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An Abstract of the Thesis of

Lara Bachir Zebiane for Master of Science

Major: Mathematics

Title: Non-Vanishing of Hecke L-Functions of Cusp Forms of Integer and Half-Integer Weight

We show a non-vanishing result for L-functions of cuspidal Hecke eigen-

forms of integer weight in the full modular group and of half integer weight

in the plus space. In chapter 1, we review definitions of modular forms of

integer weight, their Hecke operators and their corresponding L-functions.

In chapter 2, we introduce modular forms of half integer weight and some

related properties. In chapter 3, will show that the average of the normalized

L-functions L∗(f, s) with f a cusp form of weight k in SL2(Z), running over a

basis of Hecke eigenforms, does not vanish inside the critical strip. A similar

result will be presented in chapter 4 for cusp forms of half-integer weight in

the plus space.
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Chapter 1

Introduction

In this chapter, we define modular forms of integer weight on the full group

along with Hecke operators and the associated L-functions. We continue

to discuss modular forms on subgroups of finite index in the full modular

groups.

1.1 Basic Definitions

Let H be the upper half plane defined by H = {z ∈ C, Imz > 0}.

We define the full modular group

SL2(Z) =


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1


1



This group is generated by S =

0 −1

1 0

and T =

1 1

0 1

.

Proof. Consider the matrix A =

a b

c d

 ∈ SL2(Z). Without loss of gener-

ality, suppose c ≥ 0 and consider two cases. The first case is when c = 0.

We have ad − bc = 0 so ad = 1 i.e. a = d = ±1, so that A =

1 n

0 1

 or

A =

−1 n

0 −1

. Both matrices are similar to T±n. The claim is proved for

c = 0.

Now for c > 0, let c = 1 first; so that A =

a ad− 1

1 d

 = T aST d. Assume

the claim is true for all A where the lower left-hand element of A is less than

c. Note that d = cl + r where 0 <≤ r < c since gcd(c, d) = 1 (ad− bc = 1):

Then AT−lS =

a b

c d


1 −l

0 1


0 −1

1 0

 =

−al + b −a

r −c


Using the induction hypothesis, the last matrix in generated by S and T

(because r < c). We get

AT−lS = T n1S...ST nk

so that

A = T n1S...ST nkST l

2



Now, we define an action of SL2(Z) into C by:

γ.z :=
az + b

cz + d
γ =

a b

c d

 ∈ SL2(Z).

Note that, for =(z) representing the imaginary part of z, we have:

=(γz) =
=(z)

|cz + d|2
(1.1)

In particular, the action of SL2(Z) preserves H.

Definition 1.1.1. Let G be a group. A fundamental domain R of H is an

open set that satisfies:

1. No two distinct points in R are equivalent under G.

2. If z ∈ H, then there exists γ ∈ G such that γz ∈ R̄.

Proposition 1.1.1. The fundamental domain of SL2(Z) is given by:

R = {z ∈ H : −1

2
< Re(z) <

1

2
and|z| > 1}

Proof. Let z ∈ H. Im(γz) = Imz
|cz+d|2 with γ = ( a bc d ) ∈ SL2(Z). To prove

the first condition, suppose that z ∈ R and that there exists z′ ∈ R such

that z′ = γz so Imz′ = Imz
|cz+d|2 . For c 6= 0, |cz + d|2 = (cz + d)(cz̄ + d) =

3



c2zz̄ + cd(z + z̄) + d2 > c2 − |cd|+ d2. If d = 0, |cz + d|2 > c2 ≥ 1. If d 6= 0,

|cz + d|2 > (|c| − |d|)2 + |cd| ≥ |cd| ≥ 1. Therefore, Imz′ < Imz for c 6= 0.

However, by the samme argument in reverse, z = γ−1z′, so Imz < Imz′. We

get a contradiction. We deduce that c = 0. To satisfy detγ = 1, we should

have a = d = ±1, so that γ = T±b but then b = 0. Therefore, γ = ±I.

Now for the second condition, given z, there are finitely many c, d such that

|cz + d| < 1. This implies that there exists some γ = ( a bc d ) ∈ SL2(Z)

such that |cz + d| ≤ |c′z + d′| for all γ′ = ( a
′ b′

c′ d′ ) ∈ SL2(Z) or equivalently

Im(γz) ≥ Im(γ′z). Now we can translate γz i.e. multiplying from the left

by a power of T for a specific γ so that −1/2 ≤ Re(γz) ≤ 1/2. We have,

by the choice of γ, I(γz) ≥ Im(Sγz) = Im(γz)
|γz|2 so that |γz| ≥ 1, and hence

γz ∈ R.

1.2 Modular Forms of Integer weights

Definition 1.2.1. Let k ∈ Z. A modular form of weight k for Γ = SL2(Z)

is a holomorphic function f : H→ C that satisfies:

1. f(γz) = (cz + d)kf(z) for γ = ( a bc d ) ∈ SL2(Z)

2. f is holomorphic at ∞ (or f(z) =
∑∞

n=0 c(n)e2πinz).

4



Note that for γ = −I,

f(z) = f(−Iz) = (−1)kf(z).

Therefore, one can easily show that nonzero modular forms are of even integer

weight.

Definition 1.2.2. We define Mk to be the complex vector space of modular

forms of weight k.

Definition 1.2.3. If f(z) =
∑∞

n=0 c(n)e2πinz ∈Mk, f vanishes at infinity i.e.

c(0) = 0, then f(z) is called a cusp-form of weight k. We denote the space

of such functions by Sk.

Theorem 1.2.1. The spaces Mk and Sk are of finite dimension for all k,

and we have:

dimMk = dimSk + 1

and

dimMk =


b k

12
c k ≡ 2 mod 12

b k
12
c+ 1 k 6≡ 2mod 12

Proof. To prove the first equality, consider the following exact sequence:

0→ Sk
α→Mk

β→ C→ 0

5



where α is the inclusion map and β(f) = c(0) for f =
∑∞

n=0 c(n)e2πinz ∈Mk.

We have kerβ = Sk = Imα. Therefore,

Mk = Sk ⊕ CEk

where Ek is the normalized Eisenstein series(cf. next section).

Then

dimMk = dimSk + 1

Now for the second equality, we will prove it by induction. Note that

Iwaniec[1] studied the case for k ∈ {0, 2, 4, 6, 8, 10}.

Suppose

dimMk−1 =


bk−1

12
c k − 1 ≡ 2 mod 12

bk−1
12
c+ 1 k − 1 6≡ 2mod12

If k ≡ 2 mod 12, then k−12 ≡ 2 mod 12⇒ dimMk−12 = bk−12
12
c = b k

12
c−1⇒

dimMk = dimMk−12 + 1 = b k
12
c

If k 6≡ 2mod 12, then k − 12 6≡ 2mod 12 ⇒ dimMk = dimMk−12 + 1 =

b k
12
c+ 1.

Note that Proposition 1.3.1 will give an additional result concerning di-

mensions.

6



1.3 Examples of Modular Forms of Integer

Weight

1.3.1 Eisenstein Series

Let k be an even integer, k ≥ 4. We define the Eisenstein Series of weight k,

by Gk : H −→ C:

Gk(z) =
∑

(m,n)∈Z2

(m,n)6=(0,0)

1

(mz + n)k

It converges absolutely and uniformly on subsets of H of the form Rr,s =

{x + iy, |x| ≤ r, y ≥ s}, therefore Gk defines a holomorphic function. Also,

for γ = ( a bc d ) ∈ SL2(Z)

Gk(γz) =
∑

(m,n)∈Z2

(m,n)6=(0,0)

1

(m
(
az+b
cz+d

)
+ n)k

= (cz + d)k
∑

(m,n)∈Z2

(m,n)6=(0,0)

1

(m(az + b) + n(cz + d))k

= (cz + d)k
∑

(m,n)∈Z2

(m,n)6=(0,0)

1

((ma+ nc)z +mb+ nd)k

= (cz + d)k
∑

(m′,n′)∈Z2

(m′,n′)6=(0,0)

1

(m′z + n′)k

7



where m′ = ma + nc and n′ = mb + nd. As (m,n) runs through all pairs in

Z \ {(0, 0)} so does (m′, n′).

And finally, one can show that the Fourier expansion of Gk is as follows:

Gk(z) = 2ζ(k) + 2
(2πk)k

(k − 1)!

∞∑
t=1

σk−1(t)e2πitz

where ζ(k) is the Riemann-Zeta function and σk−1(t) is the divisor sum func-

tion. cf.[2]

Now we can say that for k ≥ 4, Gk is a modular form of weight k.

Definition 1.3.1. The normalized Eisenstein series of even weight k ≥ 4

is given by

Ek(z) =
(k − 1)!

2.(2πi)k
Gk(z)

1.3.2 The Modular Discriminant ∆

We define the function

∆ =
E3

4 − E2
6

1728
.

This function is a modular form of weight 12. Also, one can prove that ∆ is

a cusp form. cf.[2].

Proposition 1.3.1.

dimMk = dimSk+12

8



Proof. We consider the map φ : Mk → Sk+12 mapping f to ∆f . This homo-

morphism is actually an isomorphism between Mk and Sk+12: let g ∈ Sk+12

and take h = g
∆

. We claim that h ∈Mk, because ∆ has no zeros in H so h is

holomorphic on H, and it is also holomorphic at ∞ cf.[2], and one can show

that f(γz) = (cz + d)kf(z) for γ ∈ SL2(Z). Now since φ(h(z)) = g, we can

say that φ is surjective. Now it is also clear that φ is injective by proving

ker(φ) = {0}. Therefore, φ is an isomorphism, and dimMk = dimSk+12.

1.4 Hecke Operators On SL2(Z)

We define

∆n =


a b

0 d

 , ad = n, 0 ≤ b < d

 .

It is a complete set of coset representatives of SL2(Z) in GL2(Z),

i.e. GL2(Z) =
⋃
δ∈∆n

SL2(Z)δ.

Definition 1.4.1. For a fixed integer k and function f ∈ Mk(SL2(Z)), we

define the Hecke operator on f to be:

Tnf =
∑

δ=( a b
c d

)∈∆n

f |kδ = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)

9



In particular, if p is prime

Tpf = pk−1f(pz) +
1

p

p−1∑
b=0

f

(
az + b

p

)
Theorem 1.4.1. Suppose f has the Fourier expansion at ∞

f(z) =
∞∑
m=0

c(m)e2πimz

then

Tnf(z) =
∞∑
m=0

γn(m)e2πimz

with

γn(m) =
∑
d|(n,m)

dk−1c
(mn
d2

)
Proof. We have

Tnf(z) =
∞∑
m=0

nk−1
∑
d|n

d−k
d−1∑
b=0

c(m)e2πim(nz+bd)/d2

=
∞∑
m=0

nk−1
∑
d|n

d−k−1c(m)e2πimnz/d2 1

d

d−1∑
b=0

e2πim(b/d)

=
∞∑
m=0

∑
d|n
d|m

(n
d

)k−1

c(m)e2πimnz/d2

since 1
d

d−1∑
b=0

e2πim(b/d) =


1 d|m

0 d - m

.

Now let m = qd, then we get

Tnf(z) =
∞∑
q=0

∑
d|n

(n
d

)k−1

c(qd)e2πinqz/d.

10



Since d runs over all divisors of n, so does n
d
, we get

Tnf(z) =
∞∑
q=0

∑
d|n

dk−1c
(qn
d

)
e2πiqdz

=
∞∑
m=0

∑
d|(m,n)

dk−1c
(mn
d2

)
e2πimz.

Theorem 1.4.2. If f ∈Mk and V =

α β

γ δ

 ∈ SL2(Z), then

Tnf(V z) = (γz + δ)kTnf(z).

Proof. Straightforward from the definition of Tnf(z), e.g.[2].

The last two theorems will immediately give the following

Corollary 1.4.1. If f ∈ Mk(SL2(Z)), then Tnf ∈ Mk(SL2(Z)). Also, if

f ∈ Sk(SL2(Z)), then Tnf ∈ Sk(SL2(Z)) (γn(0) = σk−1(n)c(0)).

Definition 1.4.2. A nonzero function f(z) satisfying Tnf = λ(n)f is called

an eigenfunction of the Hecke operator Tn with eigenvalue λ(n). If this

equality holds for all n, then f(z) is called simultaneous eigenfunction of

all Hecke operators.

We call a simultaneous eigenfunction f normalized if c(1) = 1 where f(z) =∑∞
m=0 c(m)e2πimz.

11



Theorem 1.4.3. Let k > 0, even. If the space Mk contains a simultaneous

Hecke eigenform f with Fourier expansion f(z) =
∑∞

m=0 c(m)e2πimz, then

c(1) 6= 0.

Proof. Since f is a simultaneous Hecke eigenform, then

Tnf(z) =
∞∑
m=0

 ∑
d|(n,m)

dk−1c
(mn
d2

) e2πimz = λ(n)
∞∑
m=0

c(m)e2πimz

so that c(n) = λ(n)c(1). If c(1) = 0, then c(n) = 0 for all n ≥ 0. Therefore,

f(z) = c(0). However, the only constant modular form is the zero function,

f(z) = 0. This is a contradiction because f needs to be nonvanishing in

order to be an eigenform.

Remark. For the case of a normalized simultaneous Hecke eigenform,

c(n) = λ(n)c(1) = λ(n).

Hence, the n-th Fourier coefficient of f is the same as its n-th eigenvalue.

Theorem 1.4.4. Let k ∈ 2Z. Suppose 0 6= f(z) ∈ Sk(Γ(1)) with the Fourier

expansion f(z) =
∞∑
m=0

c(n)e2πinz. Then f is a normalized simultaneous Hecke

eigenform if and only if

c(m)c(n) =
∑
d|(n,m)

dk−1c
(mn
d2

)
.

12



Proof. The equation Tnf(z) = λ(n)f(z) is equivalent to γn(m) = λ(n)c(m)

obtained by equating coefficients of xm in the corresponding Fourier ex-

pansion. Now for m = 1, γn(1) = λ(n)c(1) = λ(n) (normalized). But

γn(1) = c(n) which implies λ(n) = c(n), so that γn(m) = c(n)c(m) for

c(1) = 1.

Corollary 1.4.2. For k ∈ 2N, let f ∈ Mk(Γ(1)) be a normalized Hecke

eigenform with Fourier coefficients c(n). Let p be a prime. Then, the Fourier

coefficients satisfy

• c(pnm) = c(pn)c(m) for all m,n ∈ N with (m, p) = 1

• c(pn+1) = c(pn)c(p)− pk−1c(pn−1).

Proof. Applying the previous theorem, we can see that

c(pn)c(m) =
∑

d|(pn,m)=1 d
k−1c

(
pnm
d2

)
= c(pnm) and

c(pn)c(p) =
∑

d|(pn,p)=p d
k−1c

(
pn+1

d2

)
= c(pn+1) + pk−1c(pn−1).

Theorem 1.4.5. There exists an orthonormal basis of Sk which consists of

eigenfunction of all Hecke operators Tn.

For the proof, please refer to Iwaniec[1].

13



1.5 L-functions of Eigenforms

Definition 1.5.1. If f(z) = c(0)+
∑∞

n=1 c(n)e2πinz, we define the Dirichlet L−

Function of f(z) by:

L(f, s) =
∞∑
n=1

c(n)

ns
. (1.2)

Proposition 1.5.1. L(f, s) converges absolutely.

Proof. If f(z) =
∑∞

n=1 c(n)e2πinz ∈ Sk(SL2(Z)), then c(n) = θ(n
k
2 ), i.e

c(n) ≤ cn
k
2 form some c ∈ R c.f.[1]. Then

|L(f, s)| =

∣∣∣∣∣
∞∑
n=1

a(n)

ns

∣∣∣∣∣ ≤
∞∑
n=1

|a(n)|
nRe(s)

≤ c
∞∑
n=1

1

nRe(s)−
k
2

.

Therefore, L(f, s) converges absolutely for Re(s) > 1 + k
2
.

Also, iff(z) ∈ MK\Sk(SL2(Z)), then a(n) = θ(nk−1), and L(f, s) converges

absolutely for Re(s) > k.

We define the completed L-function L∗(f, s) by

L∗(f, s) = (2π)−sΓ(s)L(f, s) (1.3)

where Γ(s) =
∫∞

0
e−tts−1dt is the Gamma function defined for Re(s) > 0.

Proposition 1.5.2. L∗ satisties the functional equation

L∗(f, k − s) = (−1)
k
2L∗(f, s). (1.4)

14



Proof. We have

Γ(s) =

∫ ∞
0

e−tts
dt

t

t→2πny
==

∫ ∞
0

e−2πny(2πny)s
dy

y

⇒ (2π)−s
1

ns
Γ(s) =

∫ ∞
0

e−2πnyys
dy

y
.

As a result, we have

L∗(f, s) = (2π)−sL(f, s)Γ(s)

=

∫ ∞
0

∑
n≥1

c(n)e−2πnyys
dy

y

=

∫ ∞
0

(f(iy)− c(0)) ys
dy

y

=

∫ 1

0

(f(iy)− c(0)) ys
dy

y
+

∫ ∞
1

(f(iy)− c(0)) ys
dy

y

=

∫ ∞
1

(
f(
i

y
)− c(0)

)
ys
dy

y
+

∫ ∞
1

(f(iy)− c(0)) ys
dy

y

where we are allowed to interchange integration and summation using Fu-

bini’s theorem. But f( i
y
) = f(−1

iy
) = (iy)kf(iy) = (−1)k/2ykf(iy), This gives

L∗(f, s) = (−1)k/2
∫ ∞

1

f(iy)yk−s
dy

y
−
∫ ∞

1

c(0)y−s
dy

y
+

∫ ∞
1

(f(iy)− c(0)) ys
dy

y

= (−1)k/2
∫ ∞

1

(f(iy)− c(0))yk−s
dy

y
+ (−1)k/2

∫ ∞
1

c(0)y−s
dy

y

−
∫ ∞

1

c(0)y−s
dy

y
+

∫ ∞
1

(f(iy)− c(0))ys
dy

y

=

∫ ∞
1

(f(iy)− c(0))((−1)k/2yk−s + ys)
dy

y
− (−1)k/2c(0)

k − s
+
c(0)

s

= (−1)k/2(2π)−(k−s)Γ(k − s)L(f, k − s)

= (−1)k/2L∗(f, k − s).

15



Theorem 1.5.1. For k ∈ 2N and let f ∈ Sk(Γ(1)) be a cusp form with asso-

ciated L-series L(f, s) defined in (1.2). If f is a normalized Hecke eigenform

with Fourier coefficients c(n), then the associated L-series L(f, s) admits the

Euler product

L(f, s) =
∏

p prime

1

(1− c(p)p−s + pk−1−2s)
.

Proof. Let pi11 . . . p
il
l = n be the prime factorization of n for some l ∈ N and

p1 . . . pl distinct primes. Now,

L(f, s) =
∑
n∈N

c(n)

ns

= c(1) +
∑
l∈N

∑
i1...il∈N

p1...pl distinct primes

c(pi11 . . . p
il
l )

(pi11 . . . p
il
l )s

= 1 +
∑
l∈N

∑
i1...il∈N

p1...pl distinct primes

c(pi11 )

pi11
. . .

c(pill )

pill

=
∏

p prime

∑
i∈N

c(pi)

(pi)s

where we have used Corollary 1.4.2 because gcd(pimm , p
in
n ) = 1 for all distinct

primes pm and pn. Now we claim that

∑
i∈N

c(pi)

(pi)s
=

1

1− c(p)ps − pk−1p−2s
.
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This claim can be proved for any
∑

i∈N c(p
i)αi where in our situation α is

equal to p−s :

(1− c(p)α + pk−1α2)
∑
i∈N

c(pi)αi

=
∑
i∈N

c(pi)αi −
∑
i∈N

c(p)c(pi)αi+1 +
∑
i∈N

pk−1c(pi)αi+2

= c(1) + c(p)α +
∞∑
i=2

c(pi)αi − c(p)c(1)α

−
∞∑
i=1

c(p)c(pi)αi+1 +
∑
i∈N

pk−1c(pi)αi+2

= 1 +
∞∑
i=2

c(pi)αi −
∞∑
i=1

(
c(p)c(pi)− pk−1c(pi−1)

)
αi+1

= 1 +
∞∑
i=2

c(pi)αi −
∞∑
i=1

c(pi+1)αi+1

= 1 +
∞∑
i=2

c(pi)αi −
∞∑
i=2

c(pi)αi = 1

where we have used again Corollary 1.4.2 and that a(1) = 1 holds for nor-

malized Hecke eigenforms.

Therefore,

L(f, s) =
∏

p prime

∑
i∈N

c(pi)

(pi)s
=

∏
p prime

1

1− c(p)ps − pk−1p−2s
.
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1.6 Poincare Series and Petersson Inner Prod-

uct

Definition 1.6.1. Let m ∈ Z>0, k an even integer, k > 2. The Poincaré

series of weight k is given by:

Pm,k(z) =
∑

M∈Γ∞\SL2(Z)

j(M, z)−ke2πimMz =
∑

(c,d)∈Z2

gcd(c,d)=1

(cz + d)−ke2πim(a0z+b0
cz+d ).

Proposition 1.6.1. The Poincaré series is a modular form of weight k.

Proof. Using the definition of Poincaré series, we can check that Pm,k|kV =

Pm,k for all V ∈ SL2(Z). Also, as a holomorphic function, Pm,k admits a

Fourier expansion of the form Pm,k =
∑

n>0 a(n)e2πinz.

For more details, please refere to [1]

Definition 1.6.2. Let Γ ⊂ Γ(1) be a subgroup of finite index µ with RΓ its

fundamental region. Let k ∈ 2Z and z = x+ iy.

We define the Petersson Inner Product by

〈., .〉 : Mk(Γ)× Sk(Γ)→ C

〈f, g〉 =
1

µ

∫
RΓ

f(z)g(z)=(z)k
dxdy

=(z)2
.

Proposition 1.6.2. Let f(z) =
∑∞

n=1 a(n)e2πinz ∈ Sk. Then

〈Pm,k, f〉 =
Γ(k − 1)

µ(4πm)k−1
a(m).
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Proof.

〈Pm,k, f〉 =
1

µ

∫
R

Pm,k(z)f(z)=(z)k
dxdy

=(z)2

=
1

µ

∫
R

∑
M∈Γ∞\SL2(Z)

j(M, z)−ke2πimMzf(z)=(z)k
dxdy

=(z)2
.

But f is a modular form, so that f satisfies: f(Mz) = j(M, z̄)kf(z), and

using (1.1), we get

〈Pm,k, f〉 =
1

µ

∫
R

∑
M∈Γ∞\SL2(Z)

j(M, z)−ke2πimMzf(z)j(M, z)k (j(M, z̄)=(Mz))k
dxdy

=(z)2

=
1

µ

∫
R

∑
M∈Γ∞\SL2(Z)

e2πimMzf(Mz)=(Mz)k
dxdy

=(z)2

Mz 7→z
=

1

µ

∫
MR

∑
M∈Γ∞\SL2(Z)

e2πimzf(z)=(z)k
dxdy

=(z)2
.

Now because of the shape of R (a vertical strip by Proposition 1.1.1 ), and

replacing f by its Fourier expansion, we can rewrite the above expression as

〈Pm,k, f〉 =
1

µ

∫ ∞
0

∫ 1/2

−1/2

e2πimz

∞∑
n=0

a(n)e2πinz=(z)k
dxdy

=(z)2

=
1

µ

∞∑
n=0

a(n)

∫ ∞
0

∫ 1/2

−1/2

e2πi(m−n)xe−2πi(m+n)yyk−2dxdy

=
a(m)

µ

∫ ∞
0

e−4πimyyk−2dy.

Now replacing 4πimy by t, we get:

〈Pm,k, f〉 =
a(z)

µ(4πm)k−1

∫ ∞
0

e−ttk−2dt

=
a(z)

µ(4πm)k−1
Γ(k − 1)
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Corollary 1.6.1. The space of cusp forms Sk(SL2(Z)) is spanned by the

Poincaré series Pm,k, m ≥ 0.

Proof. To show that Sk(SL2(Z)) is spanned by the Poincaré series, we have

to show that each cusp form can be expressed as a linear combination of

Poincaré series. Suppose f ∈ Sk(SL2(Z)) is orthogonal to all Poincaré series

i.e. 〈0, Pm,k〉 = 0. But the previous proposition implies that all Fourier

coefficients of f vanish. Hence, f must be the zero-function. This means

that all cusp forms lie in the span of the Poincaré series.

1.7 Modular Forms on Congruence Subgroups

Definition 1.7.1. The principal subgroup of SL2(Z) of level N is given by

Γ(N) =


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡
1 0

0 1

 mod N

 .

Definition 1.7.2. A congruence subgroup of level N is a subgroup of SL2(Z)

that contains Γ(N).

Examples: Γ0(N) =


a b

c d

 ∈ SL2(Z) : c ≡ 0 mod N

 ,

Γ1(N) =


a b

c d

 ∈ SL2(Z) :

a b

c d

 ≡
1 ∗

0 1

 mod N

 .
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Remark. • Γ(N) is normal in Γ(1) where Γ(1) is equal to SL2(Z).

Moreover, Γ(N) has finite index in Γ(1)

• If N ′|N , then Γ(N) ⊂ Γ(N ′)

• Γ(N) ⊂ Γ1(N) ⊂ Γ0(N).

Theorem 1.7.1. Let γ be a congruence subgroup of SL2(Z) and let C be a

set of coset representatives for Γ \ SL2(Z). Then

RΓ =
⋃
C

γR

is the fundamental region of the congruence subgroup Γ where R is the fun-

damental region of SL2(Z).

Proof. First, suppose z1, z2 ∈ RΓ are equivalent with respect to Γ, i.e. z2 =

V z1 for V ∈ Γ. Since Γ is a subgroup of Γ(1), there exists 1 ≤ i, j ≤ µ and

u,w ∈ R with z1 = Aiu and z2 = Ajw. Hence Ajw = V Aiu. This implies

w = (A−1
j V Ai)u ∈ R. We get A−1

j V Ai = ±1. Thus we have V = ±AjA−1
i

which implies that z2 = AjA
−1
i z1 and AjA

−1
i ∈ Γ. Since Ai and Aj are

representatives of right cosets of Γ in Γ(1), we find that AjA
−1
i ∈ Γ holds

only for i = j. Therefore Ai = Aj and z1 = z2.

Now let z ∈ H. We have to show that there exists an element V ∈ Γ such that

V z ∈ RΓ. We know that there exists V1 ∈ Γ(1) such that V1z ∈ R. On the
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other hand, there exists M ∈ Γ and a representative Ai, 1 ≤ i ≤ µ satisfying

V1 = MAi. Hence, we have V1z = (MAi)z = M(Aiz) ∈ R. Multiplying M−1

from the left gives M−1V1z = Aiz ∈ AiR ⊂ RΓ.

Definition 1.7.3. A cusp z where z ∈ P 1(R) = R ∪ {∞} is an element

which is fixed by a parabolic element α of A.( α is parabolic if |tr(α)| = 2)

Definition 1.7.4. Let Γ be a congruence subgroup of SL2(Z) of finite index.

A modular form of weight k on Γ is a holomorphic function in H satisfying

• f(γz) = (cz + d)kf(z) where γ = ( a bc d ) ∈ Γ

• f is holomorphic at all cusps.
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Chapter 2

Modular Forms of Half-Integral

Weight

In this chapter, we define modular forms of half integer weight on Γ0(4) , in

addition to the plus space and their associated Hecke operators. cf.[3]

2.1 Definitions and Examples

We define G:

G =

{
(α, φ(z)) : α ∈ GL+

2 (Q), φ2(z) = t
cz + d√
det α

}
.
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where t ∈ T 2 = {±1} and such that:

(α, φ(z)).(β, ψ(z)) = (αβ, φ(βz)ψ(z))

Proposition 2.1.1. G is a group.

Proof. • Let a = (α, φ(z)), b = (β, ψ(z)) ∈ G. We need a.b ∈ G: It is

obvious that αβ ∈ GL+
2 (Q). Now,

(φ(βz)ψ(z))2 =

(
φ(
a2z + b2

c2z + d2

)

)2

ψ2(z)

= t1(
c1βz + d1√

detα
)t2(

c2βz + d2√
detβ

)

= t1t2
(c1a1 + d1c2)z + c1b2 + d1d2√

detαβ

which finishes the proof.

• Associativity is immediate.

• Let I =
((

1 0
0 1

)
, 1
)

where 1 is the identity function so that I.(α, φ(z)) =

(α, φ(z)).I = (α, φ(z)).

• Let (α, φ(z))−1 = (α−1, 1
φ(α−1(z))

).

Now

(α, φ(z)).(α, φ(z))−1 =

((
1 0
0 1

)
, φ(α−1(z))

1

φ(α−1(z))

)
=
((

1 0
0 1

)
, 1
)

= I
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The group G acts on the space of complex valued functions on H, by

f |k+1/2[ζ] = f |[ζ] = φ(z)−2k−1f(αz)

where ζ = (α, φ(z)) ∈ G and f : H→ C.

We define the automorphy factor j(γ, z), for γ ∈ Γ0(4) and z ∈ H, as

follows:

j(γ, z) =
( c
d

)
ε−1
d

√
cz + d γ =

a b

c d

 ∈ Γ0(4)

and

Γ̃0(4) := {γ̃ = (γ, j(γ, z)), γ ∈ Γ0(4)}.

We note that Γ̃0(4) is actually a subgroup of G. [3]

Recall the following

• Γ0(4) =


a b

c d

 ∈ SL2(Z) : c ≡ 0 mod 4



• εd =


1 if d ≡ 1 mod 4

i if d ≡ −1 mod 4
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•
(
a
p

)
is the Legendre symbol given by

(
a
p

)
=



0 if p|a

1 if a is a quadratic residue mod p

−1 if a is not a quadratic residue mod p

(a is a quadratic residue mod p if there is an integer x, 0 < x < p, such

that x2 ≡ a mod p has a solution.)

Definition 2.1.1. Let k be a positive integer. A holomorphic function f on

H is a modular form of weight k + 1/2 if f satisfies f |k+1/2[γ̃] = f for all

γ̃ ∈ Γ̃0(4), and is holomorphic at all the cusps of Γ0(4).

We denote such a space of modular forms by Mk+1/2(4), and the space of

cusp forms by Sk+1/2(4) where, as before, a cusp form is a modular form that

vanishes on all cusps.

Example. Let Γ ⊂ Γ0(4). Let Γ∞ = {γ ∈ Γ : γ(i∞) = i∞}. Then Γ∞ is

an infinite subgroup of SL2(Z) generated by

1 1

0 1

. Consider

Ek/2(z) =
∑

γ∈Γ∞\Γ0(4)

j(γ, z)−k

where Γ∞\Γ0(4) have coset representatives


 a b

m n

 ∈ Γ0(4) : 4|m, (m,n) = 1, n > 0

.
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Then Ek/2(z) is a modular form of weight k/2 for Γ0(4).

2.2 L-functions on the plus space

We define M+
k+1/2(4) to be the subspace of Mk+1/2(4) consisting of functions

whose nth Fourier coefficients vanish whenever (−1)kn ≡ 2, 3 mod(4). We

also put S+
k+1/2(4) = Sk+1/2(4) ∩M+

k+1/2(4).

Kohnen proved, in [4] , that there is an isomorphism between S2k(1) and

S+
k+1/2(4), or equivalently between M2k(1) and M+

k+1/2(4). This will help us,

with Theorem 1.2.1, determine the dimension of the given plus space.

Let L(f, s) be the L-function associated to cusp forms f ∈ S+
k+1/2(4)

defined by L(f, s) =
∑

(−1)kn≡0,1mod(4) c(n)n−s for Re s> 1 where c(n) is the

n-th Fourier coefficient of f . The completed L-function is defined as

L∗(f, s) = (2π)−s2sΓ(s)L(f, s).

Proposition 2.2.1. The completed L-function L∗(f, s) has the following

functional equation:

L∗(f |W4, k + 1/2− s) = L∗(f, s)

where W4 is the Fricke involution on Sk+1/2(4) defined by

f |W4(z) = (−2iz)−k−1/2f(−1/4z).
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Proof. We have

Γ(s) =

∫ ∞
0

e−tts
dt

t

t→2πny
==

∫ ∞
0

e−2πny(2πny)s
dy

y

Thus we get, as in Chapter 1,

(2π)−s
1

ns
2sΓ(s) =

∫ ∞
0

e−2πny(2y)s
dy

y

L∗(f, s) =

∫ ∞
0

f(iy)ys
dy

y

=

∫ 1/2

0

f(iy)ys
dy

y
+

∫ ∞
1/2

f(iy)ys
dy

y

Now we replace y by 1
4y

in the first term

L∗(f, s) =

∫ ∞
1/2

f(
i

y
)ys

dy

y
+

∫ ∞
1/2

f(iy)ys
dy

y
.

But since

f |W4(z) = (−2iz)−k−1/2f(−1/4z)

then

f |W4(iz) = (2z)−k−1/2f(i/4z).

Therefore,

L∗(f, s) =

∫ ∞
1/2

[
f |W4(iy)(2y)k+1/2−s + f(iy)(2y)s

] dy
y

= L∗(f |W4, k + 1/2− s).
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2.3 Hecke Operators on Forms of Half Inte-

ger Weight

As in the case of modular forms of integer weight, we can also define Hecke

operators in the half-integral weight case. For f(z) =
∑∞

n=0 c(n)e2πinz an

element of M+
k+1/2(4) and a prime p, we define the Hecke operator by

f |T+
k+1/2(p2) =

∑
(−1)kn≡0,1mod(4)

(
c(p2n) +

(
(−1)kn

p

)
pk−1c(n) + p2k−1c

(
n

p2

))
e2πinz

Theorem 2.3.1. (Kohnen)

1. S+
k+1/2(4) (and M+

k+1/2(4)) is preserved by Hecke operator.

2. The space S+
k+1/2(4) has an orthogonal basis of Hecke eigenforms with

respect to all Hecke operators T+(p2), p prime.

Proof. [5]
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2.4 Poincare Series and Petersson Inner Prod-

uct

Definition 2.4.1. Let m ∈ Z>0. The Poincaré series of weight k+ 1/2 is

given by:

Pm,k(z) =
∑

(c,d)∈Z2

gcd(c,d)=1

( c
d

)(−4

d

)k+1/2

(cz + d)−(k+1/2)e2πim(a0z+b0
cz+d ).

Definition 2.4.2. For f ∈ Mk+1/2(4) and g ∈ Sk+1/2(4), we define the

Petersson Inner Product by

〈f, g〉 =
1

i4

∫
Γ0(4)\H

f(z)g(z)yk+1/2dxdy

y2

where i4 is the index of Γ0(4) in SL2(Z).
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Chapter 3

Non-Vanishing of L-functions

Associated to Integer Weight

Modular Forms

In this chapter, we prove that, given a real number t0 and a positive real

number ε, for all k large enough the average of L∗(f, s) with f running over

a basis of Hecke eigenforms of weight k, does not vanish on the line segments

Im(s) = t0, (k − 1)/2 < Re(s) < (k/2)− ε, (k/2) + ε < Re(s) < (k + 1)/2.

For this purpose, we define, for z ∈ H, s = σ+it ∈ C where 1 < σ < k−1:

Rk,s(z) := γk(s)
∑

( a b
c d

)∈SL2(Z)

(cz + d)−k
(
az + b

cz + d

)−s
(3.1)
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where

γk(s) =
1

2
e
πis
2 Γ(s)Γ(k − s).

Note that the letter k always denotes an even integer ≥ 4.

Proposition 3.0.1. Rk,s ∈ Sk

Proof. First, we can see that this series converges absolutely uniformly when-

ever z = x+iy satisfying y ≥ ε, x ≤ 1/ε for a given ε > 0, and s varying over a

compact set, using standard convergence tests. For instant, for 2 < σ < k−2,

we have∣∣∣∣∣∣
∑

(a,b),(c,d)∈Z2\{0,0}

(cz + d)−k
(
az + b

cz + d

)−s∣∣∣∣∣∣ ≤
∑

(a,b),(c,d)∈Z2\{0,0}

|cz + d|−k
∣∣∣∣∣
(
az + b

cz + d

)−s∣∣∣∣∣
≤

∑
(a,b),(c,d)∈Z2\{0,0}

|cz + d|−k
∣∣∣∣az + b

cz + d

∣∣∣∣−σ

≤
∑

(a,b),(c,d)∈Z2\{0,0}

|cz + d|−(k−σ)|az + b|−σ <∞.

So combining this with the definition of Rk,s we obtain our assertion: It is

holomorphic on H, invariant under SL2(Z) and holomorphic at ∞.

Theorem 3.0.1. We have

Rk,s(z) = (2π)sΓ(k − s)
∑
n≥1

ns−1Pk,n(z) (3.2)

where

Pk,n(z) =
1

2

∑
(c,d)∈Z2

gcd(c,d)=1

(cz + d)−ke2πin(a0z+b0
cz+d ).
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Proof. By holomorphic continuation, it is enough to prove the assertion say

for 1 < σ < k−1
2

. For each coprime pair (c, d), we take a fixed choice (a0, b0) ∈

Z2 with a0d− b0c = 1 (we have ad− bc = 1 so that ad ≡ 1[c], now we fix a0

such that a = a0 + nc for some n ∈ Z, same is for b0). Hence, we get

Rk,s(z) = γk(s)
∑

(c,d)∈Z2

gcd(c,d)=1

∑
n∈Z

(cz + d)−k
(
a0z + b0

cz + d
+ n

)−s
.

Now using Lipschitz’s formula:

∑
n∈Z

(τ + n)−s =
e−πis/2(2π)s

Γ(s)

∑
n≥1

ns−1e2πinτ (τ ∈ H, Re(s) > 1) (3.3)

for τ = a0z+b0
cz+d

+ n in our case, we get

Rk,s(z) =γk(s)
e−πis/2(2π)s

Γ(s)

∑
(c,d)∈Z2

gcd(c,d)=1

∑
n≥1

(cz + d)−kns−1e2πin(a0z+b0
cz+d )

=
1

2
(2π)sΓ(k − s)

∑
n≥1

ns−1
∑

(c,d)∈Z2

gcd(c,d)=1

(cz + d)−ke2πin(a0z+b0
cz+d )

Finally, comparing this with Definition1.6.1 will finish the proof.

Lemma 3.1.

〈 f,Rk,s̄〉 = ckL
∗(f, s) ∀f ∈ Sk
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where

ck :=
(−1)

k
2π(k − 2)!

2k−2
.

Proof. Using Theorem 3.0.1,we have:

〈 f,Rk,s̄〉 = 〈 f, (2π)s̄Γ(k − s̄)
∑
n≥1

ns̄−1Pk,n(z)〉

=
1

µ
(2π)sΓ(k − s)

∑
n≥1

ns−1

∫
RΓ

fPk,n(z)yk
dxdy

y2

= (2π)sΓ(k − s)
∑
n≥1

ns−1〈 f, Pk,n〉

where we can interchange the summation and the integral because of absolute

convergence.

Using Proposition 1.6.2, we get

〈 f,Rk,s̄〉 =(2π)sΓ(k − s)
∑
n≥1

ns−1 (k − 2)!

(4πn)k−1
af (n)

=(2π)s−k+121−kΓ(k − s)(k − 2)!
∑
n≥1

af (n)ns−k

=22−kπ(k − 2)!L∗(f, k − s) (using(1.3))

=(−1)
k
2
π(k − 2)!

2k−2
L∗(f, s) (using(1.4))

=ckL
∗(f, s).

Lemma 3.2.

Rk,s(z) =
∑
n≥1

rk,s(n)e2πinz
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where

rk,s(n) =(2π)sΓ(k − s)ns−1 + (−1)
k
2 (2π)k−sΓ(s)nk−s−1

+
1

2
(−1)

k
2 (2π)knk−1 Γ(s)Γ(k − s)

Γ(k)

×
∑

(a,c)∈Z,ac>0
gcd(a,c)=1

c−k(
c

a
)s[e

2πina′
c e

πis
2 1F1(s, k;

−2πin

ac
)

+ e
−2πina′

c e
−πis

2 1F1(s, k;
2πin

ac
)];

(3.4)

with a′ ∈ Z is an inverse of a modulo c, and 1F1(α, β; z) is Kummer’s degen-

erate hypergeometric function [6].

Proof. Suppose ac = 0 i.e. a = 0 or c = 0. To satisfy ad − bc = 1, the

matrices in SL2(Z) will have the forms ±( 1 n
0 1 ) or ±( 0 −1

1 n ). So by (3.1),

Rk,s(z) = 2γk(s)
∑
n∈Z

(
(z + n)−s + e−πis(z + n)−k+s

)
.

Using Lipschitz’s formula again (3.3), the n-th Fourier coefficient of the terms

with ac = 0 is equal to

2γk(s)e
−πis/2

(
(2π)s

Γ(s)

∑
n≥1

ns−1e2πinz + (−1)
k
2

(2π)k−s

Γ(k − s)
∑
n≥1

nk−s−1e2πinz

)
.

(3.5)

Now for ac 6= 0, the n-th Fourier coefficient of the sum, is given by:

I =

∫ iC+1

iC

 ∑
( a b
c d

)∈SL2(Z)

ac6=0

(cz + d)−k
(
az + b

cz + d

)−s e−2πinzdz C > 0 (3.6)
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We replace z by z + m which is equivalent to multiply the matrix ( a bc d ) by

( 1 1
0 1 ) and we fix integers b0 and d0 for each pair (a, c) as before such that

ad0 − cb0 = 1, we get

I =

∫ iC+1

iC


∑
m∈Z

∑
(a,c)∈Z2

ac6=0
gcd(a,c)=1

(c(z +m) + d0)−k
(
a(z +m) + b0

c(z +m) + d0

)−s
 e−2πinzdz

=
∑

(a,c)∈Z2

ac6=0
gcd(a,c)=1

∫ iC+∞

iC−∞
(cz + d0)−k

(
az + b0

cz + d0

)−s
e−2πinzdz.

We now substitute z by z − d0

c
and we get

I =
∑

(a,c)∈Z2

ac6=0
gcd(a,c)=1

∫ iC+∞

iC−∞
(cz)−k

(
− 1

c2z
+
a

c

)−s
e−2πin(z− d0

c
)dz

=
∑

(a,c)∈Z2

ac6=0
gcd(a,c)=1

c−ke2πina
′
c

∫ iC+∞

iC−∞
z−k+sz−s

(
− 1

c2z
+
a

c

)−s
e−2πinzdz (3.7)

where

a′ ∈ Z, a′a ≡ 1(modc).

Now we suppose that ac > 0, so that

z−s
(
− 1

c2z
+
a

c

)−s
=

(
− 1

c2
+
a

c
z

)−s
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Let’s call the integral in (3.7) I1, and replace z by c
a
it, we obtain

I1 =

∫ C−i∞

C+i∞

[( c
a

)
it
]−k+s

(
− 1

c2
+
a

z
.
z

a
it

)−s
e−2πin c

a
it
( c
a
i
)
dt

=

∫ C−i∞

C+i∞

( c
a

)−k+s+1

t−k+si−k+s+1

(
i2

c2
+ it

)−s
e−2πin c

a
itdt

=

∫ C−i∞

C+i∞

( c
a

)−k+s+1

t−k+si−k+1

(
i

c2
+ t

)−s
e−2πin c

a
itdt

=(−1)
k
2 2π

( c
a

)−k+s+1 1

2πi

∫ C+i∞

C−i∞
t−k+s

(
i

c2
+ t

)−s
e2πn c

a
tdt.

Now using

1

2πi

∫ C+i∞

C−i∞
(t+α)−µ(t+β)−νeptdt =

1

Γ(µ+ ν)
pµ+ν−1e−βp1F1(µ, µ+ν; (β−α)p),

cf.[6] we get

I1 = (−1)
k
2

(2π)k

Γ(k)
nk−1

( c
a

)s
1F1(s, k;

−2πin

ac
).

Therefore, the contribution of the n-th Fourier coefficients by terms with

ac > 0, of Rk,s(z) is given by

γk(s)(−1)
k
2

(2π)k

Γ(k)
nk−1

∑
(a,c)∈Z2

ac>0
gcd(a,c)=1

c−k
( c
a

)s
e2πina

′
c 1F1(s, k;

−2πin

ac
). (3.8)

If ac < 0, we write

z−s
(
− 1

c2z
+
a

c

)−s
= z−s

(
−
(

1

c2z
− a

c

))−s
= e−πis

(
1

c2
− a

c
z

)−s
.

We can see that in the same way as before, with replacing (a, c) by (−a, c),
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the contribution of the terms with ac < 0 is given by

γk(s)e
−πis(−1)

k
2

(2π)k

Γ(k)
nk−1

∑
(a,c)∈Z2

ac>0
gcd(a,c)=1

c−k
( c
a

)s
e−2πina

′
c 1F1(s, k;

2πin

ac
). (3.9)

Finally, combining (3.5), (3.8) and (3.9) will finish the proof.

By Theorem 1.4.5, we let {fk,1, ...fk,gk} be the basis of normalized Hecke

eigenforms of Sk, where gk is the dimension of Sk.

Theorem 3.1. Let t0 ∈ R and ε > 0. Then there exist a constant C(t0, ε) > 0

depending only on t0 and ε such that for k > C(t0, ε) the function

gk∑
ν=1

1

〈fk,ν , fk,ν〉
L∗(fk,ν , s)

does not vanish at any point s = σ+it with t = t0, and k−1
2
< σ < k

2
−ε, k

2
+ε <

σ < k+1
2

.

Proof. Since {fk,1, ...fk,gk} is the orthogonal basis, and Rk,s̄ ∈ Sk, we have

Rk,s̄ =

gk∑
ν=1

〈fk,ν , Rk,s̄〉
〈fk,ν , fk,ν〉

fk,ν .

Now using Lemma 3.1, we get

Rk,s̄ = ck

gk∑
ν=1

L∗(fk,ν , s)

〈fk,ν , fk,ν〉
fk,ν . (3.10)
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By Lemma 3.2, and since fk,ν ∈ Sk, comparing the first Fourier coefficient of

the two sides of (3.10) will lead us to

(2π)sΓ(k − s) + (−1)
k
2 (2π)k−sΓ(s) +

1

2
(−1)

k
2 (2π)k

Γ(s)Γ(k − s)
Γ(k)

×
∑

(a,c)∈Z,ac>0
gcd(a,c)=1

c−k(
c

a
)s(e

2πia′
c e

πis
2 1F1(s, k;

−2πi

ac
)

+ e
−2πia′

c e
−πis

2 1F1(s, k;
2πi

ac
)

= ck

gk∑
ν=1

L∗(fk,ν , s)

〈fk,ν , fk,ν〉

(3.11)

Dividing by (2π)sΓ(k−s) and letting 1f1(s, k; z) to be equal to Γ(s)Γ(k−s)
Γ(k) 1F1(s, k; z),

we can write (3.11) as

1+(−1)
k
2 (2π)k−2s Γ(s)

Γ(k − s)
+

(−1)
k
2 (2π)k−s

2Γ(k − s)
∑

(a,c)∈Z,ac>0
gcd(a,c)=1

c−k
( c
a

)s

× (e
2πia′
c e

πis
2 1f1(s, k;

−2πi

ac
) + e

−2πia′
c e

−πis
2 1f1(s, k;

2πi

ac
)

= c′k

gk∑
ν=1

L∗(fk,ν , s)

〈fk,ν , fk,ν〉
.

(3.12)

What we need to prove is that the right-hand side of (3.12) does not vanish

at s = σ + it with t = t0, and k−1
2

< σ < k
2
− ε, k

2
+ ε < σ < k+1

2
, k large

enough.

Note that it will be enough to prove this on the left half of the critical strip

only because of the functional equation (1.4).

So take s = k
2
− δ − it0 where ε < δ < 1/2, so that k−1

2
< σ < k

2
− ε and
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suppose that the right-hand side of (3.12) vanishes at s, we then obtain

−1 =(−1)
k
2 (2π)2δ+2it0

Γ(k
2
− δ − it0)

Γ(k
2

+ δ + it0)
+

(−1)
k
2 (2π)

k
2

+δ+it0

2Γ(k
2

+ δ + it0)∑
(a,c)∈Z,ac>0
gcd(a,c)=1

c
−k
2
−δ−it0a

−k
2

+δ+it0(e
2πia′
c e

πi
2

( k
2
−δ−it0)

1f1(
k

2
− δ − it0, k;

−2πi

ac
)

+ e
−2πia′

c e
−πi

2
( k

2
−δ−it0)

1f1(
k

2
− δ − it0, k;

2πi

ac
)).

(3.13)

We claim that

|1f1(α, β; z)| ≤ 1

for Re(α) > 1, Re(β − α) > 1, and |z| = 1 because of its definition for

Re(β) > Re(α) > 0: 1f1(α, β; z) =
∫ 1

0
ezuuα−1(1− u)β−α−1du. cf.[6]

We now take the absolute value of (3.13) and thus we get

1 ≤(2π)2δ

∣∣∣∣∣Γ(k
2
− δ − it0)

Γ(k
2

+ δ + it0)

∣∣∣∣∣+

∣∣∣∣∣ (2π)
k
2

+δ

2Γ(k
2

+ δ + it0)

∣∣∣∣∣
×

 ∑
(a,c)∈Z,ac>0
gcd(a,c)=1

c
−k
2
−δa

−k
2

+δ

 (eπt0/2 + e−πt0/2)

= (2π)2δ

∣∣∣∣∣Γ(k
2
− δ − it0)

Γ(k
2

+ δ + it0)

∣∣∣∣∣+

∣∣∣∣∣ (2π)
k
2

+δ

2Γ(k
2

+ δ + it0)

∣∣∣∣∣A.B(t0)

(3.14)

where A > 0 is an absolute constant and B(t0) is a constant depending only

on t0. However,

lim
n→∞

nb−a
Γ(n+ a)

Γ(n+ b)
= 1
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cf. e.g.[6], so that

lim
k→∞

Γ(k
2
− δ − it0)

Γ(k
2

+ δ + it0)
=

1

limk→∞(k/2)2δ+2it0
= 0.

Also, clearly we have

lim
k→∞

(2π)
k
2

+δ

2Γ(k
2

+ δ + it0)
= 0.

Finally we get 1 ≤ 0 for k large enough. Contradiction! This proves the

theorem.

Corollary 3.1. Let t0 ∈ R and ε > 0. Then for k > C(t0, ε) and any

s = σ+ it with t = t0, (k− 1)/2 < σ < (k/2)− ε, (k/2) + ε < σ < (k+ 1)/2,

there exists a Hecke eigenform f ∈ Sk such that L∗(f, s) 6= 0.

Proof. By the previous theorem, any function f ∈ Sk, such that f is running

over a basis of normalized Hecke eigenforms of weight k, will satisfy this

condition.
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Chapter 4

Non-Vanishing of L-functions

for Half-Integer Weight

Modular Forms

In this chapter, we prove a similar result as in chapter 3, for modular forms

of half-integral weight in the plus space. So given a real number t0 and a

positive real number ε, we will prove that, for all k large enough, the average

of the functions L∗(f, s) with f running over a basis of Hecke eigenforms of

weight k+1/2, does not vanish on the line segments Im(s) = t0, k/2−1/4 <

Re(s) < k/2 + 3/4.
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For this purpose we need to determine the Fourier coefficients of the

projected kernel function on the plus space. The kernel L-function of the

map f → L∗(f, s) in the case of half integral weight on Γ0(4) is given in [7]

by:

Rs,k(z) = γk(s)
∑
A

z−s|k+1/2A
∗

= γk(s)
∑
A

( c
d

)(−4

d

)
(cz + d)−(k+1/2)

(
az + b

cz + d

)−s
where

γk(s) =
1

2
eπis/2Γ(s)Γ(k + 1/2− s)

and the sum runs over all matrices A =

a b

c d

 ∈ Γ0(4) with A∗ =

(A, j(A, z)). Now since we are working on the plus space, we need to de-

fine the kernel function acting on this space. To do so, we need to use the

projection operator pr as given in [7]: for g ∈ Sk(Γ0(4)), we have

g|pr = (−1)(k+1/2)/2 1

3
√

2

( ∑
ν mod 4

g|ζA∗ν

)
+

1

3
g,

where

η =


4 1

0 4

 , e(2k+1)πi/4

 , A∗ν =


 1 0

4ν 1

 , (4νz + 1)−(k+1/2)

 .
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Lemma 4.1.

〈 f,Rs̄,k|pr〉 = ckL
∗(f |W4, s) ∀f ∈ Sk+1/2(4)

where

ck :=
πΓ(k − 1/2)

i42k−3/2
.

Proof. We’ve seen in [7] that:

〈 f,Rs̄,k〉 =
πΓ(k − 1/2)

i42k−3/2
L∗(f, k + 1/2− s)

However, since our projection is hermitian [7], we have for f ∈ S+
k+1/2(4),

〈 f,Rs̄,k〉 = 〈 f |pr,Rs̄,k〉 = 〈 f,Rs̄,k|pr〉

so that

〈 f,Rs̄,k|pr〉 =
πΓ(k − 1/2)

i42k−3/2
L∗(f, k + 1/2− s).

Finally, using Proposition 2.2.1 will finish our proof.

The Fourier expansion of the projected function g|pr for g ∈ Γ0(4N) is

given in [8] as follows:

Proposition 4.0.1. We set α =
(−4
N

)
,

η(−α/N) =


 1 0

−αN 1

 , (−αNz + 1)(k+1/2)


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and

η(1/2N) =


 1 0

2N 1

 , (2Nz + 1)(k+1/2)

 .

Let g ∈ Sk+1/2(4N) and write

g(z) =
∑
n≥1

a(n)qn,

g|η(−α/N)(z) =
∑
n≥1

a(−α/N)(n)qn/4

g|η(1/2N)(z) =
∑

n≥1,(−1)kn≡1(4)

a(1/2N)(n)qn/4

where q = e2πiz. Then

g|pr =
2

3

∑
n≥1,n≡0(4)

(
a(n) + (1− (−1)ki)22k−1in/4a(−α/N)(n/4)

)
qn

+
2

3

∑
n≥1,(−1)kn≡1(4)

(
a(n) + 2k−1

(
(−1)kn

2

)
a1/2N(n)

)
qn.

Proof. [8]

The next Lemma finds explicitly the Fourier coefficients of Rs,k|pr at

different cusps:

Lemma 4.2.

Rs,k|pr =
2

3

∑
n≥1,n≡0(4)

(
as(n) + (1− (−1)ki)22k−1in/4a1

s(n/4)
)
qn

+
2

3

∑
n≥1,(−1)kn≡1(4)

(
as(n) + 2k−1

(
(−1)kn

2

)
a1/2
s (n)

)
qn,

45



where

as(n) =(2π)sΓ(k + 1/2− s)ns−1 +
1

2
(2πi)k+1/2nk−1/2 Γ(s)Γ(k + 1/2− s)

Γ(k + 1/2)

×
∑
ac>0

(a,c)=1,4|c

( c
a

)(−4

a

)k+1/2

c−(k+1/2)
( c
a

)s
(
e2πina′/ceπis/21F1(s, k + 1/2;

−2πin

ac
) + e

−2πina′
c e

−πis
2 1F1(s, k + 1/2;

2πin

ac
)

)
,

a1
s(n) =2× 4sΓ(k + 1/2− s)ns−1 + 4s(2πi)k+1/2nk−1/2 Γ(s)Γ(k + 1/2− s)

Γ(k + 1/2)

×
∑

c≥1,c≡1 mod 2
d(c)∗,ad−bc=1
d≡−c mod 4

(
4c

d

)(
−4

−c

)k+1/2

c−(k+1/2)
( c
a

)s
(
e2πind/ceπis/21F1(s, k + 1/2;

−2πin

ac
) + e

−2πind
c e

−πis
2 1F1(s, k + 1/2;

2πin

ac
)

)
,

and

a1/2
s (n) =2× 4sΓ(k + 1/2− s)ns−1 + 4s(2πi)k+1/2nk−1/2 Γ(s)Γ(k + 1/2− s)

Γ(k + 1/2)

×
∑

c≥1,c≡1 mod 2
d(c)∗,ad−2bc=1
d≡−c mod 4

(
4c

d

)(
−4

−c

)k+1/2

c−(k+1/2)
( c
a

)s
(
e2πind/ceπis/21F1(s, k + 1/2;

−2πin

ac
) + e

−2πind
c e

−πis
2 1F1(s, k + 1/2;

2πin

ac
)

)
.

Proof. As for the expansion at the infinite cusp, we consider first the case

where ac = 0. The matrices in Γ0(4) will have the form

1 n

0 1

 so that

Rs,k(z) = γk(s)
∑
n∈Z

(z + n)−s.
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Now using (3.3) again, we get

Rs,k(z) = (2π)sΓ(k + 1/2− s)
∑
n≥1

ns−1e2πinz.

Now for the case when ac 6= 0, the nth Fourier coefficient of the sum is given

by

∫ iC+1

iC

 ∑
( a b
c d

)∈Γ0(4);ac6=0

( c
d

)(−4

d

)k+1/2

(cz + d)−(−k+1/2)

(
az + b

cz + d

)−s e−2πinzdz C > 0

Note that this integral is equivalent to (3.6) with minor change due to the

space we are working on; so following similar steps as in chapter 3 will lead

us to

Rs,k(z) =
∑
n≥1

as(n)e2πinz

where, for a′ is an inverse of a modulo c and 1F1(α, β; z) is the Kummer’s

degenerate hypergeometric function

as(n) =(2π)sΓ(k + 1/2− s)ns−1 +
1

2
(2πi)k+1/2nk−1/2 Γ(s)Γ(k + 1/2− s)

Γ(k + 1/2)

×
∑
ac>0

(a,c)=1,4|c

( c
a

)(−4

a

)k+1/2

c−(k+1/2)
( c
a

)s
(
e2πina′/ceπis/21F1(s, k + 1/2;

−2πin

ac
) + e

−2πina′
c e

−πis
2 1F1(s, k + 1/2;

2πin

ac
)

)
.

Now we have to determine the expansion at the cusp 1 of

Rs,k|η1(z) =
∑
n≥1

a1
s(n)e2πinz/4
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where η1(z) =


1 0

1 1

 , (z + 1)(k+1/2)

 .

We have

Rs,k|η1(z) = (z + 1)−(k+1/2)Rs,k

(
z

z + 1

)
= γk(s)(z + 1)−(k+1/2)

∑
n∈Z

(
z

z + 1
+ n

)−s
+ 2γk(s)

∑
c>0,d

(c,d)=1,ad−bc=1
c≡0 mod 4

(
4

d

)(
c+ d

d

)(
−4

d

)k+1/2

× ((c+ d)z + d)−(k+1/2)

(
(a+ b)z + b

(c+ d)z + d

)−s
= 2γk(s)

∑
c>0,d

(c,d)=1,ad−bc=1
c≡d mod 4

(
4c

d

)(
−4

d

)k+1/2

(cz + d)−(k+1/2)

(
az + b

cz + d

)−s

(4.1)

where in the last equality we have replaced a+ b by a and c+ d by c. Thus

we get

Rs,k|η1(z) = 2× 4sγk(s)
∑

c≥1,c≡1 mod 2

(
−4

−c

)k+1/2 ∑
d(c)∗,ad−bc=1
d≡−c mod 4

(
4c

d

)

× (4c(z/4 + r) + d)−(k+1/2)

(
a(z/4 + r) + b

c(z/4 + r) + d

)−s
,

where d(c)∗ means that d runs through a primitive residue system modulo

c. Now, we can determine the expansion at the cusp 1 as we we did for the
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case at infinity to get

a1
s(n) =2× 4sΓ(k + 1/2− s)ns−1 + 4s(2πi)k+1/2nk−1/2 Γ(s)Γ(k + 1/2− s)

Γ(k + 1/2)

×
∑

c≥1,c≡1 mod 2
d(c)∗,ad−bc=1
d≡−c mod 4

(
4c

d

)(
−4

−c

)k+1/2

c−(k+1/2)
( c
a

)s
(
e2πind/ceπis/21F1(s, k + 1/2;

−2πin

ac
) + e

−2πind
c e

−πis
2 1F1(s, k + 1/2;

2πin

ac
)

)
.

And finally, for the expansion at the cusp 1/2, we have

Rs,k|η1/2(z) =
∑

n≥1,(−1)kn≡1(4)

a(1/2N)
s (n)e2πinz/4

where η1/2(z) =


1 0

2 1

 , (2z + 1)(k+1/2)

. Following the same steps ex-

actly as for the case of the cusp 1, we get

a1/2
s (n) =2× 4sΓ(k + 1/2− s)ns−1 + 4s(2πi)k+1/2nk−1/2 Γ(s)Γ(k + 1/2− s)

Γ(k + 1/2)

×
∑

c≥1,c≡1 mod 2
d(c)∗,ad−2bc=1
d≡−c mod 4

(
4c

d

)(
−4

−c

)k+1/2

c−(k+1/2)
( c
a

)s
(
e2πind/ceπis/21F1(s, k + 1/2;

−2πin

ac
) + e

−2πind
c e

−πis
2 1F1(s, k + 1/2;

2πin

ac
)

)
.

By Theorem 2.3.1, we let {fk,1, ...fk,gk} be the basis of Hecke eigenforms

of S+
k+1/2(4), where gk is the dimension of S+

k+1/2(4).
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Theorem 4.1. Let t0 ∈ R and ε > 0. Then there exist a constant C(t0, ε) > 0

depending only on t0 and ε such that for k > C(t0, ε) and k ∈ 2Z, the function

gk∑
ν=1

1

〈fk,ν , fk,ν〉
L∗(fk,ν |W4, s)

does not vanish at any point s = σ + it with t = t0, and k
2
− 1

4
< σ < k

2
+ 3

4
.

Proof. Since {fk,1, ...fk,gk} is the basis, and Rs̄,k|pr ∈ S+
k+1/2(4), we have

Rs̄,k|pr =

gk∑
ν=1

〈fk,ν , Rs̄,k|pr〉
〈fk,ν , fk,ν〉

L∗(fk,ν , s).

Now using Lemma 4.1, we get

Rs̄,k|pr = ck

gk∑
ν=1

L∗(fk,ν |W4, s)

〈fk,ν , fk,ν〉
fk,ν (4.2)

where ck is a constant. By Lemma 4.2, and since fk,µ is a cusp form, com-

paring the first Fourier coefficient of the two sides of will lead us to

2

3

(
as(1) + 2k−1

(
(−1)kn

2

)
a1/2
s (1)

)
= c′k

gk∑
ν=1

L∗(fk,ν |W4, s)

〈fk,ν , fk,ν〉
.

Now we divide by 2
3
4s(2π)sΓ(k + 1

2
− s) and let 1f1(α, β; z) be equal to
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Γ(α)Γ(β−α)
Γ(β) 1F1(α, β; z) as before, we get

4−s+
(2πi)k+1/2−s

2× 4sΓ(k + 1/2− s)
∑
ac>0

(a,c)=1,4|c

( c
a

)(−4

a

)k+1/2

c−(k+1/2)
( c
a

)s
(
e2πina′/ceπis/21F1(s, k + 1/2;

−2πin

ac
) + e

−2πina′
c e

−πis
2 1F1(s, k + 1/2;

2πin

ac
)

)
+ 2k−1(2π)s(−1)k +

(2π)k+1/2−sik+1/2

Γ(k + 1/2− s)
∑

c≥1,c≡1 mod 2
d(c)∗,ad−2bc=1
d≡−c mod 4

(
4c

d

)(
−4

−c

)k+1/2

c−(k+1/2)
( c
a

)s
(
e2πind/ceπis/21F1(s, k + 1/2;

−2πin

ac
) + e

−2πind
c e

−πis
2 1F1(s, k + 1/2;

2πin

ac
)

)
= c′k

gk∑
ν=1

L∗(fk,ν |W4, s)

〈fk,ν , fk,ν〉
.

(4.3)

Suppose the right-hand side of (4.3) vanishes at s = k/2 + 1/4 − δ + it0,

where 0 ≤ δ ≤ 1/2; thus taking the absolute value on both sides will give us

2k−1 − 4−k/2−1/4+δ ≤ |2k−1 + 4−s|

≤ (2π)k/2+1/4+δ

2× 4k/2+1/4−δ|Γ(k
2

+ 1
4

+ δ − it0|
∑
ac>0

(a,c)=1,4|c

1

ck+1/2
(e−πt0/2 + eπt0/2)

+
(2π)k/2+1/4+δ

|Γ(k
2

+ 1
4

+ δ − it0|
∑

c≥1,c≡1 mod 2
d(c)∗,ad−2bc=1
d≡−c mod 4

1

ck+1/2
(e−πt0/2 + eπt0/2)

where as is Chapter 3, we have used that

|1f1(α, β; z)| ≤ 1.

51



Now if we tend k to ∞ on both sides and since

lim
k→∞

(2π)k/2+1/4+δ

αk|Γ(k
2

+ 1
4

+ δ − it0|
= 0

for α ∈ Z, then we get

lim
k→∞

2k−1 = +∞ < 0

Contradiction! This proves the theorem.

Corollary 4.1. Let t0 ∈ R and ε > 0. Then for k > C(t0, ε) and any

s = σ + it with t = t0, k/2− 1/4 < Re(s) < k/2 + 3/4, there exists a Hecke

eigenform f ∈ S+
k+1/2(4) whose L-values do not vanish at s.

Proof. By the previous theorem, any function f ∈ S+
k+1/2(4), such that f is

running over a basis of normalized Hecke eigenforms of weight k + 1/2, will

satisfy this condition.
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