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An Abstract of the Thesis of

Al-Abbass Adham Khalil for Masters of Science
Major: Computer Science

Title: A Method for Verifying Choreographies and Their Implementations

A global choreography defines a communication pattern over a set of ports.
The ports are partitioned into subsets, each subset being the ports that be-
long to a given process. From a choreography and an interaction architecture,
a distributed implementation can be generated automatically. The implementa-
tion can then be analyzed for correctness using standard methods such as model
checking, but this is subject to state-explosion. A more efficient approach is to
verify that the choreography is correct, and to establish that the implementation
automatically inherits the correctness properties of the choreography. Because
the choreography is centralized, analyzing it provides a more manageable ab-
stract view and it incurs less state explosion. We present such an approach in
this thesis, along with several case studies illustrating its advantages in practice.

vi



Contents

Acknowledgements v

Abstract vi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 List of Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 4
2.1 Model of Concurrent Computation . . . . . . . . . . . . . . . . . 4
2.2 CTL Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . 6

3 Operational Semantics of Choreographies 8
3.1 Choreography Grammar . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Choreography Control Predicates . . . . . . . . . . . . . . . . . . 9
3.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Sequential . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.2 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.3 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.4 While . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.5 Send-Receive . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Kripke Generation 13
4.1 How to Write a Choreography . . . . . . . . . . . . . . . . . . . . 13
4.2 Three-Process Example . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.1 The Choreography . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.3 Kripke Structure Generation . . . . . . . . . . . . . . . . . 14
4.2.4 Label Definitions . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.5 Explanation of the Kripke Structure . . . . . . . . . . . . 17

vii



5 Correctness of choreographies 20
5.1 Sequential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 While . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Send-Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.5.1 Asynchronous Send . . . . . . . . . . . . . . . . . . . . . . 24
5.5.2 Synchronous Send . . . . . . . . . . . . . . . . . . . . . . . 24

6 Correctness of Distributed Implementations of Choreographies 25
6.1 Implementation of Choreographies . . . . . . . . . . . . . . . . . . 25

6.1.1 Sequential . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1.2 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.3 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.4 While . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.5 Send-Receive . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.1 Sequential . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.2 Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2.3 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.4 While . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.5 Send-Receive . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Correctness of Synthesis Method 31
7.1 Correctness Theorems . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Three-Process Example Correctness . . . . . . . . . . . . . . . . . 33

8 Buyer-Seller Example 35
8.1 The Choreography . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.2 Input File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8.3 Kripke Structure Generation . . . . . . . . . . . . . . . . . . . . . 36
8.4 Label Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.5 Explanation of the Kripke Structure . . . . . . . . . . . . . . . . . 40

8.5.1 Buyer 1 Haggle . . . . . . . . . . . . . . . . . . . . . . . . 40
8.5.2 Banker Consulting . . . . . . . . . . . . . . . . . . . . . . 41
8.5.3 Buyers Authorize Payment in Parallel . . . . . . . . . . . . 42
8.5.4 System Termination . . . . . . . . . . . . . . . . . . . . . 43

8.6 Properties Model Checked . . . . . . . . . . . . . . . . . . . . . . 43

9 Conclusions and Future Work 45



List of Figures

2.1 Semantic rules defining the behavior of composite components . . 6

4.1 Three-Process example - Kripke Structure . . . . . . . . . . . . . 15

5.1 Sequential and Parallel Correctness . . . . . . . . . . . . . . . . . 22

6.1 Sequential composition transformation . . . . . . . . . . . . . . . 26
6.2 Parallel composition transformation . . . . . . . . . . . . . . . . . 27

8.1 Automatically Generated Buyer-Seller Example . . . . . . . . . . 37

ix



Chapter 1

Introduction

1.1 Background
Proving the correctness of a hardware or software system is an integral step in
achieving its reliability. Model checking is the process where given a model of
a system, check if this system satisfies a given property. Some of the properties
can be safety requirements such as absence of deadlock, satisfaction of integrity
constraints, and the absence (non-reachability) of bad states that can cause the
system to crash or malfunction.

As the system model becomes more complex, more states and variables are in-
volved and thus we reach “state explosion”, where the size of the system state
space has grown exponentially with the number of processes and state variables,
and the time it takes to model check the system becomes unfeasible. One of the
methods to reduce this complexity is to use abstraction, where first we simplify
the system before proving its properties. However, the simplified system does not
necessarily have the same properties as the original. The task of model checking
using abstraction is difficult because:

1. if the abstraction is too coarse, it will violate the desired properties, even
though the concrete system may be correct (“false negative”), and

2. if the abstraction is too fine, it will still be too large to allow efficient
verification.

The challenge then is to find a faithful abstraction (which satisfies the desired
properties) but is not too large. An alternative approach is to start from the ab-
straction, and to automatically generate a distributed implementation, by means
of correctness preserving transformations. One such approach is presented by
Hallal and Jaber [1], who give a methodology to automatically synthesize an ef-
ficient distributed implementation starting from a high level global choreography.
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The global choreography describes a set of processes and their interactions to-
gether, and from it, we can generate a distributed system. This system can be
model checked using Promela, but this suffers from the same problem of state
explosion. Thus, we wish to model check the global choreography before gener-
ating the distributed implementation. Together with a theory which establishes
that the generated implementation automatically inherits correctness properties
from the choreography, we solve the verification problem.

1.2 Objective
The aim of this thesis is as follows:

1. Given a description of a global choreography, represent it as a Kripke struc-
ture and model check this structure with respect to a specification written
in the temporal logic CTL [2].

2. Devise a theory which shows that satisfaction of formulae by the global
choreography implies satisfaction of the same (or related) formulae by the
implemented system. The formula should be drawn from a suitably inter-
esting sublogic of CTL.

The representation and model checking of Kripke structures will be done using the
tool Eshmun [3], which can be downloaded from http://eshmuntool.blogspot.

com/.

1.3 List of Tasks
In order to achieve these objectives, we shall perform the following tasks:

1. Define a semantics for choreographies. The semantics will be given as a
set of structured operational semantics rules, which take a pair consisting
of a choreography and state (assignment to variables), and produce a new
choreography and state as a result of executing the action described by the
rule.

2. Using this semantics, we devise an algorithm for generating the Kripke
structure of a choreography. We assume that choreographies are finite-state,
so that the Kripke structure can be generated by simulating all possible
behaviors of the choreography, until no new behaviors are produced. The
resulting Kripke structure can then be model checked in Eshmun.

3. Devise property-preservation results which state that properties (expressed
in CTL) of the choreography are also properties of the implementation.
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Hence model checking of the choreography verifies properties of the imple-
mentation, i.e., the generated code. We expect these results to follow from
the process of constructing the state-transitions of the components of the
distributed implementation, as given in Chapter 4 of [1].

4. Apply the method to many case studies.
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Chapter 2

Literature Review

2.1 Model of Concurrent Computation
We use the version of BIP that is given in [1].

In this section, we introduce a component-based framework, inspired from the Be-
havior Interaction Priority framework (BIP) [4]. In the BIP framework, atomic
components communicate through an interaction model defined on the interface
ports of the atomic components. Unlike BIP, we distinguish between four types
of ports: (1) synchronous send; (2) asynchronous send; (3) asynchronous re-
ceive; and (4) internal ports. In BIP, all ports have the same type that only
allow to build multiparty interactions. The new port types allow to (1) eas-
ily model distributed system communication models; (2) provide efficient code
generation, under some constraints, that does not require to build controllers to
handle conflicts between multiparty interactions. For the sake of simplicity, we
omit variables from atomic components at this stage. Formally, a port is defined
as follows.

Definition 1 (Port). A port p consists of the following elements:

• a port identifier p;

• its data type p.dtype 2 {int, str, bool, . . .}; and

• its communication type denoted by p.ctype ranging in the set {ss, as, r, in},
where ss (resp. as, r, in) denotes a synchronous send (resp. asynchronous

send, receive, internal) communication type.

Moreover, a receive port p has field p.buff 2 N denoting the number of signals/-

data pending on that port.

Given a port p, we define the predicate isSSend(p) (resp., isASend, isRecv,
isInternal) that holds true iff (the communication type of) p is a synchronous
send (resp., asynchronous send, receive, internal) port.
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Atomic components are the main computation blocks. An atomic component
is defined as follows.

Definition 2 (Atomic Component). An atomic component Bi is defined as a

tuple (Pi, Qi, Ti), where (1) Pi is a set of ports; (2) Qi is a set of states; (3)

Ti ✓ Qi ⇥ Pi ⇥Qi is a set of transitions.

In the sequel, we consider a system of n atomic components {Bi = (Pi, Qi, Ti)}ni=1.
We define the set P = [n

i=1Pi (resp. Pss = {p | p 2 P ^ isSSend(p)},
Pas = {p | p 2 P ^ isASend(p)}, Pr = {p | p 2 P ^ isRecv(p)}) of all
the ports (resp. synchronous send port, asynchronous send ports, receive ports)
of the system. Moreover, we denote Pss

i (resp. Pas
i , Pr

i ) to be the set of all
synchronous send (resp., asynchronous send, receive) ports of atomic component
Bi. We also consider that port pi belongs to component i. Given a state qi, we
consider that all the outgoing ports are enabled.

Synchronization between the atomic components is defined using the notion
of interaction.

Definition 3 (Interaction). An interaction is a = (pi, {pj}j2J), where i /2 J ,

is defined by (1) its send port pi (synchronous or asynchronous) that belongs to

the send ports of atomic component Bi, i.e., pi 2 Pss
i [ Pas

i ; (2) its receive ports

{pj}j2J each of which belongs to the receive ports of atomic component Bj, i.e.,

pj 2 Pr
j .

An interaction a = (pi, {pj}j2J) is synchronous (resp. asynchronous) interac-
tion iff isSSend(pi) (resp. isASend(pi)).

A composite component consists of several atomic components and a set
of interactions. The semantics of a composite component is defined as a la-
beled transition system where the transitions depend on the interaction types
(see Figure ??). First, Equation (2.1) represents synchronous interaction, i.e.,
a = (pi, {pj}j2J) and isSSend(pi), which requires all the corresponding receive
ports to be enabled with no pending messages (their buffers are empty) and
which results in updating the states all the involved components simultaneously.
Second, Equation (2.2) and Equation (2.4) represent asynchronous interactions.
Equation (2.2) represents the asynchronous execution of the send port without
requiring the participation of the corresponding receive ports, however, upon its
execution it places the data or synchronization notice in the buffers of the cor-
responding receive ports. Then, (2.3) represents the autonomous execution of
receive ports with no empty buffers. Finally, Equation 2.4 represents the au-
tonomous execution of internal ports that only allow to change local state of
atomic components.

Definition 4 (Composite Component). A composite component B is defined

by a composition operator parameterized by a set of interactions �. Component

B = �(B1, . . . , Bn) is a transition system (Q, �,!), where Q =
Nn

i=1 Qi and !
is the least set of transitions satisfying the rules in Figure ??.
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synch-send:

a = (pi, {pj}j2J) 2 � isSSend(pi)

8k 2 J [ {i} : qk
pk�! q

0
k 8k /2 J [ {i} : qk = q

0
k

8k 2 J : pk.buff = 0

(q1, . . . , qn)
a�! (q01, . . . , q

0
n)

(2.1)

asynch-send:

a = (pi, {pj}j2J) 2 �

isASend(pi) qi
pi�! q

0
i 8k 6= i : qk = q

0
k

(q1, . . . , qn)
a�! (q01, . . . , q

0
n)

8j 2 J : pj.buff := pj.buff+ 1

(2.2)

recv:
qj

pj�! q
0
j isRecv(pj) pj.buff > 0 8k 6= j : qk = q

0
k

(q1, . . . , qn)
a�! (q01, . . . , q

0
n) pj.buff := pj.buff� 1

(2.3)

internal:
qi

pi�! q
0
i isInternal(pi) 8k 6= i : qk = q

0
k

(q1, . . . , qn)
✏�! (q01, . . . , q

0
n)

(2.4)

Figure 2.1: Semantic rules defining the behavior of composite components

Finally, a system is defined as a composite component where we specify the
initial states of its atomic components.

Definition 5 (System). A system is a pair S = (B, init), where B = �(B1, . . . , Bn)
is a composite component and init 2

Nn
i=1 Qi is the the initial state of B.

2.2 CTL Syntax and Semantics
We use the temporal logic CTL to specify correctness properties.

Let AP be a set of atomic propositions, including the constants trueand false.
We use true, falseas “constant” propositions whose interpretation is always the
semantic truth values tt, ↵, respectively. The logic CTL [?, 2] is given by the
following grammar:

' ::= true | false | p | ¬' | ' ^ ' | ' _ ' | AX' | EX' | A['R'] | E['R']

where p 2 AP , and true, false are constant propositions with interpretation
tt,↵ respectively (i.e.,“syntactic” true, false respectively).

The semantics of CTL formulae are defined with respect to a Kripke structure.
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Definition 6. A Kripke structure is a tuple M = (S0, S, R, L) where S is a finite

state of states, S0 ✓ S is a set of initial states, R ✓ S⇥S is a transition relation,

and L : S 7! 2AP
is a labeling function that associates each state s 2 S with a

subset of atomic propositions, namely those that hold in the state. State t is a

sucessor of state s in M iff s, t 2 R.

We assume that a Kripke structure M = (S0, S, R, L) is total, i.e.,8s 2 S, 9s0 2
S : (s, s0) 2 R. A path in M is a (finite or infinite) sequence of states, ⇡ =
s0, s1, . . . such that 8i � 0 : (si, si+1) 2 R. A fullpath is an infinite path. A state
is reachable iff it lies on a path that starts in an initial state. Without loss of
generality, we assume in the sequel that the Kripke structure M that is to be
repaired does not contain any unreachable states, i.e.,every s 2 S is reachable.

Definition 7. M, s |= ' means that formula ' is true in state s of structure M

and M, s 6|= ' means that formula ' is false in state s of structure M . We define

|= inductively as usual:

1. M, s |= true

2. M, s 6|= false

3. M, s |= p iff p 2 L(s) where atomic proposition p 2 AP

4. M, s |= ¬' iff M, s 6|= '

5. M, s |= ' ^  iff M, s |= ' and M, s |=  

6. M, s |= ' _  iff M, s |= ' or M, s |=  

7. M, s |= AX' iff for all t such that (s, t) 2 R : (M, t) |= '

8. M, s |= EX' iff there exists t such that (s, t) 2 R and (M, t) |= '

9. M, s |= A['R ] iff for all fullpaths ⇡ = s0, s1, . . . starting from s = s0:

8k � 0 : (8j < k : (M, sj 6|= ') implies M, sk |=  

10. M, s |= E['R ] iff for some fullpath ⇡ = s0, s1, . . . starting from s = s0:

8k � 0 : (8j < k : (M, sj 6|= ') implies M, sk |=  

We use M |= ' to abbreviate M,S0 |= '. We introduce the abbreviations
A[�U ] for ¬E[¬'R¬ ], E[�U ] for ¬A[¬'R¬ ], AF' for A[trueU'], EF' for
E[trueU'], AG' for A[falseR'], EG' for E[falseR'].
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Chapter 3

Operational Semantics of

Choreographies

3.1 Choreography Grammar
We introduce the grammar of choreographies. The following description is from
[1]:

We first introduce the abstract syntax of the global choreography
model, which allows for: (1) synchronous and asynchronous commu-
nications between interface ports; (2) sequential composition of two
choreographies; (3) parallel composition of two choreographies; (4)
conditional master branching, i.e., the branching decision is taken
by a specific component; (5) conditional master loops, i.e., the loop
condition is guided by a specific component. Listing 3.1 depicts the
abstract syntax of the choreography model.

Send/receive choreography updates the participating components by adding a
transition from the current context and labeling it by the corresponding send or
receive port from the choreography.

The binary operator • allows to sequentially compose two choreographies, ch1•ch2

The binary operator k allows for the parallel compositions of two independent
choreographies. Two choreographies are independent if their participating com-
ponents are disjoint.

Branching allows for the modeling of choice between several choreographies. The
choice is made by a specific component (Bi), which depending on its internal
state would notify the appropriate components to follow the taken choice (i.e.,

8



⌥ ⌅
ch ::= snd �! rcvs : <T> # send/receive
| Bi � {sndj:ch}j2J # Branching – where sndj 2 Pss

i

| while(snd) ch end # loop
| ch • ch # sequential
| ch k ch # parallelism
| ✏

snd ::= pi # sender – where pi 2 Pss
i [ Pas

i

rcvs ::= pi | pi rcvs # receivers – where pi 2 Pr
i

T ::= bool | int | str⌃ ⇧
Listing 3.1: Abstract syntax of the global choreography model

the corresponding choreography, chl).

Loop allows for the modeling of a conditional repeated choreography ch. The
condition is evaluated by a specific component, which will notify the participants
of the choreography to either re-execute it or break.

3.2 Choreography Control Predicates
For the following semantics we use these notations:

Fp(�) : is the state that results from executing a transition labeled with port p
in state �

G : guard that enables a transition if the state satisfies it

snd, p : ports

rcvs : set of ports

qj
i : state i of component j

ch : choreography

ch.st : set to true after first event of ch

ch.end : set to true after last event of ch

ch.in : ch.st ^ ¬ch.end

fires : ch fires p iff ch executes a transition labelled with port p, i.e., snd �! rcvs
where p = snd or p 2 rcvs

9



bp : port p is applied

✏ : empty choreography

� : state of the choreography

? : error state

] : disjoint union operator, used between states

• : sequential composition operator, execute one choreography and then another

k : parallel composition operator, execute two independent (i.e., do not share
components) chorepgraphies in parallel

� : branching composition operator, execute only one of the choreography op-
tions if its guard is satisfied

3.3 Operational Semantics

To express a notion of correct implementation of choreohraphies, we need a se-
mantics for choreographies that is independent of the implementation. We present
such a semantics, as a set of structured operational semantics rules.

3.3.1 Sequential

sequential1:
(ch1, �)

p�! (ch0
1, �

0)

(ch1 • ch2, �)
p�! (ch0

1 • ch2, �
0)

�
0 = Fp(�) (3.1)

Equation (3.1) represents sequential choreographies. When ch1 fires port p, state
� gets updated to �0 under function F and the choreography is updated to the
next event, ch1. For ch1 • ch2, if ch1 is not the empty choreograpghy, the current
event of ch1 applies port p, the state and choreography are updated accordingly
to (ch0

1 • ch2, �
0).

sequential2:
(✏ • ch, �) �! (ch, �)

(3.2)

Equation (3.2) represents the end case for sequential choreographies. When the
empty choreography is sequenced by another choreography (✏ • ch, �), simply the
pair is updated to the next choreography (ch, �).

10



3.3.2 Parallel

parallel1:
(ch1, �1)

p�! (ch0
1, �

0
1)

(ch1 k ch2, �1 ] �2)
p�! (ch0

1 k ch2, �
0
1 ] �2)

�
0
1 = Fp(�1) (3.3)

Equation (3.3) represents parallel choreographies. When ch1 fires port p, state
�1 gets updated to �

0
1 under function F and the choreography is updated to

the next event, ch1. The state of parallel choreographies is represented by the
disjoint of the states of each of the involved choreographies. The choreography
that is currently applying its port, updates its state. For ch1 k ch2, if ch1 is not
the empty choreograpghy, the current event of ch1 applies port p, the state and
choreography are updated accordingly (ch0

1 k ch2, �
0
1 ] �2).

parallel2:
(✏ k ch, �) �! (ch, �)

(3.4)

Equation (3.4) represents the end case for parallel choreographies. When the
empty choreography is paralleled with another choreography (✏ k ch, �), simply
the pair is updated to the next choreography (ch, �).

3.3.3 Branching

branching1:
(Bi �Gj&sndj : chj, �)

sndj��! (chj, �
0)

� |= Gj, �
0 = Fsndj(�) (3.5)

Equation (3.5) represents the branching choreographies. If the state � satisfies
guard Gj, then it is possible to fire the port sndj that Gj is guarding and to go
to the respective choreography. The state is updated accordingly.

branching2:
(Bi �Gj&sndj : chj, �) �! (✏,?)

� 6|= Gj 8j 2 J (3.6)

Equation (3.6) represents an edge case. If the state � satisfies none of the guards
Gj, then move to the empty choreography and the error state.

3.3.4 While

while:
(while(G&snd) ch end, �)

snd��! (ch • while(G&snd), �0)
� |= G, �

0 = Fsnd(�)

(3.7)
Equation (6.4) represents the while loop of choreographies. If the state � satisfies
guard G, then apply the sndj that G is guarding and apply choreography ch

sequenced by the loop again, the state is updated accordingly.

whileEpsilon:
(while(G&snd) ch end, �) �! (✏, �)

� 6|= G (3.8)

Equation (3.8) represents the end case for while loop of choreographies. If the
state � does not satisfy the guard G, go to the empty choreography.
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3.3.5 Send-Receive

Asynchronous Send

sndRcvsAsynch1:
(snd �! rcvs, �)

snd��! (rcvs, �0)
�
0 = Fsnd(�) (3.9)

If the sender is free, it will apply its port and update the state.

sndRcvsAsynch2:
(rcvs, �)

p�! (rcvs� p, �
0)

p 2 rcvs, �
0 = Fp(�) (3.10)

Once a receiver is free, it applies its port and updates the state.

sndRcvsAsynch3:
(p, �)

p�! (✏, �0)
�
0 = Fp(�) (3.11)

Once the last receiver is free, it applies its port and updates the state. Go to the
empty choreography.

Synchronous Send

sndRcvsSynch:
(snd �! rcvs, �)

P1...Pn����! (✏, �0)

snd [ rcvs = p1 . . . pn,

�
0 = Fp1(Fp2(. . . Fpn(�)) . . .)

(3.12)
The sender and receivers must be free, each applies its port and updates the state.
Note that the resulting state �0 results from applying all of the update functions,
for all of the ports, since the transition is synchronous. These update functions
can be applied in any order, since they modify disjoint parts of the state.

12



Chapter 4

Kripke Generation

4.1 How to Write a Choreography
The following are rules on how the actual syntax of the input text file for gener-
ating the Kripke structure of a choreography should be.

Send-Receive : B.S > S.R, or S.S > B1.R, B2.R

Sequential : B.S > S.R * S.S > B1.R, B2.R

Loop : while(B2.C) B1.C > Bk.InfR ^Bk.InfS > B1.R, B2.R ^B2.S > B1.R
Note: inside loops we use ’^’ instead of ’*’ to mean sequential

Nested Loops : In order to have nested loops, the interior loop must be written
in a different choreography
CH1 = while(N1.C) B1.S > S.R ^CH2 ^B2.S > S.R
CH2 = while(N2.C) H2.R > Z4.A ^B3.S > S.R ^B2 > C2.R

Branching : B1 + CH1, E E is an empty choreography where it is possible to
”skip“ the choreography

Branching inside Loops : In order to have branching inside loops, the branch-
ing must be written in a different choreography
CH4 = while(h1.te) P.R > I.PO ^CH7
CH5 = ZR1.S > B2.R
CH6 = ZR2.S > B2.R
CH7 = ZZ > RR * Br.1 + CH5, CH6, E

Parallel : Parallel choreographies are written in their own choreography and
contain only sequential events
CH4 = CH5 || CH6
CH5 = B2.MS > Bk.MR2 * Bk.MS2 > S.R
CH6 = B1.MS > Bk.MR1 * Bk.MS1 > S.R

13



Comments : Start the line with 2 dashes ”–“ in order to ignore the line

4.2 Three-Process Example
We show an example of the generating algorithm.

4.2.1 The Choreography

Given 3 processes: P1, P2, and P3. P1 either asks P2 or P3 for information. They
reply with the answer. Finally, all processes terminate

Listing 4.1: Three Process Example⌥ ⌅
CH = P1 � {CH1, CH2} • CH3

CH1 = P1.S�!P2.R • P2.S �!P1.R

CH2 = P1.S�!P3.R • P3.S �!P1.R

CH3 = P1 �! � k P2 �! � k P3 �! �⌃ ⇧
4.2.2 Input File

-- This is a comment. A comment must start with 2 dashes "--"

-- and be at the start of a line

-- Each choreography is written on a single line.

-- The first choreography written will be the global choreography

-- The first event in the global choreography is the start state

-- Sequential events are delimited by ’*’

CH = P1 + {CH1, CH2} * CH3

CH1 = P1.S > P2.R * P2.S > P1.R

CH2 = P1.S > P3.R * P3.S > P1.R

-- Parallel choreographies are delimited by "||"

-- Parallel choreographies are written in their own choreography

-- Parallel choreographies contain sequential events only

CH3 = CH4 || CH5 || CH6

-- END represents the termination of a process

CH4 = P1 > END

CH5 = P2 > END

CH6 = P3 > END

4.2.3 Kripke Structure Generation

The following is the Kripke structure generated from the Three-Process-Example
choreography. This was automatically generated by our implementation.
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Figure 4.1: Three-Process example - Kripke Structure
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4.2.4 Label Definitions

We have 3 components:

– Process 1

– Process 2

– Process 3

CTL formula are built up from atomic propositions, the usual boolean connec-
tives, and temporal modalities. See section 2.2 and [2] for details. Each atomic
proposition belongs to exactly one process. We make the convention that an
atomic proposition belongs to a process if the last digit in the name of the atomic
proposition is the index of the process.
The following shows the atomic propositions (comma separated) each state con-
tains. The atomic propositions were auto generated by name_i_1 were name
is the concatenation of the elements of an event dot separated, i is the counter
so that the proposition is unique in case repetition of name, and 1 is to indicate
that the atomic proposition belongs to process 1 (the global choreography).

states:

S0:P1.Branching_1_1

S1:P1.S.P2.R_1_1

S2:P2.S.P1.R_1_1

S3:P1.S.P3.R_1_1

S4:P3.S.P1.R_1_1

S5:CH3.Parallel_1_1

S6:P1.END_1_1

S7:P1.END_1_1,P2.END_1_1

S8:P1.END_1_1,P2.END_1_1,P3.END_1_1

S9:P1.END_1_1,P3.END_1_1

S10:P2.END_1_1

S11:P2.END_1_1,P3.END_1_1

S12:P3.END_1_1

We describe each atomic proposition:

P1.Branching_1_1 : Branching point where P1 either asks P2 or P3 for in-
formation

P1.S.P2.R_1_1 : P1 asks P2 for information

P2.S.P1.R_1_1 : P2 replies to P1

P1.S.P3.R_1_1 : P1 asks P3 for information
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P3.S.P1.R_1_1 : P3 replies to P1

CH3.Parallel_1_1 : Parallel point where system terminates

P1.END_1_1 : P1 terminates

P2.END_1_1 : P2 terminates

P3.END_1_1 : P3 terminates

4.2.5 Explanation of the Kripke Structure

We explain below the various segments of the Kripke structure of the Three-
Process example.

Request Information

S0: Branching choice, P1 chooses which process to request
Case1: S0 �! S1 �! S2 P1 asks P2 for information and P2 replies
Case2: S0 �! S3 �! S4 P1 asks P3 for information and P3 replies

17



System Termination

All the different way for the three processes to terminate in parallel.

System Termination: 5 Processes

18



However, if five processes terminate in parallel, the number of unique state grows
exponentially. Thus choreographies are prone to state explosion and we need to
define correctness semantics for choreographies.
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Chapter 5

Correctness of choreographies

Since choreograhpies include the parallel composition operator, even the verifica-
tion of a choreography can be subject to state-explosion. Hence we present a set
of inductive rules which enable the deduction of correctness properties of chore-
ographies from correctness properties of the smaller choreographies from which
they are built. This allows us to avoid state explosion in verifying properties of
choreographies. We deal with the following

– AG(')

– AG(' �! AF( ))

Where ' and  are purely propositional

5.1 Sequential
In chapter 4 in [1], sequential semantics is defined by (i) applying ch1; (ii) noti-
fying the start of ch2; and finally (iii) applying ch2.

SeqCorrectness1:
ch1 |= AG(')

ch1 • ch2 |= A[' W ch1.end]
(5.1)

Given for all paths, for every state in ch1, ' is satisfied.
Conclude ch1 • ch2 |= for all paths ' holds weak until ch1 ends.

SeqCorrectness2:
ch2 |= AG(')

ch1 • ch2 |= AG(ch2.st =) AG('))
(5.2)

Given for all paths, for every state in ch2, ' is satisfied.
Conclude ch1•ch2 |= for all paths, for every state, if ch2 starts, then for all paths,
for every state in ch2, ' holds.

SeqCorrectness3:
ch1 |= AG(' =) AF( ))

ch1 • ch2 |= A[AG(' =) AF( )) W ch1.end]
(5.3)
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Given for all paths, for every state s in ch1, if ' is satisfied, then for all paths
from s, finally  will be satisfied.
Conclude ch1 • ch2 |= for all paths [for all paths, for every state s, if ' is satisfied,
then for all paths from s, finally  is satisfied weak until ch1 ends].

SeqCorrectness4:
ch2 |= AG(' =) AF( ))

ch1 • ch2 |= AG[ch2.st =) AG(' =) AF( ))]
(5.4)

Given for all paths, for every state s in ch2, if ' is satisfied, then for all paths
from s, finally  will be satisfied.
Conclude ch1 • ch2 |= for all paths, for every state s, if ch2 starts, then for all
paths from s, for every state, if ' is satisfied, then finally  is satisfied.

SeqCorrectness5:
ch1 |= AG('1 =) AF(ch1.end), ch2 |= AG(ch2.st =) AF('2))

ch1 • ch2 |= AG('1 =) AF('2))
(5.5)

Given for all paths, for every state s in ch1, if '1 is satisfied, then for all paths
from s, finally ch1.end will be satisfied.
Given for all paths, for every state s in ch2, if ch2.st is satisfied, then for all paths
from s, finally  2 will be satisfied.
Conclude ch1 • ch2 |= for all paths, for every state s, if '1 is satisfied, then for all
paths from s, finally '2 is satisfied.

5.2 Parallel
In chapter 4, the binary operator k allows for the parallel compositions of two
independent choreographies. Two choreographies are independent if their partic-
ipating components are disjoint. Thus, if ch1 and ch2 are applied in parallel, the
properties of each choreography hold together.

ParCorrectness1:
ch1 |= AG('1), ch2 |= AG('2)

ch1 k ch2 |= AG('1) ^ AG('2)
(5.6)

Given for all paths, for every state in ch1, '1 is satisfied.
Given for all paths, for every state in ch2, '2 is satisfied.
Conclude ch1 k ch2 |= for all paths, for every state, '1 and '2 hold.

ParCorrectness2:
ch1 |= AG('1 =) AF( 1)), ch2 |= AG('2 =) AF( 2))

ch1 k ch2 |= AG('1 =) AF( 1)) ^ AG('2 =) AF( 2))
(5.7)

Given for all paths, for every state s in ch1, if '1 is satisfied, then for all paths
from s, finally  1 will be satisfied.
Given for all paths, for every state s in ch2, if '2 is satisfied, then for all paths
from s, finally  2 will be satisfied.
Conclude ch1 k ch2 |= for all paths, for every state s, if '1 holds then for all paths
from s, finally  1 holds and if '2 holds then for all paths, finally  2 holds.
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(a) Sequential 1 (b) Sequential 2 (c) Sequential 3

(d) Sequential 4 (e) Sequential 5

(f) Parallel 1

(g) Parallel 2

Figure 5.1: Sequential and Parallel Correctness
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5.3 Branching
Branching allows for the modeling of choice between several choreographies. The
� operator allows a specific component to select from a set of choreographies.
Note that it is required to notify all the participants of a choice and not only the
start components.

BranCorrectness1:
chj |= AG('j), j 2 J

(Bi �Gj&sndj : chj) |= AG(Gj ^ dsndj =) AG('j))
(5.8)

Given for all paths, for every state in chj, 'j is satisfied.
Conclude (Bi � Gj&sndj : chj) |= for all paths, for every state s, if guard Gj is
satisfied and dsndj, i.e. this branch is selected, then for all paths from s, for every
state, 'j holds.

BranCorrectness2:
chj |= AG('j =) AF( j)), j 2 J

(Bi �Gj&sndj : chj) |=
AG(Gj ^ dsndj =) AG('j =) AF( j)))

(5.9)

Given for all paths, for every state s in chj, if 'j is satisfied, then for all paths
from s, finally  j is satisfied.
Conclude (Bi � Gj&sndj : chj) |= for all paths, for every state, if guard Gj is
satisfied and dsndj, i.e. this branch is selected, then for all paths, for every state
s, if 'j is satisfied, then for all paths from s, finally  j is satisfied.

5.4 While
Loop allows for the modeling of a conditional repeated choreography ch. The
condition is evaluated by a specific component, which will notify, through the
port pi, the participants of the choreography to either re-execute it or break.

whileCorrectness1:
ch |= AG(')

while(G&snd) ch end |= AG(G ^ dsnd =) AG('))
(5.10)

Given for all paths, for every state in ch, ' is satisfied.
Conclude while(G&snd) ch end |= for all paths, for every state s, if guard G is
satisfied and dsnd, i.e. we are in the loop, then for all paths from s, for every
state, ' holds.

whileCorrectness2:
ch |= AG(' =) AF( ))

while(G&snd) ch end |=
AG(G ^ dsnd =) AG(' =) AF( )))

(5.11)
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Given for all paths, for every state s in ch, if ' is satisfied, then for all paths from
s, finally  is satisfied.
Conclude while(G&snd) ch end |= for all paths, for every state, if guard G is
satisfied and dsnd, i.e. we are in the loop, then for all paths, for every state s, if
' is satisfied, then for all paths from s, finally  is satisfied.

5.5 Send-Receive

5.5.1 Asynchronous Send

Send-receive choreography updates the participating components by adding a
transition from the current context and labeling it by the corresponding send or
receive port from the choreography.

sndRecvsAsynch:
snd �! rcvs |= AG(q11 ^ . . . ^ q

n
1 =) AF(q12) ^ . . . ^ AF(qn2 ))

(5.12)
Only the starter component must be free in order to execute, and whenever a
receiver component is free, it will execute. Thus we can say that then AF(q12) ^
. . . ^ AF(qn2 ).

5.5.2 Synchronous Send

sndRecvsSynch:
snd �! rcvs |= AG(q11 ^ . . . ^ q

n
1 =) AF(q12 ^ . . . ^ q

n
2 ))

(5.13)
All components must be free in order to execute, thus if q

1
1 ^ . . . ^ q

n
1 are the

current states of the respective componenets, then AF(q12 ^ . . . ^ q
n
2 ).
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Chapter 6

Correctness of Distributed

Implementations of Choreographies

6.1 Implementation of Choreographies
We define implementation as a function I: Choreographies �! BIP. I is defined by
structural induction over the definition of a choreography. We write I(ch) = [[ch]]
to indicate that [[ch]] is the BIP system that implements ch.

6.1.1 Sequential

If I(ch1) = [[ch1]], I(ch2) = [[ch2]] then I(ch1 • ch2) consists of [[ch1]] then for all
components common to [[ch1]], [[ch2]] insert [[chsynch]] = snd �! rcvs synchronous
with interaction interaction a = snd �! rcvs that synchronizes the end of [[ch1]]
with the start of [[ch2]]. In this, and all subsequent rules, the semantics of the
execution of an interaction is given by section 2.1.

SequentialImp:
I(ch1) = [[ch1]], I(ch2) = [[ch2]]

I(ch1 • ch2) = [[ch1 • ch2]] = [[ch1]] �! [[chsynch]] �! [[ch2]]
(6.1)

The following example is from [1]. The figure was modified.

Example 1 (Sequential composition). Figure 6.1 shows an abstract example on

how to transform sequential composition of two choreographies, ch1 •ch2, into an

initial system consisting of five components. Here we only consider components

that are involved in those choreographies, where (1) components b1, b2, b3 and

b4 are involved in choreography ch1; and (2) components b1, b2, b3 and b5 are

involved in choreography ch2. Note, components that are not involved are kept

unchanged. The transformation requires to: (1) apply first choreography ch1 to

its participated components (i.e., b1, b2, b3 and b4); (2) synchronize the end of
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Figure 6.1: Sequential composition transformation

choreography ch1 (e.g., b1) with the start of choreography ch2 (e.g., b2 and b3).

To do so, we create a synchronous send port to one of the end components of ch1
(e.g., b

cs
1 ) and connect it to all the remaining end components of ch1 (e.g., ; and

the start components of ch2 (e.g., b2 and b3); finally (3) we apply choreography

ch2.

6.1.2 Parallel

If I(ch1) = [[ch1]], I(ch2) = [[ch2]] then I(ch1 k ch2) consists of [[ch1]] in parallel
with [[ch2]]. The components are disjoint.

ParallelImp:
I(ch1) = [[ch1]], I(ch2) = [[ch2]]

I(ch1 k ch2) = [[ch1 k ch2]] = �([[ch1]], [[ch2]])
(6.2)

�([[ch1]], [[ch2]]) definition 4, Section 2.1 The following example is from [1]. The
figure was modified.

Example 2 (Parallel Composition). Figure 6.2 shows an abstract example on

how to transform parallel composition of two choreographies, ch1 k ch2, into an

initial system consisting of five components. Here, we consider that ch1 (resp.

ch2) involves components B1 and B2 (resp. B3 and B4).

6.1.3 Branching

branchingImp:
I(chj) = [[chj]], j 2 J

I(Bi �Gj&sndj : chj) = Bi �Gj&sndj : [[chj]]
(6.3)

If I(chj) = [[chj]]8 j 2 J , then I(Bi�Gj&sndj : chj) consists of Bi�Gj&sndj : [[chj]].
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Figure 6.2: Parallel composition transformation

6.1.4 While

while:
I(ch) = [[ch]]

I(while(G&snd) ch end) = while(G&snd)[[ch]]end
(6.4)

If I(ch) = [[ch]], then I(while(G&snd) ch end) consists of while(G&snd) [[ch]] end.

6.1.5 Send-Receive

sndRcvsImp:
I(snd �! rcvs) = [[snd �! rcvs]]

(6.5)

I(snd �! rcvs) consists of [[snd �! rcvs]].

6.2 Correctness
ba is an atomic proposition that is true immediately after a has executed.

6.2.1 Sequential

SeqImpCorrectness1:
[[ch1]] |= AG(')

[[ch1 • ch2]] |= A[' W ba]
(6.6)

Given for all paths, for every state in [[ch1]], ' is satisfied.
Conclude [[ch1 • ch2]] |= for all paths ' holds weak until ba. Here ba means the end
of [[ch1]].

SeqImpCorrectness2:
[[ch2]] |= AG(')

[[ch1 • ch2]] |= AG(ba =) AG('))
(6.7)

Given for all paths, for every state in [[ch2]], ' is satisfied.
Conclude [[ch1 • ch2]] |= for all paths, for every state s, if ba starts, then for all
paths from s, for every state in ch2, ' holds. Here ba means the start of [[ch2]].

SeqImpCorrectness3:
[[ch1]] |= AG(' =) AF( ))

[[ch1 • ch2]] |= A[AG(' =) AF( )) W ba]
(6.8)

Given for all paths, for every state s in [[ch1]], if ' is satisfied, then for all paths
from s, finally  will be satisfied.
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Conclude [[ch1•ch2]] |= for all paths [for all paths, for every state s, if ' is satisfied,
then for all paths from s, finally  is satisfied weak until ba]. Here ba means the
end of [[ch1]].

SeqImpCorrectness4:
[[ch2]] |= AG(' =) AF( ))

[[ch1 • ch2]] |= AG[ba =) AG(' =) AF( ))]
(6.9)

Given for all paths, for every state s in [[ch2]], if ' is satisfied, then for all paths
from s, finally  will be satisfied.
Conclude [[ch1 • ch2]] |= for all paths, for every state s, if ba, then for all paths
from s, for every state, if ' is satisfied, then finally  2 is satisfied. Here ba signals
the start of ch2.

SeqImpCorrectness5:
[[ch1]] |= AG(' =) AF(ba)), [[ch2]] |= AG(ba =) AF( ))

[[ch1 • ch2]] |= AG(' =) AF( ))
(6.10)

Given for all paths, for every state in [[ch1]], if ' is satisfied, then for all paths,
finally ba will be satisfied. Here ba means the end of [[ch1]].
Given for all paths, for every state in [[ch2]], if ba is satisfied, then for all paths,
finally  will be satisfied.
Conclude [[ch1 • ch2]] |= for all paths, for every state, if ' is satisfied, then for all
paths, finally  is satisfied.

6.2.2 Parallel

ParImpCorrectness1:
[[ch1]] |= AG('1), [[ch2]] |= AG('2)

[[ch1 k ch2]] |= AG('1) ^ AG('2)
(6.11)

Given for all paths, for every state in [[ch1]], '1 is satisfied.
Given for all paths, for every state in [[ch2]], '2 is satisfied.
Conclude [[ch1 k ch2]] |= for all paths, for every state, '1 and '2 hold.

ParImpCorrectness2:
[[ch1]] |= AG('1 =) AF( 1)), [[ch2]] |= AG('2 =) AF( 2))

[[ch1 k ch2]] |= AG('1 =) AF( 1)) ^ AG('2 =) AF( 2))
(6.12)

Given for all paths, for every state s in [[ch1]], if '1 is satisfied, then for all paths
from s, finally  1 will be satisfied.
Given for all paths, for every state s in [[ch2]], if '2 is satisfied, then for all paths
from s, finally  2 will be satisfied.
Conclude [[ch1 k ch2]] |= for all paths, for every state s1, if '1 holds then for all
paths from s1, finally  1 holds. And for all paths, for every state s2, if '2 holds
then for all paths from s2, finally  2 holds.
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6.2.3 Branching

BranCorrectness1:
[[chj]] |= AG('j), j 2 J

(Bi �Gj&sndj : [[chj]]) |= AG(Gj ^ dsndj =) AG('j))
(6.13)

Given for all paths, for every state in [[chj]], 'j is satisfied.
Conclude (Bi �Gj&sndj : [[chj]]) |= for all paths, for every state s, if guard Gj is
satisfied and dsndj, i.e. this branch selected, then for all paths from s, for every
state, 'j holds.

BranCorrectness2:
[[chj]] |= AG('j =) AF( j)), j 2 J

(Bi �Gj&sndj : [[chj]]) |=
AG(Gj ^ dsndj =) AG('j =) AF( j)))

(6.14)

Given for all paths, for every state s in chj, if 'j is satisfied, then for all paths
from s, finally  j is satisfied.
Conclude (Bi � Gj&sndj : [[chj]]) |= for all paths, for every state, if guard Gj is
satisfied and dsndj, i.e. this branch is selected, then for all paths, for every state
s, if 'j is satisfied, then for all paths from s, finally  j is satisfied.

6.2.4 While

whileImpCorrectness1:
[[ch]] |= AG(')

while(G&snd) [[ch]] end |= AG(G ^ dsnd =) AG('))
(6.15)

Given for all paths, for every state in [[ch]], ' is satisfied.
Conclude while(G&snd) [[ch]] end |= for all paths, for every state s, if guard G

is satisfied and dsnd, i.e. we are in the loop, then for all paths from s, for every
state, ' holds.

whileImpCorrectness2:
[[ch]] |= AG(' =) AF( ))

while(G&snd) [[ch]] end |=
AG(G ^ dsnd =) AG(' =) AF( )))

(6.16)

Given for all paths, for every state s in [[ch]], if ' is satisfied, then for all paths
from s, finally  is satisfied.
Conclude while(G&snd) [[ch]] end |= for all paths, for every state, if guard G is
satisfied and dsnd, i.e. we are in the loop, then for all paths, for every state s, if
' is satisfied, then for all paths from s, finally  is satisfied.
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6.2.5 Send-Receive

Asynchronous Send

Send-receive choreography updates the participating components by adding a
transition from the current context and labeling it by the corresponding send or
receive port from the choreography.

sndRecvsAsynchImp:
[[snd �! rcvs]] |= AG(q11 ^ . . . ^ q

n
1 =) AF(q12) ^ . . . ^ AF(qn2 ))

(6.17)
Only the starter component must be free in order to execute, and whenever a
receiver component is free, it will execute. Thus we can say that then AF(q12) ^
. . . ^ AF(qn2 ).

Synchronous Send

sndRecvsSynchImp:
[[snd �! rcvs]] |= AG(q11 ^ . . . ^ q

n
1 =) AF(q12 ^ . . . ^ q

n
2 ))
(6.18)

All components must be free in order to execute, thus if q
1
1 ^ . . . ^ q

n
1 are the

current states of the respective componenets, then AF(q12 ^ . . . ^ q
n
2 ).
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Chapter 7

Correctness of Synthesis Method

7.1 Correctness Theorems
The following theorems show that, if the global choreography satisfy certain for-
mulae, then the implemented system does as well. We deal with sequence only.
The theorems are proven by induction on the length of the derivation of [[ch]]
from ch, where snd �! rcv is the base case. snd �! rcv and [[snd �! rcv]] satisfy
the same formulae.

Theorem 1 (Sequential Correctness 1). If ch1 |= AG(') implies [[ch1]] |= AG(')
then ch1 • ch2 |= A[' W ch1.end] implies [[ch1 • ch2]] |= A[' W ba]. Here ba signals

end of [[ch1]]

ch1 |= AG(') =) [[ch1]] |= AG(')

ch1 • ch2 |= A[' W ch1.end] =) [[ch1 • ch2]] |= A[' W ba]
(7.1)

Premises:

1. ch1 |= AG(') =) [[ch1]] |= AG(')

2. ch1 • ch2 |= A[' W ch1.end]

Required to prove:

3. [[ch1 • ch2]] |= A[' W ba]

From 2 we get:

4. ch1 |= AG(')

Modus Ponens using 1 and 4 we get:

5. [[ch1]] |= AG(')

Finally from 6.6 we conclude [[ch1 • ch2]] |= A['1 W ba]
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Theorem 2 (Sequential Correctness 2). If ch2 |= AG(') implies [[ch2]] |= AG(')
then ch1•ch2 |= AG(ch2.st =) AG(')) implies [[ch1•ch2]] |= AG(ba =) AG(')).
Here ba signals start of [[ch2]]

ch2 |= AG(') =) [[ch2]] |= AG(')

ch1 • ch2 |= AG(ch2.st =) AG('))
=) [[ch1 • ch2]] |= AG(ba =) AG('))

(7.2)

Premises:

1. ch2 |= AG(') =) [[ch2]] |= AG(')

2. ch1 • ch2 |= AG(ch2.st =) AG('))

Required to prove:

3. [[ch1 • ch2]] |= AG(ba =) AG('))

From 2 we get:

4. ch2 |= AG(')

Modus Ponens using 1 and 4 we get:

5. [[ch2]] |= AG(')

Finally from 6.7 we conclude [[ch1 • ch2]] |= AG(ba =) AG('2))

Theorem 3 (Sequential Correctness 3). If ch1 |= AG(' =) AF( )) implies [[ch1]] |=
AG(' =) AF( )) then ch1•ch2 |= A[AG(' =) AF( )) W ch1.end] implies [[ch1•
ch2]] |= A[AG(' =) AF( )) W ba]. Here ba signals end of [[ch1]]

ch1 |= AG(' =) AF( )) =) [[ch1]] |= AG(' =) AF( ))

ch1 • ch2 |= A[AG(' =) AF( )) W ch1.end]
=) [[ch1 • ch2]] |= A[AG(' =) AF( )) W ba]

(7.3)

Premises:

1. ch1 |= AG(' =) AF( )) =) [[ch1]] |= AG(' =) AF( ))

2. ch1 • ch2 |= A[AG(' =) AF( )) W ch1.end]

Required to prove:

3. A[AG(' =) AF( )) W ba]

From 2 we get:
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4. ch1 |= AG(' =) AF( ))

Modus Ponens using 1 and 4 we get:

5. [[ch1]] |= AG(' =) AF( ))

Finally from 6.8 we conclude [[ch1 • ch2]] |= A[AG('1 =) AF( 1)) W ba]

Theorem 4 (Sequential Correctness 4). If ch2 |= AG(' =) AF( )) implies [[ch2]] |=
AG(' =) AF( )) then ch1•ch2 |= AG[ch2.st =) AG(' =) AF( ))] implies [[ch1•
ch2]] |= AG[ba =) AG(' =) AF( ))] ba signals start of [[ch2]]

ch2 |= AG(' =) AF( )) =) [[ch2]] |= AG(' =) AF( ))

ch1 • ch2 |= AG[ch2.st =) AG(' =) AF( ))]
=) [[ch1 • ch2]] |= AG[ba =) AG(' =) AF( ))]

(7.4)

Premises:

1. ch2 |= AG(' =) AF( )) implies [[ch2]] |= AG(' =) AF( ))

2. ch1 • ch2 |= AG[ch2.st =) AG(' =) AF( ))]

Required to prove:

3. [[ch1 • ch2]] |= AG[ba =) AG(' =) AF( ))]

From 2 we get:

4. ch2 |= AG(' =) AF( ))

Modus Ponens using 1 and 4 we get:

5. [[ch2]] |= AG(' =) AF( ))

Finally from 6.9 we conclude [[ch1 • ch2]] |= AG[ba =) AG('2 =) AF( 2))]

7.2 Three-Process Example Correctness
We give an example of the correctness theorem by going back to the Three-Process
example.⌥ ⌅
CH = P1 � {CH1,CH2} • CH3

CH1 = P1.S�!P2.R •P2.S �!P1.R

CH2 = P1.S�!P3.R •P3.S �!P1.R

CH3 = P1 �! �k P2 �!� k P3�! �⌃ ⇧
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– let CH4 = P1 � {CH1, CH2}

– a1 is P1.S �! P2.R

– a2 is P1.S �! P3.R

– Required to prove: CH |= A[AG(P1.S =) AF(P1.R)) W CH4.end]

By Model Checking:

– CH1 |= AG(P1.S =) AF(P1.R))

– CH2 |= AG(P1.S =) AF(P1.R))

Conclude by branching correctness rule:

– CH4 |= AG( ba1 =) AG(P1.S =) AF(P1.R))) ^
AG( ba2 =) AG(P1.S =) AF(P1.R)))

By CTL deduction:

– CH4 |= AG(P1.S =) AF(P1.R))

Finally:

– CH |= A[AG(P1.S =) AF(P1.R)) W CH4.end]

Similarly:

– [[CH]] |= A[AG(P1.S =) AF(P1.R)) W ba4] where ba4 signals end of CH4
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Chapter 8

Buyer-Seller Example

We illustrate our approach with the Buyer-Seller example from [1]. The following
description is from [1]:

Consider a system consisting of four components: Buyer 1 (B1), Buyer
2 (B2), Seller (S) and Bank (Bk). Buyer 1 sends a book title to the
Seller, who replies to both buyers by quoting a price for the given
book. Depending on the price, Buyer 1 may try to haggle with Seller
for a lower price, in which case Seller may either accept the new price
or call off the transaction entirely. At this point, Buyer 2 takes Seller’s
response and coordinates with Buyer 1 to determine how much each
should pay. In case Seller chose to abort, Buyer 2 would also abort.
Otherwise, it would keep negotiating with Buyer 1 to determine how
much it should pay. Buyer 1, having a limited budget, consults with
the bank before replying to Buyer 2. Once Buyer 2 deems the amount
to be satisfactory, he will ask the bank to pay the seller the agreed
upon amount (Buyer 1 would be doing the same thing in parallel).

8.1 The Choreography
Listing 8.1 depicts global choreography from the Buyer-Seller example in [1].

8.2 Input File
-- This is a comment. A comment must start with 2 dashes "--"

-- and be at the start of a line

-- Each choreography is written on a single line.

-- The first choreography written will be the global choreography

-- The first event in the global choreography is the start state

-- Sequential events are delimited by ’*’
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Listing 8.1: Global choreography of the Buyer/Seller example⌥ ⌅
CH = B1.S�!S.R • S.S �! {B1.R, B2.R} • B1 � {CH1, ✏} • CH2 •

CH7

CH1 = B1.S�!S.R • S.S �! {B1.R, B2.R}
CH2 = B2 � {CH3, ✏}
CH3 = while(B2.C) {

B1.C�! Bk.InfR • Bk.InfS �! B1.R • B1.C�! B2.R

} • CH4

CH4 = CH5 kCH6

CH5 = B2.MS�!Bk.MR2 • Bk.MS2 �! S.R

CH6 = B1.MS�!Bk.MR1 • Bk.MS1 �! S.R

CH7 = B1.E �! � k B2.E �! � k Bk.E �! � k S.E �! �⌃ ⇧
CH = B1.S > S.R * S.S > {B1.R, B2.R} * B1 + {CH1, E} * CH2 * CH7

-- Send/Recv messages can have one or multiple receivers

CH1 = B1.S > S.R * S.S > {B1.R, B2.R}

-- ’E’ stands for epsilon, where we "skip" the branching step

CH2 = B2 + {CH3, E}

-- Inside while loops, ’^’ is used instead of ’*’ for sequential events

-- Nested loops are written in their own choreography

-- To use branching inside loops, the branching must be written

-- in its own choreography

CH3 = while(B2.C) {B1.C > Bk.InfR ^ Bk.InfS > B1.R ^ B1.C > B2.R} * CH4

-- Parallel choreographies are delimited by "||"

-- Parallel choreographies are written in their own choreography

-- Parallel choreographies contain sequential events only

CH4 = CH5 || CH6

CH5 = B2.MS > Bk.MR2 * Bk.MS2 > S.R

CH6 = B1.MS > Bk.MR1 * Bk.MS1 > S.R

CH7 = CH8 || CH9 || CH10 || CH11

-- END represents the termination of a process

CH8 = B1.E > END

CH9 = B2.E > END

CH10 = Bk.E > END

CH11 = S.E > END

8.3 Kripke Structure Generation
The following is the Kripke structure generated from the Buyer-Seller choreogra-
phy. This was automatically generated by our implementation.
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Figure 8.1: Automatically Generated Buyer-Seller Example
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8.4 Label Definitions
We have 4 components:

– Buyer 1

– Buyer 2

– Seller

– Banker

The following shows the atomic propositions (comma separated) each state con-
tains. The atomic propositions were auto generated by name_i_1 were name
is the concatenation of the elements of an event dot separated, i is the counter
so that the proposition is unique in case repetition of name, and 1 is to indicate
that the atomic proposition belongs to process 1 (the global choreography).

states:

S0:B1.S.S.R_1_1

S1:S.S.B1.R.B2.R_1_1

S2:B1.Branching_1_1

S3:B1.S.S.R_2_1

S4:S.S.B1.R.B2.R_2_1

S5:B2.Branching_1_1

S6:B2.C_1_1

S7:B1.C.Bk.InfR_1_1

S8:Bk.InfS.B1.R_1_1

S9:B1.C.B2.R_1_1

S10:CH4.Parallel_1_1

S11:B2.MS.Bk.MR2_1_1

S12:B2.MS.Bk.MR2_1_1,Bk.MS2.S.R_1_1

S13:B2.MS.Bk.MR2_1_1,Bk.MS2.S.R_1_1,B1.MS.Bk.MR1_1_1

S14:B2.MS.Bk.MR2_1_1,Bk.MS2.S.R_1_1,B1.MS.Bk.MR1_1_1,Bk.MS1.S.R_1_1

S15:B2.MS.Bk.MR2_1_1,B1.MS.Bk.MR1_1_1

S16:B2.MS.Bk.MR2_1_1,B1.MS.Bk.MR1_1_1,Bk.MS1.S.R_1_1

S17:B1.MS.Bk.MR1_1_1

S18:B1.MS.Bk.MR1_1_1,Bk.MS1.S.R_1_1

S19:CH7.Parallel_1_1

S20:B1.E.END_1_1

S21:B1.E.END_1_1,B2.E.END_1_1

S22:B1.E.END_1_1,B2.E.END_1_1,Bk.E.END_1_1

S23:B1.E.END_1_1,B2.E.END_1_1,Bk.E.END_1_1,S.E.END_1_1

S24:B1.E.END_1_1,B2.E.END_1_1,S.E.END_1_1

S25:B1.E.END_1_1,Bk.E.END_1_1
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S26:B1.E.END_1_1,Bk.E.END_1_1,S.E.END_1_1

S27:B1.E.END_1_1,S.E.END_1_1

S28:B2.E.END_1_1

S29:B2.E.END_1_1,Bk.E.END_1_1

S30:B2.E.END_1_1,Bk.E.END_1_1,S.E.END_1_1

S31:B2.E.END_1_1,S.E.END_1_1

S32:Bk.E.END_1_1

S33:Bk.E.END_1_1,S.E.END_1_1

S34:S.E.END_1_1

We describe each atomic proposition:

B1.S.S.R_1_1 : Buyer 1 asks seller for price of an item

S.S.B1.R.B2.R_1_1 : Seller replies to both buyers quoting the price

B1.Branching_1_1 : Branching point to for buyer 1 to either haggle or con-
tinue

B1.S.S.R_2_1 : Buyer 1 haggles with seller for price

S.S.B1.R.B2.R_2_1 : Seller replies to both buyers either accepting buyer 1’s
haggle or aborting transaction

B2.Branching_1_1 : Branching point to either continue transaction or abort

B2.C_1_1 : While loop condition for Buyer 2’s satisfaction of price

B1.C.Bk.InfR_1_1 : Buyer 1 consults Banker

Bk.InfS.B1.R_1_1 : Banker replies to Buyer 1

B1.C.B2.R_1_1 : Buyer 1 negotiates with Buyer 2 on the price

CH4.Parallel_1_1 : Parallel point for Buyers’ payment

B2.MS.Bk.MR2_1_1 vBuyer 2 asks banker to wire the seller the agreed
amount

Bk.MS2.S.R_1_1 : Banker wires Buyer 2’s money to the seller

B1.MS.Bk.MR1_1_1 : Buyer 1 asks banker to wire the seller the agreed
amount

Bk.MS1.S.R_1_1 : Banker wires Buyer 1’s money to the seller

CH7.Parallel_1_1 : Parallel point for components’ termination

B1.E.END_1_1 : Buyer 1 reaches termination
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B2.E.END_1_1 : Buyer 2 reaches termination

Bk.E.END_1_1 : Banker reaches termination

S.E.END_1_1 : Seller reaches termination

8.5 Explanation of the Kripke Structure
We explain below the various segments of the Kripke structure of the Buyer-Seller
example.

8.5.1 Buyer 1 Haggle

S0: Buyer 1 asks Seller for price
S1: Seller replies to both Buyer 1 and Buyer 2
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S2: Branching choice, Buyer will either decide to haggle or not

S3: Buyer 1 is haggling

S4: Seller replies to both buyers with either agreement to the haggle or calling
off the transaction

S5: Branching choice, either we continue with the transaction or abort if Buyer
1 had haggled unsuccessfully

8.5.2 Banker Consulting

S6: Either Buyer 1 decided not to haggle (S2 �! S5) or haggled successfully
(S2 �! S3 �! S4 �! S5)

S7, S8: Banker is consulting with Buyer 1

S9: Buyer 1 and Buyer 2 negotiate on price. Once Buyer 2 is satisfied with price,
we exit the loop going from S6 �! S10
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8.5.3 Buyers Authorize Payment in Parallel

All the routes from S10 to S14 are the different ways for CH4 : CH5 k CH6 to
happen
Case 1: S10 �! S11 �! S12 �! S13 �! S14, this simply CH5 • CH6.
Case 2: S10 �! S17 �! S18 �! S16 �! S14, this simply CH6 • CH5.
Case 3: Reaching S15 (S10 �! S17 �! S15 or S10 �! S11 �! S15) Both Buyers
have asked for the money to wired (regardless of who asked first)

Case 3.1: S15 �! S13 �! S14 Banker decides to wire Buyer 2’s money then
Buyer 1’s

Case 3.2: S15 �! S16 �! S14 Banker decides to wire Buyer 1’s money then
Buyer 2’s
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8.5.4 System Termination

S19 �! S23 are all the different ways for CH7 to happen

8.6 Properties Model Checked
Here are some of the properties model we checked in Eshmun for the above Kripke
structure. They include the properties tested on the implemented system in [1]
and some of our own.

1. AlwaysTerminate: for all paths, we will terminate.

AF(B1.E.END_1_1 &B2.E.END_1_1 &Bk.E.END_1_1 & S.E.END_1_1)

2. AuthorizePayment: no payment unless buyer requests.

(AG(A(!Bk.MS2.S.R_1_1 W B2.MS.Bk.MR2_1_1))) &
(AG(A(!Bk.MS1.S.R_1_1 W B1.MS.Bk.MR1_1_1)))
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3. EndPorts: if a process reaches the end port, other processes will also reach
their end ports.

AG((B1.E.END_1_1 |B2.E.END_1_1 |Bk.E.END_1_1 | S.E.END_1_1) =>

(AF(B1.E.END_1_1 &B2.E.END_1_1 &Bk.E.END_1_1 & S.E.END_1_1)))

4. NoLivelock: system doesn’t suffer from livelock.

AF(AG(!B2.C_1_1))

5. LoopOrTerminate: either we follow a path that leads to a loop, or we
terminate.

AG(!B2.C_1_1 => ((EF(B2.C_1_1)) |
(AF(B1.E.END_1_1 &B2.E.END_1_1 &Bk.E.END_1_1 & S.E.END_1_1))))

6. NoLivelockAfterLoop: after exiting a loop, the system doesn’t enter
livelock.

AG(B2.C_1_1 => (AX(!B1.C.Bk.InfR_1_1 => (AG(!B2.C_1_1)))))

7. PayOnce: buyer only pays once.

(AG(Bk.MS1.S.R_1_1 => (AF(!Bk.MS1.S.R_1_1 =>

(AG(!Bk.MS1.S.R_1_1)))))) & (AG(Bk.MS2.S.R_1_1 =>

(AF(!Bk.MS2.S.R_1_1 => (AG(!Bk.MS2.S.R_1_1))))))

8. TermAfterExit: after exiting the loop we will terminate.

AG(B2.C_1_1 => (AX(!B1.C.Bk.InfR_1_1 =>

(AF(B1.E.END_1_1 &B2.E.END_1_1 &Bk.E.END_1_1 & S.E.END_1_1)))))

All of the above properties were model checked true, except for AlwaysTermi-
nate and NoLivelock, which were modified to NoLiveLockAfterLoop and
LoopOrTerminate respectively to better fit the scope of the example.
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Chapter 9

Conclusions and Future Work

We were able to devise an operational semantics for choreographies, and used
this to automatically generate the Kripke structure that gives the behavior of a
choreography. We devised a method for verifying the correctness of choreogra-
phies which avoids state explosion. We also came up with the semantics and
correctness for implementation of choreographies. Finally, we devised theorems
which state that if the global choreography satisfy certain formulae, then the
implemented system does as well (for sequential correctness). This was done for
a sub-logic of CTL. Future work includes:

1. Write correctness theory for all operations of the choreography

2. Undertake more case studies

3. Increase the set of CTL formulae that can be verified

4. Consider infinite-state choreographies, i.e., the state variables have infinite
domains
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