LEAST GRADIENT PROBLEM

by

MARIE-JOSE FADI CHAAYA

A thesis
submitted in partial fulfillment of the requirements
for the degree of Master of Science
to the Department of Mathematics
of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
May 2020
LEAST GRADIENT PROBLEM

by

MARIE-JOSE FADI CHAAYA

Approved by:

Prof. Abi-Khuzam, Faruk, Professor
Mathematics

Prof. Shayya, Bassam, Professor
Mathematics

Prof. Sabra, Ahmad, Assistant Professor
Mathematics

Advisor
Member of Committee
Member of Committee

Date of thesis defense: May 13, 2020
AMERICAN UNIVERSITY OF BEIRUT

THESIS, RELEASE FORM

Student Name: Chaaya Marie-José Fadi

Last First Middle

I authorize the American University of Beirut to: (a) reproduce hard or electronic copies of my thesis, dissertation, or project; (b) include such copies in the archives and digital repositories of the University; and (c) make freely available such copies to third parties for research or educational purposes.

☐ I authorize the American University of Beirut, to: (a) reproduce hard or electronic copies of it; (b) include such copies in the archives and digital repositories of the University; and (c) make freely available such copies to third parties for research or educational purposes after: One _ year from the date of submission of my thesis, dissertation or project.

☐ Two _ years from the date of submission of my thesis, dissertation or project.

☐ Three _ years from the date of submission of my thesis, dissertation or project.

Signature 01/6/2020

Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries
Acknowledgements

I wish to start by expressing my deepest gratitude to my advisor, Professor Faruk Abi-Khuzam, for his constant assistance. Thank you for your expertise, alongside the knowledge and valuable information you’ve given me. Writing my thesis was a challenging task, but you made it all possible.

I would also like to thank Professor Bassam Shayya and Professor Ahmad Sabra for being part of my thesis committee. Thank you for your continuous support. It was a great pleasure working on Professor Ahmad Sabra’s paper, which I admired and was highly inspired with.

Special thanks to my friends at AUB whom I cherish every moment spend with them. They made the whole process so much better.

Finally, I must express my gratitude to my family, who stood by my side and supported me in everything. Thank you for your unconditional love, I never would have made it without you.
An Abstract of the Thesis of

Marie-Jose Fadi Chaaya for Master of Science
Major: Mathematics

Title: Least Gradient Problem

If f is a given function defined on the boundary $\partial \Omega$ of a domain Ω in d-dimensional Euclidean space, the least gradient problem (LGP) asks for the following: among all functions u in the space $BV(\Omega)$, and having boundary values equal to f, does there exist a function that minimizes the set of all L^1 norms of the gradients of such functions? Furthermore, if such a minimizer exists, what further smooth and minimizing properties does it have? The purpose of this thesis is to study this problem in the two dimensional case, where Ω is strictly convex, and to explore the situation where Ω is only convex.

The exposition will present a study of level sets of minimizers, as well as the connection, through the co-area theorem, between the properties of those level sets and the minimizing function.
Contents

Acknowledgements
Abstract

1 Introduction

2 Preliminary

2.1 Bounded Variation in \mathbb{R}
2.2 Bounded Variation in \mathbb{R}^2
2.3 Bounded variation in $\mathbb{R}^n \forall n > 1$
2.4 Perimeter of a measurable set
2.5 Coarea formula

3 Least Gradient Problem

3.1 Introduction
3.2 Prerequisites
3.3 Solution to the LGP
3.4 Special case
3.5 Connection between LGP and FMD
 3.5.1 Example 1
 3.5.2 Example 2
4 Constrained Least Gradient Problem

4.1 Characterization of level sets ... 50
4.3 Existence of a solution .. 57
Chapter 1

Introduction

A lot of research has been done over the years on the least gradient problem. It continues to be a problem of great interest, particularly because there are still subtle questions regarding this problem.

We note that the least gradient problem (LGP) is defined on \mathbb{R}^n for $n \geq 1$. In fact, in case of a particular class of boundary data, a particular domain structure, the existence of a continuous solution was achieved upon construction. Indeed, we will later observe in this exposition that the continuity of the solution depends on the continuity of boundary data and structure of domain.

First, uniqueness of the obtained solution was achieved by Stenberg, Williams, and Ziemer, [1], with the fact that Bombieri, De Giorgi, and Giusti, [2], demonstrated that the level sets are minimal surfaces. Since minimal surfaces are solutions of a special differential equation, and because differential equation solutions are unique, the uniqueness of the constructed LGP solution has been defined.

However, a different approach is given in [3] to develop the uniqueness of a solution. This approach focuses on the construction of level sets of solutions and the fact that they are minimal surfaces.

In chapter 2, we will introduce some basic notions that are of great help to
understand the set of functions in which we will be working with in the LGP. Furthermore, we will define the notion of perimeter and the co-area formula which will help us in achieving the existence of a solution.

In chapter 3, we first introduce the LGP and observe the construction of a solution obtained for \(\Omega \subset \mathbb{R}^2 \) plane domain strictly convex with \(C^1 \) lipchitz boundary and boundary data \(f \) continuous on a part \(\Gamma \) of the boundary of \(\Omega \). After illustrating the proof given in [3] that the constructed function is indeed a solution, we aim on showing its uniqueness when \(f \) satisfies some monotonicity condition on \(\Gamma \) also given by [3].

We then go further in providing one of the most important results to be given in [3] which is the existence and uniqueness of a solution when \(\Omega \) is only convex and not strictly convex.

Moreover, we will show a relation achieved by Gorny, Rybka and Sabra, [3], between the least gradient problem and a problem in free material design. Then, examples will follow to illustrate this connection.

Lastly, in chapter 4, we define namely the constrained least gradient problem. We now work in \(\mathbb{R}^n \), \(n \geq 1 \). Similar to the LGP, the constrained least gradient problem is the LGP with an additional constraint. This constraint requires the solutions to be lipchitz. Also, we will observe the construction of solutions given by [4] while noticing that the additional constraint will affect somehow the choice of sets taken in the construction.
Chapter 2

Preliminary

As we aim later on introducing the least gradient problem and tend to solve it as was done in [3], we realize that the set of functions in which the least gradient problem is defined is for functions of bounded variation. Therefore, we first aim on reviewing some basic definitions and some important theorems that will help in solving the least gradient problem.

In this chapter, we review the classical notion of a function of bounded variation, and consider its connection to differentiability. We will review this notion in one dimension and then in higher dimensions. Also, we will define a new notion of bounded variation and establish a relation between the classical notion and the new one. As well, we will define a new notion of perimeter of measurable sets and establish an important formula to be used later in this paper called the coarea formula.

2.1 Bounded Variation in \mathbb{R}

Definition 2.1.1. Let $f : [a,b] \mapsto \mathbb{R}$

We define the essential variation of f to be:

$$essV^b_a f = \sup \left\{ \sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_j)| ; \, a = t_0 < t_1 < ... < t_{n-1} < t_n = b \text{ partition of } [a,b] \right\}$$
where each t_i a point of approximate continuity of $f \forall i = 0, \ldots, n$.

According to Tonelli we say f is of bounded variation and denote it by $f \in BV(a, b) \iff essV_a^b f < \infty$.

Example If $f : [a, b] \rightarrow \mathbb{R}$ is monotone then $f \in BV(a, b)$ and $essV_a^b f = |f(b) - f(a)|$

Proposition 1. Let $f : [a, b] \rightarrow \mathbb{R}$. The following implications hold:
If f is continuously differentiable $\Rightarrow f$ is lipchitz continuous $\Rightarrow f$ is absolutely continuous $\Rightarrow f$ is of bounded variation $\Rightarrow f$ is differentiable a.e. .

Theorem 2.1.1. [5] If $f : [a, b] \rightarrow \mathbb{R}$ continuous on $[a, b]$ and f' exists and is bounded on (a, b) then f is absolutely continuous on $[a, b]$.

Theorem 2.1.2. [5] If f is absolutely continuous then f' exists a.e. and is integrable. Also, we have, $essV_a^b(f) = \int_a^b |f'(x)| \, dx$

Definition 2.1.2. Let $f \in L^1(a, b)$. We now define the number $\int_a^b |Df| \, dx = \sup \{ \int_a^b fg' \, dx; \, |g| \leq 1, \, g \in C^0_0(a, b) \}$ to be the total variation of f.

Remark 1. If $f \in C^\infty(a, b)$, then $\int_a^b |Df| = \int_a^b |f'|

Theorem 2.1.3. [6] Let f defined on \mathbb{R}^n. Let $\Omega \subset \mathbb{R}^n \forall n \geq 1$.
If $\int_\Omega |Df| < \infty \Rightarrow \exists f_j \in BV(\Omega) \cap C^\infty(\Omega)$; $f_j \rightarrow f$ in $L^1(\Omega)$ and $\int_\Omega |Df_j| \rightarrow \int_\Omega |Df|$ as $j \rightarrow +\infty$

Theorem 2.1.4. [6] Let $\Omega \subset \mathbb{R}^n$.
If $f_j \rightarrow f$ in $L^1(\Omega)$ then \exists a subsequence $\{f_{j_k}\}$ such that $f_{j_k} \rightarrow f$ a.e.

Theorem 2.1.5. [6] Let $f \in L^1(a, b)$ then $\int_a^b |Df| = essV_a^b(f)$
Proof. \(\leq \) Since each Lebesgue point is a point of approximate continuity of \(f \), consider the partition \(a = t_1 \leq t_2 \leq \ldots \leq t_n = b \) where each \(t_i \) is a Lebesgue point.

Let \(\eta \) be a mollifier satisfying:

1. \(0 \leq \eta(x) \leq 1 \ \forall x \in (a, b) \)
2. \(\text{supp} \eta \subset [-1, 1] \)
3. \(\int_{-1}^{1} \eta(x)dx = 1 \)

Let \(\epsilon > 0 \).

Define the function \(\eta_{\epsilon}(x) = \frac{1}{\epsilon} \eta(\frac{x}{\epsilon}) \) and the convolution \(f^{\epsilon} := \eta_{\epsilon} * f \in C^\infty(a, b) \).

\[
\sum_{j=1}^{m} | f^{\epsilon}(t_{j+1}) - f^{\epsilon}(t_{j}) | = \sum_{j=1}^{m} \left| \int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) f(t_{j+1} - s) - \eta_{\epsilon}(s) f(t_{j} - s) \right| ds
\]

\[
= \sum_{j=1}^{m} \left| \int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) f(t_{j+1} - s) - f(t_{j} - s) \right| ds
\]

\[
\leq \sum_{j=1}^{m} \int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) \left| f(t_{j+1} - s) - f(t_{j} - s) \right| ds
\]

\[
= \int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) \sum_{j=1}^{m} \left| f(t_{j+1} - s) - f(t_{j} - s) \right| ds
\]

(2.1)

But as \(t_j \) is a Lebesgue point then \(t_j - s \) is a Lebesgue point and thus approximate point \(\forall j = 1, \ldots, m \)

\[
\Rightarrow \sum_{j=1}^{m} | f^{\epsilon}(t_{j+1}) - f^{\epsilon}(t_{j}) | \leq \text{essV}_{a}^{b}(f) \int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) ds
\]

But \(\int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) ds = \int_{-\epsilon}^{\epsilon} \frac{1}{\epsilon} \eta(\frac{z}{\epsilon}) ds \)

Take \(x = \frac{z}{\epsilon} \Rightarrow dx = \frac{1}{\epsilon} ds \)

\[
\Rightarrow \int_{-1}^{1} \eta(x)dx = 1
\]

\[
\Rightarrow \sum_{j=1}^{m} | f^{\epsilon}(t_{j+1}) - f^{\epsilon}(t_{j}) | \leq \text{essV}_{a}^{b}(f)
\]

Taking sup over all such partitions we get \(\text{essV}_{a}^{b}(f^{\epsilon}) \leq \text{essV}_{a}^{b}(f) \)

Now \(\int_{a}^{b} f^{\epsilon} g' dx = -\int_{a}^{b} (f^{\epsilon})' g dx \leq \int_{a}^{b} (f^{\epsilon})' dx \leq \int_{a}^{b} | (f^{\epsilon})' | dx \)

Hoewever, as \(f^{\epsilon} \) is continuously differentiable, we have \(\int_{a}^{b} | (f^{\epsilon})' | dx = \text{essV}_{a}^{b} f^{\epsilon} \).
\[\Rightarrow \int_a^b f^* g' \, dx \leq \text{ess} V^b_a f^* \leq \text{ess} V^b_a f . \]

As \(f^* \to f \) in \(L^1(a, b) \) as \(\epsilon \to 0 \)

Then \(\int_a^b f g' \, dx = \lim_{\epsilon \to 0} \int_a^b f^* g' \, dx \leq \text{ess} V^b_a f \)

Taking sup over all such \(g \), we finally get the first inequality \(\int_a^b |Df| \leq \text{ess} V^b_a (f) \)

\(\geq \) Now suppose \(\int_a^b |Df| < \infty \Rightarrow \exists \{f_j\} \subset BV(a, b) \cap C^\infty(a, b); f_j \to f \) in \(L^1(a, b) \), \(\int_a^b |Df_j| \to \int_a^b |Df| \), and \(\exists \) a subsequence still denoted by \(\{f_j\} \) such that \(f_j \to f \) a.e.

We write \(f_j(z) = f_j(y) + \int_y^z f_j'(x) \, dx \) for \(a < y < z < b \)

Averaging with respect to \(y \) we get,

\[\int_a^b | f_j(z) | \, dy = \int_a^b | f_j(y) | \, dy + \int_a^b | \int_y^z f_j'(x) \, dx | \, dy \]

\[\Rightarrow | f_j(z) | = \int_a^b | f_j(y) | \, dy + | \int_y^z f_j'(x) \, dx | \]

\[\Rightarrow | f_j(z) | \leq \int_a^b | f_j(y) | \, dy + \int_y^z | f_j'(x) | \, dx \]

\[\Rightarrow | f_j(z) | \leq \int_a^b | f_j(y) | \, dy + \int_a^b | f_j'(x) | \, dx \]

But as \(f_j \in BV(a, b) \cap C^\infty(a, b) \) we have \(\int_a^b | Df_j | = \int_a^b | f_j' | < \infty \) and as \(f_j \in L^1(a, b) \) then \(\frac{1}{b-a} \int_a^b | f_j(y) | \, dy < \infty \)

\[\Rightarrow | f_j(y) | < \infty \]

\[\Rightarrow f_j \text{ is uniformly bounded} \]

\[\Rightarrow \| f_j \|_\infty < \infty \ \forall j \]

\[\Rightarrow \sup_j \| f_j \|_\infty < \infty \]

But \(\| \cdot \|_\infty \) is continuous and \(f_j \to f \) a.e. \(\Rightarrow \| f \|_\infty < \infty \)

\[\Rightarrow f \in L^\infty(a, b) \]

As \(f \) is essentially bounded then each approximate point of continuity of \(f \) is a lebesgue point and thus \(f^*(x) \to f \) a.e. \(x \) lebesgue point in \((a, b) \).

Let \(a = t_1 < \ldots < t_m = b \) be a partition of \((a, b) \) with each \(t_j \) a point of approximate
continuity of f \(\forall j = 1, \ldots, m \).

\[
\sum_{j=1}^{m} | f(t_{j+1}) - f(t_j) | = \lim_{\epsilon \to 0} \sum_{j=1}^{m} | f'(t_{j+1}) - f'(t_j) | \leq \limsup_{\epsilon \to 0} \int_{a}^{b} | (f')' | \ dx
\]

since $f \in C^{\infty}(a, b)$ and thus $essV_{a}^{b} f' = \int_{a}^{b} |(f')'| dx$.

Claim: $\int_{a}^{b} |(f')'| dx \leq \int_{a}^{b} |Df|.$

In fact, $\int_{a}^{b} (f')' \ g \ dx = - \int_{a}^{b} f' \ g' \ dx = - \int_{a}^{b} (\eta \ast f) \ g' \ dx = - \int_{a}^{b} f (\eta \ast g)' \ dx$

now $\eta \ast g \in C^{0}_{1}(a, b)$ and $|\eta \ast g| \leq 1$

Taking sup over all such functions, $\Rightarrow \int_{a}^{b} (f')' \ g \ dx \leq \int_{a}^{b} |Df|$

$\Rightarrow \int_{a}^{b} |(f')'| \ dx \leq \int_{a}^{b} |Df|$ since $f \in C^{\infty}(a, b)$ and thus

$\int_{a}^{b} |(f')'| dx = \int_{a}^{b} |Df' |$

Hence, $\sum_{j=1}^{m} | f(t_{j+1}) - f(t_j) | \leq \int_{a}^{b} |Df |

Taking sup over all such partitions we get:

$essV_{a}^{b} f \leq \int_{a}^{b} |Df |$

Conclusion, $\int_{a}^{b} |Df| = essV_{a}^{b} f$ \hfill \qed

Remark 2. Hence, we now say $f \in BV(a, b) \iff \int_{a}^{b} |Df| < \infty$.

2.2 Bounded Variation in \mathbb{R}^{2}

Definition 2.2.1. Consider the rectangle $I = [a, b] \times [c, d]$ and f defined on the rectangle.

Fix $y \in [c, d]$ and define $f_{1}(t) = f(t, y)$ for $t \in [a, b]$.

Similarly, fix $x \in [a, b]$ and define $f_{2}(t) = f(x, t)$ for $t \in [c, d]$.

According to Tonelli, f is said to be of bounded variation on I if

$\int_{c}^{d} essV_{a}^{b} f_{1} \ dy < \infty$ and $\int_{a}^{b} essV_{c}^{d} f_{2} \ dx < \infty$ where
\[\text{ess}V^b_a f_1 = \sup \left\{ \sum_{j=0}^{m-1} |f(t_{j+1}, y) - f(t_j, y)| ; a = t_0 < t_2 < \ldots < t_m = b \text{ partition of } [a, b] \right\} \]

\[\text{ess}V^c_d f_2 = \sup \left\{ \sum_{j=0}^{m-1} |f(x, t_{j+1}) - f(x, t_j)| ; c = t_0 < t_2 < \ldots < t_m = d \text{ partition of } [c, d] \right\} \]

with each \(t_j \) a point of approximate continuity of \(f \) \(\forall j = 1, \ldots m \).

Remark 3. Now if \(f \) is absolutely continuous, then

\[\text{ess}V^b_a f_1 = \int_a^b \frac{\partial f}{\partial x} dx , \quad \text{ess}V^c_d f_2 = \int_c^d \frac{\partial f}{\partial y} dy \]

Hence, \(f \in BV(I) \) and \(\int_a^b \int_c^d \frac{\partial f}{\partial x} dx dy < \infty \) and \(\int_c^d \int_a^b \frac{\partial f}{\partial y} dy dx < \infty \) which gives \(\int_{[a, b] \times [c, d]} |\nabla f| < \infty \)

2.3 Bounded variation in \(\mathbb{R}^n \ \forall n > 1 \)

Definition 2.3.1. Denote \(x' = (x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n) \) and \(f_k(t) = f(x', t) = f(x_1, \ldots, x_{k-1}, t, x_{k+1}, \ldots, x_n) \) as a function of \(t \in (a, b), \forall -\infty < a < b < \infty, \forall k = 1, \ldots, n \). Let \(K \subset \mathbb{R}^{n-1} \) compact, and \(L \subset \mathbb{R}^n \) with \(L = \{ x \in \mathbb{R}^n ; x' \in K, x_k \in (a, b) \} \).

According to Tonelli, \(f \in BV(L) \iff \int_K \text{ess}V^b_a f_k dx' < \infty \ \forall k = 1, \ldots, n \).

Remark 4. If \(f \) is absolutely continuous then \(f \in BV(\mathbb{R}^n) \) and \(\int |\nabla f| < \infty \)

Definition 2.3.2. For \(\Omega \subset \mathbb{R}^n \) open and \(f \in L^1(\Omega) \) define:

\[\int_{\Omega} |Df| dx := \sup \left\{ \int_{\Omega} f \text{div} g dx ; g = (g_1, \ldots, g_n) \in C^1_0(\Omega), |g| \leq 1 \right\} \]

the variation of \(f \) in \(\Omega \).

Remark 5. In fact, for \(f \in L^1(\Omega), \int_{\Omega} |Df| dx = |Df|(\Omega) \) the total variation of \(Df \) in \(\Omega \) where \(Df \) is the distributional derivative of \(f \) characterized to be a vector valued radon measure.
However, if $f \in C^k(\Omega)$ for $k \geq 1$ we get $\int_\Omega |Df|dx = \int_\Omega \nabla f$ where ∇f is the gradient of f in the usual derivative sense.

If $f \in W^{1,1}(\Omega)$ the sobelev space, then $\int_\Omega |Df|dx = \int_\Omega |\text{grad} f|dx$ where now $\text{grad} f$ is the gradient of f in the distributional sense.

Theorem 2.3.1. [6] Let $K \subset \mathbb{R}^n$ compact, $x' = (x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n)$ and $C = \{x \in \mathbb{R}^n; x' \in K, a < x_k < b\}$ and $f \in L^1(C)$. Then, \[\int_K \text{ess}_V f_k dx' < \infty \Leftrightarrow \int_C |Df|dx < \infty \forall k = 1, \ldots, n \quad \forall -\infty < a < b < \infty \]

Proof. \Leftarrow) Suppose $\int_C |Df|dx < \infty$. We have that

1. $f_k' \rightarrow f_k$ in $L^1(a, b)$

2. $\forall g \in C^1_0(\mathbb{R}^n), |g| \leq 1$, we have:
 \[\int_C (f')' g dx' = -\int_C f' \text{div} g dx' = -\int_C f \text{div}(\eta_k * g) dx' \leq \int_C |Df|dx \]
 \[\Rightarrow \int_C |Df'|dx' \leq \int_C |Df|dx. \]
 \[\Rightarrow \limsup_{\epsilon \rightarrow 0} \int_C |Df'| \leq \int_C |Df|dx < \infty \]

Now let $g \in C^1_0(\mathbb{R}^n), |g| \leq 1$, \[\int f_k g' dx' = \lim_{\epsilon \rightarrow 0} \int f_k' g dx' \leq \liminf \text{ess}_V f_k b_k \] by theorem 2.1.5.

$\Rightarrow \text{ess}_V f_k \leq \liminf_{\epsilon \rightarrow 0} \text{ess}_V f_k b_k$ for H^{n-1} a.e. $x' \in K$

By Fatou's lemma,

\[\int_K \text{ess}_V f_k \leq \int_K \liminf_{\epsilon \rightarrow 0} \text{ess}_V f_k b_k \leq \liminf_{\epsilon \rightarrow 0} \int_K \text{ess}_V f_k b_k dx' = \liminf_{\epsilon \rightarrow 0} \int_C |(f_k')| dx' \]

But $\liminf_{\epsilon \rightarrow 0} \int_C |(f_k')| dx' \leq \limsup \int_C |Df'|dx < \infty$

Then, $\int_K \text{ess}_V f_k < \infty$

\Rightarrow) Let $f \in L^1_{\text{loc}}(\mathbb{R}^n)$ and $\int_K \text{ess}_V f_k b_k dx' < \infty$.

Let $g \in C^1_0(\mathbb{R}^n), |g| \leq 1$, supp $g \subset \{x; a < x_k < b\}$

\[\int_{\mathbb{R}^n} f \frac{\partial g}{\partial x_k} dx = \int_{\text{supp} g} f \frac{\partial g}{\partial x_k} dx = \int_K (f_k b_k \frac{\partial g}{\partial x_k}) dx' \leq \int_K \text{ess}_V f_k b_k dx' < \infty \]

$\Rightarrow \int_{\mathbb{R}^n} |Df|dx < \infty$. □

9
Remark 6. Hence, we can now say $f \in BV(\Omega) \iff \int_{\Omega} |Df| \, dx < \infty$ where $\Omega \subset \mathbb{R}^n$ open.

Theorem 2.3.2. [6] Assume $\Omega \subset \mathbb{R}^n$ is open and bounded, with $\partial \Omega$ Lipschitz continuous. There exists a bounded linear mapping

$$T : BV(\Omega) \rightarrow L^1(\partial \Omega; H^{n-1})$$

such that

$$\int_{\Omega} f \text{div} g \, dx = -\int_{\Omega} g \, d|Df| + \int_{\partial \Omega} (\nu \cdot g) T f dH^{n-1}$$

for all $f \in BV(\Omega)$ and $g \in C^1(\mathbb{R}^n; \mathbb{R}^n)$ where H^{n-1} is the $(n-1)$-dimensional Hausdorff measure.

Definition 2.3.3. The function Tf which is uniquely defined up to sets of H^{n-1}-measure zero on $\partial \Omega$, is called the trace of f on $\partial \Omega$.

2.4 Perimeter of a measurable set

Definition 2.4.1. Now let $f = \mathbb{1}_E$ be the characteristic function for $E \subset \mathbb{R}^n$ a measurable set.

$$\int_{\Omega} |Df| \, dx = \int_{\Omega} |D\mathbb{1}_E| \, dx = \sup \{ \int_E \text{div} g \, dx \mid g = (g_1, \ldots, g_n) \in C^1_0(\Omega), |g| \leq 1 \}$$

is said to be the perimeter of E and is denoted by $P(E, \Omega)$.

We say E has finite perimeter if $P(E, \Omega) < \infty$.

Theorem 2.4.1. [7] Suppose $E \subset \mathbb{R}^n$ has C^2 boundary, then

$$P(E, \Omega) = H^{n-1}(\partial E \cap \Omega)$$

where H^{n-1} is the $(n-1)$-dimensional Hausdorff measure.

Proof. Using Gauss Green theorem, we have,

$$\int_E \text{div} g \, dx = \int_{\partial E} g v dH^{n-1} \leq H^{n-1}(\partial E \cap \Omega)$$
for all $g \in C^1_0(\Omega), |g| \leq 1$ where ν is the outer normal to ∂E.
Taking the supremum over all such g, we get, $P(E, \Omega) \leq H^{n-1}(\partial E \cap \Omega)$

\[\geq \) As E has C^2 boundary, then ν_E (unit outer normal to ∂E) exists as a C^1-vector valued function.
Let N be the extension of ν_E to \mathbb{R}^n satisfying:

1. $N = \nu_E$ on E
2. $|N(x)| \leq 1 \ \forall x \in \mathbb{R}^n$
3. $N \in C^1(\mathbb{R}^n, \mathbb{R}^n)$

Now for $\eta \in C^1_0(\Omega), |\eta| \leq 1$, define $\phi = N\eta$.
Then, $\phi \in C^1_0(\Omega), |\phi| \leq 1$, and $N\nu_E = |\nu_E|^2 = 1$ on E. Then,

\[
\int_E \text{div} \phi \, dx = \int_{\partial E} \phi \nu_E \, dH^{n-1} = \int_{\partial E} N\eta \nu_E \, dH^{n-1} = \int_{\partial E} \eta \, dH^{n-1}.
\]
Taking supremum over all such ϕ and η we get:

\[
P(E, \Omega) \geq \sup \{ \int_{\partial E} \eta \, dH^{n-1}, \eta \in C^1_0(\Omega), |\eta| \leq 1 \} \geq H^{n-1}(\partial E \cap \Omega)
\]

To observe the result better in \mathbb{R}^2 and \mathbb{R}^3 we will prove the result in another way.
We recall Green’s theorem in the plane:
Let $E \subset \mathbb{R}^2$ open, $M,N \in C^1(E), \Omega \subset E$, Ω closed, $\partial \Omega$ positively oriented, then

\[
\int_{\partial \Omega} (M \, dx + N \, dy) = \int_{\Omega} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA
\]

Now let $g = (g_1, g_2) \in C^1_0(\mathbb{R}^2)$ satisfying $|g| \leq 1$
Take $N = g_1$, and $M = -g_2$,

11
\begin{align}
\int_{\Omega} \text{div}gdA &= \int_{\Omega} \left(\frac{\partial g_1}{\partial x} + \frac{\partial g_2}{\partial y} \right) dA \\
&= \int_{\Omega} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA \\
&= \int_{\partial \Omega} (Mdx + Ndy) \\
&= \int_{\partial \Omega} (-g_2dx + g_1dy) \\
&\leq \int_{\partial \Omega} \sqrt{(g_1)^2 + (g_2)^2} \sqrt{(dx)^2 + (dy)^2} \\
&\leq \int_{\partial \Omega} \sqrt{(dx)^2 + (dy)^2} \\
&= L(\partial \Omega)
\end{align}

By a special choice of \(g \), we get,

\[\sup \{ \int_{\Omega} \text{div}gdA ; g = (g_1, g_2) \in C^1_0(\Omega), |g| \leq 1 \} = L(\partial \Omega) \]

with \(L(\partial \Omega) \) length of the boundary of \(\Omega \).

In \(\mathbb{R}^3 \), suppose \(|g| \leq 1 \)

\[\int_{\Omega} \text{div}gdx = \int_{\partial \Omega} \vec{g} \cdot \vec{n} \, ds \leq \int_{\Omega} |\vec{g}| ||\vec{n}|| \, ds \leq \int_{\partial \Omega} ds = \text{surface area of } \partial \Omega. \]

By a special choice of \(g \), we get,

\[\sup \{ \int_{\Omega} \text{div}gdx ; g = (g_1, g_2, g_3) \in C^1_0(\Omega), |g| \leq 1 \} = \text{surface area of } \partial \Omega \]

2.5 Coarea formula

We introduce now the coarea formula that permits us to have a relation between the variation of a function in \(L^1 \) and the perimeter of the superlevel sets of that function. Indeed,

Theorem 2.5.1. [6] If \(\Omega \subset \mathbb{R}^n \), \(f \in BV(\Omega) \), and \(E_t = \{ x \in \Omega ; f(x) \geq t \} \ \forall t \in \mathbb{R}, \) then:

\[\int_{\Omega} |Df| = \int_{-\infty}^{+\infty} P(E_t, \Omega) \, dt \]
Proof. We will prove the following using several steps:

Step 1: If $f \in L^1(\Omega)$

For $f \geq 0$, f can be written as $f(x) = \int_{\Omega} 1_{E_t}(x) dt$ for a.e. $x \in \Omega$

For $f \leq 0$, f can be written as $f(x) = \int_{-\infty}^{0} (1_{E_t}(x) - 1) dt$ for a.e. $x \in \Omega$.

Now let $g \in C^1_0(\Omega)$ and $|g| \leq 1$ then:

$$
\int_{\Omega} f d\nu = \int_{\Omega \cap \{f \leq 0\}} f d\nu + \int_{\Omega \cap \{f > 0\}} f d\nu
$$

$$
= \int_{\Omega} \left(\int_{-\infty}^{0} (1_{E_t}(x) - 1) dt \right) d\nu + \int_{\Omega} \left(\int_{0}^{\infty} 1_{E_t}(x) dt \right) d\nu
$$

$$
= \int_{-\infty}^{0} \left(\int_{\Omega} (1_{E_t}(x) - 1) d\nu dx \right) dt + \int_{0}^{\infty} \left(\int_{\Omega} 1_{E_t}(x) d\nu dx \right) dt
$$

$$
= \int_{-\infty}^{0} \left(\int_{E_t} d\nu dx \right) dt - \int_{-\infty}^{0} \left(\int_{\Omega} d\nu dx \right) dt + \int_{0}^{\infty} \left(\int_{E_t} d\nu dx \right) dt
$$

$$
= \int_{-\infty}^{0} \left(\int_{E_t} d\nu dx \right) dt
$$

with $\int_{\Omega} d\nu dx = 0$ as $\int_{\Omega} d\nu dx = \int_{\partial \Omega} g dH^{n-1} = 0$ as $g|_{\partial \Omega} = 0$.

Hence, taking sup over all such g, we get: $\int_{\Omega} |Df| \leq \int_{-\infty}^{\infty} P(E_t, \Omega) dt$

It remains to prove $\int_{\Omega} |Df| \geq \int_{-\infty}^{\infty} P(E_t, \Omega) dt$

Step 2: Let $f \in BV(\Omega) \cap C^{\infty}(\Omega)$

Define $m(t) = \int_{\Omega \cap \{f \leq t\}} |Df(x)| dx = \int_{\{f \leq t\}} |Df| dx \geq 0$

$$
\int_{-\infty}^{\infty} m'(t) dt = \lim_{t \to \infty} m(t) - \lim_{t \to -\infty} m(t)
$$

$$
= \int_{\Omega \cap \{f \leq x\}} |Df| dx - \int_{\Omega \cap \{f \leq x\}} |Df| dx
$$

$$
= \int_{\Omega \cap \{f \leq x\}} |Df| dx + \int_{\Omega \cap \{f > x\}} |Df| dx
$$

$$
= \int_{\Omega \cap \{f \leq x\}} |Df| dx
$$

$$
\geq \int_{\Omega} |Df| dx
$$
Now, \[\lim_{r \to 0} \frac{m(t+r) - m(t)}{r} = \lim_{r \to 0} \left\{ \frac{1}{r} \left(\int_{\Omega - E_{i+r}} |Df| dx - \int_{\Omega - E_i} |Df| dx \right) \right\} \]
\[= \lim_{r \to 0} \left\{ \frac{1}{r} \int_{E_i - E_{i+r}} |Df| dx \right\} \quad (2.5) \]
\[\geq \lim_{r \to 0} \frac{1}{r} \int_{E_i - E_{i+r}} Dfg dx \]
As \[\int Dfg dx \leq |\int Dfg dx| \leq \int |Df||g| dx \leq \int |Df| dx. \]

Define for \(-\infty < t < \infty, r > 0\), \(\eta(s) = \begin{cases} 0 & s \leq t \\ \frac{s-t}{r} & t \leq s \leq t + r \\ 1 & s \geq t + r \end{cases} \)

We recognize as \(r \to 0\), \(\eta(s) = \begin{cases} 0 & s \leq t \\ 1 & s \geq t \end{cases} \)

\(\eta\) is differentiable everywhere except at \(s = t+r\) and \(s = t\) \(\Rightarrow \eta'(s) = \begin{cases} 0 & t + r < s < t \\ \frac{1}{r} & t < s < t + r \end{cases} \)

\[\Rightarrow \frac{1}{r} \int_{E_i - E_{i+r}} Dfg dx = \int_{\Omega} \eta'(f(x)) Dfg dx = \int_{\Omega} (\eta(f(x)))' g dx = -\int_{\Omega} \eta(f(x)) \text{div} g dx. \]

Hence,
\[\lim_{r \to 0} \frac{m(t+r) - m(t)}{r} \geq \lim_{r \to 0} \int_{\Omega} \eta(f(x)) \text{div} g dx = -\int_{\Omega} \lim_{r \to 0} \eta(f(x)) \text{div} g dx = -\int_{E_i} \text{div} g dx \]
\[\Rightarrow m'(t) \geq -\int_{E_i} \text{div} g dx \]
\[\Rightarrow \int_{-\infty}^{\infty} m'(t) \geq -\int_{-\infty}^{\infty} \left(\int_{E_i} \text{div} g dx \right) dt \]
\[\Rightarrow \int_{\Omega} |Df| dx \geq -\int_{-\infty}^{\infty} \left(\int_{E_i} \text{div} g dx \right) dt \]

Taking sup over all such \(g\), we get,
\[\int_{\Omega} |Df| dx \geq \int_{-\infty}^{\infty} P(E_t, \Omega) dt \]

Step 3: \(f \in BV(\Omega)\)
\[\Rightarrow \exists \{f_k\} \subset BV(\Omega) \cap C^\infty(\Omega), Df_k \to \text{in } L^1 \text{ and } \int_{\Omega} |f_k| \to \int_{\Omega} |Df| \text{ as } k \to \infty \]
Let $E^k_t = \{x \in \Omega; f_k(x) \geq t\}$

Claim: $\int_{\Omega} (\int_{-\infty}^{\infty} |(1_{E^k_t}(x) - 1_{E_t}(x))| \, dt) \, dx = \int_{\Omega} |f_k(x) - f(x)| \, dx$

In fact, $1_{E^k_t}(x) = \begin{cases} 0 & f_k(x) \leq t \\ 1 & f_k(x) > t \end{cases}$

and $1_{E_t}(x) = \begin{cases} 0 & f(x) \leq t \\ 1 & f(x) > t \end{cases}$

$\Rightarrow |1_{E^k_t}(x) - 1_{E_t}(x)| = \begin{cases} 1 & f_k(x) \geq t \geq f(x) \text{ or } f(x) \geq t \geq f_k(x) \\ 0 & \text{otherwise} \end{cases}$

$\Rightarrow \int_{-\infty}^{\infty} |1_{E^k_t}(x) - 1_{E_t}(x)| \, dt = \int_{\min(f(x), f_k(x))}^{\max(f(x), f_k(x))} \, dt = |f_k(x) - f(x)|$

Now, as $f_k \to f$ in $L^1 \Rightarrow 1_{E^k_t}(x) \to 1_{E_t}(x)$ in L^1

$\Rightarrow \lim_{k \to \infty} \int_{\Omega} 1_{E^k_t} \text{divg} = \int_{\Omega} 1_{E_t} \text{divg}$

With the help of Fatou’s lemma, hence,

$\int_{\Omega} |Df| = \lim_{k \to \infty} \int_{\Omega} |Df_k| = \lim_{k \to \infty} \int_{-\infty}^{\infty} P(E_t, \Omega) \geq \int_{-\infty}^{\infty} \liminf_{k \to \infty} P(E^k_t, \Omega) = \int_{-\infty}^{\infty} P(E_t, \Omega)$
Chapter 3

Least Gradient Problem

In this chapter, we will first introduce the least gradient problem and prove the existence and uniqueness of a solution. After, we will show relations with the least gradient problem demonstrated with examples.

3.1 Introduction

Let Ω be a bounded domain in \mathbb{R}^n, and let f be a given function defined on its boundary $\partial \Omega$. We seek a solution $u \in BV(\Omega)$ to the problem:

$$
\min \left\{ \int_{\Omega} |\nabla u| : u = f \right\}
$$

In fact, if we take a minimizing sequence of the LGP, we cannot ensure the limiting function will satisfy the boundary conditions and thus we cannot ensure the limiting function will be an element of the set. Therefore, we cannot guarantee that a minimum does exist for every functions f and every domain Ω.

Example 1 Consider the case in one dimension. Here $\Omega = [a, b]$ and we are given a boundary function f i.e. given two values $\{f(a), f(b)\}$. We start with the class of all absolutely continuous functions on Ω, and we seek a solution of the
We proceed as follows: given a function \(u \) absolutely continuous on \([a, b]\), and satisfying \(u(a) = f(a), \ u(b) = f(b) \), how small can \(\int_a^b |u'| \) be. Here, we resort to the fact that, since \(u \) is absolutely continuous, its derivative exists almost everywhere, is summable, and the integral of the derivative equals the total variation \(essV_a^b u \). But \(essV_a^b u \geq |u(b) - u(a)| = |f(b) - f(a)| \), and this lower bound is independent of the particular function \(u \). This gives us that \(\min \{ \sum_0^b |u'| \} \geq |f(b) - f(a)| \). In addition, any monotone absolutely continuous function \(v \) on \([a, b] \), satisfies the equality \(\sum v' = |v(b) - v(a)| = |f(b) - f(a)| \). Hence, the minimum is indeed \(|f(b) - f(a)| \) and is attained by monotone functions.

Example 2 The previous example can be extended to cover the class of functions of bounded variation. If \(u \in BV(a, b) \), then its derivative exists a.e. but does not usually integrate back to the function. It is however, possible to define a generalized derivative \(Du \), and then the question becomes that of minimizing \(\int |Du| \). In this case, once again, we have \(\int |Du| \) equals the variation of \(u \) on \([a, b] \), and as in previous example we find the minimum value and also the extremal functions.

Example 3 It is natural to move from the one dimensional case to the two dimensional. Let \(Q \) be the rectangle \([a, b] \times [c, d] \), let \(f \) be a function defined on the boundary of \(Q \), and let \(u \) be defined and absolutely continuous on \(Q \), with boundary values equal to \(f \). Here again, the gradient \(\nabla u \) exists a.e. and we seek to minimize its integral \(\int_Q |\nabla u| \). We recall the concept of bounded variation due to Tonelli. For each fixed \(x \in (a, b) \), let \(essV_c^d u_2(x) \) be the essential variation of \(u(x, \cdot) \) on \([c, d] \). If now we integrate this with respect to \(x \) on \([a, b] \) and the resulting integral is finite, we say \(u \) is of bounded variation on \(Q \). Of course we could start with \((essV_a^b u_1)(y) \) being the essential variation of \(u(\cdot, y) \) on \([a, b] \), and
then integrate with respect to x.

We point out that one of these integrals may very well be zero as is seen if we start with a function u which depends only on x. So we need to concentrate on a class of functions for which both integrals will be finite.

If we start with an absolutely continuous function u, then we can express in terms of the partial derivative as follows:

$$(ess V^b_a u_1)(y) = \int_a^b \left| \frac{\partial u(x,y)}{\partial x} \right| dx dy, (ess V^d_c u_2)(x) = \int_c^d \left| \frac{\partial u(x,y)}{\partial y} \right| dy dx$$

So we end up with two integrals namely

$$\int_c^d \int_a^b \left| \frac{\partial u(x,y)}{\partial x} \right| dx dy \ , \int_a^d \int_c^b \left| \frac{\partial u(x,y)}{\partial y} \right| dy dx$$

Thus, if we start with a function having continuous partial derivatives on Q we are guaranteed the finiteness of both of last integrals.

We can find lower bounds for each of these integrals in the most simple way, namely to use trivial lower bounds for the variation.

Proposition 2. Let u be absolutely continuous on the rectangle $Q = [a,b] \times [c,d]$. Suppose that the boundary values of u are given by a function f. Then the following lower bound for the integral of $|\nabla u|$ holds

$$\int_Q |\nabla u| \geq \frac{1}{2} \left\{ \int_c^d |f(b,y) - f(a,y)| dy + \int_a^b |f(x,d) - f(x,c)| dx \right\}$$

A special case

Suppose $Q = [0,a] \times [0,b]$, and the boundary function f is non-negative and satisfies $f(x,0) = 0$ for all $x \in [0,a]$; and $f(0,y) = 0$ for all $y \in [0,b]$. In this case, we have the simplification

$$\int_c^d |f(b,y) - f(a,y)| dy + \int_a^b |f(x,d) - f(x,c)| dx = \int_0^b f(a,y)dy + \int_0^a f(x,b)dx = \int_{\partial Q} f(x,y)ds$$
Example 4 Let Ω be any plane domain in \mathbb{R}^2 and $u \in BV(\Omega)$
For Du defined in the distributional sense, we always have $\int_{\Omega} |Du| \geq 0$.
Hence, $min \int_{\Omega} |Du| \geq 0$. We now take f to be any constant function defined
on $\partial \Omega$ say $f = k$ with k a positive constant. Among all functions u of bounded
variation defined on Ω and $u = k$ on $\partial \Omega$, one has the constant function $u = k$.
We get $\nabla u = 0 \Rightarrow \int_{\Omega} |\nabla u| = 0$.
Hence for f constant with Ω plane domain the solution to the LGP is 0.

The method illustrated above relies on the link between the essential variation
and the LGP. However, particular classes of functions were taken. What we
need, is to find the least gradient function over all bounded variation functions
satisfying the boundary conditions. Therefore, in the modern treatment of the
subject, what we seem to need is the notion of perimeter of measurable sets. We
will use the help of the coarea formula, which connects the perimeter of a set
with $\int |Du|$.

Remark 7. When saying $u = f$ on $\partial \Omega$ for $u \in BV(\Omega)$, it is meant in the trace
sense; $Tu = f$ on $\partial \Omega$ by definition 2.4.1.

3.2 Prerequisites

Definition 3.2.1. Suppose E measurable set with $P(E, \mathbb{R}^n) < \infty$.

- The measure theoretic boundary $\partial_M E$ is the set of points $x \in \mathbb{R}^n$ such that:
 $\limsup_{r \to 0} \frac{|E \cap B(x,r)|}{|B(x,r)|} > 0$ and
 $\liminf_{r \to 0} \frac{|E \cap B(x,r)|}{|B(x,r)|} < 1$

- For $x \in \mathbb{R}^n$, the measure theoretic exterior normal $\nu(x, E)$ at x is a unit
 vector ν such that:
\[\lim_{r \to 0} \frac{|B(x,r) \cap \{ y : (y-x) \cdot \nu < 0, y \notin E \}|}{|B(x,r)|} = 0 \quad \text{and} \quad \lim_{r \to 0} \frac{|B(x,r) \cap \{ y : (y-x) \cdot \nu > 0, y \notin E \}|}{|B(x,r)|} = 0. \]

The reduced boundary \(\partial^* E \) is the set of points \(x \) such that \(\nu(x, E) \) exists.

We have \(\partial^* E \subset \partial_M E \subset \partial E \).

We will use the following convention, since sets of finite perimeter are defined up to measure zero, \(x \in E \iff \limsup_{r \to 0} \frac{|E \cap B(x,r)|}{|B(x,r)|} > 0 \).

Definition 3.2.2. We say a function \(u \in BV(\Omega) \) is of least gradient if \(\forall w \in BV(\Omega) \), with compact support in \(\Omega \), \(\int_{\Omega} |Du| \leq \int_{\Omega} |D(u + w)| \).

Proposition 3. \cite{8} If \(u_n \) is a least gradient function \(\forall n \), and \(u_n \rightharpoonup u \) in \(L^1 \) then \(u \) is a least gradient function.

Definition 3.2.3. Let \(\Omega \subset \mathbb{R}^n \). We say \(\partial E \) is a minimal surface if

1. \(1_E \in BV_{loc}(\Omega) \)

2. \(1_E \) is a least gradient function.

Proposition 4. In \(\mathbb{R}^2 \), minimal surfaces are straight lines.

Proof. Let \(A = (a_1, a_2), B(b_1, b_2) \) be 2 points in the plane \(\mathbb{R}^2 \). Let \((C) \) be a path joining \(A \) to \(B \) parametrized by \(x = x(t), y = y(t) \) and \(x(0) = a_1, x(1) = b_1, y(0) = a_2, y(1) = b_2 \).

\[
L(C) = \int_0^1 \sqrt{(x'(t))^2 + (y'(t))^2} \, dt \\
= \int_0^1 |x'(t) + iy'(t)| \, dt \\
\geq |\int_0^1 (x'(t) + iy'(t)) \, dt| \\
= |x(1) - x(0) + i(y(1) - y(0))| \\
= |b_1 - a_1 + i(b_2 - a_2)| \\
= \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}
\]

20
\[\Rightarrow \inf \{ L(C) \} \geq \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2} \]

Consider the line segment \((\tilde{C}) \) joining \(A \) to \(B \) given by:

\[x = x(t) = (1 - t)a_1 + tb_1 \text{ and } y = y(t) = (1 - t)a_2 + tb_2. \]

Then, \(L(\tilde{C}) = \int_0^1 \sqrt{(x'(t))^2 + (y'(t))^2} dt = \int_0^1 \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2} dt = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2}. \]

\[\Rightarrow \inf \{ L(C) \} = L(\tilde{C}) \]

\[\Rightarrow \tilde{C} \text{ is the curve of smallest euclidean length joining } A \text{ to } B. \quad \square \]

Theorem 3.2.1. [2] If \(u \) solution to \(\min \{ \int_{\Omega} |Du|; u \in BV(\Omega), T_\partial \Omega u = f \} \), then \(\tilde{\partial} \{ u \geq t \} \) is a minimal surface for each real \(t \).

Proof. Let \(u \) solution to \(\min \{ \int_{\Omega} |Du|; u \in BV(\Omega), T_\partial \Omega u = f \} \). Take \(w \in BV(\Omega) \) with \(\text{supp} w = K \subset \Omega \) with \(K \) compact. Set \(v = u + w \).

We have \(v \in BV(\Omega) \) being the sum of 2 bounded variation functions in \(\Omega \) and as \(w \) has compact support, \(T_\partial w = 0 \), so that \(T_\partial v = T_\partial (u + w) = T_\partial u = f \).

Then, \(\int |Du| \leq \int |Dv| \) as \(u \) solution.

\[\Rightarrow \int |Du| \leq \int |D(u + w)|. \]

Hence, \(u \) is a function of least gradient in \(\Omega \) by definition 3.2.2.

Now as \(u \in BV(\Omega) \), we have by the coarea formula, \(\int_{\Omega} |Du| = \int_{-\infty}^{+\infty} P(E_\lambda, \Omega) d\lambda \) with \(E_\lambda = \{ x \in \Omega; u(x) \geq \lambda \} \) and \(\lambda \in \mathbb{R} \).

We then have \(P(E_\lambda, \Omega) < \infty \) for a.e. \(\lambda \) since \(\int_{\Omega} |Du| < \infty \).

Also, by the coarea formula we have that, \(\forall \lambda \in \mathbb{R}, K \subset \Omega \) compact, we have

\[\int_K |Du| = \int_{-\infty}^{+\infty} P(E_\lambda, K) d\lambda. \]

We now define \(u_1 = \max\{ u - t, 0 \} \) and \(u_2 = \min\{ u, t \} \) for \(t \in \mathbb{R} \).

We have \(u_1 \) and \(u_2 \in BV(\Omega) \) because \(u \in BV(\Omega), t \in BV(\Omega) \).

If \(u - t \geq 0 \Rightarrow u \geq t \Rightarrow u_1 = u - t \) and \(u_2 = t \Rightarrow u = u_1 + u_2. \)

If \(u - t \leq 0 \Rightarrow u \leq t \Rightarrow u_1 = 0 \) and \(u_2 = u \Rightarrow u = u_1 + u_2. \)
Hence $u = u_1 + u_2 \forall t \in \mathbb{R}$.

By the coarea formula, we have $\int_{K} | Du | = \int_{K} | Du_1 | + \int_{K} | Du_2 |$.

Now let $w \in BV(\Omega)$ with compact support in Ω.

\[
\int_{K} | Du_1 | + \int_{K} | Du_2 | = \int_{K} | Du | \leq \int_{K} | D(u + w) | \leq \int_{K} | D(u_1 + w) | + \int_{K} | Du_2 |.
\]

$\Rightarrow u_1$ is a least gradient function. Similarly, by interchanging u_1 and u_2 in the last inequality, we get u_2 is a least gradient function.

We now define, for $\epsilon > 0, \lambda \in \mathbb{R}$,

$u_{\epsilon,\lambda} = \frac{1}{\epsilon} \min \{ \epsilon, \max \{ u - \lambda, 0 \} \} = \frac{1}{\epsilon} \min \{ \epsilon, u_1 \}.$

If $\min \{ \epsilon, u_1 \} = \epsilon \Rightarrow u_{\epsilon,\lambda} = 1$. Then, $u_{\epsilon,\lambda}$ is a least gradient function being a constant function.

If $\min \{ \epsilon, u_1 \} = u_1 \Rightarrow u_{\epsilon,\lambda} = \frac{1}{\epsilon} u_1$. Then, $u_{\epsilon,\lambda}$ is a least gradient function by proving above u_1 is so.

Hence, $u_{\epsilon,\lambda}$ is a least gradient function, $\forall \epsilon > 0, \lambda \in \mathbb{R}$.

If $H_n(\{ x \in \Omega; u(x) = \lambda \}) = 0 \Rightarrow u(x) \neq \lambda$ a.e. $x \in \Omega \Rightarrow u - \lambda > 0$ or $u - \lambda < 0.$

If $u - \lambda > 0 \Rightarrow \max \{ u - \lambda, 0 \} = u - \lambda \Rightarrow u_{\epsilon,\lambda} = \frac{1}{\epsilon} \min \{ \epsilon, u - \lambda \}$

As $\epsilon \to 0, \min \{ \epsilon, u - \lambda \} = \epsilon$ as $u - \lambda > 0$

$\Rightarrow u_{\epsilon,\lambda} \to \frac{\epsilon}{\epsilon} = 1$ as $\epsilon \to 0$

$\Rightarrow \int_{K} | u_{\epsilon,\lambda} - \mathbb{1}_{E_\lambda} | = \int_{K} | 1 - 1 | = 0$ as $\epsilon \to 0^+.$

If $u - \lambda < 0 \Rightarrow \max \{ u - \lambda, 0 \} = 0 \Rightarrow u_{\epsilon,\lambda} = 0$

$\Rightarrow \int_{K} | u_{\epsilon,\lambda} - \mathbb{1}_{E_\lambda} | = \int_{K} | 0 - 0 | = 0$ as $\epsilon \to 0$.

Hence, $\int_{K} | u_{\epsilon,\lambda} - \mathbb{1}_{E_\lambda} | = 0$ as $\epsilon \to 0^+.$

As $u_{\epsilon,\lambda} \to \mathbb{1}_{E_\lambda}$ in $L^1(K)$ and $u_{\epsilon,\lambda}$ is a function of least gradient, by proposition
3 then 1_{E_λ} is a function of least gradient.

If $H_n(\{x \in \Omega; u(x) = \lambda\}) > 0$ then \exists a sequence $\lambda_m, \lambda_m < \lambda, \lambda_m \rightarrow \lambda$ and $H_n(\{x \in \Omega; u(x) = \lambda_m\}) = 0$.

As the previous case, working with λ_m, we get 1_{E_λ} is a function of least gradient.

Hence, as $1_{E_\lambda} \in BV_{lo}c(\Omega)$, and a function of least gradient, ∂E_λ is a minimal surface. \qed

Proposition 5. Let $\Gamma \subset \partial \Omega$ and f defined on Γ bounded and continuous. Let u be any solution to the LGP with $Tu = f$ on Γ. Then $u(\Omega) \subset \overline{f(\Gamma)}$.

Proof. Let $M = \sup \Gamma f$ and $m = \inf \Gamma f$.

Let $w = \min \{M, \max \{m, u\}\}$.

We have $w \in BV(\Omega)$ and $T_{\Gamma}w = f$.

We have $\int_\Omega |Dw| \leq \int_\Omega |Du|$.

If $u < m \Rightarrow \max \{m, u\} = m \Rightarrow w = m \Rightarrow \int_\Omega |Dw| = 0$.

If $u > M \Rightarrow \max \{m, u\} = u \Rightarrow w = M \Rightarrow \int_\Omega |Dw| = 0$.

In both cases, for $u < m$ and $u > M$ we get $\int_\Omega |Dw| < \int_\Omega |Du|$. But this is impossible as u is a solution to the LGP.

Hence, we get $m < u < M$. \qed

Proposition 6. Let $\Omega \subset \Omega_0$ domains with lipchitz boundaries. If $u \in BV(\Omega_0)$ is a least gradient function in Ω_0 then $u|_\Omega$ is a least gradient function in Ω.

3.3 Solution to the LGP

Theorem 3.3.1. [1] For Ω strictly convex, $\partial \Omega$ lipchitz continuous, and f bounded continuous on $\partial \Omega$, there exists a unique continuous function u defined on Ω solution to to the problem

$$\min \{ \int_\Omega |\nabla u|; \ u \in BV(\Omega), \ u = f \text{ on } \partial \Omega \}$$
The solution u is obtained upon construction and is proved to be the minimum of the LGP with the help of the coarea formula. Also, the fact that the boundary of the superlevel sets of the solution is a minimal surface, by theorem 3.2.1, plays an important role.

Remark 8. The existence and uniqueness of solution will be proved for the LGP $\min\{\int_{\Omega} |Du|, u \in BV(\Omega), u = f\text{ on } \Gamma\}$ where $\Gamma \subset \partial \Omega$ open given by [3]. However, the construction and existence of solution to the LGP stated in theorem 3.3.1 is very similar to what will be proved. Uniqueness results also applies when $\Gamma = \partial \Omega$.

Construction of the solution

Let $\Gamma \subset \partial \Omega$ such that f is bounded and continuous on Γ.
Let Ω_0 be a bounded domain such that $\Omega \subset \Omega_0$ and $\partial \Omega_0 \cap \partial \Omega = \partial \Omega - \Gamma$.
We will denote $\Lambda := \partial \Omega - \Gamma$.
Let F be the extension of f to Ω_0 so that $F \in BV(\Omega_0 - \overline{\Omega}) \cap C(\Omega_0)$
Let $t \in \overline{f(\Gamma)}$, as $F \in BV(\Omega_0 - \overline{\Omega}) \Rightarrow$ by the coarea formula, $P(L_t, \Omega_0 - \overline{\Omega}) < \infty$
a.e. t where $L_t = \{x \in \Omega_0, F(x) \geq t\}$.
Denote by $T := \overline{f(\Gamma)} \cap \{t \in \mathbb{R}; P(L_t, \Omega_0 - \overline{\Omega}) < \infty\}$.

Consider now the following problem: for each $t \in T$

$$\min\{P(E, \Omega_0), E - \overline{\Omega} = L_t - \overline{\Omega}\} \quad (3.2)$$

This indeed has a solution. By [9], take a minimizing sequence, $P(E_n, \Omega_0) \rightarrow m$
where $m = \inf\{P(E, \Omega_0), E - \overline{\Omega} = L_t - \overline{\Omega}\}$ and $E_n - \overline{\Omega} = L_t - \overline{\Omega}$
As $1_{E_n} \in BV(\Omega_0)$ then \exists a subsequence still denoted by 1_{E_n} and $1_E \in BV(\Omega_0)$
such that $1_{E_n} \rightarrow 1_E$ in $L^1(\Omega_0)$ with $E - \overline{\Omega} = L_t - \overline{\Omega}$.
We get, $m \leq P(E, \Omega_0) \leq \lim inf P(E_n, \Omega_0) = m$
$\Rightarrow P(E, \Omega_0) = m$
So the minimum does exist.

Now among all minimizers of (3.2) define the following:

$$\max\{|E|; \ E \text{ solves (3.2)}\}$$

(3.3) has a unique solution. Indeed, by [9], let $M = \sup\{|E|; \ E \text{ solves problem (3.2)}\}$ and let $|E_n| \to M \Rightarrow$ there exists a subsequence still denoted by E_{n_k} and $1_E \in BV(\Omega_0)$ such that $1_{E_{n_k}} \to 1_E$ in $L^1(\Omega_0)$

First we note that:

1) $|E| + |E \Delta E_{n_k}| = |E + E - E_{n_k}| + |E_{n_k} - E| = |E \cup E_{n_k}| + |E - E_{n_k}| \geq |E \cup E_{n_k}| \geq |E_{n_k}|$

2) $|1_{E_{n_k}} - 1_E| = \begin{cases} 1 & (x \in E_{n_k} \text{ and } x \notin E) \text{ or } (x \in E \text{ and } x \notin E_{n_k}) \\ 0 & x \in E_{n_k} \cap E \text{ or } x \notin E_{n_k} \cup E \end{cases}$

$$\Rightarrow \int |1_{E_{n_k}} - 1_E| = \int_{(E_{n_k} - E) \cup (E - E_{n_k})} d\lambda = |E \Delta E_{n_k}|$$

Then we have $M \geq |E| \geq |E_{n_k}| - |E \Delta E_{n_k}| = |E_{n_k}| - ||1_{E_{n_k}} - 1_E||_1 \to M \text{ as } n \to \infty$

$$\Rightarrow |E| = M \text{ and } E \text{ solves (3.2).}$$

So the maximum does exist.

Now one can claim that the solution to (3.3) is unique. In fact, let E_1, E_2 be 2 solutions to (3.3).

One knows that $P(E_1 \cup E_2, \Omega_0) + P(E_1 \cap E_2, \Omega_0) \leq P(E_1, \Omega_0) + P(E_2, \Omega_0)$

Then, $E_1 \cup E_2$ and $E_1 \cap E_2$ are solutions to (3.2).

As E_1 and E_2 are maximizers to (3.3),

$|E_1| \geq |E_1 \cup E_2| = |E_1| + |E_2 - E_1|$

$|E_2| \geq |E_1 \cup E_2| = |E_2| + |E_1 - E_2|$

$$\Rightarrow |E_1 \Delta E_2| = 0 \Rightarrow |E_1| = |E_2|$$

Hence, there exists a unique solution to (3.3) which we will denote by E_t for $t \in T$.

25
Now define:

$$A_t = \overline{E_t} \cap \Omega$$

Definition 3.3.1. Define the function u on Ω by

$$u(x) = \sup\{t; \ x \in A_t\}$$

Lemma 3.3.1. u satisfies the following conditions:

1. $u = f$ on Γ
2. $u \in C(\Gamma \cup \Omega)$

Lemma 3.3.2. Let $\Gamma \subset \partial \Omega$.

We then have, $\{x \in \Gamma; f(x) > t\} \subset E_t \cap \Gamma \subset A_t \cap \Gamma \subset \{x \in \Gamma; f(x) > t\}$

Lemma 3.3.3. Let $v \in BV(\Omega), T_r v = f$ and \hat{v} the extension of v to Ω_0; $\hat{v} = F$ on $\Omega_0 - \overline{\Omega}$ and $v = \hat{v}$ on $\overline{\Omega}$. For $t \in T$, define $G_t := \{\hat{v} \geq t\}$.

We have $\partial^* G_t \cap \Gamma \subset f^{-1}(t)$.

Proof. Let $x \in \partial^* G_t \cap \Gamma$. Proceeding by contradiction, suppose $f(x) > t \Rightarrow f(x) = t + \epsilon$ for some $\epsilon > 0$.

By definition of trace, $\lim_{r \to 0} \frac{1}{|B(x,r)\cap \Omega|} \int_{B(x,r)\cap \Omega} |\hat{v}(y) - f(x)|dy = 0$.

$$\Rightarrow \lim_{r \to 0} \frac{\int_{B(x,r)\cap \Omega \setminus \{\hat{v} \geq t\}} |\hat{v}(y) - f(x)|dy + \int_{B(x,r)\cap \Omega \setminus \{\hat{v} < t\}} |\hat{v}(y) - f(x)|dy}{|B(x,r)\cap \Omega|} = 0.$$}

$$\Rightarrow 0 \geq \limsup_{r \to 0} \frac{1}{|B(x,r)\cap \Omega - G_t|} \int_{B(x,r)\cap \Omega \setminus \{\hat{v} \geq t\}} |\hat{v}(y) - f(x)|dy$$

$$\Rightarrow 0 \geq \epsilon \limsup_{r \to 0} \frac{|B(x,r)\cap \Omega - G_t|}{|B(x,r)\cap \Omega|}$$

$$\Rightarrow \limsup_{r \to 0} \frac{|B(x,r)\cap \Omega - G_t|}{|B(x,r)\cap \Omega|} = 0.$$
A similar argument is made for \(f(x) < t \). Hence, \(f(x) = t \) \(\Box \)

Lemma 3.3.4. For \(\Gamma, f \), and \(E_t \) given as above, we have \(\partial E_t \cap \Gamma \subset f^{-1}(t) \).

Lemma 3.3.5. If \(s < t \) then \(E_t \subset E_s \).

Proof. Let \(F = E_t \cup E_s \) and \(E = E_t \cap E_s \).

We begin by proving that \(F \) and \(E \) are competitors to \(E_t \) and \(E_s \) in (3.2) respectively.

We realize that \(L_t \subset L_s \) since if \(x \in L_t \Rightarrow F(x) \geq t > s \Rightarrow F(x) > s \Rightarrow x \in L_s \).

- \(F - \Omega = (E_t - \Omega) \cup (E_s - \Omega) = (L_t - \Omega) \cup (L_s - \Omega) = L_s - \Omega \) as \(L_t \subset L_s \)

- \(E - \Omega = (E_t - \Omega) \cap (E_s - \Omega) = (L_t - \Omega) \cap (L_s - \Omega) = L_t - \Omega \) as \(L_t \subset L_s \)

Hence, \(P(F, \Omega_0) \geq P(E_s, \Omega_0) \) and \(P(E, \Omega_0) \geq P(E_t, \Omega_0) \). As \(P(E_t \cup E_s, \Omega_0) + \) \(P(E_t \cap E_s, \Omega_0) \leq P(E_t, \Omega_0) + P(E_s, \Omega_0) \), we then get \(P(F, \Omega_0) = P(E_s, \Omega_0) \) and \(P(E, \Omega_0) = P(E_t, \Omega_0) \).

By problem 2, \(|E_s| \geq |F| = |E_s| + |E_t - E_s| \Rightarrow |E_t - E_s| = 0 \) and \(|E_t| \geq |E| = |E_t| + |E_s - E_t| \Rightarrow |E_s - E_t| = 0 \).

Now we show \(E_t \subset E_s \)

Let \(x \in E_t \Rightarrow \) by definition 3.2.1, \(\limsup_{r \to 0} \frac{|E_t \cap B(x, r)|}{|B(x, r)|} > 0 \)

Write \(E_t = (E_t - E_s) \cup (E_t \cap E_s) \) union of 2 disjoint sets.

\(\Rightarrow \) \(\limsup_{r \to 0} \frac{|E_t \cap B(x, r)|}{|B(x, r)|} = \limsup_{r \to 0} \frac{|E_t - E_s \cap B(x, r)|}{|B(x, r)|} + \limsup_{r \to 0} \frac{|(E_t \cap E_s) \cap B(x, r)|}{|B(x, r)|} \)

But \((E_t - E_s) \cap B(x, r) \subset (E_t - E_s) \)

\(\Rightarrow |(E_t - E_s) \cap B(x, r)| \leq |(E_t - E_s)| = 0 \)
\[|E_t - E_s| \cap B(x, r) = 0 \]
\[0 < \limsup_{r \to 0} \frac{|E_t \cap B(x, r)|}{|B(x, r)|} = \limsup_{r \to 0} \frac{|E_t \cap B(x, r)|}{|B(x, r)|} \leq \limsup_{r \to 0} \frac{|E_s \cap B(x, r)|}{|B(x, r)|} \]
\[\Rightarrow \limsup_{r \to 0} \frac{|E_s \cap B(x, r)|}{|B(x, r)|} > 0 \]
\[\Rightarrow x \in E_s \]
Hence, \(E_t \subset E_s \)

We shall now illustrate the proof of lemma 3.3.1 given by [3] :

Proof. 1. We prove \(Tu = f \) on \(\Gamma \) i.e. for \(z \in \Gamma, \lim_{y \to z} u(y) = f(z) \).

Let \(z \in \Gamma \) and set \(f(z) = t \) and let \(s < t \), then \(f(z) = t > s \Rightarrow \) by lemma 3.3.2 \(z \in E_s^0 \cap \Gamma \subset A_s \cap \Gamma \).

As \(E_s^0 \) is open, \(\exists \) neighborhood of \(z, N_z \), such that \(N_z \cap \Omega \subset E_s \cap \Omega = A_s \cap \Omega \).

Now let \(x_n \in N_z \cap \Omega; x_n \to z \Rightarrow u(x_n) \geq s, \forall n \Rightarrow \liminf_{x_n \to z} u(x_n) \geq s, \forall s < t \Rightarrow \liminf_{x_n \to z} u(x_n) \geq t. \)

We will now prove that it is not possible for \(\limsup_{x_n \to z} u(x_n) > t. \)

Proceeding by contradiction, suppose \(\limsup_{x_n \to z} u(x_n) > t. \) Let \(\limsup_{x_n \to z} u(x_n) = \tau \Rightarrow \tau > t. \) Then, \(\exists r \in T; t < r < \tau. \) As \(\tau > r \Rightarrow \forall n, r \leq u(x_n) \Rightarrow x_n \in A_r \cap \Gamma. \)

As \(x_n \to z \) and \(x_n \in A_r \) closed \(\Rightarrow z \in A_r \cap \Gamma \Rightarrow \) By lemma 3.3.2, \(f(z) \geq r. \)

Contradiction as \(f(z) = t < r. \)

Hence, for \(z \in \Gamma, \lim_{x_n \to z} u(x_n) = f(z) \)

2. Claim 1: \(\{ x \in \overline{\Omega}; u(x) \geq t \} = \cap_{s < t, s \in \mathbb{T}} A_s \)

Claim 2: \(\{ x \in \overline{\Omega}; u(x) > t \} = \cup_{s > t, s \in \mathbb{T}} A_s \)

We now show \(u \) is continuous on \(\Gamma \cup \Omega \). We will do so by proving claim 1 is a closed set and claim 2 is an open set in \(\Omega \).

The first claim is a closed set being a countable intersection of closed sets.
It remains to prove claim 2 is an open set in Ω i.e. $\forall x \in \cup_{s \geq t} A_s, \exists r > 0, B(x, r) \subset \cup_{s \geq t} A_s$.

So let $x \in \cup_{s \geq t} A_s \cap \Omega \Rightarrow \exists s_0 > t, x \in A_{s_0} \Rightarrow u(x) \geq s_0 > t$.

Since $x \in \Omega \Rightarrow \text{dist}(x, \partial \Omega) > 0$.

Since $x \in A_{s_0} \subset A_t \Rightarrow \text{dist}(x, \partial A_t) > 0$

Take $r = \frac{1}{2} \min\{\text{dist}(x, \partial \Omega), \text{dist}(x, \partial A_t)\}$.

We now need to prove $B(x, r) \subset \cup_{s \geq t} A_s$.

Let $x_0 \in B(x, r) \Rightarrow \text{dist}(x, x_0) \leq r \Rightarrow \text{dist}(x_0, \partial A_t) > 0 \Rightarrow x_0 \in A_t \Rightarrow u(x_0) > t \Rightarrow x_0 \in \cup_{s \geq t} A_s$.

We now illustrate the proof given by [3] to theorem 3.3.1

Proof. It remains to prove u is a solution to the LGP i.e. $\forall v \in BV(\Omega), T_v u = f$, $\int_{\Omega} |Du| \leq \int_{\Omega} |Dv|$.

Let u be the solution as constructed, and let $v \in BV(\Omega), T_v u = f$ and \tilde{v} the extension of v to $\overline{\Omega}$; $\tilde{v} = F$ on $\Omega_0 - \overline{\Omega}$ and $\tilde{v} = \bar{v}$ on $\overline{\Omega}$. Then, $\tilde{v} \in BV(\Omega_0) \cap C(\Omega_0 - \overline{\Omega})$.

Let $G_t = \{\tilde{v} \geq t\}$.

$P(G_t, \Omega_0) = H^1(\partial^* G_t \cap \Omega_0) = H^1(\partial^* G_t \cap (\Omega_0 - \Omega)) + H^1(\partial^* G_t \cap \Gamma) + H^1(\partial^* G_t \cap \Omega).

By lemma 3.3.3, $\partial^* G_t \cap \Gamma \subset f^{-1}(t) \Rightarrow H^1(\partial^* G_t \cap \Gamma) \leq H^1(f^{-1}(t)) = 0 \Rightarrow H^1(\partial^* G_t \cap \Gamma) = 0$.

$\Rightarrow H^1(\partial^* G_t \cap \Omega_0) = H^1(\partial^* G_t \cap \Gamma) + H^1(\partial^* L_t - \Omega)$.

On the other hand, $P(E_t, \Omega_0) = H^1(\partial^* E_t \cap \Omega_0) = H^1(\partial^* E_t \cap (\Omega_0 - \Omega)) + H^1(\partial^* E_t \cap \Gamma) + H^1(\partial^* E_t \cap \Omega) = P(E_t, \Omega) + H^1(\partial^* L_t - \Omega_0)$ because by lemma 3.3.4, $H^1(\partial^* E_t \cap \Gamma) \leq H^1(f^{-1}(t)) = 0 \Rightarrow H^1(\partial^* E_t \cap \Gamma) = 0$.

Since by construction G_t satisfies $G_t - \Omega = L_t - \Omega$ and E_t minimizes the perimeter of all such sets, we have, $P(E_t, \Omega_0) \leq P(G_t, \Omega_0)$.

From above, we get, $P(E_t, \Omega) \leq P(G_t, \Omega)$. 29
\[\Rightarrow \int_{-\infty}^{\infty} P(E_t, \Omega) dt \leq \int_{-\infty}^{\infty} P(G_t, \Omega) dt. \]

By the coarea formula, theorem 2.5.1, we get, \[\int_{\Omega} |Du| \leq \int_{\Omega} |Dv|. \]

Proposition 7. Let \(\Lambda \) as defined and \(\gamma \) a connected component of \(\partial E_t \). If \(\gamma \) intersects \(\Lambda \) then it must intersect it orthogonally.

Proof. We know \(\gamma \) is a line segment and \(\partial E_t \) in \(\Omega \) is a minimal surface by proposition 4 and theorem 3.2.1 Suppose \(\gamma = [x', y'] \). We proceed by contradiction, suppose \(\gamma \) does not intersect \(\Lambda \) orthogonally at \(x' \). Consider the ball \(B(x', r) \) for \(r > 0 \) such that \(B(x', r) \) cuts \(\gamma \) at \(z' \). There exists a segment \([z', w'] \) that cuts \(\Lambda \) orthogonally at \(w' \) and \(d(z', w') < d(z', x') \). Contradiction as \(\gamma \) is of least length.

uniqueness of solution

We proceed in proving uniqueness to the solution by supposing if there is another solution to the LGP \(\min \{ \int_{\Omega} |Du| ; u \in BV(\Omega), Tu = f \} \), and \(f \) satisfies a monotonicity condition, then it’s a must that the 2 solutions have the same level sets which will lead to the uniqueness of solution.

Let \(u \) be a solution to the LGP. We define \(\varepsilon_t = \{ u \geq t \} \) for \(t \in u(\Omega) \).

Lemma 3.3.6. Let \(u_0 \) be the constructed solution. If \(u \) is any other solution to the LGP and \(\partial \varepsilon_t = \partial \varepsilon_t^0 \) then \(u = u_0 \) in \(L^1 \).

Lemma 3.3.7. If \(\Omega \) convex and \(u \) solution to the LGP for \(f \) continuous and bounded on \(\Gamma \subset \partial \Omega \) open, we have \(\partial \varepsilon_t \cap \Gamma \subset f^{-1}(t) \)

Theorem 3.3.2. [3] Let \(u_0 \) be the solution to the LGP constructed above and \(\partial \varepsilon_t^0 = \{ u_0 \geq t \} \).

1. Let \(\Gamma \subset \partial \Omega \) open with endpoints \(a \) and \(b \).

 Let \(x_M \in \Gamma \) such that \(f \) attains its maximum at \(x_M \).
Let f strictly increasing on the arc $\overline{ax_M}$ and strictly decreasing on $\overline{x_Mb}$ such that f attains each value exactly twice, except at x_M, and $f(a) = f(b) = \inf_{\Gamma} f$.

We then get u_0 is a unique solution and u_0 discontinuous on a and b. Also, $\exists \tau \in (\inf_{\Gamma} f, \sup_{\Gamma} f)$ such that $|\{u_0 = \tau\}| > 0$.

2. Let $x_0 \in \Gamma; d(x_0, \Lambda) = d(x_0, a) = d(x_0, b)$ with $f(a) = f(b) = f(x_0)$.

Suppose f attains each value twice on the arc $\overline{ax_0}$ with x_m a local minimum and suppose f attains each value exactly twice on the arc $\overline{x_0b}$ with x_M local maximum.

Then u_0 is unique and continuous and $|\{u_0 = f(a)\}| > 0$.

3. Let $S := \{x \in \Gamma; d(x, \Lambda) = d(x, y) \text{ for some } y \in \Lambda\}$.

$D := \{x \in S; \exists \text{ atleast two } y \in \Lambda; d(x, \Lambda) = d(x, y)\}$.

Let $\phi : S \mapsto P(\Lambda); \phi(x) = \{y \in \Lambda; d(x, \Lambda) = d(x, y)\}$.

One can prove that D is atmost countable.

If f monotone then u_0 is unique and discontinuous at a and b. Also, \exists atleast one $\tau \in u(\phi(D)); |\{u = \tau\}| > 0$

Proof. 1. Let u be any solution to the LGP. We will first construct the level sets, then prove the existence of τ. Since f takes each value at exactly 2 points in Γ except for x_M, then for each $t \in (\inf_{\Gamma} f, \sup_{\Gamma} f)$, there exists 2 points $x', y' \in \Gamma$; $f(x') = f(y') = t$.

If I have a level set at t, $\partial \varepsilon_t$, then $\partial \varepsilon_t \cap \Gamma \subset f^{-1}(t) \Rightarrow \forall x \in \partial \varepsilon_t \cap \Gamma$ we must have $f(x) = t$.

Since $\forall t, \exists 2$ points x', y' such that $f(x') = f(y') = t$ then if I have a level set at t, and as level sets must intersect $\partial \Omega$ and in particular Γ so that the solution will be continuous up to Γ, then x', y' must belong to $\partial \varepsilon_t$.

We now consider the map $h : t \mapsto h(t) = d(x', y') - d(x', a) - d(y', b)$.

We suppose $d(x', \Lambda) = d(x', a)$ and $d(y', \Lambda) = d(y', b)$.

31
If \(\{x^t, y^t\} \in \Gamma \) are very close to \(x_M \) such that \(f(x_M) - t > 0 \) and very small, we have \(d(x^t, y^t) < d(x^t, a) + d(y^t, b) \Rightarrow h(t) < 0. \)

Since \(\partial \epsilon_t \) must contain \(\{x^t, y^t\} \) and \(\partial \epsilon_t \cap \Gamma = f^{-1}(t) \) then \(\partial \epsilon_t \) must be the line segment \([x^t, y^t] \).

If \(\{x^t, y^t\} \in \Gamma \) with \(x^t \) very close to \(a \) and \(y^t \) very close to \(b \) with \(d(x^t, \Lambda) = d(x^t, a) \) and \(d(y^t, \Lambda) = d(y^t, b) \) such that \(t - f(a) > 0 \) and very small we have \(d(x^t, y^t) > d(x^t, a) + d(y^t, b) \Rightarrow h(t) > 0. \)

Since \(\partial \epsilon_t \) must contain \(\{x^t, y^t\} \) and \(d(x^t, a) + d(y^t, b) \) is smaller than \(d(x^t, y^t) \), and \(\partial \epsilon_t \) is a minimal surface i.e. the line segment must be of least length, \(\partial \epsilon_t = [x^t, a] \cup [y^t, b] \).

Since \(h \) is continuous and \(\exists t \) such that \(h(t) > 0 \) and \(\exists t \) such that \(h(t) < 0 \), by intermediate value theorem, \(\exists \tau \in (\inf_T f, \sup_T f); h(\tau) = 0. \)

\[\Rightarrow \exists \tau \in (\inf_T f, \sup_T f); d(x^\tau, y^\tau) = d(x^\tau, a) + d(y^\tau, b). \]

\[\Rightarrow \partial \epsilon_\tau = [x^\tau, a] \cup [x^\tau, y^\tau] \cup [y^\tau, b]. \]

Indeed, \(\partial \epsilon_\tau \) is the boundary of the set \(\{u = \tau\} \) with \(|\{u = \tau\}| > 0. \)

Indeed, the set \(\{u = \tau\} \) is unique because otherwise there will be another level set to construct with \(\partial \epsilon_t = [c, d] \) with \(c, d \in \Lambda. \)

Let \(v \) be the function constructed by its level sets the same way as \(u \) with an additional level set located in \(\{u = \tau\}. \) We then get \(\int |Dv| > \int |Du| = 0 \) on \(\{u = \tau\}. \) But we require minimizing \(\int |Du| \) over all \(u \in BV(\Omega) \) with \(u = f. \) Then the construction of \(u \) is the best solution one can get.

If we take a sequence of level sets \(\forall t > \tau \) the limiting level set will be \([x^\tau, y^\tau]\) and if we take a sequence of level sets \(\forall t < \tau, \) the limiting level set will be \([x^\tau, a] \cup [y^\tau, b] \). Since \(u \) is continuous, for all that is beneath \(\partial \epsilon_\tau \), we have \(u = \tau. \)

We also have, \(\forall x \in \Omega - \{u = \tau\}; \exists t; x \in \partial \epsilon_t. \) We then have, \(\partial \epsilon_t = \partial \epsilon_t^0. \)
2. Let u be any solution to the LGP. We know that $\partial \varepsilon_t \cap \Gamma \subset f^{-1}(t)$.
As f attains each value twice on Γ then $f^{-1}(t) = \{x^t, y^t\}$. We will prove in this case that $\partial \varepsilon_t \cap \Gamma = f^{-1}(t)$. Suppose $\partial \varepsilon_t \cap \Gamma \neq \{x^t, y^t\}$ then $\partial \varepsilon_t = [x^t, c_1] \cup [y^t, c_2]$ with $c_1, c_2 \in \Lambda$. It is a necessity that c_1 and c_2 are either a or b as we require $\partial \varepsilon_t$ to be of smallest length and $d(x_0, \Lambda) = d(x_0, a) = d(x_0, b)$. Without loss of generality, suppose $x^t, y^t \in \Gamma \cap \overline{a_0 b}$. If $c_1 = a$, then $[x^t, a]$ cuts $\partial \varepsilon_{f(a)}$ which is impossible. Then, $\partial \varepsilon_t = [x^t, b] \cup [y^t, b]$. By the triangular inequality, $d(x^t, y^t) < d(x^t, b) + d(y^t, b)$. Contradiction as $\partial \varepsilon_t$ must be of least length. Therefore, on the arc $\overline{ax_0}$ the level sets are $\partial \varepsilon_t = [x^t, y^t]$ with the limiting level set $[a, x_0]$ and on the arc $\overline{x_0 b}$ the level sets are $\partial \varepsilon_t = [x^t, y^t]$ with the limiting level set $[x_0, b]$. We then get $\partial \varepsilon_{f(a)} = [a, x_0] \cup [x_0, b]$ boundary of the set $\{u = f(a)\}$ with $|\{u = f(a)\}| > 0$.

By the same argument as the proof of 1. , we have uniqueness of the level sets and uniqueness of the the set $\{u = f(a)\} \Rightarrow u = u_0$.

3. Let u be any continuous solution on Ω to the LGP. Since f takes each value exactly once then for each $t \in (\inf f, \sup f)$; there exists a unique $x^t \in \Gamma$; $f(x^t) = t$. Then $\partial \varepsilon_t$ must have an endpoint x^t, but the other endpoint $y \in \Lambda$. Then $\partial \varepsilon_t = [x^t, y]$ for $y \in \Lambda$.

For points x^t close to a, $\partial \varepsilon_t = [x^t, a]$. As points get away from a, then $\partial \varepsilon_t = [x^t, y]$ for some $y \in \Lambda$. Similar reasoning for the point b.

Since D is atmost countable, then $\exists x \in D, \exists$ at least $y_1, y_2 \in \Lambda; d(x, y_1) = d(x, y_2) = d(x, \Lambda)$. Let $f(x) = \tau$. Then $\partial \varepsilon_\tau = [x, y_1] \cup [x, y_2]$ and is the boundary of the set $\{u = \tau\} \Rightarrow |\{u = \tau\}| > 0$. Same argument of the above 2 proofs, we prove the uniqueness of u_0.

\[\Rightarrow u = u_0 \text{ by lemma 3.3.6.} \]
Remark 9. [10] We know if u solution to LGP and Ω convex then $\partial \varepsilon_t \cap \partial \Omega \subset f^{-1}(t)$ by lemma 3.3.7. Take $\Omega = [0, 1] \times [0, 1]$ a square and $f = 0$ on 3 sides of $\partial \Omega$ and f a bell shaped curve on the bottom side of $\partial \Omega$.

Suppose there exist a continuous solution on $\bar{\Omega}$ to LGP. Then, $\forall t > 0$, by lemma 3.3.7, $\partial \varepsilon_t$ will be subintervals of the bottom side of $\partial \Omega$ and they will overlap. This is impossible as $\partial \varepsilon_t \cap \partial \varepsilon_s = \phi \ \forall s \neq t$. Hence, there exists no continuous solution on $\bar{\Omega}$ to LGP.

The problem was indeed in the convexity of Ω which led to the overlapping of level sets. Therefore, to ensure a continuous solution for all functions f, strict convexity of Ω is a must.

3.4 Special case

The above solution to the LGP exists when Ω strictly convex with lipchitz boundary, and f continuous and bounded on $\partial \Omega$.

Here, we will take a special case of a convex set and prove the existence of a unique continuous solution for the LGP with f continuous and satisfies a monotonicity condition.

Then, for any convex set, one can proceed in a similar manner as for the special case that we will take and guarantee the existence of the LGP for f continuous and monotone.

We take Ω be a rectangle; $\Omega = [-L, L] \times [-h, h]$ which is a convex but not strictly convex domain.

Let $h_1 = [-L, L] \times \{h\}$
$h_2 = [-L, L] \times \{-h\}$
$v_1 = \{L\} \times [-h, h]$
$v_2 = \{-L\} \times [-h, h]$ and let $\Gamma_1 = \{h_1, v_1\}$
\(\Gamma_2 = \{ h_2, v_2 \} \)

Now let \(f \) to be strictly monotone on \(\Gamma_1 \) and \(\Gamma_2 \).

Without loss of generality, suppose \(f \) is strictly increasing on each \(\Gamma_1 \) and \(\Gamma_2 \).

Theorem 3.4.1. [3] For \(\Omega \) and \(f \) as stated, there exists \(u \in C(\Omega) \); \(u \) is a unique solution to

\[
\min \{ \int_{\Omega} |Du|; \ u \in BV(\Omega), \ T_{\partial \Omega} u = f \}
\]

Before we illustrate the proof of the theorem given by [3], we will state a lemma:

Lemma 3.4.1. Let \(\Omega \) be an open set of class \(C^1 \). Then there exists a surjective continuous linear map, denoted by \(\gamma_0 \) that sends \(W^{1,1}(\Omega) \to L^1(\partial \Omega) \). When \(U \in W^{1,1}(\Omega) \cap C(\Omega) \), this trace coincides with the restriction to the boundary. Also, \(\exists C > 0; \forall u \in L^1(\partial \Omega), \exists U \in W^{1,1}(\Omega), \gamma_0(U) = u \) and \(||U||_{W^{1,1}(\Omega)} \leq C ||u||_{L^1(\partial \Omega)} \)

Proof. We will proceed in the proof for theorem 3.4.1 by several steps:

Step 1 We approximate \(\Omega \) by a sequence \(\Omega_n \) of bounded strictly convex domains in a way \(\Omega_n \) is made up of 4 circular arcs passing through the vertices of \(\Omega \) and \(d(x, \partial \Omega_n) \leq \frac{1}{n} \ \forall x \in \partial \Omega \).

We then have \(\partial \Omega_n = \partial \Omega + \nu \gamma_n \) with \(\nu \) unit outer normal to \(\partial \Omega \) and \(\gamma_n \) a smooth function; \(0 \leq \gamma_n \leq \frac{1}{n} \).

We also define for \(x \in \partial \Omega \), \(f_n(x + \nu \gamma_n(x)) := f(x) \) which remains to be continuous on \(\partial \Omega_n \) since \(f \) is so.

We now define the LGP :

\[
\min \{ \int_{\Omega_n} |Du|; \ u \in BV(\Omega_n), T_{\partial \Omega_n} u = f_n \}
\]

From theorem 3.3.1, we know that this problem has a unique continuous solution on \(\Omega_n \) which we will denote by \(v_n \).

Step 2: We now restrict \(v_n \) to \(\Omega \) by setting \(u_n = v_n 1_\Omega \).

We now prove \(u_n \in BV(\Omega) \) and \(u_n \to u \) in \(L^1(\Omega) \).
As \(f_n \) is continuous on \(\partial \Omega_n \), then there exists \(F_n \in W^{1,1}(\Omega_n) \); \(F_n = f_n \) on \(\partial \Omega_n \) and
\[
||DF_n||_{L^1(\Omega_n)} \leq C_n ||f_n||_{L^1(\partial \Omega_n)}. \]
Then,
\[
\int_{\Omega} |Du_n| \leq \int_{\Omega_n} |Dv_n| \leq ||DF_n||_{L^1(\Omega_n)} \leq C_n ||f_n||_{L^1(\partial \Omega_n)}
\]
But
\[
C_n ||f_n||_{L^1(\partial \Omega_n)} \leq C_n ||f_n||_{L^\infty(\partial \Omega_n)} \leq C ||f_n||_{L^\infty(\partial \Omega_n)} < \infty
\]
\[
\Rightarrow \int_{\Omega} |Du_n| < \infty
\]
\[
\Rightarrow u_n \in BV(\Omega)
\]
By compactness of \(BV \) in \(L^1 \), there exists a subsequence still denoted by \(u_n \) and
a function \(u \) such that \(u_n \rightarrow u \) in \(L^1(\Omega) \)
By semicontinuity, we get \(\int_{\Omega} |Du| \leq \lim inf \int_{\Omega} |Du_n| < \infty \)
\[
\Rightarrow u \in BV(\Omega)
\]

Step 3 We now prove \(u \) obtained in Step 2 is a least gradient function for some
function \(g_n \) such that \(T_{\partial \Omega} u = g_n \) by proving \(u_n \) is a least gradient function satisfying \(T_{\partial \Omega} u_n = g_n \)
In fact, for \(z \in \partial \Omega \), \(g_n(z) = \lim_{y \to z, y \in \Omega} u_n(y) = \lim_{y \to z, y \in \Omega} v_n(y) = v_n(z) \) as \(v \in C(\Omega_n) \).
Then, by section 3.2 proposition 6, as \(v_n \) is a least gradient function on \(\Omega_n \) by
step 1, then \(v_n|_{\Omega} = u_n \) is a least gradient function on \(\Omega \).
As \(u_n \rightarrow u \) in \(L^1(\Omega) \) then \(u \) is a least gradient function on \(\Omega \) to \(\min\{\int_{\Omega} |Dv|; v \in BV(\Omega), T_{\partial \Omega} v = g_n\} \) by proposition 3.

Step 4 We prove \(u \) converge uniformly to a continuous function \(w \). From step 2 and 3, we have \(u_n \rightarrow u \) in \(L^1(\Omega) \) and \(u \) is a least gradient function satisfying
\(T_{\partial \Omega} u = g_n \).
Then, we get \(u = w \) a.e. and thus \(w \) is a continuous least gradient function
satisfying \(T_{\partial \Omega} w = g_n \).
Construction of w:

For $t \in (\min f, \max f)$, let l' be the line segment joining $x^t \in \Gamma_1$ and $y^t \in \Gamma_2$; $f(x^t) = f(y^t) = t$.

In fact, the l' are disjoint because otherwise, suppose $\exists t_1, t_2 \in (\min f, \max f), l^{t_1}, l^{t_2}$ 2 line segments joining x^{t_1}, y^{t_1} and x^{t_2}, y^{t_2} respectively such that l^{t_1}, l^{t_2} meet at some point inside Ω.

Without loss of generality, we will get $x^{t_1} > x^{t_2}$ and $y^{t_1} < y^{t_2}$. By continuity of f and being strictly increasing on each Γ_i $i = 1, 2$, we get $f(x^{t_1}) = t_1 > f(x^{t_2}) = t_2$ and $f(y^{t_1}) = t_1 < f(y^{t_2}) = t_2$. Contradiction.

Lemma 3.4.2. For $z \in \Omega$, there exists a unique l' passing through $z \forall t \in (\min f, \max f)$

Proof. Let $z \in \Omega$. Without loss of generality, take z below diagonal joining the endpoints of Γ_1. Let s be the arc length parameter of Γ_1. We then get,

$$0 \leq s \leq (\int_{-L}^{L} \sqrt{1} dx + \int_{-h}^{h} \sqrt{1} dy) = 2(L + h).$$

Let $x(s)$ be a parametrization of Γ_1.

For each s, let $l(x(s), z)$ be the line segment passing through z and touching Γ_2 at $y(s)$.

We then have $y(s)$ continuous.

Now let $\lim_{s \to 0^+} f(x(s)) = \min f$, and $\lim_{s \to (2(L+h))^+} f(x(s)) = \max f$.

Then, $\lim_{s \to 0^+} (f(x(s)) - f(y(s))) = \min f - \lim_{s \to 0^+} f(y(s)) \leq 0$

and $\lim_{s \to (2(L+h))^+} (f(x(s)) - f(y(s))) = \max f - \lim_{s \to (2(L+h))^+} f(y(s)) \geq 0$

By intermediate value theorem, as $f(x(s)) - f(y(s))$ is continuous, there exists a unique s_0; $l^t = [x(s_0), y(s_0)]; z \in l^t$ and $f(x(s_0)) = f(y(s_0)) = t$.

We now define $w : \Omega \mapsto \mathbb{R}$ defined by:

$$w(x) = t \text{ for every } x \in \Omega$$
By lemma 3.4.2, this map is well defined and bijective. Indeed, one can prove w to be continuous on Ω resulting with the inequality ,
$$|w(x_1) - w(x_2)| = |t_1 - t_2| = |f(x^{l_1}) - f(x^{l_2})| \leq \omega(c_1|x_1 - x_2| + c_2\sqrt{|x_1 - x_2|})$$
with ω the continuity modulus of f.

Lemma 3.4.3. u_n converges uniformly to w

Proof. We first prove that u_n is a cauchy sequence.
Let $u_l(x) = t_1$ and $u_k(x) = t_2$ for $x \in \Omega$.
Since $Tu_n = v_n \Rightarrow$ level sets of u_n, $C\{u_n \geq t\}$, are straight lines with endpoints on $\partial\Omega$ at which v_n takes the value t.

But v_n takes the value t along the level sets $C\{v_n \geq t\}$ which has endpoints on $\partial\Omega_n$ at which f_n takes the value t.

We have $x \in C\{u_l \geq t_1\} = l^{t_1}_l$ and $x \in C\{u_k \geq t_2\} = l^{t_2}_k$.

Let l^{t_1} and l^{t_2} be the 2 line segments as defined in this section such that f takes the value t_1 on the endpoints of l^{t_1} and f takes the value t_2 on the endpoints of l^{t_2}. By construction, as the endpoints of l^{t_1} and $l^{t_1}_l$ and the endpoints of l^{t_2} and $l^{t_2}_k \leq \frac{1}{n}$, $n = min\{k,l\}$ then $\forall x_l \in l^{t_1}$ and $x_k \in l^{t_2}$ we have $d(x_l, x) < \frac{1}{n}$ and $d(x_k, x) < \frac{1}{n}$.

$$|u_l(x) - u_k(x)| = |t_1 - t_2| = |w(x_l) - w(x_k)| \leq \omega(c_1|x_l - x_k| + c_2\sqrt{|x_l - x_k|})$$

But $|x_l - x_k| = |x_l - x_k + x - x| \leq |x_l - x| + |x_k - x| \leq \frac{2}{n}$
and $\sqrt{|x_l - x_k|} \leq \sqrt{\frac{2}{n}}$ with $n = min\{k,l\}$.

$\Rightarrow |u_l(x) - u_k(x)| \leq \omega(\frac{c_1^2}{n} + \frac{c_2}{\sqrt{n}}) \longrightarrow 0$ as $k, l \longrightarrow \infty$.
$\Rightarrow u_n$ is a cauchy sequence.

As u_n is a cauchy sequence in $\Omega \subset R^2$ complete $\Rightarrow u_n$ converges uniformly to w.

Step 5 It remains to prove $Tw = f$.

38
Let $z \in \partial \Omega$. We need to prove $\lim_{y \to z, y \in \Omega} w(y) = f(z)$.

Without loss of generality, suppose $z \in \Gamma_1$. For $y \in \Omega$, $\exists ! l^t_1 = [x^{t_1}, y^{t_1}]$ passing through y; $w(y) = t_1$.

Since $z \in \partial \Omega$ then there exists a unique $l^t_2 = [z, z']$ with $z' \in \Gamma_2$ and $f(z) = f(z') = t_2$.

$$|w(y) - f(z)| = |t_1 - t_2| = |f(x^{t_1}) - f(z)| \leq \omega(c_1|y - z| + c_2\sqrt{|y - z|})$$

So as $y \to z$, we get $w(y) \to f(z)$.

Hence, $Tw = f$

Step 6 We prove uniqueness of the solution.

We have that, for v any solution of $\min \{ \int_{\Omega} |Du| ; u \in BV(\Omega), Tu = f \}$,

$$\partial \{ v \geq t \} \cap \partial \Omega \subset f^{-1}(t).$$

By minimality of the level sets, then $\partial \{ v \geq t \} = \partial \{ w \geq t \}$ and thus $u = w$.

\[\square \]

Remark 10.

1. In step 4, from the inequality resulting from continuity of the solution w, we can see that if $f \in C^\alpha(\partial \Omega)$ then $w \in C^\alpha(\Omega)$.

2. One can take f to be strictly increasing on h_i and constant on v_i. (vice versa also works) for $i = 1, 2$. There will exist a unique solution by proceeding in a similar manner and the level sets are constructed in the following way: $\forall x \in \Omega$, $\exists ! l^t$ line segment with endpoints x^t on h_1 and y^t on h_2 with $t \in (\min f, \max f)$. We define the solution $w(x) = t$ and all other steps are the same as was done.

3. One can now generalize to any convex set by proceeding in a similar way as was done and constructing the level sets l^t that fill up Ω.

39
3.5 Connection between LGP and FMD

Let Ω be a plane domain with lipchitz boundary.

Definition 3.5.1. We define the problem that appears in free material design to be (FMD):

$$\inf \left\{ \int_{\Omega} |p|, \ p \in L^1(\Omega, \mathbb{R}^2), \ \text{div} p = 0, \ p \cdot \nu|_{\partial \Omega} = g \right\}$$

FMD is the problem of finding the least material distribution of a body to handle a load applied to its boundary. ν is the unit outer normal to $\partial \Omega$. For the normal trace to be well defined, we require Ω to belong to a special class of lipchitz do-
mains called deformable lipchitz domain. This special class contains convex sets. Hence, we will consider Ω to be convex with $\partial \Omega$ lipchitz continuous. Also, as $p \in L^1(\Omega)$, $\text{div} p$ is viewed to be in the distributional sense.

As L^1 is not weakly* closed, we cannot ensure the existence of minimizers to the problem.

We now consider the following two problems:

1. $\min \{ \int_{\Omega} |Du|, \ u \in BV(\Omega), \ T_{\partial \Omega} u = f \}$
2. $\inf \left\{ \int_{\Omega} |p|, \ p \in L^1(\Omega, \mathbb{R}^2), \ \text{div} p = 0, \ p \cdot \nu|_{\partial \Omega} = g \right\}$

As stated in previous section, Problem 1 is the least gradient problem (LGP). We will take $\partial \Omega$ to be lipchitz continuous and $f \in L^1(\partial \Omega)$.

As we are interested in finding solution to LGP, it is proved in [3] that a relation does exist between problem 1 and problem 2. This relation states that finding an element to one of the 2 problems leads to finding an element of the second.

Proposition 8. Let $p \in L^1(\Omega, \mathbb{R}^2)$ with $\text{div} p = 0$ and Ω convex. Then there exists $u \in W^{1,1}(\Omega) \subset BV(\Omega)$ such that $p = R_{-\frac{1}{2}} \nabla u$.

40
Also, if \(p \cdot \nu |_{\partial \Omega} = g \) and \(T_{\partial \Omega} u = f \), then \(g = \frac{\partial f}{\partial \nu} \).

In other words, having an element in the set of problem 2 gives an element in the set of problem 1.

Theorem 3.5.1. [3] Let \(u \) be a solution to problem 1 and \(\Omega \) convex. Then \(q = R_{-\frac{\pi}{2}} \nabla u \) is a solution to problem 2 with \(q \cdot \nu |_{\partial \Omega} = \frac{\partial f}{\partial \nu} = g \) and \(\text{div} q = 0 \).

Proof. Let \(u \) be a solution to problem and let \(q := R_{-\frac{\pi}{2}} \nabla u \). Let \(M \) be the solution to problem 2. We need to prove \(\int_{\Omega} |q| dx = M \), \(\text{div} q = 0 \), \(q \cdot \nu |_{\partial \Omega} = g \).

Let \(p_n \) be a minimizing sequence of problem 2 such that \(\int_{\Omega} |p_n| dx \rightarrow M \) and \(\text{div} p = 0 \), \(p_n \in L^1(\Omega, \mathbb{R}^2) \), \(p_n \cdot \nu |_{\partial \Omega} = g \). By Proposition 8, \(\exists v_n \in W^{1,1}(\Omega) \subset BV(\Omega) ; p_n = R_{\frac{\pi}{2}} Dv_n \) and \(Tv_n = f \).

As \(u \) solution and \(v_n \) is an element of the set of problem 1, \(M = \int_{\Omega} |p_n| dx = \int_{\Omega} |Dv_n| dx \geq \int_{\Omega} |Du| dx = \int_{\Omega} |q| dx \).

We get \(M = \int_{\Omega} |q| dx \) as it is impossible for \(M \) to be strictly greater than \(\int_{\Omega} |Du| dx \) since by construction it is a minimizing sequence.

Also, as \(q \) is the rotation of \(Du \) by angle \(\frac{-\pi}{2} \) \(\Rightarrow \text{div} q = 0 \).

It remains to show \(q \cdot \nu |_{\partial \Omega} = g \).

As \(u \in BV(\Omega) \), by approximation of BV functions \(\exists w_n \in BV(\Omega) \cap C^\infty(\Omega) ; w_n \rightarrow u \) in \(L^1(\Omega) \) and \(\int_{\Omega} |Dw_n| \rightarrow \int_{\Omega} |Du| \) as \(n \rightarrow \infty \). We set \(Tw_n = f = Tu \).

Then, \(\exists \) a subsequence, still denoted by \(Dw_n; Dw_n \rightarrow Du \) weakly as measures.

We set \(\tilde{p}_n := R_{\frac{\pi}{2}} Dw_n \). By Proposition 1, \(\tilde{p}_n \cdot \nu |_{\partial \Omega} = \frac{\partial T_{\nu} w_n}{\partial \tau} = \frac{\partial f}{\partial \tau} \).

Let \(\varphi \in \text{Lip}(\gamma, \partial \Omega) \) with \(\gamma > 1 \) and \(\Phi \) the extension of \(\varphi \) to \(\text{Lip}(\mathbb{R}^2) \),

\[<q \cdot \nu |_{\partial \Omega}, \varphi> = <\text{div} q, \Phi> + \int_{\Omega} q \nabla \Phi dx = \int_{\Omega} q \nabla \Phi dx \text{ as } \text{div} q = 0. \]

But \(Dw_n \rightarrow Du \Rightarrow \tilde{p}_n = R_{\frac{\pi}{2}} Dw_n \rightarrow R_{\frac{\pi}{2}} Du = q \) weakly as measures.

Then, \(<q \cdot \nu |_{\partial \Omega}, \varphi> = \lim_{n \rightarrow \infty} \int_{\Omega} q \nabla \Phi dx = \lim_{n \rightarrow \infty} \int_{\Omega} \tilde{p}_n \nabla \Phi dx = \lim_{n \rightarrow \infty} <\tilde{p}_n \cdot \nu, \varphi> \).
\[\nu|_{\partial \Omega} \varphi = \lim_{n \to \infty} < g, \varphi > = < g, \varphi >. \]

\[\Rightarrow q \cdot \nu|_{\partial \Omega} = g. \]

3.5.1 Example 1

We now show an example where the relation between FMD and LGP is used resulting in a piecewise constant not continuous function \(f \) defined on \(\partial \Omega \). We find a solution to the LGP with this \(f \).

Suppose \(\Omega \) strictly convex, \(\partial \Omega \) smooth. Consider the FMD problem with \(g \) a distribution \[g = \sum_{i=1}^{3} c_i \delta_{a_i} \] with \(a_i \in \partial \Omega \) and \(\delta_{a_i} \) the delta function. In other words, we apply a load on some points of \(\partial \Omega \) and the rest of \(\partial \Omega \) remains free.

We assume \(\Omega \) is at rest, then for stability we take \(\int_{\Omega} dg = 0 \)

\[\Rightarrow \int_{\Omega} d(\sum_{i=1}^{3} c_i \delta_{a_i}) = \sum_{i=1}^{3} c_i \int_{\Omega} \delta_{a_i} dx = \sum_{i=1}^{3} c_i = 0. \]

We take \(c_1 = \alpha_1 + \alpha_2, c_2 = -\alpha_1, c_2 = -\alpha_2 \) so that \(\sum_{i=1}^{3} c_i = 0. \)

We parametrize \(\partial \Omega \) by \(s \mapsto x(s) \) for \(s \in [0, L] \).

\[\Rightarrow g = \alpha_1 + \alpha_2 x(s_1) - \alpha_2 x(s_2) - \alpha_1 x(0) \] with \(x(s_1), x(s_2), x(s_0) \) 3 points on \(\partial \Omega \) and \(x(s_0) = x(0) \).

By FMD and LGP relation, \(g = \frac{\partial f}{\partial t} \).

We then get, \(g = \begin{cases}
0 & s \in [0, s_1) \\
\alpha_1 + \alpha_2 & s \in [s_1, s_2) \\
\alpha_1 & s \in [s_2, L)
\end{cases} \)

\(f \) is piecewise constant and discontinuous on \(x(0), x(s_1), x(s_2) \). We assume \(\alpha_1, \alpha_2 \) are positive, and \(f \) is unique up to a constant.

We now seek a solution to the LGP, \(\min \{ \int_{\Omega} |Du| ; u \in BV(\Omega), Tu = f \} \).
We approximate f by a continuous function f^ϵ such that $f = f^\epsilon$ everywhere except at $\{x; d(x, x(s_i)) < \epsilon, i = 0, 1, 2\}$. Then, by theorem 3.3.1, the LGP $\min\{\int_\Omega | Du |; u \in BV(\Omega), Tu = f^\epsilon\}$ has a solution which we will denote by u^ϵ.

Since u^ϵ and u^δ differ on a neighborhood of $x(s_i) i = 0, 1, 2$,
\[||u^\epsilon - u^\delta||_{L^1(\Omega)} \leq C(\epsilon, \delta)[|x(s_0) - x(s_1)| + |x(s_1) - x(s_2)| + |x(s_2) - x(s_0)|]. \]

As $\epsilon, \delta \rightarrow 0$, $||u^\epsilon - u^\delta||_{L^1(\Omega)} \rightarrow 0$.

$\Rightarrow u^\epsilon$ is a cauchy sequence in $L^1(\Omega)$ and as $L^1(\Omega)$ Banach space $\Rightarrow u^\epsilon \rightarrow u$ in $L^1(\Omega)$.

Since u^ϵ is a least gradient function and $u^\epsilon \rightarrow u$ in $L^1(\Omega)$ \Rightarrow by proposition 3. u is a least gradient function with $tu = f^\epsilon$. But as $\epsilon \rightarrow 0$, $f^\epsilon = f$.

$\Rightarrow Tu = f$

$\Rightarrow u$ is a solution to $\min\{\int_\Omega | Du |; u \in BV(\Omega), Tu = f\}$.

Uniqueness of the solution is claimed but still not proved rigorously. However, [3] states that uniqueness is expected to be achieved as above by constructing the level sets and claiming their uniqueness.

3.5.2 Example 2

We now represent an example given by [3] to find a solution to the LGP with Ω a rectangle and f, not satisfying a monotonicity condition, being the function resulting from the relation between LGP and FMD with the knowledge that a load g is applied on a part of $\partial \Omega$ and Ω remains at rest.

Let $\Omega = (-L, L) \times (-h, h)$ a rectangle and g a load applied on $\partial \Omega$ in the following way:
\[
g = \begin{cases}
 l_B & [-b, b] \times \{-h\} \\
 l_T & [-t, t] \times \{h\} \\
 0 & \text{on the rest of } \partial \Omega
\end{cases}
\]

where \([-b, b], [-t, t] \subset [-L, L]\]

We suppose \(\Omega\) is at rest such that \(\int_{\partial \Omega} g dx = 0\)

\[
\Rightarrow \int_{\{b\}} l_t l_T dxdy + \int_{\{-b\}} l_b l_B dxdy = 0
\]

\[
\Rightarrow h l_T x|_{-t} - h l_B x|_{-b} = 2tl_T h - 2bl_B h = 0
\]

But \(h \neq 0\) and \(h[2tl_T - 2bl_B] = 0\)

\[
\Rightarrow 2tl_T = 2bl_B.
\]

By FMD and LGP relation, \(\exists f \in L^1(\partial \Omega); g = \frac{\partial f}{\partial y}\).

As we want \(f\) to be continuous, we proceed in the following way:

As \(g = 0\) on \(\{L\} \times [-h, h]\) \(\Rightarrow \frac{\partial f}{\partial y} = 0 \Rightarrow f(-L, y) = C\) with \(C\) constant. We take \(C = 0\).

\[
\Rightarrow f(x, y) = 0 \text{ on } \{L\} \times [-h, h].
\]

By continuity of \(f\), and as \(g\) remains to be 0 we get \(f(x, y) = 0\) on \([-L,-b] \times \{-h\}\).

On \([-b, b] \times \{-h\}, g = l_B \Rightarrow f(x, y) = l_B x + k(y)\). By continuity of \(f\), \(f(-L,-h) = f(-b,-h) = 0 \Rightarrow -l_B b + k(y) = 0 \Rightarrow k(y) = l_B b\).

\[
\Rightarrow f(x, y) = l_B x + bl_B \text{ on } [-b, b] \times \{-h\}.
\]

As we require \(f\) to be continuous and \(g = 0\) on \([b, L] \times \{-h\}\) and on \(\{L\} \times [-h, h]\) and \(f(b,-h) = 2bl_B \Rightarrow f(x, y) = 2bl_B \text{ on } [b, L] \times \{-h\}\) and on \(\{L\} \times [-h, h]\).

We proceed in a similar way on \([-L, L] \times \{h\}\) to get:

\[
f(x, y) = 0 \text{ on } [-L, -t] \times \{h\},
\]

\[
f(x, y) = l_T x + tl_T \text{ on } [-t, t] \times \{h\}
\]

\[
f(x, y) = 2tl_T \text{ on } [t, L] \times \{h\} \text{ and } \{L\} \times [-h, h].
\]

In fact, as \(2tl_T = 2bl_B\) we then guarantee the continuity of \(f\).
We now aim on finding a solution to the LGP, with boundary data \(f \).

If we take \(t = b = L \) then \(f \) is strictly increasing on \(h_1, h_2 \) and constant on \(v_1, v_2 \) where \(h_1, h_2, v_1, v_2 \) are defined in section 3.4.

Then, by theorem 3.4.1, there exists a unique continuous solution to the LGP.

However, we have that \(f \) is strictly increasing on \([-t, t] \times \{h\}\) and on \([-b, b] \times \{-h\}\), which implies \(f \) attains each value at exactly 2 points, one in \([-t, t] \times \{h\}\) and one in \([-b, b] \times \{-h\}\), except for the minimum and maximum of \(f \) which are attained at more than 2 points.

We extend \(f \) to a function \(f_\epsilon = f + k_\epsilon \) continuous and strictly increasing on \(h_1 \) and \(h_2 \) and constant on \(v_1 \) and \(v_2 \) with

\[
k_\epsilon(x, y) = \begin{cases}
-\epsilon & \text{on } \{ -L \} \times [-h, h] \\
0 & \text{on } [-b, b] \times \{-h\} \text{ and } [-t, t] \times \{h\} \\
(x + t) \frac{\epsilon}{L - t} & \text{on } [-L, -t] \times \{h\} \\
(x + b) \frac{\epsilon}{L - b} & \text{on } [-L, -b] \times \{-h\} \\
(x - b) \frac{\epsilon}{L - b} & \text{on } [b, L] \times \{-h\} \\
(x - t) \frac{\epsilon}{L - t} & \text{on } [t, L] \times \{h\} \\
\epsilon & \text{on } \{ L \} \times [-h, h]
\end{cases}
\]

By theorem 3.4.1, there exists unique \(u_\epsilon \in C(\overline{\Omega}) \), solution to the LGP with \(Tu_\epsilon = f_\epsilon \) on \(\partial \Omega \).
Denote by P_1 the polygon with $\partial P_1 = \{[-L] \times [-h, h], [-L, -t] \times \{h\}, [-L, -b] \times \{-h\}$, and the line segment l_1 with $\partial l_1 = \{(-t, h), (-b, -h)\}$ and P the polygon with $\partial P = \{l_1, [-t, t] \times \{h\}, [-b, b] \times \{-h\}$, and the line segment l_2 with $\partial l_2 = \{(b, h), (t, h)\}$ and P_2 the polygon with $\partial P_2 = \{l_2, [t, L]{\{h\}, [b, L] \times \{-h\}, \{L\} \times \{-h, h\}}.$

By construction of level sets as in section 3.4, we now know that every level set joins a point in h_1 to a point in h_2 and u_ϵ takes the value on each level set same as the value of f_ϵ on the endpoints of the level set. Therefore, as

$$-\epsilon \leq f_\epsilon \leq 0 \text{ on } \partial P_1 - l_1,$$

$$0 \leq f_\epsilon \leq 2bl_B \text{ on } \partial P - \{l_2, l_1\} \text{ and}$$

$$2bl_B \leq f_\epsilon \leq 2bl_B + \epsilon \text{ on } \partial P_2 - l_2.$$

Then:

$$-\epsilon \leq u_\epsilon \leq 0 \text{ on } P_1$$

$$0 \leq u_\epsilon \leq 2bl_B \text{ on } P$$

$$2bl_B \leq u_\epsilon \leq 2bl_B + \epsilon \text{ on } P_2$$

We now set $u = \begin{cases} 0 & \text{on } P_1 \\ u_\epsilon & \text{on } P \\ 2bl_B & \text{on } P_2 \end{cases}$

As u_ϵ is independent of ϵ on P then it is possible to take $u = u_\epsilon$ on P.

It is evident that u is continuous on $\overline{\Omega}$.

I now prove u_ϵ converge in L^1 to u because as u_ϵ is a least gradient function and if $u_\epsilon \longrightarrow u$ in $L^1(\Omega)$ then u is a least gradient function. In fact,

$$-\epsilon \leq u_\epsilon - u \leq 0 \text{ on } P_1,$$

$$u_\epsilon - u = 0 \text{ on } P,$$
0 \leq u_\epsilon - u \leq \epsilon \text{ on } P_2 \\
\Rightarrow |u - u_\epsilon| \leq \epsilon \text{ in } \Omega \\
\Rightarrow u_\epsilon \text{ converges uniformly to } u \text{ in } \Omega \\
\Rightarrow u_\epsilon \rightarrow u \text{ in } L^1(\Omega) \\
\Rightarrow u \text{ is least gradient function.}

It remains to show u has the correct trace $Tu = f$ on $\partial \Omega$. In fact,

On P: $Tu = Tu_\epsilon = u_\epsilon = f_\epsilon = f$.

On P_1: Let $z \in \{-L\} \times [-h, h]$ or $[-L, -l] \times \{h\}$ or $[-L, -b] \times \{-h\}$,

$$\lim_{y \rightarrow z, \ y \in \Omega} u(x, y) = \lim_{y \rightarrow z, \ y \in \Omega} 0 = 0 = f(z)$$

On P_2: Let $z \in \{L\} \times \{h\}$ or $[b, L] \times \{-h\}$ or $\{L\} \times [-h, h]$,

$$\lim_{y \rightarrow z, \ y \in \Omega} u(x, y) = \lim_{y \rightarrow z, \ y \in \Omega} 2b \ell_B = 2b \ell_B = f(z)$$
Chapter 4

Constrained Least Gradient Problem

Based on [10], we now consider a rod and an external force applied on the rod. We suppose the rod has an exterior constant cross section Ω. Our aim is to find the cross section with least area that will resist the load without deforming. We can consider this problem as a 2-dimensional problem with stress satisfying a yield condition. Without loss of generality, we suppose the stress never exceeds 1 in magnitude or else the cross section yields plastically.

We may vary the cross sections by removing material from Ω and aim for the cross section with the least area and the stress not exceeding 1. However, we instead fix Ω and vary the stresses in Ω and remove material where the stress is zero.

We can translate this problem into the following:

We let u be a function defined on $\overline{\Omega}$ that gives a stress $R_{-\frac{\pi}{2}} \nabla u$ i.e. rotation of ∇u by angle $-\frac{\pi}{2}$. We let f be a function defined on $\partial \Omega$ i.e. the load applied on $\partial \Omega$.

We define $w : [0, 1] \to \mathbb{R}$ by $t \mapsto w(t) = \begin{cases} 1 & \text{for } t \neq 0 \\ 0 & \text{for } t = 0 \end{cases}$
Our problem is then:

$$\min \left\{ \int_{\Omega} w(|\nabla u|) ; |\nabla u| \leq 1 \text{ a.e. in } \Omega , \ u = f \text{ on } \partial \Omega \right\}$$

We know that $$\int_{\Omega} w(|\nabla u|) \geq 0$$ since $$|\nabla u| \geq 0$$.

For $$|\nabla u| = 0$$ \Rightarrow $$\min \{ \int_{\Omega} w(|\nabla u|); |\nabla u| \leq 1 \text{ a.e. in } \Omega , \ u = f \text{ on } \partial \Omega \} = 0$$.

For $$|\nabla u| \neq 0$$, $$w(|\nabla u|) = 1 \Rightarrow \int_{\Omega} w(|\nabla u|)dA = \text{Area}(\Omega)$$.

However, the integrand is nonconvex, and by a well known phenomenon in mathematics, it is a barrier to finding the existence of a solution. We then convexify $$w$$ by finding the greatest convex function smaller than $$w$$. It turns out that the convexification of $$w$$ is $$\tilde{w}(t) = t$$.

We now solve the problem:

$$\min \left\{ \int_{\Omega} \tilde{w}(|\nabla u|) ; |\nabla u| \leq 1 \text{ a.e. in } \Omega , \ u = f \text{ on } \partial \Omega \right\}$$

As $$\tilde{w} \leq w \Rightarrow \int_{\Omega} \tilde{w} \leq \int_{\Omega} w$$ \Rightarrow by attaining a solution to the convexified problem, we attain an infimum, might not be a minimum, to our original problem.

We realize that the convexified problem is the least gradient problem with an additional constraint.

Definition 4.0.1. We define the constrained least gradient problem to be:

$$\min \left\{ \int_{\Omega} |\nabla u| ; |\nabla u| \leq 1 \text{ a.e. in } \Omega , \ u = f \text{ on } \partial \Omega \right\}$$

with $$f$$ lipchitz continuous on $$\partial \Omega$$ satisfying $$|f(p) - f(q)| \leq d_{\Omega}(p, q) \ \forall p, q \in \partial \Omega$$

where $$d_{\Omega}(p, q) = \inf \{ \text{length of } \gamma \}$$ with $$\gamma$$ any path joining $$p$$ to $$q$$ lying in $$\overline{\Omega}$$.

The main ingredient in the method of solution is to start by studying the sets $$\{x \in \Omega; u(x) \geq t\}$$, and then go on to studying their boundaries, with a view to showing that those sets solve some minimum problem, in a well-defined notion of perimeter.
Now if Ω is a convex set, then the condition $|\nabla u| \leq 1$ a.e. in Ω in equivalent to $|u(x) - u(y)| \leq |x - y|$ for all $x, y \in \Omega$, as can be easily seen, since the line segment joining x to y lies completely in Ω. If Ω is not convex, we can consider all paths in Ω joining x to y, and then we will have that $|u(x) - u(y)| \leq \{ \text{length of the shortest path in } \Omega \text{ joining } x \text{ to } y \}$.

4.1 Characterization of level sets

Unlike the LGP, level sets of the solution to the constrained LGP need not to be minimal surfaces due to the constraint $|\nabla u| \leq 1$. Indeed, consider a 2-dimensional case with $\Omega \subset \mathbb{R}^2$. Let γ_t denote the level curve of u at $t \in \mathbb{R}$. The boundary points at which $u = f = t$ must belong to γ_t and along γ_t one has $u = t$. γ_t must avoid all balls of center $p \in \partial \Omega$ and radius $|f(p) - t|$ because then the distance between the points that give $u = t$ inside the ball and p is less than $|f(p) - t|$ i.e. $|x - p| \leq |u(p) - u(x)|$ for $x \in \gamma_t$, contradicting the fact that $|\nabla u| \leq 1$. Hence, γ_t may not need to be a straight line and thus a minimal surface. Indeed, each level curve must avoid a set which is a union of open disks.

We shall now illustrate an example in \mathbb{R}^2 given by [11] aiming for one to see the difference in the construction of level sets between the LGP and the constrained LGP with boundary data deduced by the connection between FMD and LGP.

Example Consider $\Omega = [0, 1] \times [0, 1]$ to be the unit square. Consider the FMD problem with g defined on $\partial \Omega$ in the following way: $g = 1$ on the bottom side, $g = -1$ on the left side, and $g = 0$ on the right and top side.

By the connection between FMD and LGP, one has $g = \frac{\partial f}{\partial t} \Rightarrow f = x$ on the bottom side, $f = y$ on the left side, and $f = 1$ on the right and top side.

As seen in previous chapter, without the constraint $|\nabla u| \leq 1$, one gets the LGP with level sets as straight lines. As f takes each value exactly twice one on the bottom side and one on the left side, level sets are straight lines joining these 2
points \((t, 0)\) and \((0, t)\) for each \(t\) between 0 and 1. The lines equations will then be \(y + x = t\). Also, one has \(u\) constant with \(u = 1\) in the square with \(y + x < 1\). As \(u\) takes a constant value \(t\) along each level set joining \((t, 0)\) and \((0, t)\), then one deduces the unique solution to the LGP is \(u(x, y) = x + y\).

However, \(|\nabla u| = \sqrt{2} \geq 1\).

Therefore, for the constrained LGP with such boundary data \(f\) it is impossible for \(u\) to have level sets as straight lines as they must avoid all disks \(B(x, |f(x) - t|)\) for each boundary point \(x\). One then gets that the level sets are circular arcs joining the 2 points \((t, 0)\) and \((0, t)\) with center 0 and radius \(t\). Also, \(u\) will be constant in the square above the circular arc center 0 radius 1.

So in case \(\Omega\) is convex we may consider what appears to be a slightly weaker condition than \(|\nabla u| \leq 1\) a.e. in \(\Omega\). Namely we suppose that the condition \(|u(x) - u(y)| \leq |x - y|\) holds for all \(x \in \partial \Omega\), and \(y \in \Omega\). The corresponding problem is then

\[
\{ \int_{\Omega} |\nabla v|, \ v = f \text{ on } \partial \Omega, \ |v(x) - v(y)| \leq |x - y| \text{ holds for all } x \in \partial \Omega, \ y \in \Omega \}.
\]

It turns out that an analysis of this problem produces a unique solution of the constrained problem.

Now let \(\Omega\) be a bounded domain in \(\mathbb{R}^n\), and let \(f\) be a given function defined on its boundary \(\partial \Omega\). Suppose that there is a function \(v\) defined on \(\Omega\) and satisfying the following conditions:

(i) \(v = f\) on \(\partial \Omega\); (ii) if \(x \in \partial \Omega\), and \(y \in \Omega\), then \(|u(x) - u(y)| \leq |x - y|\).

For such function \(v\) we aim on to study the sets \(A_t = \{x \in \Omega; \ v(x) \geq t\}\), with \(t\) a real number.

Fix \(t \in \mathbb{R}\), and compare, for all points \(p \in \partial \Omega\), the values \(f(p)\) of the boundary function \(f\) with the real number \(t\).

Case 1: Suppose that there is a point \(p \in \partial \Omega\) such that \(f(p) < t\). Then \(t - f(p) > 0\),
and we concentrate on a neighborhood of \(p \) of radius \(t - f(p) > 0 \). If \(x \in \Omega \) and is also in this neighborhood, then \(|x - p| < t - f(p) \). Then by condition (ii) on \(v \) we have, since \(v(p) = f(p) \),

\[
v(x) - v(p) = v(x) - f(p) \leq |x - p| < t - f(p)
\]

which implies that \(v(x) < t \), and hence such a point \(x \notin A_t \). In particular, the point \(p \) itself is not in \(A_t \). This also implies that if \(M = \max\{f(p); p \in \partial\Omega\} \) and \(t > M \), then \(f(p) < t \) for all point \(p \in \partial\Omega \), and so the boundary of \(\Omega \) can be covered by an open set (a union of neighborhoods) which does not intersect that particular \(A_t \). Later on, we shall be interested in the largest such possible set.

Case 2: Suppose there is a point \(p \in \partial\Omega \) such that \(f(p) \geq t \). Then \(f(p) - t \geq 0 \) and if \(f(p) - t > 0 \), we concentrate on a neighborhood of \(p \) of radius \(f(p) - t \). If \(x \in \Omega \) and is also in this neighborhood, then \(|x - p| < f(p) - t \), and again we have

\[
v(p) - v(x) = f(p) - v(x) \leq |p - x| < f(p) - t
\]

which implies that \(v(x) \geq t \), and so \(x \in A_t \). This also implies that if \(m = \min\{f(p); p \in \partial\Omega\} \), and \(t \leq m \), then \(f(p) \geq t \) for all points \(p \in \partial\Omega \), and so the entire boundary of \(\Omega \) along with an open set containing it will lie in \(A_t \). Once again we are interested in the largest such possible set.

The previous analysis leads naturally to the introduction of 2 sets as follows: given \(t \in R \), define two sets \(L_t \) and \(M_t \) by

\[
L_t := \{x \in \Omega; \exists p \in \partial\Omega, f(p) - t \geq 0, |p - x| \leq f(p) - t\} = \{\cup_{p \in \partial\Omega} B(p, f(p) - t); f(p) \geq t\}
\]

\[
M_t := \{x \in \Omega; \exists p \in \partial\Omega, f(p) - t < 0, |p - x| < t - f(p)\} = \{\cup_{p \in \partial\Omega} B(p, t - f(p)); f(p) < t\}
\]

Proposition 9. [10] Suppose that \(v \) satisfies the conditions (i) \(v = f \) on \(\partial\Omega \), (ii) if \(x \in \partial\Omega \), and \(y \in \Omega \), then \(|v(x) - v(y)| \leq |x - y| \). Then, \(L_t \subset A_t \), and \(A_t \cap M_t = \emptyset \) for each real \(t \).
Now for a given function v satisfying the conditions of the proposition, and for each real t, we seek that subset $E \subset \Omega$, which contains L_t does not intersect M_t and has smallest perimeter i.e. we consider the problem

$$\min\{P(E); \; L_t \subset E, \; E \cap M_t = \emptyset, \; E \subset \Omega\}$$ (4.1)

One can show that this problem always has a solution, but not necessarily a unique solution. To obtain a unique solution, we search for those sets which have largest possible measure i.e.

$$\max \{|E|; \; E \text{ solves the above problem}\}$$ (4.2)

Now this problem has a unique solution, denoted by ε_t and we expect that the boundary of this set corresponds with the level set $v = t$.

Another important characterization of the level sets is that the construction of $\partial \varepsilon_t$ is independent of the construction of $\partial \varepsilon_s$.

Indeed, we we shall present the proof of result based on reference [4] that the distance between $\partial \varepsilon_t$ and $\partial \varepsilon_s$ is no less than $|t - s|$ for $s < t$.

First we extend (4.1) and (4.2) from Ω to \mathbb{R}^n.

We now consider the following extended problems

$$\min\{P(E, \mathbb{R}^n); \; L_t \subset E, \; \mathring{M}_t \cap E = \emptyset, \; E \setminus \Omega = L_t - \Omega\}$$ (4.3)

and

$$\max\{|E|; \; E \text{ solves (4.3)}\}$$ (4.4)

We denote the solution of (4.4) by E_t.

Remark 11. (4.1) and (4.3) are equivalent since

$$P(E, \mathbb{R}^n) = P(E, \Omega) + H^{n-1}(\partial^* L_t - \Omega)$$

such that $E_t \cap \Omega = \varepsilon_t$.
Lemma 4.1.1. If $s < t$, then $E_t \subset E_s$

Lemma 4.1.2. Let $s < t$. Let $\eta \in \mathbb{R}^n, |\eta| \leq t - s$. Then $E_t + \eta \subset E_s$.

Proof. We first denote $L_t' := L_t + \eta, M_t' := M_t + \eta, \Omega_t' := \Omega + \eta$.

We consider the problem:

\[
\min \{P(E); L_t' \subset E, M_t' \cap E = E, E - \Omega = L_t' - \Omega_t' \} \quad (4.5)
\]
\[
\max \{|E|; E \text{ solves } (4.5) \} \quad (4.6)
\]

(4.5) and (4.6) have a unique solution which we will denote by E_t'.

We have $L_t' \subset L_s$ since: for $x \in L_t', x = a + \eta, a \in L_t \Rightarrow \exists p \in \partial \Omega; |a - p| \leq f(p) - t$

\[\Rightarrow \exists p \in \partial \Omega; |a - p| + |\eta| \leq f(p) - t + |\eta| \Rightarrow \exists p \in \partial \Omega; |a - p + \eta| \leq f(p) - t + |\eta| \leq f(p) - s.
\]

As $f(p) \geq t > s \Rightarrow f(p) - s \geq 0$

\[\Rightarrow \exists p \in \partial \Omega; |x - p| \leq f(p) - s \Rightarrow x \in L_s.
\]

Let $E = E_t' \cap E_s$

We need to prove, $L_t' \subset E, E \cap M_t' = E, E - \Omega = L_t' - \Omega_t'$

- $L_t' \subset L_s \subset E_s$

 $L_t' \subset E_t'$

 \[\Rightarrow L_t' \subset E_t' \cap E_s = E
 \]

- We have $E \subset E_t'$

 \[\Rightarrow E \cap M_t' \subset E_t' \cap M_t'
 \]

 \[\Rightarrow E \cap M_t' = \emptyset \text{ as } E_t' \cap M_t' = \emptyset
 \]

- As $L_t' \subset E \subset E_t'$

 \[\Rightarrow L_t' - \Omega_t' \subset E - \Omega \subset E_t' - \Omega_t' = L_t' - \Omega_t'
 \]

 \[\Rightarrow E - \Omega_t' = L_t' - \Omega_t'
 \]

Hence, $E = E_t' \cap E_s$ competitor of E_t' in (4.5)

\[\Rightarrow P(E, R^n) \geq P(E_t', R^n)
\]
Let $F = E'_t \cup E_s$

We have $M_s \subset M'_t$ since: let $x \in M_s \Rightarrow \exists p \in \Omega; s - f(p) \geq 0$ and $|x - p| \leq s - f(p)$. Let $a = x - \eta$. We claim $a \in M_t$. $|p - a| = |p - (x - \eta)| = |p - x + \eta| \leq |p - x| + |\eta| \leq s - f(p) + |\eta| \leq s - f(p) + t - s = t - f(p)$.

$\Rightarrow x = a + \eta$ with $a \in M_t \Rightarrow x \in M'_t$.

As $M_s \subset M'_t \Rightarrow \hat{M}_s \subset M'_t$. But \hat{M}'_t is the biggest open set in $M'_t \Rightarrow \hat{M}_s \subset \hat{M}'_t$.

We need to prove $L_s \subset F, F \cap \hat{M}_s = \emptyset, F - \Omega = L_s - \Omega$

- $L_s \subset E_s \subset E_s \cup E'_t = F$
- $F \cap \hat{M}_s = (E_s \cup E'_t) \cap \hat{M}_s = (E_s \cap \hat{M}_s) \cup (E'_t \cap \hat{M}_s)$
 But $E_s \cap \hat{M}_s = E$ as E_s solves (4.3).
 Since $\hat{M}_s \subset \hat{M}'_t \Rightarrow E'_t \cap \hat{M}_s \subset E'_t \cap \hat{M}'_t = \emptyset$
 $\Rightarrow E'_t \cap \hat{M}_s = \emptyset$
 Hence, $F \cap \hat{M}_s = \emptyset$

- $L_s \subset E_s \Rightarrow L_s - \Omega \subset E_s - \Omega \subset F - \Omega$
 It remains to show $F - \Omega \subset L_s - \Omega$
 $F - \Omega = (E'_t \cup E_s) - \Omega = (E'_t - \Omega) \cup (E_s - \Omega)$
 So we need to prove $E'_t - \Omega \subset L_s - \Omega$ and $E_s - \Omega \subset L_s - \Omega$
 But we know $E_s - \Omega = L_s - \Omega$ So it remains to prove $E'_t - \Omega \subset L_s - \Omega$
 Let $x \in E'_t - \Omega \Rightarrow x \in E'_t$ and $x \notin \Omega \Rightarrow x = a + \eta, a \in E_t, x \notin \Omega$
 It is enough now to prove $x \in L_s$
 We consider two cases: $a \in \Omega$ and $a \notin \Omega$.
 If $a \notin \Omega \Rightarrow a \in E_t - \Omega = L_t - \Omega \Rightarrow x \in L'_t \subset L_s$
If \(a \in \Omega \) then \(\exists y' \in \partial \Omega \) with \(y' = a + \gamma \eta, 0 \leq \gamma \leq 1 \) since \(x \notin \Omega \).

If \(f(y') \leq t \) we have \(a \in E_t \) and \(E_t \cap \hat{M}_t = \emptyset \Rightarrow a \notin M_t \)

\(\Rightarrow |a - y'| \geq t - f(y') \Rightarrow |a - a - \gamma \eta| \geq t - f(y') \Rightarrow |\eta| \geq t - f(y') \)

\(\Rightarrow t - s \geq t - f(y') \Rightarrow s \leq f(y'). \)

If \(f(y') > t \), as \(t > s \Rightarrow f(y') > s. \)

Then as \(f(y') > s, |x - y'| = |a + \eta - a - \gamma \eta| = |(1 - \gamma)\eta| \leq |\eta| \leq t - s \leq f(y') - s \)

\(\Rightarrow x \in L_s \)

Hence, \(F \) is a competitor to \(E_s \) in (4.3) \(\Rightarrow P(E_s \cup E_t', R^n) \geq P(E_s, R^n) \)

But \(P(E_s \cup E_t', \Omega) + P(E_s \cap E_t', \Omega) \leq P(E_s, \Omega) + P(E_t', \Omega) \)

and from above we have, \(P(E_s \cup E_t', \Omega) \leq P(E_s, \Omega) \) and \(P(E_s \cap E_t', \Omega) \leq P(E_t', \Omega) \)

\(\Rightarrow P(E_s \cup E_t', \Omega) = P(E_s, \Omega) \) and \(P(E_s \cap E_t', \Omega) = P(E_t', \Omega) \)

\(\Rightarrow E_s \cup E_t' \) and \(E_s \cap E_t' \) solve (P'1) and (P'3) respectively

\(\Rightarrow (|E_s \cap E_t'| \cap \Omega |\leq| (E_s) \cap \Omega | \) and \(|E_s \cap E_t' \cap \Omega | \leq |E_t' \cap \Omega | \)

But \(|(E_s \cup E_t') \cap \Omega | = |E_s \cap \Omega | + |(E_t' - E_s) \cap \Omega | \)

\(\Rightarrow |E_s \cap \Omega | \geq |E_s \cap \Omega | + |(E_t' - E_s) \cap \Omega | \)

\(\Rightarrow |(E_t' - E_s) \cap \Omega | = 0 \)

It remains to show \(E_t' \subset E_s \)

Let \(x \in E_t' \cap \Omega \) \(\Rightarrow \) by definition 2.2.1, \(\limsup_{r \rightarrow 0} \frac{|E_t' \cap B(x, r) \cap \Omega|}{|B(x, r)|} > 0 \)

Write \(E_t' = (E_t' - E_s) \cup (E_t' \cap E_s) \) union of 2 disjoint sets.

\(\Rightarrow \limsup_{r \rightarrow 0} \frac{|E_t' \cap B(x, r) \cap \Omega|}{|B(x, r)|} = \limsup_{r \rightarrow 0} \frac{|\Omega \cap (E_t' - E_s) \cap B(x, r)|}{|B(x, r)|} + \limsup_{r \rightarrow 0} \frac{|\Omega \cap (E_t' \cap E_s) \cap B(x, r)|}{|B(x, r)|} \)

But \((E_t' - E_s) \cap B(x, r) \cap \Omega \subset (E_t' - E_s) \cap \Omega \)

\(\Rightarrow |(E_t' - E_s) \cap B(x, r) \cap \Omega | \leq |(E_t' - E_s) \cap \Omega | = 0 \)

\(\Rightarrow |(E_t' - E_s) \cap B(x, r) \cap \Omega | = 0 \)

\(\Rightarrow 0 < \limsup_{r \rightarrow 0} \frac{|E_t' \cap B(x, r) \cap \Omega|}{|B(x, r)|} = \limsup_{r \rightarrow 0} \frac{|E_t' \cap E_s \cap B(x, r)|}{|B(x, r)|} \leq \limsup_{r \rightarrow 0} \frac{|E_s \cap B(x, r) \cap \Omega|}{|B(x, r)|} \)

\(\Rightarrow \limsup_{r \rightarrow 0} \frac{|E_s \cap B(x, r) \cap \Omega|}{|B(x, r)|} > 0 \)
Hence, $E'_t \cap \Omega \subset E_s \cap \Omega$

Also, $E'_t - \Omega = L'_t - \Omega \subset L_s - \Omega = \varepsilon_s - \Omega$

$\Rightarrow E'_t \subset E_s$

Corollary 4.2. Let $s < t$, $\text{dist}(\partial E'_t, \partial E_s) \geq t - s$

Proof. Proceeding by contradiction, suppose $\text{dist}(\partial E'_t, \partial E_s) < t - s$

Let $x \in \partial E'_t$. Then one can find $y \notin E_s$ such that $|y - x| = t - s$.

Set $\eta = y - x \Rightarrow y = \eta + x \in E'_t$. Contradiction to lemma 4.1.2.

Remark 12. If Ω not convex we then have f lipchitz with $|f(p) - f(q)| \leq d_\Omega(p, q)$ $\forall p, q \in \partial \Omega$.

Corollary 4.2 will then be $d_\Omega(\overline{\Omega \cap \partial E'_s}, \overline{\Omega \cap \partial E_t}) \geq t - s$ for $s < t$.

4.3 Existence of a solution

Definition 4.3.1. Define a function u^* on Ω by

$$u^*(x) = \sup\{t; \ x \in \varepsilon_t\}$$

Theorem 4.3.1. [4] The function u^* is the unique continuous solution to the problem

$$\min\{\int_\Omega |\nabla u|; \ u = f \text{ on } \partial \Omega, \ |
abla u| \leq 1 \text{ a.e. in } \Omega\}$$

Proposition 9 constitutes a characterization of the level sets of the solution to the problem.

Since by definition of ε_t one has $L_t \subset \varepsilon_t$ and $\varepsilon_t \cap M_t = \emptyset$, it is then easy to show that $u^* = f$ on $\partial \Omega$ and $|u^*(x) - u^*(y)| \leq |x - y|$ for all $x \in \partial \Omega$, $y \in \Omega$.

Indeed, Let $x \in \partial \Omega$ such that $f(x) = t$. If $s < t \Rightarrow f(x) > s \Rightarrow x \in L_s$ $\forall s < t \Rightarrow x \in \varepsilon_s \forall s < t$ since $L_s \subset \varepsilon_s \Rightarrow u(x) \geq s \forall s < t \Rightarrow u(x) \geq t$.

57
If $s > t \Rightarrow f(s) < s \Rightarrow s - f(s) > 0 \Rightarrow x \in \hat{M}_s \quad \forall s > t \Rightarrow x \notin \varepsilon_s \quad \forall s > t$ since $\varepsilon_s \cap \hat{M}_s = \emptyset \Rightarrow u(x) < s \quad \forall s > t \Rightarrow u(x) \leq t$. Hence, $u(x) = t = f(x)$.

Now let $u^*(y) = t$ for $y \in \Omega \Rightarrow y \in \partial \varepsilon_t \Rightarrow y \notin L_t \cup M_t \Rightarrow y \notin B(x, |f(x) - u^*(y)|)$ for all $x \in \partial \Omega \Rightarrow |f(x) - u^*(y)| \leq |x - y|$ for $y \in \Omega, x \in \partial \Omega \Rightarrow |u^*(x) - u^*(y)| \leq |x - y|$ for $y \in \Omega, x \in \partial \Omega$.

So to prove that u^* is indeed the solution of the constrained least gradient problem one still has to show that u^* is continuous and that $|u^*(x) - u^*(y)| \leq |x - y|$ for $x, y \in \Omega$ i.e. u^* is lipchitz. The proof will be illustrated in what follows according to reference [4].

We first begin by introducing new sets that can help in the characterization of level sets. We set the following:

$$B_t = \cap_{s < t} \varepsilon_s, \quad C_t = \cup_{s > t} \varepsilon_s, \quad D_t = B_t - C_t = B_t \cap C_t^c$$

Lemma 4.3.1. $\varepsilon_t \subset \hat{\varepsilon}_s \quad \forall s < t$

Lemma 4.3.2. For each point x on $\partial D_t \cap \Omega$, one can find a sequence of points on $\cup_{s \neq t}(\partial \varepsilon_s \cap \Omega)$ converging to x. In other words, x is a limit point of $\cup_{s \neq t}(\partial \varepsilon_s \cap \Omega), \quad t \in \mathbb{R}$

Proof. Let $x \in \partial D_t \cap \Omega$. Consider all $r > 0; B(x, r) \subset \Omega$. Then one can find $y \in D_t \cap B(x, r)$ and $z \in (\Omega - D_t) \cap B(x, r)$.

$\Rightarrow y \in B_t, y \notin C_t, \text{ and } z \notin D_t$

$\Rightarrow y \in B_t, y \in \Omega - C_t, z \notin B_t \text{ or } z \notin C_t^c$

$\Rightarrow [y \in \cap_{s < t} \varepsilon_s \text{ and } z \in \cup_{s < t} (\Omega - \varepsilon_s)] \text{ or } [y \in \cap_{s > t} (\Omega - \varepsilon_s) \text{ and } z \in \cup_{s > t} \varepsilon_s]$

\Rightarrow by first condition $B(x, r)$ contains an element of $\partial \varepsilon_s \quad \forall s < t$ sufficiently close to t knowing $\varepsilon_t \subset \varepsilon_s \quad \forall s < t$. Similarly, by second condition $B(x, r)$ contains an element of $\partial \varepsilon_s \quad \forall s > t$ sufficiently close to t. These points will eventually converge to x. \hfill \square
Lemma 4.3.3. \(\forall t \in \mathbb{R} \)

1. \(D_t \) is a closed set
2. \(D_t = \overline{\Omega} \cap \{ x; u^*(x) = t \} \)
3. \(\Omega \cap \partial \varepsilon_t \subset (u^*)^{-1}(t) \)
4. \(\varepsilon_t \subset \{ x; u(x) \geq t \} = B_t \)
5. \(u^* \) is lipchitz on \(\overline{\Omega} \) with lipchitz constant 1

Proof. 1. To prove \(D_t \) is closed in \(\overline{\Omega} \) we prove \(\partial (D_t \cup \hat{D}_t) \cap \overline{\Omega} = D_t \cap \overline{\Omega} \).
We know \(D_t \subset \overline{D}_t \). So it remains to prove \(\overline{D}_t \cap \overline{\Omega} \subset D_t \cap \overline{\Omega} \).
But \(\hat{D}_t \subset D_t \Rightarrow \) it suffices to prove \(\partial D_t \cap \overline{\Omega} \subset D_t \cap \overline{\Omega} \) i.e. \(\forall x \in \partial D_t \cap \overline{\Omega}, x \in B_t \)
and \(x \in \overline{\Omega} - C_t \).
Let \(x \in \partial D_t \cap \overline{\Omega} \). Then \(\exists x_i \in D_t \) such that \(x_i \to x \).
But \(D_t \subset B_t \Rightarrow \exists x_i \in B_t; x_i \to x \).
As \(B_t \) is a closed set (being the intersection of closed sets), the limit point \(x \in B_t \).

It remains to show \(x \notin C_t \).
Proceeding by contradiction, suppose \(x \in C_t \Rightarrow \exists s_0 > t \) such that \(x \in A_{s_0} \).

We will conder 2 cases:
1) Assume \(\exists r > 0; B(x, r) \cap \Omega = B(x, r) \cap D_t \),
as \(x \in \varepsilon_{s_0} \cap \overline{\Omega} \Rightarrow \) by definition 3.2.1 \(\limsup_{r \to 0} \frac{|B(x, r) \cap \Omega \cap \varepsilon_{s_0}|}{|B(x, r)|} > 0 \Rightarrow |B(x, r) \cap \Omega \cap \varepsilon_{s_0}| > 0 \)
But \(B(x, r) \cap \Omega \cap C_t = B(x, r) \cap D_t \cap C_t = B(x, r) \cap B_t \cap C_t^c \cap C_t = \emptyset \)
As \(\varepsilon_{s_0} \subset \cup_{s>t} \varepsilon_s = C_t \)
\(\Rightarrow |B(x, r) \cap \Omega \cap \varepsilon_{s_0}| \leq |B(x, r) \cap \Omega \cap C_t| = 0 \). Contradiction.
Then, \(x \notin C_t \).
2) Assume \(\forall r > 0 \), \(B(x, r) \cap \Omega \neq B(x, r) \cap D_t \)
By lemma 4.3.2, \(\exists \{ y_{s_i} \} \to x \) as \(s_i \to t^- \).
If \(x \in \mathcal{E}_s \Rightarrow x \in \mathcal{C}_t \Rightarrow x \) cannot belong to \(\partial D_t \). Contradiction. So \(x \in \partial \mathcal{E}_s \). But by corollary 4.2, \(\text{dist}(x, y_\varepsilon) \geq \text{dist}(\partial \mathcal{E}_s, \partial \mathcal{E}_\varepsilon) \geq s_0 - s_\varepsilon > 0 \)

As \(i \longrightarrow \infty \) we get a contradiction.

\[x \notin C_t \Rightarrow x \in D_t \]

2. \(\Rightarrow \) Let \(x \in \overline{\Omega}; u^*(x) = t \Rightarrow x \in \varepsilon_t \).

If \(s < t \) we have \(\varepsilon_t \subseteq \varepsilon_s \Rightarrow x \in \varepsilon_s \forall s < t \Rightarrow x \in B_t \).

If \(s > t \Rightarrow u^*(x) < s \Rightarrow x \notin \varepsilon_s \forall s > t \Rightarrow x \notin C_t \).

Hence, \(x \in D_t \).

\(\subset \) Let \(x \in D_t \Rightarrow x \in B_t \) and \(x \notin C_t \Rightarrow \forall s < t \ x \in \varepsilon_s \) and \(\forall s > t \ x \notin \varepsilon_s \Rightarrow \forall s < t \ u^*(x) \geq s \) \(\forall s > t \ u^*(x) < s \).

\[\Rightarrow u^*(x) \geq t \text{ and } u^*(x) \leq t \Rightarrow u^*(x) = t. \]

3. Let \(x \in \Omega \cap \partial \mathcal{E}_t \). As \(\varepsilon_t \) is closed then \(x \in \varepsilon_t \subseteq B_t \).

It remains to prove \(x \notin C_t \). If \(x \in C_t \Rightarrow \exists s_0 > t; x \in \partial \mathcal{E}_s \+)

\[\Rightarrow \text{dist}(\partial \mathcal{E}_{s_0}, \partial \varepsilon_t) = 0. \text{ Contradiction with the corollary 4.2.} \]

4. We first prove \(B_t = \{x; u^*(x) \geq t\} \).

Let \(x \in B_t \Rightarrow \forall s < t, x \in \varepsilon_s \).

But \(\varepsilon_t \subseteq \varepsilon_s \forall s < t \Rightarrow x \in \varepsilon_t \Rightarrow u^*(x) \geq t \).

Conversely, if \(u^*(x) \geq t \Rightarrow x \in \varepsilon_t \subseteq B_t \).

Now \(\forall x \in \varepsilon_t \) we have \(u^*(x) \geq t \).

Hence, \(\varepsilon_t \subseteq \{x; u^*(x) \geq t\} = B_t \).

5. Let \(x, y \in \Omega \). Let \(u^*(x) = s \) and \(u^*(y) = t \). By 3, \(x \in D_s \) and \(y \in D_t \). We will suppose \(x \in \mathcal{D}_s \) and \(y \in \mathcal{D}_t \Rightarrow \exists x' \in \partial D_s \) and a geodesic joining \(x \) to \(y \) passing through \(x' \). Also \(\exists y' \in \partial D_t \) such that \(y' \) belongs to this geodesic. By lemma 4.3.2, \(\exists \{x_i\} \subset \partial \varepsilon_{s_i} \) and \(\exists \{y_i\} \subset \partial \varepsilon_{t_i} \) such that \(x_i \longrightarrow x' \) and \(y_i \longrightarrow y' \) as \(s_i \longrightarrow s \) and \(t_i \longrightarrow t \) respectively.
\[\Rightarrow \text{dist}_{\Omega}(x_{s}, y_{t}) \geq \text{dist}_{\Omega}(\partial \varepsilon_{s}, \partial \varepsilon_{t}) \geq |s_{t} - t_{s}| \text{ by corollary 4.2.} \]
\[\Rightarrow \lim_{t \to \infty} \text{dist}_{\Omega}(x_{s}, y_{t}) \geq \lim_{t \to \infty} |s_{t} - t_{s}| \]
\[\Rightarrow \text{dist}_{\Omega}(x', y') \geq |s - t| \]
\[\Rightarrow \text{dist}_{\Omega}(x, y) \geq |s - t| \text{ as } d_{\Omega}(x, y) \geq d_{\Omega}(x', y') \]
\[\Rightarrow \text{dist}_{\Omega}(x, y) \geq |u(x) - u(y)|. \]

It remains to show \(u^{*} \) continuous on \(\partial \Omega \). Let \(x \in \partial \Omega; u^{*}(x) = t = f(x) \).
\[
\forall s < t \text{ we have } \Omega \cap \{y; \text{dist}(x, y) \leq f(x) - s\} \subset L_{s} \subset \varepsilon_{s}.
\]
\[
\Rightarrow \forall y \in \partial \Omega, \text{dist}(x, y) \leq |f(x) - s| \text{ we have } y \in \varepsilon_{s} \Rightarrow u^{*}(y) \geq s \forall s < t
\]
\[
\Rightarrow \lim \inf_{y \to x, y \in \Omega} u^{*}(y) \geq s \forall s < t \Rightarrow \lim \inf_{y \to x, y \in \Omega} u^{*}(y) \geq t = u^{*}(x).
\]
\[
\forall s > t, \text{ we have } \Omega \cap \{y; \text{dist}(x, y) \leq s - f(x)\} \subset M_{s} \Rightarrow \forall y \in \partial \Omega, \text{dist}(x, y) \leq s - f(x) \text{ we have } y \notin \varepsilon_{s} \Rightarrow u^{*}(y) < s \forall s > t \Rightarrow \lim \sup_{y \to x, y \in \Omega} u^{*}(y) < s
\]
\[
\forall s > t \Rightarrow \lim \sup_{y \to x, y \in \Omega} u^{*}(y) \leq t = u^{*}(x).
\]

Hence \(u^{*} \) is lipchitz on \(\Omega \).

\(\square \)

We shall now present the proof that the above \(u^{*} \) is indeed the solution of the constrained LGP given by [4]:

Proof. Since \(u^{*} \) is lipchitz on \(\partial \Omega \), by lemma 4.3.3, \(|\nabla u^{*}| \leq 1 \text{ a.e. in } \Omega \).

Also by lemma 4.3.3, we have \(u^{*} \in C^{0,1}(\partial \Omega) \) on \(\partial \Omega \). We shall now show that
\[
\int_{\Omega} |\nabla u| \leq \int_{\Omega} |\nabla v|, \text{ for each } v \text{ competitor of } u \text{ in the constrained LGP.}
\]

So we let \(v \in C^{0,1}(\Omega), |\nabla v| \leq 1 \text{ a.e. in } \Omega, v = f \text{ on } \partial \Omega. \)

We then have \(\forall p \in \partial \Omega, x \in \Omega, |v(x) - v(p)| \leq |x - p| \).

Setting \(\varepsilon'_{t} = \{v \geq t\} \), one indeed has \(L_{t} \subset \varepsilon'_{t} \) and \(\bar{M}_{t} \cap \varepsilon'_{t} = \emptyset \) by proposition 9.

Hence, \(\varepsilon'_{t} \) is a competitor to \(\varepsilon_{t} \) in (4.1) \(\Rightarrow P(\varepsilon_{t}, \Omega) \leq P(\varepsilon'_{t}, \Omega) \)
\[
\Rightarrow \int_{-\infty}^{+\infty} P(\varepsilon_{t}, \Omega) \leq \int_{-\infty}^{+\infty} P(\varepsilon'_{t}, \Omega)
\]
\[
\Rightarrow \text{by coarea formula, theorem 2.5.1, } \int_{\Omega} |\nabla u| \leq \int_{\Omega} |\nabla v|.
\]

\(\square \)
Bibliography

