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AN ABSTRACT OF THE THESIS OF

Missak Yessai Boyajian for Master of Science
Major: Computer Science

Title: Student Intervention System Using Machine Learning

In most universities, advisors guide students in their course selection, and warn
those who might be at risk of being dismissed or placed on probation. The large
number of students makes it difficult for universities to identify those at risk, as it
would get very time consuming and inaccurate. Hence, there is a need for a system
that can recognize these students at the end of each semester. In this work, we
build a semester-based automated intervention system using machine learning that
identifies students who are at risk and suggests upcoming courses, providing them
with a more personalized approach. We applied supervised learning such as logistic
regression, neural networks, and AdaBoost to predict three outcomes: 1) risk of
dismissal, 2) risk of probation, and 3) time needed to graduate. Then we applied
reinforcement learning (RL) using value iteration technique to create an optimal
policy that will recommend courses to students with the goal of keeping them safe.
We applied different evaluation methods, such as ROC curve and F-measure, to
compare the performance of the supervised learning algorithms, and proposed a
new approach to measure the effectiveness of the recommendation system. The
dataset was provided by the American University of Beirut and contained a sample
of 30,000 student records.
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CHAPTER 1

INTRODUCTION

Advisors are assigned to newly enrolled university students to assist them in

registering their initial courses. They provide them with guidance in choosing

courses and intervene when a critical situation such as a poor academic perfor-

mance or probation are in sight. They usually speak from their experience and it

is their job to assess a student’s ability and recommend suitable courses based on

performance. However, universities are composed of students with varying back-

grounds and academics; this alone complicates the already challenging job of an

advisor. Moreover, dealing with a large number of students is both tedious and

time consuming. One has to track each student’s performance and guide them,

making sure they are on the correct path.

An automated student intervention system can play a critical role in aiding

advisors and providing them with a more personalized approach. The system can

significantly reduce the workload, allowing an advisor to focus more on crucial

tasks. Having a system that can store academic history, monitor, and analyze a

student’s pattern will further enhance the efficiency and precision of an advisor.

Coupled with an early risk prediction feature, it detects students that have a

likelihood to perform poorly and deploys preemptive measures.

1.1 Background and Related Works

Several studies deal with predicting students’ academic outcomes and course

recommendations. Each uses different features, algorithms, evaluation methods,
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and data.

Predictions

Sergi, Eloi, and Laura[1] applied machine learning techniques to predict two

outcomes: 1) student dropout and 2) course grades for every student. For the first

part, they applied and compared five algorithms: Logistic Regression, Gaussian

Naive Bayes, Support Vector Machines, Random Forest and Adaptive Boosting.

They produced best F1 scores of 82%, 76% and 61% for the degrees in computer

science, law, and mathematics respectively. For the second part, they applied

Collaborative Filtering Recommendation System, Linear Regression and Support

Vector Regression, and achieved an MAE of 1.21, 1.32 and 1.34 respectively.

Everaldo et al.[2] used an incremental approach “to select and prioritize stu-

dents who may be at risk of not graduating from high school on time.” They first

developed predictive models that can identify students at risk, and then urgency

score models that can rank students who are most likely to go off track. They

mainly focused on schools with limited resources, and on students who belonged

in the lower rank categories. Therefore, their goal was to “focus on the right

students, at the right time, and with the right message.”

Nicolae-Bogdan Sara et al.[3] based their work on 72,598 Danish high-school

pupils and applied machine learning techniques to predict dropouts. Random

forest produced the best results, with an accuracy of 93.5% and an AUC of 0.965.

The major weakness in most of these works is that they perform the predictions

once before the student enters a college or university, and do not take into account

that they may improve or get worse over time. The same student who had very

3



good grades at school may perform much worse than another student who had

average grades. There can be many reasons for this, such as personal issues,

financial issues, and level of commitment to their majors, etc. Therefore, there is

a need for a system that warns students after each semester.

Recommendations

Recommendation systems have been widely developed for various industries

such as media streaming (YouTube[4], Netflix[5]), shopping websites (Amazon[6]),

and online course services (edX[7]). For example, in 2006, Netflix announced a

data mining competition[8] also known as ‘Netflix Price’ which offered $1 million

award for the winner. Their focus was to enhance the movie recommendation

system and the user experience with the goal of bringing more revenue into the

company.

At academic level, many studies exist that deal with course recommendation

strategies. Fábio Oliveira[9], for instance, used recommendation algorithms to help

students who are pursuing their bachelor’s degree choose their master’s courses.

The system used the knowledge of the grades for bachelor’s courses and predicted

the grades for the master’s courses. The author used a dataset that contained the

academic results of bachelor’s and master’s programs for the past twenty years.

Konstantin and Alexander[10] proposed a content-based method that recom-

mends study materials to students who took a certain course. The model maps

each course into its corresponding materials such as textbooks, online articles, or

websites and then analyzes the student’s performance for each topic. Based on the

analysis, the model will understand the knowledge gap and determine the required

materials need for a student to close that gap. The authors worked with an online
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university that offered a variety of courses. In the first semester, they worked with

692 students and split them into three groups. The first group received custom

recommendations provided by the model after their first quiz. In the second group,

all students received the same recommendations. The third group did not receive

recommendations at all. At the end of the experiment, they found that all stu-

dents liked the recommended materials, but that the model, as far as grades were

concerned, worked best for mediocre students and was less effective for excellent

and good students.

Sanjog Ray, Anuj Sharma[11] used a collaborative filtering approach to develop

an elective course recommendation system. They proposed an approach that pro-

vides students with an accurate prediction of the grade they may attain if they

choose a particular course, which will be helpful when they decide on elective

courses. They performed the experiment on 255 students of 25 subjects, and were

able to achieve an MAE of 0.35.

Most of these methods either recommend courses that the student has a prefer-

ence for or is likely to perform well. They are suitable for online course providers,

since the student is at leisure to choose any course at any time. The drawback

with these methods appear when applying to students perusing a bachelor’s degree

because they are forced to register most of the required courses and have limited

flexibility. They need to follow a certain path in order to graduate.

In this paper, we proposed a different kind of approach for course recommenda-

tions, which is based on reinforcement learning concepts rather than recommender

systems, to help students pick their future courses. The system has knowledge

of the students’ past records, and based on that, it will suggest the best set of
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courses a student should register for, in order to graduate safely without encoun-

tering probation or dismissal.

1.2 Thesis Structure

The rest of this thesis is structured as follows.

• Chapter 2: We describe some of the evaluating model performance methods

such as F-measure, mean absolute error (MAE), and area under the curve

(AUC) that we used to evaluate our predictive models.

• Chapter 3: We explain some of the evaluating model performance methods

such as parameter tuning, bagging, and boosting.

• Chapter 4: We explain what is imbalanced dataset, how they occur, and

describe some of the main techniques used to handle it.

• Chapter 5: Before beginning the machine learning process, it was impor-

tant to understand the nature of the data. In this chapter, we describe our

data extraction process and analyze the dataset received from the American

University of Beirut.

• Chapters 6, 7, 8: We use machine learning methods, such as Logistic Re-

gression, Random Forest, Naive Bayes, etc., to predict three outcomes: 1)

dismissal, 2) probation, and 3) graduation time. Chapter 6 presents the ini-

tial features generated for the first attempt. In Chapters 7 and 8, we present

the incremental machine learning progress that led to better performance.

• Chapter 9: We build a course recommendation system for the undergraduate

students. We use reinforcement learning approaches to build a model/policy
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that recommends set of courses at the end of each semester. The primary

focus was on students at risk, but the policy can be applied to all.

• Chapter 10: We conclude our thesis and discuss future implementations.
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CHAPTER 2

EVALUATING MODEL PERFORMANCE

This chapter will discuss some of the main methods[12] used to evaluate ma-

chine learning algorithms and their differences.

2.1 Measuring Performance for Regression

There are several metrics used to measure the performance of regression algo-

rithms.

• Mean absolute error (MAE): It is one of the simple metrics used in machine

learning and statistic which measures the average of the residuals of every

instance.

MAE =
1

n

n∑
t=1

|yt − y′t|

where yt = actual value and y′t = predicted value.

MAE can be easily interpreted and treats all the data including the outliers

with the same attention. However, it is not much useful for applications that

tend to give more priority to the outliers and large errors.

• Mean absolute error (MSE): It is similar to MAE, but instead of using the

absolute value of the difference, it squares them. We cannot directly compare

MAE to MSE since the latter will produce a higher value most of the time.
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However, one of the main differences between the two is that MSE will

penalize the large errors unlike the MAE.

MSE =
1

n

n∑
t=1

(yt − y′t)2

• Root mean square error (RMSE): It is the most commonly used metric for

regression tasks. Since MSE squares the residuals, the units will not match

the actual output values and it will be more difficult to interpret the results.

RMSE simply solves this issue by taking the square root of MSE.

RMSE =

√√√√ 1

n

n∑
t=1

(yt − y′t)2

• Mean absolute percentage error (MAPE): It is similar to MAE, but it con-

verts all the error rates into percentages. The key advantage of MAPE is

that it is easier to interpret the results since some researchers find percent-

ages easier to conceptualize.

MAPE =
100%

n

n∑
t=1

∣∣∣∣yt − y′tyt

∣∣∣∣
Some of the drawbacks of MAPE is that it will be undefined for output

having values of 0. In addition, when the predicted value is lower than the

actual one, it will have a lower result compared to the one having higher

value with the same amount. For instance MAPE is lower for yt = 4 and y′t

= 2 compared to yt = 4 and y′t = 6, even though both cases have the same

residual.
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In this paper, we present both RMSE and MAE, but use the latter to compare

the performance of our regression algorithms. We wanted each residual to

contribute with the same proportion to the final error and were not interested

in penalizing the large errors more than the smaller ones.

2.2 Measuring Performance for Classification

The simplest way to measure the performance for classification algorithms is

to calculate the accuracy. It simply divides the number of correct predictions

made by the total number of predictions. Higher accuracy implies better learning.

However, for some cases, this method is not applicable. For instance, when a

dataset contains 0.01% of people having cancer, the algorithm that predicts only

no-cancer will have a 99.99% accuracy which is considerably high. To handle this

issue, there exists measurements other than accuracy such as Precision, Recall, or

F-measure that focus more on the class distribution.

Confusion Matrices

The confusion matrices categorize the predictions and the actual data for each

class and represent them in a table. For example, if we have two classes, then we

can have a 2 × 2 matrix.

The relationship between positive class and negative class predictions can be

represented as a 2 × 2 confusion matrix(Figure 2.1) that tabulates whether pre-

dictions fall into one of four categories:

• True Positive (TP): Correctly classified as the class of interest
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Figure 2.1: Confusion Matrix Example

• True Negative (TN): Correctly classified as not the class of interest

• False Positive (FP): Incorrectly classified as the class of interest

• False Negative (FN): Incorrectly classified as not the class of interest

The proportions are easily calculated from the confusion matrix.

2.3 Measuring Performance Techniques

We can formalize accuracy and error rate as:

accuracy =
TP + TN

TP + TN + FP + FN

error rate = 1 − accuracy
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Sensitivity/Recall

The sensitivity/recall also known as the true positive rate, divides[13] the num-

ber of correctly classified positive instances with total number of positive instances.

sensitivity =
TP

TP + FN

Specificity/Precision

The specificity/precision of a model is the same as the sensitivity, but it mea-

sures the proportion of negative examples that were correctly classified.

specificity =
TN

TN + FP

The F-measure

F-measure, also known as F1 score, represents a balanced measure between

precision and recall and combines them using the harmonic mean.

F-measure =
2 × Precision × Recall

Recall + Precision

It ranges from 0 (poor) to 1 (excellent).
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ROC Curves

The ROC (Receiver Operating Characteristic) curves plots the true positive

rate (sensitivity) against the false positive rate (1 − specificity) at various thresh-

old. A good threshold would be the one with highest sensitivity and lowest false

positive rate (FPR).

Figure 2.2: ROC Curve Example

The red line (Figure 2.2) represents a poor classifier that cannot differentiate

between TPR and FPR and produces almost the same values for all the thresholds.

The green line represents a perfect classifier which has 100% TPR and 0% FPR.

However, such results unlikely occur in real scenarios. Most of the classifiers will

produce a curve closer to the blue one.
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To measure the performance of the curve, area under the ROC (AUC) is used.

It ranges from 0.5 to 1. Higher AUC implies better performance as described

below.

• 0.9–1.0 (perfect)

• 0.8–0.9 (good)

• 0.7–0.8 (acceptable)

• 0.6–0.7 (poor)

• 0.5–0.6 (no discrimination)
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CHAPTER 3

IMPROVING MODEL PERFORMANCE

This section introduces set of techniques for improving the performance of

machine learners such as parameter tuning, combining models into groups, and

some cutting-edge techniques for getting the maximum level of performance. Each

technique is explained briefly below.

3.1 Automatic Parameter Tuning

Every machine learning model contains many adjustable parameters. It is im-

portant to compare all possible parameter values to find the best combination.

However, doing this task manually can be time consuming and almost impossi-

ble for models with many parameters. To solve this issue, there are many tools

for automatic parameter tuning that find the optimal solution. However, certain

questions need to be taken into consideration before tuning.

1. What type of machine learning model should be trained on the data?

2. What are the main parameters that need to be tuned?

3. Which evaluation method should be used?

Depending on the nature of the data, half of the models could be eliminated

because the task may be a classification or a regression. As for the remaining

models, it is better to test some of the best algorithms available and evaluate their

results.
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For the second question, parameters depend on the machine learning model.

It is better to have a broad understanding of the importance of each parameter in

order to specify which ones should be used in the tuning process.

The third question also depends on the nature of the data. The comparisons

can be based on accuracy, sensitivity, specificity, or ROC curve. In some cases,

the method can even be customized to a certain application.

3.2 Understanding Ensembles

Ensembles combine several single models to produce a better model. Ensembles

offer a number of advantages over single models.

• Better generalization, less chance of overfitting

• Use of distributed architecture to parallelize an ensemble to improve perfor-

mance

• Ensembles perform better as the data contain more complex real world sce-

narios

Bagging

Bagging is one of the first ensemble methods that was widely used in the in-

dustry. First, it generates a number of training datasets by sampling repetitively

with replacement. These datasets are then used to generate a set of learning

algorithms. Finally, The models’ predictions are combined using voting (for classi-

fication) or averaging (for numeric prediction). Bagging performs well when used

with sensitive learners such as decision trees.
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Boosting

Boosting is another popular ensemble-based method. It takes a number of clas-

sifiers, each with an error rate less than 50% and boosts them until they attain the

performance of strong learners. Beginning from an unweighted dataset, the first

classifier attempts to model the outcome. Examples that the classifier predicted

correctly will be less likely to appear in the training dataset for the following clas-

sifier; conversely, the difficult examples will appear more frequently. As additional

rounds of weak learners are added, they are trained on data with successively more

difficult examples. The process continues until the desired overall error is reached

or performance no longer improves. At that point, each classifier’s vote is weighted

according to its accuracy on the training data on which it was built.

Random Forests

Random Forest is another type of ensemble that focuses only on decision trees.

It creates an ensemble of many trees that each consider random features at each

split and uses voting to combine their decisions. The algorithm performs well on

most problems and can handle noisy data, but it is very difficult to interpret or

visualize the model itself.
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CHAPTER 4

IMBALANCED DATA

Imbalanced data occur when the class distribution within a dataset is signif-

icantly imbalanced. For instance, in this paper, only ∼9% of the students were

dismissed, and it was crucial to detect them. Machine learning algorithms usu-

ally try to achieve the best accuracy without taking into account the distribution

of classes. Consequently, they will treat the minority classes as noise and ignore

them. There are various ways to solve class imbalance problems.

Random Undersampling

Undersampling randomly eliminates most of the majority classes until both

classes balance out. This will reduce the storage, which leads to a better execution

time, but it will discard potentially useful information. This method is not used

widely in the market.

Random Oversampling

Oversampling randomly replicates the minority classes until both classes bal-

ance out. This method outperforms undersampling because there is no information

loss, but on the other hand, it may cause overfitting.
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Synthetic Minority Oversampling Technique

This method was introduced by Nitesh V. et al.[14] in 2002 in order to overcome

overfitting. It is nearly similar to the Random Oversampling technique, but instead

of replicating the minority instances, it creates new synthetic ones. It works by

introducing synthetic examples by selecting and merging features of the k-nearest

neighbors of minority classes.

Bagging Based

Bagging is used to overcome overfitting. Bagging generates n different training

samples with replacements. Each sample is trained with different machine learning

algorithms, and at the end, the predictions are aggregated. This works well if all

algorithms produce good results. If one of the algorithms produces poor results,

it may affect the overall performance.

AdaBoost(Adaptive Boosting)

AdaBoost was created by Yoav Freund and Robert E. Schapire[15] and is based

on the idea of creating a highly accurate prediction rule by combining many rel-

atively weak and inaccurate rules. AdaBoost initially gives equal weight to all

training records. At each round, it runs the machine learning algorithms, in-

creases the weight of the incorrectly classified records, and decreases the correct

ones. This method is used to focus more on the incorrect data. The loop ends

when the error measure is very low. However, we need an algorithm that produces

an accuracy of above 50%; otherwise, we could get a better result with a random
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prediction. On the other hand, one of the disadvantages of using AdaBoost is that

it is very sensitive to noise.
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CHAPTER 5

DATA PROCESSING

The data were provided from the American University of Beirut; they contained

students’ academic school records and their university courses and grades. We were

only interested in the students who were majoring in computer science and filtered

out the rest.

5.1 Data Extraction

First, the original excel file containing the students’ records were imported

into the database. Then the database was read into the program. Finally, we

queried only the students who have entered university as CMPS major, graduated

as CMPS major, or have taken CMPS 200 and CMPS 212 respectively.

For the summer courses, the grades were accumulated to the next fall or to

the previous spring term if the student had taken fewer than 12 credits in that

fall/spring term.

5.2 Normalization Methods

Normalization is a data preprocessing technique that rescales the features to a

common range. Since some of the classification models use distance functions to

calculate the difference between two points, they will often give more importance

to the features that have larger values. For instance, SAT Math scores of students

have maximum value of 800 while their university major averages have maximum
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value of 100. Hence, we ran the algorithms on both normalized and non-normalized

data.

Types of Normalization

There are many types of normalization. In this paper, we use the min-max

method.

Min-max normalization

It is one of the simplest method which scales the numerical values of the fea-

tures into values between 0 and 1 or −1 and 1.

x′ =
x−min(x)

max(x)−min(x)

where x is an original value and x′ is the normalized value.

Mean normalization

It is close to the min-max implementation, but, instead of subtracting min(x)

from x in the numerator, we subtract the average(x).

x′ =
x− average(x)

max(x)−min(x)
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5.3 Data Exploration

To have a more discrete understanding of the nature of the data, we executed

some queries to get results such as:

1. GPA distribution of graduated students(Table 5.1).

2. Distribution of dismissed students(Table 5.2).

3. Distribution of students being on probation(Figure 5.1).

4. Distribution of students’ residency period(Figure 5.2).

The results are shown in the following tables/figures.

GPA Count

≥ 90 11

85–90 67

80–85 208

75–80 321

70–75 316

65–70 23

Table 5.1: GPA Distribution

Dismissed Count

Yes 98

No 1010

Table 5.2: Dismissal Distribution
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Figure 5.1: Probation Distribution

Figure 5.2: Graduation Time Distribution

We noticed that most of the students had a GPA between 75 and 80 (Table

5.1) and graduated after seven semesters (Figure 5.2). In addition to that, Table

5.2 and Figure 5.1 showed that there was an imbalanced distribution of classes.
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For instance, only ∼9% of the students were dismissed in the whole dataset and

it was very crucial to detect them.
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CHAPTER 6

MACHINE LEARNING - FIRST ATTEMPT

This chapter represents the initial process of feature creation and analysis.

Chapters 7 and 8 will show some of the progress we made in terms of machine

learning, feature creation, etc. that produced better performance.

Each algorithm was applied to students’ second, third, and fourth semester. For

each semester, the algorithms were applied to predict three outcomes: probation,

dismissal, and graduation time(number of semesters needed to graduate).

For the first step, the following features were produced.

• StudenAvg1: 11th Grade School Average

• StudenAvgYear2: 12th Grade School Average

• SATVerbal: SAT Verbal Grade

• SATMath: SAT Math Grade

• MajorAverage (+TotalMajorAverage): Average Grade of the Major

Courses

• ElectiveAverage (+TotalElectiveAverage): Average Grade of the Elec-

tive Courses

• MajorCourseTaken (+TotalMajorCourseTaken): Total Major Courses

Taken
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• ElectiveCourseTaken (+TotalElectiveCourseTaken): Total Elective

Courses Taken

• MajorGrades (+TotalMajorGrades): Total Major Grades

• ElectiveGrades (+TotalElectiveGrades): Total Elective Grades

• MajorCredits (+TotalMajorCredits): Total Major Credits

• MajorPassed (+TotalMajorPassed): Total Number of Major Courses

Passed

• ElectivePassed (+TotalElectivePassed): Total Number of Elective Courses

Passed

• MajorFailed (+TotalMajorFailed): Total Number of Major Courses

Failed

• ElectiveFailed (+TotalElectiveFailed): Total Number of Elective Courses

Failed

• MajorWithdrawal (+TotalMajorWithdrawal): Total Number of Ma-

jor Courses Withdrawn

• ElectiveWithdrawal (+TotalElectiveWithdrawal): Total Number of

Elective Courses Withdrawn

• SemesterNumber: The Current Number of Semester the Student is En-

rolled

• Probation: Student Received Probation or Not - Current Semester
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• ProbationConsecutive: The Number of Consecutive Probation Received

at the end of the Term

• ProbationNumber: Total Number of Probation Received at the end of the

Term

• EventualProbation: Student will Receive Probation or Not

• Dismissal: Student was Dismissed or Not

6.1 Performance Results

The test data contained 309 students in which 38 of them were dismissed. The

following outcomes were produced for each semester.

TP = True Positive

TN = True Negative

FP = False Positive

FN = False Negative

A = Accuracy

F1 = F-measure

For instance, TP are those students who were dismissed, and the algorithm

was able to predict it correctly. Similarly, FP are those students who were not

dismissed, but the algorithm predicted it as dismissed.
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Algorithm TP TN FP FN A F1

Logistic Regression 12 260 11 26 0.88 0.39

Random Forest 7 270 1 31 0.89 0.30

Naive Bayes 24 238 33 14 0.84 0.50

Neural Network 16 259 12 22 88.99 0.48

AdaboostM1 18 259 12 20 89.64 0.43

Table 6.1: Semester 2 - Prediction: Dismissal

Naive Bayes produced the best performance in terms of predicting dismissal of

the students. It produced the highest F-measure by having a value of 0.50 (Table

6.1). Out of 38, it was able to predict 24 correctly. The concern lies on the 14

students that the algorithm did not detect.

Out of the 14 :

• 6 were dismissed after 8 terms

• 1 majorless student dismissed after 11 terms

• 2 dismissed after 10 terms

• 2 dismissed after 12 terms but still graduated

• 2 dismissed but graduated with Business Degree

• 1 entered ENV, changed to CMPS, got dismissed but still graduated

The goal was to increase the detection of the dismissed students by maintaining

a good F-measure.

29



Algorithm TP TN FP FN A F1

Logistic Regression 30 185 16 77 0.69 0.39

Random Forest 31 185 16 76 0.70 0.34

Naive Bayes 41 156 45 66 0.63 0.42

Neural Network 44 147 44 73 0.62 0.43

AdaboostM1 24 188 13 83 0.68 0.33

Table 6.2: Semester 2 - Prediction: Probation

Algorithm CRL MAE RMSE

M5P 0.689 1.1972 1.4529

Linear Regression 0.6858 1.2136 1.4556

Simple Linear Regression 0.6591 1.4219 1.6148

Random Forest 0.6877 1.1925 1.4593

Table 6.3: Semester 2 - Prediction: Graduation Time

Algorithm TP TN FP FN A F1

Logistic Regression 17 257 14 21 88.67 0.49

Random Forest 10 255 16 28 85.76 0.31

Naive Bayes 25 237 34 13 84.79 0.51

Neural Network 11 265 6 27 89.32 0.40

AdaboostM1 10 266 5 28 89.32 0.37

Table 6.4: Semester 3 - Prediction: Dismissal
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Algorithm TP TN FP FN A F1

Logistic Regression 32 193 15 68 73.05 0.43

Random Forest 37 186 22 63 72.22 0.45

Naive Bayes 40 175 33 60 69.81 0.46

Neural Network 30 191 17 70 69.48 0.43

Naive Bayes 35 179 29 65 69.81 0.46

Table 6.5: Semester 3 - Prediction: Probation

Algorithm CRL MAE RMSE

M5P 0.7264 1.0565 1.3583

Linear Regression 0.7251 1.0635 1.3609

Simple Linear Regression 0.6329 1.3514 1.5916

Random Forest 0.7494 1.0335 1.3179

Table 6.6: Semester 3 - Prediction: Graduation Time

Algorithm TP TN FP FN A F1

Logistic Regression 17 258 13 21 88.99 0.50

Random Forest 4 271 0 34 88.99 0.11

Naive Bayes 27 240 31 11 86.41 0.56

Neural Network 11 261 10 27 88.02 0.37

AdaboostM1 13 265 6 25 89.96 0.45

Table 6.7: Semester 4 - Prediction: Dismissal
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Algorithm TP TN FP FN A F1

Logistic Regression 39 186 36 48 72.82 0.48

Random Forest 32 188 34 55 71.20 0.42

Naive Bayes 50 148 74 37 64.08 0.47

Neural Network 41 173 49 46 69.26 0.46

AdaboostM1 32 182 40 55 69.26 0.40

Table 6.8: Semester 4 - Prediction: Probation

Algorithm CRL MAE RMSE

M5P 0.7559 0.9288 1.3252

Linear Regression 0.7462 0.9843 1.4162

Simple Linear Regression 0.6365 1.2726 1.5362

Random Forest 0.785 0.9103 1.3278

Table 6.9: Semester 4 - Prediction: Graduation Time

6.2 Normalization

Normalization was required in our application, since students had many nu-

merical features such as their previous school grades, SAT scores, etc. Some of the

features ranged from 0 to 100 (Major Average) and others from 0 to 800 (SAT).

We used the min-max normalization method that scaled the numerical fields in

the range of 0 to 1. Consequently, we applied machine leaning to the normalized

data. The results are shown in the following tables.
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Algorithm TP TN FP FN A F1

Logistic Regression 22 243 28 16 85.76 0.50

Random Forest 10 266 5 28 89.32 0.37

Naive Bayes 27 236 35 11 85.11 0.54

Neural Network 16 258 13 22 88.67 0.48

AdaboostM1 14 261 10 24 88.99 0.45

Table 6.10: Semester 2 - Prediction: Dismissal - Normalized

Algorithm TP TN FP FN A F1

Logistic Regression 30 175 26 77 66.56 0.37

Random Forest 41 118 73 46 57.19 0.41

Naive Bayes 39 160 41 68 64.64 0.42

Neural Network 40 165 36 67 66.56 0.44

AdaboostM1 47 130 71 60 57.47 0.42

Table 6.11: Semester 2 - Prediction: Probation - Normalized

Algorithm CRL MAE RMSE

M5P 0.689 1.1952 1.4529

Linear Regression 0.6858 1.2006 1.4556

Simple Linear Regression 0.6591 1.4219 1.6148

Random Forest 0.6877 1.1825 1.4593

Table 6.12: Semester 2 - Prediction: Graduation Time - Normalized
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Algorithm TP TN FP FN A F1

Logistic Regression 17 257 14 21 88.67 0.49

Random Forest 3 269 2 35 88.02 0.13

Naive Bayes 27 237 34 11 85.44 0.54

Neural Network 11 265 6 27 89.32 0.40

AdaboostM1 10 266 5 28 89.32 0.37

Table 6.13: Semester 3 - Prediction: Dismissal - Normalized

Algorithm TP TN FP FN A F1

Logistic Regression 32 190 19 68 71.84 0.42

Random Forest 32 189 20 68 71.52 0.42

Naive Bayes 42 166 43 58 67.31 0.45

Neural Network 38 181 28 62 70.87 0.46

AdaboostM1 21 196 13 79 70.08 0.46

Table 6.14: Semester 3 - Prediction: Probation - Normalized

Algorithm CRL MAE RMSE

M5P 0.689 1.1952 1.4529

Linear Regression 0.6858 1.2006 1.4556

Simple Linear Regression 0.6591 1.4219 1.6148

Random Forest 0.6877 1.1825 1.4593

Table 6.15: Semester 3 - Prediction: Graduation Time - Normalized
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Algorithm TP TN FP FN A F1

Logistic Regression 10 260 11 28 87.37 0.33

Random Forest 6 271 0 32 89.64 0.28

Naive Bayes 21 240 31 17 84.47 0.46

Neural Network 12 263 8 26 88.99 0.41

AdaboostM1 12 266 5 26 89.96 0.43

Table 6.16: Semester 4 - Prediction: Dismissal - Normalized

Algorithm TP TN FP FN A F1

Logistic Regression 34 201 21 53 76.05 0.47

Random Forest 33 196 26 54 74.11 0.45

Naive Bayes 45 155 67 34 66.45 0.47

Neural Network 12 243 28 26 82.52 0.31

AdaboostM1 39 178 44 48 70.23 0.46

Table 6.17: Semester 4 - Prediction: Probation - Normalized

Algorithm CRL MAE RMSE

M5P 0.7791 0.9356 1.2424

Linear Regression 0.7281 1.028 1.3558

Simple Linear Regression 0.7653 1.0301 1.3185

M5P 0.7764 0.9109 1.2214

Table 6.18: Semester 4 - Prediction: Graduation Time - Normalized
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6.3 Analysis

We notice that the algorithms produced better performance after each term,

since they were able to learn more about students as they take more courses. For

instance, Naive Bayes had the best F-measure for predicting Dismissal having

the value increase from 0.54 (Table 6.1) to 0.57 (Table 6.7). Another interesting

point to notice is that, for some cases, normalization produced better results. For

instance, Random Forest which had MAE of 1.185 (Table 6.12) for Semester 2

- Normalized produced slightly better result compared to the Semester 2 - Non-

normalized version (Table 6.3) which had MAE of 1.1925.
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CHAPTER 7

MACHINE LEARNING - SECOND ATTEMPT

In the previous chapter, the courses were split into electives and majors. In

this chapter, we divide them into six categories:

1. Major-Programming: CMPS 200, CMPS 212, CMPS 255, CMPS 258, and

MATH 218.

2. Major-Theory: CMPS/MATH 211, CMPS 256, CMPS 257, MATH 201, and

STAT 230.

3. Major-Systems: CMPS 253, CMPS 272, and CMPS 277.

4. Elective-Easy: CMPS 230, CMPS 278, CMPS 284, CMPS 289, and CMPS

299.

5. Elective-Challenging: CMPS/MATH 251, CMPS 274, CMPS 281, CMPS

285, CMPS 286, CMPS 287, CMPS 297, and any MATH course other than

218 and 201 or any STAT course other than 230.

6. Undefined: Rest of the Courses.

We generated only three features for each category:

1. Average

2. Total Passes

3. Total Failed
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Feature Name Description

SATVerbal SAT Verbal Grade Over 800

SATMathematics SAT Mathematics Grade Over 800

StudAvg 11th Grade Average

StudAvgYr2 12th Grade Average

MajorProgAverage Cumulative Major-Programming Average

MajorProgPassed Total Number of Major-Programming Courses Passed

MajorProgFailed Total Number of Major-Programming Courses Failed

MajorTheoryAverage Cumulative Major-Theory Average

MajorTheoryPassed Total Number of Major-Theory Courses Passed

MajorTheoryFailed Total Number of Major-Theory Courses Failed

MajorSystemsAverage Cumulative Major-Theory Average

MajorSystemsPassed Total Number of Major-Systems Courses Passed

MajorSystemsFailed Total Number of Major-Systems Courses Failed

ElectiveEasyAverage Cumulative Elective-Easy Average

ElectiveEasyPassed Total Number of Elective-Easy Courses Passed

ElectiveEasyFailed Total Number of Elective-Easy Courses Failed

ElectiveChallenging Cumulative Elective-Challenging Average

ElectiveChallenging Total Number of Elective-Challenging Courses Passed

ElectiveChallenging Total Number of Elective-Challenging Courses Failed

UndefinedAverage Cumulative Undefined Average

UndefinedPassed Total Number of Undefined Courses Passed

UndefinedFailed Total Number of Undefined Courses Failed

ProbationNumber Total Number of Probation Received

ProbationConsecutive Consecutive Number of Probation Received

Graduation Time Time Needed to Graduate

Eventual Probation Student Received Probation or Not

Dismissed Student was Dismissed or Not

Table 7.1: List of Features
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7.1 Performance Results

Similar to Chapter 6, we ran machine learning algorithms on the new dataset

and analyzed the performance.

Algorithm TP TN FP FN A F1

Logistic Regression 10 260 10 28 87.66 0.34

Random Forest 3 270 0 35 88.63 0.15

Naive Bayes 22 243 27 16 86.03 0.51

Neural Network 7 265 5 31 88.31 0.27

AdaboostM1 17 261 9 21 90.25 0.53

Table 7.2: Semester 2 - Prediction: Dismissal

Algorithm TP TN FP FN A F1

Logistic Regression 11 260 10 27 87.98 0.37

Random Forest 3 270 0 35 88.63 0.15

Naive Bayes 25 238 32 13 85.38 0.53

Neural Network 7 265 5 31 88.31 0.27

AdaboostM1 17 261 9 21 90.25 0.53

Table 7.3: Semester 2 - Prediction: Dismissal - Normalized
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Algorithm CRL MAE RMSE

M5P 0.6908 1.1528 1.4355

Linear Regression 0.7056 1.1269 1.4039

Simple Linear Regression 0.621 1.4022 1.6147

Random Forest 0.7041 1.1389 1.4186

Table 7.4: Semester 2 - Prediction: Graduation Time

Algorithm CRL MAE RMSE

M5P 0.6980 1.1980 1.4519

Linear Regression 0.6959 1.1826 1.4439

Simple Linear Regression 0.6490 1.2712 1.5845

Random Forest 0.7181 1.2292 1.4068

Table 7.5: Semester 2 - Prediction: Graduation Time - Normalized

Algorithm TP TN FP FN A F1

Logistic Regression 33 182 19 73 69.13 0.41

Random Forest 34 167 34 72 65.47 0.39

Naive Bayes 38 170 31 68 67.75 0.43

Neural Network 39 159 42 67 64.50 0.42

AdaboostM1 35 161 40 71 63.84 0.39

Table 7.6: Semester 2 - Prediction: Probation
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Algorithm TP TN FP FN A F1

Logistic Regression 38 155 46 68 62.87 0.40

Random Forest 38 156 45 68 63.19 0.40

Naive Bayes 42 151 50 64 62.87 0.42

Neural Network 16 152 49 80 56.57 0.20

AdaboostM1 47 138 63 59 60.26 0.43

Table 7.7: Semester 2 - Prediction: Probation - Normalized

Algorithm TP TN FP FN A F1

Logistic Regression 11 256 14 27 86.68 0.35

Random Forest 6 268 2 32 88.96 0.26

Naive Bayes 28 232 38 12 84.42 0.54

Neural Network 5 265 5 33 87.66 0.21

AdaboostM1 10 264 6 28 88.96 0.37

Table 7.8: Semester 3 - Prediction: Dismissal

Algorithm TP TN FP FN A F1

Logistic Regression 14 249 21 24 85.38 0.45

Random Forest 6 268 2 32 88.96 0.26

Naive Bayes 26 226 44 12 81.82 0.48

Neural Network 6 265 5 32 87.66 0.25

AdaboostM1 19 254 16 19 88.63 0.52

Table 7.9: Semester 3 - Prediction: Dismissal - Normalized
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Algorithm TP TN FP FN A F1

Logistic Regression 29 189 19 71 70.77 0.39

Random Forest 28 178 30 52 71.53 0.41

Naive Bayes 45 164 44 55 67.86 0.47

Neural Network 35 174 34 65 67.85 0.41

AdaboostM1 35 179 29 65 69.48 0.42

Table 7.10: Semester 3 - Prediction: Probation

Algorithm TP TN FP FN A F1

Logistic Regression 33 178 30 67 68.50 0.40

Random Forest 30 185 23 70 69.81 0.39

Naive Bayes 42 146 62 38 65.53 0.46

Neural Network 33 176 32 67 67.85 0.40

AdaboostM1 29 186 22 71 69.81 0.38

Table 7.11: Semester 3 - Prediction: Probation - Normalized

Algorithm CRL MAE RMSE

M5P 0.7214 1.015 1.3674

Linear Regression 0.7306 0.9958 1.3522

Simple Linear Regression 0.5753 1.3764 1.6303

Random Forest 0.7502 0.9823 1.3117

Table 7.12: Semester 3 - Prediction: Graduation Time
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Algorithm CRL MAE RMSE

M5P 0.7186 1.0182 1.3773

Linear Regression 0.7166 1.028 1.3991

Simple Linear Regression 0.5753 1.3764 1.6303

Random Forest 0.7426 0.9901 1.3257

Table 7.13: Semester 3 - Prediction: Graduation Time Normalized

Algorithm TP TN FP FN A F1

Logistic Regression 15 259 11 23 88.96 0.46

Random Forest 2 268 2 36 87.66 0.09

Naive Bayes 28 240 30 10 87.01 0.58

Neural Network 14 262 8 24 89.61 0.47

AdaboostM1 15 258 12 23 88.63 0.46

Table 7.14: Semester 4 - Prediction: Dismissal

Algorithm TP TN FP FN A F1

Logistic Regression 0 269 1 38 87.33 0

Random Forest 6 268 2 32 88.96 0.26

Naive Bayes 38 32 238 0 22.72 0.24

Neural Network 0 270 0 38 87.66 0

AdaboostM1 7 266 4 31 88.63 0.284

Table 7.15: Semester 4 - Prediction: Dismissal - Normalized
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Algorithm CRL MAE RMSE

M5P 0.7223 0.9371 1.3836

Linear Regression 0.759 0.9072 1.2895

Simple Linear Regression 0.5748 1.3102 1.6169

Random Forest 0.7613 0.9199 1.258

Table 7.16: Semester 4 - Prediction: Graduation Time

Algorithm CRL MAE RMSE

M5P 0.7517 0.9198 1.3016

Linear Regression 0.7474 0.9585 1.3118

Simple Linear Regression 0.5748 1.3102 1.6169

Random Forest 0.7757 0.8825 1.2499

Table 7.17: Semester 4 - Prediction: Graduation Time Normalized

Algorithm TP TN FP FN A F1

Logistic Regression 10 208 13 77 70.77 0.18

Random Forest 19 212 9 68 75.00 0.32

Naive Bayes 42 171 50 45 69.16 0.47

Neural Network 28 190 31 59 70.77 0.38

AdaboostM1 32 204 17 55 76.62 0.47

Table 7.18: Semester 4 - Prediction: Probation
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Algorithm TP TN FP FN A F1

Logistic Regression 18 187 34 69 66.55 0.26

Random Forest 22 214 7 65 76.62 0.38

Naive Bayes 36 167 54 51 65.91 0.41

Neural Network 26 190 31 61 70.12 0.36

AdaboostM1 23 196 25 64 71.10 0.34

Table 7.19: Semester 4 - Prediction: Probation - Normalized

7.2 Analysis

We compared the best MAE and F-measure with the previous attempt which

we described in Chapter 6 and presented them in a table. The datasets are named

as outcome - semester number(Table 7.20).

Dataset ATT1 ATT2

Dismissal 2 0.54 0.53

Dismissal 3 0.54 0.54

Dismissal 4 0.56 0.58

Probation 2 0.44 0.43

Probation 3 0.46 0.47

Probation 4 0.41 0.47

Graduation Time 2 1.1825 1.1269

Graduation Time 3 1.003 0.99

Graduation Time 4 0.91 0.8825

Table 7.20: Performance Comparison of Attempt 1 and 2
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In some of the datasets such as Graduation Time 3, the current attempt had

better results, but, in other cases such as Dismissal 2, the previous attempt was

slightly better.
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CHAPTER 8

MACHINE LEARNING - BEST ATTEMPT

One of the ways to improve the obtained results was to make some changes

concerning the features and generate different kind of features that might help the

learning methods to produce better results. Hence, we decided to split the features

related to the CMPS courses into three categories:

1. Major-Programming

2. Major-Theory

3. Electives

The Major-Programming category consisted of the following courses: CMPS

200, CMPS 212, CMPS 255, CMPS 258, MATH 218, CMPS 230, CMPS 278,

CMPS 284, CMPS 289, CMPS 299, CMPS 253, CMPS 272, and CMPS 277.

The Major-Theory category consisted of the following courses: CMPS/MATH

211, CMPS 256, CMPS 257, MATH 201, STAT 230, CMPS/MATH 251, CMPS

274, CMPS 281, CMPS 285, CMPS 286, CMPS 287, CMPS 297, and any MATH

course other than 218 and 201 or any STAT course other than 230.

Each category had seven features:

1. Average

47



2. Total Passed

3. Total Failed

4. Total Course Taken

5. Total Withdrawal

6. Total Grades

7. Total Credits

We added a numerical feature named as ‘FreshmanSemesters’ which defines

the number of semesters a student has spent as freshman before entering his/her

major.

We also added a feature that represents the rank of the school that the stu-

dent came from, as such ranking can add much knowledge to the learning process.

Students coming from a respectable private school usually have a better chance to

succeed than students coming from an unpopular school. We categorized each of

the schools into one of the following categories in the diagram below and ranked

them.
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School Category Rank

Lebanon Private 7

North America Public 6

GCC Private 5

Lebanon Public 4

MENA Private 3

MENA Public 2

South Africa Private 1

Other 0

Table 8.1: School Category Ranks

Finally, the table below shows the total list of features generated for each

dataset.
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Feature Name Description

SatVerbal SAT Verbal Grade Over 800

SATMathematics SAT Mathematics Grade Over 800

StudAvg 11th Grade Average

StudAvgYr2 12th Grade Average

SchoolRank Rank of the school. Values between 0 and 8

FreshmanSemesters Number of Freshman Semesters attended

MajorAverage Cumulative Major Average

MajorPassed Cumulative Number of Major Courses Passed

MajorFailed Cumulative Number of Major Courses Failed

MajorCourseTaken Cumulative Number of Major Courses Taken

MajorWithdrawal Cumulative Number of Major Courses Withdrawn

MajorGrades Cumulative Total Major Grades

MajorCredits Cumulative Total Major Credits Taken

TheoryAverage Cumulative Theory Average

TheoryPassed Cumulative Number of Theory Courses Passed

TheoryFailed Cumulative Number of Theory Courses Failed

TheoryCourseTaken Cumulative Number of Theory Courses Taken

TheoryWithdrawal Cumulative Number of Theory Courses Withdrawn

TheoryGrades Cumulative Total Theory Grades

TheoryCredits Cumulative Total Theory Credits Taken

ElectiveAverage Cumulative Elective Average

ElectivePassed Cumulative Number of Elective Courses Passed

ElectiveFailed Cumulative Number of Elective Courses Failed

ElectiveCourseTaken Cumulative Number of Elective Courses Taken

ElectiveWithdrawal Cumulative Number of Elective Courses Withdrawn

ElectiveGrades Cumulative Total Elective Grades

ElectiveCredits Cumulative Total Elective Credits Taken

ProbationNumber Total Number of Probation Received

ProbationConsecutive Consecutive Number of Probation Received

Graduation Time Time Needed to Graduate

Eventual Probation Student Received Probation or Not

Dismissed Student was Dismissed or Not

Table 8.2: Final list of features
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8.1 Performance Results

The training was applied with k-fold cross-validation having k = 10 and on both

normalized (min-max) and non-normalized data. For the dismissal prediction, data

were resampled by 300% using the SMOTE algorithm, since we had an imbalanced

distribution of outputs.

To find the optimal hyperparameters for the learning algorithms, we used the

grid search approach.

• Logistic Regression: Ridge: 1.0E-8.

• Neural Network (Multilayer Perceptron): Training Time(epoch): 500,

Hidden Layers(epoch): 1, Learning rate: 0.3, Momentum: 0.2

• Random Forest: NumIteration: 100, NumExecutionSlots: 100

• AdaBoostM1: Classifier: Logistic NumExecutionSlots: 100

• Linear Regreesion: Ridge: 1.0E-8

The results are shown below.

Algorithm TP TN FP FN A P RC

Logistic Regression 23 258 12 15 91.23 0.65 0.60

Random Forest 10 264 6 28 88.96 0.62 0.26

Naive Bayes 33 219 51 5 81.81 0.39 0.86

Neural Network 15 256 14 23 87.98 0.51 0.39

AdaboostM1 (Naive) 20 243 27 18 85.38 0.42 0.52

Table 8.3: Semester 2 - Prediction: Dismissal
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Algorithm TP TN FP FN A P RC

Logistic Regression 22 258 12 16 90.90 0.65 0.58

Random Forest 15 257 13 23 88.31 0.53 0.39

Naive Bayes 25 239 31 13 85.71 0.44 0.66

Neural Network 14 242 28 23 83.44 0.35 0.40

AdaboostM1 (Naive) 22 251 19 16 88.63 0.53 0.58

Table 8.4: Semester 2 - Prediction: Dismissal - Normalized

Algorithm CRL MAE RMSE

M5P 0.6742 1.2078 1.524

Linear Regression 0.6853 1.1826 1.4944

Simple Linear Regression 0.53 1.4762 1.7787

Random Forest 0.6958 1.164 1.48

Table 8.5: Semester 2 - Prediction: Graduation Semester

Algorithm CRL MAE RMSE

M5P 0.6546 1.1834 1.5884

Linear Regression 0.6973 1.1481 1.5282

Simple Linear Regression 0.53 1.3185 1.7954

Random Forest 0.7031 1.1466 1.4764

Table 8.6: Semester 2 - Prediction: Graduation Semester - Normalized
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Algorithm TP TN FP FN A P RC

Logistic Regression 24 185 24 75 67.85 0.5 0.24

Random Forest 27 190 19 72 70.45 0.58 0.27

Naive Bayes 43 155 54 56 64.28 0.44 0.43

Neural Network 29 176 33 70 66.55 0.46 0.29

AdaboostM1 43 155 54 56 64.28 0.44 0.43

Table 8.7: Semester 2 - Prediction: Probation

Algorithm TP TN FP FN A P RC

Logistic Regression 29 181 28 70 68.18 0.51 0.29

Random Forest 35 178 31 64 69.15 0.53 0.35

Naive Bayes 48 139 70 51 60.71 0.41 0.48

Neural Network 36 172 37 63 67.53 0.49 0.36

AdaboostM1 48 139 70 51 60.71 0.41 0.48

Table 8.8: Semester 2 - Prediction: Probation - Normalized

Algorithm TP TN FP FN A P RC

Logistic Regression 22 244 26 16 86.36 0.45 0.57

Random Forest 15 257 13 23 88.31 0.53 0.39

Naive Bayes 28 228 42 10 83.11 0.40 0.73

Neural Network 23 237 33 15 84.41 0.41 0.60

AdaboostM1(Naive) 20 235 35 18 82.79 0.36 0.52

Table 8.9: Semester 3 - Prediction: Dismissal

53



Algorithm TP TN FP FN A P RC

Logistic Regression 27 240 30 11 86.68 0.47 0.71

Random Forest 19 252 18 19 87.98 0.51 0.50

Naive Bayes 27 233 37 11 84.41 0.42 0.71

Neural Network 24 243 27 14 86.68 0.47 0.63

AdaboostM1(Naive) 19 236 34 19 82.79 0.24 0.50

Table 8.10: Semester 3 - Prediction: Dismissal - Normalized

Algorithm CRL MAE RMSE

M5P 0.7184 1.0935 1.4214

Linear Regression 0.7184 1.0935 1.4214

Simple Linear Regression 0.5332 1.408 1.7485

Random Forest 0.7494 0.9989 1.3601

Table 8.11: Semester 3 - Prediction: Graduation Semester

Algorithm CRL MAE RMSE

M5P 0.7122 1.1346 1.4952

Linear Regression 0.7122 1.1346 1.4952

Simple Linear Regression 0.5332 1.3552 1.8011

Random Forest 0.7258 1.0445 1.4256

Table 8.12: Semester 3 - Prediction: Graduation Semester - Normalized
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Algorithm TP TN FP FN A P RC

Logistic Regression 17 213 9 69 74.67 0.65 0.20

Random Forest 17 212 10 69 74.35 0.63 0.20

Naive Bayes 63 128 94 23 62.01 0.40 0.73

Neural Network 30 196 26 56 73.37 0.53 0.34

AdaboostM1 35 175 47 51 68.18 0.42 0.40

Table 8.13: Semester 3 - Prediction: Probation

Algorithm TP TN FP FN A P RC

Logistic Regression 2 219 3 84 71.75 0.40 0.02

Random Forest 27 200 22 59 73.70 0.55 0.31

Naive Bayes 70 88 134 16 51.29 0.34 0.81

Neural Network 43 165 57 43 67.53 0.43 0.50

AdaboostM1 11 210 12 75 71.75 0.47 0.13

Table 8.14: Semester 3 - Prediction: Probation - Normalized

Algorithm TP TN FP FN A P RC

Logistic Regression 27 242 28 11 87.33 0.49 0.71

Random Forest 18 255 15 20 88.63 0.54 0.47

Naive Bayes 28 230 40 10 83.76 0.41 0.73

Neural Network 23 244 26 15 86.68 0.46 0.60

AdaboostM1 25 236 34 13 84.74 0.42 0.65

Table 8.15: Semester 4 - Prediction: Dismissal
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Algorithm TP TN FP FN A P RC

Logistic Regression 26 244 26 12 87.66 0.50 0.68

Random Forest 20 253 17 18 88.63 0.54 0.52

Naive Bayes 32 227 43 6 84.09 0.42 0.84

Neural Network 21 241 29 17 85.06 0.42 0.55

AdaboostM1 23 235 35 15 83.76 0.39 0.60

Table 8.16: Semester 4 - Prediction: Dismissal - Normalized

Algorithm CRL MAE RMSE

M5P 0.7641 0.9527 1.3184

Linear Regression 0.7643 0.9506 1.3179

Simple Linear Regression 0.5594 1.3286 1.7053

Random Forest 0.7834 0.8828 1.2759

Table 8.17: Semester 4 - Prediction: Graduation Semester

Algorithm CRL MAE RMSE

M5P 0.7619 0.9335 1.3473

Linear Regression 0.7599 0.9342 1.3436

Simple Linear Regression 0.5594 1.2972 1.7356

Random Forest 0.7696 0.9016 1.3137

Table 8.18: Semester 4 - Prediction: Graduation Semester - Normalized
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Algorithm TP TN FP FN A P RC

Logistic Regression 3 233 6 66 76.62 0.33 0.04

Random Forest 3 237 2 66 77.92 0.60 0.04

Naive Bayes 56 130 109 13 60.38 0.34 0.81

Neural Network 23 221 18 46 79.22 0.56 0.33

AdaboostM1 25 202 37 44 73.70 0.40 0.36

Table 8.19: Semester 4 - Prediction: Probation

Algorithm TP TN FP FN A P RC

Logistic Regression 0 239 0 69 77.59 0 0

Random Forest 3 236 3 66 77.59 0.50 0.04

Naive Bayes 55 131 108 14 60.38 0.33 0.79

Neural Network 15 222 17 54 76.94 0.47 0.22

AdaboostM1 17 214 25 52 75 0.40 0.40

Table 8.20: Semester 4 - Prediction: Probation - Normalized

8.2 Analysis

We evaluated and analyzed the performance of various machine learning models

for each outcome.

Graduation Time

Random Forest produced the best MAE for all semesters. It achieved the best

MAE of 0.8828 as shown in Table 8.17. This implies that the algorithm was mis-

taking approximately by an average of one semester which it quite acceptable.
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Mistake by one semester means that the algorithm expected the student to grad-

uate in eight or six semesters whereas the actual number would have be seven.

Dismissed

To compare the learning models, we plot the ROC and the F-measure for each

semester.

(a) Nonn-normalized (b) Normalized

Figure 8.1: ROC - Semester 2

(a) Non-normalized (b) Normalized

Figure 8.2: ROC - Semester 3
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(a) Non-normalized (b) Normalized

Figure 8.3: ROC - Semester 4

(a) Non-normalized (b) Normalized

Figure 8.4: F-measure - Semester 2

(a) Non-normalized (b) Normalized

Figure 8.5: F-measure - Semester 3
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(a) Non-normalized (b) Normalized

Figure 8.6: F-measure - Semester 4

All the algorithms produced better AUC after each semester, since they were

able to learn more about the student performance as the semester progresses. For

semesters 2 and 4, Logistic Regression produced the best AUC, having values

of 0.8987 (Figure 8.1a) and 0.9212 (Figure 8.3b) respectively. For semester 3,

Random Forest gave the best result and performed slightly better than Logistic

Regression. It provided an AUC of 0.904, as shown in Figure 8.2a.

For the F-measures, Logistic Regression gave the best results for all semesters.

It had a value of 0.624 (Figure 8.4a) for semester 2, 0.565 (Figure 8.5b) for semester

3, and 0.58 for semester 4 (Figure 8.6a)

Overall, Logistic Regression performed best in terms of predicting the dismissal

outcome.

Probation

Similar to dismissal, we plot the ROC curve and the F-measure for each

semester.
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(a) Non-normalized (b) Normalized

Figure 8.7: ROC - Semester 2

(a) Non-normalized (b) Normalized

Figure 8.8: ROC - Semester 3

(a) Non-normalized (b) Normalized

Figure 8.9: ROC - Semester 4
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(a) Non-normalized (b) Normalized

Figure 8.10: F-measure - Semester 2

(a) Non-normalized (b) Normalized

Figure 8.11: F-measure - Semester 3

(a) Non-normalized (b) Normalized

Figure 8.12: F-measure - Semester 4
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For semesters 2 and 4, Random Forest produced the best AUC, having a value

of 0.70 (Figure 8.7b) and 0.7612 (Figure 8.9a) respectively. For semester 3, Logistic

Regression performed the best having an AUC of 0.78 (Figure 8.8a).

Regarding the F-measures, Naive Bayes gave the best performance for all

semesters. It incrementally improved after each semester. It had a value of 0.44

(Figure 8.4a) for semester 2, 0.47 (Figure 8.5b) for semester 3, and 0.48 for semester

4 (Figure 8.6a).

Although Logistic Regression and Random Forest produced high AUC, they

performed poorly in terms of F-Measure. The main reason for this is the having

of imbalanced distribution of classes. AUC was high because of the large amount

of negative samples, while the F-Measure was low because of the poor precision.

8.3 Risk Estimates

The faculty may decide to assist limited number of students every year. Hence,

it is necessary to provide them with a list of students ordered by their risk or

probability distribution produced by the classification algorithms. For instance,

the faculty may want to assist 10 students who have the highest risk scores for

which they will need to select the 10 students from top of the list.

In order to evaluate the performance of the algorithms in terms of ranking the

students, we generated empirical risk curve[2] for each algorithm which is defined

as the proportion of true positives to the total number of students in that group.

1. For each algorithm, we sorted students by their probability estimates in

descending order. Top of the list represents students with the highest risk of

receiving dismissal/probation.
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2. We divided the list into 10 groups, and computed the mean empirical list for

each one of them.

3. We plotted the results into a graph.

The algorithm that produces good ranking will have a monotonically increas-

ing graph. On the contrary, having a monotonically decreasing graph implies that

students having lower risk scores are more likely to get dismissal/probation. The

results are shown below.

Figure 8.13: Risk Curves: Dismissal - Semester 2
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Figure 8.14: Risk Curves: Dismissal - Semester 2 - Normalized

Figure 8.15: Risk Curves: Dismissal - Semester 3
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Figure 8.16: Risk Curves: Dismissal - Semester 3 - Normalized

Figure 8.17: Risk Curves: Dismissal - Semester 4
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Figure 8.18: Risk Curves: Dismissal - Semester 4 - Normalized

Figure 8.19: Risk Curves: Probation - Semester 2
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Figure 8.20: Risk Curves: Probation - Semester 2 - Normalized

Figure 8.21: Risk Curves: Probation - Semester 3
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Figure 8.22: Risk Curves: Probation - Semester 3 - Normalized

Figure 8.23: Risk Curves: Probation - Semester 4
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Figure 8.24: Risk Curves: Probation - Semester 4 - Normalized

The figures showed that all of the algorithms produced monotonically increas-

ing curves which implied that they all had good risk estimates.

8.3.1 Evaluating Risk Estimates

In order to better evaluate the risk estimates, we introduced two evaluation

metrics known as Top K Recall and top K Precision curves which provide precision

and recall values at different values of threshold K. For instance, the faculty might

be interested only with students that belong to the top 10 of the list(ranking).

The results are shown in the following figures.
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Dismissal

(a) Non-normalized (b) Normalized

Figure 8.25: Top K - Recall - Semester 2

(a) Non-normalized (b) Normalized

Figure 8.26: Top K - Precision - Semester 2
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(a) Non-normalized (b) Normalized

Figure 8.27: Top K - Recall - Semester 3

(a) Non-normalized (b) Normalized

Figure 8.28: Top K - Precision - Semester 3

(a) Non-normalized (b) Normalized

Figure 8.29: Top K - Recall - Semester 4
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(a) Non-normalized (b) Normalized

Figure 8.30: Top K - Precision - Semester 4

Figures 8.25, 8.27, and 8.29 illustrate the recall at top K curves for Semesters

2, 3, and 4 respectively. It can be seen that for all the values of K, Naive Bayes

outperformed its counterparts for all semesters. Logistic Regression came second in

most of the figures, coming third only in Figures 8.25(b) and 8.27(a) to AdaBoost

and Neural Network respectively.

Precision at top K showed more of flat graphs because of the imbalance dis-

tribution of classes. Random Forest outperformed all the other algorithms for all

the values of K except for Semester 2 (Figure 8.26), coming second to Logistic

Regression. The latter gave the second best performance in terms of precision for

Semesters 3 and 4 (Figures 8.28 and 8.30).

It can be inferred that Logistic Regression produced a better balance (F-

measure) between precision and recall for different values at K.
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Probation

(a) Non-normalized (b) Normalized

Figure 8.31: Top K - Recall - Semester 2

(a) Non-normalized (b) Normalized

Figure 8.32: Top K - Precision - Semester 2
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(a) Non-normalized (b) Normalized

Figure 8.33: Top K - Recall - Semester 3

(a) Non-normalized (b) Normalized

Figure 8.34: Top K - Precision - Semester 3

(a) Non-normalized (b) Normalized

Figure 8.35: Top K - Recall - Semester 4

75



(a) Non-normalized (b) Normalized

Figure 8.36: Top K - Precision - Semester 4

Naive Bayes outperformed its counterparts in terms of top K recall for all

semesters except for semester 2 (Figure 8.31) where AdaBoost performed slightly

better. It also produced the best balance between precision and recall for different

values of K. Random Forest, on the other hand, performed the best for the top K

precision but performed very poor with respect to the top K recall. The rest of

the algorithms performed poorly for all semesters.

8.4 Feature Importance

In order to understand which factors contributed the most to the predictions,

we used the Information Gain (IG)[16] approach which works independently of the

algorithms, to rank the features according to their level of importance.
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Figure 8.37: Feature Ranking - Dismissal

Figure 8.38: Feature Ranking - Probation

It can be inferred from Figure 8.37 that Elective Failed and Programming Failed

were highly ranked across all the semesters in terms of contributing the most for

getting into dismissal. Theory Passed also made it into the top 5 except for

semester 3.

Figure 8.38 shows the feature ranking according to the probation. Elective

Average and Theory Average were highly ranked across all the three semesters.
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In addition, Number of Probation and Probation Consecutive features also con-

tributed significantly, except for semester 4.
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CHAPTER 9

APPLYING REINFORCEMENT LEARNING

Reinforcement learning (RL) is being widely used in artificial intelligence, gam-

ing, statistics, optimization, mathematics, and many more. It is different from

supervised learning, which was previously used in this paper. It is the science

of choosing actions or giving suggestions rather than predicting something that

might happen in the future. It is the learning of what to do next, what actions

to take to maximize the reward for the future. The policy must interpret actions

that it has tried in the past and pick the one that yields the most reward. The

reward, action, and policy are described in more detail in section 9.2.

In this chapter, we use some of the main concepts from RL and the Markov

decision process to build a model/policy that can assist the advisors. It will

recommend what kind of courses to take next, with the goal of protecting students

from dismissal/probation.

9.1 Reinforcement vs Supervised Learning

Firstly, it is important to mention the key differences between reinforcement

and supervised learning.

• The objective of RL is to find the best action leading to the maximum reward

instead of applying predictions or classifications.

• The training process of RL involves determining the best policy instead of

fitting the best model.
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• In RL, the recommended action of a state can be dependant on others. For

instance, in a chess game, the next best move of a player depends on the

opponent’s state. In our work, the states are independent with each other

because the course recommendations of any student at any semester does

not depend on other students.

In supervised learning, on the other hand, the learner will always produce

the same predictions for each record after training.

9.2 Elements of RL

RL consists of five main sub-elements: states, actions, rewards, transitions,

and policy.

1. State (s): The first element of our RL is the state of the environment. It

defines all current features of students during a specific time. We had two

kinds of states: Initial and Regular.

Initial states contain features related to students’ records before entering

university. They are defined as the following.

SATV - SAT Verbal

SATM - SAT Mathematics

SA1 - Class Average - 11th Grade

SA2 - Class Average - 12th Grade

SR - School Rank

Table 9.1: List of Initial State Features
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On the other hand, regular states represent the university grades of students

after each semester.

SN - Semester Number (0-12)

MPA - Major Programming Average (0-100)

MPC - Number of Major Programming Courses Taken (0-20)

MTA - Major Theory Average(0-100)

MTC - Number of Major Theory Courses Taken(0-20)

EA - Elective Average(0-100)

EC - Number of Elective Courses Taken(0-20)

PN - Probation Number(0-2)

Table 9.2: List of Regular State Features

All the features have numerical types. For instance, a student may belong

to the following state(table 9.3) at the end of the first semester.

SN MPA MPC MTA MTC EA EC PN

1 75 1 70 1 80 2 0

Table 9.3: List of Regular State Features

Two states are identical if they have the same feature values. Initially, each

state will have only one action(set of courses). However, if two states are

identical, then both actions are grouped into a single state. It was important

for each state to have multiple actions in order for the policy to be trained

and learn which action leads to a higher reward. For instance, two students

having identical feature values may have registered for different set of courses.

Our goal is to build a model that can identify which action is the best for
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each state. However, since we had a lack of training data, the number of

identical states were quite low which meant that most of the states had only

one action. Hence, the policy could not be trained properly. To overcome

this issue, we categorized the average grades into seven categories: 100, 95,

90, 85, 80, 75, 70, and 60. For example, if a student got a major average

of 87, the model will categorize the grade as 90. For the SAT scores, the

categories included: 800, 700, 600, 500, 400, and 300.

Finally, our training data consisted of:

• 800 students

• 75 unique initial states

• 1,350 unique states in total

2. Action (a): It represents set of courses that students should register the

following semester. It is defined as an array of six integers [A, B, C, X, Y,

Z]

• A: Number of major courses to take

• B: Number of theory courses to take

• C: Number of elective courses to take

• X: Number of major courses to take at summer

• Y: Number of theory courses to take at summer

• Z: Number of elective courses to take at summer

The goal is to find a policy that maps a state to a set of the courses to

be taken (action). For instance, after a student completes his/her first
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semester, the policy might suggest him/her to take three elective courses

and one major course for the following semester.

3. Reward (R): A reward function takes a state s as input and returns its

corresponding reward R(s) ∈ R. However, this reward does not represent

the future. It is only the reward received for reaching that state. A higher

semester average will result in a higher reward. The reward functions for our

states are as follow.

• R(s) = Semester Average(SA) ; If student passes the semester without

probation/dismissal.

• R(s) = -1200 ; If student is placed on probation.

We wanted states that represented students receiving a probation to be pe-

nalized more than the regular states(without probation). In Figure 5.2, we

already observed that the maximum number of semesters needed for a stu-

dent to graduate was 12. In addition, the maximum reward students can

receive for each semester is 100(Semester Average). As a result, by assigning

a reward of -1200(100 × 12), we guarantee that the cumulative(total) re-

ward received for each of students having at least one probation will always

be negative, and students with higher number of probation will always have

lower cumulative rewards. For instance, dismissed students will always have

lower cumulative reward than the ones with only one probation. Building the

policy and calculating the cumulative rewards are explained more accurately

in section 9.4.

Transitions (T): The transition system model is a higher order representation
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of the students’ behavior throughout their semesters. Since identical states are

grouped together, each state will have many transitions. A transition can be

defined as: T(s) → s′. If s has a semester number (SN) of 2, then s′ should have

a SN of 3.

An example of transition model is shown in Figure 9.1 as mentioned below.

Figure 9.1: An example of Transition System

s1 to s4 represent the initial states(described in section 9.3) of the transi-

tion system while the rest represent the regular states. All states have future

rewards(R). For instance, the reward for reaching s5 equals 2. The process of cal-

culating the rewards is described in section 9.4. In addition, a1 to a5 represent the

set of actions taken by the states. We can observe that s1 represents two students

who belong to the same state. s1 could be students coming from the same school

having similar grades. One of them took action a1 (set of courses) while the other
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took a2 which led them to two different states; s5 and s6. Moreover, two different

states can also lead to an identical state. For instance, s1 taking a2 led to the

same state s6 as s2 taking a3.

Policy (π): The goal is to construct the optimal policy. It should be a function

that takes a state as a parameter and returns the best action. The system should

input students as state parameters and the policy should output recommended

courses to each of them.

Value (V): It is defined as the future reward as opposed to the current reward.

V (s) returns the expected future reward of the current state s under a certain

policy (π). If V (s) > V (s′), it means that s is more likely to graduate safely

without encountering dismissal or probation. It was also important to quantify

the performance of state-action P(s, a) that represents the future reward of a

state s taking a certain action a. It is defined as:

P(s, a) = R(s′) + γV (s′), where s
a−→ s′

Consequently, the future reward of a state will be the reward of the action that

has the highest value:

V (s) = maxa∈As P(s, a)

However, there are some states that have no actions. We call them the terminal

states. They represent the final semesters of which students have either graduated

or been dismissed. In this case, the future reward of a terminal state represents
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the reward of the state itself:

V (s) = R(s)

The discount factor γ is a number between 0 and 1 that represents the im-

portance of the future reward. Higher values give more priority for the longer

terms. For example, the policy may recommend a set of courses for a particular

semester knowing that the student may not perform well that semester but as a

long term plan, it is the best choice and the student should graduate safely. Lower

values indicate that the policy does not care about the future and suggests set

of courses that guarantees the best outcome for that particular semester only. In

our application, we assigned γ = 1, since our main focus was to help students to

graduate(long term) safely with the highest cumulative average.

9.3 Markov Decision Process Characteristics

Our environment can be formalized as a Markov Decision Process which was

first introduced by Richard Bellman[17] and is currently frequently used in RL

algorithms and optimization. Some of the characteristics of MDP are as follows:

• The environment is fully observable and the policy can see the entire state.

The state does not depend on other variables where the value is unknown.

In our case, students are not dependent on each other, and the algorithm

can observe all the grades. In contrast, a good example of a non observable

environment is a poker game where the player at any state cannot observe

the opponents hand.
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• The future is independent of the past and history can be disregarded because

our present state accumulates all the relevant information from the history

such as the grades. Once a student reaches a certain state, the model does

not consider what happened in the past.

It was important to understand the nature of our environment before selecting

the right algorithm. One of the main techniques used to solve MDP is known as

Value Iteration technique which is described below.

9.4 Policy Construction

The goal is to find the optimal policy π that guarantees the best selection of

courses. To achieve this, we used the Value Iteration technique that improves the

estimate of V (s) iteratively. The algorithm initializes V (s) to random values and

repeatedly updates the P(s, a) and V (s) values until they converge to the optimal

values.

• V encodes the future reward and is computed: V (s) = maxa∈As P(s, a)

• Given a performance measure P, we needed to construct a policy that can

maximize the cumulative reward by selecting the action with the highest

reward. Hence it can be formulated as:

Optimal Policy π(s) = arg max
a
{P(s, a) | a ∈ A(s)}

where “arg” returns the index of the action with the maximum cumulative

reward for input s.
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9.4.1 Applying Value Iteration

The algorithm below computes the policy in a finite state-space model. It

will compute the future rewards of all the actions generated by each of the states.

Hence, the best action for a specific state would be the one with the highest reward.

1: Definition: As = Set of actions in s

2: Input: Initialization of V (s) = 0 for all s ∈ S, error = -1

3: while error != 0 do

4: error = −1

5: for each s ∈ S do

6: if s is a terminal state then

V (s) = R(s)

7: else

8: for each a ∈ As do

9: tmp = R(s′) + V (s′), where s
a−→ s′

10: if P(s, a) is defined then

11: error = max(error , |tmp− P(s, a)|)

12: else

13: error = max(error , tmp)

14: end if

15: P(s, a) = tmp

16: end for

17: V (s) = maxa∈As P(s, a)

18: end for

19: end while
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9.5 Policy Evaluation

The iteration should stop when the policy converges to the optimal values[18].

Having an acyclic transition system and terminal states that produce the same

reward at each iteration, the error measure should reach a value of zero after a

certain iteration. It occurs when P(s, a) does not learn/improve anymore and

tmp− P(s, a) starts producing a value of 0.

Figure 9.2: Error Measures Over Iterations

In Figure 9.2, we plotted the error measure after the end of each iteration

and noticed that the policy reached its optimal state after 12 iterations as

expected, given that the maximum number of semesters needed to graduate in

our dataset was 12, while having the reward values back-propagate from the

terminal states till the initial states.

Moreover, in order to evaluate the performance of the policy, we generated the
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best trace and the worst trace for each state after semester one, and analyzed

their performance after each iteration. The best traces are computed by se-

lecting actions with the highest rewards for each state. On the contrary, the

worst trace is computed by selecting actions with the lowest rewards. A path

will lead either to success or failure:

• Success occurs when the path graduates safely without any probation.

That is, according to the policy, if the student had followed the model’s

suggestion, then he/she might have had a better chance to graduate

safely.

• Fail occurs when the path either graduates with a probation or gets a

dismissal.

We formulated the performance as:

P =
nSuccess

nFail + nSuccess

where nSuccess and nFail represent the number of success/fail paths the policy

was able to generate out of the total number of students at risk. For instance,

if 10 students were dismissed and the policy was only able to generate success

paths for five of them, then nSuccess = 5, nFail = 5, and P would be 50%.

In order to check if the policy was learning and improving, we plot the number

success/fail for the best/worst trace after each iteration. The dataset contained

98 dismissed students and 310 students who received a probation.
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Figure 9.3: Performance Evaluation of the Best and Worst Trace: Dismissal

We can notice that, at iteration 0(Figure 9.3), the worst trace and the best

trace represented the same trace and have the same number success/fail values.

The reason is because the policy still cannot differentiate the importance of the

corresponding actions since P(s, a) for all s ∈ S are still undefined. At iteration

1, the policy showed slight improvement having the number of success increase

from 40 to 62 for the best trace, and decrease from 40 to 24 for the worst trace.

This implied that, the best traces were able to carry the 62 out of 98 students

into graduation without any risk.
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Figure 9.4: Performance Evaluation of the Best and Worst Trace: Probation

Overall, figures 9.3 and 9.4 show that the performance of the best traces were it-

eratively improving leading more students to success through their best traces.

They were able to recommend better set of courses after each iteration. For

instance, in Figure 9.3, the performance P reached an optimal value of 87%

after the 8th iteration. The 13% are those students that were dismissed for

whom the policy was not able to provide a successful path. One of the main

reason for this is the lack of training data since the policy could not find any

alternative actions that can lead to success. The policy only suggests actions

by learning from the experiences of the previous students. However, through-

out semesters, new states and transitions will be created and added as new

students enroll into the university which will considerably improve the perfor-

mance of our policy.
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At the end of execution, the policy will produce a matrix table that maps

state-action instances to reward values.

State/Action A1 A2 A3 A4

S1 400 370 366 386

S2 385 360 410 430

S3 390 386 398 400

S4 420 340 379 364

Table 9.4: Table Representation of a Policy

For example, the policy will recommend action A3 (Table 9.4) to S2 because

it has the highest reward (410) of the row. It can also be inferred that, A2 is

the worst action to take from S2, since it has the lowest value(360). In section

9.8, we describe this process with real examples.

9.6 Handling New States

The value iteration algorithm(section 9.4) learnt from the past students and

generated a policy which mapped each state to the corresponding action lead-

ing to a maximum reward. However, the faculty may need to assist only

students at risk, hence, the system can simply input states(Figure 9.5) repre-

senting those students into the policy and retrieve the recommended courses.

However, in certain cases, the state may not be defined in the policy. This

happens when the size of the training data is not enough to cover all the pos-

sible states. To overcome this issue, the model will first check if the state

has been defined by the policy or not. If not, it will select the nearest state

to the new state using Euclidean Distance(with normalization) and return its
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corresponding action.

Figure 9.5: Policy Evaluation of New States

9.7 Test Sample

In this part, we provide an example of a dismissed student and describe why

he/she might have gone off track according to the policy.

We selected the first student from the dataset. The student was dismissed at

the end of Semester 5. In order to understand what may have caused that, we

compared his/her action with the policy’s recommendation.

First, at the end of the first semester, the student belonged to the following

state S1:
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Property Value

Semester 1

Total Elective Average 40

Total Elective Courses Taken 2

Total Major Average 70

Total Major Courses Taken 1

Total Theory Average 60

Total Theory Courses Taken 2

Number of Probation 0

Table 9.5: List of State S1 Properties

and registered for the following courses (A).

Property Value

Number of Major Courses 1

Number of Theory Courses 0

Number of Elective Courses 3

Table 9.6: List of A Properties

To understand if the student picked the best action, we imported S1 into the

policy and analyzed the corresponding actions.

Action Major Theory Elective Reward

A1 2 1 1 590

A2 0 3 1 520

A3 1 0 3 560

A4 2 1 3 500

Table 9.7: Corresponding Actions From S1 and Their Rewards

According to the policy, the student had chosen the second best action since
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A = A2 and it has the second highest reward. Hence, it can be inferred that,

choosing A1 might have resulted in a better academic position in the future.

9.8 Policy Overview

To have a general overview of what the policy consists of, we presented the

mapping between state-action in a tabular form. It provided an insight of a

student’s performance at different stages of course registration.

9.8.1 Course Recommender

Since identical states are grouped into one(section 9.2), a state is said to be

more recurring/populated if it contains more identical states than the other.

We selected the top five recurring states from each semester starting from the

initial one and provided the best and the worst action for each of them. Unlike

the best state, the worst action of a policy can be defined as:

π(s) = arg min
a
{P(s, a) | a ∈ A(s)}

It is the action that results in the lowest future reward.

We defined actions(section 9.2) as: NMajor - NTheory - NElective and states as

S
j
i where i and j represent the states’ semester number and recurring rank

respectively. Ranks are ordered from 1 to 5, 1 being the state with the highest

recurrence for semester i. Actions containing summer courses were not highly

recurring, hence we did not include any summer features in them. On the other

hand, states are defined by their features which were described in section 9.2.

• SATV: SAT Verbal Grade
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• SATM: STA Math Grade

• SA1: School Average Grade 11

• SA2: School Average Grade 12

• MPA: Cumulative Major Programming Average

• MPC: Cumulative Major Programming Courses Taken

• MTA: Cumulative Major Theory Average

• MTC: Cumulative Major Theory Courses Taken

• EA: Cumulative Elective Average

• EC: Cumulative Elective Average

SATV SATM SA1 SA2 SR Best A. Worst A.

S10 400 600 60 60 7 2-0-3 0-2-3

S20 400 700 60 60 7 0-3-3 1-1-2

S30 300 300 60 60 7 1-0-3 3-1-1

S40 400 700 60 60 7 0-1-3 0-3-1

S50 400 700 60 60 7 0-1-3 0-3-1

Table 9.8: Policy: Top 5 Initial States

Table 9.8 shows that students who belonged to S10 before beginning their uni-

versity career performed best when they registered for two major and three

elective courses in their first semester. However, they performed worst when
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they registered for 2 major courses and four elective courses. The same proce-

dure was applied till semester four.

MPA MPC MTA MTC EA EC Best A. Worst A.

S11 60 1 60 2 60 2 2-1-2 0-1-4

S21 0 0 85 2 85 2 0-3-3 1-0-3

S31 75 1 70 2 70 2 1-1-3 1-2-2

S41 60 1 60 2 60 2 2-1-2 1-5-1

S51 0 0 60 2 60 2 0-2-4 2-0-2

Table 9.9: Policy: Top 5 Regular States: Semester 1

MPA MPC MTA MTC EA EC Best A. Worst A.

S12 60 3 60 2 60 2 1-2-3 0-2-3

S22 75 3 70 2 70 2 0-2-3 1-2-2

S32 60 3 75 2 75 2 0-3-2 1-2-2

S42 75 3 70 2 70 2 0-3-2 1-1-4

S52 85 3 75 2 75 2 1-2-2 0-2-4

Table 9.10: Policy: Top 5 Regular States: Semester 2

MPA MPC MTA MTC EA EC Best A. Worst A.

S13 75 5 70 3 70 3 0-3-2 1-1-4

S23 85 5 75 3 75 3 1-1-2 0-4-2

S33 80 4 75 5 75 5 1-1-4 2-1-3

S43 75 5 75 3 75 3 1-2-2 1-2-2

S53 80 4 75 5 75 5 1-1-4 2-1-3

Table 9.11: Policy: Top 5 Regular States: Semester 3
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MPA MPC MTA MTC EA EC Best A. Worst A.

S13 85 4 85 3 85 3 2-0-3 1-1-3

S23 75 6 75 5 75 5 0-2-4 0-3-2

S33 75 7 70 5 70 5 0-2-3 0-3-1

S43 75 7 70 4 70 4 0-3-1 0-2-3

S53 90 8 90 5 90 5 1-0-3 1-0-4

Table 9.12: Policy: Top 5 Regular States: Semester 4

9.8.2 N-th Recommendation

It might occur that students cannot or are not willing to register for the recom-

mended courses because of financial or personal reasons. For instance, some

of the courses may not be available in the next semester or there might be

schedule conflicts between them. It is essential to have a policy that is flexible

enough to provide alternative recommendations or the next best actions that

meet students’ requirement. In order to achieve that, for each state, we order

the actions by their reward values in descending order. For instance, state S10

(Table 9.7) will have the following results (Table 9.13).

Action Reward n

A1 2-1-1 590 0

A2 1-0-3 560 1

A3 0-3-1 520 2

A4 2-1-3 500 N

Table 9.13: Top 5 Actions for S10

Hence, it can be implied that:

99



• n = 0 defines the best action

• n = 1 defines the second best action

• n = 2 defines the third best action

• n = N defines the worst action; N being total number of actions from s.

Accordingly, the policy will find the next best action that meets the students’

requirement. For example:

1. If a student decided to register for four courses, then the policy will out-

put A2 (n = 1). It will not recommend A1 since it contains 5 courses(2-

0-3)

2. If a student decided to register for six courses, then the policy will output

A3 (n = 2).

3. If a student decided to register for the best set of courses, then the policy

will output A1 (n = 0).

9.9 Summary

In this chapter, we built a course recommendation system using reinforcement

learning that focuses on assisting students with the course selections. The

system decides what to do next by learning the actions of the past students. We

reused the same dataset generated in chapters 6, 7, and 8 for machine learning

and produced a transition system consisting of states, actions, rewards, and

transitions.
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1: Algorithm: Course Recommendation Builder

2: Input: studentsData: Student Records

3: Definition:

listStates //List of total states to be generated

stateP , stateC //State variables

actionC //Action variable

4: for each student ∈ studentsData do

5: Initialize semesterNum ← 0

6: Initialize totalProbation ← 0

7: Instantiate stateP ( semesterNum, SATV, SATM,SA1, SA2, SR)

8: listSemeters ← All semester records registered by student

(Each semester record contains: courses registered, status(probation/dismissed),

and reward value)

9: for each semester ∈ listSemeters do

10: semesterNum ← semesterNum + 1;

11: Instantiate stateC( semesterNum,MPC,MTC,EC,MPA,MTA,EA)

12: Instantiate actionC(Set of courses registered in semester)

13: if status( semester) = probation then

14: totalProbation ← totalProbation + 1;

15: Set Probation Number of stateC ← totalProbation

16: Set Reward of stateC ← -1200

17: else

18: Set Reward of stateC ← Semester Average

19: end if

20: if listStates contains s’ identical to stateC then
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21: stateC ← s’

22: else

23: Add stateC to listStates

24: end if

25: Add Transition t ← ( actionC, stateC) to stateP

26: stateP ← stateC

27: end for

28: Run ValueIteration( listStates);

We formalized our environment into a Markov Decision Process and used

concepts from value iteration algorithm to build a decision making policy

that is able to recommend the best set of courses. In order to evaluate our

algorithm, we generated and analyzed the best traces and worst traces for

students at risk and noticed that the policy was improving after each iter-

ation. In addition, the system is also flexible enough to provide alternative

set of courses in case students cannot register for the best recommended

courses. Finally, the recommendation system will be rebuilt after each

semester as more training samples will be available to be trained on.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusion

In this thesis, we presented a new course recommendation and an early

warning system for undergraduate students using machine learning.

Our contribution included the following:

• Semester-Based Predictions: Rather than predicting the stu-

dents’ outcome only once, we proposed a system that accumulates

the grades of each semester alongside their school/SAT grades. It was

important to address this problem, since some students may arrive

at university with good grades and background but perform poorly

after each semester. Hence, it was important to have semester-based

predictions that can warn a student who might be at risk at the end

of each semester.

• Course Recommendation for Undergraduate Students: Some

of the previous works approached the course recommendation sys-

tem in a way that does not apply to undergraduate students. These

methods work best if the student has the flexibility to choose courses

from existing lists, such as those provided by online course plat-

forms. However, with regards to a Bachelor’s degree, the student

has a strict set of courses and a path to follow in order to graduate

safely. Hence, we approached this case by applying reinforcement

103



learning to build a policy(recommender) that learns from the past

students and accordingly helps the new students with their upcoming

courses selection.

10.2 Future Work

The work presented in this thesis opens the door to many future work and

experiments which include:

1. Freshman/Majorless: Our work targeted students pursuing a Bach-

elor’s degree for a specific major. However, it would be challenging

to experiment on majorless and freshman students since the goal is

to address as many students as possible.

2. Software Integration: This work should eventually be integrated

with the university’s database system and website. Students should

receive warnings and course recommendations on their dashboard.
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APPENDIX A

ABBREVIATIONS

MAE Mean Square Error

AUC Area Under the Curve

ROC Receiver Operating Characteristic

RMSE Root Mean Square Error

TP True Positive

TN True Negative

FP False Positive

FN False Negative

FPR False Positive Rate

TPR True Positive Rate

SMOTE Synthetic Minority Oversampling Technique

AdaBoost Adaptive Boosting

IG Information Gain
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RL Reinforcement Learning

MDP Markov Decision Process

SATV SAT Verbal

SATM SAT Mathematics

SA1 Class Average 11th Grade

SA2 Class Average 12th Grade

SR School Rank

SN Semester Number

MPA Major Programming Average

MPC Major Programming Courses Taken

MTA Major Theory Average

MTC Major Theory Courses Taken

EA Elective Average

EC Elective Courses Taken

R Reward

PN Probation Number
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