
AMERICAN UNIVERSITY OF BEIRUT

LEAST GRADIENT PROBLEM

by

MARIE-JOSE FADI CHAAYA

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Science

to the Department of Mathematics

of the Faculty of Arts and Sciences

at the American University of Beirut

Beirut, Lebanon

May 2020





AMERICAN UNIVERSITY OF BEIRUT 

THESIS~ RELEASE FORM 

Student Na.me:[ ........ b ..... o_m..,./ .... Q.,... _ __.,.(Y\___._..o...,.,y:....,\...._e_~.....,~~Q..._$_...__P __ --+f._.o ... d--'--'i.___ 
Last First Middle 

• 0 C 
Master's Thesis Master's Project Doctoral Dissertation 

l&1 I authorize the American University of Beirut to: (a) reproduce hard or electronic copies 

of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos

itories of the University; and (c) ~ake freely available such copies to third parties for research 

or educational purposes. 

D I authorize the American University of Beirut, to: (a) reproduce hard or electronic 

copies of it; (b) include such copies in the archives and digital repositories of the University; 

and (c) make frocly available such copies to third parties for research or educational purposes 

after: One _ year from the date of submission of my thesis, dissertation or project. 
Two _ years from the date of submission of my thesis, dissertation or project. 

Three __ years from the date of submission of my thesis , dissertation or project. 

.¥: 01/G/J..o~ , I 

Sip;naturc Date 

This form is signed when submitting the thesis, dissertation, or project to the University Libraries 



Acknowledgements

I wish to start by expressing my deepest gratitude to my advisor, Professor

Faruk Abi-Khuzam, for his constant assistance. Thank you for your expertise,

alongside the knowledge and valuable information you’ve given me. Writing my

thesis was a challenging task, but you made it all possible .

I would also like to thank Professor Bassam Shayya and Professor Ahmad

Sabra for being part of my thesis committee. Thank you for your continuous

support. It was a great pleasure working on Professor Ahmad Sabra’s paper,

which I admired and was highly inspired with.

Special thanks to my friends at AUB whom I cherish every moment spend

with them. They made the whole process so much better.

Finally, I must express my gratitude to my family, who stood by my side

and supported me in everything. Thank you for your unconditional love, I never

would have made it without you.

v



An Abstract of the Thesis of

Marie-Jose Fadi Chaaya for Master of Science

Major: Mathematics

Title: Least Gradient Problem

If f is a given function defined on the boundary BΩ of a domain Ω in d-

dimensional Euclidean space, the least gradient problem (LGP) asks for the fol-

lowing: among all functions u in the space BV pΩq, and having boundary values

equal to f , does there exist a function that minimizes the set of all L1 norms of

the gradients of such functions? Furthermore, if such a minimizer exists, what

further smooth and minimizing properties does it have? The purpose of this

thesis is to study this problem in the two dimensional case, where Ω is strictly

convex, and to explore the situation where Ω is only convex.

The exposition will present a study of level sets of minimizers, as well as the

connection, through the co-area theorem, between the properties of those level

sets and the minimizing function.
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Chapter 1

Introduction

A lot of research has been done over the years on the least gradient problem.It

continues to be a problem of great interest, particularly because there are still

subtle questions regarding this problem.

We note that the least gradient problem (LGP) is defined on Rn for n ě 1. In

fact, in case of a particular class of boundary data, a particular domain structure,

the existence of a continuous solution was achieved upon construction. Indeed,

we will later observe in this exposition that the continuity of the solution depends

on the continuity of boundary data and structure of domain.

First, uniqueness of the obtained solution was achieved by Stenberg,Williams, and

Ziemer, r1s, with the fact that Bombieri, De Giorgi, and Giusti,r2s, demonstrated

that the level sets are minimal surfaces. Since minimal surfaces are solutions of

a special differential equation, and because differential equation solutions are

unique, the uniqueness of the constructed LGP solution has been defined.

However, a different approach is given in r3s to develop the uniqueness of a solu-

tion. This approach focuses on the construction of level sets of solutions and the

fact that they are minimal surfaces.

In chapter 2, we will introduce some basic notions that are of great help to
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understand the set of functions in which we will be working with in the LGP.

Furthermore, we will define the notion of perimeter and the co-area formula which

will help us in achieving the existence of a solution.

In chapter 3, we first introduce the LGP and observe the construction of a solu-

tion obtained for Ω Ă R2 plane domain strictly convex with C1 lipchitz boundary

and boundary data f continuous on a part Γ of the boundary of Ω. After illus-

trating the proof given in r3s that the constructed function is indeed a solution,

we aim on showing its uniqueness when f satisfies some monotonicity condition

on Γ also given by r3s.

We then go further in providing one of the most important results to be given

in r3s which is the existence and uniqueness of a solution when Ω is only convex

and not strictly convex.

Moreover, we will show a relation achieved by Gorny,Rybka and Sabra, r3s, be-

tween the least gradient problem and a problem in free material design.

Then, examples will follow to illustrate this connection.

Lastly, in chapter 4, we define namely the constrained least gradient problem.

We now work in Rn, n ě 1. Similar to the LGP, the constrained least gradient

problem is the LGP with an additional constraint. This constraint requires the

solutions to be lipchitz. Also, we will observe the construction of solutions given

by r4s while noticing that the additional constraint will affect somehow the choice

of sets taken in the construction.
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Chapter 2

Preliminary

As we aim later on introducing the least gradient problem and tend to solve it as

was done in r3s, we realize that the set of functions in which the least gradient

problem is defined is for functions of bounded variation. Therefore, we first aim

on reviewing some basic definitions and some important theorems that will help

in solving the least gradient problem.

In this chapter, we review the classical notion of a function of bounded variation,

and consider its connection to differentiability. We will review this notion in one

dimension and then in higher dimensions. Also, we will define a new notion of

bounded variation and establish a relation between the classical notion and the

new one. As well, we will define a new notion of perimeter of measurable sets and

establish an important formula to be used later in this paper called the coarea

formula.

2.1 Bounded Variation in R

Definition 2.1.1. Let f : ra, bs ÞÑ R

We define the essential variation of f to be:

essV b
a f “ supt

n´1
ÿ

j“0

|fptj`1q´fptjq| ; a “ t0 ă t1 ă ... ă tn´1 ă tn “ b partition of ra, bsu
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where each ti a point of approximate continuity of f @i “ 0, .., n.

According to Tonelli we say f is of bounded variation and denote it by

f P BV pa, bq ðñ essV b
a f ă 8.

Example If f : ra, bs ÞÑ R is monotone then f P BV pa, bq and

essV b
a f “ |fpbq ´ fpaq|

Proposition 1. Let f : ra, bs ÞÑ R. The following implications hold:

If f is continuously differentiable ñ f is lipchitz continuousñ f is absolutely con-

tinuous ñ f is of bounded variation ñ f is differentiable a.e. .

Theorem 2.1.1. r5s If f : ra, bs ÞÑ R continuous on ra, bs and f 1 exists and is

bounded on pa, bq then f is absolutely continuous on ra, bs.

Theorem 2.1.2. r5s If f is absolutely continuous then f 1 exists a.e. and is inte-

grable. Also, we have, essV b
a pfq “

şb

a
|f
1

pxq|dx

Definition 2.1.2. Let f P L1pa, bq. We now define the number
ż b

a

|Df |dx “ supt

ż b

a

fg1 dx; |g| ď 1, g P C1
0pa, bqu

to be the total variation of f .

Remark 1. If f P C8pa, bq, then
şb

a
|Df | “

şb

a
|f 1|

Theorem 2.1.3. r6s Let f defined on Rn. Let Ω Ă Rn @n ě 1.

If
ş

Ω
|Df | ă 8 ñ Dfj P BV pΩq X C

8pΩq; fj ÝÑ f in L1pΩq and
ş

Ω
|Dfj| ÝÑ

ş

Ω
|Df | as j ÝÑ `8

Theorem 2.1.4. r6s Let Ω Ă Rn.

If fj ÝÑ f in L1pΩq then D a subsequence tfjku such that fjk ÝÑ f a.e.

Theorem 2.1.5. r6s Let f P L1pa, bq then
şb

a
|Df | “ essV b

a pfq
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Proof. ď) Since each lebesgue point is a point of approximate continuity of f ,

consider the partition a “ t1 ď t2 ď ... ď tn “ b where each ti is a lebesgue point.

Let η be a mollifier satisfying:

1. 0 ď ηpxq ď 1 @x P pa, bq

2. suppη Ă r´1, 1s

3.
ş1

´1
ηpxqdx “ 1

Let ε ą 0.

Define the function ηεpxq “ 1
ε
ηpx

ε
q and the convolution f ε :“ ηε ˚ f P C

8pa, bq.

m
ÿ

j“1

| f εptj`1q ´ f
ε
ptjq “

m
ÿ

j“1

|

ż ε

´ε

pηεpsqfptj`1 ´ sq ´ ηεpsqfptj ´ sqqds |

“

m
ÿ

j“1

|

ż ε

´ε

ηεpsqpfptj`1 ´ sq ´ fptj ´ sqqds |

ď

m
ÿ

j“1

ż ε

´ε

ηεpsq | fptj`1 ´ sq ´ fptj ´ sq | ds

“

ż ε

´ε

ηεpsq
m
ÿ

j“1

| fptj`1 ´ sq ´ fptj ´ sq | ds

(2.1)

But as tj is a lebesgue point then tj´ s is a lebesgue point and thus approximate

point @j “ 1, ..,m

ñ
ř

|f εptj`1q ´ f
εptjq| ď essV b

a pfq
şε

´ε
ηεpsqds

But
şε

´ε
ηεpsqds “

şε

´ε
1
ε
ηp s

ε
qds

Take x “ s
ε
ñ dx “ 1

ε
ds

ñ
ş1

´1
ηpxqdx “ 1

ñ
řm
j“1 | f

εptj`1q ´ f
εptjq |ď essV b

a pfq

Taking sup over all such partitions we get essV b
a pf

εq ď essV b
a pfq

Now,
şb

a
f εg

1

dx “ ´
şb

a
pf εq

1

gdx ď|
şb

a
pf εq

1

dx |ď
şb

a
| pf εq

1

| dx

Hoewever, as f ε is continuously differentiable, we have
şb

a
| pf εq

1

| dx “ essV b
a f

ε
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ñ
şb

a
f εg

1

dx ď essV b
a f

ε ď essV b
a f .

As f ε ÝÑ f in L1pa, bq as ε ÝÑ 0

Then,
şb

a
fg

1

dx “ limεÑ0

şb

a
f εg

1

dx ď essV b
a f

Taking sup over all such g, we finally get the first inequality
şb

a
|Df | ď essV b

a pfq

ě) Now suppose
şb

a
|Df | ă 8 ñ Dtfju Ă BV pa, bqXC8pa, bq; fj ÝÑ f in L1pa, bq,

şb

a
|Dfj| ÝÑ

şb

a
|Df |, and D a subsequence still denoted by tfju such that fj ÝÑ f

a.e.

We write fjpzq “ fjpyq `
şz

y
fj
1

pxqdx for a ď y ď z ď b

Averaging with respect to y we get,

´

şb

a
| fjpzq | dy“ ´

şb

a
| fjpyq | dy`´

şb

a
|
şz

y
pfjq

1

pxqdx| dy

ñ |fjpzq| “ ´

şb

a
|fjpyq| dy+ |

şz

y
fj
1

pxqdx|

ñ |fjpzq| ď ´

şb

a
|fjpyq| dy+

şz

y
|fj

1

pxq|dx

ñ |fjpzq| ď ´

şb

a
|fjpyq| dy+

şb

a
|fj

1

pxq|dx

But as fj P BV pa, bqXC8pa, bq we have
şb

a
|Dfj| “

şb

a
|fj

1

| ă 8 and as fj P L1pa, bq

then 1
b´a

şb

a
|fjpyq|dy ă 8

ñ |fjpzq| ă 8

ñ fj is uniformly bounded

ñ ||fj||8 ă 8 @j

ñ supj||fj||8 ă 8

But || ¨ ||8 is continuous and fj ÝÑ f a.e. ñ ||f ||8 ă 8

ñ f P L8pa, bq

As f is essentially bounded then each approximate point of continuity of f is a

lebesgue point and thus f εpxq ÝÑ f a.e. x lebesgue point in (a,b).

Let a “ t1 ă .. ă tm “ b be a partition of (a,b) with each tj a point of approximate
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continuity of f @j “ 1, ..m.

m
ÿ

j“1

| fptj`1q ´ fptjq |“ lim
εÑ0

m
ÿ

j“1

| f εptj`1q ´ f
ε
ptjq |ď lim sup

εÑ0

ż b

a

| pf εq
1

| dx

since f P C8pa, bq and thus essV b
a f

ε “
şb

a
|pf εq1|dx.

Claim:
şb

a
|pf εq

1

|dx ď
şb

a
|Df |.

In fact,
şb

a
pf εq

1

g dx “ ´
şb

a
f εg

1

dx “ ´
şb

a
pηε ˚ fqg

1

dx “ ´
şb

a
fpηε ˚ gq

1

dx

now ηε ˚ g P C
1
0pa, bq and |ηε ˚ g| ď 1

Taking sup over all such functions, ñ
şb

a
pf εq

1

gdx ď
şb

a
|Df |

ñ
şb

a
|pf εq

1

| dx ď
şb

a
|Df | since f P C8pa, bq and thus

şb

a
|pf εq1|dx “

şb

a
|Df ε|

Hence,
řm
j“1 |fptj`1 ´ fptjq| ď

şb

a
|Df |

Taking sup over all such partitions we get:

essV b
a f ď

şb

a
|Df |

Conclusion,
şb

a
|Df | “ essV b

a f

Remark 2. Hence, we now say f P BV pa, bq ðñ
şb

a
|Df | ă 8.

2.2 Bounded Variation in R2

Definition 2.2.1. Consider the rectangle I “ ra, bs ˆ rc, ds and f defined on the

rectangle.

Fix y P rc, ds and define f1ptq “ fpt, yq for t P ra, bs.

Similarly, fix x P ra, bs and define f2ptq “ fpx, tq for t P rc, ds.

According to Tonelli, f is said to be of bounded variation on I if
şd

c
essV b

a f1dy ă 8 and
şb

a
essV d

c f2dx ă 8 where
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essV b
a f1 “ supt

m´1
ÿ

j“0

| fptj`1, yq´fptj, yq; a “ t0 ă t2 ă .. ă tm “ b partition of ra, bsu

essV d
c f2 “ supt

m´1
ÿ

j“0

| fpx, tj`1q´fpx, tjq; c “ t0 ă t2 ă .. ă tm “ d partition of rc, dsu

with each tj a point of approximate continuity of f @j “ 1, ..m.

Remark 3. Now if f is absolutely continuous, then

essV b
a f1 “

ż b

a

|
Bf

Bx
|dx , essV d

c f2 “

ż d

c

|
Bf

By
|dy

Hence, f P BV pIq and
şd

c

şb

a
|
Bf
Bx
|dxdy ă 8 and

şb

a

şd

c
|
Bf
By
|dydx ă 8 which gives

ş

ra,bsˆrc,ds
|∇f | ă 8

2.3 Bounded variation in Rn @n ą 1

Definition 2.3.1. Denote x1 “ px1, .., xk´1, xk`1, .., xnq and fkptq “ fpx1, tq “

fpx1, .., xk´1, t, xk`1, .., xnq as a function of t P pa, bq, @ ´ 8 ă a ă b ă 8,

@k “ 1, .., n. Let K Ă Rn´1 compact, and L Ă Rn with L “ tx P Rn; x1 P

K, xk P pa, bqu.

According to Tonelli, f P BV pLq ðñ
ş

K
essV b

a fkdx
1

ă 8 @k “ 1, ..n.

Remark 4. If f is absolutely continuous then f P BV pRnq and
ş

| ∇f |ă 8

Definition 2.3.2. For Ω Ă Rn open and f P L1pΩq define:
ż

Ω

|Df | dx :“ supt

ż

Ω

fdivg dx ; g “ pg1, .., gnq P C
1
0pΩq, |g| ď 1u

the variation of f in Ω.

Remark 5. In fact, for f P L1pΩq,
ş

Ω
|Df |dx “ |Df |pΩq the total variation of

Df in Ω where Df is the distributional derivative of f characterized to be a

vector valued radon measure.
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However, if f P CkpΩq for k ě 1 we get
ş

Ω
|Df |dx “

ş

Ω
|∇f | where ∇f is the

gradient of f in the usual derivative sense.

If f P W 1,1pΩq the sobelev space, then
ş

Ω
|Df |dx “

ş

Ω
|gradf |dx where now gradf

is the gradient of f in the distributional sense.

Theorem 2.3.1. r6s Let K Ă Rn compact, x1 “ px1, .., xk´1, xk`1, .., xnq and

C “ tx P Rn;x
1

P K, a ă xk ă bu and f P L1pCq. Then,
ş

K
essV b

a fk dx
1

ă 8 ô
ş

C
|Df |dx ă 8 @k “ 1, ..n , @ ´8 ă a ă b ă 8

Proof. ðq Suppose
ş

C
|Df |dx ă 8. We have that

1. f εk ÝÑ fk in L1pa, bq

2. @g P C1
0pRnq, |g| ď 1, we have:

ş

C
pf εq

1

gdx “ ´
ş

C
f εdivgdx “ ´

ş

C
fdivpηε ˚ gqdx ď

ş

C
|Df |dx

ñ
ş

C
|Df ε|dx ď

ş

C
|Df |dx.

ñ lim supεÝÑ0

ş

|Df ε| ď
ş

C
|Df |dx ă 8

Now let g P C1
0pRnq, |g| ď 1,

ş

fkg
1

dx “ limεÝÑ0

ş

f εkg
1

dx ď lim inf essV b
a f

ε
k by theorem 2.1.5.

ñ essV b
a fk ď liminfεÝÑ0essV

b
a f

ε
k for Hn´1 a.e. x1 P K

By Fatou’s lemma,
ż

K

essV b
a fk ď

ż

K

lim inf essV b
a f

ε
k ď liminfεÝÑ0

ż

K

essV b
a f

ε
kdx

1
“ liminfεÝÑ0

ż

C

|pf εkq
1

|dx

But liminfεÝÑ0

ş

C
|pf εkq

1

|dx ď limsup
ş

C
|Df ε|dx ă 8

Then,
ş

K
essV b

a fk ă 8

ñq Let f P L1
locpRnq and

ş

K
essV b

a fkdx
1

ă 8.

Let g P C1
0pRnq , |g| ď 1 , suppg Ă tx; a ă xk ă bu

ş

Rn f
Bg
Bxk
dx “

ş

suppg
f Bg
Bxk
dx “

ş

K
p
şb

a
f Bg
Bxk
dxkqdx

1

ď
ş

K
essV b

a fkdx
1

ă 8

ñ
ş

Rn |Df |dx ă 8.

9



Remark 6. Hence, we can now say f P BV pΩq ðñ
ş

Ω
|Df |dx ă 8 where

Ω Ă Rn open.

Theorem 2.3.2. r6s Assume Ω Ă Rn is open and bounded, with BΩ lipchitz

continuous. There exists a bounded linear mapping

T : BV pΩq ÞÑ L1
pBΩ; Hn´1

q

such that
ż

Ω

fdivgdx “ ´

ż

Ω

g d|Df | `

ż

BΩ

pν ¨ gqTfdHn´1

for all f P BV pΩq and g P C1pRn;Rnq where Hn´1 is the pn ´ 1q-dimensional

Hausdorff measure.

Definition 2.3.3. The function Tf which is uniquely defined up to sets of Hn´1-

measure zero on BΩ, is called the trace of f on BΩ.

2.4 Perimeter of a measurable set

Definition 2.4.1. Now let f “ 1E be the characteristic function for E Ă Rn a

measurable set.
ż

Ω

|Df |dx “

ż

Ω

| D1E | dx “ supt

ż

E

divgdx ; g “ pg1, .., gnq P C
1
0pΩq, |g| ď 1u

is said to be the perimeter of E and is denoted by P pE,Ωq.

We say E has finite perimeter if P pE,Ωq ă 8.

Theorem 2.4.1. r7s Suppose E Ă Rn has C2 boundary, then

P pE,Ωq “ Hn´1
pBE X Ωq

where Hn´1 is the pn´ 1q-dimensional Hausdorff measure.

Proof. ď ) Using Gauss Green theorem, we have,
ż

E

divgdx “

ż

BE

gνdHn´1
ď Hn´1

pBE X Ωq

10



for all g P C1
0pΩq, |g| ď 1 where ν is the outer normal to BE.

Taking the supremum over all such g, we get, P pE,Ωq ď Hn´1pBE X Ωq

ě) As E has C2 boundary, then νE(unit outer normal to BEq exists as a C1-vector

valued function.

Let N be the extension of νE to Rn satisfying:

1. N “ νE on E

2. |Npxq| ď 1 @x P Rn

3. NP C1pRn,Rnq

Now for η P C1
0pΩq, |η| ď 1 , define φ “ Nη.

Then, φ P C1
0pΩq, |φ| ď 1, and NνE “ |νE|2 “ 1 on E. Then,

ş

E
divφdx “

ş

BE
φνEdH

n´1 “
ş

BE
NηνEdH

n´1 “
ş

BE
ηdHn´1.

Taking supremum over all such φ and η we get:

P pE,Ωq ě supt
ş

BE
ηdHn´1, η P C1

0pΩq, |η| ď 1u ě Hn´1pBE X Ωq

To observe the result better in R2 and R3 we wil prove the result in another way.

We recall Green’s theorem in the plane:

Let EĂ R2 open, M,N P C1pEq, Ω Ă E , Ω closed , BΩ positively oriented, then
ş

BΩ
pMdx`Ndyq “

ť

Ω
pBN
Bx
´ BM

By
qdA

Now let g “ pg1, g2q P C
1
0pR2q satisfying |g| ď 1

Take N “ g1, and M “ ´g2,

11



ż

Ω

divgdA “

ż

Ω

p
Bg1

Bx
`
Bg2

By
qdA

“

ĳ

Ω

p
BN

Bx
´
BM

By
qdA

“

ż

BΩ

pMdx`Ndyq

“

ż

BΩ

p´g2dx` g1dyq

ď

ż

BΩ

a

pg1q
2 ` pg2q

2
a

pdxq2 ` pdyq2

ď

ż

BΩ

a

pdxq2 ` pdyq2

“ LpBΩq

(2.2)

By a special choice of g, we get,

supt

ż

Ω

divgdx ; g “ pg1, g2q P C
1
0pΩq, |g| ď 1u “ LpBΩq

with LpBΩq length of the boundary of Ω.

In R3, suppose |ÝÑg | ď 1
ş

Ω
divgdx “

ş

BΩ
ÝÑg .ÝÑn ds ď

ş

BΩ
|ÝÑg ||ÝÑn |ds ď

ş

BΩ
ds “ surface area of BΩ.

By a special choice of g, we get,

supt

ż

Ω

divgdx ; g “ pg1, g2, g3q P C
1
0pΩq, |g| ď 1u “ surface area of BΩ

2.5 Coarea formula

We introduce now the co area formula that permits us to have a relation between

the variation of a function in L1 and the perimeter of the superlevel sets of that

function. Indeed,

Theorem 2.5.1. r6s If Ω Ă Rn, f P BV pΩq, and Et “ tx P Ω;fpxq ě tu @t P R,

then:
ż

Ω

|Df | “

ż `8

´8

P pEt,Ωqdt

12



Proof. We will prove the following using several steps:

Step1: If f P L1pΩq

For f ě 0, f can be written as fpxq “
ş8

0
1Etpxqdt for a.e. x P Ω

For f ď 0, f can be written as fpxq “
ş0

´8
p1Etpxq ´ 1qdt for a.e. x P Ω.

Now let g P C1
0pΩq and |g| ď 1 then:

ż

Ω

fdivgdx “

ż

ΩXtfď0u

fdivgdx`

ż

ΩXtfě0u

fdivgdx

“

ż

Ω

p

ż 0

´8

p1Etpxq ´ 1qdtqdivgdx`

ż

Ω

p

ż 8

0

1Etpxqdtqdivgdx

“

ż 0

´8

p

ż

Ω

p1Etpxq ´ 1qdivgdxqdt`

ż 8

0

p

ż

Ω

1Etpxqdivgdxqdt

“

ż 0

´8

p

ż

Et

divgdxqdt´

ż 0

´8

p

ż

Ω

divgdxqdt`

ż 8

0

p

ż

Et

divgdxqdt

“

ż `8

´8

p

ż

Et

divgdxqdt

(2.3)

with
ş

Ω
divgdx “ 0 as

ş

Ω
divgdx “

ş

BΩ
gνdHn´1 “ 0 as g|BΩ “ 0.

Hence, taking sup over all such g, we get:
ş

Ω
|Df | ď

ş8

´8
P pEt,Ωqdt

It remains to prove
ş

Ω
|Df | ě

ş8

´8
P pEt,Ωqdt

Step2: Let f P BV pΩq X C8pΩq

Define mptq “
ş

Ω´Et
|Dfpxq|dx “

ş

tfďtu
|Df |dx ě 0

ż 8

´8

m
1

ptqdt “ lim
tÝÑ8

mptq ´ lim
tÝÑ´8

mptq

“

ż

Ω´E8

|Df |dx´

ż

Ω´E´8

|Df |dx

“

ż

ΩXtfď8u

|Df |dx`

ż

ΩXtfě8u

|Df |dx

“

ż

ΩXt´8ďfď8u

|Df |dx

ď

ż

Ω

|Df |dx

(2.4)
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Now, limrÝÑ0
mpt`rq´mptq

r
“ lim

rÝÑ0
t
1

r
p

ż

Ω´Et`r

|Df |dx´

ż

Ω´Et

|Df |dxqu

“ lim
rÝÑ0

t
1

r

ż

Et´Et`r

|Df |dxu

ě lim
rÝÑ0

1

r

ż

Et´Et`r

Dfgdx

(2.5)

As
ş

Dfgdx ď |
ş

Dfgdx| ď
ş

|Df ||g|dx ď
ş

|Df |dx.

Define for ´8 ă t ă 8 , r ą 0, ηpsq “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 s ď t

s´t
r

t ď s ď t` r

1 s ě t` r

We recognize as r ÝÑ 0, ηpsq “

$

’

&

’

%

0 s ď t

1 s ą t

η is differentiable everywhere except at s “ t`r and s “ tñ η
1

psq “

$

’

&

’

%

0 t` r ă s ă t

1
r

t ă s ă t` r

ñ 1
r

ş

Et´Et`r
Dfgdx “

ş

Ω
η
1

pfpxqqDfgdx “
ş

Ω
pηpfpxqqq

1

gdx “ ´
ş

Ω
ηpfpxqqdivgdx.

Hence,

lim
rÝÑ0

mpt` rq ´mptq

r
ě ´ lim

rÝÑ0

ż

Ω

ηpfpxqqdivgdx “ ´

ż

Ω

lim
rÝÑ0

ηpfpxqqdivgdx “ ´

ż

Et

divgdx

ñ m
1

ptq ě ´
ş

Et
divgdx

ñ
ş8

´8
m
1

ptq ě ´
ş8

´8
p
ş

Et
divgdxqdt

ñ
ş

Ω
| Df | dx ě ´

ş8

´8
p
ş

Et
divgdxqdt

Taking sup over all such g, we get,
ş

Ω
| Df | dx ě

ş8

´8
P pEt,Ωqdt

Step 3: f P BV pΩq

ñ Dtfku Ă BV pΩqXC8pΩq, Dfk ÝÑ in L1 and
ş

Ω
| fk |ÝÑ

ş

Ω
| Df | as k ÝÑ 8

14



Let Ek
t “ tx P Ω; fkpxq ě tu

Claim:
ş

Ω
p
ş8

´8
| p1Ekt

pxq ´ 1Etpxqq | dtqdx “
ş

Ω
| fkpxq ´ fpxq | dx

In fact, 1Ekt pxq “

$

’

&

’

%

0 fkpxq ď t

1 fkpxq ě t

and 1Etpxq “

$

’

&

’

%

0 fpxq ď t

1 fpxq ě t

ñ| 1Ekt
pxq ´ 1Etpxqq |“

$

’

&

’

%

1 fkpxq ě t ě fpxq or fpxq ě t ě fkpxq

0 otherwise

ñ
ş8

´8
|1Ekt

pxq ´ 1Etpxqq|dt “
şmaxpfpxq,fkpxqq

minpfpxq,fkpxqq
dt “ |fkpxq ´ fpxq|

. Now, as fk ÝÑ f in L1 ñ 1Ekt
pxq ÝÑ 1Etpxq in L1

ñ limkÝÑ8

ş

Ω
1Ekt

divg “
ş

Ω
1Etdivg

With the help of Fatou’s lemma, hence,
ż

Ω

| Df |“ lim
kÝÑ8

ż

Ω

| Dfk |“ lim
kÝÑ8

ż 8

´8

P pEt,Ωq ě

ż 8

´8

lim inf
kÝÑ8

P pEk
t ,Ωq “

ż 8

´8

P pEt,Ωq
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Chapter 3

Least Gradient Problem

In this chapter, we will first introduce the least gradient problem and prove the

existence and uniqueness of a solution. After, we will show relations with the

least gradient problem demonstrated with examples.

3.1 Introduction

Let Ω be a bounded domain in Rn, and let f be a given function defined on its

boundary BΩ. We seek a solution u P BV pΩq to the problem:

mint

ż

Ω

|∇u| ; u “ fu

In fact, if we take a minimizing sequence of the LGP, we cannot ensure the limit-

ing function will satisfy the boundary conditions and thus we cannot ensure the

limiting function will be an element of the set. Therefore, we cannot guarantee

that a minimum does exist for every functions f and every domain Ω.

Example 1 Consider the case in one dimension. Here Ω “ ra, bs and we are

given a boundary function f i.e. given two values tfpaq, fpbqu. We start with the

class of all absolutely continuous functions on Ω, and we seek a solution of the

16



LGP in this class.

We proceed as follows: given a function u absolutely continuous on ra, bs, and

satisfying upaq “ fpaq, upbq “ fpbq, how small can
şb

a
|u1| be. Here, we resort to the

fact that, since u is absolutely continuous, its derivative exists almost everywhere,

is summable, and the integral of the derivative equals the total variation essV b
a u.

But essV b
a u ě |upbq ´ upaq| “ |fpbq ´ fpaq|, and this lower bound is independent

of the particular function u. This gives us that mint
şb

a
|u1|u ě |fpbq ´ fpaq|. In

addition, any monotone absolutely continuous function v on ra, bs, satisfies the

equality
şb

a
|v1| “ |vpbq ´ vpaq| “ |fpbq ´ fpaq|. Hence, the minimum is indeed

|fpbq ´ fpaq| and is attained by monotone functions.

Example 2 The previous example can be extended to cover the class of func-

tions of bounded variation. If u P BV pa, bq, then its derivative exists a.e. but

does not usually integrate back to the function. It is however, possible to define

a generalized derivative Du, and then the question becomes that of minimizing
ş

|Du|. In this case, once again, we have
ş

|Du| equals the variation of u on ra, bs,

and as in previous example we find the minimum value and also the extremal

functions.

Example 3 It is natural to move from the one dimensional case to the two

dimensional. Let Q be the rectangle ra, bs ˆ rc, ds, let f be a function defined on

the boundary of Q, and let u be defined and absolutely continuous on Q, with

boundary values equal to f . Here again, the gradient ∇u exists a.e. and we seek

to minimize its integral
ş

Q
|∇u|. We recall the concept of bounded variation due

to Tonelli. For each fixed x P pa, bq, let essV d
c u2pxq be the essential variation

of upx, .q on rc, ds. If now we integrate this with respect to x on ra, bs and the

resulting integral is finite, we say u is of bounded variation on Q. Of course we

could start with pessV b
a u1qpyq being the essential variation of up., yq on ra, bs, and
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then integrate with respect to x.

We point out that one of these integrals may very well be zero as is seen if we

start with a function u which depends only on x. So we need to concentrate on

a class of functions for which both integrals will be finite.

If we start with an absolutely continuous function u, then we can express in terms

of the partial derivative as follows:

pessV b
a u1qpyq “

ż b

a

|
Bupx, yq

Bx
|dxdy , pessV d

c u2qpxq “

ż d

c

|
Bupx, yq

By
|dydx

So we end up with two integrals namely
ż d

c

ż b

a

|
Bupx, yq

Bx
|dxdy ,

ż b

a

ż d

c

|
Bupx, yq

By
|dydx

Thus, if we start with a function having continuous partial derivatives on Q we

are guarenteed the finiteness of both of last integrals.

We can find ower bounds for each of these integrals in the most simple way,

namely to use trivial lower bounds for the variation.

Proposition 2. Let u be absolutely continuous on the rectangle Q “ ra, bs ˆ

rc, ds. Suppose that the boundary values of u are given by a function f . Then the

following lower bound for the integral of |∇u| holds
ż

Q

|∇u| ě 1

2
t

ż d

c

|fpb, yq ´ fpa, yq|dy `

ż b

a

|fpx, dq ´ fpx, cq|dxu

A special case

Suppose Q “ r0, as ˆ r0, bs, and the boundary function f is non-negative and

satisfies fpx, 0q “ 0 for all x P r0, as; and fp0, yq “ 0 for all y P r0, bs. In this

case, we have the simplification
ż d

c

|fpb, yq´fpa, yq|dy`

ż b

a

|fpx, dq´fpx, cq|dx “

ż b

0

fpa, yqdy`

ż a

0

fpx, bqdx “

ż

BQ

fpx, yqds
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Example 4 Let Ω be any plane domain in R2 and u P BV pΩq

For Du defined in the distributional sense, we always have
ş

Ω
| Du |ě 0.

Hence, min
ş

Ω
| Du |ě 0. We now take f to be any constant function defined

on BΩ say f “ k with k a positive constant. Among all functions u of bounded

variation defined on Ω and u “ k on BΩ, one has the constant function u “ k.

We get ∇u “ 0 ñ
ş

Ω
| ∇u |“ 0.

Hence for f constant with Ω plane domain the solution to the LGP is 0.

The method illustrated above relies on the link between the essential varia-

tion and the LGP. However, particular classes of functions were taken. What we

need, is to find the least gradient function over all bounded variation functions

satisfying the boundary conditions. Therefore, in the modern treatment of the

subject, what we seem to need is the notion of perimeter of measurable sets. We

will use the help of the coarea formula, which connects the perimeter of a set

with
ş

|Du|.

Remark 7. When saying u “ f on BΩ for u P BV pΩq, it is meant in the trace

sense; Tu “ f on BΩ by definition 2.4.1.

3.2 Prerequisites

Definition 3.2.1. Suppose E measurable set with P pE,Rnq ă 8.

• The measure theoretic boundary BME is the set of points x P Rn such that:

lim suprÝÑ0
|EXBpx,rq|
|Bpx,rq|

ą 0 and

lim infrÝÑ0
|EXBpx,rq|
|Bpx,rq|

ă 1

• For x P Rn, the measure theoretic exterior normal νpx,Eq at x is a unit

vector ν such that:
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limrÝÑ0
|Bpx,rqXty;py´xq¨νă0,yREu|

rn
“ 0 and

limrÝÑ0
|Bpx,rqty;py´xq¨νą0,yPEu|

rn
“ 0.

The reduced boundary B˚E is the set of points x such that νpx,Eq exists.

We have B˚E Ă BME Ă BE.

We will use the following convention, since sets of finite perimeter are defined up

to measure zero, x P E ðñ lim suprÝÑ0
|EXBpx,rq|
|Bpx,rq|

ą 0

Definition 3.2.2. We say a function u P BV pΩq is of least gradient if @w P

BV pΩq, with compact support in Ω,
ş

Ω
|Du| ď

ş

Ω
|Dpu` wq|.

Proposition 3. r8s If un is a least gradient function @n, and un ÝÑ u in L1

then u is a least gradient function

Definition 3.2.3. Let Ω Ă Rn. We say BE is a minimal surface if

1. 1E P BVlocpΩq

2. 1E is a least gradient function.

Proposition 4. In R2, minimal surfaces are straight lines.

Proof. Let A “ pa1, a2q, Bpb1, b2q be 2 points in the plane R2. Let pCq be a path

joining A to B parametrized by x “ xptq, y “ yptq and

xp0q “ a1, xp1q “ b1, yp0q “ a2, yp1q “ b2.

LpCq “

ż 1

0

a

px1ptqq2 ` py1ptqq2dt

“

ż 1

0

| x
1

ptq ` iy
1

ptq | dt

ě|

ż 1

0

px
1

ptq ` iy
1

ptqqdt |

“| xp1q ´ xp0q ` ipyp1q ´ yp0qq |

“| b1 ´ a1 ` ipb2 ´ a2q |

“
a

pb1 ´ a1q
2 ` pb2 ´ a2q

2

(3.1)
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ñ inftLpCqu ě
a

pb1 ´ a1q
2 ` pb2 ´ a2q

2

Consider the line segment pC̃q joining A to B given by:

x “ xptq “ p1´ tqa1 ` tb1 and y “ yptq “ p1´ tqa2 ` tb2.

Then, LpC̃q “
ş1

0

a

px1ptqq2 ` py1ptqq2dt “
ş1

0

a

pb1 ´ a1q
2 ` pb2 ´ a2q

2dt “
a

pb1 ´ a1q
2 ` pb2 ´ a2q

2.

ñ inftLpCqu “ LpC̃q

ñ C̃ is the curve of smallest euclidean length joining A to B.

Theorem 3.2.1. r2s If u solution to mint
ş

Ω
|Du|;u P BV pΩq, TBΩu “ fu, then

Btu ě tu is a minimal surface for each real t.

Proof. Let u solution to mint
ş

Ω
|Du|;u P BV pΩq, TΓu “ fu. Take w P BV pΩq

with suppw “ K Ă Ω with K compact. Set v “ u` w.

We have v P BV pΩq being the sum of 2 bounded variation functions in Ω and as

w has compact support, TΓw “ 0, so that TΓv “ TΓpu` wq “ TΓu “ f .

Then,
ş

|Du| ď
ş

|Dv| as u solution.

ñ
ş

|Du| ď
ş

|Dpu` wq|.

Hence, u is a function of least gradient in Ω by definition 3.2.2.

Now as u P BV pΩq, we have by the coarea formula,
ş

Ω
|Du| “

ş`8

´8
P pEλ,Ωqdλ

with Eλ “ tx P Ω;upxq ě λu and λ P R.

We then have P pEλ,Ωq ă 8 for a.e. λ since
ş

Ω
|Du| ă 8.

Also, by the coarea formula we have that, @λ P R, K Ă Ω compact, we have
ş

K
|Du| “

ş`8

´8
P pEλ, Kqdλ.

We now define u1 “ maxtu´ t, 0u and u2 “ mintu, tu for t P R.

We have u1 and u2 P BV pΩq because u P BV pΩq, t P BV pΩq.

If u´ t ě 0 ñ u ě tñ u1 “ u´ t and u2 “ tñ u “ u1 ` u2.

If u´ t ď 0 ñ u ď tñ u1 “ 0 and u2 “ uñ u “ u1 ` u2.
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Hence u “ u1 ` u2 @t P R.

By the coarea formula, we have
ş

K
| Du |“

ş

K
| Du1 | `

ş

K
| Du2 |.

Now let w P BV pΩq with compact support in Ω.
ş

K
| Du1 | `

ş

K
| Du2 |“

ş

K
| Du |ď

ş

K
| Dpu ` wq |ď

ş

K
| Dpu1 ` wq | `

ş

K
|

Du2 |.

ñ u1 is a least gradient function. Similarly, by interchanging u1 and u2 in the

last inequality, we get u2 is a least gradient function.

We now define, for ε ą 0, λ P R,

uε,λ “
1
ε
mintε,maxtu´ λ, 0uu “ 1

ε
mintε, u1u.

If mintε, u1u “ ε ñ uε,λ “ 1. Then,uε,λ is a least gradient function being a

constant function.

Ifmintε, u1u “ u1 ñ uε,λ “
1
ε
u1. Then, uε,λ is a least gradient function by proving

above u1 is so.

Hence, uε,λ is a least gradient function, @ε ą 0, λ P R.

If Hnptx P Ω;upxq “ λuq “ 0 ñ upxq ‰ λ a.e. x P Ω ñ u´ λ ą 0 or u´ λ ă 0.

If u´ λ ą 0 ñ maxtu´ λ, 0u “ u´ λñ uε,λ “
1
ε
mintε, u´ λu

As ε ÝÑ 0,mintε, u´ λu “ ε as u´ λ ą 0

ñ uε,λ ÝÑ
ε
ε
“ 1 as ε ÝÑ 0

ñ
ş

K
|uε,λ ´ 1Eλ | “

ş

K
|1´ 1| “ 0 as ε ÝÑ 0`.

If u´ λ ă 0 ñ maxtu´ λ, 0u “ 0 ñ uε,λ “ 0

ñ
ş

K
|uε,λ ´ 1Eλ | “

ş

K
|0´ 0| “ 0 as ε ÝÑ 0.

Hence,
ş

K
|uε,λ ´ 1Eλ | “ 0 as ε ÝÑ 0`.

As uε,λ ÝÑ 1Eλ in L1pKq and uε,λ is a function of least gradient,by proposition
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3 then 1Eλ is a function of least gradient.

If Hnptx P Ω;upxq “ λuq ą 0 then D a sequence λm, λm ă λ, λm ÝÑ λ and

Hnptx P Ω;upxq “ λmuq “ 0.

As the previous case, working with λm, we get 1Eλ is a function of least gradient.

Hence, as 1Eλ P BVlocpΩq, and a function of least gradient, BEλ is a minimal

surface.

Proposition 5. Let Γ Ă BΩ and f defined on Γ bounded and continuous. Let u

be any solution to the LGP with Tu “ f on Γ. Then upΩq Ă fpΓq

Proof. Let M “ supΓf and m “ infΓf .

Let w “ mintM,maxtm,uuu.

We have w P BV pΩq and TΓw “ f .

We have
ş

Ω
| Dw |ď

ş

Ω
| Du |.

If u ă mñ maxtm,uu “ mñ w “ mñ
ş

Ω
| Dw |“ 0.

If u ąM ñ maxtm,uu “ uñ w “M ñ
ş

Ω
| Dw |“ 0.

In both cases, for u ă m and u ą M we get
ş

Ω
| Dw |ă

ş

Ω
| Du |. But this is

impossible as u is a solution to the LGP.

Hence, we get m ă u ăM .

Proposition 6. Let Ω Ă Ω0 domains with lipchitz boundaries. If u P BV pΩ0q is

a least gradient function in Ω0 then u|Ω is a least gradient function in Ω.

3.3 Solution to the LGP

Theorem 3.3.1. r1s For Ω strictly convex, BΩ lipchitz continuous, and f bounded

continuous on BΩ, there exists a unique continuous function u defined on Ω so-

lution to to the problem

mint

ż

Ω

|∇u|; u P BV pΩq, u “ f on BΩu
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The solution u is obtained upon construction and is proved to be the min-

imum of the LGP with the help of the coarea formula. Also, the fact that the

boundary of the superlevel sets of the solution is a minimal surface, by theorem

3.2.1, plays an important role.

Remark 8. The existence and uniqueness of solution will be proved for the LGP

mint
ş

Ω
|Du|, u P BV pΩq, u “ f on Γu where Γ Ă BΩ open given by r3s. However,

the construction and existence of solution to the LGP stated in theorem 3.3.1 is

very similar to what will be proved. Uniqueness results also applies when Γ “ BΩ.

Construction of the solution

Let Γ Ă BΩ such that f is bounded and continuous on Γ.

Let Ω0 be a bounded domain such that Ω Ă Ω0 and BΩ0 X BΩ “ BΩ´ Γ.

We will denote Λ :“ BΩ´ Γ.

Let F be the extension of f to Ω0 so that F P BV pΩ0 ´ Ωq X CpΩ0q

Let t P fpΓq,as F P BV pΩ0 ´ Ωq ñ by the coarea formula, P pLt,Ω0 ´ Ωq ă 8

a.e. t where Lt “ tx P Ω0, F pxq ě tu.

Denote by T :“ fpΓq X tt P R;P pLt,Ω0 ´ Ωq ă 8u.

Consider now the following problem: for each t P T

mintP pE,Ω0q, E ´ Ω “ Lt ´ Ωu (3.2)

This indeed has a solution. By r9s, take a minimizing sequence, P pEn,Ω0q ÝÑ m

where m “ inftP pE,Ω0q, E ´ Ω “ Lt ´ Ωu and En ´ Ω “ Lt ´ Ω

As 1En P BV pΩ0q then D a subsequence still denoted by 1En and 1E P BV pΩ0q

such that 1En ÝÑ 1E in L1pΩ0q with E ´ Ω “ Lt ´ Ω.

We get, m ď P pE,Ω0q ď lim inf P pEn,Ω0q “ m

ñ P pE,Ω0q “ m
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So the minimum does exist.

Now among all minimizers of p3.2q define the following:

maxt|E|; E solves p3.2qu (3.3)

p3.3q has a unique solution. Indeed, by r9s, let M “ supt|E|; E solves problem

p3.2qu and let |En| ÝÑM ñ there exists a subsequence still denoted by 1En and

1E P BV pΩ0q such that 1En ÝÑ 1E in L1pΩ0q

First we note that :

1) |E|`|E∆En| “ |E|`|E´En|`|En´E| “ |EYEn|`|E´En| ě |EYEn| ě |En|

2) |1En ´ 1E| “

$

’

&

’

%

1 px P En and x R Eq or px P E and x R Enq

0 x P En X E or x R En Y E

ñ
ş

| 1En ´ 1E |“
ş

pEn´EqYpE´Enq
dλ “| E∆En |

Then we haveM ě |E| ě |En|´|E∆En| “ |En|´||1En´1E||1 ÝÑM as n ÝÑ 8

ñ |E| “M and E solves p3.2q.

So the maximum does exist.

Now one can claim that the solution to p3.3q is unique. In fact, let E1, E2 be 2

solutions to p3.3q.

One knows that P pE1 Y E2,Ω0q ` P pE1 X E2,Ω0q ď P pE1,Ω0q ` P pE2,Ω0q

Then, E1 Y E2 and E1 X E2 are solutions to p3.2q.

As E1 and E2 are maximizers to p3.3q,

|E1| ě |E1 Y E2| “ |E1| ` |E2 ´ E1|

|E2| ě |E1 Y E2| “ |E2| ` |E1 ´ E2|

ñ |E1∆E2| “ 0 ñ |E1| “ |E2|

Hence, there exists a unique solution to p3.3q which we will denote by Et for t P T .
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Now define:

At “ Et X Ω

Definition 3.3.1. Define the function u on Ω by

upxq “ suptt; x P Atu

Lemma 3.3.1. u satisfies the following conditions:

1. u “ f on Γ

2. u P CpΓY Ωq

Lemma 3.3.2. Let Γ Ă BΩ,

We then have, tx P Γ; fpxq ą tu Ă Et X Γ Ă At X Γ Ă tx P Γ; fpxq ě tu

Lemma 3.3.3. Let v P BV pΩq, TΓv “ f and ṽ the extension of v to Ω0; ṽ “ F

on Ω0 ´ Ω and v “ ṽ on Ω.For t P T , define Gt :“ tṽ ě tu.

We have B˚Gt X Γ Ă f´1ptq.

Proof. Let x P B˚Gt X Γ. Proceeding by contradiction, suppose fpxq ą tñ

fpxq “ t` ε for some ε ą 0.

By definition of trace, limrÝÑ0
1

|Bpx,rqXΩ|

ş

Bpx,rqXΩ
|ṽpyq ´ fpxq|dy “ 0.

ñ limrÝÑ0

ş

Bpx,rqXΩXtṽětu |ṽpyq´fpxq|dy`
ş

Bpx,rqXΩXtṽďtu |ṽpyq´fpxq|dy

|Bpx,rqXΩ|
“ 0.

ñ 0 ě lim suprÝÑ0
1

|Bpx,rqXΩ|

ş

Bpx,rqXΩXtṽětu
|ṽpyq ´ fpxq|dy

ñ 0 ě ε lim suprÝÑ0
|Bpx,rqXΩXGt|
|Bpx,rqXΩ|

ñ lim suprÝÑ0
|Bpx,rqXΩXGt|
|Bpx,rqXΩ|

“ 0.
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Similarly, we obtain lim suprÝÑ0
|Bpx,rqXpΩ0´ΩqXGt|

|Bpx,rqXpΩ0´Ωq|
“ 0 on Ω0 ´ Ω .

Hence, we get, lim suprÝÑ0
|Bpx,rqXΩ0XGt|

|Bpx,rq|
“ lim suprÝÑ0

|Bpx,rqXGt|
|Bpx,rq|

“ 0.

Then, x R BMGt. Contradiction, as B˚Gt Ă BMGt, Definition 3.2.1.

A similar argument is made for fpxq ă t. Hence, fpxq “ t

Lemma 3.3.4. For Γ, f, and Et given as above, we have BEt X Γ Ă f´1ptq.

Lemma 3.3.5. If s ă t then Et Ă Es.

Proof. Let F “ Et Y Es and E “ Et X Es.

We begin by proving that F and E are competitors to Et and Es in p3.2q respec-

tively.

We realize that Lt Ă Ls since if x P Lt ñ F pxq ě t ą sñ F pxq ą sñ x P Ls.

• F ´ Ω “ pEt ´ Ωq Y pEs ´ Ωq “ pLt ´ Ωq Y pLs ´ Ωq “ Ls ´ Ω as Lt Ă Ls

• E ´ Ω “ pEt ´ Ωq X pEs ´ Ωq “ pLt ´ Ωq X pLs ´ Ωq “ Lt ´ Ω as Lt Ă Ls

Hence, P pF,Ω0q ě P pEs,Ω0q and P pE,Ω0q ě P pEt,Ω0q. As P pEt Y Es,Ω0q `

P pEt X Es,Ω0q ď P pEt,Ω0q ` P pEs,Ω0q, we then get P pF,Ω0q “ P pEs,Ω0q and

P pE,Ω0q “ P pEt,Ω0q.

By problem 2,|Es| ě |F | “ |Es| ` |Et ´ Es| ñ |Et ´ Es| “ 0

and |Et| ě |E| “ |Et| ` |Es ´ Et| ñ |Es ´ Et| “ 0.

Now we show Et Ă Es

Let x P Et ñ by definition 3.2.1, lim suprÝÑ0
|EtXBpx,rq|
|Bpx,rq|

ą 0

Write Et “ pEt ´ Esq Y pEt X Esq union of 2 disjoint sets.

ñ lim suprÝÑ0
|EtXBpx,rq|
|Bpx,rq|

“ lim suprÝÑ0
|pEt´EsqXBpx,rq|

|Bpx,rq|
`lim suprÝÑ0

|pEtXEsqXBpx,rq|
|Bpx,rq|

But pEt ´ Esq XBpx, rq Ă pEt ´ Esq

ñ| pEt ´ Esq XBpx, rq |ď| pEt ´ Esq |“ 0
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ñ| pEt ´ Esq XBpx, rq |“ 0

ñ 0 ă lim suprÝÑ0
|EtXBpx,rq|
|Bpx,rq|

“ lim suprÝÑ0
|EtXEsXBpx,rq|

|Bpx,rq|
ď lim suprÝÑ0

|EsXBpx,rq|
|Bpx,rq|

ñ lim suprÝÑ0
|EsXBpx,rq|
|Bpx,rq|

ą 0

ñ x P Es

Hence, Et Ă Es

We shall now illustrate the proof of lemma 3.3.1 given by r3s :

Proof. 1. We prove Tu “ f on Γ i.e. for z P Γ, limyÝÑz, yPΩ upyq “ fpzq.

Let z P Γ and set fpzq “ t and let s ă t, then fpzq “ t ą s ñ by lemma 3.3.2

z P E0
s X Γ Ă As X Γ.

As E0
s is open, D neighborhood of z, Nz, such that Nz X Ω Ă Es X Ω “ As X Ω.

Now let xn P Nz X Ω;xn ÝÑ z ñ upxnq ě s, @n ñ lim infxnÝÑz, xnPΩ upxnq ě s,

@s ă tñ lim infxnÝÑz, xnPΩ upxnq ě t.

We will now prove that it is not possible for lim supxnÝÑz, xnPΩ upxnq ą t.

Proceeding by contradiction, suppose lim supxnÝÑz, xnPΩ upxnq ą t. Let lim supxnÝÑz, xnPΩ upxnq “

τ ñ τ ą t. Then, Dr P T ; t ă r ă τ . As τ ą r ñ @n, r ă upxnq ñ xn P Ar X Ω.

As xn ÝÑ z and xn P Ar closed ñ z P Ar X Γ ñBy lemma 3.3.2, fpzq ě r.

Contradiction as fpzq “ t ă r.

Hence, for z P Γ, limxnÝÑz, xnPΩ upxnq “ fpzq

2. Claim 1: tx P Ω; upxq ě tu “ Xsăt, sPTAs

Claim 2: tx P Ω;upxq ą tu “ Ysąt, sPTAs

We now show u is continuous on Γ Y Ω. We will do so by proving claim 1 is a

closed set and claim 2 is an open set in Ω.

The first claim is a closed set being a countable intersection of closed sets.
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It remains to prove claim 2 is an open set in Ω i.e. @x P YsątAs, Dr ą 0, Bpx, rq Ă

YsątAs

So let x P YsątAs X Ω ñ Ds0 ą t, x P As0 ñ upxq ě s0 ą t.

Since x P Ω ñ distpx, BΩq ą 0.

Since x P As0 Ă At ñ distpx, BAtq ą 0

Take r “ 1
2
mintdistpx, BΩq, distpx, BAtqu.

We now need to prove Bpx, rq Ă YsątAs.

Let x0 P Bpx, rq ñ distpx, x0q ă r ñ distpxo, BAtq ą 0 ñ x0 P At ñ upx0q ą

tñ x0 P YsątAs

We now illustrate the proof given by r3s to theorem 3.3.1

Proof. It remains to prove u is a solution to the LGP i.e. @v P BV pΩq, TΓv “ f ,
ş

Ω
|Du| ď

ş

Ω
|Dv|.

Let u be the solution as constructed, and let v P BV pΩq, TΓv “ f and ṽ the exten-

sion of v to Ω0; ṽ “ F on Ω0´Ω and v “ ṽ on Ω. Then , ṽ P BV pΩ0qXCpΩ0´Ωq.

Let Gt “ tṽ ě tu.

P pGt,Ω0q “ H1pB˚GtXΩ0q “ H1pB˚GtXpΩ0´Ωqq`H1pB˚GtXΓq`H1pB˚GtXΩq.

By lemma 3.3.3, B˚Gt X Γ Ă f´1ptq ñ H1pB˚Gt X Γq ď H1pf´1ptqq “ 0 ñ

H1pB˚Gt X Γq “ 0.

ñ H1pB˚Gt X Ω0q “ H1pB˚Gt X Γq `H1pB˚Lt ´ Ωq.

On the other hand, P pEt,Ω0q “ H1pB˚Et X Ω0q “ H1pB˚Et X pΩ0 ´ Ωqq `

H1pB˚Et X Γq ` H1pB˚Et X Ωq “ P pEt,Ωq ` H1pB˚Lt ´ Ω0q because by lemma

3.3.4, H1pB˚Et X Γq ď H1pf´1ptqq “ 0 ñ H1pB˚Et X Γq “ 0.

Since by construction Gt satisfies Gt ´ Ω “ Lt ´ Ω and Et minimizes the

perimeter of all such sets, we have, P pEt,Ω0q ď P pGt,Ω0q.

From above, we get, P pEt,Ωq ď P pGt,Ωq.
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ñ
ş8

´8
P pEt,Ωqdt ď

ş8

´8
P pGt,Ωqdt.

By the coarea formula, theorem 2.5.1, we get,
ş

Ω
|Du| ď

ş

Ω
|Dv|.

Proposition 7. Let Λ as defined and γ a connected component of BEt. If γ

intersects Λ then it must intersect it orthogonally.

Proof. We know γ is a line segment and BEt in Ω is a minimal surface by propo-

sition 4 and theorem 3.2.1 Suppose γ “ rxt, yts. We proceed by contradiction,

suppose γ does not intersect Λ orthogonally at xt. Consider the ball Bpxt, rq

for r ą 0 such that Bpxt, rq cuts γ at zt. There exists a segment rzt, wts that

cuts Λ orthogonally at wt and dpzt, wtq ă dpzt, xtq. Contradiction as γ is of least

length.

uniqueness of solution

We proceed in proving uniqueness to the solution by supposing if there is another

solution to the LGP mint
ş

Ω
| Du |;u P BV pΩq, TuΓfu, and f satisfies a mono-

tonicity condition, then it’s a must that the 2 solutions have the same level sets

which will lead to the uniqueness of solution.

Let u be a solution to the LGP. We define εt “ tu ě tu for t P upΩq.

Lemma 3.3.6. Let u0 be the constructed solution. If u is any other solution to

the LGP and Bεt “ Bε0
t then u “ u0 in L1.

Lemma 3.3.7. If Ω convex and u solution to the LGP for f continuous and

bounded on Γ Ă BΩ open, we have Bεt X Γ Ă f´1ptq

Theorem 3.3.2. r3s Let u0 be the solution to the LGP constructed above and

Bε0
t “ tu0 ě tu.

1. Let Γ Ă BΩ open with endpoints a and b.

Let xM P Γ such that f attains its maximum at xM .
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Let f strictly increasing on the arc axM and strictly decreasing on xMb such

that f attains each value exactly twice, except at xM , and fpaq “ fpbq “

infΓf .

We then get u0 is a unique solution and u0 discontinuous on a and b. Also,

Dτ P pinfΓf, supΓfq such that | tu0 “ τu |ą 0.

2. Let x0 P Γ; dpx0,Λq “ dpx0, aq “ dpx0, bq with fpaq “ fpbq “ fpx0q.

Suppose f attains each value twice on the arc ax0 with xm a local minimum

and suppose f attains each value exactly twice on the arc x0b with xM local

maximum.

Then u0 is unique and continuous and |tu0 “ fpaqu| ą 0.

3. Let S :“ tx P Γ; dpx,Λq “ dpx, yq for some y P 8Λu.

D :“ tx P S; D atleast two y P Λ; dpx,Λq “ dpx, yqu.

Let φ : S ÞÑ P pΛq;φpxq “ ty P Λ; dpx,Λq “ dpx, yqu.

One can prove that D is atmost countable.

If f monotone then u0 is unique and discontinuous at a and b. Also, D

atleast one τ P upφpDqq; |tu “ τu| ą 0

Proof. 1. Let u be any solution to the LGP. We will first construct the level sets,

then prove the existence of τ . Since f takes each value at exactly 2 points in Γ

except for xM , then for each t P pinfΓf, supΓfq, there exists 2 points xt, yt P Γ;

fpxtq “ fpytq “ t.

If I have a level set at t, Bεt, then BεtXΓ Ă f´1ptq ñ @x P BεtXΓ we must have

fpxq “ t.

Since @t, D 2 points xt, yt such that fpxtq “ fpytq “ t then if I have a level set

at t, and as level sets must intersect BΩ and in particular Γ so that the solution

will be continuous up to Γ, then xt, yt must belong to Bεt.

We now consider the map h : t ÞÑ hptq “ dpxt, ytq ´ dpxt, aq ´ dpyt, bq.

We suppose dpxt,Λq “ dpxt, aq and dpyt,Λq “ dpyt, bq.
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If txt, ytu P Γ are very close to xM such that fpxMq ´ t ą 0 and very small, we

have,dpxt, ytq ă dpxt, aq ` dpyt, bq ñ hptq ă 0.

Since Bεt must contain txt, ytu and Bεt X Γ Ă f´1ptq then Bεt must be the line

segment rxt, yts.

If txt, ytu P Γ with xt very close to a and yt very close to b with dpxt,Λq “ dpxt, aq

and dpyt,Λq “ dpyt, bq such that t´ fpaq ą 0 and very small we have

dpxt, ytq ą dpxt, aq ` dpyt, bq ñ hptq ą 0.

Since Bεt must contain txt, ytu and dpxt, aq ` dpyt, bq is smaller than dpxt, ytq,

and Bεt is a minimal surface i.e. the line segment must be of least length,

Bεt “ rx
t, as Y ryt, bs.

Since h is continuous and Dt such that hptq ą 0 and Dt such that hptq ă 0, by

intermediate value theorem, D!τ P pinfΓf, supΓfq;hpτq “ 0.

ñ D!τ P pinfΓf, supΓfq; dpx
τ , yτ q “ dpxτ , aq ` dpyτ , bq.

ñ Bετ “ rx
τ , as Y rxτ , yτ s Y ryτ , bs.

Indeed, Bετ is the boundary of the set tu “ τu with | tu “ τu |ą 0.

Indeed, the set tu “ τu is unique because otherwise there will be another level

set to construct with Bεt “ rc, ds with c, d P Λ.

Let v be the function constructed by its level sets the same way as u with an

additional level set located in tu “ τu. We then get
ş

|Dv| ą
ş

|Du| “ 0 on

tu “ τu. But we require minimizing
ş

|Du| over all u P BV pΩq with u “ f . Then

the construction of u is the best solution one can get.

If we take a sequence of level sets @t ą τ the limiting level set will be rxτ , yτ s

and if we take a sequence of level sets @t ă τ , the limiting level set will be

rxτ , as Y ryτ , bs. Since u is continuous, for all that is beneath Bετ , we have u “ τ .

We also have, @x P Ω´ tu “ τu, D!t; x P Bεt. We then have, Bεt “ Bε0
t .

32



ñ u “ u0 by lemma 3.3.6.

2. Let u be any solution to the LGP. We know that Bεt X Γ Ă f´1ptq.

As f attains each value twice on Γ then f´1ptq “ txt, ytu.We will prove in this

case that BεtXΓ “ f´1ptq. Suppose BεtXΓ ‰ txt, ytu then Bεt “ rxt, c1sY ry
t, c2s

with c1, c2 P Λ. It is a necessity that c1 and c2 are either a or b as we re-

quire Bεt to be of smallest length and dpx0,Λq “ dpx0, aq “ dpx0, bq. Without

loss of generality, suppose xt, yt P Γ X x0b. If c1 “ a, then rxt, as cuts Bεfpaq

which is impossible. Then, Bεt “ rxt, bs Y ryt, bs. By the triangular inequality,

dpxt, ytq ă dpxt, bq`dpyt, bq. Contradiction as Bεt must be of least length. There-

fore, on the arc ax0 the level sets are Bεt “ rxt, yts with the limiting level set

ra, x0s and on the arc x0b the level sets are Bεt “ rxt, yts with the limiting level

set rx0, bs. We then get Bεfpaq “ ra, x0s Y rx0, bs boundary of the set tu “ fpaqu

with |tu “ fpaqu| ą 0.

By the same argument as the proof of 1. , we have uniqueness of the level sets

and uniqueness of the the set tu “ fpaqu ñ u “ u0.

3. Let u be any continuous solution on Ω to the LGP. Since f takes each value

exactly once then for each t P pinfΓf, supΓfq; there exists a unique xt P Γ;

fpxtq “ t.

Then,Bεt must have an endpoint xt, but the other endpoint y P Λ. Then,Bεt “

rxt, ys for y P Λ.

For points xt close to a, Bεt “ rxt, as. As points get away from a, then Bεt “ rxt, ys

for some y P Λ. Similar reasoning for the point b.

SinceD is atmost countable, then Dx P D, D atleast y1, y2 P Λ; dpx, y1q “ dpx, y2q “

dpx,Λq. Let fpxq “ τ . Then Bετ “ rx, y1sY rx, y2s and is the boundary of the set

tu “ τu ñ| tu “ τu |ą 0. Same argument of the above 2 proofs, we prove the

uniqueness of u0.
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Remark 9. r10s We know if u solution to LGP and Ω convex then Bεt X BΩ Ă

f´1ptq by lemma 3.3.7. Take Ω “ r0, 1s ˆ r0, 1s a square and f “ 0 on 3 sides of

BΩ and f a bell shaped curve on the bottom side of BΩ.

Suppose there exist a continuous solution on Ω to LGP. Then, @t ą 0, by lemma

3.3.7, Bεt will be subintervals of the bottom side of BΩ and they will overlap.

This is impossible as Bεt X Bεs “ φ @s ‰ t. Hence, there exists no continuous

solution on Ω to LGP.

The problem was indeed in the convexity of Ω which led to the overlapping of

level sets. Therefore, to ensure a continuous solution for all functions f , strict

convexity of Ω is a must.

3.4 Special case

The above solution to the LGP exists when Ω strictly convex with lipchitz bound-

ary, and f continuous and bounded on BΩ.

Here, we will take a special case of a convex set and prove the existence of a

unique continuous solution for the LGP with f continuous and satisfies a mono-

tonicity condition.

Then, for any convex set, one can proceed in a similar manner as for the special

case that we will take and guarantee the existence of the LGP for f continuous

and monotone.

We take Ω be a rectangle; Ω “ r´L,Lsˆr´h, hs which is a convex but not strictly

convex domain.

Let h1 “ r´L,Ls ˆ thu

h2 “ r´L,Ls ˆ t´hu

v1 “ tLu ˆ r´h, hs

v2 “ t´Lu ˆ r´h, hs

and let Γ1 “ th1, v1u
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Γ2 “ th2, v2u

Now let f to be strictly monotone on Γ1 and Γ2.

Without loss of generality, suppose f is strictly increasing on each Γ1 and Γ2.

Theorem 3.4.1. r3s For Ω and f as stated, there exists u P CpΩq; u is a unique

solution to

mint

ż

Ω

|Du|; u P BV pΩq, TBΩu “ fu

Before we illustrate the proof of the theorem given by r3s, we will state a lemma:

Lemma 3.4.1. Let Ω be an open set of class C1.Then there exists a surjective

continuous linear map, denoted by γ0 that sends W 1,1pΩq ÝÑ L1pBΩq. When U P

W 1,1pΩq X CpΩq, this trace coincides with the restriction to the boundary. Also,

DC ą 0; @u P L1pBΩq, DU P W 1,1pΩq, γ0pUq “ u and ||U ||W 1,1pΩq ď C||u||L1pBΩq

Proof. We will proceed in the proof for theorem 3.4.1 by several steps:

Step 1 We approximate Ω by a sequence Ωn of bounded strictly convex domains

in a way Ωn is made up of 4 circular arcs passing through the vertices of Ω and

dpx, BΩnq ď
1
n
@x P BΩ.

We then have BΩn “ BΩ` νγn with ν unit outer normal to BΩ and γn a smooth

function; 0 ď γn ď
1
n
.

We also define for x P BΩ, fnpx`νγnpxqq :“ fpxq which remains to be continuous

on BΩn since f is so.

We now define the LGP :

mint
ş

Ωn
| Du |;u P BV pΩnq, TBΩnu “ fnu

From theorem 3.3.1 , we know that this problem has a unique continuous solution

on Ωn which we will denote by vn.

Step 2: We now restrict vn to Ω by setting un “ vn1Ω.

We now prove un P BV pΩq and un ÝÑ u in L1pΩq.
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As fn is continuous on BΩn, then there exists Fn P W 1,1pΩnq;Fn “ fn on BΩn and

||DFn||L1pΩnq ď Cn||fn||L1pBΩnq. Then,
ż

Ω

|Dun| ď

ż

Ωn

|Dvn| ď ||DFn||L1pΩnq ď Cn||fn||L1pBΩnq

But

Cn||fn||L1pBΩnq ď Cn||fn||L8pBΩnq|BΩn| ď C||fn||L8pBΩnq ă 8

ñ
ş

Ω
|Dun| ă 8

ñ un P BV pΩq

By compactness of BV in L1, there exists a subsequence still denoted by un and

a function u such that un ÝÑ u in L1pΩq

By semicontinuity, we get
ş

Ω
|Du| ď lim inf

ş

Ω
|Dun| ă 8

ñ u P BV pΩq

Step 3 We now prove u obtained in Step 2 is a least gradient function for some

function gn such that TBΩu “ gn by proving un is a least gradient function satis-

fying TBΩun “ gn

In fact, for z P BΩ, gnpzq “ limyÝÑz, yPΩ unpyq “ limyÝÑz, yPΩ vnpyq “ vnpzq as

v P CpΩnq.

Then, by section 3.2 proposition 6, as vn is a least gradient function on Ωn by

step 1, then vn|Ω “ un is a least gradient function on Ω.

As un ÝÑ u in L1pΩq then u is a least gradient function on Ω to mint
ş

Ω
|Dv|;

v P BV pΩq, TBΩv “ gnu by proposition 3.

Step 4 We prove u converge uniformly to a continuous function w. From step 2

and 3, we have un ÝÑ u in L1pΩq and u is a least gradient function satisfying

TBΩu “ gn.

Then, we get u “ w a.e. and thus w is a continuous least gradient function

satisfying TBΩw “ gn.
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Construction of w:

For t P pminf,maxfq, let lt be the line segment joining xt P Γ1 and yt P Γ2;

fpxtq “ fpytq “ t.

In fact, the lt are disjoint because otherwise, suppose Dt1, t2 P pminf,maxfq, lt1 , lt2

2 line segments joining xt1 , yt1 and xt2 , yt2 respectively such that lt1 , lt2 meet at

some point inside Ω.

Without loss of generality, we will get xt1 ą xt2 and yt1 ă yt2 . By continuty of f

and being strictly increasing on each Γi i “ 1, 2 , we get fpxt1q “ t1 ą fpxt2q “ t2

and fpyt1q “ t1 ă fpyt2q “ t2 . Contradiction.

Lemma 3.4.2. For z P Ω, there exists a unique lt passing through z @t P

pminf,maxfq

Proof. Let z P Ω. Without loss of generality, take z below diagonal joining

the endoints of Γ1. Let s be the arc length parameter of Γ1. We then get,

0 ď s ď p
şL

´L

?
1dx`

şh

´h

?
1dyq “ 2pL` hq.

Let xpsq be a parametrization of Γ1.

For each s, let lpxpsq, zq be the line segment passing through z and touching Γ2

at ypsq.

We then have ypsq continuous.

Now let limsÝÑ0` fpxpsqq “ minf , and limsÝÑp2pL`hqq` fpxpsqq “ maxf

Then, limsÝÑ0`pfpxpsqq ´ fpypsqqq “ minf ´ limsÝÑ0` fpypsqq ď 0

and limsÝÑp2pL`hqq`pfpxpsqq ´ fpypsqqq “ maxf ´ limsÝÑp2pL`hqq` fpypsqq ě 0

By intermediate value theorem, as fpxpsqq ´ fpypsqq is continuous, there exists a

unique s0; lt “ rxps0q, yps0qs; z P lt and fpxps0qq “ fpyps0qq “ t

We now define w : Ω ÞÑ R defined by:

wpxq “ t for every x P Ω
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By lemma 3.4.2, this map is well defined and bijective.

Indeed, one can prove w to be continuous on Ω resulting with the inequality ,

@x1, x2 P Ω,

|wpx1q ´ wpx2q| “ |t1 ´ t2| “ |fpx
t1q ´ fpxt2q| ď ωpc1|x1 ´ x2 | `c2

a

|x1 ´ x2|q

with ω the continuity modulus of f.

Lemma 3.4.3. un converges uniformly to w

Proof. We first prove that un is a cauchy sequence.

Let ulpxq “ t1 and ukpxq “ t2 for x P Ω.

Since Tun “ vn ñ level sets of un, Btun ě tu, are straight lines with endpoints

on BΩ at which vn takes the value t.

But vn takes the value t along the level sets Btvn ě tu which has endpoints on

BΩn at which fn takes the value t.

We have x P Btul ě t1u “ lt1l and x P Btuk ě t2u “ lt2k .

Let lt1 and lt2 be the 2 line segments as defined in this section such that f takes

the value t1 on the endpoints of lt1 and f takes the value t2 on the endpoints

of lt2 . By construction, as the endpoints of lt1 and lt1l and the endpoints of lt2

and lt2k ď
1
n
, n “ mintk, lu then @xl P lt1 and xk P lt2 we have dpxl, xq ă 1

n
and

dpxk, xq ă
1
n
.

|ulpxq ´ ukpxq| “ |t1 ´ t2| “ |wpxlq ´ wpxkq| ď ωpc1|xl ´ xk| ` c2

a

|xl ´ xk|q

But |xl ´ xk| “ |xl ´ xk ` x´ x| ď |xl ´ x| ` |xk ´ x| ď 2
n

and
?
xl ´ xk ď

?
2?
n
with n “ mintk, lu.

ñ |ulpxq ´ ukpxq| ď ωp c12
n
` c2

?
2?
n
q ÝÑ 0 as k, l ÝÑ 8.

ñ un is a cauchy sequence.

As un is a cauchy sequence in Ω Ă R2 complete ñ un converges uniformly to

w.

Step 5 It remains to prove Tw “ f .
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Let z P BΩ. We need to prove limyÝÑz, yPΩ wpyq “ fpzq.

Without loss of generality, suppose z P Γ1. For y P Ω, D!lt1 “ rxt1 , yt1s passing

through y; wpyq “ t1.

Since z P BΩ then there exists a unique lt2 “ rz, z
1

s with z
1

P Γ2 and fpzq “

fpz
1

q “ t2.

|wpyq ´ fpzq| “ |t1 ´ t2| “ |fpx
t1q ´ fpzq| ď ωpc1|y ´ z| ` c2

a

|y ´ z|q

So as y ÝÑ z, we get wpyq ÝÑ fpzq.

Hence, Tw “ f

Step 6 We prove uniqueness of the solution.

We have that, for v any solution of mint
ş

Ω
| Du |;u P BV pΩq, Tu “ fu,

Btv ě tu X BΩ Ă f´1ptq.

By minimality of the level sets, then Btv ě tu “ Btw ě tu and thus u “ w.

Remark 10. 1. In step 4, from the inequality resultng from continuity of the

the solution w, we can see that if f P CαpBΩq then w P C
α
2 pΩq.

2. One can take f to be strictly increasing on hi and constant on vi. (vice versa

also works) for i “ 1, 2. There will exist a unique solution by proceeding

in a similar manner and the level sets are constructed in the following way:

@x P Ω, D! lt line segment with endpoints xt on h1 and yt on h2 with

t P pminf,maxfq. We define the solution wpxq “ t and all other steps are

the same as was done.

3. One can now generalize to any convex set by proceeding in a similar way

as was done and constructing the level sets lt that fill up Ω.
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3.5 Connection between LGP and FMD

Let Ω be a plane domain with lipchitz boundary.

Definition 3.5.1. We define the problem that appears in free material design to

be(FMD):

inft

ż

Ω

|p|, p P L1
pΩ,R2

q, divp “ 0, p ¨ ν|BΩ “ gu

FMD is the problem of finding the least material distribution of a body to handle

a load applied to its boundary. ν is the unit outer normal to BΩ. For the normal

trace to be well defined, we require Ω to belong to a special class of lipchitz do-

mains called deformable lipchitz domain.This special class contains convex sets.

Hence, we will consider Ω to be convex with BΩ lipchitz continuous. Also, as

p P L1pΩq, divp is viewed to be in the distributional sense.

As L1 is not weakly* closed, we cannot ensure the existence of minimizers to the

problem.

We now consider the following two problems:

1´mint
ş

Ω
|Du|, u P BV pΩq, TBΩu “ fu

2´ inft
ş

Ω
|p|, p P L1pΩ,R2q, divp “ 0, p ¨ ν|BΩ “ gu

As stated in previous section, Problem 1 is the least gradient problem(LGP). We

will take BΩ to be lipchitz continuous and f P L1pBΩq.

As we are interested in finding solution to LGP, it is proved in r3s that a relation

does exist between problem 1 and problem 2. This relation states that finding

an element to one of the 2 problems leads to finding an element of the second.

Proposition 8. Let p P L1pΩ,R2q with divp “ 0 and Ω convex. Then there exists

u P W 1,1pΩq Ă BV pΩq such that p “ R´π
2
∇u.
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Also, if p ¨ ν|BΩ “ g and TBΩu “ f , then g “ Bf
Bτ
.

In other words, having an element in the set of problem 2 gives an element in the

set of problem 1.

Theorem 3.5.1. r3s Let u be a solution to problem 1 and Ω convex. Then

q “ R´π
2
∇u is a solution to problem 2 with q ¨ ν|BΩ “ Bf

Bτ
“ g and divq “ 0.

Proof. Let u be a solution to problem and let q :“ R´π
2
∇u. Let M be the solution

to problem 2. We need to prove
ş

Ω
|q|dx “M , divq “ 0, q ¨ ν|BΩ “ g.

Let pn be a minimizing sequence of problem 2 such that
ş

Ω
|pn|dx ÝÑ M and

divp “ 0, pn P L1pΩ,R2q, pn ¨ ν|BΩ “ g. By Proposition 8, Dvn P W 1,1pΩq Ă

BV pΩq; pn “ R´π
2
Dvn and Tvn “ f .

As u solution and vn is an element of the set of problem 1, M “
ş

Ω
|pn|dx “

ş

Ω
|Dvn|dx ě

ş

Ω
|Du|dx “

ş

Ω
|q|dx.

We getM “
ş

Ω
|q|dx as it is impossible for M to be strictly greater than

ş

Ω
|Du|dx

since by construction it is a minimizing sequence.

Also, as q is the rotation of Du by angle ´π
2
ñ divq “ 0.

It remains to show q ¨ ν|BΩ “ g.

As u P BV pΩq, by approximation of BV functions Dwn P BV pΩqXC8pΩq;wn ÝÑ

u in L1pΩq and
ş

Ω
| Dwn |ÝÑ

ş

Ω
| Du | as n ÝÑ 8. We set Twn “ f “ Tu.

Then, D a subsequence, still denoted by Dwn;Dwn ÝÑ Du weakly as measures.

We set p̃n :“ R´π
2
Dwn. By Proposition 1, p̃n ¨ ν|BΩ “ BTwn

Bτ
“

Bf
Bτ
.

Let ϕ P Lippγ, BΩq with γ ą 1 and Φ the extension of ϕ to LippR2q,

ă q ¨ ν|BΩ, ϕ ą“ă divq,Φ ą `
ş

Ω
q∇Φdx “

ş

Ω
q∇Φdx as divq “ 0.

But Dwn ÝÑ Duñ p̃n “ R´π
2
Dwn ÝÑ R´π

2
Du “ q weakly as measures.

Then, ă q ¨ ν|BΩ, ϕ ą“
ş

Ω
q∇Φdx “ limnÝÑ8

ş

Ω
p̃n∇Φdx “ limnÝÑ8 ă p̃n ¨
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ν|BΩ, ϕ ą“ limnÝÑ8 ă g, ϕ ą“ă g, ϕ ą.

ñ q ¨ ν|BΩ “ g.

3.5.1 Example 1

We now show an example where the relation between FMD and LGP is used

resulting in a piecewise constant not continuous function f defined on BΩ. We

find a solution to the LGP with this f .

Suppose Ω strictly convex, BΩ smooth. Consider the FMD problem with g a

distribution ñ g “
ř3
i“1 ciδai with ai P BΩ and δai the delta function. In other

words, we apply a load on some points of BΩ and the rest of BΩ remains free.

We assume Ω is at rest, then for stability we take
ş

Ω
dg “ 0

ñ
ş

Ω
dp

ř3
i“1 ciδaiq “

ř3
i“1 ci

ş

Ω
δaidx “

ř3
i“1 ci “ 0.

We take c1 “ α1 ` α2, c2 “ ´α1, c2 “ ´α2 so that
ř3
i“1 ci “ 0.

We parametrize BΩ by s ÞÑ xpsq for s P r0, Lq.

ñ g “ α1 ` α2xps1q ´ α2xps2q ´ α1xp0q with xps1q, xps2q, xps0q 3 points on BΩ

and xps0q “ xp0q.

By FMD and LGP relation, g “ Bf
Bτ
.

We then get, g “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 s P r0, s1q

α1 ` α2 s P rs1, s2q

α1 s P rs2, Lq

f is piecewise constant and discontinuous on xp0q, xps1q, xps2q. We assume α1, α2

are positive, and f is unique up to a constant.

We now seek a soution to the LGP, mint
ş

Ω
| Du |;u P BV pΩq, Tu “ fu.
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We approximate f by a continuous function f ε such that f “ f ε everywhere

except at tx; dpx, xpsiq ă ε, i “ 0, 1, 2u. Then, by theorem 3.3.1, the LGP

mint
ş

Ω
| Du |;u P BV pΩq, Tu “ f εu has a solution which we will denote by

uε.

Since uε and uδ differ on a neighborhood of xpsiq i “ 0, 1, 2,

||uε ´ uδ||L1pΩq ď Ctε, δur| xps0q ´ xps1q | ` | xps1q ´ xps2q | ` | xps2q ´ xps0q |s.

As ε, δ ÝÑ 0, ||uε ´ uδ||L1pΩq ÝÑ 0.

ñ uε is a cauchy sequence in L1pΩq and as L1pΩq Banach spaceñ uε ÝÑ u in

L1pΩq.

Since uε is a least gradient function and uε ÝÑ u in L1pΩq ñ by proposition 3.

u is a least gradient function with tu “ f ε. But as ε ÝÑ 0, f ε “ f .

ñ Tu “ f

ñ u is a solution to mint
ş

Ω
| Du |;u P BV pΩq, Tu “ fu .

Uniqueness of the solution is claimed but still not proved rigorously. However,

r3s states that uniqueness is expected to be achieved as above by constructing

the level sets and claiming their uniqueness.

3.5.2 Example 2

We now represent an example given by r3s to find a solution to the LGP with

Ω a rectangle and f, not satisfying a monotonicity condition, being the function

resulting from the relation between LGP and FMD with the knowledge that a

load g is applied on a part of BΩ and Ω remains at rest.

Let Ω “ p´L,Lqˆp´h, hq a rectangle and g a load applied on BΩ in the following

way:

43



g “

$

’

’

’

’

’

&

’

’

’

’

’

%

lB r´b, bs ˆ t´hu

lT r´t, ts ˆ thu

0 on the rest of BΩ

where r´b, bs, r´t, ts Ă r´L,Ls

We suppose Ω is at rest such that
ş

BΩ
gdx “ 0

ñ
ş

thu

şt

´t
lTdxdy `

ş

t´hu

şb

´b
lBdxdy “ 0

ñ hlTx|
t
´t ´ hlBx|

b
´b “ 2tlTh´ 2blBh “ 0

But h ‰ 0 and hr2tlT ´ 2blBs “ 0

ñ 2tlT “ 2blB.

By FMD and LGP relation, Df P L1pBΩq; g “ Bf
Bτ
.

As we want f to be continuous, we proceed in the following way:

As g “ 0 on t´Lu ˆ r´h, hs ñ Bf
By
“ 0 ñ fp´L, yq “ C with C constant. We

take C “ 0.

ñ fpx, yq “ 0 on t´Lu ˆ r´h, hs.

By continuity of f , and as g remains to be 0 we get fpx, yq “ 0 on r´L,´bsˆt´hu.

On r´b, bsˆt´hu, g “ lB ñ fpx, yq “ lBx`kpyq. By continuity of f, fp´L,´hq “

fp´b,´hq “ 0 ñ ´lBb` kpyq “ 0 ñ kpyq “ lBb.

ñ fpx, yq “ lBx` blB on r´b, bs ˆ t´hu.

As we require f to be continuous and g “ 0 on rb, Lsˆt´hu and on tLuˆr´h, hs

and fpb,´hq “ 2blB ñ fpx, yq “ 2blB on rb, Ls ˆ t´hu and on tLu ˆ r´h, hs.

We proceed in a similar way on r´L,Ls ˆ thu to get:

fpx, yq “ 0 on r´L,´ts ˆ thu,

fpx, yq “ lTx` tlT on r´t, ts ˆ thu

fpx, yq “ 2tlT on rt, Ls ˆ thu and tLu ˆ r´h, hs.

In fact, as 2tlT “ 2blB we then guarentee the continuity of f.
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Conclusion, fpx, yq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

0 on t´Lu ˆ r´h, hs and r´L,´ts ˆ thu and r´L,´bs ˆ t´hu

lBx` blB on r´b, bs ˆ t´hu

lTx` tlT on r´t, ts ˆ thu

2blB on rb, Ls ˆ t´hu and tLu ˆ r´h, hs

2tlT on rt, Lsthu

We now aim on finding a solution to the LGP, with boundary data f .

If we take t “ b “ L then f is strictly increasing on h1, h2 and constant on v1, v2

where h1, h2, v1, v2 are defined in section 3.4.

Then, by theorem 3.4.1, there exists a unique continuous solution to the LGP.

However, we have that f is strictly increasing on r´t, tsˆthu and on r´b, bsˆt´hu,

which implies f attains each value at exactly 2 points, one in r´t, tsˆthu and one

in r´b, bsˆt´hu, except for the minimum and maximum of f which are attained

at more than 2 points.

We extend f to a function fε “ f ` kε continuous and strictly increasing on h1

and h2 and constant on v1 and v2 with

kεpx, yq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´ε on t´Lu ˆ r´h, hs

0 on r´b, bs ˆ t´hu and r´t, ts ˆ thu

px` tq ε
L´t

on r´L,´ts ˆ thu

px` bq ε
L´b

on r´L,´bs ˆ t´hu

px´ bq ε
L´b

on rb, Ls ˆ t´hu

px´ tq ε
L´t

on rt, Ls ˆ thu

ε on tLu ˆ r´h, hs

By theorem 3.4.1, there exists unique uε P CpΩq, solution to the LGP with

Tuε “ fε on BΩ.
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Denote by P1 the polygon with BP1 “ tt´Luˆr´h, hs, r´L,´tsˆthu, r´L,´bsˆ

t´hu, and the line segment l1 with Bl1 “ tp´t, hq, p´b,´hquu and P the polygon

with BP “ tl1, r´t, ts ˆ thu, r´b, bs ˆ t´hu, and the line segment l2 with Bl2 “

tpb, hq, pt, hquu and P2 the polygon with BP2 “ tl2, rt, Lsthu, rb, Ls ˆ t´hu, tLu ˆ

r´h, hsuu.

By construction of level sets as in section 3.4, we now know that every level set

joins a point in h1 to a point in h2 and uε takes the value on each level set same

as the value of fε on the endpoints of the level set. Therefore, as

´ε ď fε ď 0 on BP1 ´ l1,

0 ď fε ď 2blB on BP ´ tl2, l1u and

2blB ď fε ď 2blB ` ε on BP2 ´ l2.

Then:

´ε ď uε ď 0 on P1

0 ď uε ď 2blB on P

2blB ď uε ď 2blB ` ε on P2

We now set u “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 on P1

uε on P

2blB on P2

As uε is independent of ε on P then it is possible to take u “ uε on P .

It is evident that u is continuous on Ω.

I now prove uε converge in L1 to u because as uε is a least gradient function and

if uε ÝÑ u in L1pΩq then u is a least gradient function. In fact,

´ε ď uε ´ u ď 0 on P1,

uε ´ u “ 0 on P ,
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0 ď uε ´ u ď ε on P2

ñ| u´ uε |ď ε in Ω

ñ uε converges uniformly to u in Ω

ñ uε ÝÑ u in L1pΩq

ñ u is least gradient function.

It remains to show u has the correct trace Tu “ f on BΩ. In fact,

On P : Tu “ Tuε “ uε “ fε “ f .

On P1: Let z P t´Lu ˆ r´h, hs or r´L,´ts ˆ thu or r´L,´bs ˆ t´hu,

limyÝÑz, yPΩ upx, yq “ limyÝÑz, yPΩ 0 “ 0 “ fpzq

On P2: Let z P rt, Ls ˆ thu or rb, Ls ˆ t´hu or tLu ˆ r´h, hs

limyÝÑz, yPΩ upx, yq “ limyÝÑz, yPΩ 2blB “ 2blB “ fpzq
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Chapter 4

Constrained Least Gradient

Problem

Based on r10s, we now consider a rod and an external force applied on the rod.

We suppose the rod has an exterior constant cross section Ω. Our aim is to find

the cross section with least area that will resist the load without deforming. We

can consider this problem as a 2-dimensional problem with stress satisfying a

yield condition. Without loss of generality, we suppose the stress never exceeds

1 in magnitude or else the cross section yields plastically.

We may vary the cross sections by removing material from Ω and aim for the

cross section with the least area and the stress not exceeding 1.

However, we instead fix Ω and vary the stresses in Ω and remove material where

the stress is zero.

We can translate this problem into the following:

We let u be a function defined on Ω that gives a stress R´π
2
∇u i.e. rotation of

∇u by angle ´π
2
. We let f be a function defined on BΩ i.e. the load applied on

BΩ.

We define w : r0, 1s ÞÑ R by t ÞÑ wptq “

$

’

&

’

%

1 for t ‰ 0

0 for t=0
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Our problem is then:

mint

ż

Ω

wp|∇u|q ; |∇u| ď 1 a.e. in Ω , u “ f on BΩu

We know that
ş

Ω
wp|∇u|q ě 0 since |∇u| ě 0.

For |∇u| “ 0 ñ mint
ş

Ω
wp|∇u|q; |∇u| ď 1 a.e. in Ω, u “ f on BΩu “ 0.

For |∇u| ‰ 0, wp|∇u |q “ 1 ñ
ş

Ω
wp|∇u|qdA “ Area(Ω).

However, the integrand is nonconvex, and by a well known phenomenon in math-

ematics, it is a barrier to finding the existence of a solution. We then convexify

w by finding the greatest convex function smaller than w. It turns out that the

convexification of w is w̃ptq “ t.

We now solve the problem:

mint

ż

Ω

w̃p|∇u|q ; |∇u| ď 1 a.e. in Ω , u “ f on BΩu

As w̃ ď w ñ
ş

Ω
w̃ ď

ş

Ω
w ñ by attaining a solution to the convexified problem,

we attain an infimum, might not be a minimum, to our original problem.

We realize that the convexified problem is the least gradient problem with an

additional constraint.

Definition 4.0.1. We define the constrained least gradient problem to be:

mint

ż

Ω

|∇u| ; |∇u| ď 1 a.e. in Ω, u “ f on BΩu

with f lipchitz continuous on BΩ satisfying |fppq ´ fpqq| ď dΩpp, qq @p, q P BΩ

where dΩpp, qq “ inft length of γu with γ any path joining p to q lying in Ω.

The main ingredient in the method of solution is to start by studying the sets

tx P Ω; upxq ě tu, and then go on to studying their boundaries, with a view to

showing that those sets solve some minimum problem, in a well-defined notion of

perimeter.
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Now if Ω is a convex set, then the condition |∇u| ď 1 a.e. in Ω in equivalent

to |upxq ´ upyq| ď |x ´ y| for all x, y P Ω, as can be easily seen, since the line

segment joining x to y lies completely in Ω. If Ω is not convex, we can consider

all paths in Ω joining x to y, and then we will have that |upxq ´ upyq| ď t length

of the shortest path in Ω joining x to y}.

4.1 Characterization of level sets

Unlike the LGP, level sets of the solution to the constrained LGP need not to be

minimal surfaces due to the constraint |∇u| ď 1. Indeed, consider a 2-dimensional

case with Ω Ă R2. Let γt denote the level curve of u at t P R. The boundary

points at which u “ f “ t must belong to γt and along γt one has u “ t. γt must

avoid all balls of center p P BΩ and radius |fppq ´ t| because then the distance

between the points that give u “ t inside the ball and p is less than |fppq ´ t| i.e.

|x ´ p| ď |uppq ´ upxq| for x P γt, contradicting the fact that |∇u| ď 1. Hence,

γt may not need to be a straight line and thus a minimal surface. Indeed, each

level curve must avoid a set which is a union of open disks.

We shall now illustrate an example in R2 given by r11s aiming for one to see the

difference in the construction of level sets between the LGP and the constrained

LGP with boundary data deduced by the connection between FMD and LGP.

Example Consider Ω “ r0, 1s ˆ r0, 1s to be the unit square. Consider the FMD

problem with g defined on BΩ in the following way: g “ 1 on the bottom side,

g “ ´1 on the left side, and g “ 0 on the right and top side.

By the connection between FMD and LGP, one has g “ Bf
Bτ
ñ f “ x on the

bottom side, f “ y on the left side, and f “ 1 on the right and top side.

As seen in previous chapter, without the constraint |∇u| ď 1, one gets the LGP

with level sets as straight lines. As f takes each value exactly twice one on the

bottom side and one on the left side, level sets are straight lines joining these 2
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points pt, 0q and p0, tq for each t between 0 and 1. The lines equations will then

be y ` x “ t. Also, one has u constant with u “ 1 in the square with y ` x ě 1.

As u takes a constant value t along each level set joining pt, 0q and p0, tq, then

one deduces the unique solution to the LGP is upx, yq “ x` y.

However, |∇u| “
?

2 ě 1.

Therefore, for the constrained LGP with such boundary data f it is impossible

for u to have level sets as straight lines as they must avoid all disks Bpx, |fpxq´t|q

for each boundary point x. One then gets that the level sets are circular arcs

joining the 2 points pt, 0q and p0, tq with center 0 and radius t. Also, u will be

constant in the square above the circular arc center 0 radius 1.

So in case Ω is convex we may consider what appears to be a slightly weaker

condition than |∇u| ď 1 a.e. in Ω. Namely we suppose that the condition

|upxq ´ upyq| ď |x ´ y| holds for all x P BΩ, and y P Ω. The corresponding

problem is then

t

ż

Ω

|∇v|, v “ f on BΩ, |vpxq ´ vpyq| ď |x´ y| holds for all x P BΩ, y P Ωu

It turns out that an analysis of this problem produces a unique solution of

the constrained problem.

Now let Ω be a bounded domain in Rn, and let f be a given function defined on

its boundary BΩ. Suppose that there is a function v defined on Ω and satisfying

the following conditions:

(i) v “ f on BΩ; (ii) if x P BΩ, and y P Ω, then |upxq ´ upyq| ď |x´ y|.

For such function v we aim on to study the sets At “ tx P Ω; vpxq ě tu, with t a

real number.

Fix t P R, and compare, for all points p P BΩ, the values fppq of the boundary

function f with the real number t.

Case 1: Suppose that there is a point p P BΩ such that fppq ă t. Then t´fppq ą 0,
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and we concentrate on a neighborhood of p of radius t ´ fppq ą 0. If x P Ω and

is also in this neighborhood, then |x´ p| ă t´ fppq. Then by condition (ii) on v

we have, since vppq “ fppq,

vpxq ´ vppq “ vpxq ´ fppq ď |x´ p| ă t´ fppq

which implies that vpxq ă t, and hence such a point x R At. In particular, the

point p itself is not in At. This also implies that if M “ maxtfppq; p P BΩu and

t ą M , then fppq ă t for all point p P BΩ, and so the boundary of Ω can be

covered by an open set (a union of neighborhoods) which does not intersect that

particular At. Later on, we shall be interested in the largest such possible set.

Case 2: Suppose there is a point p P BΩ such that fppq ě t. Then fppq ´ t ě 0

and if fppq ´ t ą 0, we concentrate on a neighborhood of p of radius fppq ´ t. If

x P Ω and is also in this neighborhood, then |x´p| ă fppq´ t, and again we have

vppq ´ vpxq “ fppq ´ vpxq ď |p´ x| ă fppq ´ t

which implies that vpxq ě t, and so x P At. This also implies that if

m “ mintfppq; p P BΩu, and t ď m, then fppq ě t for all points p P BΩ, and so

the entire boundary of Ω along with an open set containing it will lie in At. Once

again we are interested in the largest such possible set.

The previous analysis leads naturally to the introduction of 2 sets as follows:

given t P R, define two sets Lt and Mt by

Lt :“ tx P Ω; Dp P BΩ, fppq´t ě 0, |p´x| ď fppq´tu “ tYpPBΩBpp, fppq´tq ; fppq ě tu

Mt :“ tx P Ω; Dp P BΩ, fppq´t ă 0, |p´x| ă t´fppqu “ tYpPBΩBpp, t´fppqq; fppq ă tu

Proposition 9. r10s Suppose that v satisfies the conditions (i)v “ f on BΩ,

(ii) if x P BΩ, and y P Ω, then |vpxq ´ vpyq| ď |x ´ y|. Then, Lt Ă At, and

At XMt “ ∅ for each real t.
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Now for a given function v satisfying the conditions of the proposition, and

for each real t, we seek that subset E Ă Ω, which contains Lt does not intersect

Mt and has smallest perimeter i.e. we consider the problem

mintP pEq; Lt Ă E, E XMt “ ∅, E Ă Ωu (4.1)

One can show that this problem always has a solution, but not necessarily a

unique solution. To obtain a unique solution, we search for those sets which have

largest possible measure i.e.

maxt|E|; E solves the above problemu (4.2)

Now this problem has a unique solution, denoted by εt and we expect that the

boundary of this set corresponds with the level set v “ t.

Another important characterization of the level sets is that the construction of

Bεt is independent of the construction of Bεs.

Indeed, we we shall present the proof of result based on reference r4s that the

distance between Bεt and Bεs is no less than |t´ s| for s ă t.

First we extend p4.1q and p4.2q from Ω to Rn .

We now consider the following extended problems

mintP pE,Rn
q;Lt Ă E, 8Mt X E “ ∅, E ´ Ω “ Lt ´ Ωu (4.3)

and

maxt|E|; E solves p4.3qu (4.4)

We denote the solution of p4.4q by Et.

Remark 11. p4.1q and p4.3q are equivalent since

P pE,Rn
q “ P pE,Ωq `Hn´1

pB
˚Lt ´ Ωq

such that Et X Ω “ εt
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Lemma 4.1.1. If s ă t, then Et Ă Es

Lemma 4.1.2. Let s ă t. Let η P Rn, | η |ď t´ s. Then Et ` η Ă Es.

Proof. We first denote L1t :“ Lt ` η, M
1

t :“Mt ` η, Ω
1

:“ Ω` η.

We consider the problem:

mintP pEq;L
1

t Ă E, 8M
1

t X E “ E,E ´ Ω1 “ L
1

t ´ Ω1u (4.5)

maxt|E|; E solves p4.5qu (4.6)

p4.5q and p4.6q have a unique solution which we will denote by E 1

t.

We have L1t Ă Ls since: for x P L
1

t, x “ a`η, a P Lt ñ Dp P BΩ; |a´p| ď fppq´ t

ñ Dp P BΩ; |a´p|` |η| ď fppq´ t`|η| ñ Dp P BΩ; |a´p`η| ď fppq´ t` t´s “

fppq ´ s. As fppq ě t ą sñ fppq ´ s ě 0

ñ Dp P BΩ; |x´ p| ď fppq ´ sñ x P Ls.

Let E “ E
1

t X Es

We need to prove, L1t Ă E,E X 8M
1

t “ E,E ´ Ω1 “ L
1

t ´ Ω1

• L1t Ă Ls Ă Es

L
1

t Ă E
1

t

ñ L
1

t Ă E
1

t X Es “ E

• We have E Ă E
1

t

ñ E X 8M
1

t Ă E
1

t X
8M
1

t

ñ E XM
1

t “ ∅ as E 1t X 8M 1
t “ ∅

• As L1t Ă E Ă E
1

t

ñ L
1

t ´ Ω
1

Ă E ´ Ω1 Ă E
1

t ´ Ω1 “ L
1

t ´ Ω1

ñ E ´ Ω
1

“ L
1

t ´ Ω1

Hence, E “ E
1

t X Es competitor of E 1

t in p4.5q

ñ P pE,Rnq ě P pE
1

t, R
nq
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Let F “ E
1

t Y Es

We haveMs ĂM
1

t since: let x PMs ñ Dp P BΩ; s´fppq ě 0 and | x´p |ď s´fppq.

Let a “ x´ η.

We claim a P Mt. | p ´ a |“| p ´ px ´ ηq |“| p ´ x ` η |ď| p ´ x | ` | η |ď

s´ fppq` | η |ď s´ fppq ` t´ s “ t´ fppq.

ñ x “ a` η with a PMt ñ x PM
1

t .

As Ms ĂM
1

t ñ
8Ms ĂM

1

t .

But 8M
1

t is the biggest open set in M 1

t ñ
8Ms Ă 8M

1

t

We need to prove Ls Ă F, F X 8Ms “ ∅, F ´ Ω “ Ls ´ Ω

• Ls Ă Es Ă Es Y E
1

t “ F

• F X 8Ms “ pEs Y E
1

tq X
8Ms “ pEs X 8Msq Y pE

1

t X
8Msq

But Es X 8Ms “ E as Es solves p4.3q.

Since 8Ms Ă 8M
1

t ñ E
1

t X
8Ms Ă E

1

t X
8M
1

t “ ∅

ñ E
1

t X
8Ms “ ∅

Hence, F X 8Ms “ ∅

• Ls Ă Es ñ Ls ´ Ω Ă Es ´ Ω Ă F ´ Ω

It remains to show F ´ Ω Ă Ls ´ Ω

F ´ Ω “ pE
1

t Y Esq ´ Ω “ pE
1

t ´ Ωq Y pEs ´ Ωq

So we need to prove E 1

t ´ Ω Ă Ls ´ Ω and Es ´ Ω Ă Ls ´ Ω

But we know Es ´ Ω “ Ls ´ Ω So it remains to prove E 1

t ´ Ω Ă Ls ´ Ω

Let x P E 1

t ´ Ω ñ x P E
1

t and x R Ω ñ x “ a` η, a P Et, x R Ω

It is enough now to prove x P Ls

We consider two cases: a P Ω and a R Ω.

If a R Ω ñ a P Et ´ Ω “ Lt ´ Ω ñ x P L
1

t Ă Ls
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If a P Ω then Dy1 P BΩ with y1 “ a` γη, 0 ď γ ď 1 since x R Ω.

If fpy1q ď t we have a P Et and Et X 8Mt “ ∅ñ a RMt

ñ |a´ y1| ě t´ fpy1q ñ |a´ a´ γη| ě t´ fpy1q ñ |η| ě t´ fpy1q

ñ t´ s ě t´ fpy1q ñ s ď fpy1q.

If fpy1q ě t, as t ą sñ fpy1q ą s.

Then as fpy1q ą s, |x ´ y1| “ |a ` η ´ a ´ γη| “ |p1 ´ γqη| ď |η| ď t ´ s ď

fpy1q ´ s

ñ x P Ls

Hence, F is a competitor to Es in p4.3q ñ P pEs Y E
1

t, R
nq ě P pEs, R

nq

But P pEs Y E
1

t,Ωq ` P pEs X E
1

t,Ωq ď P pEs,Ωq ` P pE
1

t,Ωq

and from above we have, P pEsYE
1

t,Ωq ď P pEs,Ωq and P pEsXE
1

t,Ωq ď P pE
1

t,Ωq

ñ P pEs Y E
1

t,Ωq “ P pEs,Ωq and P pEs X E
1

t,Ωq “ P pE
1

t,Ωq

ñ Es Y E
1

t and Es X E
1

t solve (P’1) and (P’3) respectively

ñ p| Es Y E
1

tq X Ω |ď| pEsq X Ω | and | Es X E
1

t X Ω |ď| E
1

t X Ω |

But | pEs Y E
1

tq X Ω |“| Es X Ω | ` | pE
1

t ´ Esq X Ω |

ñ| Es X Ω |ě| Es X Ω | ` | pE
1

t ´ Esq X Ω |

ñ| pE
1

t ´ Esq X Ω |“ 0

It remains to show E 1t Ă Es

Let x P E 1t X Ω ñ by definition 2.2.1, lim suprÝÑ0
|E1tXBpx,rqXΩ|

|Bpx,rq|
ą 0

Write E 1t “ pE 1t ´ Esq Y pE 1t X Esq union of 2 disjoint sets.

ñ lim suprÝÑ0
|E1tXBpx,rqXΩ|

|Bpx,rq|
“ lim suprÝÑ0

|ΩXpE1t´EsqXBpx,rq|

|Bpx,rq|
`lim suprÝÑ0

|ΩXpE1tXEsqXBpx,rq|

|Bpx,rq|

But pE 1t ´ Esq XBpx, rq X Ω Ă pE 1t ´ Esq X Ω

ñ| pE 1t ´ Esq XBpx, rq X Ω |ď| pE 1t ´ Esq X Ω |“ 0

ñ| pE 1t ´ Esq XBpx, rq X Ω |“ 0

ñ 0 ă lim suprÝÑ0
|E1tXBpx,rqXΩ|

|Bpx,rq|
“ lim suprÝÑ0

|E1tXEsXΩXBpx,rq|

|Bpx,rq|
ď lim suprÝÑ0

|EsXBpx,rqXΩ|
|Bpx,rq|

ñ lim suprÝÑ0
|EsXBpx,rqXΩ|

|Bpx,rq|
ą 0
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ñ x P Es

Hence, E 1t X Ω Ă Es X Ω

Also, E 1

t ´ Ω “ L
1

t ´ Ω Ă Ls ´ Ω “ εs ´ Ω

ñ E
1

t Ă Es

Corollary 4.2. Let s ă t, distpBEt, BEsq ě t´ s

Proof. Proceeding by contradiction, suppose distpBEt, BEsq ă t´ s

Let x P BEt. Then one can find y R Es such that | y ´ x |“ t´ s.

Set η “ y ´ xñ y “ η ` x P E
1

t. Contradiction to lemma 4.1.2. .

Remark 12. If Ω not convex we then have f lipchitz with | fppq´fpqq |ď dΩpp, qq

@p, q P BΩ.

Corollary 4.2 will then be dΩpΩX BEs,ΩX BEtq ě t´ s for s ă t.

4.3 Existence of a solution

Definition 4.3.1. Define a function u˚ on Ω by

u˚pxq “ suptt; x P εtu

Theorem 4.3.1. r4s The function u˚ is the unique continuous solution to the

problem

mint

ż

Ω

|∇u|; u “ f on BΩ, |∇u| ď 1 a.e. in Ωu

Proposition 9 constitutes a characterization of the level sets of the solution to

the problem.

Since by definition of εt one has Lt Ă εt and εtXMt “ ∅, it is then easy to show

that u˚ “ f on BΩ and |u˚pxq ´ u˚pyq| ď |x´ y| for all x P BΩ, y P Ω.

Indeed, Let x P BΩ such that fpxq “ t. If s ă t ñ fpxq ą s ñ x P Ls

@s ă tñ x P εs @s ă t since Ls Ă εs ñ upxq ě s @s ă tñ upxq ě t.
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If s ą t ñ fpxq ă s ñ s ´ fpxq ą 0 ñ x P 8Ms @s ą t ñ x R εs @s ą t since

εs X 8Ms “ ∅ñ upxq ă s @s ą tñ upxq ď t. Hence, upxq “ t “ fpxq.

Now let u˚pyq “ t for y P Ω ñ y P Bεt ñ y R LtYMt ñ y R Bpx, |fpxq´u˚pyq|q for

all x P BΩ ñ |fpxq´u˚pyq| ď |x´y| for y P Ω, x P BΩ ñ |u˚pxq´u˚pyq| ď |x´y|

for y P Ω, x P BΩ.

So to prove that u˚ is indeed the solution of the constrained least gradient problem

one still has to show that u˚ is continuous and that |u˚pxq ´ u˚pyq| ď |x´ y| for

x, y P Ω i.e. u˚ is lipchitz. The proof will be illustrated in what follows according

to reference r4s.

We first begin by introducing new sets that can help in the characterization of

level sets. We set the following:

Bt “ Xsătεs, Ct “ Ysątεs, Dt “ Bt ´ Ct “ Bt X C
c
t

Lemma 4.3.1. εt Ă 8εs @s ă t

Lemma 4.3.2. For each point x on BDtXΩ, one can find a sequence of points on

Ys‰tpBεsXΩq converging to x. In other words, x is a limit point of Ys‰tpBεsXΩq,

t P R

Proof. Let x P BDt X Ω. Consider all r ą 0;Bpx, rq Ă Ω. Then one can find

y P Dt XBpx, rq and z P pΩ´Dtq XBpx, rq.

ñ y P Bt, y R Ct, and z R Dt

ñ y P Bt, y P Ω´ Ct, z R Bt or z R Cc
t

ñ ry P Xsătεs and z P YsătpΩ´ εsqs or ry P XsątpΩ´ εsq and z P Ysątεss

ñ by first condition Bpx, rq contains an element of Bεs @s ă t sufficiently close

to t knowing εt Ă εs @s ă t. Similarly, by second condition Bpx, rq contains an

element of Bεs @s ą t sufficiently close to t. These points will eventually converge

to x.
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Lemma 4.3.3. @t P R

1. Dt is a closed set

2. Dt “ ΩX tx;u˚pxq “ tu

3. ΩX Bεt Ă pu
˚q´1ptq

4. εt Ă tx;upxq ě tu “ Bt

5. u˚ is lipchitz on Ω with lipchitz constant 1

Proof. 1. To prove Dt is closed in Ω we prove pBDt Y 8Dtq X Ω “ Dt X Ω.

We know Dt Ă Dt. So it remains to prove Dt X Ω Ă Dt X Ω.

But 8Dt Ă Dt ñ it suffices to prove BDt X Ω Ă Dt X Ω i.e. @x P BDt X Ω, x P Bt

and x P Ω´ Ct.

Let x P BDt X Ω. Then Dxi P Dt such that xi ÝÑ x

But Dt Ă Bt ñ Dxi P Bt;xi ÝÑ x.

As Bt is a closed set ( being the intersection of closed sets ), the limit point x P Bt.

It remains to show x R Ct.

Proceeding by contradiction, suppose x P Ct ñ Ds0 ą t such that x P As0 .

We will conder 2 cases:

1) Assume Dr ą 0;Bpx, rq X Ω “ Bpx, rq XDt,

as x P εs0 X Ω ñ by definition 3.2.1 lim suprÝÑ0
|Bpx,rqXΩXεs0 |

|Bpx,rq|
ą 0 ñ| Bpx, rq X

ΩX εs0 |ą 0

But Bpx, rq X ΩX Ct “ Bpx, rq XDt X Ct “ Bpx, rq XBt X C
c
t X Ct “ ∅

As εs0 Ă Ysątεs “ Ct

ñ| Bpx, rq X ΩX εs0 |ď| Bpx, rq X ΩX Ct |“ 0 .Contradiction.

Then, x R Ct.

2) Assume @r ą 0, Bpx, rq X Ω ‰ Bpx, rq XDt

By lemma 4.3.2, Dtysiu ÝÑ x as si ÝÑ t´.
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If x P 8εs0 ñ x P 8Ct ñ x cannot belong to BDt. Contradiction. So x P Bεs0 . But

by corollary 4.2, distpx, ysiq ě distpBεs0 , Bεsiq ě s0 ´ si ą 0

As i ÝÑ 8 we get a contradiction.

ñ x R Ct ñ x P Dt

2. Ąq Let x P Ω;u˚pxq “ tñ x P εt.

If s ă t we have εt Ă εs ñ x P εs @s ă tñ x P Bt.

If s ą tñ u˚pxq ă sñ x R εs @s ą tñ x R Ct.

Hence, x P Dt.

Ă ) Let x P Dt ñ x P Bt and x R Ct ñ @s ă t x P εs and @s ą t x R εs ñ @s ă t

u˚pxq ě s and @s ą t u˚pxq ă s

ñ u˚pxq ě t and u˚pxq ď tñ u˚pxq “ t.

3. Let x P ΩX Bεt. As εt is closed then x P εt Ă Bt.

It remains to prove x R Ct. If x P Ct ñ Ds0 ą t;x P Bεs0

ñ distpBεs0 , Bεtq “ 0. Contradiction with the corollary 4.2.

4. We first prove Bt “ tx;u˚pxq ě tu.

Let x P Bt ñ @s ă t, x P εs.

But εt Ă εs @s ă t ñ x P εt ñ u˚pxq ě t.

Conversely, if u˚pxq ě tñ x P εt Ă Bt.

Now @x P εt we have u˚pxq ě t.

Hence, εt Ă tx;u˚pxq ě tu “ Bt.

5. Let x, y P Ω. Let u˚pxq “ s and u˚pyq “ t. By 3, x P Ds and y P Dt. We will

suppose x P 8Ds and y P 8Dt ñ Dx1 P BDs and a geodesic joining x to y passing

through x1. Also Dy1 P BDt such that y1 belongs to this geodesic. By lemma 4.3.2,

Dtxsiu Ă Bεsi and Dtytiu Ă Bεti such that xsi ÝÑ x1 and yti ÝÑ y1 as si ÝÑ s and

ti ÝÑ t respectively.
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ñ distΩpxsi , ytiq ě distΩpBεsi , Bεtiq ě |si ´ ti| by corollary 4.2.

ñ limiÝÑ8 distΩpxsi , ytiq ě limiÝÑ8 |si ´ ti|

ñ distΩpx
1, y1q ě |s´ t|

ñ distΩpx, yq ě |s´ t| as dΩpx, yq ě dΩpx
1, y1q

ñ distΩpx, yq ě |upxq ´ upyq|.

It remains to show u˚ continuous on BΩ. Let x P BΩ; u˚pxq “ t “ fpxq.

@s ă t we have ΩX ty; distpx, yq ď fpxq ´ su Ă Ls Ă εs.

ñ @y P Ω, distpx, yq ď| fpxq ´ s | we have y P ε_s ñ u˚pyq ě s@s ă t

ñ lim infyÝÑx,yPΩ u
˚pyq ě s @s ă t ñ lim infyÝÑx,yPΩ u

˚pyq ě t “ u˚pxq.

@s ą t, we have Ω X ty; distpx, yq ď s ´ fpxqu Ă Ms ñ @y P Ω, distpx, yq ď

s ´ fpxq we have y R εs ñ u˚pyq ă s @s ą t ñ lim supyÝÑx,yPΩ u
˚pyq ă s

@s ą tñ lim supyÝÑx,yPΩ u
˚pyq ď t “ u˚pxq.

Hence u˚ is lipchitz on Ω.

We shall now present the proof that the above u˚ is indeed the solution of the

constrained LGP given by r4s:

Proof. Since u˚ is lipchitz on Ω, by lemma 4.3.3, |∇u˚| ď 1 a.e. in Ω.

Also by lemma 4.3.3, we have u˚ P C0,1pΩq on BΩ. We shall now show that
ş

Ω
|∇u| ď

ş

Ω
|∇v|, for each v competitor of u in the constrained LGP.

So we let v P C0,1pΩq, |∇v| ď 1 a.e. in Ω, v “ f on BΩ.

We then have @p P BΩ, x P Ω, |vpxq ´ vppq| ď |x´ p|.

Setting ε1t “ tv ě tu, one indeed has Lt Ă ε
1

t and 8Mt X ε
1

t “ ∅ by proposition 9.

Hence, ε1t is a competitor to εt in p4.1q ñ P pεt,Ωq ď P pε
1

t,Ωq

ñ
ş`8

´8
P pεt,Ωq ď

ş`8

´8
P pε

1

t,Ωq

ñ by coarea formula, theorem 2.5.1,
ş

Ω
|∇u| ď

ş

Ω
|∇v|.
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