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An Abstract of the Dissertation
of

Saleh Usman for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Optimized ASIC Accelerator Chips for LDPC Decoders by Joint Algo-
rithm, Architecture, and Circuit Co-Design

Multi-Gb/s low-density-parity-check (LDPC) decoding is required for contem-
porary digital communication standards, like the 5G New Radio, IEEE 802.11
n/ac/ax (WiFi), and IEEE 802.11ad (WiGig), among others. Efficient application-
specific integrated circuit (ASIC) implementation of the multi-Gb/s LDPC de-
coders requires fast-converging algorithms, high-throughput architectures, and
optimized circuit choices. This work proposes and implements the algorithm, ar-
chitecture, and circuit co-design approach for the development of optimized ASIC
accelerator chips for LDPC decoders. Algorithmically, fast-converging sched-
ules for decoding of LDPC codes, viz. interlaced column-row message-passing
(ICRMP), and fast column-message passing (FCMP) schedules are proposed and
investigated in this work. The proposed schedules converge double the speed of
already existing fast-converging schedules, which are serial ones and converge two
times the speed of initially proposed flooding schedule for LDPC decoding; the
proposed schedules converge four times the speed of the flooding schedule with
moderate increase in complexity, compared to the serial decoding schedules.

At the architectural level, multi-Gb/s architectures are proposed for the row-
message-passing (RMP) version of existing serial decoding schedules by target-
ing IEEE 802.11n/ac/ax (WiFi) LDPC decoder, and for the proposed FCMP
schedule by targeting IEEE 802.11ad (WiGig) LDPC decoder. Circuit-level tech-
niques are then proposed, and an optimized VLSI design of the targeted IEEE
802.11n/ac/ax LDPC decoder is synthesized using the TSMC 40nm CMOS pro-
cess. The synthesis results of the implementation outperform state-of-the-art
in terms of throughput/area. The proposed FCMP-based decoder architecture,
for IEEE 802.11ad LDPC codes, is also synthesized using the same technology
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node, and the design achieves a throughput of 8.4 Gb/s while operating at a
clock frequency of only 200 MHz, which enables the decoder to achieve the best-
reported energy-efficiency of 8.6 pJ/bit, for IEEE 802.11ad LDPC decoders. Fi-
nally, an energy-efficient and high-throughput multi-core hardware architecture is
presented and physically implemented as an ASIC chip. The implemented ASIC
chip achieves a peak throughput of 15 Gb/s while operating at a clock frequency
of 250MHz. The achieved throughput and the corresponding energy-efficiency are
the best reported in the literature for an IEEE 802.11n/ac/ax LDPC decoder.



Contents

Abstract v

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7
2.1 Standard Message-Passing (SMP) . . . . . . . . . . . . . . . . . . 7
2.2 Column Message-Passing (CMP) Schedule . . . . . . . . . . . . . 8
2.3 Row Message-Passing (RMP) Schedule . . . . . . . . . . . . . . . 8
2.4 Check-Node Computations . . . . . . . . . . . . . . . . . . . . . . 9
2.5 QC-LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Hardware Implementation of RMP based LDPC Decoders . . . . 11
2.7 Density Evolution by Gaussian Approximation . . . . . . . . . . . 11

3 Proposed Decoding Schedules 13
3.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Computational Complexity of CMP . . . . . . . . . . . . . 16
3.1.2 Computational Complexity of Proposed Schedules . . . . . 17
3.1.3 Complexity Comparison . . . . . . . . . . . . . . . . . . . 18

3.2 Throughput and Area Tradeoffs . . . . . . . . . . . . . . . . . . . 19
3.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Convergence Analysis using EXIT Charts . . . . . . . . . 20
3.3.2 Convergence Analysis by Gaussian Approximation . . . . . 20

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Proposed FCMP Decoder Architecture 28
4.1 Design Space Exploration . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Check Node Unit (CNU) . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Check-Node Memory . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Decoding Performance . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



4.6 VLSI Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 Comparison with State-of-the-Art . . . . . . . . . . . . . . . . . . 35

5 Proposed VLSI Optimizations 37
5.1 Barrel Shifters and Memory Organization . . . . . . . . . . . . . . 37
5.2 Multiplexers for Reduced Number of Inputs . . . . . . . . . . . . 39
5.3 Proposed Comparator Design . . . . . . . . . . . . . . . . . . . . 39
5.4 Quantization and Unsaturated Subtractors . . . . . . . . . . . . . 41
5.5 Design Space Exploration . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 VLSI Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.8 Multi-Core Extension . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.9 VLSI Implementation Results . . . . . . . . . . . . . . . . . . . . 50

6 Conclusions 51

A Abbreviations 53



List of Figures

2.1 CMP processing schedule for variable-node v1. Solid lines are the
ones taking part in the update process. . . . . . . . . . . . . . . . 9

2.2 RMP processing schedule for first check node. . . . . . . . . . . . 10

2.3 Base-matrix defined for IEEE 802.11n/ac: FL = 648, R = 5/6,
and z = 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Block diagram of a memory-efficient non-pipelined RMP-based
LDPC decoder architecture. . . . . . . . . . . . . . . . . . . . . . 11

3.1 Proposed ICRMP schedule for 1st variable node. The check-nodes
c1 and c3, connected to v1, not only update v1 but also their com-
plete neighboring sets of variable nodes, in serial fashion. . . . . . 14

3.2 Proposed FCMP schedule for variable-node v1. The check-nodes
c1 and c3 update their complete neighboring sets of variable nodes,
in parallel fashion. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 EXIT chart of CMP decoding for WiFi LDPC codes, rate 1/2,
block-length 1944, at Eb/N0 = 1.2 dB. . . . . . . . . . . . . . . . 21

3.4 EXIT chart of proposed FCMP decoding, for the same LDPC
codes and Eb/N0 as in Fig. 3.3. . . . . . . . . . . . . . . . . . . . 22

3.5 Comparison of mean evolution of check-node messages of a (3,6)
regular LDPC code using the CMP and the proposed FCMP sched-
ule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 BER comparison of the proposed FCMP schedule with the ICRMP,
CMP and RMP, for randomly generated LDPC codes with rate =
1/2, dv = 3, dc = 6, Nv = 2000, and Imax = 100. . . . . . . . . . . . 24

3.7 Comparison of iterations corresponding to Fig. 3.6. . . . . . . . . 25

3.8 BER and FER comparison of the proposed schedules with the
CMP and RMP, for IEEE 802.11n/ac (WiFi) LDPC codes, rate
1/2, block-length 648, and Imax = 100. . . . . . . . . . . . . . . . 25

3.9 Iterations count corresponding to Fig 3.8. . . . . . . . . . . . . . . 26

3.10 BER vs. number of iterations for WiMAX LDPC codes, rate 1/2,
block-length 576, at Eb/No=2.5 dB. . . . . . . . . . . . . . . . . 26

3.11 FER vs. number of iterations for WiFi LDPC codes, rate 1/2,
block-length 1296, at Eb/No=2.25 dB. . . . . . . . . . . . . . . . 27

ix



3.12 BER vs. number of iterations for WiMAX LDPC codes, rate 1/2,
block-length 576, at Eb/No=3.0 dB. . . . . . . . . . . . . . . . . 27

4.1 Fixed-point decoding performance of proposed FCMP architecture
for IEEE 802.11ad (WiGig), with QL = 6, QC = 5, and Imax = 2.
Solid and dotted lines represent BERs and FERs, respectively. . . 29

4.2 Fixed-point decoding performance of proposed FCMP architecture
for IEEE 802.11ad (WiGig), with QL = 8, QC = 5, and Imax = 2.
Solid and dotted lines represent BERs and FERs, respectively. . . 30

4.3 Fixed-point decoding performance of proposed FCMP architecture
for IEEE 802.11ad (WiGig), with QL = 7, QC = 5, and Imax = 5.
Solid and dotted lines represent BERs and FERs, respectively. . . 31

4.4 Fixed-point decoding performance of the synthesized FCMP ar-
chitecture for IEEE 802.11ad (WiGig), with QL = 7, QC = 5,
Imax = 2. Solid and dotted lines represent BERs and FERs, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 A two-frames based block diagram of an FCMP decoder architec-
ture for IEEE 802.11ad LDPC codes. . . . . . . . . . . . . . . . . 33

4.6 Block diagram of a single pipelined Check Node Unit . . . . . . . 33
4.7 Block diagram of Check-Node (CN) Memory . . . . . . . . . . . . 34

5.1 (A) Messages organization in LLRMemory. (B) Rotating a frame
of length ZL with a barrel shifter, capable of rotating only frame
of length ZS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Rotating a frame of length ZL = 9 by 5, using a barrel shifter of
size ZS = 3, in three cycles. . . . . . . . . . . . . . . . . . . . . . 39

5.3 Proposed multiplexers organization with LLRMemory . . . . . . . 40
5.4 Proposed circuit for the minimum determination among 4 inputs

while each input comprises of n bits. . . . . . . . . . . . . . . . . 42
5.5 Fixed-point BER performance of the proposed decoder for FL =

648, with QL = 6, QC = 5, and β = 1. . . . . . . . . . . . . . . . 43
5.6 Fixed-point BER performance of the proposed decoder for FL =

648, with QL = 7, QC = 4, and β = 0. . . . . . . . . . . . . . . . 44
5.7 BER performance of the synthesized decoder for FL = 648 and

FL = 1944, with corresponding code rates. . . . . . . . . . . . . . 45
5.8 Iterations count corresponding to Fig. 5.7. . . . . . . . . . . . . . 45
5.9 BER comparison of pipeline depths for floating-point implementa-

tion of rate 1/2, IEEE 802.11n/ac LDPC codes. . . . . . . . . . . 46
5.10 Comparison of iteration count corresponding to Fig. 5.9. . . . . . 46
5.11 Estimated power-consumption of the synthesized decoder for code

rates and frame lengths of WiFi LDPC codes*. . . . . . . . . . . . 47
5.12 The decoder core occupies an area of 1.4 × 1.4 = 1.96mm2. The

total die size is 1.82× 1.82 = 3.3mm2. . . . . . . . . . . . . . . . 49



List of Tables

3.1 Computational Complexities of LDPC Decoding Schedules . . . . 19

4.1 Synthesis Results of FCMP Decoder . . . . . . . . . . . . . . . . . 35
4.2 Comparison of Proposed Decoder with State-of-the-Art . . . . . . 36

5.1 Comparison of Proposed Decoder with State-of-the-Art . . . . . . 48
5.2 Area comparison of modules of WiFi decoder . . . . . . . . . . . . 49
5.3 Comparison of Proposed Decoder with State-of-the-Art . . . . . . 50

xi



Chapter 1

Introduction

LDPC codes have become the coding scheme of choice for high-performance
error-correcting codes in many applications owing to their near-optimal perfor-
mance [1]. Compared to turbo codes [2], LDPC codes provide an attractive
additional feature of the inherent parallel structure at the decoder and there-
fore are better suited for present and future high throughput applications. Effi-
cient application-specific integrated circuit (ASIC) implementation of multi-Gbps
LDPC decoders is required, because LDPC codes are opted for contemporary dig-
ital communication standards, like the 5G New Radio [3, 4], IEEE 802.11n/ac/ax
(WiFi) [5], and IEEE 802.11ad (WiGig) [6], among others.

For ASIC implementation, trivial methods to increase the throughput of
LDPC decoders include explicit replication of LDPC decoder instances or by
speeding up the clock speed of the LDPC decoder. Targeting these trivial ap-
proaches, however, have several drawbacks like, the first approach has a signif-
icant area penalty and requires high memory bandwidth, resulting in excessive
power consumption, while the second approach has a significant power consump-
tion penalty if timing closure at the desired clock speed is achievable. High-
throughput and energy-efficient VLSI implementation of LDPC decoder while
maintaining a small decoder footprint, therefore, requires the exploration of non-
trivial approaches.

Algorithmically, fast-converging LDPC decoding schedules enable low-power
and high throughput VLSI implementation by reducing the number of decoding
iterations required for decoding convergence. The reduction in the number of
iterations increases decoder throughput by decreasing the processing latency and
minimizes power consumption by performing a lower number of decoding compu-
tations. The originally proposed LDPC decoding schedule was a flooding sched-
ule, also known as standard message-passing (SMP) schedule, and consists of two
distinct phases. In one phase, all variable nodes are updated, and then in the
second, all the check nodes are updated. This technique was originally proposed
by Gallager [7] and later used by Mackay [8] in his rediscovery of LDPC codes.
Serial decoding schedules later emerged in the literature [9, 10], which converge
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in half the number of decoding iterations compared with the flooding schedule.
Serial decoding is further divided into two types, known as row message-passing
(RMP) [9] and column message-passing (CMP) [10], based on whether the row
or column order of the parity-check matrix is followed.

In the RMP schedule, decoding starts from the first check node, and computed
messages are immediately passed back to connected variable nodes. This process
is repeated one by one for all the check nodes. Immediate propagation of messages
computed at check nodes back to variable nodes enables future check nodes to
have access to the most updated message nodes, thus accelerating the convergence
rate. A turbo-decoding schedule for LDPC decoding, based on RMP, was first
proposed in [11, 9], and further analyzed in [12]. In CMP, decoding starts in
reverse order compared to RMP, following the variable-nodes order, and messages
at check nodes that are connected to a particular variable node are processed
and immediately exchanged with that variable node [10, 13]. Serial decoders, in
general, provide faster convergence without incurring any significant complexity
overhead, i.e., the number of computations stays almost the same in one iteration
of RMP and CMP as in SMP. Memory efficiency is an additional advantage of
serial decoders; they require significantly lower memory than SMP [11, 9].

To further accelerate the convergence rate of serial decoding schedules, sev-
eral works have emerged in the literature [14, 15, 16], which determine the best
processing order of variable or check nodes for serial decoders. A maximum
mutual-information-increase based schedule is presented in [14]. The schedule
predicts the next message to be updated based on the mutual-information in-
crease and is used as a metric to improve convergence speed. Similarly, in [15],
a column-weight based fixed scheduling that processes variable nodes by follow-
ing the high-to-low column-weight order for irregular LDPC codes is proposed.
Informed fixed scheduling (IFS) is introduced in [16], which finds the appropri-
ate order to ensure that the maximum number of updated messages is utilized
within a single iteration. These schedules, however, attain marginal improvement
in convergence speed over the original serial decoding schedules.

Informed dynamic scheduling (IDS) strategy is introduced in [17]. The scheme
employs residual belief propagation (RBP) and updates only those nodes that
correspond to the maximum residuals of the check-nodes messages. Although,
RBP achieves faster convergence than existing decoding schedules, however, its
decoding performance, after convergence, is even worse than the flooding or serial
schedules [17]. Node-wise RBP (NWRBP) is also introduced in [17] to address the
“greediness” of the RBP. Motivated by the IDS, several techniques with different
message selecting and updating methods have been presented in the literature,
such as the silent-variable-node-free (SVNF) scheduling [18], the dynamic-silent-
variable-node-free (D-SVNF) [19], the tabu search-based dynamic scheduling
(TSDS) [20], and the two-reliability-metrics based RBP (TRM-TVRBP) schedul-
ing [21]. These fast-decoding schedules accelerate the convergence rate of LDPC
decoding, but the added cost of computing the residuals and the required search
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operations is far from trivial in VLSI implementations. This high computational
cost explains the reason why no VLSI implementations of the RBP-based sched-
ules, to the best of authors’ knowledge, have been reported in the literature.

At the architectural level, pipelined decoders are used to support the through-
put demands of multi-Gbps LDPC decoding. The pipelining, however, slows
down the convergence speed of the single-frames based decoders and, conse-
quently, the throughput is affected. Similarly, the number of quantization bits
of the processing and memory elements of the decoder is directly related to the
area-footprint, while inappropriate selection of the quantization bits affects the
decoding performance of the decoder. Proper selection of the bits also allows the
replacement of some of the saturated subtractors of the decoder, with unsatu-
rated ones, and thus avoids corresponding costly operations of comparison and
clipping involved in the saturation. Also, the selection of register-blocks versus
memory-blocks to save variable and check-node messages affects the performance
of the decoder, and the proper selection of these blocks is required to get the
optimal performance of the decoder.

Furthermore, LDPC codes featured in IEEE standards are Quasi-Cyclic LDPC
(QC-LDPC) codes [22]. VLSI implementation of the QC-LDPC decoders involves
implementing barrel shifter networks, adders/subtractors, and check-node units
(CNUs) along with the memory blocks. A low-power multi-Gbps QC-LDPC de-
coder implementation with a small footprint requires careful optimizations of all
these modules at the circuit level as well. For example, three frame lengths and
corresponding sub-block sizes z are defined for IEEE 802.11 ac/ax LDPC codes.
The sub-block sizes of long frames are integer multiples of the smaller ones.

For high-throughput decoding, it is desirable to process one sub-block of size
Z in a single clock cycle, which requires processing Z number of messages in one
cycle, and the size of barrel shifters scales accordingly. For longer frame lengths,
however, this increases the decoder area, and the design becomes under-utilized
for smaller frame lengths. Processing of one layer per cycle is also used in multi-
Gbps LDPC decoders, which implies that a CNU is able to process the layer that
has the maximum node degree, in a single clock cycle. The maximum degree
of the layer is usually close, but not exactly equal, to the number of columns
of the Sparse-Parity-Check-Matrix (SPCM), and therefore, the CNUs and their
connected circuitry is designed as per the number of columns of the SPCM to
read and write data from memory locations directly. In [23], for example, CNUs
with a number of inputs equal to 24 are implemented for IEEE 802.11n/ac LDPC
codes, but the maximum degree of any layer is no more than 22 .

Based on the above discussion, it is evident that the optimum performance
of the final VLSI implementation requires efficient designing in all the aforemen-
tioned domains, and a design-choice in one domain affects the overall performance
of the final implementation. An optimized ASIC implementation of multi-Gbps
LDPC decoders could be achieved by following a co-design approach that tar-
gets the algorithm, architecture, and circuits of the decoder in a joint way. This
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work, therefore, proposes and implements the algorithm, architecture, and circuit
co-design approach for the development of optimized ASIC accelerator chips for
LDPC decoders.

1.1 Contributions

The purpose of this thesis is to develop optimized ASIC accelerator chips for
LDPC decoders by following a joint algorithm, architecture, and circuit co-design
approach. To this end, the contributions of this work are the following:

• Fast-converging LDPC decoding schedules, viz. interlaced column-row mes-
sage passing (ICRMP), and fast column message passing (FCMP) schedules
are proposed and investigated. The proposed schedules convergence in half
the number of iterations than the serial decoding schedules, i.e., RMP and
CMP, while incurring significantly lower computational complexity than
the RBP-based fast-decoding schedules.

• Complexity and convergence analyses of the proposed schedules are carried
out and compared with the existing LDPC decoding schedules. The conver-
gence rate of the proposed schedules is verified using two analytical meth-
ods; EXIT (Extrinsic Information Transfer) charts and density-evolution
by Gaussian approximation.

• An LDPC decoder architecture which implements the proposed FCMP
schedule by targeting IEEE 802.11ad (WiGig) LDPC codes is proposed.
The proposed decoder architecture achieves a decoding performance, com-
parable to state-of-the-art architectures, using a maximum number of iter-
ations equal to only 2 , which allows the architecture to maintain a multi-
Gbps throughput with a very high-energy efficiency.

• The proposed FCMP based decoder architecture is synthesized using the
TSMC 40 nm standard CMOS technology. The synthesized architecture
achieves a throughput of 8.4 Gbps while operating at a clock frequency
of 200 MHz. The synthesized architecture achieves an energy-efficiency of
8.6 pJ/bit, which is the highest energy-efficiency of an IEEE 802.11ad LDPC
decoder reported in the literature.

• Efficient memory-organization and barrel-shifters design for rotating the
longer frames of QC-LDPC codes, in multiple cycles, by using the barrel
shifter of the smallest frame is proposed. Multiplexers are then designed to
forward a number of inputs equal to the maximum row-degree, instead of
the number of columns of the SPCM.
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• A direct bit-wise comparator circuit is proposed, and its boolean expres-
sions are derived, which eliminated the need of multiplexers based complex
comparators and resulted in an efficient design.

• A simple modification in the RMP decoding schedule is proposed to reduce
the dynamic range of the LLR values, which allowed a reduction in bit-width
of several modules of the decoder along with replacement of 22 saturated
subtractors, involved in one stage of the decoder, with non-saturated ones.

• The proposed optimizations are then employed to implement a fully pipelined
IEEE 802.11n/ac/ax LDPC decoder, and the decoder is synthesized in a
40 nm standard CMOS process. The synthesized decoder attains a through-
put of 3.8-11.4 Gbps, occupies an area of 0.71 mm2 while achieving 12.5 pJ/bit
of energy-efficiency.

• Finally, an energy-efficient and high-throughput multi-core hardware archi-
tecture has been presented and physically implemented as an ASIC chip.
The implemented ASIC chip achieves a peak throughput of 15 Gb/s while
operating at a clock frequency of 250 MHz. The achieved throughput and
the corresponding energy-efficiency are the best reported in the literature
for an IEEE 802.11n/ac/ax LDPC decoder.

1.2 Outlines

The purpose of this thesis is to develop optimized ASIC chips as accelerator for
LDPC decoders by following a joint approach for the algorithm, architecture, and
circuits of an LDPC decoder. The structure of this thesis is as follows:

Chapter 2 introduces the background material related to the exiting LDPC
decoding schedules,density evolution by Gaussian approximation method, and
finally hardware implementation of LDPC decoders.

Chapter 3 discusses the proposed schedules along with their performance.
Complexity analysis of the proposed schedules is also carried out in this chap-
ter. Convergence analysis is then presented using extrinsic information trans-
fer (EXIT) charts, and the mean evolution of Gaussian-approximated message-
densities of the nodes. Finally the simulations results of the proposed schedules
are presented in this chapter.

Chapter 4 presents the proposed architecture for the proposed FCMP sched-
ule along with its decoding performance, and comparison with state-of-the art.

Chapter 5 presents the proposed VLSI optimizations of this work. decoding
performance and VLSI synthesis results by applying the proposed optimizations
to an IEEE 802.11n/ax/ax LDPC decoder are presented in this chapter. Finally,
a multi-core hardware architecture, and physical implementation as an ASIC chip
are elaborated in this.
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Chapter 6 finally concludes the presented work.

1.3 Publications

At the time of writing, the following publications have been resulted out of this
thesis work:

• Saleh Usman and M. M. Mansour, “Fast-Converging and Low-Power
LDPC Decoding: Algorithm, Architecture, and VLSI Implementation”,
submitted to IEEE Transactions on Circuits and Systems I.

• Saleh Usman and M. M. Mansour, “An Optimized VLSI Implementation
of an IEEE 802.11n/ac/ax LDPC Decoder”, to appear in IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), Oct. 2020, Seville,
Spain.

• Saleh Usman, M. M. Mansour, and A. Chehab, “ A Multi-Gbps Fully
Pipelined Layered Decoder for IEEE 802.11n/ac/ax LDPC Codes,” in Proc.
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 194-
199, Jul. 2017, Bochum, Germany.

• Saleh Usman, M. M. Mansour, and A. Chehab, “Interlaced column-row
message-passing schedule for decoding LDPC codes,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), pp. 1-6, Dec. 2016, Washington, USA.
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Chapter 2

Literature Review

LDPC codes are either defined by a sparse parity-check matrix (SPCM), or repre-
sented by a sparse bipartite Tanner graph consisting of variable nodes and check
nodes. Variable nodes in the Tanner graph represent columns of the SPCM, and
check nodes are associated with rows of the SPCM. Consider an LDPC code
and let G(V ∪ C,E) denote its associated bipartite graph G with vertex set V,
as variable nodes, vertex set C, as check nodes, and an edge set E, connecting
the vertices. Let Pv is the log-likelihood ratio (LLR) at the variable-node v, Lcv
represent the message sent from check-node c to variable-node v, and Qvc refers
to the message sent from variable-node v to check-node c.

2.1 Standard Message-Passing (SMP)

The SMP scheduling, also called the flooding schedule, updates the variable nodes
and check nodes in two phases as follows (e.g., see [9]). Two types of messages
will be updated and exchanged: Lcv refers to the message sent from check node
c to variable node v, and Qvc refers to the message sent from variable node v to
check node c:

• Initialization: Initialize all variable node messages to the received channel
LLRs

P (0)
vc = LLR[v] ,

2rv
σ2
, ∀v ∈ G, (2.1)

where rv is vth received soft symbol and σ is the estimated standard devi-
ation of channel noise.

• Phase 1: Update all check node messages at iteration k ≥ 1 according to

L(k)
cv = Ψ−1

( ∑
v′∈R[c]\v

Ψ
(∣∣∣P (k−1)

v′c

∣∣∣) ), ∀c ∈ G, (2.2)
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where Ψ(x) , 0.5 log(tanh(x/2)) = Ψ−1(x). The set R[c] denotes the set of
dc = |R[c]| variable nodes connected to check node c. Note that the notation
R[c]\v indicates that the summation does not include the previous message
from variable node v that is set to receive the new updated message Lcv
from check node c.

• Phase 2: Update all variable nodes at iteration k ≥ 1 using the equation

P (k)
vc = LLR[v] +

( ∑
c′∈C[v]\c

L
(k)
c′v

)
, ∀v ∈ G, (2.3)

where C[v] is the set of dv = |C[v]| check nodes connected to the variable
node v, and LLR[v] is the log-likelihood ratio (LLR) of the received channel
value of variable node v. As in Phase 1, the summation does not include
the previous message from neighboring check node c which the variable
node is connected to.

For decision making in the final iteration, all neighboring check node messages
are included in the summation when evaluating (2.3), i.e., none of the check nodes
are excluded:

Λ[v] , LLR[v] +
( ∑
c′∈C[v]

L
(k)
c′v

)
, ∀v ∈ G. (2.4)

Here, the Λ’s denote updated channel LLR values at the end of the final decoding
iteration. Hard decisions on the bits are then made based on the sign of the Λ
LLR values.

2.2 Column Message-Passing (CMP) Schedule

CMP starts from a variable node, and check nodes in the neighboring-set of the
variable node send their updated messages to the variable node. The neighboring
set of the check nodes update their messages using (2.2). This process of evalu-
ating each variable node by collecting updated messages from its neighboring-set
of the check nodes is repeated for all variable nodes of the bipartite graph, in one
iteration. Decision making in the final iteration is performed by evaluating (2.4),
as in SMP. CMP is also named as shuffled iterative decoding in the literature [10].
Fig. 2.1 illustrates the processing of this schedule for the first variable node. The
dotted and solid lines in Fig. 2.1 represent the connections among the nodes,
while the solid lines are the ones taking part in the update process.

2.3 Row Message-Passing (RMP) Schedule

In RMP, decoding proceeds row-wise instead of column-wise, i.e., check-node
messages are computed using (2.2), and then all of its connected variable nodes

8
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Figure 2.1: CMP processing schedule for variable-node v1. Solid lines are the
ones taking part in the update process.

are updated immediately using equation (2.3). This process is repeated for all
check nodes of the bipartite graph, in one iteration. Memory-efficient implemen-
tation of the RMP is introduced in [11]. The processing of this schedule for the
first check node is illustrated in Fig. 2.2.

2.4 Check-Node Computations

Several low-complexity variants of (2.2) have emerged in the literature [24] be-
cause the hardware implementation of (2.2) is not straightforward. The most
widely used is the offset min-sum approximation, which is given as [25, 26]:

L(k)
cv =max

{(
min

v′∈R[c]\v
|P (k−1)
v′c |

)
−β, 0

} ∏
v′∈R[c]\v

sign(P
(k−1)
v′c ) (2.5)

where β is a correction factor determined empirically, and R[c] is the set of dc
variable nodes connected to check-node c. The notation R[c]\v indicates that
the message from variable-node v, set to receive the updated message Lcv from
check-node c, is not included in the calculation. If min1, min2 are the magnitudes
of the first and second minima among the inputs of the check node, and if vm1 is
the index of the first minimum magnitude, then (2.5) can equivalently be written
as:

L(k)
cv =

{
max(min2−β, 0)

∏
v′∈R[c]\v sign(P

(k−1)
v′c ) v = vm1,

max(min1−β, 0)
∏
v′∈R[c]\v sign(P

(k−1)
v′c ) otherwise.

(2.6)

Here the sign of each input, sign(Pv′c), is a single bit, so their product is accom-
plished by just taking the Exclusive-OR (XOR) of all the bits.
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Figure 2.2: RMP processing schedule for first check node.

Figure 2.3: Base-matrix defined for IEEE 802.11n/ac: FL = 648, R = 5/6, and
z = 27.

2.5 QC-LDPC Codes

QC-LDPC codes have been adopted in recent communications standards like 5G
New-Radio [3, 4], IEEE 802.11n/ac/ax (WiFi) [5], and IEEE 802.11ad (WiGig) [6],
among others. The SPCM of a QC-LDPC code is represented by a base-matrix
and a sub-block size parameter z. For example, for IEEE 802.11n/ax/ax LDPC
codes, 12 base-matrices are defined; corresponding to 3 frame-lengths, 648, 1296, 1944,
and 4 code-rates, 1/2, 2/3, 3/4, 5/6. Sub-block sizes of 27, 54, and 84 are defined
corresponding to frame-lengths of 648, 1296, and 1944, respectively. The base-
matrix for rate R = 5/6 and frame length, FL = 648 is shown in Fig. 2.3. The
integers in the base-matrix represent the circular shift of the z×z identity matrix,
while dashes (-) correspond to the z × z all-zeros matrices. The actual SPCM
of the LDPC code is formed by replacing each entry in the base-matrix with a
shifted z × z identity matrix or an all-zeros matrix.
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Figure 2.4: Block diagram of a memory-efficient non-pipelined RMP-based LDPC
decoder architecture.

2.6 Hardware Implementation of RMP based

LDPC Decoders

Several RMP-based QC-LDPC decoder architectures have emerged in the liter-
ature [9, 25, 23, 27], and a block diagram of a single-frame based QC-LDPC
decoder architecture is shown in Fig. 2.4. The LLRMemory stores LLR values
of (2.3) while the CNMem stores Lcv messages of (2.2), in Fig. 2.4. The SPCM
stores the base-SPCM while the CheckNodeUnits implement (2.5). BarrelShifters
and Rev.BarrelShifters in CN2VN and VN2CN blocks implement rotations and their
reverse operations, required for QC-LDPC codes. The Adders, Subtractos, and
CheckNodeUnits, are instantiated equal to the expansion factor of a QC-LDPC
code, to exploit the structure of QC-LPDC codes in supporting the throughput
demands of multi-Gbps LDPC decoding.

2.7 Density Evolution by Gaussian Approxima-

tion

Density evolution is a mathematical tool used to investigate the behavior of iter-
ative message-passing decoding algorithms. The Gaussian approximation allows
to carry out the density evolution analysis by approximating the probability den-
sities of exchanged messages as Gaussian. Under density evolution, the symmetry
condition f(x) = f(−x)ex is preserved for all messages, where f(x) is the density
of a message [28]. For a Gaussian density with mean m and variance σ2, the
symmetry condition reduces to σ2 = 2m, which means that only the mean needs
to be considered [29]. Density evolution with Gaussian approximation can be ex-
plained as follows. Assume that variable-node messages and check-node messages
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are Gaussian random variables, with means denoted by mv and mc, respectively.
By considering the flooding schedule for regular LDPC codes, these means get
updated at k ≥ 1 iteration according to the following rules [29]:

m(k)
v = mco + (dv − 1)m(k−1)

c (2.7)

m(k)
c = φ−1

(
1−
[
1−φ

(
mco+(dv−1)m(k−1)

c

)]dc−1)
(2.8)

where mco is the initial mean, m
(0)
c =0, and

φ(x)=

{
1− 1√

4πx

∫
R tanh

(
u
2

)
e−

(u−x)2

4x du if x > 0,

1 if x = 0.

For small x, say x < 10, the following approximation of φ(x) is typically used [29]:

φ(x) ≈ e−0.4527x
0.86+0.0218, 0 < x < 10. (2.9)
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Chapter 3

Proposed Decoding Schedules

For the purpose of hardware implementation of LDPC decoders, check-node pro-
cessing is significantly simplified using the “min-sum” approximation [24]. In the
min-sum approximation, each check node identifies the first and second minimum
magnitudes among its inputs, and the check-node outputs are then generated by
combining these minima with their corresponding signs, determined separately.
The min-sum approximation simplifies the check-node processing for RMP, where
each row of the SPCM directly corresponds to a check node. For CMP however,
complexity reduction is not significant, and several techniques have emerged in
the literature to leverage the benefits of the min-sum based check-node processing
for the CMP, but the benefits come at the expense of potential degradation in
decoding performance [30, 31, 32, 33].

In the CMP schedule, each check node in the neighboring set of a given
variable node determines two minima, and the message propagated by each check
node to that variable node is determined using these minima. The same minima,
however, can be used to determine the messages for other variable nodes, which
are in the neighboring sets of the check nodes being processed. The proposed
schedules rely on the messages which could be generated for other variable nodes
using the already determined minima, instead of applying existing complexity
reduction techniques [31, 32] in the CMP schedule. This potential utilization of
the check-node outputs creates an advantage in terms of convergence speed, in
contrast to the loss in decoding performance incurred by applying the complexity
reduction techniques.

Motivated by the above observation, interlaced column-row message-passing
(ICRMP) and fast column message-passing (FCMP) schedules are proposed in
this work. The proposed schedules propagate messages to all neighboring variable
nodes of a check node, instead of just to the variable node, for which the check
node is processed, as is the case in CMP. The difference between the ICRMP and
FCMP schedules is of serial versus parallel processing of the check nodes, con-
nected to a particular variable node. Referring to Fig. 3.1, the ICRMP schedule
starts by considering the first variable-node v1 and updating it using the messages
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from check-nodes c1 and c3; processing up to this point is similar to CMP. Next
comes the part which makes the ICRMP different than the CMP, and essentially
amplifies its convergence speed. Check node c1 propagates the messages to its
neighboring variable nodes, other than v1, and these variable nodes also get up-
dated. After that, the check node c3 propagates its messages to its neighboring
variable nodes. This additional processing has minimal impact on the overall
complexity of the CMP schedule, as shown by the complexity analysis in Sec-
tion 3.1. The processing order of the proposed ICRMP schedule is depicted in
Fig. 3.1, for the first variable node. In Fig. 3.1, the solid lines are the ones taking
part in the update process, while vij represents a connection of ith check node to
its jth neighboring variable node, like v13 is the connection of first check node to
its third neighboring variable node.

a

v3

v2

v1

c3

c2

c1

v13, v14, v15, v16

v23, v24, v25, v26

v33, v34, v35, v36

b

v3

v2

v1

c3

c2

c1

v13, v14, v15, v16

v23, v24, v25, v26

v33, v34, v35, v36

Figure 3.1: Proposed ICRMP schedule for 1st variable node. The check-nodes c1
and c3, connected to v1, not only update v1 but also their complete neighboring
sets of variable nodes, in serial fashion.

In the FCMP schedule, on the other hand, the check-nodes connected to a
particular variable node are processed in a parallel fashion, in contrast to the
serial processing of the ICRMP. Referring to Fig. 3.2, FCMP schedule starts by
considering the first variable-node v1 and updating it using the messages from
check-nodes c1 and c3, as is the case for ICRMP. Check nodes c1 and c3, then
propagate their messages to their neighboring variable nodes, in parallel fashion,
and these variable nodes also get updated.

For both the schedules, the process of propagating newly generated messages
of the check nodes to all the connected variable nodes, completes a sub-cycle of
information exchange that started from the first variable node and concluded at
some set of variable nodes, depending on the structure of the SPCM. Sub-cycles
equal to the number of variable nodes of the associated SPCM are repeated, one
for each variable node, for one iteration.
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Figure 3.2: Proposed FCMP schedule for variable-node v1. The check-nodes
c1 and c3 update their complete neighboring sets of variable nodes, in parallel
fashion.

In summary, one sub-iteration of the proposed schedules, for a particular vari-
able node, processes all check nodes connected to that variable node and prop-
agates the check-node messages to their neighboring-sets of the variable nodes.
The sub-iteration is completed in parallel fashion for the FCMP, and in serial
fashion for the ICRMP. The number of sub-iterations equals the number of vari-
able nodes constitutes one iteration of the proposed schedules. One iteration of
the proposed schedules adds dc− 1 times XOR operations and an equal number
of additions, compared to the CMP, with dc being the check-node degree.

The proposed schedules, thus, present an optimization of the CMP schedule
that improves the decoding throughput of the CMP by accelerating its conver-
gence speed, instead of applying existing complexity reduction techniques which
simplify the CMP hardware implementation [31, 32]. The schedules implement
the check-node processing as standard min-sum approximation [34], to avoid
any loss in decoding performance incurred by existing complexity reduction tech-
niques, and instead modify the CMP schedule to accelerate the convergence speed.

The pseudo-code of the proposed ICRMP schedule is summarized in Algo-
rithm 1, while Algorithm 2 summarizes the pseudo-code of the FCMP. In
the pseudo-code, dvj represent the degree of jth variable node, and ci is the ith
neighboring check node to the variable-node vj. The parallel loop of the FCMP,
demarcated by a bounding box in the pseudo-code, enables the reduction of the
propagation delay, by parallel processing of the check nodes connected to a par-
ticular variable node.
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Algorithm 1 Proposed ICRMP Schedule

1: for all v, c ∈ G do . Initialization loop
2: P

(0)
v ← LLR[v]

3: L
(0)
cv ← 0

4: end for
5: for k = 1 to K do . Iteration loop
6: for j = 1 to Nv do . Variable-node (VN) loop

7: for i = 1 to dvj do

8: L
(k)
civ′
← Eq. (2.2) for all v′ ∈ R[ci]

9: for all v′ ∈ R[ci] do . VN updates

10: P
(k)
v′ ← Eq. (2.3)

11: end for
12: end for

13: end for
14: end for
15: for all v ∈ G do . Decision making
16: Λ[v]← Pv ≥ 0
17: end for

Serial loop

3.1 Complexity Analysis

In this section, the computational complexities of the CMP and the proposed
schedules are derived, and compared with other LDPC decoding schedules. Let
Nv and Mc be the total number of variable nodes and check nodes, respectively,
then the number of edges is, E = Nv × dv = Mc × dc, where dv and dc represent
the average-degree of variable and check nodes, respectively.

3.1.1 Computational Complexity of CMP

In CMP, decoding starts from a variable node, and each of its connected check
nodes computes its message to send to the variable node. For message compu-
tation, each check node determines two minima among the inputs, applies offset
correction, and determines the sign of each output by XOR-ing the sign bits of
the input messages. Each of the connected check nodes then sends its message
to the variable node, and these messages are accumulated and get added to the
channel LLR value; so the processing of one variable node involves dv in number
XOR operations and an equal number of additions at the variable node, along
with the minima determination and offset correction operations. The process
is repeated for all the Nv variable nodes. If Vc and Cc are the number of V2C
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Algorithm 2 Proposed FCMP Schedule

1: for all v, c ∈ G do . Initialization loop
2: P

(0)
v ← LLR[v]

3: L
(0)
cv ← 0

4: end for
5: for k = 1 to K do . Iteration loop
6: for j = 1 to Nv do . Variable-node (VN) loop

7: parfor i = 1 to dvj do

8: L
(k)
civ′
← Eq. (2.2) for all v′ ∈ R[ci]

9: for all v′ ∈ R[ci] do . VN updates

10: P
(k)
v′ ← Eq. (2.3)

11: end for
12: end parfor

13: end for
14: end for
15: for all v ∈ G do . Decision making
16: Λ[v]← Pv ≥ 0
17: end for

Parallel loop

(variable-node to check-node) and C2V (check-node to variable-node) computa-
tions, respectively, then for a single iteration, Vc and Cc are given by the following
equations:

Vc = Nv × dv = E, (3.1)

Cc = Nv × dv × (X + 2×M) = E, (3.2)

where X represents an XOR operation count and M corresponds to the operation
count of computing a single minimum with the offset correction. Since X+2×M
is considered a single C2V computation, therefore, Cc = E.

3.1.2 Computational Complexity of Proposed Schedules

For the proposed schedules, messages computed at check nodes, connected to
a particular variable node, are further propagated to their neighboring variable
nodes, as elaborated in Fig. 3.1 and Fig. 3.2. Compared to the CMP, this incurs
additional computational cost at the check nodes and the variable nodes. For
each check node connected to the variable node, being processed, the operation of
determining the two minima stays the same, but each check node has to perform
now dc XOR operations to determine the signs of their outputs. Since the number
of the connected check nodes to each variable node is dv, then dv × dc XOR
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operations are required to complete the processing of one variable node. Similarly,
at the variable-nodes side, dv × dc variable nodes in total are updated using the
addition operations. This process is repeated for all Nv variable nodes. If Vp
and Cf are the number of V2C and C2V computations of the proposed schedules,
respectively, then for a single iteration, Vp and Cp are given by the following
equations:

Vp = Nv × dv × dc = dc × E, (3.3)

Cp = Nv × dv × (dc ×X + 2×M). (3.4)

By comparing (3.1) with (3.3), and (3.2) with (3.4), it is evident that the
ICRMP and FCMP require dc times additions at the variable-nodes, and the
number of XOR operations is multiplied with the same factor at the check-nodes
side, compared to the CMP schedule. Addition and XOR are simple operations,
compared to the minima determination, which is the same for the CMP and
the proposed schedules. The additional computational cost is thus moderate,
compared to costly search and residual-computations operations, introduced by
RBP-based fast-converging LDPC decoding schedules.

The power consumption of a decoder is directly related to the number of com-
putations involved during the processing, along with other factors like switching
activity, etc. For the proposed schedules, an increase in power consumption, com-
pared to the CMP, would be moderate even if the required number of iterations
would be the same. The proposed schedules, however, converge in almost half
the number of iterations compared to the CMP or the RMP, so the power con-
sumption drops in proportionate with the reduced number of iterations required
for the convergence of the proposed schedules.

3.1.3 Complexity Comparison

The computational complexities of various LDPC decoding schedules, along with
the proposed schedules, are summarized in Table 3.1. In the last column of
Table 3.1, r(v) denotes the operations required to calculate the variable-node
residuals. The comparison of the complexities reveals that the proposed FCMP
and ICRMP schedules, along with the CMP and RMP, do not introduce any
costly search operations, or r(v) operations in some cases. In contrast, both the
FCMP and ICRMP schedules introduce a moderate increase in complexity, over
RMP and CMP schedules. The rest of the fast-converging schedules, NWRBP,
SVNF, TSDS, TRM-TVRBP, and RM-RBP, introduce costly search and r(v)
operations. These costly operations can be a fundamental reason that no VLSI
implementation, to the best of authors’ knowledge, has appeared in the literature
for comparison with the existing VLSI implementations.
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Table 3.1: Computational Complexities of LDPC Decoding Schedules

Schedules V2C C2V Search r(v)
Computations Computations Operations

RMP E E 0 0
CMP E E 0 0

E[(dv − 1)
NWRBP? E(dv − 1) (dc − 1) + 1] Mc(E − 1) 0

E[(dv − 1)
SVNF? E(dv − 1) (dc − 1) + 1] E(dc − 1)dv 0

E(Nv − TL
TSDS? E(dv − 1) E(dc − 1) −dv − 1)∗ 0

5(E/4) Nv(Nv − 1) 5(E/4)
TRM-TVRBP?? E/2 (dc − 1) +E(dc − 1) (dc − 1)

RM-RBP?? E E.dc E(dc − 1) E.dc
ICRMP E · dc E + XOR OPs† 0 0

Prop. FCMP E · dc E + XOR OPs† 0 0
? The complexity expressions have been taken from Table I of [20].
?? The complexity expressions have been taken from Table 2 of [21].
∗ TL is the length of the tabu list of the TSDS schedule.
† Bitwise XOR are simple operations, compared to other tabulated operations.

3.2 Throughput and Area Tradeoffs

Computational complexity of ICRMP and FCMP schedules is the same, but
the fundamental difference between the two is that the ICRMP requires serial
processing of the check nodes connected to a variable node, while FCMP does
this in parallel fashion. In hardware implementation, the number of clock cycles
required to complete one iteration of the ICRMP is dv × C, while only C clock
cycles are required to complete a single iteration of the FCMP schedule, where dv
and C are the average-variable-node degree and number of columns of the SPCM,
respectively. So a higher throughput could be achieved with the proposed FCMP
schedule in comparison with the ICRMP. As an example, for IEEE 802.11ad, rate-
1/2 LDPC codes, the number of clock cycles required to complete one iteration of
the FCMP schedule is 16 , equal to the number of columns of IEEE 802.11ad base
matrix, while 52 cycles are required to complete one iteration in ICRMP. Thus
FCMP attains a speed-up factor proportional to the average variable-node degree
of the SPCM compared to ICRMP, and consequently, the overall throughput of
the ICRMP is lower than that of FCMP.

On the other hand, dv check-node units operate in parallel in the FCMP
decoder, which increases the area-footprint proportionally. The ICRMP sched-
ule, however, being serial in nature, performs additional computations by a single
check-node unit, in dv clock cycles. The requirement of additional clock cycles de-
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creases the throughput but also requires less area for the decoder implementation.
Thus the FCMP and ICRMP schedules provide a tradeoff between throughput
and area-footprint. Power consumption of both the schedules, however, stays
roughly the same since the computational complexity is the same for both cases.

3.3 Convergence Analysis

Convergence analysis of the proposed schedules are carried out using two meth-
ods: 1) Extrinsic information transfer (EXIT) charts, and 2) the mean evolution
of Gaussian-approximated message-densities of the nodes.

3.3.1 Convergence Analysis using EXIT Charts

EXIT charts are used to analyze the convergence performance of iterative de-
coders [35], like LDPC decoders. For EXIT chart analysis, this thesis uses the
notation of [36], which defines IA and IE as the average mutual information be-
tween the transmitted bits and the a priori LLRs and extrinsic LLRs, respectively.
An approximation of the mutual information between the transmitted bits xn and
the LLRs L(xn), using the time average, is given as [37]:

I(xn) ≈ 1− 1

N

N∑
n=1

log2
(
1 + e−xn.L(xn)

)
(3.5)

To plot EXIT charts, the approximated mutual information is determined af-
ter every iteration, for a variable-node decoder (VND) and a check-node decoder
(CND). The corresponding EXIT charts of CMP and the proposed FCMP based
decoding are shown in Fig. 3.3 and Fig. 3.4, respectively. The EXIT charts re-
veal that the transfer of extrinsic information for the proposed FCMP schedule is
much faster than CMP based decoding and, consequently, the FCMP converges
in half the number of iterations than the CMP based decoding; the FCMP re-
quires 7 iterations to converge, while CMP requires 14 . This is evident from the
simulation plots that the convergence speed of the ICRMP schedule is a bit faster
than the FCMP schedule, so both the schedules converge faster than the original
CMP schedule.

3.3.2 Convergence Analysis by Gaussian Approximation

Convergence analysis of message-passing schedules can also be performed by
tracking the mean-evolution of Gaussian-approximated message densities of vari-
able and check nodes. The means of the node-messages of a fast converging
schedule evolve rapidly in comparison with slower ones. The convergence speed
of a serial LDPC decoding schedule by partitioning the check nodes is analyzed
in [38] using this method. To verify the convergence behavior of the proposed
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Figure 3.3: EXIT chart of CMP decoding for WiFi LDPC codes, rate 1/2, block-
length 1944, at Eb/N0 = 1.2 dB.

schedules and to compare it with the CMP, the mean update equations of the
CMP and the ICRMP and FCMP are derived in this section by modifying (2.7)
and (2.8).

In the CMP schedule, every update of the variable node receives messages from
the check nodes; a fraction of these messages is updated in the current iteration,
and the rest are from the previous iteration. Let p1 and p2 be the probabilities
of the number of check-node messages updated in the previous and the current
iterations, respectively, and p1 + p2 = 1. The total number of the check-node
messages for a particular variable node is dv. Therefore, p1 × dv is the expected
number of neighboring check-node messages to a variable node, which depends on
the previous iteration, and p2 × dv is the expected number of neighboring check-
node messages to a variable node depending on the current iteration. The higher
the number of messages that depend on the current iteration (i.e., higher p2), the
faster the means of messages evolve. The means of the variable-node messages
m(k)
v and the check-node messages m(k)

c for the CMP at the kth iteration are given
by:

m(k)
v = mco + p1 × (dv − 1)×m(k−1)

c + p2 × (dv − 1)×m(k)
c (3.6)

m(k)
c = φ−1

(
1−

[
1− φ(mco + p1 × (dv − 1)×m(k−1)

c

+p2 × (dv − 1)×m(k)
c )
]dc−1)

(3.7)

Other quantities and initial conditions are similar to (2.7)-(2.8). Here p1 and
p2 depend on the processing order of variable nodes. For instance, for the first
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Figure 3.4: EXIT chart of proposed FCMP decoding, for the same LDPC codes
and Eb/N0 as in Fig. 3.3.

variable node in the processing schedule, all check nodes connected to the variable
node perform computations that depend on messages from the previous iteration;
since no variable node is updated yet so p1 = 1 and p2 = 0. As processing
proceeds, p1 continues to decrease, and p2 continues to increase because the check
nodes connected to the given variable node perform computations that depend
more on the input messages of the current iteration rather than the previous
iteration. For the last variable node in the processing schedule, p1 = 0 and
p2 = 1 since all the nodes have now been updated.

For the proposed schedules, each check node connected to a given variable
node, not only updates that variable node but also the remaining dc− 1 variable
nodes. Therefore, for a variable node, the probability of getting a check-node
message whose computations are based on the current iteration is multiplied by
dc − 1. Hence, by using the same p1 and p2 as defined above for the CMP, the

means of the variable-node messages m
(k)
v and the check-node messages m

(k)
c for

kth iteration of the FCMP and ICRMP are updated as:

m
(k)
v = mco+

p1 × (dv − 1)×m(k−1)
c

p1+p2 × dc
+
p2 × dc × (dv − 1)×m(k)

c

p1+p2 × dc
(3.8)

m
(k)
c = φ−1

(
1−

[
1− φ(mco +

p1 × (dv − 1)×m(k−1)
c

p1 + p2 × dc

+
p2 × dc × (dv − 1)×m(k)

c

p1 + p2 × dc−
)
]dc−1) (3.9)
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By considering a check node with different values of p2 (and therefore different
p1), the mean evolution of the node-message versus the number of iterations is
plotted in Fig. 3.5. The figure shows that the evolution of the means of the
proposed schedules (plotted in red) is faster than the CMP. In general, different
values of p1 and p2 for each node result in corresponding mean evolution curves.
The overall convergence speed of the schedule depends on the overall effect of all
the mean evolution curves.
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Figure 3.5: Comparison of mean evolution of check-node messages of a (3,6)
regular LDPC code using the CMP and the proposed FCMP schedule.

Here p1 and p2, for a given variable node, are determined by considering the
LDPC graph and figuring out the fractions of check-node messages connected
to the variable node that depends on the previous and the current iteration,
respectively.

3.4 Simulation Results

The potential advantages of the proposed schedule in terms of convergence speed,
BER performance, and FER performance are assessed by simulating the RMP,
CMP, RBP-based, and the proposed FCMP and ICRMP decoding schedules.
BER and FER curves and the corresponding convergence speed, in terms of the
number of iterations taken by the schedules are plotted. Randomly generated,
IEEE 802.11ad (WiGig), IEEE 802.11n/ac (WiFi), and IEEE 802.16e (WiMAX)
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LDPC codes, are considered while fixing the maximum number of iterations.
The comparison of the proposed FCMP and ICRMP schedule with the RMP
and CMP is shown in Fig. 3.6 - Fig. 3.9. As is evident from the plots, the fast
convergence rate of the FCMP, along with ICRMP, in comparison with RMP
and CMP, is verified consistently by these simulations. The simulation plots
reveal that the FCMP schedule requires a slightly higher number of iterations
than the ICRMP. The higher convergence speed of the ICRMP is because of the
serial processing of the neighboring check nodes of a particular variable node,
however, the throughput of the FCMP, is higher than the ICRMP, as explained
in Section 3.1. The comparison of the proposed schedules with RBP-based fast-
decoding schedules, using BER and FER plots against the maximum number of
iterations, is shown in Fig. 3.10 - Fig. 3.12. The comparison reveals that the
proposed schedules achieve the same decoding and convergence performance as
the RBP-based schedule, although the computational complexity of the proposed
schedules is significantly lower than the RBP-based schedules, which enables a
multi-Gbps low-power VLSI implementation of the proposed schedules.
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Figure 3.6: BER comparison of the proposed FCMP schedule with the ICRMP,
CMP and RMP, for randomly generated LDPC codes with rate = 1/2, dv =
3, dc = 6, Nv = 2000, and Imax = 100.
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Figure 3.7: Comparison of iterations corresponding to Fig. 3.6.
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Figure 3.8: BER and FER comparison of the proposed schedules with the CMP
and RMP, for IEEE 802.11n/ac (WiFi) LDPC codes, rate 1/2, block-length 648,
and Imax = 100.
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Figure 3.9: Iterations count corresponding to Fig 3.8.
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Figure 3.10: BER vs. number of iterations for WiMAX LDPC codes, rate 1/2,
block-length 576, at Eb/No=2.5 dB.
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Figure 3.11: FER vs. number of iterations for WiFi LDPC codes, rate 1/2,
block-length 1296, at Eb/No=2.25 dB.
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Figure 3.12: BER vs. number of iterations for WiMAX LDPC codes, rate 1/2,
block-length 576, at Eb/No=3.0 dB.
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Chapter 4

Proposed FCMP Decoder
Architecture

An LDPC decoder architecture based on the proposed FCMP schedule is pre-
sented in this chapter, by modifying the legacy LDPC decoder architectures.
The FCMP decoder is targeted for hardware implementation because of its capa-
bility of achieving a higher throughput than the proposed ICRMP schedule, as
discussed in Section 3.1. The proposed hardware architecture for the FCMP de-
coding schedule, targeted for IEEE 802.11ad LDPC codes, is shown in Fig. 4.5.
The proposed architecture replicates the processing units, in comparison with
Fig. 2.4, by a factor of 4 , equal to the maximum column-degree defined for the
IEEE 802.11ad base matrix. The processing units are replicated by 4 in order to
process the neighboring set of check-nodes of a particular variable-node in a single
clock cycle, as required in FCMP. The proposed architecture is pipelined with a
pipeline depth of 2 and processes two frames simultaneously in the pipeline stages
to avoid any idle-cycle. The number of memory modules is doubled to store the
messages of two frames, instead of a single frame in Fig. 2.4. The memory mod-
ules are modified for reading and writing of the messages of multiple blocks of the
processing units instead of a single block. Design space exploration, significant
processing blocks, and decoding performance of the proposed architecture are
elaborated below.

4.1 Design Space Exploration

The design space of the proposed architecture is explored for appropriate selec-
tion of correction-factor β, used in (2.6), quantization bits for LLRMem (QL),
quantization bits for CheckNodeUnits (QC), and the maximum number of itera-
tions Imax. The simulation corresponding to different values of QL, QC , and Imax

are shown in Fig. 4.1-Fig. 4.4. The simulation plot with QL = 6 and QC = 5
is shown in Fig. 4.1, which shows a saturation of decoding curves at high SNR
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values, and therefore QL = 7 is selected for the proposed architecture. By com-
paring Fig. 4.3 and Fig. 4.4, it is evident that the loss in decoding performance
is not significant in changing Imax = 5 to Imax = 2, compared to a throughput
increase which could be achieved using Imax = 2, and therefore Imax = 2 is chosen
for the proposed architecture. QL = 7, QC = 5, β = 1, and Imax = 2, are finalized
for the proposed architecture.
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Figure 4.1: Fixed-point decoding performance of proposed FCMP architecture
for IEEE 802.11ad (WiGig), with QL = 6, QC = 5, and Imax = 2. Solid and
dotted lines represent BERs and FERs, respectively.

4.2 Pipelining

Pipelining the architecture of an LDPC decoder significantly affects the conver-
gence speed, area, and throughput of the decoder. A single-frame based pipelining
alters the decoding schedule by delaying the messages updates, and consequently,
slows down the decoding convergence. Therefore, a double-frame based pipelined
architecture, with a pipeline depth of 2 , is proposed and implemented in this
paper. To properly balance the two pipeline stages of the data-path, the pipeline
registers are introduced deep in the CNUs, shown in Fig. 4.6
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Figure 4.2: Fixed-point decoding performance of proposed FCMP architecture
for IEEE 802.11ad (WiGig), with QL = 8, QC = 5, and Imax = 2. Solid and
dotted lines represent BERs and FERs, respectively.

4.3 Check Node Unit (CNU)

The CNU of the proposed architecture is pipelined to balance the two pipeline
stages of the proposed decoder architecture, and its block diagram is shown in
Fig. 4.6. The pipelining enables the idle-cycle-free processing of two-frames si-
multaneously. For IEEE 802.11 ad (WiGig), the maximum-degree of a check
node is 16 , so the number of inputs of each CNU is also 16 . Each block of the
CheckNodeUnits uses 42 such CNUs while 4 such blocks are used in the proposed
architecture, as is evident from Fig. 4.5.

4.4 Check-Node Memory

The Check-Node (CN) Memory in the proposed architecture is a multi-port mem-
ory, and its block diagram is shown in Fig. 4.7. The memory saves the magnitudes
of first and second minima, as well as the signs and indices of the check-node mes-
sages required to regenerate the check-node outputs using (2.6). WritingCircuitry
in Fig. 4.7 enables the memory locations for writing while ReadingCircuitry is a
network of multiplexers which selects and generates the required check-node out-
puts. The number of the input and the output lines of the memory are shown
as 4 to emphasize the fact that the memory saves and generates messages for
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Figure 4.3: Fixed-point decoding performance of proposed FCMP architecture
for IEEE 802.11ad (WiGig), with QL = 7, QC = 5, and Imax = 5. Solid and
dotted lines represent BERs and FERs, respectively.

4 blocks of CNUs, in a single clock cycle. Each of the input lines further consists
of wires for minima, signs, indices, and addresses of the check-node messages.

4.5 Decoding Performance

The fixed-point decoding performance of the proposed FCMP-architecture, tar-
geted for IEEE 802.11ad (WiGig), is plotted in Fig. 4.4. Design parameters,
QL = 7, QC = 5, β = 1, and Imax = 2 are determined during the design
exploration phase. By considering Fig. 4.4, it is evident that the proposed ar-
chitecture converges to a BER value of 10−6 at Eb/N0 = 3.3, 3.6, 4.0, and 4.8,
for rate = 1/2, 5/8, 3/4, and 13/16, respectively. The architecture presented in
[39], for example, achieves a BER value of 10−6 at Eb/N0 = 4.6, 4.6, 5.0, and 5.4,
for rate = 1/2, 5/8, 3/4, and 13/16, respectively, while operating at 202 MHz
and using Imax = 10. The proposed architecture thus achieves a better decoding
performance and higher energy efficiency than [39] by implementing the proposed
FCMP schedule.
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Figure 4.4: Fixed-point decoding performance of the synthesized FCMP archi-
tecture for IEEE 802.11ad (WiGig), with QL = 7, QC = 5, Imax = 2. Solid and
dotted lines represent BERs and FERs, respectively.

4.6 VLSI Synthesis Results

The proposed hardware architecture of the FCMP schedule for IEEE 802.11 ad
LDPC codes, shown in Fig. 4.5, is synthesized, using the TSMC 40 nm CMOS
process, for a clock speed of 200 MHz. The achieved throughput θ is calculated
as:

θ =
FL ×NF

Imax × C
× fclk. (4.1)

Here, FL is the frame-length, NF is the number of frames, Imax is the maximum
number of iterations, C is the number of cycles to complete one decoding iteration,
and fclk is the clock frequency. For the proposed architecture, FL = 672, NF =
2, Imax = 2, C = 16, and fclk = 200 MHz which gives us a throughput of 8.4 Gpbs.
The latency η of the proposed architecture is calculated as:

η =
Imax × C
fclk

. (4.2)

By using the same values as in (4.1), the latency η of the decoder turns out
to be 0.16µs. For the proposed architecture, it is possible to shorten the critical
path even further, and thus a higher throughput can be achieved by increasing
the clock speed. However, most of the industry-grade communication/networking
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Figure 4.5: A two-frames based block diagram of an FCMP decoder architecture
for IEEE 802.11ad LDPC codes.

Figure 4.6: Block diagram of a single pipelined Check Node Unit
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Figure 4.7: Block diagram of Check-Node (CN) Memory
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system-on-chips (SoC) operate in a clock speed range of 200−300 MHz, to be
able to close the timing across all the process, voltage, and temperature (PVT)
corners of the modern CMOS processes [40]. Therefore, a realistic clock speed
of an LDPC decoder should be constrained around 200 MHz, to support the
SoC integration capability of the intellectual property (IP) core with other signal
processing blocks of the digital baseband [39].

Table 4.1: Synthesis Results of FCMP Decoder

Clock Freq. (MHz) 200
Supply Voltage (V) 1.1
Throughput (Gbps) 8.4
Design Area (mm2) 1.44
Latency (µs) 0.16
Gate Count (K) 2880
Power (mW)* 60
* Power is estimated at BER = 10−6, which cor-

responds to single iteration for all code rates.

The switching activity for the power estimation

is generated by applying test-vectors of each

code rate to the synthesized netlist.

4.7 Comparison with State-of-the-Art

A comparison of VLSI synthesis results of the proposed architecture with state-
of-the-art is summarized in Table 4.2. The comparison reveals that the proposed
architecture attains minimal power consumption while achieving a throughput
that is comparable with other architectures. This minimal power consumption,
while maintaining a comparable throughput, proves that the proposed FCMP
schedule and its architecture are very attractive from an energy-efficiency per-
spective (the proposed architecture attains an efficiency of 8.6 pJ/bit, which is
the best reported in the literature). For the proposed architecture, the clock-
speed of the decoder could further be reduced to save additional power, as the
achieved throughput of the decoder, 8.4 Gpbs, is still higher than the throughput
requirement of IEEE 802.11ad standard, which is up to 7.0 Gpbs. The area of the
proposed architecture is larger than some of the other designs, which is a direct
consequence of replicating the processing units and decoding the two frames si-
multaneously; however, the additional area does not result in an increased power
consumption. In fact, it indirectly causes a reduction in the overall power con-
sumption by enabling the implementation of the FCMP schedule, which cuts the
number of the iterations required for the convergence.
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Table 4.2: Comparison of Proposed Decoder with State-of-the-Art

This work [26] [41] [42] [39] [43] [44]

Technology (nm) 40 65 65 40 28 28 (FD-SOI) 40
Quant. Bits 7/5 5 5 5 5 5 5

Clock Freq. (MHz) 200 150 360 220 202 260 720
Thr. (Gpbs) 8.4 3.08 6 6.2 6.78 12 11.8
Latency (µs) 0.16 - 0.224 0.109 0.79 0.112 -
Area (mm2) 1.44 1.6* 1.6 0.8 1.99 0.63 0.2

S. Thr. (Gpbs) 8.4 4.9 a 9.6 a 6.2 4.75 b ** 11.8
S. Area (mm2) 1.7 * 0.6 c 0.6 c 0.8 3.98 d ** 0.2
Power (mW) 72 * 100* 373.6 203 279 180 182

A. Eff. (Gbps/mm2) 4.9 8.1 16 7.75 1.2 - 60
E. Eff. (pJ/bit) 8.6 32.47 62.27 32.95 41.15 15 15.42

a Throughput is scaled by 1.6 to account for the 65nm technology.
b Throughput is scaled by 0.7 to account for the 28nm technology.
c Area is scaled by 0.38 to account for the 65nm technology.
d Area is scaled by 2.0 to account for the 28nm technology.
* Area and power are scaled by 1.2 for the synthesis results.
** Area and throughput are not scaled because of the used FD-SOI technology.

36



Chapter 5

Proposed VLSI Optimizations

This chapter presents circuit level optimization techniques for high-throughput
and energy-efficient VLSI implementation of LDPC decoders by targeting an
IEEE 802.11n/ac/ax decoder. These techniques are then employed to design
two variants of a fully-pipelined IEEE 802.11n/ac/ax standard-compliant LDPC
decoder. The optimization techniques include efficient barrel shifter and memory
organization, usage of multiplexers at I/Os of LLR memory, a bitwise comparator
design, and selection of proper quantization bits. The first two techniques could
be applied to QC-LDPC decoders as per the structure of their base matrix, while
the rest are applicable for the general class of LDPC decoders.

5.1 Barrel Shifters and Memory Organization

Message rotation is required in decoding QC-LDPC codes to align variable-node
messages that are passed to check-nodes, and vice versa, and is carried out by
BarrelShifters and Rev.BarrelShifters, shown in Fig. 2.4. Designing BarrelShifters
and Rev.BarrelShifters, for the largest Z, defined for a particular QC-LDPC code
increases the area significantly, since this unnecessarily inflates all BarrelShifters
and Rev.BarrelShifters, which are 48 for IEEE 802.11 n/ac LDPC codes, and re-
duce to 44 , after using the multiplexers, proposed in Section 5.2. To avoid this
simplistic approach, processing the longer frames in multiple cycles is an ade-
quate compromise as it does not affect the performance of the decoder other
than restricting its throughput, for longer frames, equal to the throughput of the
smallest frame.

To this end, proper organization of messages in LLRMemory and its connec-
tions with the barrel shifter are necessary (see Fig. 5.1). In Fig. 5.1(A), ZL,
ZM , and ZS are the sizes of the largest, medium, and smallest frames, where
ZM = 2 × ZS and ZL = 3 × ZS, which is the case for IEEE 802.11 n/ac LDPC
codes. In Fig. 5.1(B), mc and ms are the modified cycles and modified shift val-
ues, respectively; they are generated by using the actual cycle number and actual
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Figure 5.1: (A) Messages organization in LLRMemory. (B) Rotating a frame of
length ZL with a barrel shifter, capable of rotating only frame of length ZS.

shift values, respectively. The generation of mc and ms is explained as follows.

Let ct be the total number of cycles required to process a frame, which is
3 for ZL, 2 for ZM , and 1 for ZS, for the case of IEEE 802.11 n/ac LDPC
codes. Suppose that the actual required shift value is shamt, which is divided
by ct and the resultant quotient and remainder be q and r, i.e., q = shamt/ct
and r = shamt mod ct. If cn is the natural order of cycles, then mc and ms are
generated by the following rules:

mc = (cn + r) mod ct, cn = 0, 1, · · · , ct − 1, (5.1)

ms=

q+1 if ct = 3; r = 2;mc = 0 or 1

q+1 if ct = 2; r = 1;mc = 0

q otherwise.

(5.2)

For example, to rotate a frame of length ZL = 9 by 5 in ct = 3 cycles with a
barrel shifter of size ZS = 3, we have q = 1 and r = 2. Using (5.1) and (5.2),
the mc and ms values are determined to be 2, 0, 1 and 2, 2, 1, respectively, by
using cn = 0, 1, 2 as the natural order of cycles. The inputs of the barrel shifter,
shown in Fig. 5.1, and the corresponding outputs, along with the determined
values of mc and ms are shown in Fig. 5.2. Inputs to the barrel shifter are read
by following the cycle order of mc, while the outputs are written in the natural
order, as shown by the rows of the matrix of Fig. 5.2. In Fig. 5.2, the messages
shown in memory are for illustration purposes only, since an immediate write
operation is not required in the decoder because the barrel shifter outputs are
directly forwarded for further processing.
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Figure 5.2: Rotating a frame of length ZL = 9 by 5, using a barrel shifter of size
ZS = 3, in three cycles.

5.2 Multiplexers for Reduced Number of Inputs

The memory locations of LLRMemory of the decoder correspond to the columns
of the base-matrix of QC-LDPC code. To read messages from LLRMemory usage
of small multiplexers is proposed to reduce the number of output lines to the rest
of the modules to “maximum-row-degree”, instead of the number of columns of
the base-matrix. For the IEEE 802.11n/ac/ax case, the maximum row-degree
is 22 while the number of columns is 24 , so the multiplexers are used to select
the 22 messages from 24 memory locations. From Fig. 2.3, it could be observed
that the messages corresponding to the first 12 columns can be directly passed
from memory, while the messages corresponding to the rest of the 12 columns be
passed via multiplexers on 10 output lines, as shown in Fig. 5.3. This reduces the
required number of adders, subtractors, and BarrelShifters/Rev.BarrelShifters of
Fig. 2.4, from 24 to 22 , as well as simplifies the CNUs to process 22 inputs rather
than 24 . Select-lines of the multiplexers are given different names, m0,m1,m2,m3,
and are asserted/de-asserted, based on the connections which are derived from
the base-matrix.

5.3 Proposed Comparator Design

A novel comparator is proposed to implement the comparison operation, required
for the minima determination, in an efficient way to avoid the multiplexers chain
on the critical path. The proposed approach is based on determining the first
minima by a bitwise comparison of the inputs. The second minimum is then
determined by re-utilizing the bitwise comparator circuit again. For this, the
first minimum is excluded from the inputs, and then the rest of the of the inputs
are applied to the comparator circuit again. The exclusion operation is carried
out by x-nor operations of the first minimum with all of the inputs, which replaces
the first minimum with all ones, the maximum value. The comparator circuit
determines the second minimum among the applied inputs, after the exclusion
of the first minimum. Follows are the boolean expressions and circuit details to
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determine the minimum.
The proposed comparator is based on the individual bit-comparison of the

inputs starting from MSB and going down to the LSB. Let A, B, C, and D be the
numbers, to be compared for determination of the minimum and anan−1....a1a0,
bnbn−1....b1b0, cncn−1....c1c0 and, dndn−1....d1d0 be their corresponding bits. The
minimum M1, with the corresponding bits mnmn−1....m1m0, is determined by the
following set of boolean expressions:

mn = anbncndn

mn−1 = (m̄nan + an−1)(m̄nbn + bn−1)

(m̄ncn + cn−1)(m̄ndn + dn−1)

.

.

.

m1 = (m̄nan + ¯mn−1an−1 + ..+ m̄2a2 + a1)

(m̄nbn + ¯mn−1bn−1 + ..+ m̄2b2 + b1)

(m̄ncn + ¯mn−1cn−1 + ..+ m̄2c2 + c1)

(m̄ndn + ¯mn−1dn−1 + ..+ m̄2d2 + d1)

m0 = (m̄nan + ¯mn−1an−1 + ..+ m̄1a1 + a0)

(m̄nbn + ¯mn−1bn−1 + ..+ m̄1b1 + b0)

(m̄ncn + ¯mn−1cn−1 + ..+ m̄1c1 + c0)

(m̄ndn + ¯mn−1dn−1 + ..+ m̄1d1 + d0)

(5.3)

The circuit diagram corresponding to (5.3) is shown in Fig. 5.4.

5.4 Quantization and Unsaturated Subtractors

By considering (2.1), it is evident that the multiplication of received soft symbol
values, rv by 2 , doubles the dynamic range of input LLR values and therefore
following modified initialization is proposed to be used instead of (2.1):

P (0)
vc =

rv
σ2
, ∀v ∈ G. (5.4)

The modification allows us to reduce the bit-width for CheckNodeUnits, CNMem,
and the associated circuitry to 4 instead of 5 , as is normally used in existing
architectures. Quantization-bits for LLRMem, QL = 7, are chosen to allow the
ample growth of the LLR values, at high SNR. Unsaturated subtractors, equal
to the maximum row-degree of 22 , are used, after the CNUs, to avoid the costly
operations of comparison and clipping.
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5.5 Design Space Exploration

The design space of an RMP based architecture is explored for appropriate se-
lection of correction-factor β, used in (2.6), quantization bits for LLRMem (QL),
and quantization bits for CheckNodeUnits (QC). The simulations corresponding
to different values of QL, QC , and β are shown in Fig. 5.6-Fig. 5.7. Bit Error
Rate (BER) curves and corresponding iterations count of the implemented QC-
LDPC decoder for IEEE 802.11n/ac/ax are shown in Fig. 5.7 and Fig. 5.8. Max.
number of iterations, Imax = 8 are used, and QL = 7, QC = 4, and β = 1 are
finalized for the implemented design.
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Figure 5.5: Fixed-point BER performance of the proposed decoder for FL = 648,
with QL = 6, QC = 5, and β = 1.

5.6 Pipelining

The convergence speed of single-frame based pipelined decoder becomes slower
because the new check node messages get delayed at variable nodes. This delay
is directly related to the pipeline depth of the decoder. To evaluate the loss
in convergence speed as a function of the pipeline depth floating-point pipelined
implementations of IEEE 802.11n/ac/ax LDPC codes, block length 648, rate 1/2,
are simulated and compared against a non-pipelined (standard RMP) version.
As shown in Figs. 5.9 and 5.10, the design is simulated for up to three pipeline
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Figure 5.6: Fixed-point BER performance of the proposed decoder for FL = 648,
with QL = 7, QC = 4, and β = 0.

stages. The figures show that a pipeline depth of three is an adequate compromise
between the convergence speed and pipeline depth of the proposed architecture.

5.7 VLSI Synthesis

The decoder for IEEE 802.11na/ac/ax QC-LDPC codes, implementing the pro-
posed optimizations, is synthesized, using the TSMC 40 nm CMOS process. The
critical path delay of the decoder is 1.78 ns. This enables us to operate the de-
coder at a clock frequency, fclk = 562 MHz. The peak throughput θ is calculated
as:

θ =
FL ×NF

Imax ×R
× fclk, (5.5)

Where FL is frame length, NF is the number of frames, and R is the num-
ber of rows of the base-matrix of QC-LDPC code. For the proposed decoder,
FL = 648, NF = 1, Imax = 8, fclk = 562 MHz. The number of rows of the
base-matrix are 12, 8, 6, 4 corresponding to code rates of 1/2, 2/3, 3/4, 5/6. This
gives the throughput of 3.8, 5.7, 7.6, 11.4 Gpbs corresponding to code rates of
1/2, 2/3, 3/4, 5/6, respectively. The longer frames, FL = 1296 and FL = 1944,
have the same throughput since they are processed in two and three cycles,
respectively. The estimated power-consumption of the synthesized decoder is
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Figure 5.7: BER performance of the synthesized decoder for FL = 648 and
FL = 1944, with corresponding code rates.
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Figure 5.11: Estimated power-consumption of the synthesized decoder for code
rates and frame lengths of WiFi LDPC codes*.
* The power is estimated at BER = 10−5, corresponding to iterations count values shown in
Fig. 5.8. The switching activity for the power estimation is generated by applying test-vectors

of each code-rate to the synthesized netlist.

shown in Fig. 5.11. The higher code-rates require a lower number of cycles to
complete a decoding iteration, and consequently, their power consumption is re-
duced. Table 5.7 compares the key parameters of the proposed decoder with
the state-of-the-art decoders. It is evident from the comparison that the imple-
mented decoder achieves the highest throughput/area efficiency while consuming
the least energy/bit, compared with the state-of-the-art decoders.

5.8 Multi-Core Extension

By considering the above synthesis results of the WiFi decoder, it is evident that
more than fifty percent area of the decoder is taken by the memory modules of
the decoder, as shown in Table 5.2. The memory modules, however, are designed
to store the messages as per the largest frame length of a QC-LDPC code. This
points toward an opportunity that the processing blocks of the decoder could be
increased without a linear increase of the area-footprint of the overall decoder.
The throughput of the decoder, therefore, could significantly be increased by
replicating the processing elements of the decoder to process the largest frame of
an IEEE 802.11n/ac/ax LDPC codes, which is 1944 , in contrast to the single-core
(SC) design, which process the smallest frame of the IEEE 802.11n/ac/ax LDPC
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Table 5.1: Comparison of Proposed Decoder with State-of-the-Art

This work [45] [23] [46] [47]

Technology 40 nm 90 nm 90 nm 90 nm 45 nm
Quant. Bits 4,7 4 5,6 8 6

Clock Freq. (MHz) 562 555 336 250 815
Throughput (Gpbs) 3.8− 11.4 4.5 1.71-5.1 0.67 0.38-3.0

Area (mm2) 0.71 4.9 5.2 3.67 0.81
Power (mW) 50− 119 523 450 171 -

S. Through. (Gpbs) 3.8− 11.4 10.1 a 3.8-11.4 a 1.5 a 0.43-3.36 b

S. Area (mm2) 0.85 * 0.98 c 1.0 c 0.72 c 0.64 d

S. Power (mW) 60− 142 * 209 e 180 e 68 e -
S.Through.

S.Area
(
Gbps

mm2
) 4.5− 13.4 10.3 3.8-11.4 2.1 0.67-5.25

En.Eff . =
S.Power

S.Through.
(
pJ

bit
) 12.5 20.7 15.8 45 -

a Throughput is scaled by 2.25 to account for the 90nm technology.
b Throughput is scaled by 1.12 to account for the 45nm technology.
c Area is scaled by 0.2 to account for the 90nm technology.
d Area is scaled by 0.8 to account for the 45nm technology.
e Power is scaled by 0.4 to account for the 90nm technology.
* Area and power are scaled by 1.2 to account for the synthesis results.
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Table 5.2: Area comparison of modules of WiFi decoder

Absolute Area Percentage Area

LLR Mem 0.14mm2 20
CN Mem 0.27mm2 37

Process. Elements 0.3mm2 43
Total 0.71mm2 100

codes. The replication does not cause a proportional increase in the decoder area.
This, however, raises an issue of under-utilization of the processing elements for
smaller frame lengths of the LDPC codes.

Based on the above observation, this work proposes the replication of the pro-
cessing elements of the decoder to process the largest frame length of the LDPC
codes in a single cycle, and introduces frame-reconfigurability option for the pro-
cessing elements, so that multiple smaller frames could be processed, in parallel,
to address the issue of under utilization. This work, therefore, implements a
multi-core (MC) decoder architecture which replicates the processing elements
of the decoder by 3 , and makes them reconfigurable, so that multiple smaller
frames could be processed, in parallel, when the largest frame is not processed.
Since the architecture is design for the frame length of 1944 , so after adding the
reconfigurability option, three smallest frames of length 648 , or a single frame of
length 1296 along with a frame of length 648 , could be processed in parallel.

Figure 5.12: The decoder core occupies an area of 1.4 × 1.4 = 1.96mm2. The
total die size is 1.82× 1.82 = 3.3mm2.
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Table 5.3: Comparison of Proposed Decoder with State-of-the-Art

MC SC [45] [23] [46] [47]

Technology 40 nm 40 nm 90 nm 90 nm 90 nm 45 nm
Clk Freq. (MHz) 250 562 555 336 250 815
Through. (Gpbs) 5.1− 15.2 3.8− 11.4 4.5 1.71-5.1 0.67 3.0

Area (mm2) 1.96 0.71 4.9 5.2 3.67 0.81
Power (mW) 75 119 523 450 171 -

S. Thr. (Gpbs) 5.1− 15.2 3.8− 11.4 10.1 a 3.8-11.4 a 1.5 a 3.36 b

S. Area (mm2) 1.96 0.85 * 0.98 c 1.0 c 0.72 c 0.64 d

S. Power (mW) 75 142 * 209 e 180 e 68 e -
En.Eff .(pJ/bit) 5 12.5 20.7 15.8 45 -

a Throughput is scaled by 2.25 to account for the 90nm technology.
b Throughput is scaled by 1.12 to account for the 45nm technology.
c Area is scaled by 0.2 to account for the 90nm technology.
d Area is scaled by 0.8 to account for the 45nm technology.
e Power is scaled by 0.4 to account for the 90nm technology.
* Area and power are scaled by 1.2 to account for the synthesis results.

5.9 VLSI Implementation Results

The MC decoder for IEEE 802.11na/ac/ax QC-LDPC codes, implementing the
proposed replication of processing elements, is synthesized, and placed and routed,
using the TSMC 40 nm CMOS process. The chip-layout of the implemented de-
coder is shown in Fig. 5.12. To further reduce the power consumption than the
SC design, the clock frequency of this design is lowered down to fclk = 250 MHz,
compared to fclk = 562 MHz of the SC decoder. The peak throughput θ is calcu-
lated, using (5.5), as:

θ =
1944

8×R
× 250, (5.6)

This gives the throughput of 5.1, 7.6, 10.1, 15.2 Gpbs corresponding to code rates
of 1/2, 2/3, 3/4, 5/6, respectively. Table 5.9 compares the key parameters of the
proposed architecture with the state-of-the-art decoders. It is evident from the
comparison that the implemented decoder achieves the highest reported through-
put while consuming the least energy/bit, compared with the state-of-the-art
IEEE 802.11na/ac/ax LDPC decoders.
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Chapter 6

Conclusions

This work proposed an implemented the algorithm, architecture, and circuit co-
design approach for the development of optimized ASIC accelerator chips for
LDPC decoders. Algorithmically, fast-converging LDPC decoding schedule that
converges in a reduced number of iterations, compared to existing serial decod-
ing schedules, have been presented and investigated. It has been verified that
the proposed schedules achieves fast-decoding performance with reduced compu-
tational complexity or consumes lower power to achieve a specific throughput,
compared with other schedules in the literature.

The advantages of the proposed schedules have been demonstrated through
convergence analysis, throughput analysis, complexity analysis, and BER and
FER comparisons using empirical simulations of random, IEEE 802.11ad (WiGig),
IEEE 802.11n/ac (WiFi), and IEEE 802.16e (WiMAX) LDPC codes. It has also
been shown through complexity analysis that the added cost of the proposed
schedules is more addition operations at variable nodes and XOR operations at
check nodes, compared to existing serial decoding schedules. An FCMP-based
decoder architecture targeting IEEE 802.11ad (WiGig) LDPC codes has also been
proposed. The architecture is pipelined and optimized for the processing of two
frames simultaneously. VLSI synthesis results using the TSMC 40 nm CMOS have
revealed that the synthesized decoder achieves an energy efficiency of 8.6 pJ/bit
while operating at 8.4 Gbps, which is the best-reported energy-efficiency of a
WiGig LDPC decoder.

Optimization techniques are then presented for efficient VLSI implementa-
tion of high-throughput IEEE 802.11n/ac/ax LDPC. These optimizations tar-
get decoder area and power reduction while still maintaining Gbps process-
ing throughput. The proposed optimizations are applied to design two vari-
ants of a fully-pipelined IEEE 802.11n/ac/ax LDPC decoder. The two vari-
ants are; single-core design and multi-core design. Both the designs are syn-
thesized using 40 nm CMOS technology. The single-core decoder attains a
peak throughput of 11.4 Gbps while occupying an area of 0.71 mm2. This de-
coder achieves a troughput/area efficiency of 13.4 Gbps/mm2 while consuming

51



12.5 pJ/bit of energy, and thus surpasses the best-reported corresponding effi-
ciencies of 11.4 Gbps/mm2 and 15.8 pJ/bit, respectively, for IEEE 802.11n/ac/ax
LDPC decoders. The multi-core design replicates the processing elements in
comparison with the single-core decoder, and achieves a peak throughput of
15.2 Gbps while operating at clock-frequency of 250 MHz. The achieved through-
put and the corresponding energy-efficiency of 5 pJ/bit are the best reported in
the literature for an IEEE 802.11n/ac/ax LDPC decoder.
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Appendix A

Abbreviations

ASIC Application Specific Integrated Circuit
CMOS Column Message Passing
CMP Column Message Passing
CNU Check Node Unit
D-SVNF Dynamic Silent Variable Node Free
EXIT Extrinsic Information Transfer
FCMP Fast Column Message Passing
ICRMP Interlaced Column Row Message Passing
IFS Informed Fixed Scheduling
IDS Informed Dynamic Scheduling
LDPC Low Density Parity Check
LLR Log Likelihood Ratio
MC Multi Core
NWRBP Node-wise RBP
QC-LDPC Quasi Cyclic LDPC
RBP Residual Belief Propagation
RMP Row Message Passing
SC Single Core
SVNF Silent Variable Node Free
SMP Standard Message Passing
SPCM Sparse Parity Check Matrix
TSDS Tabu Search Based Dynamic Scheduling
TSMC Taiwan Semiconductor Manufacturing Company
VLSI Very Large Scale Integeration
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