 
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Figure 8. One person – 74 kg, (top right) fast, (bottom right) slow 
 

 

  

Figure 9. Ten persons – 726 kg (top) fast, (bottom) slow 
 

the volunteered single person walking is directly above it, with maximum global strain 

occurring when the walking passed the middle of the bridge and above the middle 

sensor. A similar trend pertaining to a group of ten can also be seen in Figure 9, along 

with an observation of the strain signal returning similar to that of a static load during 

the continuous flow of crowd. 
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B. Features 

Features extracted demonstrate a visible pattern whether in terms of a linear 

relationship to weight or distinction between slow and fast.  A couple of manually 

extracted features from the middle sensor are presented in Figure 10. Features related to 

FFT, Mean Frequency, and Area under Strain Curve are used in generating 

classification models, with Maximum Peak, Maximum Strain and Area under Strain 

Curve as well can in regression model generation.  
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(b) 

Figure 10. Selected extracted features (a) Maximum Strain vs. Mass, (b) Area vs. Mass 
 

 

C. Classification and Regression Models 

Raw signal (consisting of 3000 data points), FFT signal (consisting of 1500 

data points) and extracted features (consisting of 25 data points) are each served as 

types of training data for the machine learning models. SVM/R is used for both single 

class classification of crowd flow activity; Slow or Fast, and load estimation prediction 

of crowd load mass accordingly, with both utilizing three different kernels; Quadratic, 

Cubic. GP will be additionally used for regression utilizing an Exponential kernel. Data 

was split with 20% not used in training assigned to Testing. Classification test results 

are that of true positive and true negative sensitivity from a confusion matrix and their 

corresponding accuracy percentage, with a higher number indicating a better 

performance. Regression test results are based on the percentage difference between 
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estimated and actual mass followed by the mean for all the groups in both flow 

activities, with lower numbers indicating a better performance. 

 

Table 2: Classification and regression model testing results per signal type and machine 
learning approach 

Classification – crowd flow activity; Slow or Fast 
 Testing 

Accuracy (%) 
Sensitivity 

(Slow | Fast) 
Training Data: Raw Signal 

SVM - Quadratic  90.59 0.91 | 0.91 
SVM - Cubic 88.53 0.91 | 0.86 
Training Data: FFT Signal 

SVM - Quadratic 93.82 0.96 | 0.92 
SVM - Cubic 93.53 0.95 | 0.92 
Training Data: Extracted Features 

SVM - Quadratic 92.06 0.99 | 0.85 
SVM - Cubic 90.88 0.95 | 0.87 

 
Regression – crowd load mass estimation 

 Testing Mean Error (%) 
Training Data: Raw Signal 
SVM - Quadratic 11.749 

SVM - Cubic 14.875 
Gaussian - Exponential 8.1117 

Training Data: FFT Signal 
SVM - Quadratic 17.954 

SVM - Cubic 19.084 
Gaussian - Exponential 16.889 

Training Data: Extracted Features 
SVM - Quadratic 13.408 

SVM - Cubic 13.181 
Gaussian - Exponential 9.6033 

 

It is evident according to the classification section of Table 2, that model based 

on FFT signal as input returned the highest accuracy on our test data set. However Raw 

signal input and extracted features still perform with relatively with high accuracies 
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similar to that of FFT signal. In terms of kernels, Quadratic always seemed to return a 

better flow activity classification with their sensitivity being higher than that of Cubic.  

It is evident according to the regression section of Table 2, that regression 

based on Raw signal as input returns the least error, followed by Extracted Features and 

FFT signal. In addition, SVM - Quadratic kernel presented a lower mean error when 

compared to SVM - Cubic. However, Gaussian - Exponential generally returned the 

lowest error out of all models, reaching as low as about 10%. 
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CHAPTER V 

EXPERIMENTAL VALIDATION – PHASE II 
 

 

Succeeding the proof of concept regarding the proposed approach and 

methodology in Experimental Validation – Phase I, complete aim and objective 

application scope could now be tackled within Experimental Validation – Phase II.  

The working experimental setup from Experimental Validation – Phase I is 

supplemented in the files of instrumentation, fusion, machine learning approach with 

testing. FBG based FOS alongside wearable accelerometers are instrumented on the test 

bridge. Crowd replications are proceeded with their data serving as SVM and CNN 

machine learning model inputs for flow activity and load characterization classification 

and load estimation.  

 

A. Test Bridge 

The test bridge utilized in Experimental Validation – Phase I was re-allocated 

from an indoor temperature-controlled laboratory to an outdoor location, were it was 

exposed to representative field parameters in terms of temperature cycles among others.  

 

B. Instrumentation 

In addition to identical instrumentations utilized in Experimental Validation – 

Phase I, sensing instruments of a different modality was added to obtain a better 

understanding of a crowd in motion along the test bridge. The pedestrian’s physical 
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activity status was measured through wearable IMU sensors. Measurement data of body 

acceleration forces were acquired by a hand-held smartphone with inbuilt 

accelerometers along the x-, y-, and z-axis, as shown in  

Figure 11. The smartphone ran a custom application that records all three axis 

acceleration forces and transmits them with a unique identification number via Wi-Fi 

over to the workstation’s connected wireless access point at a rate of 20Hz where it is 

saved locally to a database for further processing.  

 

 
 

Figure 11. Experiment setup demonstrating a crowd walking along the test bridge. FBG 
sensors mounted below and connected to the interrogator measure strain. Smartphones 

held per volunteer sends accelerometer data via WiFi to the wireless access point. 
Workstation records strain and acceleration data for post-processing 

 

C. Crowd Replication 

In order to generate a new dataset for the machine learning models similarly as 

one before, emulating crowd flow on a pedestrian bridge is essential.  Groups of 

volunteers were gathered to walk on the bridge under various sizes (as shown in Table 

3) and two flow activity types: walking leisurely (slow) or walking hurriedly (fast). As a 
42 

 



group with each of its members holding a smartphone in their hand as he or she walked 

across the bridge, strain levels from the structure’s three FBG sensors were recorded for 

the collective crowd along with individual group members’ flow-activity induced 

acceleration forces from smartphones. Each recorded observation was labeled according 

to the total mass of pedestrian(s) walking, group size, and flow activity type; slow or 

fast. Each control group walked across the bridge forwards and back twice for both slow 

and fast respectively, resulting in a dataset of 488 observations.  

Table 3: Volunteer composition used in crowd replication; dataset indicating size of 
groups, total groups and average mass per group size  

Group Size Total Groups Average Mass (kg) 
1 10 78.3 
2 10 154.3 
3 10 225.5 
4 10 291.8 
5 10 392.4 
6 10 444.3 
8 1 605.9 

 

 

D. Raw Signal 

Figure 12 illustrates the time synced strain and acceleration levels exhibited by 

a group of 2 individuals weighing 143.9Kg while travelling on the bridge under both 

flow activities; ‘Fast’ Figure 12(a) and ‘Slow’ Figure 12(c). In addition to, a group of 8 

individuals with a total mass of 605.9Kg is shown under both flow activities as well, 

Figure 12(b) and Figure 12(d). 

It is evident from the FBG strain signal and IMU acceleration signal that crowd 

dynamics are translated with distinguishable patterns. The crowd’s steps can be visually 
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differentiated and identified as peaks while passing through the FBG sensors, with 

global peak strain level reading occurring over the centrally mounted bridge sensor 

‘Sensor 2m’. Noticeable strain difference between a crowd of two and eight can be 

observed, regardless of their flow activity (Figure 12(a) and Figure 12(b) or Figure 

12(c) and Figure 12(d)), in term of the maximum amplitude measured by the FBG 

sensors, with higher values indicating total mass and generally larger group sizes. 

Generally, a ‘Fast’ flow activity when compared to ‘Slow’ flow activity can be seen 

with a higher amplitude and shorter activity time span for FBG strain readings 

regardless of group size. Under the same time span for a ‘Flow’ flow activity, 

accelerometer readings for x- and y- axis show sharper rate of change and gradient 

when compared to ‘Slow’ flow activity. Both sensors demonstrate potential utilization 

of advanced machine learning algorithms to accurately classify flow and load 

characterization in addition to load estimation.  
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(a) Group 02 – Fast  (b) Group 08 – Fast 

  

(c) Group 02 – Slow (d) Group 08 – Slow 
Figure 12. Strain and acceleration levels for a group of two under (a) ‘Fast’ and (c) ‘Slow’ 

flow activity. Strain and acceleration levels for a group of eight under (b) ‘Fast’ and (d) 
‘Slow’ flow activity 
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CHAPTER VI 

RESULTS AND DISCUSSIONS – PHASE II 
 
 
A. Classification and Regression Models 

Machine learning models require input data for training purposes. Recorded 

data from crowd replication on the test bridge is to be used for the purpose of machine 

learning model’s generation. Collected data which included both strain and acceleration 

data with their corresponding labels, is used for both classification and regression 

models. In regards to outputs, a two-class classification model yields the capability of 

categorizing a crowd’s flow activity type, i.e. whether the crowd is moving under ’Fast’ 

or ‘Slow’ flow activity. Data are consequently split equally under the two different 

labels. In order to return output with more detailed characterization of the crowd, a 

multi-class classification model is trained with the added labelling to include a load 

characterization class, i.e. ‘Light’ or ‘Heavy’ based on the total weight of the crowd. 

Multi-class output labels include ‘Slow-Light’, ‘Slow-Heavy’, ‘Fast-Light’, and ‘Fast-

Heavy’. Load characterization labels are based on total crowd mass of a 250 Kg 

threshold, further split obtaining roughly equal label distribution. Regression models are 

used to estimate the total crowd mass on bridge. Labels used during training relied only 

on total mass recorded during data acquisition. Due to the varying nature of human 

dynamics and behavior, two regression models are to be generated depending on the 

flow activity type; a model for each of the ‘Slow’ and ‘Fast’ activity types. After 

classification, the total crowd mass is estimated using the appropriate regression model 

according to its flow activity  
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All processing was performed on a workstation with the following 

specifications: Intel® Xeon® W-2123 CPU @ 3.60Ghz, 64.0 GB RAM, NVIDIA 

Quadro P600. Classification models were generated on the workstation utilizing Matlab 

2018b Statistics and Machine Learning Toolbox for SVM and Deep Learning Toolbox 

for CNN.  

Strain data per observation was trimmed among the three FBG sensors 

ensuring equal sets. Utilizing FBG strain data’s timestamps as reference, accelerometer 

data were time synchronized accordingly. Measurements from the three FBG sensors 

were concatenated into a single vector achieving a sequential strain curve according to 

crowd flow. Due to the various natural ways a volunteer might hold the smartphone in 

their hands, it is important not to discriminate on the orientation of the activated axis. 

This was guaranteed by summing, per group size, all the norm of the tri-axis 

smartphone’s accelerometer. The dataset consisted of observations of FBG and 

accelerometer data with their respective labels.  

As mentioned previously, the main advantage and motive for employing CNN 

is due to its automatic feature extraction. Therefore, raw signal data for FBG and 

accelerometers are used as 1D image inputs to generate the CNN estimation models. In 

addition, Fast Fourier Transform (FFT) function is applied on the sensors’ raw signal, to 

be used as input for CNN model generation. To maintain equal assessment, no manually 

extracted features will be used for SVM model generation with equivalent inputs as that 

of CNN to be used accordingly. 

The CNN optimization solvers used for obtaining optimum classification and 

regression results were Stochastic Gradient Descent with Momentum (SGDM), Root 
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Mean Square Propagation (RMSPROP) and ADAM. In the case of SVM, classification 

and regression kernel functions relied on Quadratic and Cubic Polynomial and Gaussian 

for highest results, with multi-class SVM employing one-vs-one approach on same 

kernel function. 

The CNN architecture employed for crowd classification and regression is 

shown in Figure 13. Considered a shallow network, it consists of an image input layer 

followed by a single convolution layer constituting of 20 filters. When performing a 

classification, flow path of architecture continues with a batch normalization layer, a 

ReLu layer, and a max-pooling layer. Final weights are connected at the fully connected 

layer with a softmax operator, superseded by a classification layer. The network 

architecture used when performing a regression is similar to that of classification while 

omitting the batch normalization layer and softmax operator, and substituting the final 

layer for a regression layer instead. Though CNN has been mainly applied in vision 

applications with images used as inputs, each observation of our FBG and 

accelerometer data can be considered as a 1D signal image. Each image’s width 

comprises the width of the signal data vector with a height and channel depth of one.  
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Figure 13. CNN network architecture applied for flow type and load characterization 
classification and load estimate regression models 
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Unbiased evaluation of selected classification and regression models require 

the random splitting of the dataset into training, validation, and testing sets of 

percentages (80:10:10) respectively. Training data is used for model training while 

validation data is used for optimization and tuning of model’s parameters. Testing data 

is treated as unseen data which is then used to evaluate the model’s performance and 

accuracy. Evaluation of classification models is reported through the sum of true 

positive and true negative over total number of testing samples as a percentage accuracy 

with higher values indicating a better performance. Evaluation of regression models is 

reported as the percentage error, which is the difference between estimated and actual 

output followed by a mean for all observations, were lower values indicate a better 

performance. In order to verify generalization, the dataset was randomly split and re-

trained and tested 25 times. Final assessment of performance was based on the mean 

and standard deviation of all generated model’s resulting accuracies. In order to obtain 

objectives, each of the sensing instrument’s dataset are initially used independently for 

model generation. FBG and accelerometer models are evaluated to perceive how these 

sensors may perform individually under crowd attributes classification and regression; 

flow activity class, load characterization class, and load estimation.  

 

B. Noise and Time Shift Invariance 

Testing and evaluating a machine learning model’s robustness is vital. The aim 

of robustness testing is to demonstrate how such models might perform under real world 

scenarios and unexpected complications. For robustness testing, two main error-

inducing factors were tested on the models trained using the original unmodified 
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training data. As a sensor may suddenly become noisy or its data may experience time 

shift, the models were tested on modified data simulating such circumstances. 

Simulating noise is implemented via the addition of a white gaussian noise to the 

sensors’ data. Time shift is accomplished at every observation for both sensors through 

the random shifting along the time axis (maximum of 1 second) and padding with zeros. 

These factors are applied to both the individual (sensor’s raw signal data and re-

applying FFT) and fusion testing portion of the dataset as well. 

 

 
 

(a) FBG (b) Accelerometer 
Figure 14. Strain(a) and acceleration norm (b) between unmodified, noisy, and shifted 

signal 
 

An observation sample from the dataset with simulated noise and time shift for 

both strain and acceleration norm signal is shown in Figure 14. Adding noise to sensors 

data points, clearly alters some important features within the signal while time-shifting 

shift these important features along the time axis. 
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C. Fusion 

i. Sensor number fusion 

Three multiplexed FBG sensors in series mounted below the central C-beam of 

the test bridge measure strain at the three different locations as discussed previously and 

shown in Figure 5(a). It is important to understand if and how the fusion of number of 

sensors and distribution affect results in terms of crowd attributes estimation. In this 

case, focus will be, considering total length and size of test bridge, on whether a single 

FBG strain sensor is sufficient or on a multitude of matching sensors will return 

increased effectiveness. The middle sensor installed at the central of the test bridge 

ought to read the greatest strain exhibited by the structure as the crowd walks on. Along 

with the middle sensor to perceive how it may fair, all three sensors will be trained and 

used to classify flow and load characterization and estimate load accordingly, while 

testing robustness against noise and time shift under both signal types of Raw and FFT 

and SVM and CNN machine learning approach. 

The following figures indicate single and multi-class classification and 

regression results presenting the trend of either middle or all three FBG sensors when 

tested.  
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Figure 15. SVM single class flow activity classification on number of FBG sensors between 
middle and all and their corresponding signal type 

 

It can be readily be observed from Figure 15 that all three sensors return higher 

testing accuracies through SVM than simply using a single middle sensor. Utilizing raw 

signal type data from showed little to non-existent margin difference between all and 

middle sensor. However under the case of FFT signal type, a larger difference can be 

observed, especially when experiencing shift. 
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Figure 16. CNN single class flow activity classification on number of FBG sensors between 
middle and all and their corresponding signal type 

 

 
Figure 16 presents almost no difference between middle and all sensors for unmodified 

testing accuracies under both signal types. A similar trend can be found for noisy 

testing, with the exception of middle sensor using FFT signal type returning a lower 

accuracy. The same observation trend as unmodified testing can be seen for shift 

testing, with all three sensors outperforming their middle counterpart under raw signal 

type.  
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Figure 17. SVM multi-class flow activity and load characterization classification on 
number of FBG sensors between middle and all and their corresponding signal type 

 
It can be observed in Figure 17 both middle and all sensors using FFT signal type return 

virtually same testing results. For unmodified, noisy, and shift testing scenarios under 

raw signal type, the three FBG sensors together outperform the stand-alone middle 

sensor, while returning similar results for noisy shift testing scenario.  

 

 

Figure 18. CNN multi-class flow activity and load characterization classification on 
number of FBG sensors between middle and all and their corresponding signal type 
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Difference between middle and all FBG sensors when using raw signal types, little to no 

difference between their returned testing accuracies can be observed in Figure 18, with 

all slightly higher under noisy testing. Ignoring the trend exhibited using FFT signal 

type for now, the middle sensor returned lower accuracies over all testing scenarios 

when compared to all three at once. 

 

 

Figure 19. SVM load estimation regression on number of FBG sensors between middle 
and all and their corresponding signal type for both flow activities 

 

For both flow activities, a similar trend for both middle and all sensors within the same 

signal type in Figure 19. Under raw signal type, percentage errors from all three sensors 

are lower than that of just the middle sensor. However under FFT signal type, both 

sensors number resulted in similar percentage errors for Fast activity, while middle 

sensor returned higher percentage errors in noise related testing for Slow activity.  
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Figure 20. CNN load estimation regression on number of FBG sensors between middle 
and all and their corresponding signal type for both flow activities 

 
 

For both flow activities Figure 20, the use of all the three sensors using raw signal type 

returned generally lower percentage errors. The only exception where middle sensor 

returned lower percentage error is in the case of noisy testing under Fast activity. Under 

Fast activity, both middle and all sensor showed a similar trend using FFT signal type 

with the latter returning lower percentage errors. Yet again under Slow activity, the 

middle sensor returned lower percentage error for noisy testing, with all three sensors 

fused returning lower percentage errors for rest of testing.  

It can be determined that the all three fused number of FBG strain sensors 

either generally returned similar or better results than the middle sensor when used 

alone.  Inputs regarding FBG will constitute of the three fused sensors data for further 

crowd attribute classification and regression tasks. 

ii. Sensor data fusion 

One of the main objectives, in this work, is to combine and jointly process the 

data collected from different sensing modalities using machine learning models to better 
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estimate crowd flow and load attributes. Rather than relying on information from an 

individual sensor, the data fusion from structural monitoring and wearable sensing 

yields a smarter representation of the unified structure-crowd system. The successful 

fusion of strain at the crowd level and acceleration data at the individual level is 

expected to produce greater robust classification and regression models. Future wise, 

the fusion may possess advanced capabilities such as differentiating between crowd 

overloading, environmental loading, and structural weakening.  Outputs from fusion 

models could be utilized to decisively trigger preventative actions with higher and avoid 

possible incidents and disasters. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 21. Fusion process at the (a) input level and feature level for (b) SVM and (c) CNN 
 

One method of sensor data fusion is achieved by fusion at the input level where 

each pair of observations from the FBG and accelerometer was merely concatenated 
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into a single signal vector is shown in Figure 21(a). The newly fused signal vector is 

employed in the same manner as FBG and accelerometer data was individually used to 

generate classification and regression models for both SVM and CNN. An alternative 

sensor data fusion method employed specifically for SVM is Discriminant Correlation 

Analysis (DCA) [77] occurring at the feature level. As result of DCA, a new more 

discriminative data vector, shown in Figure 21(b), is formed based upon FBG and 

accelerometer data along with their corresponding labels, which in turn is also used for 

generation of classification and regression models. A CNN-specific fusion method at 

the feature level occurs at the convolution layer. The convolution layer is configured to 

function on a two channels basis. Similar to how individual FBG and accelerometer 

signal data arrays are input into the CNN, fusion takes place through the concatenation 

of the individual sensors’ data arrays along the 3rd dimension, as portrayed in Figure 

21(c). Convolution per channel occurs based on the sensor data on each of the 3rd 

dimension. Extracted features per channel are fused as it is forwarded onto the next 

layer for further processing.  

 

D. SVM Results 

The following figures present several classification and regression testing 

results plot for a combination of inputs and signal types. Inputs include data for both 

individual (FBG and Accelerometer) and fusion (input level and DCA feature level). 

Two plots are presented for each of the input data, based on raw and FFT signal type 

used. Results are based on inputs were unmodified, noisy, shifted, and noisy shifted 

testing data was used. Utilized kernels used for models’ training and testing include 
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gaussian, quadratic and cubic polynomial. However, only kernels returning the best 

accuracies based on unmodified testing data for every input under each of the signal 

data type are discussed. Due to the different dynamics under each of the two flow 

activities, separately trained and tested regression models’ results are presented. In 

regards to accuracy evaluation, higher scores indicate better performance for 

classification while lower scores indicate better performance for regression. 

 

 
Figure 22. SVM using raw signal individual and fusion data – Flow activity classification 

testing accuracies for unmodified, noisy, shifted, and noisy shift data 
 

Figure 22 presents the SVM testing accuracies of a single class flow activity 

classification using raw signal type. Plotted unmodified testing accuracy generally for 

all inputs are at the ballpark of 95%, with the exception of accelerometer at 89%. Both 

fusion approaches returned similar comparable accuracies to that of FBG individual 

input, with feature level fusion higher at 95.76%. Noise has little to no effect on 

accuracies when compared to unmodified accuracy with the exception of accelerometer, 
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which reduced to 80%. Shift and noisy shift testing reduced accuracies of all inputs to 

the range of 70%, with accelerometer lower at 50% range.  

 

 
Figure 23. SVM using FFT signal individual and fusion data – Flow activity classification 

testing accuracies for unmodified, noisy, shifted, and noisy shift data 
 

Figure 23 presents the SVM testing accuracies of a single class flow activity 

classification using FFT signal type. Plotted unmodified testing accuracies of all inputs 

in order are 98.5%, 88.8%, 97.8%, and 95% respectively. Noisy testing shows drop in 

accuracy with varying margins across the inputs, with accelerometer at 57% accuracy. 

Shifted and noisy shift testing resulted in little to no reduction in accuracies for FBG 

and input level fusion.  However, a larger margin drop can be seen for accelerometer 

and feature level fusion, the former being the lowest in accuracy.  Input level fusion is 

observed to perform better than feature level fusion.  
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Figure 24. SVM using raw signal individual and fusion data – Flow activity and load 

characterization classification testing accuracies for unmodified, noisy, shifted, and noisy 
shift data 

 

Figure 24 presents the SVM testing accuracies of a multi class flow activity 

and load characterization classification using raw signal type. Plotted unmodified 

testing accuracy for FBG and accelerometer are 89% and 84% respectively. Input and 

feature level fusion returned slightly higher accuracies to that of FBG at 90%. Noisy 

testing barely lowered accuracies across majority of inputs with accelerometer having 

the largest margin at 71%. In a similar case but with greater effect, accuracies of all 

inputs drastically suffer when testing using shifted and noisy shift with input level 

fusion maintaining highest accuracies around 66%. 
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Figure 25. SVM using FFT signal individual and fusion data – Flow activity and load 

characterization classification testing accuracies for unmodified, noisy, shifted, and noisy 
shift data 

 

Figure 25 presents the SVM testing accuracies of a multi class flow activity 

and load characterization classification using FFT signal type. Plotted unmodified 

testing accuracy for FBG and accelerometer are around 90% and 86% respectively. 

Input level fusion returned accuracies slightly higher accuracy at around 92% with DCA 

feature level fusion at 88%. Noisy testing had varying returned accuracies across all 

inputs. Interestingly FBG and input level fusion yielded accuracies for shifted and noisy 

shift testing similar to that of their unmodified testing, with the latter being higher. 

However, along with the largest standard deviation accelerometer yielded accuracies of 

46%, with DCA feature level fusion at 50%. 
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Figure 26. SVM using raw signal individual and fusion data – Load estimation regression 

testing percentage errors for unmodified, noisy, shifted, and noisy shift data 
 

Figure 26 presents the SVM testing percentage errors of load estimation for 

each of the two flow activities, Fast and Slow, using raw signal type. Unmodified 

percentage errors for all inputs data presented are generally below 12%, with DCA 

feature fusion lowest under Slow activity at around 10%. Noise testing either slightly 

increase or maintained percentage errors for all inputs. Shift and Noisy Shift testing had 

a large increase in percentage errors and standard deviation across all inputs, with DCA 

feature fusion returning with the highest margins followed by accelerometer input.  
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Figure 27. SVM using FFT signal individual and fusion data – Load estimation regression 

testing percentage errors for unmodified, noisy, shifted, and noisy shift data 
 

Figure 27 presents the SVM testing percentage errors of load estimation for 

each of the two flow activities, Fast and Slow, using FFT signal type. For both flow 

activities, unmodified percentage errors for FBG and accelerometer presented are about 

10-11% and 12-13% accordingly. Fusion at the input level and DCA feature level 

returned lower accuracies than their individual counterparts at around 8-10% 

respectively. Noise can be seen to increase percentage error with both fusion approaches 

having a lower percentage error when compared to their individual inputs. Shift had 

little to no change in percentage error for FBG input level feature input, while 

increasing for Accelerometer and feature level fusion with larger standard deviation, 

greater for the former. Noisy shift can be observed to increase results with largely 

varying margins. Both accelerometer and feature fusion have the highest percentage 

error along with larger standard deviation. 
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E. CNN Results 

The following figures presents several classification and regression testing 

results plot for a combination of inputs and signal types. Inputs include data for both 

individual (FBG and Accelerometer) and fusion (input level and feature level). Two 

plots are presented for each of the input data, raw and FFT signal type, used. Plotted 

results are based on inputs were unmodified, noisy, shifted, and noisy shifted testing 

data was used. Utilized solvers used for models’ training and testing include SGDM, 

RMSPROP, and ADAM. However, only solvers returning best unmodified testing 

accuracies for every input under each of the signal data type are discussed. Due to the 

different dynamics under each of the two flow activities, separately trained and tested 

regression models’ results are presented. In regards to evaluation, higher scores indicate 

better performance for classification while lower scores indicate better performance for 

regression. 

 

 
Figure 28. CNN using raw signal individual and fusion data – Flow activity classification 

testing accuracies for unmodified, noisy, shifted, and noisy shift data 
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Figure 28 presents the CNN testing accuracies of a single class flow activity 

classification using raw signal type. Plotted unmodified testing accuracy for FBG and 

accelerometer are at 96% and 94% respectively, with both fusions marginally higher.  

Noisy testing can be seen to drop accelerometers accuracy to 83%, with no effect on 

other inputs. Shift and Noisy shift reduce accuracy with FBG around 86% with 

accelerometer returning about 58%, while both fusion at around 83-84%.  

 

 
Figure 29. CNN using FFT signal individual and fusion data – Flow activity classification 

testing accuracies for unmodified, noisy, shifted, and noisy shift data 
 

Figure 29 presents the CNN testing accuracies of a single class flow activity 

classification using FFT signal type. FBG and accelerometer yielded unmodified testing 

accuracies of 98% and 91% accordingly. Fusion at both the input and feature level 

returned accuracies of 97-98%. Testing using Noisy data had little to no effect on 

accuracy drop with feature fusion maintaining the marginally higher results. Testing on 

shifted data yielded accuracies of about 98% for FBG and both fusion approaches used, 

with accelerometer accuracy dropping to 55%. Noisy shift had little to no change on 

accuracies when compared to shifted testing accuracies across all inputs.  
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Figure 30. CNN using raw signal individual and fusion data – Flow activity and load 

characterization classification testing accuracies for unmodified, noisy, shifted, and noisy 
shift data 

 

Figure 30 presents the CNN testing accuracies of a multi class flow activity 

and load characterization classification using raw signal type. FBG yielded an accuracy 

of 89% for unmodified testing, with accelerometer returning 88%. Both fusion 

approaches for unmodified testing resulted in accuracies around 89%. Accuracies are 

reduced by a slight margin during Noisy testing, with the exception of with a margin of 

6% for accelerometer. Accuracies during Shift and Noisy shift is drastically lower 

between the range of 47% and 69% for accelerometer and feature level fusion 

accordingly.  
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Figure 31. CNN using FFT signal individual and fusion data – Flow activity and load 

characterization classification testing accuracies for unmodified, noisy, shifted, and noisy 
shift data 

 

Figure 31 presents the CNN testing accuracies of a multi class flow activity 

and load characterization classification using FFT signal type. Returned unmodified 

testing accuracies for FBG and accelerometer are at about 91% and 85% respectively. 

Input level and feature level fusion yielded accuracies of 94% and 91% accordingly. 

With at exception of accelerometer at same result, Noisy testing drastically lowered 

accuracy to a low of 29% for accelerometer, with both fusion approaches at around 

58%. Testing on Shifted data resulted in accuracies of 91% for FBG, 44% for 

accelerometer, and 89-90% for both fusion inputs. Testing Noisy shift furthers reduces 

accuracies the ballpark of 60-65%, with accelerometer further lower at 25%.  
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Figure 32. CNN using raw signal individual and fusion data – Load estimation regression 

testing percentage errors for unmodified, noisy, shifted, and noisy shift data 
 

Figure 32 presents the CNN testing percentage errors of load estimation for 

each of the two flow activities, Fast and Slow, using raw signal type. Under both flow 

activities, unmodified percentage errors for all inputs data presented are in the range 

between 9-13%, with feature fusion being the lowest at both flow activities. Testing on 

Noise data increases FBG percentage error to relatively 27% for Fast activity and 20% 

for Slow activity, with accelerometer marginally returning about 1% increase. Both 

input and feature level fusion return lower percentage errors than FBG yielding 22% 

and 18% under Fast activity and 18% and 13% accordingly. Testing on Shifted data 

returned a substantial increase in percentage errors, with accelerometer relatively 

maintaining a lower result when compared to the other input data. Noisy Shift, with the 

exception of accelerometer also, further increases percentage errors to generally highest 

values returned per input. Both fusion techniques are generally equal or lower than FBG 

when comparing their shift and noisy shift percentage errors. With the exclusion of 
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accelerometer input, other inputs return accuracies on noisy and shift related testing 

with extreme standard deviations. 

 

 
Figure 33. CNN using FFT signal individual and fusion data – Load estimation regression 

testing percentage errors for unmodified, noisy, shifted, and noisy shift data 
 

Figure 33 presents the CNN testing percentage errors of load estimation for 

each of the two flow activities, Fast and Slow, using FFT signal type. Under both flow 

activities, unmodified percentage errors for FBG and accelerometer inputs data 

presented are between 12% and 15%. Input level and feature level fusion returned 

percentage error between 8% and 11% accordingly under both flow activities. FBG and 

accelerometer percentage error increases to approximately 32% and 26% with noise 

testing under Fast flow activity. Both fusion approaches results increase with input level 

fusion better performing. Under Slow flow activity, FBG percentage error is lower at 

26%, while accelerometer is higher at 40% yet input level fusion being the better fusion 

technique as well at 34%. For Shift testing under both flow activities, FBG yielded a 

percentage error of 15% with accelerometer returning 24% and 31% accordingly. Both 
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fusions resulted in a lower percentage errors for both flow activities when compared to 

their individual input counterparts, with input level fusion being the lowest. Noisy shift 

can be seen to drastically increase percentage errors with large margin peaking at more 

than 50% for accelerometer under Slow flow activity. Input level fusion returns 

percentage error lower than both individual inputs for Fast activity. Both noise related 

testing returns large standard deviations to their inputs.  

 

F. Discussion 

It is to be noted that all classification and regression results are based on the 

mean of generalized models’ results repeated over the course of 25 times, each with a 

random split of training and testing data. The final results displayed per machine 

learning approach for each of the signal type used is based on the kernel/solver that 

returned results with overall better unmodified testing performance. It is important 

when fusion at either level perform or return values similar or higher than the lowest 

performing individual input, otherwise it is to be considered to fail its purpose.  

i. Single Class – Flow Activity Classification 

Returning testing accuracy results of single class flow activity classification of 

both signal types can be seen in Figure 22 and Figure 23 for SVM, and Figure 28 and 

Figure 29 for CNN. 

Approaching though SVM and using raw signal type allows for classification 

of flow activity with high accuracies. While accelerometer results are lower than those 

of FBG, fusion at the input level maintains similar results as that of FBG with feature 

level fusion achieving a slightly higher accuracy on unmodified and noisy testing data. 
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Applying shift related testing data drop returned accuracies for both FBG and 

accelerometer, with both fusions having similar results as FBG. Using FFT signal type 

showed an overall increase in accuracies for all inputs across the various testing data, 

with the exception of accelerometer which maintained a relative similar accuracy. 

Varying reduction in accuracies occurs when testing noise across all inputs with 

accelerometer having the largest margin drop. Shift related testing also fairs well across 

inputs with the exception on accelerometer. Input level fusion maintains being the better 

fusion approach.  

Approaching though CNN and using raw signal type returns high accuracies as 

well for flow activity classification. Both FBG and accelerometer are of high 

accuracies, yet both fusion approaches achieved slightly higher accuracies. Noise 

testing had little to no effect on accuracies, with the exception of accelerometer input 

where accuracies reduced. Shift and noisy shift further reduce for FBG and both fusion 

levels to similar levels, with accelerometer having the largest reduction in accuracy. 

Using FFT signal type, accelerometer input yet showed high returns when tested using 

unmodified, but dropped when testing nosie and further significantly under shift and 

noisy shift testing. FBG and both level fusion returned similar high results with noise 

related testing marginally below. However, feature level fusion returned results are as 

high as input level fusion with close matching accuracies through all subjected testing 

data. 
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ii. Multi Class – Flow Activity and Load Characterization 

Classification 

Testing accuracy results of multi class flow activity and load characterization 

classification of both signal types is displayed in Figure 24 and Figure 25 for SVM, and 

in Figure 30 and Figure 31 for CNN. 

Utilizing raw signal type on SVM, unmodified testing results for both fusion 

techniques was higher than accelerometer and slightly above FBG input. Noise testing 

had no effect on FBG and little reduction effect on both levels of fusion, while 

accuracies dropped for accelerometer. Shift and noisy shift significantly reduced 

accuracies with input fusion returning highest results, though slightly, among the inputs. 

However, feature fusion returned shift related testing results lower than the individual 

inputs. Through same machine learning approach but using FFT signal type, accuracies 

of FBG and accelerometer unmodified testing maintained high values, with input level 

fusion returning slightly higher accuracy values. Noise testing reduced accuracy of 

varying levels with accelerometer being the lowest. A similar observance under noise 

and noisy shift testing with input fusion being the highest. However, accelerometer and 

feature level fusion accuracies dropped significantly, with the latter slightly higher. 

CNN approach using raw signal type returned high unmodified testing 

accuracies for individual inputs, with both input and feature fusion similar, with the 

former being the highest overall. Little reduction in accuracies with varying small 

margins across inputs is observed when subjected to noise testing. Shift related testing 

significantly reduced accuracies among the individual inputs, while both input and 

feature fusion returned slightly higher accuracies when compared to the highest 
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individual input, FBG. Approaching through the use of FFT signal type returned high 

unmodified and similar shift testing accuracies with the exception of accelerometer 

input, and input level fusion returning highest unmodified testing value. Noise related 

testing dropped accuracies significantly, accelerometer being the worst. With the 

exception of shift testing input level fusion returned the marginally higher accuracies 

when compared to feature level fusion.  

iii. Load Estimation Regression 

Testing accuracies results of load estimation regression using both signal types 

are shown in Figure 26 and Figure 27 for SVM, and in Figure 32 and Figure 33 for 

CNN.  

Estimating load through SVM while using raw signal type returned low 

percentage errors with noise having little increase. Feature level fusion employed is 

observed to have a better effect under both flow activity. However, shift related testing 

resulted in increase in percentage errors of individual inputs with input level fusion 

performing similar to FBG while feature level fusion failing with large standard 

deviations. Discrepancy is observed during shift related testing subjected on feature 

level fusion under both flow activity, were returned values are higher than the 

individual inputs of comparable testing. Using FFT signal type resulted in low 

percentage errors as well with both fusions returning lower unmodified testing values 

than their individual inputs respectively. Noise testing affected and increased individual 

inputs, while having a smaller increase fir both fusion, feature level being the lowest. 

Shift related testing had a significant increase in percentage error for accelerometer 
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under Fast flow activity, yet input level fusion returned lower results across all inputs 

for both flow activities. 

When estimating using CNN machine learning approach and raw signal type, 

individual inputs returned low percentage errors with feature level returning slightly 

lower values. Noise and shift had smaller effect on accelerometer data when compared 

to others with largely varying margins. With the exception of accelerometer, noisy shift 

affected greatly all inputs with the greatest standard deviations. Using FFT signal type 

returned unmodified testing percentage errors of both fusion lower than their 

comparable individual inputs on both flow activities, input level fusion being the lower. 

Noise and noisy shift increase drastically percentage errors of FBG and accelerometer, 

hence both fusion techniques suffer with large standard deviations. Yet fusion 

approaches are still lower than accelerometer under Slow flow activity. Shift has little to 

no effect on FBG input with a larger change observed for accelerometer input. Both 

fusion approaches return lower percentage errors than FBG. Discrepancy is observed 

during noise related testing subjected on feature level fusion under Fast flow activity, 

were returned values are higher than the individual inputs of comparable testing.  

iv. Discrepancy analysis 

Two regression cases of inconsistency in fusion results were observed. Using 

raw signal type on SVM load estimation, Figure 26, caused feature level fusion to return 

higher percentage errors than the individual inputs when subjected to shift and noisy 

shift testing under both flow activities. Another case is when using FFT signal type on 

CNN for load estimation, Figure 33, caused input level fusion to return higher 
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percentage errors than the individual inputs when subjected to noise and noisy shift 

testing under Fast flow activity  

In order to investigate underlying cause for such failure of fusion at their 

respective cases, we need to understand how the trained model deals with such inputs. 

In regards to SVM, it is suspected due to the dimensionality reduction feature of DCA 

under this specific circumstance returned poor results. FBG and accelerometer input 

individually had 3000 and 300 features respectively. DCA works by extracting and 

corelating discriminant features based on their classes. The DCA process resulted in 

fusion input training data consisting of 6 features only, substantially reducing 

dimensionality hence vital information. This may lead to possible mis-estimation of 

crowd load.  

In regards to CNN, it is suspected due to the current nature of defined CNN 

architecture in terms of how the convolution layer based on its parameters such as filter 

and stride size may not properly discriminate accelerometer features due to the 

dimensionality difference in terms of both axes. Information is also lost at the ends of 

the input image, with added loss from pooling layer. 

 

v. Optimal Results 

Following tables present the optimal results of single and multi-class 

classification, and regression, along with their standard deviation. Shown results are 

based on SVM and CNN machine learning applied on the individual and fusion inputs 

on both raw and FFT signal type, indicating most effective approach in tackling said 
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monitoring application taking into consideration performance evaluation on the several 

testing cases of noise and shift. 

 

Table 4: Optimal testing accuracy results of single class flow activity classification per 
input data and signal type 

 Solver 
Testing Accuracy 

Unmodified Noisy Shifted Noisy Shift 

Training Data - Raw Signal 

FBG CNN-SGDM 96.33 96.41 85.96 86.04 

Accelerometer CNN-ADAM 94.45 83.84 58.12 58.61 

Input level fusion CNN-ADAM 96.57 96.57 84.08 84.16 

Feature level fusion CNN-ADAM 96.49 96.08 83.18 83.27 

Training Data - FFT Signal 

FBG CNN-ADAM 98.61 97.63 98.61 97.96 

Accelerometer CNN-SGDM 91.27 69.96 55.27 52.73 

Input level fusion SVM-Quad 97.80 96.49 97.71 96.90 

Feature level fusion CNN-RMSPROP 97.96 97.39 97.88 97.22 

 

Table 5: Standard deviation of the optimal testing accuracy results of single class flow 
activity classification per input data and signal type 

 
Standard Deviation 

Unmodified Noisy Shifted Noisy Shift 

Training Data - Raw Signal 

FBG 2.20 1.79 6.46 6.55 

Accelerometer 2.67 4.71 5.21 5.64 

Input level fusion 2.99 2.75 5.10 5.31 

Feature level fusion 2.67 2.63 6.49 6.18 

Training Data - FFT Signal 

FBG 1.53 2.01 1.53 2.12 

Accelerometer 4.66 6.55 6.23 6.23 

Input level fusion 2.03 2.24 1.98 2.64 

Feature level fusion 1.44 1.82 1.61 1.76 
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Table 6: Optimal testing accuracy results of multi class flow actvity and load 
characterization classification per input data and signal type 

 Solver 
Testing Accuracy 

Unmodified Noisy Shifted Noisy Shift 

Training Data - Raw Signal 

FBG CNN-SGDM 89.47 88.41 66.78 65.14 

Accelerometer CNN-SGDM 88.41 82.61 47.51 47.92 

Input level fusion SVM-Quad 90.29 89.80 65.96 65.88 

Feature level fusion CNN-ADAM 89.55 88.65 69.39 68.65 

Training Data - FFT Signal 

FBG Gaussian 90.78 90.20 90.69 89.96 

Accelerometer Gaussian 86.29 65.71 45.96 45.31 

Input level fusion SVM-Quad 92.82 88.82 91.67 90.20 

Feature level fusion SVM-Quad 88.24 85.14 50.04 49.55 

 

 

Table 7: Standard deviation of the optimal testing accuracy results of multi class flow 
actvity and load characterization classification per input data and signal type 

 
Standard Deviation 

Unmodified Noisy Shifted Noisy Shift 

Training Data - Raw Signal 

FBG 3.47 3.37 6.63 6.01 

Accelerometer 5.13 5.69 8.67 8.33 

Input level fusion 4.46 4.60 6.91 6.41 

Feature level fusion 3.83 3.39 6.40 6.37 

Training Data - FFT Signal 

FBG 3.59 3.53 3.68 3.68 

Accelerometer 4.91 6.64 7.43 7.59 

Input level fusion 4.33 4.68 3.63 4.64 

Feature level fusion 4.80 5.22 8.04 7.30 
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Table 8: Optimal testing percentage error results of load estimation regression per input 
data and signal type for both flow activities; Fast and Slow 

 Solver 

Percentage Error 

Fast Slow 

Unmodified Noisy Shifted Noisy 
Shift Unmodified Noisy Shifted Noisy 

Shift 
Training Data - Raw Signal 

FBG SVM-
Cubic 11.64 11.64 16.33 16.33 10.97 11.02 14.57 14.59 

Accelerometer CNN-
ADAM 10.46 11.08 13.93 13.69 10.29 11.32 14.56 14.11 

Input level 
fusion 

SVM-
Cubic 11.97 12.01 16.48 16.53 11.42 11.46 15.08 15.06 

Feature level 
fusion 

CNN-
ADAM 10.02 18.82 18.71 27.65 8.67 13.15 14.88 20.71 

Training Data - FFT Signal 

FBG SVM-
Quad 11.75 16.81 11.79 16.78 10.63 17.86 10.63 17.94 

Accelerometer SVM-
Quad 13.32 15.30 35.63 36.14 12.20 19.08 21.76 23.32 

Input level 
fusion 

SVM-
Quad 9.69 12.99 10.13 11.50 8.90 13.76 9.82 11.80 

Feature level 
fusion 

SVM-
Quad 8.28 9.13 12.46 12.96 10.20 12.32 23.07 24.91 
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Table 9: Standard deviation of the optimal testing percentage error results of load 
estimation regression per input data and signal type for both flow activities; Fast and Slow 

 

Standard Deviation 

Fast Slow 

Unmodified Noisy Shifted Noisy 
Shift Unmodified Noisy Shifted Noisy 

Shift 
Training Data - Raw Signal 

FBG 1.95 1.92 2.83 2.85 1.36 1.38 2.10 2.16 

Accelerometer 1.56 1.71 2.15 2.19 1.37 1.79 2.05 1.77 
Input level 

fusion 1.68 1.68 2.51 2.52 1.80 1.81 2.37 2.36 

Feature level 
fusion 2.21 9.57 5.44 12.52 2.14 4.24 3.16 8.46 

Training Data - FFT Signal 

FBG 2.10 3.08 2.09 3.11 1.57 2.91 1.58 2.95 

Accelerometer 1.93 2.28 9.08 9.50 2.01 4.24 5.38 4.43 
Input level 

fusion 1.43 2.37 1.28 1.79 1.00 2.01 1.22 1.80 

Feature level 
fusion 1.33 1.76 6.65 7.23 1.73 3.68 26.57 28.71 

 

Focusing on the application of single class flow activity, approaching through 

CNN using raw signal type returned achieved higher results. A similar case can be said 

when using FFT signal type, with the exception at the input level fusion where SVM 

returns were slightly higher. Classifying a multi-class for both flow activity and load 

characterization may be intricate, however high results were still generally achievable.  

Using raw signal type, CNN approach was used achieving the optimum results with the 

exception at input level fusion where SVM was used instead. Using FFT signal type, 

SVM approach was used as it achieved better results. With the exception of 

accelerometer and feature level fusion under raw signal type for load estimate 

regression were CNN returned lower results, approaching with SVM returned the lower 
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percentage errors. When estimating using FFT signal type, SVM was of better 

performance with lower percentage errors. 

 Above tables are based on best overall performance between the models, 

application wise. However there are certain scenarios were yet still they perform poorly. 

Results returned by accelerometer input for single class flow activity classification 

when subjected to shift related testing are low. A similar case can be said for multi class 

flow activity and load characterization classification using FFT signal type. In addition,  

feature fusion in shift related testing suffers with large reduction in accuracies. However 

under raw signal type, shift related accuracies drop with a significant margin across all 

inputs. For the application of load estimation, large percentage errors are reported under 

raw signal type for feature fusion during noisy shift testing. In addition, under FFT 

signal type large percentage errors are returned during shift testing for accelerometer 

input. 

Results returned by the SVM model may be due to reliance of key support 

vector points in both FBG and Accelerometer data, relying on a just a subset of data 

points, converging to a global minimum. As opposed to, the main weakness of CNN 

being part of the neural network family, is that they require large amounts of data to 

return optimum accuracies since initializing is with unknown starting weights. The 

SVM and CNN results discussed in this thesis are to rather concur concept system 

effectiveness with high accuracies under both machine learning approaches. In addition, 

the results show how a conventionally used machine learning approach, SVM, and an 

innovative approach, CNN, tackles such application along with sensor data fusion. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORKS  
 

 

To tackle the possible dangers that may arise from large crowd gatherings and 

high crowd density flow on a bridge structure, the thesis aims to offer an innovative 

crowd monitoring solution with instrumental and machine learning novelties. The 

conception is based on employing FOS FBG sensors through SHM systems along with 

wearable IMU sensors for intelligent crowd management. The utilization of multi modal 

sensors with machine learning along with multi modal sensor data fusion sheds light on 

a new scope and application, enhancing crowd and structure operation efficiency with 

warning capability from any safety risk.  

Concept validation is performed on a model test bridge with group volunteers 

simulating crowd flow thus generating strain and accelerometer datasets. The presented 

approach allows for the estimation of crowd load and mobility parameters, hence 

providing a corner stone towards a comprehensive crowd management system with 

artificial intelligence-based decision making. In addition, results show how a 

conventionally used machine learning approach, SVM, and an innovative approach, 

CNN, tackles such application. Models with the aid from fusion techniques are 

generated to classify crowd flow activity and density load, in addition to crowd load 

estimation with greater robustness. The results showed that the monitoring solution to 

be highly effective with peak testing accuracy for single class flow 
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activity classification at 98%, multi-class flow and load characterization classification at 

91%, and percentage error for load estimation regression reaching a minimum of 9%.  

In summary, both SVM and CNN approach performed generally high for both 

classification and regression for our application of crowd monitoring. Classification of 

flow activity showed that CNN for both individual and fusion inputs, albeit slightly, 

outperformed SVM under both signals. However for multi-class classification, though 

reasonably still high, SVM within a small margin returned higher accuracies under 

certain testing cases.  In terms of regression, with focus for Unmodified testing, 

returned percentage errors within same inputs are very similar with little margin 

between the two machine learning approaches.  

Future Works 

With a larger a dataset and further machine learning fine-tuning, better results 

with greater efficiency and robustness are possible. A study between the number of 

sensors in relation to cost and added efficiency could be used for future sensor choice 

and distribution. An added benefit of daisy chained FBG sensors in different 

configurations may be used for localization and better understanding of load distribution 

and flow, returning a heatmap of the bridge itself. Fusion techniques employed at the 

input and feature level could be further improved in terms of how the data is handled. 

More methods and approaches of fusion at the input and feature level is to be 

investigated. It is important to explore the aspect of variation of dimensionality between 

the two multi-modal sensors when applying fusion techniques at the employed levels.  It 

is of interest to investigate other discriminant fusion approaches that may work 

appropriately for SVM. A further addition to the employment of fusion is at the decision 
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level. Output classification results from the two individual inputs are in return jointly 

voted and nominated to a final decisive and concurring output. This could be used in 

terms for flow activity and load characterization separately from different sensor 

modality. A main criterion in affecting CNNs’ results are its architecture. Fine-tuning a 

CNN’s architecture in terms of number and choice of layers with their corresponding 

parameters is very important to achieve a better and efficient result. For example, it is of 

interest to perceive how the convolution filter and their according sizes followed by the 

different types of pooling layer may handle the image from input level fusion data as 

compared to their individual counterparts. This concern rises from the fact that 

individually, Accelerometer and FBG image have different convolution filter sizes and 

a maximum pooling layer may be sufficient. However in the case of input level fusion, 

the image data is of two different sensors of different sizes were the possibility exists 

that either one of the sensor data range may not be fully comprehended. A 

recommended future work is employing an advanced hybrid machine learning model 

consisting of CNN’s automatic feature extractor along with SVM’s classifier. The 

hybrid model will rely partly on CNN convolution and corresponding layers to obtain 

discriminative features and weights. Rather than on continuing within the CNN’s 

classifier, these are used as data employed in SVM classification. An important aspect 

in the joint structure and crowd monitoring is the ability to distinguish between 

overloading and damage. A path in data gathering and machine learning modelling from 

the test bridge with a damage with crowd replication is of interest. Supplementary 

testing of instrumentation at field on an actual pedestrian bridge could prove valuable 

insights on how an actual structure might behave and how the machine leaning models 
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might react with the gathered data. To better enhance the status overview of an 

individual in a crowd, the addition of other sensors of different modality within the 

wearable sensor could prove beneficiary. Monitoring a biological parameter such as 

blood pressure or heart rate could supplement current crowd status based on the 

individual’s status and biological reactions. A Global Position System (GPS) receive 

could be embedded within for added tracking, in terms of speed and direction 

perceiving a better image of flow. Current accelerometer readings could be further 

trained to detect trips and falls of the individual within the crowd, warning monitors of 

potential stampede cases 

Given the information available about the crowd load and behavior, it is 

essential to close the loop via a system that implements crowd management strategies. 

Based on the state of flow and the state of the structure under the crowd loading, 

strategies may include adapting routes and providing instructions to individuals via 

smartphone messages or loud speakers. 
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