AMERICAN UNIVERSITY OF BEIRUT

LEAST GRADIENT PROBLEM

by
\section*{MARIE-JOSE FADI CHAAYA}

A thesis
submitted in partial fulfillment of the requirements for the degree of Master of Science to the Department of Mathematics of the Faculty of Arts and Sciences at the American University of Beirut

AMERICAN UNIVERSITY OF BEIRUT

LEAST GRADIENT PROBLEM

by
MARIE-JOSE FAD CHAAYA

Approved by:

Prof. Abi-Khuzam, Faruk, Professor
Advisor

Mathematics

Prof. Shayya, Bassam, Professor
Member of Committee

Mathernatics

Prof. Sabra, Ahmad, Assistant Professor
Member of Committee

Mathematics

Date of thesis defense: May 13, 2020

AMERICAN UNIVERSITY OF BEIRUT

THESIS, RELEASE FORM

区 I authorize the American University of Bcirut to: (a) reproduce hard or clectronic copics of my thesis, dissertation, or project; (b) include such copics in the archives and digital repositorics of the University; and (c) make frecly available such copics to third partics for rescarch or cducational purposcs.

\square
I authorize the Amcrican University of Beirut, to: (a) reproduce hard or clectronic copics of it; (b) include such copics in the archives and digital repositorics of the University; and (c) makc frcely available such copics to third partics for rescarch or educational purposcs aftcr: One _ year from the date of submission of my thesis, dissertation or project.

Two - years from the date of submission of my thesis, dissertation or project.
Three _._ years from the date of submission of my thesis, dissertation or project.

This form is signed when submitting the thesis, dissertation, or project to the University Librarics

Acknowledgements

I wish to start by expressing my deepest gratitude to my advisor, Professor Faruk Abi-Khuzam, for his constant assistance. Thank you for your expertise, alongside the knowledge and valuable information you've given me. Writing my thesis was a challenging task, but you made it all possible .

I would also like to thank Professor Bassam Shayya and Professor Ahmad Sabra for being part of my thesis committee. Thank you for your continuous support. It was a great pleasure working on Professor Ahmad Sabra's paper, which I admired and was highly inspired with.

Special thanks to my friends at AUB whom I cherish every moment spend with them. They made the whole process so much better.

Finally, I must express my gratitude to my family, who stood by my side and supported me in everything. Thank you for your unconditional love, I never would have made it without you.

An Abstract of the Thesis of

\(\begin{array}{ll}Marie-Jose Fadi Chaaya for \& \begin{array}{l}Master of Science
Major: Mathematics\end{array}\end{array}\)

Title: Least Gradient Problem

If f is a given function defined on the boundary $\partial \Omega$ of a domain Ω in ddimensional Euclidean space, the least gradient problem (LGP) asks for the following: among all functions u in the space $B V(\Omega)$, and having boundary values equal to f, does there exist a function that minimizes the set of all L^{1} norms of the gradients of such functions? Furthermore, if such a minimizer exists, what further smooth and minimizing properties does it have? The purpose of this thesis is to study this problem in the two dimensional case, where Ω is strictly convex, and to explore the situation where Ω is only convex.

The exposition will present a study of level sets of minimizers, as well as the connection, through the co-area theorem, between the properties of those level sets and the minimizing function.

Contents

Acknowledgements v
Abstract vi
1 Introduction 1
2 Preliminary 3
2.1 Bounded Variation in \mathbb{R} 3
2.2 Bounded Variation in \mathbb{R}^{2} 7
2.3 Bounded variation in $\mathbb{R}^{n} \forall n>1$ 8
2.4 Perimeter of a measurable set 10
2.5 Coarea formula 12
3 Least Gradient Problem 16
3.1 Introduction 16
3.2 Prerequisites 19
3.3 Solution to the LGP 23
3.4 Special case 34
3.5 Connection between LGP and FMD 40
3.5.1 Example 1 42
3.5.2 Example 2 43
4 Constrained Least Gradient Problem 48
4.1 Characterization of level sets 50
4.3 Existence of a solution 57

Chapter 1

Introduction

A lot of research has been done over the years on the least gradient problem.It continues to be a problem of great interest, particularly because there are still subtle questions regarding this problem.

We note that the least gradient problem (LGP) is defined on \mathbb{R}^{n} for $n \geqslant 1$. In fact, in case of a particular class of boundary data, a particular domain structure, the existence of a continuous solution was achieved upon construction. Indeed, we will later observe in this exposition that the continuity of the solution depends on the continuity of boundary data and structure of domain.

First, uniqueness of the obtained solution was achieved by Stenberg,Williams, and Ziemer, [1], with the fact that Bombieri, De Giorgi, and Giusti,[2], demonstrated that the level sets are minimal surfaces. Since minimal surfaces are solutions of a special differential equation, and because differential equation solutions are unique, the uniqueness of the constructed LGP solution has been defined.

However, a different approach is given in [3] to develop the uniqueness of a solution. This approach focuses on the construction of level sets of solutions and the fact that they are minimal surfaces.

In chapter 2, we will introduce some basic notions that are of great help to
understand the set of functions in which we will be working with in the LGP. Furthermore, we will define the notion of perimeter and the co-area formula which will help us in achieving the existence of a solution.

In chapter 3, we first introduce the LGP and observe the construction of a solution obtained for $\Omega \subset \mathbb{R}^{2}$ plane domain strictly convex with C^{1} lipchitz boundary and boundary data f continuous on a part Γ of the boundary of Ω. After illustrating the proof given in [3] that the constructed function is indeed a solution, we aim on showing its uniqueness when f satisfies some monotonicity condition on Γ also given by [3].

We then go further in providing one of the most important results to be given in [3] which is the existence and uniqueness of a solution when Ω is only convex and not strictly convex.

Moreover, we will show a relation achieved by Gorny,Rybka and Sabra, [3], between the least gradient problem and a problem in free material design. Then, examples will follow to illustrate this connection.

Lastly, in chapter 4, we define namely the constrained least gradient problem. We now work in $\mathbb{R}^{n}, n \geqslant 1$. Similar to the LGP, the constrained least gradient problem is the LGP with an additional constraint. This constraint requires the solutions to be lipchitz. Also, we will observe the construction of solutions given by [4] while noticing that the additional constraint will affect somehow the choice of sets taken in the construction.

Chapter 2

Preliminary

As we aim later on introducing the least gradient problem and tend to solve it as was done in [3], we realize that the set of functions in which the least gradient problem is defined is for functions of bounded variation. Therefore, we first aim on reviewing some basic definitions and some important theorems that will help in solving the least gradient problem.

In this chapter, we review the classical notion of a function of bounded variation, and consider its connection to differentiability. We will review this notion in one dimension and then in higher dimensions. Also, we will define a new notion of bounded variation and establish a relation between the classical notion and the new one. As well, we will define a new notion of perimeter of measurable sets and establish an important formula to be used later in this paper called the coarea formula.

2.1 Bounded Variation in \mathbb{R}

Definition 2.1.1. Let $f:[a, b] \mapsto \mathbb{R}$
We define the essential variation of f to be:
$\operatorname{ess} V_{a}^{b} f=\sup \left\{\sum_{j=0}^{n-1}\left|f\left(t_{j+1}\right)-f\left(t_{j}\right)\right| ; a=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=b\right.$ partition of $\left.[a, b]\right\}$
where each t_{i} a point of approximate continuity of $f \forall i=0, . ., n$.
According to Tonelli we say f is of bounded variation and denote it by $f \in B V(a, b) \Longleftrightarrow e s s V_{a}^{b} f<\infty$.

Example If $f:[a, b] \mapsto \mathbb{R}$ is monotone then $f \in B V(a, b)$ and $e s s V_{a}^{b} f=|f(b)-f(a)|$

Proposition 1. Let $f:[a, b] \mapsto \mathbb{R}$. The following implications hold:
If f is continuously differentiable $\Rightarrow f$ is lipchitz continuous $\Rightarrow f$ is absolutely continuous $\Rightarrow f$ is of bounded variation $\Rightarrow f$ is differentiable a.e. .

Theorem 2.1.1. [5] If $f:[a, b] \mapsto \mathbb{R}$ continuous on $[a, b]$ and f^{\prime} exists and is bounded on (a, b) then f is absolutely continuous on $[a, b]$.

Theorem 2.1.2. [5] If f is absolutely continuous then f^{\prime} exists a.e. and is integrable. Also, we have, ess $V_{a}^{b}(f)=\int_{a}^{b}\left|f^{\prime}(x)\right| d x$

Definition 2.1.2. Let $f \in L^{1}(a, b)$. We now define the number

$$
\int_{a}^{b}|D f| d x=\sup \left\{\int_{a}^{b} f g^{\prime} d x ;|g| \leqslant 1, g \in C_{0}^{1}(a, b)\right\}
$$

to be the total variation of f.
Remark 1. If $f \in C^{\infty}(a, b)$, then $\int_{a}^{b}|D f|=\int_{a}^{b}\left|f^{\prime}\right|$
Theorem 2.1.3. [6] Let f defined on \mathbb{R}^{n}. Let $\Omega \subset \mathbb{R}^{n} \forall n \geqslant 1$.
If $\int_{\Omega}|D f|<\infty \Rightarrow \exists f_{j} \in B V(\Omega) \cap C^{\infty}(\Omega) ; f_{j} \longrightarrow f$ in $L^{1}(\Omega)$ and $\int_{\Omega}\left|D f_{j}\right| \longrightarrow \int_{\Omega}|D f|$ as $j \longrightarrow+\infty$

Theorem 2.1.4. [6] Let $\Omega \subset \mathbb{R}^{n}$.
If $f_{j} \longrightarrow f$ in $L^{1}(\Omega)$ then \exists a subsequence $\left\{f_{j_{k}}\right\}$ such that $f_{j_{k}} \longrightarrow f$ a.e.
Theorem 2.1.5. [6] Let $f \in L^{1}(a, b)$ then $\int_{a}^{b}|D f|=\operatorname{ess} V_{a}^{b}(f)$

Proof. \leqslant) Since each lebesgue point is a point of approximate continuity of f, consider the partition $a=t_{1} \leqslant t_{2} \leqslant \ldots \leqslant t_{n}=b$ where each t_{i} is a lebesgue point. Let η be a mollifier satisfying:

1. $0 \leqslant \eta(x) \leqslant 1 \forall x \in(a, b)$
2. supp $\eta \subset[-1,1]$
3. $\int_{-1}^{1} \eta(x) d x=1$

Let $\epsilon>0$.
Define the function $\eta_{\epsilon}(x)=\frac{1}{\epsilon} \eta\left(\frac{x}{\epsilon}\right)$ and the convolution $f^{\epsilon}:=\eta_{\epsilon} * f \in C^{\infty}(a, b)$.

$$
\begin{align*}
\sum_{j=1}^{m} \mid f^{\epsilon}\left(t_{j+1}\right)-f^{\epsilon}\left(t_{j}\right) & =\sum_{j=1}^{m}\left|\int_{-\epsilon}^{\epsilon}\left(\eta_{\epsilon}(s) f\left(t_{j+1}-s\right)-\eta_{\epsilon}(s) f\left(t_{j}-s\right)\right) d s\right| \\
& =\sum_{j=1}^{m}\left|\int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s)\left(f\left(t_{j+1}-s\right)-f\left(t_{j}-s\right)\right) d s\right| \tag{2.1}\\
& \leqslant \sum_{j=1}^{m} \int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s)\left|f\left(t_{j+1}-s\right)-f\left(t_{j}-s\right)\right| d s \\
& =\int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) \sum_{j=1}^{m}\left|f\left(t_{j+1}-s\right)-f\left(t_{j}-s\right)\right| d s
\end{align*}
$$

But as t_{j} is a lebesgue point then $t_{j}-s$ is a lebesgue point and thus approximate point $\forall j=1, . ., m$
$\Rightarrow \sum\left|f^{\epsilon}\left(t_{j+1}\right)-f^{\epsilon}\left(t_{j}\right)\right| \leqslant e s s V_{a}^{b}(f) \int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) d s$
$\operatorname{But} \int_{-\epsilon}^{\epsilon} \eta_{\epsilon}(s) d s=\int_{-\epsilon}^{\epsilon} \frac{1}{\epsilon} \eta\left(\frac{s}{\epsilon}\right) d s$
Take $x=\frac{s}{\epsilon} \Rightarrow d x=\frac{1}{\epsilon} d s$
$\Rightarrow \int_{-1}^{1} \eta(x) d x=1$
$\Rightarrow \sum_{j=1}^{m}\left|f^{\epsilon}\left(t_{j+1}\right)-f^{\epsilon}\left(t_{j}\right)\right| \leqslant e s s V_{a}^{b}(f)$
Taking sup over all such partitions we get ess $V_{a}^{b}\left(f^{\epsilon}\right) \leqslant e s s V_{a}^{b}(f)$

Now, $\int_{a}^{b} f^{\epsilon} g^{\prime} d x=-\int_{a}^{b}\left(f^{\epsilon}\right)^{\prime} g d x \leqslant\left|\int_{a}^{b}\left(f^{\epsilon}\right)^{\prime} d x\right| \leqslant \int_{a}^{b}\left|\left(f^{\epsilon}\right)^{\prime}\right| d x$
Hoewever, as f^{ϵ} is continuously differentiable, we have $\int_{a}^{b}\left|\left(f^{\epsilon}\right)^{\prime}\right| d x=e s s V_{a}^{b} f^{\epsilon}$
$\Rightarrow \int_{a}^{b} f^{\epsilon} g^{\prime} d x \leqslant e s s V_{a}^{b} f^{\epsilon} \leqslant e s s V_{a}^{b} f$.

As $f^{\epsilon} \longrightarrow f$ in $L^{1}(a, b)$ as $\epsilon \longrightarrow 0$
Then, $\int_{a}^{b} f g^{\prime} d x=\lim _{\epsilon \rightarrow 0} \int_{a}^{b} f^{\epsilon} g^{\prime} d x \leqslant e s s V_{a}^{b} f$
Taking sup over all such g, we finally get the first inequality $\int_{a}^{b}|D f| \leqslant e s s V_{a}^{b}(f)$
$\geqslant)$ Now suppose $\int_{a}^{b}|D f|<\infty \Rightarrow \exists\left\{f_{j}\right\} \subset B V(a, b) \cap C^{\infty}(a, b) ; f_{j} \longrightarrow f$ in $L^{1}(a, b)$, $\int_{a}^{b}\left|D f_{j}\right| \longrightarrow \int_{a}^{b}|D f|$, and \exists a subsequence still denoted by $\left\{f_{j}\right\}$ such that $f_{j} \longrightarrow f$ a.e.

We write $f_{j}(z)=f_{j}(y)+\int_{y}^{z} f_{j}^{\prime}(x) d x$ for $a \leqslant y \leqslant z \leqslant b$
Averaging with respect to y we get,
$f_{a}^{b}\left|f_{j}(z)\right| d y=f_{a}^{b}\left|f_{j}(y)\right| d y+f_{a}^{b}\left|\int_{y}^{z}\left(f_{j}\right)^{\prime}(x) d x\right| d y$
$\Rightarrow\left|f_{j}(z)\right|=f_{a}^{b}\left|f_{j}(y)\right| d y+\left|\int_{y}^{z} f_{j}^{\prime}(x) d x\right|$
$\Rightarrow\left|f_{j}(z)\right| \leqslant f_{a}^{b}\left|f_{j}(y)\right| d y+\int_{y}^{z}\left|f_{j}^{\prime}(x)\right| d x$
$\Rightarrow\left|f_{j}(z)\right| \leqslant f_{a}^{b}\left|f_{j}(y)\right| d y+\int_{a}^{b}\left|f_{j}^{\prime}(x)\right| d x$

But as $f_{j} \in B V(a, b) \cap C^{\infty}(a, b)$ we have $\int_{a}^{b}\left|D f_{j}\right|=\int_{a}^{b}\left|f_{j}{ }^{\prime}\right|<\infty$ and as $f_{j} \in L^{1}(a, b)$ then $\frac{1}{b-a} \int_{a}^{b}\left|f_{j}(y)\right| d y<\infty$
$\Rightarrow\left|f_{j}(z)\right|<\infty$
$\Rightarrow f_{j}$ is uniformly bounded
$\Rightarrow\left\|f_{j}\right\|_{\infty}<\infty \forall j$
$\Rightarrow \sup _{j}\left\|f_{j}\right\|_{\infty}<\infty$
But $\|\cdot\|_{\infty}$ is continuous and $f_{j} \longrightarrow f$ a.e. $\Rightarrow\|f\|_{\infty}<\infty$
$\Rightarrow f \in L^{\infty}(a, b)$
As f is essentially bounded then each approximate point of continuity of f is a lebesgue point and thus $f^{\epsilon}(x) \longrightarrow f$ a.e. x lebesgue point in (a, b).

Let $a=t_{1}<. .<t_{m}=b$ be a partition of (a,b) with each t_{j} a point of approximate
continuity of $\mathrm{f} \forall j=1, . . m$.

$$
\sum_{j=1}^{m}\left|f\left(t_{j+1}\right)-f\left(t_{j}\right)\right|=\lim _{\epsilon \rightarrow 0} \sum_{j=1}^{m}\left|f^{\epsilon}\left(t_{j+1}\right)-f^{\epsilon}\left(t_{j}\right)\right| \leqslant \limsup _{\epsilon \rightarrow 0} \int_{a}^{b}\left|\left(f^{\epsilon}\right)^{\prime}\right| d x
$$

since $f \in C^{\infty}(a, b)$ and thus ess $V_{a}^{b} f^{\epsilon}=\int_{a}^{b}\left|\left(f^{\epsilon}\right)^{\prime}\right| d x$.

Claim: $\int_{a}^{b}\left|\left(f^{\epsilon}\right)^{\prime}\right| d x \leqslant \int_{a}^{b}|D f|$.
In fact, $\int_{a}^{b}\left(f^{\epsilon}\right)^{\prime} g d x=-\int_{a}^{b} f^{\epsilon} g^{\prime} d x=-\int_{a}^{b}\left(\eta_{\epsilon} * f\right) g^{\prime} d x=-\int_{a}^{b} f\left(\eta_{\epsilon} * g\right)^{\prime} d x$ now $\eta_{\epsilon} * g \in C_{0}^{1}(a, b)$ and $\left|\eta_{\epsilon} * g\right| \leqslant 1$
Taking sup over all such functions, $\Rightarrow \int_{a}^{b}\left(f^{\epsilon}\right)^{\prime} g d x \leqslant \int_{a}^{b}|D f|$
$\Rightarrow \int_{a}^{b}\left|\left(f^{\epsilon}\right)^{\prime}\right| d x \leqslant \int_{a}^{b}|D f|$ since $f \in C^{\infty}(a, b)$ and thus
$\int_{a}^{b}\left|\left(f^{\epsilon}\right)^{\prime}\right| d x=\int_{a}^{b}\left|D f^{\epsilon}\right|$

Hence, $\sum_{j=1}^{m} \mid f\left(t_{j+1}-f\left(t_{j}\right)\left|\leqslant \int_{a}^{b}\right| D f \mid\right.$
Taking sup over all such partitions we get:
$e s s V_{a}^{b} f \leqslant \int_{a}^{b}|D f|$

Conclusion, $\int_{a}^{b}|D f|=e s s V_{a}^{b} f$

Remark 2. Hence, we now say $f \in B V(a, b) \Longleftrightarrow \int_{a}^{b}|D f|<\infty$.

2.2 Bounded Variation in \mathbb{R}^{2}

Definition 2.2.1. Consider the rectangle $I=[a, b] \times[c, d]$ and f defined on the rectangle.

Fix $y \in[c, d]$ and define $f_{1}(t)=f(t, y)$ for $t \in[a, b]$.
Similarly, fix $x \in[a, b]$ and define $f_{2}(t)=f(x, t)$ for $t \in[c, d]$.
According to Tonelli, f is said to be of bounded variation on I if
$\int_{c}^{d} e s s V_{a}^{b} f_{1} d y<\infty$ and $\int_{a}^{b} e s s V_{c}^{d} f_{2} d x<\infty$ where
$\operatorname{ess} V_{a}^{b} f_{1}=\sup \left\{\sum_{j=0}^{m-1} \mid f\left(t_{j+1}, y\right)-f\left(t_{j}, y\right) ; a=t_{0}<t_{2}<. .<t_{m}=b\right.$ partition of $\left.[a, b]\right\}$
$\operatorname{ess} V_{c}^{d} f_{2}=\sup \left\{\sum_{j=0}^{m-1} \mid f\left(x, t_{j+1}\right)-f\left(x, t_{j}\right) ; c=t_{0}<t_{2}<. .<t_{m}=d\right.$ partition of $\left.[c, d]\right\}$
with each t_{j} a point of approximate continuity of $\mathrm{f} \forall j=1, . . m$.

Remark 3. Now if f is absolutely continuous, then

$$
e s s V_{a}^{b} f_{1}=\int_{a}^{b}\left|\frac{\partial f}{\partial x}\right| d x, e s s V_{c}^{d} f_{2}=\int_{c}^{d}\left|\frac{\partial f}{\partial y}\right| d y
$$

Hence, $f \in B V(I)$ and $\int_{c}^{d} \int_{a}^{b}\left|\frac{\partial f}{\partial x}\right| d x d y<\infty$ and $\int_{a}^{b} \int_{c}^{d}\left|\frac{\partial f}{\partial y}\right| d y d x<\infty$ which gives $\int_{[a, b] \times[c, d]}|\nabla f|<\infty$

2.3 Bounded variation in $\mathbb{R}^{n} \forall n>1$

Definition 2.3.1. Denote $x^{\prime}=\left(x_{1}, . ., x_{k-1}, x_{k+1}, . ., x_{n}\right)$ and $f_{k}(t)=f\left(x^{\prime}, t\right)=$ $f\left(x_{1}, . ., x_{k-1}, t, x_{k+1}, . ., x_{n}\right)$ as a function of $t \in(a, b), \forall-\infty<a<b<\infty$, $\forall k=1, . ., n$. Let $K \subset \mathbb{R}^{n-1}$ compact, and $L \subset \mathbb{R}^{n}$ with $L=\left\{x \in \mathbb{R}^{n} ; x^{\prime} \in\right.$ $\left.K, x_{k} \in(a, b)\right\}$.
According to Tonelli, $f \in B V(L) \Longleftrightarrow \int_{K} e s s V_{a}^{b} f_{k} d x^{\prime}<\infty \forall k=1, . . n$.
Remark 4. If f is absolutely continuous then $f \in B V\left(\mathbb{R}^{n}\right)$ and $\int|\nabla f|<\infty$
Definition 2.3.2. For $\Omega \subset \mathbb{R}^{n}$ open and $f \in L^{1}(\Omega)$ define:

$$
\int_{\Omega}|D f| d x:=\sup \left\{\int_{\Omega} f \operatorname{divg} d x ; g=\left(g_{1}, . ., g_{n}\right) \in C_{0}^{1}(\Omega),|g| \leqslant 1\right\}
$$

the variation of f in Ω.
Remark 5. In fact, for $f \in L^{1}(\Omega), \int_{\Omega}|D f| d x=|D f|(\Omega)$ the total variation of $D f$ in Ω where $D f$ is the distributional derivative of f characterized to be a vector valued radon measure.

However, if $f \in C^{k}(\Omega)$ for $k \geqslant 1$ we get $\int_{\Omega}|D f| d x=\int_{\Omega}|\nabla f|$ where ∇f is the gradient of f in the usual derivative sense.

If $f \in W^{1,1}(\Omega)$ the sobelev space, then $\int_{\Omega}|D f| d x=\int_{\Omega}|\operatorname{grad} f| d x$ where now gradf is the gradient of f in the distributional sense.

Theorem 2.3.1. [6] Let $K \subset \mathbb{R}^{n}$ compact, $x^{\prime}=\left(x_{1}, . ., x_{k-1}, x_{k+1}, . ., x_{n}\right)$ and $C=\left\{x \in \mathbb{R}^{n} ; x^{\prime} \in K, a<x_{k}<b\right\}$ and $f \in L^{1}(C)$. Then, $\int_{K} e s s V_{a}^{b} f_{k} d x^{\prime}<\infty \Leftrightarrow \int_{C}|D f| d x<\infty \forall k=1, . . n, \forall-\infty<a<b<\infty$

Proof. $\Leftarrow)$ Suppose $\int_{C}|D f| d x<\infty$. We have that

1. $f_{k}^{\epsilon} \longrightarrow f_{k}$ in $L^{1}(a, b)$
2. $\forall g \in C_{0}^{1}\left(\mathbb{R}^{n}\right),|g| \leqslant 1$, we have:

$$
\begin{aligned}
& \int_{C}\left(f^{\epsilon}\right)^{\prime} g d x=-\int_{C} f^{\epsilon} \operatorname{divg} d x=-\int_{C} f \operatorname{div}\left(\eta_{\epsilon} * g\right) d x \leqslant \int_{C}|D f| d x \\
& \Rightarrow \int_{C}\left|D f^{\epsilon}\right| d x \leqslant \int_{C}|D f| d x . \\
& \Rightarrow \lim \sup _{\epsilon \rightarrow 0} \int\left|D f^{\epsilon}\right| \leqslant \int_{C}|D f| d x<\infty
\end{aligned}
$$

Now let $g \in C_{0}^{1}\left(\mathbb{R}^{n}\right),|g| \leqslant 1$,
$\int f_{k} g^{\prime} d x=\lim _{\epsilon \rightarrow 0} \int f_{k}^{\epsilon} g^{\prime} d x \leqslant \liminf$ ess $V_{a}^{b} f_{k}^{\epsilon}$ by theorem 2.1.5.
$\Rightarrow e s s V_{a}^{b} f_{k} \leqslant \operatorname{limin} f_{\epsilon \rightarrow 0} e s s V_{a}^{b} f_{k}^{\epsilon}$ for H^{n-1} a.e. $x^{\prime} \in K$
By Fatou's lemma,
$\int_{K} e s s V_{a}^{b} f_{k} \leqslant \int_{K} \liminf \operatorname{ess} V_{a}^{b} f_{k}^{\epsilon} \leqslant \operatorname{limin} f_{\epsilon \rightarrow 0} \int_{K} e s s V_{a}^{b} f_{k}^{\epsilon} d x^{\prime}=\liminf f_{\epsilon \rightarrow 0} \int_{C}\left|\left(f_{k}^{\epsilon}\right)^{\prime}\right| d x$
But $\operatorname{limin} f_{\epsilon \rightarrow 0} \int_{C}\left|\left(f_{k}^{\epsilon}\right)^{\prime}\right| d x \leqslant \limsup \int_{C}\left|D f^{\epsilon}\right| d x<\infty$
Then, $\int_{K} e s s V_{a}^{b} f_{k}<\infty$
$\Rightarrow)$ Let $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ and \int_{K} ess $V_{a}^{b} f_{k} d x^{\prime}<\infty$.
Let $g \in C_{0}^{1}\left(\mathbb{R}^{n}\right),|g| \leqslant 1$, suppg $\subset\left\{x ; a<x_{k}<b\right\}$
$\int_{\mathbb{R}^{n}} f \frac{\partial g}{\partial x_{k}} d x=\int_{\text {suppg }} f \frac{\partial g}{\partial x_{k}} d x=\int_{K}\left(\int_{a}^{b} f \frac{\partial g}{\partial x_{k}} d x_{k}\right) d x^{\prime} \leqslant \int_{K} \operatorname{ess} V_{a}^{b} f_{k} d x^{\prime}<\infty$
$\Rightarrow \int_{\mathbb{R}^{n}}|D f| d x<\infty$.

Remark 6. Hence, we can now say $f \in B V(\Omega) \Longleftrightarrow \int_{\Omega}|D f| d x<\infty$ where $\Omega \subset \mathbb{R}^{n}$ open.

Theorem 2.3.2. [6] Assume $\Omega \subset \mathbb{R}^{n}$ is open and bounded, with $\partial \Omega$ lipchitz continuous. There exists a bounded linear mapping

$$
T: B V(\Omega) \mapsto L^{1}\left(\partial \Omega ; \quad H^{n-1}\right)
$$

such that

$$
\int_{\Omega} f d i v g d x=-\int_{\Omega} g d|D f|+\int_{\partial \Omega}(\nu \cdot g) T f d H^{n-1}
$$

for all $f \in B V(\Omega)$ and $g \in C^{1}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$ where H^{n-1} is the $(n-1)$-dimensional Hausdorff measure.

Definition 2.3.3. The function $T f$ which is uniquely defined up to sets of H^{n-1} measure zero on $\partial \Omega$, is called the trace of f on $\partial \Omega$.

2.4 Perimeter of a measurable set

Definition 2.4.1. Now let $f=\mathbb{1}_{E}$ be the characteristic function for $\mathrm{E} \subset \mathbb{R}^{n}$ a measurable set.

$$
\int_{\Omega}|D f| d x=\int_{\Omega}\left|D \mathbb{1}_{E}\right| d x=\sup \left\{\int_{E} \operatorname{divg} d x ; g=\left(g_{1}, . ., g_{n}\right) \in C_{0}^{1}(\Omega),|g| \leqslant 1\right\}
$$

is said to be the perimeter of E and is denoted by $P(E, \Omega)$.
We say E has finite perimeter if $P(E, \Omega)<\infty$.
Theorem 2.4.1. [7] Suppose $E \subset \mathbb{R}^{n}$ has C^{2} boundary, then

$$
P(E, \Omega)=H^{n-1}(\partial E \cap \Omega)
$$

where H^{n-1} is the $(n-1)$-dimensional Hausdorff measure.
Proof. \leqslant) Using Gauss Green theorem, we have,

$$
\int_{E} \operatorname{divg} d x=\int_{\partial E} g \nu d H^{n-1} \leqslant H^{n-1}(\partial E \cap \Omega)
$$

for all $g \in C_{0}^{1}(\Omega),|g| \leqslant 1$ where ν is the outer normal to ∂E.
Taking the supremum over all such g, we get, $P(E, \Omega) \leqslant H^{n-1}(\partial E \cap \Omega)$
$\geqslant)$ As E has C^{2} boundary, then ν_{E} (unit outer normal to ∂E) exists as a C^{1}-vector valued function.

Let N be the extension of ν_{E} to \mathbb{R}^{n} satisfying:

1. $N=\nu_{E}$ on E
2. $|N(x)| \leqslant 1 \forall x \in \mathbb{R}^{n}$
3. $\mathrm{N} \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$

Now for $\eta \in C_{0}^{1}(\Omega),|\eta| \leqslant 1$, define $\phi=N \eta$.
Then, $\phi \in C_{0}^{1}(\Omega),|\phi| \leqslant 1$, and $N \nu_{E}=\left|\nu_{E}\right|^{2}=1$ on E. Then,
$\int_{E} d i v \phi d x=\int_{\partial E} \phi \nu_{E} d H^{n-1}=\int_{\partial E} N \eta \nu_{E} d H^{n-1}=\int_{\partial E} \eta d H^{n-1}$.
Taking supremum over all such ϕ and η we get:
$P(E, \Omega) \geqslant \sup \left\{\int_{\partial E} \eta d H^{n-1}, \eta \in C_{0}^{1}(\Omega),|\eta| \leqslant 1\right\} \geqslant H^{n-1}(\partial E \cap \Omega)$

To observe the result better in \mathbb{R}^{2} and \mathbb{R}^{3} we wil prove the result in another way.
We recall Green's theorem in the plane:
Let $\mathrm{E} \subset \mathbb{R}^{2}$ open, $\mathrm{M}, \mathrm{N} \in C^{1}(E), \Omega \subset E, \Omega$ closed, $\partial \Omega$ positively oriented, then
$\int_{\partial \Omega}(M d x+N d y)=\iint_{\Omega}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A$

Now let $g=\left(g_{1}, g_{2}\right) \in C_{0}^{1}\left(\mathbb{R}^{2}\right)$ satisfying $|g| \leqslant 1$
Take $N=g_{1}$, and $M=-g_{2}$,

$$
\begin{align*}
\int_{\Omega} \operatorname{divgd} A & =\int_{\Omega}\left(\frac{\partial g_{1}}{\partial x}+\frac{\partial g_{2}}{\partial y}\right) d A \\
& =\iint_{\Omega}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\int_{\partial \Omega}(M d x+N d y) \\
& =\int_{\partial \Omega}\left(-g_{2} d x+g_{1} d y\right) \tag{2.2}\\
& \leqslant \int_{\partial \Omega} \sqrt{\left(g_{1}\right)^{2}+\left(g_{2}\right)^{2}} \sqrt{(d x)^{2}+(d y)^{2}} \\
& \leqslant \int_{\partial \Omega} \sqrt{(d x)^{2}+(d y)^{2}} \\
& =L(\partial \Omega)
\end{align*}
$$

By a special choice of g, we get,

$$
\sup \left\{\int_{\Omega} \operatorname{divgdx} ; g=\left(g_{1}, g_{2}\right) \in C_{0}^{1}(\Omega),|g| \leqslant 1\right\}=L(\partial \Omega)
$$

with $L(\partial \Omega)$ length of the boundary of Ω.

In \mathbb{R}^{3}, suppose $|\vec{g}| \leqslant 1$
$\int_{\Omega} \operatorname{divg} d x=\int_{\partial \Omega} \vec{g} \cdot \vec{n} d s \leqslant \int_{\partial \Omega}|\vec{g}||\vec{n}| d s \leqslant \int_{\partial \Omega} d s=$ surface area of $\partial \Omega$.
By a special choice of g, we get,

$$
\sup \left\{\int_{\Omega} \operatorname{divgdx} ; g=\left(g_{1}, g_{2}, g_{3}\right) \in C_{0}^{1}(\Omega),|g| \leqslant 1\right\}=\text { surface area of } \partial \Omega
$$

2.5 Coarea formula

We introduce now the co area formula that permits us to have a relation between the variation of a function in L^{1} and the perimeter of the superlevel sets of that function. Indeed,

Theorem 2.5.1. [6] If $\Omega \subset \mathbb{R}^{n}, f \in B V(\Omega)$, and $E_{t}=\{x \in \Omega ; f(x) \geqslant t\} \forall t \in \mathbb{R}$, then:

$$
\int_{\Omega}|D f|=\int_{-\infty}^{+\infty} P\left(E_{t}, \Omega\right) d t
$$

Proof. We will prove the following using several steps:
Step1: If $f \in L^{1}(\Omega)$
For $f \geqslant 0, f$ can be written as $f(x)=\int_{0}^{\infty} \mathbb{1}_{E_{t}}(x) d t$ for a.e. $x \in \Omega$
For $f \leqslant 0$, f can be written as $f(x)=\int_{-\infty}^{0}\left(\mathbb{1}_{E_{t}}(x)-1\right) d t$ for a.e. $x \in \Omega$.
Now let $g \in C_{0}^{1}(\Omega)$ and $|g| \leqslant 1$ then:

$$
\begin{align*}
\int_{\Omega} f d i v g d x & =\int_{\Omega \cap\{f \leqslant 0\}} f d i v g d x+\int_{\Omega \cap\{f \geqslant 0\}} f d i v g d x \\
& =\int_{\Omega}\left(\int_{-\infty}^{0}\left(\mathbb{1}_{E_{t}}(x)-1\right) d t\right) \operatorname{divg} d x+\int_{\Omega}\left(\int_{0}^{\infty} \mathbb{1}_{E_{t}}(x) d t\right) \operatorname{divg} d x \\
& =\int_{-\infty}^{0}\left(\int_{\Omega}\left(\mathbb{1}_{E_{t}}(x)-1\right) \operatorname{divg} d x\right) d t+\int_{0}^{\infty}\left(\int_{\Omega} \mathbb{1}_{E_{t}}(x) \operatorname{divg} d x\right) d t \tag{2.3}\\
& =\int_{-\infty}^{0}\left(\int_{E_{t}} \operatorname{divgdx}\right) d t-\int_{-\infty}^{0}\left(\int_{\Omega} \operatorname{divgd} x\right) d t+\int_{0}^{\infty}\left(\int_{E_{t}} \operatorname{divg} d x\right) d t \\
& =\int_{-\infty}^{+\infty}\left(\int_{E_{t}} \operatorname{divgdx}\right) d t
\end{align*}
$$

with $\int_{\Omega} d i v g d x=0$ as $\int_{\Omega} d i v g d x=\int_{\partial \Omega} g \nu d H^{n-1}=0$ as $\left.g\right|_{\partial \Omega}=0$.

Hence, taking sup over all such g , we get: $\int_{\Omega}|D f| \leqslant \int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right) d t$

It remains to prove $\int_{\Omega}|D f| \geqslant \int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right) d t$
Step2: Let $f \in B V(\Omega) \cap C^{\infty}(\Omega)$
Define $m(t)=\int_{\Omega-E_{t}}|D f(x)| d x=\int_{\{f \leqslant t\}}|D f| d x \geqslant 0$

$$
\begin{align*}
\int_{-\infty}^{\infty} m^{\prime}(t) d t & =\lim _{t \longrightarrow \infty} m(t)-\lim _{t \longrightarrow-\infty} m(t) \\
& =\int_{\Omega-E_{\infty}}|D f| d x-\int_{\Omega-E_{-\infty}}|D f| d x \\
& =\int_{\Omega \cap\{f \leqslant \infty\}}|D f| d x+\int_{\Omega \cap\{f \geqslant \infty\}}|D f| d x \tag{2.4}\\
& =\int_{\Omega \cap\{-\infty \leqslant f \leqslant \infty\}}|D f| d x \\
& \leqslant \int_{\Omega}|D f| d x
\end{align*}
$$

$$
\text { Now, } \begin{align*}
\lim _{r \rightarrow 0} \frac{m(t+r)-m(t)}{r} & =\lim _{r \longrightarrow 0}\left\{\frac{1}{r}\left(\int_{\Omega-E_{t+r}}|D f| d x-\int_{\Omega-E_{t}}|D f| d x\right)\right\} \\
& =\lim _{r \longrightarrow 0}\left\{\frac{1}{r} \int_{E_{t}-E_{t+r}}|D f| d x\right\} \tag{2.5}\\
& \geqslant \lim _{r \longrightarrow 0} \frac{1}{r} \int_{E_{t}-E_{t+r}} D f g d x
\end{align*}
$$

As $\int D f g d x \leqslant\left|\int D f g d x\right| \leqslant \int|D f||g| d x \leqslant \int|D f| d x$.
Define for $-\infty<t<\infty, r>0, \eta(s)= \begin{cases}0 & s \leqslant t \\ \frac{s-t}{r} & t \leqslant s \leqslant t+r \\ 1 & s \geqslant t+r\end{cases}$
We recognize as $r \longrightarrow 0, \eta(s)= \begin{cases}0 & s \leqslant t \\ 1 & s>t\end{cases}$
η is differentiable everywhere except at $s=t+r$ and $s=t \Rightarrow \eta^{\prime}(s)= \begin{cases}0 & t+r<s<t \\ \frac{1}{r} & t<s<t+r\end{cases}$ $\Rightarrow \frac{1}{r} \int_{E_{t}-E_{t+r}} D f g d x=\int_{\Omega} \eta^{\prime}(f(x)) D f g d x=\int_{\Omega}(\eta(f(x)))^{\prime} g d x=-\int_{\Omega} \eta(f(x)) d i v g d x$.

Hence,

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \frac{m(t+r)-m(t)}{r} \geqslant-\lim _{r \longrightarrow 0} \int_{\Omega} \eta(f(x)) d i v g d x=-\int_{\Omega} \lim _{r \longrightarrow 0} \eta(f(x)) d i v g d x=-\int_{E_{t}} d i v g d x \\
& \Rightarrow m^{\prime}(t) \geqslant-\int_{E_{t}} d i v g d x \\
& \Rightarrow \int_{-\infty}^{\infty} m^{\prime}(t) \geqslant-\int_{-\infty}^{\infty}\left(\int_{E_{t}} d i v g d x\right) d t \\
& \Rightarrow \int_{\Omega}|D f| d x \geqslant-\int_{-\infty}^{\infty}\left(\int_{E_{t}} d i v g d x\right) d t
\end{aligned}
$$

Taking sup over all such g , we get,
$\int_{\Omega}|D f| d x \geqslant \int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right) d t$

Step 3: $f \in B V(\Omega)$
$\Rightarrow \exists\left\{f_{k}\right\} \subset B V(\Omega) \cap C^{\infty}(\Omega), D f_{k} \longrightarrow$ in L^{1} and $\int_{\Omega}\left|f_{k}\right| \longrightarrow \int_{\Omega}|D f|$ as $k \longrightarrow \infty$

Let $E_{t}^{k}=\left\{x \in \Omega ; f_{k}(x) \geqslant t\right\}$

Claim: $\int_{\Omega}\left(\int_{-\infty}^{\infty}\left|\left(\mathbb{1}_{E_{t}^{k}}(x)-\mathbb{1}_{E_{t}}(x)\right)\right| d t\right) d x=\int_{\Omega}\left|f_{k}(x)-f(x)\right| d x$
In fact, $\mathbb{1}_{E_{t}^{k}}(x)= \begin{cases}0 & f_{k}(x) \leqslant t \\ 1 & f_{k}(x) \geqslant t\end{cases}$
and $\mathbb{1}_{E_{t}}(x)= \begin{cases}0 & f(x) \leqslant t \\ 1 & f(x) \geqslant t\end{cases}$
$\left.\Rightarrow \mid \mathbb{1}_{E_{t}^{k}}(x)-\mathbb{1}_{E_{t}}(x)\right) \left\lvert\,= \begin{cases}1 & f_{k}(x) \geqslant t \geqslant f(x) \text { or } f(x) \geqslant t \geqslant f_{k}(x) \\ 0 & \text { otherwise }\end{cases}\right.$
$\left.\Rightarrow \int_{-\infty}^{\infty} \mid \mathbb{1}_{E_{t}^{k}}(x)-\mathbb{1}_{E_{t}}(x)\right)\left|d t=\int_{\min \left(f(x), f_{k}(x)\right)}^{\max \left(f(x) f_{k}(x)\right)} d t=\left|f_{k}(x)-f(x)\right|\right.$
. Now, as $f_{k} \longrightarrow f$ in $L^{1} \Rightarrow \mathbb{1}_{E_{t}^{k}}(x) \longrightarrow \mathbb{1}_{E_{t}}(x)$ in L^{1}
$\Rightarrow \lim _{k \rightarrow \infty} \int_{\Omega} \mathbb{1}_{E_{t}^{k}} \operatorname{divg}=\int_{\Omega} \mathbb{1}_{E_{t}} \operatorname{divg}$

With the help of Fatou's lemma, hence,

$$
\int_{\Omega}|D f|=\lim _{k \longrightarrow \infty} \int_{\Omega}\left|D f_{k}\right|=\lim _{k \longrightarrow \infty} \int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right) \geqslant \int_{-\infty}^{\infty} \liminf _{k \longrightarrow \infty} P\left(E_{t}^{k}, \Omega\right)=\int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right)
$$

Chapter 3

Least Gradient Problem

In this chapter, we will first introduce the least gradient problem and prove the existence and uniqueness of a solution. After, we will show relations with the least gradient problem demonstrated with examples.

3.1 Introduction

Let Ω be a bounded domain in \mathbb{R}^{n}, and let f be a given function defined on its boundary $\partial \Omega$. We seek a solution $u \in B V(\Omega)$ to the problem:

$$
\min \left\{\int_{\Omega}|\nabla u| ; u=f\right\}
$$

In fact, if we take a minimizing sequence of the LGP, we cannot ensure the limiting function will satisfy the boundary conditions and thus we cannot ensure the limiting function will be an element of the set. Therefore, we cannot guarantee that a minimum does exist for every functions f and every domain Ω.

Example 1 Consider the case in one dimension. Here $\Omega=[a, b]$ and we are given a boundary function f i.e. given two values $\{f(a), f(b)\}$. We start with the class of all absolutely continuous functions on Ω, and we seek a solution of the

LGP in this class.

We proceed as follows: given a function u absolutely continuous on $[a, b]$, and satisfying $u(a)=f(a), u(b)=f(b)$, how small can $\int_{a}^{b}\left|u^{\prime}\right|$ be. Here, we resort to the fact that, since u is absolutely continuous, its derivative exists almost everywhere, is summable, and the integral of the derivative equals the total variation $e s s V_{a}^{b} u$. But ess $V_{a}^{b} u \geqslant|u(b)-u(a)|=|f(b)-f(a)|$, and this lower bound is independent of the particular function u. This gives us that $\min \left\{\int_{a}^{b}\left|u^{\prime}\right|\right\} \geqslant|f(b)-f(a)|$. In addition, any monotone absolutely continuous function v on $[a, b]$, satisfies the equality $\int_{a}^{b}\left|v^{\prime}\right|=|v(b)-v(a)|=|f(b)-f(a)|$. Hence, the minimum is indeed $|f(b)-f(a)|$ and is attained by monotone functions.

Example 2 The previous example can be extended to cover the class of functions of bounded variation. If $u \in B V(a, b)$, then its derivative exists a.e. but does not usually integrate back to the function. It is however, possible to define a generalized derivative $D u$, and then the question becomes that of minimizing $\int|D u|$. In this case, once again, we have $\int|D u|$ equals the variation of u on $[a, b]$, and as in previous example we find the minimum value and also the extremal functions.

Example 3 It is natural to move from the one dimensional case to the two dimensional. Let Q be the rectangle $[a, b] \times[c, d]$, let f be a function defined on the boundary of Q, and let u be defined and absolutely continuous on Q, with boundary values equal to f. Here again, the gradient ∇u exists a.e. and we seek to minimize its integral $\int_{Q}|\nabla u|$. We recall the concept of bounded variation due to Tonelli. For each fixed $x \in(a, b)$, let $\operatorname{ess}_{c}^{d} u_{2}(x)$ be the essential variation of $u(x,$.$) on [c, d]$. If now we integrate this with respect to x on $[a, b]$ and the resulting integral is finite, we say u is of bounded variation on Q. Of course we could start with $\left(e s s V_{a}^{b} u_{1}\right)(y)$ being the essential variation of $u(., y)$ on $[a, b]$, and
then integrate with respect to x.
We point out that one of these integrals may very well be zero as is seen if we start with a function u which depends only on x. So we need to concentrate on a class of functions for which both integrals will be finite.

If we start with an absolutely continuous function u, then we can express in terms of the partial derivative as follows:

$$
\left(e s s V_{a}^{b} u_{1}\right)(y)=\int_{a}^{b}\left|\frac{\partial u(x, y)}{\partial x}\right| d x d y,\left(e s s V_{c}^{d} u_{2}\right)(x)=\int_{c}^{d}\left|\frac{\partial u(x, y)}{\partial y}\right| d y d x
$$

So we end up with two integrals namely

$$
\int_{c}^{d} \int_{a}^{b}\left|\frac{\partial u(x, y)}{\partial x}\right| d x d y, \int_{a}^{b} \int_{c}^{d}\left|\frac{\partial u(x, y)}{\partial y}\right| d y d x
$$

Thus, if we start with a function having continuous partial derivatives on Q we are guarenteed the finiteness of both of last integrals.

We can find ower bounds for each of these integrals in the most simple way, namely to use trivial lower bounds for the variation.

Proposition 2. Let u be absolutely continuous on the rectangle $Q=[a, b] \times$ $[c, d]$. Suppose that the boundary values of u are given by a function f. Then the following lower bound for the integral of $|\nabla u|$ holds

$$
\int_{Q}|\nabla u| \geqslant \frac{1}{2}\left\{\int_{c}^{d}|f(b, y)-f(a, y)| d y+\int_{a}^{b}|f(x, d)-f(x, c)| d x\right\}
$$

A special case
Suppose $Q=[0, a] \times[0, b]$, and the boundary function f is non-negative and satisfies $f(x, 0)=0$ for all $x \in[0, a]$; and $f(0, y)=0$ for all $y \in[0, b]$. In this case, we have the simplification

$$
\int_{c}^{d}|f(b, y)-f(a, y)| d y+\int_{a}^{b}|f(x, d)-f(x, c)| d x=\int_{0}^{b} f(a, y) d y+\int_{0}^{a} f(x, b) d x=\int_{\partial Q} f(x, y) d s
$$

Example 4 Let Ω be any plane domain in \mathbb{R}^{2} and $u \in B V(\Omega)$
For $D u$ defined in the distributional sense, we always have $\int_{\Omega}|D u| \geqslant 0$.
Hence, $\min \int_{\Omega}|D u| \geqslant 0$. We now take f to be any constant function defined on $\partial \Omega$ say $f=k$ with k a positive constant. Among all functions u of bounded variation defined on Ω and $u=k$ on $\partial \Omega$, one has the constant function $u=k$. We get $\nabla u=0 \Rightarrow \int_{\Omega}|\nabla u|=0$.

Hence for f constant with Ω plane domain the solution to the LGP is 0 .

The method illustrated above relies on the link between the essential variation and the LGP. However, particular classes of functions were taken. What we need, is to find the least gradient function over all bounded variation functions satisfying the boundary conditions. Therefore, in the modern treatment of the subject, what we seem to need is the notion of perimeter of measurable sets. We will use the help of the coarea formula, which connects the perimeter of a set with $\int|D u|$.

Remark 7. When saying $u=f$ on $\partial \Omega$ for $u \in B V(\Omega)$, it is meant in the trace sense; $T u=f$ on $\partial \Omega$ by definition 2.4.1.

3.2 Prerequisites

Definition 3.2.1. Suppose E measurable set with $P\left(E, \mathbb{R}^{n}\right)<\infty$.

- The measure theoretic boundary $\partial_{M} E$ is the set of points $x \in \mathbb{R}^{n}$ such that: $\lim \sup _{r \rightarrow 0} \frac{|E \cap B(x, r)|}{|B(x, r)|}>0$ and $\lim \inf _{r \rightarrow 0} \frac{|E \cap B(x, r)|}{|B(x, r)|}<1$
- For $x \in \mathbb{R}^{n}$, the measure theoretic exterior normal $\nu(x, E)$ at x is a unit vector ν such that:
$\lim _{r \rightarrow 0} \frac{|B(x, r) \cap\{y ;(y-x) \cdot \nu<0, y \notin E\}|}{r^{n}}=0$ and
$\lim _{r \rightarrow 0} \frac{|B(x, r)\{y ;(y-x) \cdot \nu>0, y \in E\}|}{r^{n}}=0$.
The reduced boundary $\partial^{*} E$ is the set of points x such that $\nu(x, E)$ exists.
We have $\partial^{*} E \subset \partial_{M} E \subset \partial E$.
We will use the following convention, since sets of finite perimeter are defined up to measure zero, $x \in E \Longleftrightarrow \lim \sup _{r \longrightarrow 0} \frac{|E \cap B(x, r)|}{|B(x, r)|}>0$

Definition 3.2.2. We say a function $u \in B V(\Omega)$ is of least gradient if $\forall w \in$ $B V(\Omega)$, with compact support in $\Omega, \int_{\Omega}|D u| \leqslant \int_{\Omega}|D(u+w)|$.

Proposition 3. [8] If u_{n} is a least gradient function $\forall n$, and $u_{n} \longrightarrow u$ in L^{1} then u is a least gradient function

Definition 3.2.3. Let $\Omega \subset \mathbb{R}^{n}$. We say ∂E is a minimal surface if

1. $\mathbb{1}_{E} \in B V_{\text {loc }}(\Omega)$
2. $\mathbb{1}_{E}$ is a least gradient function.

Proposition 4. In \mathbb{R}^{2}, minimal surfaces are straight lines.
Proof. Let $A=\left(a_{1}, a_{2}\right), B\left(b_{1}, b_{2}\right)$ be 2 points in the plane \mathbb{R}^{2}. Let (C) be a path joining A to B parametrized by $x=x(t), y=y(t)$ and $x(0)=a_{1}, x(1)=b_{1}, y(0)=a_{2}, y(1)=b_{2}$.

$$
\begin{align*}
L(C) & =\int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t \\
& =\int_{0}^{1}\left|x^{\prime}(t)+i y^{\prime}(t)\right| d t \\
& \geqslant\left|\int_{0}^{1}\left(x^{\prime}(t)+i y^{\prime}(t)\right) d t\right| \tag{3.1}\\
& =|x(1)-x(0)+i(y(1)-y(0))| \\
& =\left|b_{1}-a_{1}+i\left(b_{2}-a_{2}\right)\right| \\
& =\sqrt{\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}}
\end{align*}
$$

$\Rightarrow \inf \{L(C)\} \geqslant \sqrt{\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}}$

Consider the line segment (\tilde{C}) joining A to B given by:
$x=x(t)=(1-t) a_{1}+t b_{1}$ and $y=y(t)=(1-t) a_{2}+t b_{2}$.
Then, $L(\tilde{C})=\int_{0}^{1} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t=\int_{0}^{1} \sqrt{\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}} d t=\sqrt{\left(b_{1}-a_{1}\right)^{2}+\left(b_{2}-a_{2}\right)^{2}}$.
$\Rightarrow \inf \{L(C)\}=L(\tilde{C})$
$\Rightarrow \tilde{C}$ is the curve of smallest euclidean length joining A to B.
Theorem 3.2.1. [2] If u solution to $\min \left\{\int_{\Omega}|D u| ; u \in B V(\Omega), T_{\partial \Omega} u=f\right\}$, then $\partial\{u \geqslant t\}$ is a minimal surface for each real t.

Proof. Let u solution to $\min \left\{\int_{\Omega}|D u| ; u \in B V(\Omega), T_{\Gamma} u=f\right\}$. Take $w \in B V(\Omega)$ with suppw $=K \subset \Omega$ with K compact. Set $v=u+w$.
We have $v \in B V(\Omega)$ being the sum of 2 bounded variation functions in Ω and as w has compact support, $T_{\Gamma} w=0$, so that $T_{\Gamma} v=T_{\Gamma}(u+w)=T_{\Gamma} u=f$.
Then, $\int|D u| \leqslant \int|D v|$ as u solution.
$\Rightarrow \int|D u| \leqslant \int|D(u+w)|$.
Hence, u is a function of least gradient in Ω by definition 3.2.2.

Now as $u \in B V(\Omega)$, we have by the coarea formula, $\int_{\Omega}|D u|=\int_{-\infty}^{+\infty} P\left(E_{\lambda}, \Omega\right) d \lambda$ with $E_{\lambda}=\{x \in \Omega ; u(x) \geqslant \lambda\}$ and $\lambda \in \mathbb{R}$.
We then have $P\left(E_{\lambda}, \Omega\right)<\infty$ for a.e. λ since $\int_{\Omega}|D u|<\infty$.

Also, by the coarea formula we have that, $\forall \lambda \in \mathbb{R}, K \subset \Omega$ compact, we have $\int_{K}|D u|=\int_{-\infty}^{+\infty} P\left(E_{\lambda}, K\right) d \lambda$.

We now define $u_{1}=\max \{u-t, 0\}$ and $u_{2}=\min \{u, t\}$ for $t \in \mathbb{R}$.
We have u_{1} and $u_{2} \in B V(\Omega)$ because $u \in B V(\Omega), t \in B V(\Omega)$.
If $u-t \geqslant 0 \Rightarrow u \geqslant t \Rightarrow u_{1}=u-t$ and $u_{2}=t \Rightarrow u=u_{1}+u_{2}$.
If $u-t \leqslant 0 \Rightarrow u \leqslant t \Rightarrow u_{1}=0$ and $u_{2}=u \Rightarrow u=u_{1}+u_{2}$.

Hence $u=u_{1}+u_{2} \forall t \in \mathbb{R}$.
By the coarea formula, we have $\int_{K}|D u|=\int_{K}\left|D u_{1}\right|+\int_{K}\left|D u_{2}\right|$.
Now let $w \in B V(\Omega)$ with compact support in Ω.
$\int_{K}\left|D u_{1}\right|+\int_{K}\left|D u_{2}\right|=\int_{K}|D u| \leqslant \int_{K}|D(u+w)| \leqslant \int_{K}\left|D\left(u_{1}+w\right)\right|+\int_{K} \mid$ $D u_{2} \mid$.
$\Rightarrow u_{1}$ is a least gradient function. Similarly, by interchanging u_{1} and u_{2} in the last inequality, we get u_{2} is a least gradient function.

We now define, for $\epsilon>0, \lambda \in \mathbb{R}$,
$u_{\epsilon, \lambda}=\frac{1}{\epsilon} \min \{\epsilon, \max \{u-\lambda, 0\}\}=\frac{1}{\epsilon} \min \left\{\epsilon, u_{1}\right\}$.

If $\min \left\{\epsilon, u_{1}\right\}=\epsilon \Rightarrow u_{\epsilon, \lambda}=1$. Then, $u_{\epsilon, \lambda}$ is a least gradient function being a constant function.

If $\min \left\{\epsilon, u_{1}\right\}=u_{1} \Rightarrow u_{\epsilon, \lambda}=\frac{1}{\epsilon} u_{1}$. Then, $u_{\epsilon, \lambda}$ is a least gradient function by proving above u_{1} is so.

Hence, $u_{\epsilon, \lambda}$ is a least gradient function, $\forall \epsilon>0, \lambda \in \mathbb{R}$.

If $H_{n}(\{x \in \Omega ; u(x)=\lambda\})=0 \Rightarrow u(x) \neq \lambda$ a.e. $x \in \Omega \Rightarrow u-\lambda>0$ or $u-\lambda<0$.

If $u-\lambda>0 \Rightarrow \max \{u-\lambda, 0\}=u-\lambda \Rightarrow u_{\epsilon, \lambda}=\frac{1}{\epsilon} \min \{\epsilon, u-\lambda\}$
As $\epsilon \longrightarrow 0, \min \{\epsilon, u-\lambda\}=\epsilon$ as $u-\lambda>0$
$\Rightarrow u_{\epsilon, \lambda} \longrightarrow \frac{\epsilon}{\epsilon}=1$ as $\epsilon \longrightarrow 0$
$\Rightarrow \int_{K}\left|u_{\epsilon, \lambda}-\mathbb{1}_{E_{\lambda}}\right|=\int_{K}|1-1|=0$ as $\epsilon \longrightarrow 0^{+}$.

If $u-\lambda<0 \Rightarrow \max \{u-\lambda, 0\}=0 \Rightarrow u_{\epsilon, \lambda}=0$
$\Rightarrow \int_{K}\left|u_{\epsilon, \lambda}-\mathbb{1}_{E_{\lambda}}\right|=\int_{K}|0-0|=0$ as $\epsilon \longrightarrow 0$.

Hence, $\int_{K}\left|u_{\epsilon, \lambda}-\mathbb{1}_{E_{\lambda}}\right|=0$ as $\epsilon \longrightarrow 0^{+}$.

As $u_{\epsilon, \lambda} \longrightarrow \mathbb{1}_{E_{\lambda}}$ in $L^{1}(K)$ and $u_{\epsilon, \lambda}$ is a function of least gradient, by proposition

3 then $\mathbb{1}_{E_{\lambda}}$ is a function of least gradient.

If $H_{n}(\{x \in \Omega ; u(x)=\lambda\})>0$ then \exists a sequence $\lambda_{m}, \lambda_{m}<\lambda, \lambda_{m} \longrightarrow \lambda$ and $H_{n}\left(\left\{x \in \Omega ; u(x)=\lambda_{m}\right\}\right)=0$.

As the previous case, working with λ_{m}, we get $\mathbb{1}_{E_{\lambda}}$ is a function of least gradient.

Hence, as $\mathbb{1}_{E_{\lambda}} \in B V_{\text {loc }}(\Omega)$, and a function of least gradient, ∂E_{λ} is a minimal surface.

Proposition 5. Let $\Gamma \subset \partial \Omega$ and f defined on Γ bounded and continuous. Let u be any solution to the LGP with $T u=f$ on Γ. Then $u(\bar{\Omega}) \subset \overline{f(\Gamma)}$

Proof. Let $M=\sup _{\Gamma} f$ and $m=i n f_{\Gamma} f$.
Let $w=\min \{M, \max \{m, u\}\}$.
We have $w \in B V(\Omega)$ and $T_{\Gamma} w=f$.
We have $\int_{\Omega}|D w| \leqslant \int_{\Omega}|D u|$.
If $u<m \Rightarrow \max \{m, u\}=m \Rightarrow w=m \Rightarrow \int_{\Omega}|D w|=0$.
If $u>M \Rightarrow \max \{m, u\}=u \Rightarrow w=M \Rightarrow \int_{\Omega}|D w|=0$.
In both cases, for $u<m$ and $u>M$ we get $\int_{\Omega}|D w|<\int_{\Omega}|D u|$. But this is impossible as u is a solution to the LGP.

Hence, we get $m<u<M$.
Proposition 6. Let $\Omega \subset \Omega_{0}$ domains with lipchitz boundaries. If $u \in B V\left(\Omega_{0}\right)$ is a least gradient function in Ω_{0} then $\left.u\right|_{\Omega}$ is a least gradient function in Ω.

3.3 Solution to the LGP

Theorem 3.3.1. [1] For Ω strictly convex, $\partial \Omega$ lipchitz continuous, and f bounded continuous on $\partial \Omega$, there exists a unique continuous function u defined on $\bar{\Omega}$ solution to to the problem

$$
\min \left\{\int_{\Omega}|\nabla u| ; u \in B V(\Omega), u=f \text { on } \partial \Omega\right\}
$$

The solution u is obtained upon construction and is proved to be the minimum of the LGP with the help of the coarea formula. Also, the fact that the boundary of the superlevel sets of the solution is a minimal surface, by theorem 3.2.1, plays an important role.

Remark 8. The existence and uniqueness of solution will be proved for the LGP $\min \left\{\int_{\Omega}|D u|, u \in B V(\Omega), u=f\right.$ on $\left.\Gamma\right\}$ where $\Gamma \subset \partial \Omega$ open given by [3]. However, the construction and existence of solution to the LGP stated in theorem 3.3.1 is very similar to what will be proved. Uniqueness results also applies when $\Gamma=\partial \Omega$.

Construction of the solution

Let $\Gamma \subset \partial \Omega$ such that f is bounded and continuous on Γ.
Let Ω_{0} be a bounded domain such that $\Omega \subset \Omega_{0}$ and $\partial \Omega_{0} \cap \partial \Omega=\partial \Omega-\Gamma$.
We will denote $\Lambda:=\partial \Omega-\Gamma$.
Let F be the extension of f to Ω_{0} so that $F \in B V\left(\Omega_{0}-\bar{\Omega}\right) \cap C\left(\Omega_{0}\right)$
Let $t \in \overline{f(\Gamma)}$, as $F \in B V\left(\Omega_{0}-\bar{\Omega}\right) \Rightarrow$ by the coarea formula, $P\left(L_{t}, \Omega_{0}-\bar{\Omega}\right)<\infty$ a.e. t where $L_{t}=\left\{x \in \Omega_{0}, F(x) \geqslant t\right\}$.

Denote by $T:=\overline{f(\Gamma)} \cap\left\{t \in \mathbb{R} ; P\left(L_{t}, \Omega_{0}-\bar{\Omega}\right)<\infty\right\}$.
Consider now the following problem: for each $t \in T$

$$
\begin{equation*}
\min \left\{P\left(E, \Omega_{0}\right), E-\bar{\Omega}=L_{t}-\bar{\Omega}\right\} \tag{3.2}
\end{equation*}
$$

This indeed has a solution. By [9], take a minimizing sequence, $P\left(E_{n}, \Omega_{0}\right) \longrightarrow m$ where $m=\inf \left\{P\left(E, \Omega_{0}\right), E-\bar{\Omega}=L_{t}-\bar{\Omega}\right\}$ and $E_{n}-\bar{\Omega}=L_{t}-\bar{\Omega}$

As $\mathbb{1}_{E_{n}} \in B V\left(\Omega_{0}\right)$ then \exists a subsequence still denoted by $\mathbb{1}_{E_{n}}$ and $\mathbb{1}_{E} \in B V\left(\Omega_{0}\right)$ such that $\mathbb{1}_{E_{n}} \longrightarrow \mathbb{1}_{E}$ in $L^{1}\left(\Omega_{0}\right)$ with $E-\bar{\Omega}=L_{t}-\bar{\Omega}$.

We get, $m \leqslant P\left(E, \Omega_{0}\right) \leqslant \liminf P\left(E_{n}, \Omega_{0}\right)=m$
$\Rightarrow P\left(E, \Omega_{0}\right)=m$

So the minimum does exist.

Now among all minimizers of (3.2) define the following:

$$
\begin{equation*}
\max \{|E| ; E \text { solves }(3.2)\} \tag{3.3}
\end{equation*}
$$

(3.3) has a unique solution. Indeed, by [9], let $M=\sup \{|E|$; E solves problem (3.2) \} and let $\left|E_{n}\right| \longrightarrow M \Rightarrow$ there exists a subsequence still denoted by $\mathbb{1}_{E_{n}}$ and $\mathbb{1}_{E} \in B V\left(\Omega_{0}\right)$ such that $\mathbb{1}_{E_{n}} \longrightarrow \mathbb{1}_{E}$ in $L^{1}\left(\Omega_{0}\right)$

First we note that :

1) $|E|+\left|E \Delta E_{n}\right|=|E|+\left|E-E_{n}\right|+\left|E_{n}-E\right|=\left|E \cup E_{n}\right|+\left|E-E_{n}\right| \geqslant\left|E \cup E_{n}\right| \geqslant\left|E_{n}\right|$
2) $\left|\mathbb{1}_{E_{n}}-\mathbb{1}_{E}\right|= \begin{cases}1 & \left(x \in E_{n} \text { and } x \notin E\right) \text { or }\left(x \in E \text { and } x \notin E_{n}\right) \\ 0 & x \in E_{n} \cap E \text { or } x \notin E_{n} \cup E\end{cases}$

$$
\Rightarrow \int\left|\mathbb{1}_{E_{n}}-\mathbb{1}_{E}\right|=\int_{\left(E_{n}-E\right) \cup\left(E-E_{n}\right)} d \lambda=\left|E \Delta E_{n}\right|
$$

Then we have $M \geqslant|E| \geqslant\left|E_{n}\right|-\left|E \Delta E_{n}\right|=\left|E_{n}\right|-| | \mathbb{1}_{E_{n}}-\mathbb{1}_{E} \|_{1} \longrightarrow M$ as $n \longrightarrow \infty$ $\Rightarrow|E|=M$ and E solves (3.2).

So the maximum does exist.

Now one can claim that the solution to (3.3) is unique. In fact, let E_{1}, E_{2} be 2 solutions to (3.3).

One knows that $P\left(E_{1} \cup E_{2}, \Omega_{0}\right)+P\left(E_{1} \cap E_{2}, \Omega_{0}\right) \leqslant P\left(E_{1}, \Omega_{0}\right)+P\left(E_{2}, \Omega_{0}\right)$
Then, $E_{1} \cup E_{2}$ and $E_{1} \cap E_{2}$ are solutions to (3.2).
As E_{1} and E_{2} are maximizers to (3.3),

$$
\begin{aligned}
& \left|E_{1}\right| \geqslant\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}-E_{1}\right| \\
& \left|E_{2}\right| \geqslant\left|E_{1} \cup E_{2}\right|=\left|E_{2}\right|+\left|E_{1}-E_{2}\right| \\
& \Rightarrow\left|E_{1} \Delta E_{2}\right|=0 \Rightarrow\left|E_{1}\right|=\left|E_{2}\right|
\end{aligned}
$$

Hence, there exists a unique solution to (3.3) which we will denote by E_{t} for $t \in T$.

Now define:

$$
A_{t}=\overline{E_{t} \cap \Omega}
$$

Definition 3.3.1. Define the function u on $\bar{\Omega}$ by

$$
u(x)=\sup \left\{t ; x \in A_{t}\right\}
$$

Lemma 3.3.1. u satisfies the following conditions:

1. $u=f$ on Γ
2. $u \in C(\Gamma \cup \Omega)$

Lemma 3.3.2. Let $\Gamma \subset \partial \Omega$,
We then have, $\{x \in \Gamma ; f(x)>t\} \subset E_{t} \cap \Gamma \subset A_{t} \cap \Gamma \subset\{x \in \Gamma ; f(x) \geqslant t\}$
Lemma 3.3.3. Let $v \in B V(\Omega), T_{\Gamma} v=f$ and \tilde{v} the extension of v to $\Omega_{0} ; \tilde{v}=F$ on $\Omega_{0}-\bar{\Omega}$ and $v=\tilde{v}$ on $\bar{\Omega}$.For $t \in T$, define $G_{t}:=\{\tilde{v} \geqslant t\}$.

We have $\partial^{*} G_{t} \cap \Gamma \subset f^{-1}(t)$.
Proof. Let $x \in \partial^{*} G_{t} \cap \Gamma$. Proceeding by contradiction, suppose $f(x)>t \Rightarrow$ $f(x)=t+\epsilon$ for some $\epsilon>0$.
By definition of trace, $\lim _{r \rightarrow 0} \frac{1}{|B(x, r) \cap \Omega|} \int_{B(x, r) \cap \Omega}|\tilde{v}(y)-f(x)| d y=0$.

$$
\begin{aligned}
& \Rightarrow \lim _{r \rightarrow 0} \frac{\int_{B(x, r) \cap \Omega \cap\{\tilde{v} \geqslant t\}}|\tilde{v}(y)-f(x)| d y+\int_{B(x, r) \cap \Omega \cap\{\tilde{v} \leq t\}}|\tilde{v}(y)-f(x)| d y}{|B(x, r) \cap \Omega|}=0 . \\
& \Rightarrow 0 \geqslant \lim \sup _{r \rightarrow 0} \frac{1}{|B(x, r) \cap \Omega|} \int_{B(x, r) \cap \Omega \cap\{\tilde{v} \geq t\}}|\tilde{v}(y)-f(x)| d y \\
& \Rightarrow 0 \geqslant \epsilon \lim \sup _{r \rightarrow 0} \frac{\left|B(x, r) \cap \Omega \cap G_{t}\right|}{|B(x, r) \cap \Omega|} \\
& \Rightarrow \lim \sup _{r \rightarrow 0} \frac{\left|B(x, r) \cap \Omega \cap G_{t}\right|}{|B(x, r) \cap \Omega|}=0 .
\end{aligned}
$$

Similarly, we obtain $\lim \sup _{r \longrightarrow 0} \frac{\left|B(x, r) \cap\left(\Omega_{0}-\bar{\Omega}\right) \cap G_{t}\right|}{\left|B(x, r) \cap\left(\Omega_{0}-\bar{\Omega}\right)\right|}=0$ on $\Omega_{0}-\bar{\Omega}$.

Hence, we get, $\lim \sup _{r \rightarrow 0} \frac{\left|B(x, r) \cap \Omega_{0} \cap G_{t}\right|}{|B(x, r)|}=\lim \sup _{r \rightarrow 0} \frac{\left|B(x, r) \cap G_{t}\right|}{|B(x, r)|}=0$.
Then, $x \notin \partial_{M} G_{t}$. Contradiction, as $\partial^{*} G_{t} \subset \partial_{M} G_{t}$, Definition 3.2.1.

A similar argument is made for $f(x)<t$. Hence, $f(x)=t$
Lemma 3.3.4. For Γ, f, and E_{t} given as above, we have $\partial E_{t} \cap \Gamma \subset f^{-1}(t)$.
Lemma 3.3.5. If $s<t$ then $E_{t} \subset E_{s}$.

Proof. Let $F=E_{t} \cup E_{s}$ and $E=E_{t} \cap E_{s}$.
We begin by proving that F and E are competitors to E_{t} and E_{s} in (3.2) respectively.

We realize that $L_{t} \subset L_{s}$ since if $x \in L_{t} \Rightarrow F(x) \geqslant t>s \Rightarrow F(x)>s \Rightarrow x \in L_{s}$.

- $F-\Omega=\left(E_{t}-\Omega\right) \cup\left(E_{s}-\Omega\right)=\left(L_{t}-\Omega\right) \cup\left(L_{s}-\Omega\right)=L_{s}-\Omega$ as $L_{t} \subset L_{s}$
- $E-\Omega=\left(E_{t}-\Omega\right) \cap\left(E_{s}-\Omega\right)=\left(L_{t}-\Omega\right) \cap\left(L_{s}-\Omega\right)=L_{t}-\Omega$ as $L_{t} \subset L_{s}$

Hence, $P\left(F, \Omega_{0}\right) \geqslant P\left(E_{s}, \Omega_{0}\right)$ and $P\left(E, \Omega_{0}\right) \geqslant P\left(E_{t}, \Omega_{0}\right)$. As $P\left(E_{t} \cup E_{s}, \Omega_{0}\right)+$ $P\left(E_{t} \cap E_{s}, \Omega_{0}\right) \leqslant P\left(E_{t}, \Omega_{0}\right)+P\left(E_{s}, \Omega_{0}\right)$, we then get $P\left(F, \Omega_{0}\right)=P\left(E_{s}, \Omega_{0}\right)$ and $P\left(E, \Omega_{0}\right)=P\left(E_{t}, \Omega_{0}\right)$.

By problem $2,\left|E_{s}\right| \geqslant|F|=\left|E_{s}\right|+\left|E_{t}-E_{s}\right| \Rightarrow\left|E_{t}-E_{s}\right|=0$
and $\left|E_{t}\right| \geqslant|E|=\left|E_{t}\right|+\left|E_{s}-E_{t}\right| \Rightarrow\left|E_{s}-E_{t}\right|=0$.

Now we show $E_{t} \subset E_{s}$
Let $x \in E_{t} \Rightarrow$ by definition 3.2.1, lim $\sup _{r \rightarrow 0} \frac{\left|E_{t} \cap B(x, r)\right|}{|B(x, r)|}>0$
Write $E_{t}=\left(E_{t}-E_{s}\right) \cup\left(E_{t} \cap E s\right)$ union of 2 disjoint sets.
$\Rightarrow \lim \sup _{r \rightarrow 0} \frac{\left|E_{t} \cap B(x, r)\right|}{|B(x, r)|}=\lim \sup _{r \rightarrow 0} \frac{\left|\left(E_{t}-E_{s}\right) \cap B(x, r)\right|}{|B(x, r)|}+\lim \sup _{r \rightarrow 0} \frac{\left|\left(E_{t} \cap E_{s}\right) \cap B(x, r)\right|}{|B(x, r)|}$
But $\left(E_{t}-E_{s}\right) \cap B(x, r) \subset\left(E_{t}-E_{s}\right)$
$\Rightarrow\left|\left(E_{t}-E_{s}\right) \cap B(x, r)\right| \leqslant\left|\left(E_{t}-E_{s}\right)\right|=0$
$\Rightarrow\left|\left(E_{t}-E_{s}\right) \cap B(x, r)\right|=0$
$\Rightarrow 0<\lim \sup _{r \rightarrow 0} \frac{\left|E_{t} \cap B(x, r)\right|}{|B(x, r)|}=\lim \sup _{r \rightarrow 0} \frac{\left|E_{t} \cap E_{s} \cap B(x, r)\right|}{|B(x, r)|} \leqslant \lim \sup _{r \rightarrow 0} \frac{|E s \cap B(x, r)|}{|B(x, r)|}$
$\Rightarrow \lim \sup _{r \rightarrow 0} \frac{|E s \cap B(x, r)|}{|B(x, r)|}>0$
$\Rightarrow x \in E_{s}$
Hence, $E_{t} \subset E_{s}$

We shall now illustrate the proof of lemma 3.3.1 given by [3] :
Proof. 1. We prove $T u=f$ on Γ i.e. for $z \in \Gamma, \lim _{y \rightarrow z, y \in \Omega} u(y)=f(z)$.
Let $z \in \Gamma$ and set $f(z)=t$ and let $s<t$, then $f(z)=t>s \Rightarrow$ by lemma 3.3.2
$z \in E_{s}^{0} \cap \Gamma \subset A_{s} \cap \Gamma$.
As E_{s}^{0} is open, \exists neighborhood of z, N_{z}, such that $N_{z} \cap \Omega \subset E_{s} \cap \Omega=A_{s} \cap \Omega$.
Now let $x_{n} \in N_{z} \cap \Omega ; x_{n} \longrightarrow z \Rightarrow u\left(x_{n}\right) \geqslant s, \forall n \Rightarrow \liminf _{x_{n} \longrightarrow z, x_{n} \in \Omega} u\left(x_{n}\right) \geqslant s$, $\forall s<t \Rightarrow \liminf _{x_{n} \rightarrow z, x_{n} \in \Omega} u\left(x_{n}\right) \geqslant t$.

We will now prove that it is not possible for $\limsup _{x_{n} \rightarrow z, x_{n} \in \Omega} u\left(x_{n}\right)>t$.
Proceeding by contradiction, suppose $\lim \sup _{x_{n} \rightarrow z, x_{n} \in \Omega} u\left(x_{n}\right)>t$. Let $\lim \sup _{x_{n} \rightarrow z, x_{n} \in \Omega} u\left(x_{n}\right)=$ $\tau \Rightarrow \tau>t$. Then, $\exists r \in T ; t<r<\tau$. As $\tau>r \Rightarrow \forall n, r<u\left(x_{n}\right) \Rightarrow x_{n} \in A_{r} \cap \Omega$.

As $x_{n} \longrightarrow z$ and $x_{n} \in A_{r}$ closed $\Rightarrow z \in A_{r} \cap \Gamma \Rightarrow$ By lemma 3.3.2, $f(z) \geqslant r$.
Contradiction as $f(z)=t<r$.

Hence, for $z \in \Gamma, \lim _{x_{n} \longrightarrow z, x_{n} \in \Omega} u\left(x_{n}\right)=f(z)$
2. Claim 1: $\{x \in \bar{\Omega} ; u(x) \geqslant t\}=\cap_{s<t, s \in T} A_{s}$

Claim 2: $\{x \in \bar{\Omega} ; u(x)>t\}=\cup_{s>t, s \in T} A_{s}$

We now show u is continuous on $\Gamma \cup \Omega$. We will do so by proving claim 1 is a closed set and claim 2 is an open set in Ω.

The first claim is a closed set being a countable intersection of closed sets.

It remains to prove claim 2 is an open set in Ω i.e. $\forall x \in \cup_{s>t} A_{s}, \exists r>0, B(x, r) \subset$ $\cup_{s>t} A_{s}$
So let $x \in \cup_{s>t} A_{s} \cap \Omega \Rightarrow \exists s_{0}>t, x \in A_{s_{0}} \Rightarrow u(x) \geqslant s_{0}>t$.
Since $x \in \Omega \Rightarrow \operatorname{dist}(x, \partial \Omega)>0$.
Since $x \in A_{s_{0}} \subset A_{t} \Rightarrow \operatorname{dist}\left(x, \partial A_{t}\right)>0$
Take $r=\frac{1}{2} \min \left\{\operatorname{dist}(x, \partial \Omega), \operatorname{dist}\left(x, \partial A_{t}\right)\right\}$.
We now need to prove $B(x, r) \subset \cup_{s>t} A_{s}$.
Let $x_{0} \in B(x, r) \Rightarrow \operatorname{dist}\left(x, x_{0}\right)<r \Rightarrow \operatorname{dist}\left(x_{o}, \partial A_{t}\right)>0 \Rightarrow x_{0} \in A_{t} \Rightarrow u\left(x_{0}\right)>$ $t \Rightarrow x_{0} \in \cup_{s>t} A_{s}$

We now illustrate the proof given by [3] to theorem 3.3.1

Proof. It remains to prove u is a solution to the LGP i.e. $\forall v \in B V(\Omega), T_{\Gamma} v=f$, $\int_{\Omega}|D u| \leqslant \int_{\Omega}|D v|$.

Let u be the solution as constructed, and let $v \in B V(\Omega), T_{\Gamma} v=f$ and \tilde{v} the extension of v to $\Omega_{0} ; \tilde{v}=F$ on $\Omega_{0}-\bar{\Omega}$ and $v=\tilde{v}$ on $\bar{\Omega}$. Then , $\tilde{v} \in B V\left(\Omega_{0}\right) \cap C\left(\Omega_{0}-\bar{\Omega}\right)$.

Let $G_{t}=\{\tilde{v} \geqslant t\}$.
$P\left(G_{t}, \Omega_{0}\right)=H^{1}\left(\partial^{*} G_{t} \cap \Omega_{0}\right)=H^{1}\left(\partial^{*} G_{t} \cap\left(\Omega_{0}-\Omega\right)\right)+H^{1}\left(\partial^{*} G_{t} \cap \Gamma\right)+H^{1}\left(\partial^{*} G_{t} \cap \Omega\right)$.
By lemma 3.3.3, $\partial^{*} G_{t} \cap \Gamma \subset f^{-1}(t) \Rightarrow H^{1}\left(\partial^{*} G_{t} \cap \Gamma\right) \leqslant H^{1}\left(f^{-1}(t)\right)=0 \Rightarrow$ $H^{1}\left(\partial^{*} G_{t} \cap \Gamma\right)=0$.
$\Rightarrow H^{1}\left(\partial^{*} G_{t} \cap \Omega_{0}\right)=H^{1}\left(\partial^{*} G_{t} \cap \Gamma\right)+H^{1}\left(\partial^{*} L_{t}-\Omega\right)$.
On the other hand, $P\left(E_{t}, \Omega_{0}\right)=H^{1}\left(\partial^{*} E_{t} \cap \Omega_{0}\right)=H^{1}\left(\partial^{*} E_{t} \cap\left(\Omega_{0}-\Omega\right)\right)+$ $H^{1}\left(\partial^{*} E_{t} \cap \Gamma\right)+H^{1}\left(\partial^{*} E_{t} \cap \Omega\right)=P\left(E_{t}, \Omega\right)+H^{1}\left(\partial^{*} L_{t}-\Omega_{0}\right)$ because by lemma 3.3.4, $H^{1}\left(\partial^{*} E_{t} \cap \Gamma\right) \leqslant H^{1}\left(f^{-1}(t)\right)=0 \Rightarrow H^{1}\left(\partial^{*} E_{t} \cap \Gamma\right)=0$.

Since by construction G_{t} satisfies $G_{t}-\Omega=L_{t}-\Omega$ and E_{t} minimizes the perimeter of all such sets, we have, $P\left(E_{t}, \Omega_{0}\right) \leqslant P\left(G_{t}, \Omega_{0}\right)$.

From above, we get, $P\left(E_{t}, \Omega\right) \leqslant P\left(G_{t}, \Omega\right)$.
$\Rightarrow \int_{-\infty}^{\infty} P\left(E_{t}, \Omega\right) d t \leqslant \int_{-\infty}^{\infty} P\left(G_{t}, \Omega\right) d t$.
By the coarea formula, theorem 2.5.1, we get, $\int_{\Omega}|D u| \leqslant \int_{\Omega}|D v|$.
Proposition 7. Let Λ as defined and γ a connected component of ∂E_{t}. If γ intersects Λ then it must intersect it orthogonally.

Proof. We know γ is a line segment and ∂E_{t} in Ω is a minimal surface by proposition 4 and theorem 3.2.1 Suppose $\gamma=\left[x^{t}, y^{t}\right]$. We proceed by contradiction, suppose γ does not intersect Λ orthogonally at x^{t}. Consider the ball $B\left(x^{t}, r\right)$ for $r>0$ such that $B\left(x^{t}, r\right)$ cuts γ at z^{t}. There exists a segment $\left[z^{t}, w^{t}\right]$ that cuts Λ orthogonally at w^{t} and $d\left(z^{t}, w^{t}\right)<d\left(z^{t}, x^{t}\right)$. Contradiction as γ is of least length.

uniqueness of solution

We proceed in proving uniqueness to the solution by supposing if there is another solution to the LGP $\min \left\{\int_{\Omega}|D u| ; u \in B V(\Omega), T u_{\Gamma} f\right\}$, and f satisfies a monotonicity condition, then it's a must that the 2 solutions have the same level sets which will lead to the uniqueness of solution.

Let u be a solution to the LGP. We define $\varepsilon_{t}=\{u \geqslant t\}$ for $t \in u(\Omega)$.

Lemma 3.3.6. Let u_{0} be the constructed solution. If u is any other solution to the LGP and $\partial \varepsilon_{t}=\partial \varepsilon_{t}^{0}$ then $u=u_{0}$ in L^{1}.

Lemma 3.3.7. If Ω convex and u solution to the LGP for f continuous and bounded on $\Gamma \subset \partial \Omega$ open, we have $\partial \varepsilon_{t} \cap \Gamma \subset f^{-1}(t)$

Theorem 3.3.2. [3] Let u_{0} be the solution to the LGP constructed above and $\partial \varepsilon_{t}^{0}=\left\{u_{0} \geqslant t\right\}$.

1. Let $\Gamma \subset \partial \Omega$ open with endpoints a and b.

Let $x_{M} \in \Gamma$ such that f attains its maximum at x_{M}.

Let f strictly increasing on the arc $\overline{a x_{M}}$ and strictly decreasing on $\overline{x_{M} b}$ such that f attains each value exactly twice, except at x_{M}, and $f(a)=f(b)=$ $i n f_{\Gamma} f$.

We then get u_{0} is a unique solution and u_{0} discontinuous on a and b. Also, $\exists \tau \in\left(\right.$ inf $\left._{\Gamma} f, \sup _{\Gamma} f\right)$ such that $\left|\left\{u_{0}=\tau\right\}\right|>0$.
2. Let $x_{0} \in \Gamma ; d\left(x_{0}, \Lambda\right)=d\left(x_{0}, a\right)=d\left(x_{0}, b\right)$ with $f(a)=f(b)=f\left(x_{0}\right)$. Suppose f attains each value twice on the arc $\overline{a x_{0}}$ with x_{m} a local minimum and suppose f attains each value exactly twice on the arc $\overline{x_{0} b}$ with x_{M} local maximum.

Then u_{0} is unique and continuous and $\left|\left\{u_{0}=f(a)\right\}\right|>0$.
3. Let $S:=\{x \in \Gamma ; d(x, \Lambda)=d(x, y)$ for some $y \in \Lambda\}$.
$D:=\{x \in S ; \exists$ atleast two $y \in \Lambda ; d(x, \Lambda)=d(x, y)\}$.
Let $\phi: S \mapsto P(\Lambda) ; \phi(x)=\{y \in \Lambda ; d(x, \Lambda)=d(x, y)\}$.
One can prove that D is atmost countable.
If f monotone then u_{0} is unique and discontinuous at a and b. Also, \exists atleast one $\tau \in u(\phi(D)) ;|\{u=\tau\}|>0$

Proof. 1. Let u be any solution to the LGP. We will first construct the level sets, then prove the existence of τ. Since f takes each value at exactly 2 points in Γ except for x_{M}, then for each $t \in\left(\inf _{\Gamma} f, \sup _{\Gamma} f\right)$, there exists 2 points $x^{t}, y^{t} \in \Gamma$; $f\left(x^{t}\right)=f\left(y^{t}\right)=t$.

If I have a level set at $t, \partial \varepsilon_{t}$, then $\partial \varepsilon_{t} \cap \Gamma \subset f^{-1}(t) \Rightarrow \forall x \in \partial \varepsilon_{t} \cap \Gamma$ we must have $f(x)=t$.
Since $\forall t, \exists 2$ points x^{t}, y^{t} such that $f\left(x^{t}\right)=f\left(y^{t}\right)=t$ then if I have a level set at t, and as level sets must intersect $\partial \Omega$ and in particular Γ so that the solution will be continuous up to Γ, then x^{t}, y^{t} must belong to $\partial \varepsilon_{t}$.

We now consider the map $h: t \mapsto h(t)=d\left(x^{t}, y^{t}\right)-d\left(x^{t}, a\right)-d\left(y^{t}, b\right)$.
We suppose $d\left(x^{t}, \Lambda\right)=d\left(x^{t}, a\right)$ and $d\left(y^{t}, \Lambda\right)=d\left(y^{t}, b\right)$.

If $\left\{x^{t}, y^{t}\right\} \in \Gamma$ are very close to x_{M} such that $f\left(x_{M}\right)-t>0$ and very small, we have, $d\left(x^{t}, y^{t}\right)<d\left(x^{t}, a\right)+d\left(y^{t}, b\right) \Rightarrow h(t)<0$.
Since $\partial \varepsilon_{t}$ must contain $\left\{x^{t}, y^{t}\right\}$ and $\partial \varepsilon_{t} \cap \Gamma \subset f^{-1}(t)$ then $\partial \varepsilon_{t}$ must be the line segment $\left[x^{t}, y^{t}\right]$.

If $\left\{x^{t}, y^{t}\right\} \in \Gamma$ with x^{t} very close to a and y^{t} very close to b with $d\left(x^{t}, \Lambda\right)=d\left(x^{t}, a\right)$ and $d\left(y^{t}, \Lambda\right)=d\left(y^{t}, b\right)$ such that $t-f(a)>0$ and very small we have $d\left(x^{t}, y^{t}\right)>d\left(x^{t}, a\right)+d\left(y^{t}, b\right) \Rightarrow h(t)>0$.
Since $\partial \varepsilon_{t}$ must contain $\left\{x^{t}, y^{t}\right\}$ and $d\left(x^{t}, a\right)+d\left(y^{t}, b\right)$ is smaller than $d\left(x^{t}, y^{t}\right)$, and $\partial \varepsilon_{t}$ is a minimal surface i.e. the line segment must be of least length, $\partial \varepsilon_{t}=\left[x^{t}, a\right] \cup\left[y^{t}, b\right]$.

Since h is continuous and $\exists t$ such that $h(t)>0$ and $\exists t$ such that $h(t)<0$, by intermediate value theorem, $\exists!\tau \in\left(i n f_{\Gamma} f, \sup _{\Gamma} f\right) ; h(\tau)=0$.
$\Rightarrow \exists!\tau \in\left(i n f_{\Gamma} f, \sup _{\Gamma} f\right) ; d\left(x^{\tau}, y^{\tau}\right)=d\left(x^{\tau}, a\right)+d\left(y^{\tau}, b\right)$.
$\Rightarrow \partial \varepsilon_{\tau}=\left[x^{\tau}, a\right] \cup\left[x^{\tau}, y^{\tau}\right] \cup\left[y^{\tau}, b\right]$.
Indeed, $\partial \varepsilon_{\tau}$ is the boundary of the set $\{u=\tau\}$ with $|\{u=\tau\}|>0$.
Indeed, the set $\{u=\tau\}$ is unique because otherwise there will be another level set to construct with $\partial \varepsilon_{t}=[c, d]$ with $c, d \in \Lambda$.

Let v be the function constructed by its level sets the same way as u with an additional level set located in $\{u=\tau\}$. We then get $\int|D v|>\int|D u|=0$ on $\{u=\tau\}$. But we require minimizing $\int|D u|$ over all $u \in B V(\Omega)$ with $u=f$. Then the construction of u is the best solution one can get.

If we take a sequence of level sets $\forall t>\tau$ the limiting level set will be $\left[x^{\tau}, y^{\tau}\right]$ and if we take a sequence of level sets $\forall t<\tau$, the limiting level set will be $\left[x^{\tau}, a\right] \cup\left[y^{\tau}, b\right]$. Since u is continuous, for all that is beneath $\partial \varepsilon_{\tau}$, we have $u=\tau$. We also have, $\forall x \in \Omega-\{u=\tau\}, \exists!t ; x \in \partial \varepsilon_{t}$. We then have, $\partial \varepsilon_{t}=\partial \varepsilon_{t}^{0}$.
$\Rightarrow u=u_{0}$ by lemma 3.3.6.
2. Let u be any solution to the LGP. We know that $\partial \varepsilon_{t} \cap \Gamma \subset f^{-1}(t)$.

As f attains each value twice on Γ then $f^{-1}(t)=\left\{x^{t}, y^{t}\right\}$. We will prove in this case that $\partial \varepsilon_{t} \cap \Gamma=f^{-1}(t)$. Suppose $\partial \varepsilon_{t} \cap \Gamma \neq\left\{x^{t}, y^{t}\right\}$ then $\partial \varepsilon_{t}=\left[x^{t}, c_{1}\right] \cup\left[y^{t}, c_{2}\right]$ with $c_{1}, c_{2} \in \Lambda$. It is a necessity that c_{1} and c_{2} are either a or b as we require $\partial \varepsilon_{t}$ to be of smallest length and $d\left(x_{0}, \Lambda\right)=d\left(x_{0}, a\right)=d\left(x_{0}, b\right)$. Without loss of generality, suppose $x^{t}, y^{t} \in \Gamma \cap \overline{x_{0} b}$. If $c_{1}=a$, then $\left[x^{t}, a\right]$ cuts $\partial \varepsilon_{f(a)}$ which is impossible. Then, $\partial \varepsilon_{t}=\left[x^{t}, b\right] \cup\left[y^{t}, b\right]$. By the triangular inequality, $d\left(x^{t}, y^{t}\right)<d\left(x^{t}, b\right)+d\left(y^{t}, b\right)$. Contradiction as $\partial \varepsilon_{t}$ must be of least length. Therefore, on the arc $\overline{a x_{0}}$ the level sets are $\partial \varepsilon_{t}=\left[x^{t}, y^{t}\right]$ with the limiting level set $\left[a, x_{0}\right]$ and on the arc $\overline{x_{0} b}$ the level sets are $\partial \varepsilon_{t}=\left[x^{t}, y^{t}\right]$ with the limiting level set $\left[x_{0}, b\right]$. We then get $\partial \varepsilon_{f(a)}=\left[a, x_{0}\right] \cup\left[x_{0}, b\right]$ boundary of the set $\{u=f(a)\}$ with $|\{u=f(a)\}|>0$.
By the same argument as the proof of 1 ., we have uniqueness of the level sets and uniqueness of the the set $\{u=f(a)\} \Rightarrow u=u_{0}$.
3. Let u be any continuous solution on Ω to the LGP. Since f takes each value exactly once then for each $t \in\left(\inf _{\Gamma} f, \sup _{\Gamma} f\right)$; there exists a unique $x^{t} \in \Gamma$; $f\left(x^{t}\right)=t$.

Then, $\partial \varepsilon_{t}$ must have an endpoint x^{t}, but the other endpoint $y \in \Lambda$. Then, $\partial \varepsilon_{t}=$ $\left[x^{t}, y\right]$ for $y \in \Lambda$.
For points x^{t} close to a, $\partial \varepsilon_{t}=\left[x^{t}, a\right]$. As points get away from a, then $\partial \varepsilon_{t}=\left[x^{t}, y\right]$ for some $y \in \Lambda$. Similar reasoning for the point b .

Since D is atmost countable, then $\exists x \in D, \exists$ atleast $y_{1}, y_{2} \in \Lambda ; d\left(x, y_{1}\right)=d\left(x, y_{2}\right)=$ $d(x, \Lambda)$. Let $f(x)=\tau$. Then $\partial \varepsilon_{\tau}=\left[x, y_{1}\right] \cup\left[x, y_{2}\right]$ and is the boundary of the set $\{u=\tau\} \Rightarrow|\{u=\tau\}|>0$. Same argument of the above 2 proofs, we prove the uniqueness of u_{0}.

Remark 9. [10] We know if u solution to LGP and Ω convex then $\partial \varepsilon_{t} \cap \partial \Omega \subset$ $f^{-1}(t)$ by lemma 3.3.7. Take $\Omega=[0,1] \times[0,1]$ a square and $f=0$ on 3 sides of $\partial \Omega$ and f a bell shaped curve on the bottom side of $\partial \Omega$.
Suppose there exist a continuous solution on $\bar{\Omega}$ to LGP. Then, $\forall t>0$, by lemma 3.3.7, $\partial \varepsilon_{t}$ will be subintervals of the bottom side of $\partial \Omega$ and they will overlap. This is impossible as $\partial \varepsilon_{t} \cap \partial \varepsilon_{s}=\phi \forall s \neq t$. Hence, there exists no continuous solution on $\bar{\Omega}$ to LGP.

The problem was indeed in the convexity of Ω which led to the overlapping of level sets. Therefore, to ensure a continuous solution for all functions f, strict convexity of Ω is a must.

3.4 Special case

The above solution to the LGP exists when Ω strictly convex with lipchitz boundary, and f continuous and bounded on $\partial \Omega$.

Here, we will take a special case of a convex set and prove the existence of a unique continuous solution for the LGP with f continuous and satisfies a monotonicity condition.

Then, for any convex set, one can proceed in a similar manner as for the special case that we will take and guarantee the existence of the LGP for f continuous and monotone.

We take Ω be a rectangle; $\Omega=[-L, L] \times[-h, h]$ which is a convex but not strictly convex domain.
Let $h_{1}=[-L, L] \times\{h\}$
$h_{2}=[-L, L] \times\{-h\}$
$v_{1}=\{L\} \times[-h, h]$
$v_{2}=\{-L\} \times[-h, h]$
and let $\Gamma_{1}=\left\{h_{1}, v_{1}\right\}$
$\Gamma_{2}=\left\{h_{2}, v_{2}\right\}$
Now let f to be strictly monotone on Γ_{1} and Γ_{2}.
Without loss of generality, suppose f is strictly increasing on each Γ_{1} and Γ_{2}.

Theorem 3.4.1. [3] For Ω and f as stated, there exists $u \in C(\bar{\Omega})$; u is a unique solution to

$$
\min \left\{\int_{\Omega}|D u| ; u \in B V(\Omega), T_{\partial \Omega} u=f\right\}
$$

Before we illustrate the proof of the theorem given by [3], we will state a lemma:

Lemma 3.4.1. Let Ω be an open set of class C^{1}. Then there exists a surjective continuous linear map, denoted by γ_{0} that sends $W^{1,1}(\Omega) \longrightarrow L^{1}(\partial \Omega)$. When $U \in$ $W^{1,1}(\Omega) \cap C(\bar{\Omega})$, this trace coincides with the restriction to the boundary. Also, $\exists C>0 ; \forall u \in L^{1}(\partial \Omega), \exists U \in W^{1,1}(\Omega), \gamma_{0}(U)=u$ and $\|U\|_{W^{1,1}(\Omega)} \leqslant C\|u\|_{L^{1}(\partial \Omega)}$

Proof. We will proceed in the proof for theorem 3.4.1 by several steps:
$\underline{\text { Step } 1}$ We approximate Ω by a sequence Ω_{n} of bounded strictly convex domains in a way Ω_{n} is made up of 4 circular arcs passing through the vertices of Ω and $d\left(x, \partial \Omega_{n}\right) \leqslant \frac{1}{n} \forall x \in \partial \Omega$.

We then have $\partial \Omega_{n}=\partial \Omega+\nu \gamma_{n}$ with ν unit outer normal to $\partial \Omega$ and γ_{n} a smooth function; $0 \leqslant \gamma_{n} \leqslant \frac{1}{n}$.

We also define for $x \in \partial \Omega, f_{n}\left(x+\nu \gamma_{n}(x)\right):=f(x)$ which remains to be continuous on $\partial \Omega_{n}$ since f is so.

We now define the LGP :
$\min \left\{\int_{\Omega_{n}}|D u| ; u \in B V\left(\Omega_{n}\right), T_{\partial \Omega_{n}} u=f_{n}\right\}$
From theorem 3.3.1, we know that this problem has a unique continuous solution on $\overline{\Omega_{n}}$ which we will denote by v_{n}.

Step 2: We now restrict v_{n} to Ω by setting $u_{n}=v_{n} \mathbb{1}_{\Omega}$.
We now prove $u_{n} \in B V(\Omega)$ and $u_{n} \longrightarrow u$ in $L^{1}(\Omega)$.

As f_{n} is continuous on $\partial \Omega_{n}$, then there exists $F_{n} \in W^{1,1}\left(\Omega_{n}\right) ; F_{n}=f_{n}$ on $\partial \Omega_{n}$ and $\left\|D F_{n}\right\|_{L^{1}\left(\Omega_{n}\right)} \leqslant C_{n}\left\|f_{n}\right\|_{L^{1}\left(\partial \Omega_{n}\right)}$. Then,

$$
\int_{\Omega}\left|D u_{n}\right| \leqslant \int_{\Omega_{n}}\left|D v_{n}\right| \leqslant\left\|D F_{n}\right\|_{L^{1}\left(\Omega_{n}\right)} \leqslant C_{n}| | f_{n} \|_{L^{1}\left(\partial \Omega_{n}\right)}
$$

But

$$
C_{n}\left\|f_{n}\right\|_{L^{1}\left(\partial \Omega_{n}\right)} \leqslant C_{n}\left\|f_{n}\right\|_{L^{\infty}\left(\partial \Omega_{n}\right)}\left|\partial \Omega_{n}\right| \leqslant C\left\|f_{n}\right\|_{L^{\infty}\left(\partial \Omega_{n}\right)}<\infty
$$

$\Rightarrow \int_{\Omega}\left|D u_{n}\right|<\infty$
$\Rightarrow u_{n} \in B V(\Omega)$
By compactness of $B V$ in L^{1}, there exists a subsequence still denoted by u_{n} and a function u such that $u_{n} \longrightarrow u$ in $L^{1}(\Omega)$
By semicontinuity, we get $\int_{\Omega}|D u| \leqslant \liminf \int_{\Omega}\left|D u_{n}\right|<\infty$
$\Rightarrow u \in B V(\Omega)$

Step 3 We now prove u obtained in Step 2 is a least gradient function for some function g_{n} such that $T_{\partial \Omega} u=g_{n}$ by proving u_{n} is a least gradient function satisfying $T_{\partial \Omega} u_{n}=g_{n}$
In fact, for $z \in \partial \Omega, g_{n}(z)=\lim _{y \longrightarrow z, y \in \Omega} u_{n}(y)=\lim _{y \longrightarrow z, y \in \Omega} v_{n}(y)=v_{n}(z)$ as $v \in C\left(\overline{\Omega_{n}}\right)$.

Then, by section 3.2 proposition 6 , as v_{n} is a least gradient function on Ω_{n} by step 1 , then $\left.v_{n}\right|_{\Omega}=u_{n}$ is a least gradient function on Ω.
As $u_{n} \longrightarrow u$ in $L^{1}(\Omega)$ then u is a least gradient function on Ω to $\min \left\{\int_{\Omega}|D v|\right.$; $\left.v \in B V(\Omega), T_{\partial \Omega} v=g_{n}\right\}$ by proposition 3.

Step 4 We prove u converge uniformly to a continuous function w. From step 2 and 3, we have $u_{n} \longrightarrow u$ in $L^{1}(\Omega)$ and u is a least gradient function satisfying $T_{\partial \Omega} u=g_{n}$.
Then, we get $u=w$ a.e. and thus w is a continuous least gradient function satisfying $T_{\partial \Omega} w=g_{n}$.

Construction of w :

For $t \in(\min f, \max f)$, let l^{t} be the line segment joining $x^{t} \in \Gamma_{1}$ and $y^{t} \in \Gamma_{2}$; $f\left(x^{t}\right)=f\left(y^{t}\right)=t$.

In fact, the l^{t} are disjoint because otherwise, suppose $\exists t_{1}, t_{2} \in(\operatorname{minf}, \max f), l^{t_{1}}, l^{t_{2}}$ 2 line segments joining $x^{t_{1}}, y^{t_{1}}$ and $x^{t_{2}}, y^{t_{2}}$ respectively such that $l^{t_{1}}, l^{t_{2}}$ meet at some point inside Ω.

Without loss of generality, we will get $x^{t_{1}}>x^{t_{2}}$ and $y^{t_{1}}<y^{t_{2}}$. By continuty of f and being strictly increasing on each $\Gamma_{i} i=1,2$, we get $f\left(x^{t_{1}}\right)=t_{1}>f\left(x^{t_{2}}\right)=t_{2}$ and $f\left(y^{t_{1}}\right)=t_{1}<f\left(y^{t_{2}}\right)=t_{2}$. Contradiction.

Lemma 3.4.2. For $z \in \Omega$, there exists a unique l^{t} passing through $z \forall t \in$ $(\operatorname{minf}, \max f)$

Proof. Let $z \in \Omega$. Without loss of generality, take z below diagonal joining the endoints of Γ_{1}. Let s be the arc length parameter of Γ_{1}. We then get, $0 \leqslant s \leqslant\left(\int_{-L}^{L} \sqrt{1} d x+\int_{-h}^{h} \sqrt{1} d y\right)=2(L+h)$.

Let $x(s)$ be a parametrization of Γ_{1}.
For each s , let $l(x(s), z)$ be the line segment passing through z and touching Γ_{2} at $y(s)$.

We then have $y(s)$ continuous.
Now let $\lim _{s \longrightarrow 0^{+}} f(x(s))=\min f$, and $\lim _{s \longrightarrow(2(L+h))^{+}} f(x(s))=\max f$
Then, $\lim _{s \rightarrow 0^{+}}(f(x(s))-f(y(s)))=\operatorname{minf}-\lim _{s \rightarrow 0^{+}} f(y(s)) \leqslant 0$
and $\lim _{s \longrightarrow(2(L+h))^{+}}(f(x(s))-f(y(s)))=\max f-\lim _{s \longrightarrow(2(L+h))^{+}} f(y(s)) \geqslant 0$
By intermediate value theorem, as $f(x(s))-f(y(s))$ is continuous, there exists a unique $s_{0} ; l^{t}=\left[x\left(s_{0}\right), y\left(s_{0}\right)\right] ; z \in l^{t}$ and $f\left(x\left(s_{0}\right)\right)=f\left(y\left(s_{0}\right)\right)=t$

We now define $w: \Omega \mapsto \mathbb{R}$ defined by:

$$
w(x)=t \text { for every } x \in \Omega
$$

By lemma 3.4.2, this map is well defined and bijective.
Indeed, one can prove w to be continuous on Ω resulting with the inequality, $\forall x_{1}, x_{2} \in \Omega$,
$\left|w\left(x_{1}\right)-w\left(x_{2}\right)\right|=\left|t_{1}-t_{2}\right|=\left|f\left(x^{t_{1}}\right)-f\left(x^{t_{2}}\right)\right| \leqslant \omega\left(c_{1}\left|x_{1}-x_{2}\right|+c_{2} \sqrt{\left|x_{1}-x_{2}\right|}\right)$
with ω the continuity modulus of f .

Lemma 3.4.3. u_{n} converges uniformly to w
Proof. We first prove that u_{n} is a cauchy sequence.
Let $u_{l}(x)=t_{1}$ and $u_{k}(x)=t_{2}$ for $x \in \Omega$.
Since $T u_{n}=v_{n} \Rightarrow$ level sets of $u_{n}, \partial\left\{u_{n} \geqslant t\right\}$, are straight lines with endpoints on $\partial \Omega$ at which v_{n} takes the value t.

But v_{n} takes the value t along the level sets $\partial\left\{v_{n} \geqslant t\right\}$ which has endpoints on $\partial \Omega_{n}$ at which f_{n} takes the value t.
We have $x \in \partial\left\{u_{l} \geqslant t_{1}\right\}=l_{l}^{t_{1}}$ and $x \in \partial\left\{u_{k} \geqslant t_{2}\right\}=l_{k}^{t_{2}}$.
Let $l^{t_{1}}$ and $l^{t_{2}}$ be the 2 line segments as defined in this section such that f takes the value t_{1} on the endpoints of $l^{t_{1}}$ and f takes the value t_{2} on the endpoints of $l^{t_{2}}$. By construction, as the endpoints of $l^{t_{1}}$ and $l_{l}^{t_{1}}$ and the endpoints of $l^{t_{2}}$ and $l_{k}^{t_{2}} \leqslant \frac{1}{n}, n=\min \{k, l\}$ then $\forall x_{l} \in l^{t_{1}}$ and $x_{k} \in l^{t_{2}}$ we have $d\left(x_{l}, x\right)<\frac{1}{n}$ and $d\left(x_{k}, x\right)<\frac{1}{n}$.
$\left|u_{l}(x)-u_{k}(x)\right|=\left|t_{1}-t_{2}\right|=\left|w\left(x_{l}\right)-w\left(x_{k}\right)\right| \leqslant \omega\left(c_{1}\left|x_{l}-x_{k}\right|+c_{2} \sqrt{\left|x_{l}-x_{k}\right|}\right)$
But $\left|x_{l}-x_{k}\right|=\left|x_{l}-x_{k}+x-x\right| \leqslant\left|x_{l}-x\right|+\left|x_{k}-x\right| \leqslant \frac{2}{n}$
and $\sqrt{x_{l}-x_{k}} \leqslant \frac{\sqrt{2}}{\sqrt{n}}$ with $n=\min \{k, l\}$.
$\Rightarrow\left|u_{l}(x)-u_{k}(x)\right| \leqslant \omega\left(\frac{c_{1} 2}{n}+\frac{c_{2} \sqrt{2}}{\sqrt{n}}\right) \longrightarrow 0$ as $k, l \longrightarrow \infty$.
$\Rightarrow u_{n}$ is a cauchy sequence.
As u_{n} is a cauchy sequence in $\Omega \subset R^{2}$ complete $\Rightarrow u_{n}$ converges uniformly to w.

Step 5 It remains to prove $T w=f$.

Let $z \in \partial \Omega$. We need to prove $\lim _{y \rightarrow z, y \in \Omega} w(y)=f(z)$.
Without loss of generality, suppose $z \in \Gamma_{1}$. For $y \in \Omega, \exists!l^{t_{1}}=\left[x^{t_{1}}, y^{t_{1}}\right]$ passing through $y ; w(y)=t_{1}$.
Since $z \in \partial \Omega$ then there exists a unique $l^{t_{2}}=\left[z, z^{\prime}\right]$ with $z^{\prime} \in \Gamma_{2}$ and $f(z)=$ $f\left(z^{\prime}\right)=t_{2}$.
$|w(y)-f(z)|=\left|t_{1}-t_{2}\right|=\left|f\left(x^{t_{1}}\right)-f(z)\right| \leqslant \omega\left(c_{1}|y-z|+c_{2} \sqrt{|y-z|}\right)$
So as $y \longrightarrow z$, we get $w(y) \longrightarrow f(z)$.
Hence, $T w=f$

Step 6 We prove uniqueness of the solution.
We have that, for v any solution of $\min \left\{\int_{\Omega}|D u| ; u \in B V(\Omega), T u=f\right\}$, $\partial\{v \geqslant t\} \cap \partial \Omega \subset f^{-1}(t)$.

By minimality of the level sets, then $\partial\{v \geqslant t\}=\partial\{w \geqslant t\}$ and thus $u=w$.

Remark 10. 1. In step 4 , from the inequality resultng from continuity of the the solution w, we can see that if $f \in C^{\alpha}(\partial \Omega)$ then $w \in C^{\frac{\alpha}{2}}(\bar{\Omega})$.
2. One can take f to be strictly increasing on h_{i} and constant on v_{i}. (vice versa also works) for $i=1,2$. There will exist a unique solution by proceeding in a similar manner and the level sets are constructed in the following way: $\forall x \in \Omega, \exists!l^{t}$ line segment with endpoints x^{t} on h_{1} and y^{t} on h_{2} with $t \in(\min f, \max f)$. We define the solution $w(x)=t$ and all other steps are the same as was done.
3. One can now generalize to any convex set by proceeding in a similar way as was done and constructing the level sets l^{t} that fill up Ω.

3.5 Connection between LGP and FMD

Let Ω be a plane domain with lipchitz boundary.

Definition 3.5.1. We define the problem that appears in free material design to be(FMD):

$$
\inf \left\{\int_{\Omega}|p|, p \in L^{1}\left(\Omega, \mathbb{R}^{2}\right), \operatorname{divp}=0,\left.p \cdot \nu\right|_{\partial \Omega}=g\right\}
$$

FMD is the problem of finding the least material distribution of a body to handle a load applied to its boundary. ν is the unit outer normal to $\partial \Omega$. For the normal trace to be well defined, we require Ω to belong to a special class of lipchitz domains called deformable lipchitz domain. This special class contains convex sets. Hence, we will consider Ω to be convex with $\partial \Omega$ lipchitz continuous. Also, as $p \in L^{1}(\Omega)$, divp is viewed to be in the distributional sense.

As L^{1} is not weakly* closed, we cannot ensure the existence of minimizers to the problem.

We now consider the following two problems:
$1-\min \left\{\int_{\Omega}|D u|, u \in B V(\Omega), T_{\partial \Omega} u=f\right\}$
$2-\inf \left\{\int_{\Omega}|p|, p \in L^{1}\left(\Omega, \mathbb{R}^{2}\right), \operatorname{divp}=0,\left.p \cdot \nu\right|_{\partial \Omega}=g\right\}$

As stated in previous section, Problem 1 is the least gradient problem(LGP). We will take $\partial \Omega$ to be lipchitz continuous and $f \in L^{1}(\partial \Omega)$.

As we are interested in finding solution to LGP, it is proved in [3] that a relation does exist between problem 1 and problem 2. This relation states that finding an element to one of the 2 problems leads to finding an element of the second.

Proposition 8. Let $p \in L^{1}\left(\Omega, \mathbb{R}^{2}\right)$ with divp $=0$ and Ω convex. Then there exists $u \in W^{1,1}(\Omega) \subset B V(\Omega)$ such that $p=R_{-\frac{\pi}{2}} \nabla u$.

Also, if $\left.p \cdot \nu\right|_{\partial \Omega}=g$ and $T_{\partial \Omega} u=f$, then $g=\frac{\partial f}{\partial \tau}$.

In other words, having an element in the set of problem 2 gives an element in the set of problem 1.

Theorem 3.5.1. [3] Let u be a solution to problem 1 and Ω convex. Then $q=R_{-\frac{\pi}{2}} \nabla u$ is a solution to problem 2 with $\left.q \cdot \nu\right|_{\partial \Omega}=\frac{\partial f}{\partial \tau}=g$ and divq $=0$.

Proof. Let u be a solution to problem and let $q:=R_{-\frac{\pi}{2}} \nabla u$. Let M be the solution to problem 2. We need to prove $\int_{\Omega}|q| d x=M$, $\operatorname{divq}=0,\left.q \cdot \nu\right|_{\partial \Omega}=g$.

Let p_{n} be a minimizing sequence of problem 2 such that $\int_{\Omega}\left|p_{n}\right| d x \longrightarrow M$ and $\operatorname{divp}=0, p_{n} \in L^{1}\left(\Omega, \mathbb{R}^{2}\right),\left.p_{n} \cdot \nu\right|_{\partial \Omega}=g$. By Proposition $8, \exists v_{n} \in W^{1,1}(\Omega) \subset$ $B V(\Omega) ; p_{n}=R_{\frac{-\pi}{2}} D v_{n}$ and $T v_{n}=f$.
As u solution and v_{n} is an element of the set of problem $1, M=\int_{\Omega}\left|p_{n}\right| d x=$ $\int_{\Omega}\left|D v_{n}\right| d x \geqslant \int_{\Omega}|D u| d x=\int_{\Omega}|q| d x$.
We get $M=\int_{\Omega}|q| d x$ as it is impossible for M to be strictly greater than $\int_{\Omega}|D u| d x$ since by construction it is a minimizing sequence.

Also, as q is the rotation of $D u$ by angle $\frac{-\pi}{2} \Rightarrow \operatorname{div} q=0$.

It remains to show $\left.q \cdot \nu\right|_{\partial \Omega}=g$.
As $u \in B V(\Omega)$, by approximation of BV functions $\exists w_{n} \in B V(\Omega) \cap C^{\infty}(\Omega) ; w_{n} \longrightarrow$ u in $L^{1}(\Omega)$ and $\int_{\Omega}\left|D w_{n}\right| \longrightarrow \int_{\Omega}|D u|$ as $n \longrightarrow \infty$. We set $T w_{n}=f=T u$.
Then, \exists a subsequence, still denoted by $D w_{n} ; D w_{n} \longrightarrow D u$ weakly as measures.
We set $\tilde{p_{n}}:=R_{\frac{-\pi}{2}} D w_{n}$. By Proposition 1, $\left.\tilde{p_{n}} \cdot \nu\right|_{\partial \Omega}=\frac{\partial T w_{n}}{\partial \tau}=\frac{\partial f}{\partial \tau}$.
Let $\varphi \in \operatorname{Lip}(\gamma, \partial \Omega)$ with $\gamma>1$ and Φ the extension of φ to $\operatorname{Lip}\left(R^{2}\right)$,
$<\left.q \cdot \nu\right|_{\partial \Omega}, \varphi>=<\operatorname{divq}, \Phi>+\int_{\Omega} q \nabla \Phi d x=\int_{\Omega} q \nabla \Phi d x$ as divq $=0$.
But $D w_{n} \longrightarrow D u \Rightarrow \tilde{p_{n}}=R_{\frac{-\pi}{2}} D w_{n} \longrightarrow R_{\frac{-\pi}{2}} D u=q$ weakly as measures.
Then, $<\left.q \cdot \nu\right|_{\partial \Omega}, \varphi>=\int_{\Omega} q \nabla \Phi d x=\lim _{n \rightarrow \infty} \int_{\Omega} \tilde{p_{n}} \nabla \Phi d x=\lim _{n \rightarrow \infty}<\tilde{p_{n}}$.

```
\(\left.\left.\left.\nu\right|_{\partial \Omega}, \varphi\right\rangle=\lim _{n \longrightarrow \infty}\langle g, \varphi\rangle=<g, \varphi\right\rangle\).
\(\left.\Rightarrow q \cdot \nu\right|_{\partial \Omega}=g\).
```


3.5.1 Example 1

We now show an example where the relation between FMD and LGP is used resulting in a piecewise constant not continuous function f defined on $\partial \Omega$. We find a solution to the LGP with this f.

Suppose Ω strictly convex, $\partial \Omega$ smooth. Consider the FMD problem with g a distribution $\Rightarrow g=\sum_{i=1}^{3} c_{i} \delta_{a_{i}}$ with $a_{i} \in \partial \Omega$ and $\delta_{a_{i}}$ the delta function. In other words, we apply a load on some points of $\partial \Omega$ and the rest of $\partial \Omega$ remains free.

We assume Ω is at rest, then for stability we take $\int_{\Omega} d g=0$
$\Rightarrow \int_{\Omega} d\left(\sum_{i=1}^{3} c_{i} \delta_{a_{i}}\right)=\sum_{i=1}^{3} c_{i} \int_{\Omega} \delta_{a_{i}} d x=\sum_{i=1}^{3} c_{i}=0$.
We take $c_{1}=\alpha_{1}+\alpha_{2}, c_{2}=-\alpha_{1}, c_{2}=-\alpha_{2}$ so that $\sum_{i=1}^{3} c_{i}=0$.
We parametrize $\partial \Omega$ by $s \mapsto x(s)$ for $s \in[0, L)$.
$\Rightarrow g=\alpha_{1}+\alpha_{2} x\left(s_{1}\right)-\alpha_{2} x\left(s_{2}\right)-\alpha_{1} x(0)$ with $x\left(s_{1}\right), x\left(s_{2}\right), x\left(s_{0}\right) 3$ points on $\partial \Omega$ and $x\left(s_{0}\right)=x(0)$.

By FMD and LGP relation, $g=\frac{\partial f}{\partial \tau}$.
We then get, $g= \begin{cases}0 & s \in\left[0, s_{1}\right) \\ \alpha_{1}+\alpha_{2} & s \in\left[s_{1}, s_{2}\right) \\ \alpha_{1} & s \in\left[s_{2}, L\right)\end{cases}$
f is piecewise constant and discontinuous on $x(0), x\left(s_{1}\right), x\left(s_{2}\right)$. We assume α_{1}, α_{2} are positive, and f is unique up to a constant.

We now seek a soution to the LGP, $\min \left\{\int_{\Omega}|D u| ; u \in B V(\Omega), T u=f\right\}$.

We approximate f by a continuous function f^{ϵ} such that $f=f^{\epsilon}$ everywhere except at $\left\{x ; d\left(x, x\left(s_{i}\right)<\epsilon, i=0,1,2\right\}\right.$. Then, by theorem 3.3.1, the LGP $\min \left\{\int_{\Omega}|D u| ; u \in B V(\Omega), T u=f^{\epsilon}\right\}$ has a solution which we will denote by u^{ϵ}.

Since u^{ϵ} and u^{δ} differ on a neighborhood of $x\left(s_{i}\right) i=0,1,2$,
$\left\|u^{\epsilon}-u^{\delta}\right\|_{L^{1}(\Omega)} \leqslant C\{\epsilon, \delta\}\left[\left|x\left(s_{0}\right)-x\left(s_{1}\right)\right|+\left|x\left(s_{1}\right)-x\left(s_{2}\right)\right|+\left|x\left(s_{2}\right)-x\left(s_{0}\right)\right|\right]$.
As $\epsilon, \delta \longrightarrow 0,\left\|u^{\epsilon}-u^{\delta}\right\|_{L^{1}(\Omega)} \longrightarrow 0$.
$\Rightarrow u^{\epsilon}$ is a cauchy sequence in $L^{1}(\Omega)$ and as $L^{1}(\Omega)$ Banach space $\Rightarrow u^{\epsilon} \longrightarrow u$ in $L^{1}(\Omega)$.

Since u^{ϵ} is a least gradient function and $u^{\epsilon} \longrightarrow u$ in $L^{1}(\Omega) \Rightarrow$ by proposition 3 . u is a least gradient function with $t u=f^{\epsilon}$. But as $\epsilon \longrightarrow 0, f^{\epsilon}=f$.
$\Rightarrow T u=f$
$\Rightarrow u$ is a solution to $\min \left\{\int_{\Omega}|D u| ; u \in B V(\Omega), T u=f\right\}$.

Uniqueness of the solution is claimed but still not proved rigorously. However, [3] states that uniqueness is expected to be achieved as above by constructing the level sets and claiming their uniqueness.

3.5.2 Example 2

We now represent an example given by [3] to find a solution to the LGP with Ω a rectangle and f , not satisfying a monotonicity condition, being the function resulting from the relation between LGP and FMD with the knowledge that a load g is applied on a part of $\partial \Omega$ and Ω remains at rest.

Let $\Omega=(-L, L) \times(-h, h)$ a rectangle and g a load applied on $\partial \Omega$ in the following way:
$g= \begin{cases}l_{B} & {[-b, b] \times\{-h\}} \\ l_{T} & {[-t, t] \times\{h\}} \\ 0 & \text { on the rest of } \partial \Omega\end{cases}$
where $[-b, b],[-t, t] \subset[-L, L]$

We suppose Ω is at rest such that $\int_{\partial \Omega} g d x=0$
$\Rightarrow \int_{\{h\}} \int_{-t}^{t} l_{T} d x d y+\int_{\{-h\}} \int_{-b}^{b} l_{B} d x d y=0$
$\left.\Rightarrow h l_{T} x\right|_{-t} ^{t}-\left.h l_{B} x\right|_{-b} ^{b}=2 t l_{T} h-2 b l_{B} h=0$
But $h \neq 0$ and $h\left[2 t l_{T}-2 b l_{B}\right]=0$
$\Rightarrow 2 t l_{T}=2 b l_{B}$.

By FMD and LGP relation, $\exists f \in L^{1}(\partial \Omega) ; g=\frac{\partial f}{\partial \tau}$.
As we want f to be continuous, we proceed in the following way:
As $g=0$ on $\{-L\} \times[-h, h] \Rightarrow \frac{\partial f}{\partial y}=0 \Rightarrow f(-L, y)=C$ with C constant. We take $C=0$.
$\Rightarrow f(x, y)=0$ on $\{-L\} \times[-h, h]$.
By continuity of f, and as g remains to be 0 we get $f(x, y)=0$ on $[-L,-b] \times\{-h\}$.
On $[-b, b] \times\{-h\}, g=l_{B} \Rightarrow f(x, y)=l_{B} x+k(y)$. By continuity of $f, f(-L,-h)=$
$f(-b,-h)=0 \Rightarrow-l_{B} b+k(y)=0 \Rightarrow k(y)=l_{B} b$.
$\Rightarrow f(x, y)=l_{B} x+b l_{B}$ on $[-b, b] \times\{-h\}$.
As we require f to be continuous and $g=0$ on $[b, L] \times\{-h\}$ and on $\{L\} \times[-h, h]$ and $f(b,-h)=2 b l_{B} \Rightarrow f(x, y)=2 b l_{B}$ on $[b, L] \times\{-h\}$ and on $\{L\} \times[-h, h]$.

We proceed in a similar way on $[-L, L] \times\{h\}$ to get:
$f(x, y)=0$ on $[-L,-t] \times\{h\}$,
$f(x, y)=l_{T} x+t l_{T}$ on $[-t, t] \times\{h\}$
$f(x, y)=2 t l_{T}$ on $[t, L] \times\{h\}$ and $\{L\} \times[-h, h]$.
In fact, as $2 t l_{T}=2 b l_{B}$ we then guarentee the continuity of f .

Conclusion, $f(x, y)= \begin{cases}0 & \text { on }\{-L\} \times[-h, h] \text { and }[-L,-t] \times\{h\} \text { and }[-L,-b] \times\{-h\} \\ l_{B} x+b l_{B} & \text { on }[-b, b] \times\{-h\} \\ l_{T} x+t l_{T} & \text { on }[-t, t] \times\{h\} \\ 2 b l_{B} & \text { on }[b, L] \times\{-h\} \text { and }\{L\} \times[-h, h] \\ 2 \mathrm{tl}_{T} & \text { on }[t, L]\{h\}\end{cases}$
We now aim on finding a solution to the LGP, with boundary data f.

If we take $t=b=L$ then f is strictly increasing on h_{1}, h_{2} and constant on v_{1}, v_{2} where $h_{1}, h_{2}, v_{1}, v_{2}$ are defined in section 3.4.

Then, by theorem 3.4.1, there exists a unique continuous solution to the LGP.
However, we have that f is strictly increasing on $[-t, t] \times\{h\}$ and on $[-b, b] \times\{-h\}$, which implies f attains each value at exactly 2 points, one in $[-t, t] \times\{h\}$ and one in $[-b, b] \times\{-h\}$, except for the minimum and maximum of f which are attained at more than 2 points.

We extend f to a function $f_{\epsilon}=f+k_{\epsilon}$ continuous and strictly increasing on h_{1} and h_{2} and constant on v_{1} and v_{2} with
$k_{\epsilon}(x, y)= \begin{cases}-\epsilon & \text { on }\{-L\} \times[-h, h] \\ 0 & \text { on }[-b, b] \times\{-h\} \text { and }[-t, t] \times\{h\} \\ (x+t) \frac{\epsilon}{L-t} & \text { on }[-L,-t] \times\{h\} \\ (x+b) \frac{\epsilon}{L-b} & \text { on }[-L,-b] \times\{-h\} \\ (x-b) \frac{\epsilon}{L-b} & \text { on }[b, L] \times\{-h\} \\ (x-t) \frac{\epsilon}{L-t} & \text { on }[t, L] \times\{h\} \\ \epsilon & \text { on }\{L\} \times[-h, h]\end{cases}$
By theorem 3.4.1, there exists unique $u_{\epsilon} \in C(\bar{\Omega})$, solution to the LGP with $T u_{\epsilon}=f_{\epsilon}$ on $\partial \Omega$.

Denote by P_{1} the polygon with $\partial P_{1}=\{\{-L\} \times[-h, h],[-L,-t] \times\{h\},[-L,-b] \times$ $\{-h\}$, and the line segment l_{1} with $\left.\partial l_{1}=\{(-t, h),(-b,-h)\}\right\}$ and P the polygon with $\partial P=\left\{l_{1},[-t, t] \times\{h\},[-b, b] \times\{-h\}\right.$, and the line segment l_{2} with $\partial l_{2}=$ $\{(b, h),(t, h)\}\}$ and P_{2} the polygon with $\partial P_{2}=\left\{l_{2},[t, L]\{h\},[b, L] \times\{-h\},\{L\} \times\right.$ $[-h, h]\}\}$.

By construction of level sets as in section 3.4, we now know that every level set joins a point in h_{1} to a point in h_{2} and u_{ϵ} takes the value on each level set same as the value of f_{ϵ} on the endpoints of the level set. Therefore, as
$-\epsilon \leqslant f_{\epsilon} \leqslant 0$ on $\partial P_{1}-l_{1}$,
$0 \leqslant f_{\epsilon} \leqslant 2 b l_{B}$ on $\partial P-\left\{l_{2}, l_{1}\right\}$ and
$2 b l_{B} \leqslant f_{\epsilon} \leqslant 2 b l_{B}+\epsilon$ on $\partial P_{2}-l_{2}$.

Then:
$-\epsilon \leqslant u_{\epsilon} \leqslant 0$ on P_{1}
$0 \leqslant u_{\epsilon} \leqslant 2 b l_{B}$ on P
$2 b l_{B} \leqslant u_{\epsilon} \leqslant 2 b l_{B}+\epsilon$ on P_{2}

We now set $u= \begin{cases}0 & \text { on } P_{1} \\ \mathrm{u}_{\epsilon} & \text { on } P \\ 2 \mathrm{bl}_{B} & \text { on } P_{2}\end{cases}$
As u_{ϵ} is independent of ϵ on P then it is possible to take $u=u_{\epsilon}$ on P.
It is evident that u is continuous on $\bar{\Omega}$.
I now prove u_{ϵ} converge in L^{1} to u because as u_{ϵ} is a least gradient function and if $u_{\epsilon} \longrightarrow u$ in $L^{1}(\Omega)$ then u is a least gradient function. In fact,
$-\epsilon \leqslant u_{\epsilon}-u \leqslant 0$ on P_{1},
$u_{\epsilon}-u=0$ on P,
$0 \leqslant u_{\epsilon}-u \leqslant \epsilon$ on P_{2}
$\Rightarrow\left|u-u_{\epsilon}\right| \leqslant \epsilon$ in Ω
$\Rightarrow u_{\epsilon}$ converges uniformly to u in Ω
$\Rightarrow u_{\epsilon} \longrightarrow u$ in $L^{1}(\Omega)$
$\Rightarrow u$ is least gradient function.

It remains to show u has the correct trace $T u=f$ on $\partial \Omega$. In fact,
On $P: T u=T u_{\epsilon}=u_{\epsilon}=f_{\epsilon}=f$.
On P_{1} : Let $z \in\{-L\} \times[-h, h]$ or $[-L,-t] \times\{h\}$ or $[-L,-b] \times\{-h\}$,
$\lim _{y \longrightarrow z, y \in \Omega} u(x, y)=\lim _{y \longrightarrow z, y \in \Omega} 0=0=f(z)$
On P_{2} : Let $z \in[t, L] \times\{h\}$ or $[b, L] \times\{-h\}$ or $\{L\} \times[-h, h]$
$\lim _{y \longrightarrow z, y \in \Omega} u(x, y)=\lim _{y \longrightarrow z, y \in \Omega} 2 b l_{B}=2 b l_{B}=f(z)$

Chapter 4

Constrained Least Gradient
 Problem

Based on [10], we now consider a rod and an external force applied on the rod. We suppose the rod has an exterior constant cross section Ω. Our aim is to find the cross section with least area that will resist the load without deforming. We can consider this problem as a 2-dimensional problem with stress satisfying a yield condition. Without loss of generality, we suppose the stress never exceeds 1 in magnitude or else the cross section yields plastically.

We may vary the cross sections by removing material from Ω and aim for the cross section with the least area and the stress not exceeding 1.

However, we instead fix Ω and vary the stresses in Ω and remove material where the stress is zero.

We can translate this problem into the following:
We let u be a function defined on $\bar{\Omega}$ that gives a stress $R_{-\frac{\pi}{2}} \nabla u$ i.e. rotation of ∇u by angle $-\frac{\pi}{2}$. We let f be a function defined on $\partial \Omega$ i.e. the load applied on $\partial \Omega$.
We define $w:[0,1] \mapsto \mathbb{R}$ by $t \mapsto w(t)= \begin{cases}1 & \text { for } \mathrm{t} \neq 0 \\ 0 & \text { for } \mathrm{t}=0\end{cases}$

Our problem is then:

$$
\min \left\{\int_{\Omega} w(|\nabla u|) ;|\nabla u| \leqslant 1 \text { a.e. in } \Omega, u=f \text { on } \partial \Omega\right\}
$$

We know that $\int_{\Omega} w(|\nabla u|) \geqslant 0$ since $|\nabla u| \geqslant 0$.
For $|\nabla u|=0 \Rightarrow \min \left\{\int_{\Omega} w(|\nabla u|) ;|\nabla u| \leqslant 1\right.$ a.e. in $\Omega, u=f$ on $\left.\partial \Omega\right\}=0$.
For $|\nabla u| \neq 0, w(|\nabla u|)=1 \Rightarrow \int_{\Omega} w(|\nabla u|) d A=\operatorname{Area}(\Omega)$.
However, the integrand is nonconvex, and by a well known phenomenon in mathematics, it is a barrier to finding the existence of a solution. We then convexify w by finding the greatest convex function smaller than w. It turns out that the convexification of w is $\tilde{w}(t)=t$.

We now solve the problem:

$$
\min \left\{\int_{\Omega} \tilde{w}(|\nabla u|) ;|\nabla u| \leqslant 1 \text { a.e. in } \Omega, u=f \text { on } \partial \Omega\right\}
$$

As $\tilde{w} \leqslant w \Rightarrow \int_{\Omega} \tilde{w} \leqslant \int_{\Omega} w \Rightarrow$ by attaining a solution to the convexified problem, we attain an infimum, might not be a minimum, to our original problem.

We realize that the convexified problem is the least gradient problem with an additional constraint.

Definition 4.0.1. We define the constrained least gradient problem to be:

$$
\min \left\{\int_{\Omega}|\nabla u| ;|\nabla u| \leqslant 1 \text { a.e. in } \Omega, u=f \text { on } \partial \Omega\right\}
$$

with f lipchitz continuous on $\partial \Omega$ satisfying $|f(p)-f(q)| \leqslant d_{\Omega}(p, q) \forall p, q \in \partial \Omega$ where $d_{\Omega}(p, q)=\inf \{$ length of $\gamma\}$ with γ any path joining p to q lying in $\bar{\Omega}$.

The main ingredient in the method of solution is to start by studying the sets $\{x \in \Omega ; u(x) \geqslant t\}$, and then go on to studying their boundaries, with a view to showing that those sets solve some minimum problem, in a well-defined notion of perimeter.

Now if Ω is a convex set, then the condition $|\nabla u| \leqslant 1$ a.e. in Ω in equivalent to $|u(x)-u(y)| \leqslant|x-y|$ for all $x, y \in \Omega$, as can be easily seen, since the line segment joining x to y lies completely in Ω. If Ω is not convex, we can consider all paths in Ω joining x to y, and then we will have that $|u(x)-u(y)| \leqslant\{$ length of the shortest path in Ω joining x to $y\}$.

4.1 Characterization of level sets

Unlike the LGP, level sets of the solution to the constrained LGP need not to be minimal surfaces due to the constraint $|\nabla u| \leqslant 1$. Indeed, consider a 2-dimensional case with $\Omega \subset \mathbb{R}^{2}$. Let γ_{t} denote the level curve of u at $t \in \mathbb{R}$. The boundary points at which $u=f=t$ must belong to γ_{t} and along γ_{t} one has $u=t$. γ_{t} must avoid all balls of center $p \in \partial \Omega$ and radius $|f(p)-t|$ because then the distance between the points that give $u=t$ inside the ball and p is less than $|f(p)-t|$ i.e. $|x-p| \leqslant|u(p)-u(x)|$ for $x \in \gamma_{t}$, contradicting the fact that $|\nabla u| \leqslant 1$. Hence, γ_{t} may not need to be a straight line and thus a minimal surface. Indeed, each level curve must avoid a set which is a union of open disks.

We shall now illustrate an example in \mathbb{R}^{2} given by [11] aiming for one to see the difference in the construction of level sets between the LGP and the constrained LGP with boundary data deduced by the connection between FMD and LGP.

Example Consider $\Omega=[0,1] \times[0,1]$ to be the unit square. Consider the FMD problem with g defined on $\partial \Omega$ in the following way: $g=1$ on the bottom side, $g=-1$ on the left side, and $g=0$ on the right and top side.
By the connection between FMD and LGP, one has $g=\frac{\partial f}{\partial \tau} \Rightarrow f=x$ on the bottom side, $f=y$ on the left side, and $f=1$ on the right and top side.

As seen in previous chapter, without the constraint $|\nabla u| \leqslant 1$, one gets the LGP with level sets as straight lines. As f takes each value exactly twice one on the bottom side and one on the left side, level sets are straight lines joining these 2
points $(t, 0)$ and $(0, t)$ for each t between 0 and 1 . The lines equations will then be $y+x=t$. Also, one has u constant with $u=1$ in the square with $y+x \geqslant 1$. As u takes a constant value t along each level set joining $(t, 0)$ and $(0, t)$, then one deduces the unique solution to the LGP is $u(x, y)=x+y$.

However, $|\nabla u|=\sqrt{2} \geqslant 1$.
Therefore, for the constrained LGP with such boundary data f it is impossible for u to have level sets as straight lines as they must avoid all disks $B(x,|f(x)-t|)$ for each boundary point x. One then gets that the level sets are circular arcs joining the 2 points $(t, 0)$ and $(0, t)$ with center 0 and radius t. Also, u will be constant in the square above the circular arc center 0 radius 1 .

So in case Ω is convex we may consider what appears to be a slightly weaker condition than $|\nabla u| \leqslant 1$ a.e. in Ω. Namely we suppose that the condition $|u(x)-u(y)| \leqslant|x-y|$ holds for all $x \in \partial \Omega$, and $y \in \Omega$. The corresponding problem is then

$$
\left\{\int_{\Omega}|\nabla v|, v=f \text { on } \partial \Omega,|v(x)-v(y)| \leqslant|x-y| \text { holds for all } x \in \partial \Omega, y \in \Omega\right\}
$$

It turns out that an analysis of this problem produces a unique solution of the constrained problem.

Now let Ω be a bounded domain in \mathbb{R}^{n}, and let f be a given function defined on its boundary $\partial \Omega$. Suppose that there is a function v defined on Ω and satisfying the following conditions:
(i) $v=f$ on $\partial \Omega$; (ii) if $x \in \partial \Omega$, and $y \in \Omega$, then $|u(x)-u(y)| \leqslant|x-y|$.

For such function v we aim on to study the sets $A_{t}=\{x \in \Omega ; v(x) \geqslant t\}$, with t a real number.

Fix $t \in \mathbb{R}$, and compare, for all points $p \in \partial \Omega$, the values $f(p)$ of the boundary function f with the real number t.

Case 1: Suppose that there is a point $p \in \partial \Omega$ such that $f(p)<t$. Then $t-f(p)>0$,
and we concentrate on a neighborhood of p of radius $t-f(p)>0$. If $x \in \Omega$ and is also in this neighborhood, then $|x-p|<t-f(p)$. Then by condition (ii) on v we have, since $v(p)=f(p)$,

$$
v(x)-v(p)=v(x)-f(p) \leqslant|x-p|<t-f(p)
$$

which implies that $v(x)<t$, and hence such a point $x \notin A_{t}$. In particular, the point p itself is not in A_{t}. This also implies that if $M=\max \{f(p) ; p \in \partial \Omega\}$ and $t>M$, then $f(p)<t$ for all point $p \in \partial \Omega$, and so the boundary of Ω can be covered by an open set (a union of neighborhoods) which does not intersect that particular A_{t}. Later on, we shall be interested in the largest such possible set. Case 2: Suppose there is a point $p \in \partial \Omega$ such that $f(p) \geqslant t$. Then $f(p)-t \geqslant 0$ and if $f(p)-t>0$, we concentrate on a neighborhood of p of radius $f(p)-t$. If $x \in \Omega$ and is also in this neighborhood, then $|x-p|<f(p)-t$, and again we have

$$
v(p)-v(x)=f(p)-v(x) \leqslant|p-x|<f(p)-t
$$

which implies that $v(x) \geqslant t$, and so $x \in A_{t}$. This also implies that if $m=\min \{f(p) ; p \in \partial \Omega\}$, and $t \leqslant m$, then $f(p) \geqslant t$ for all points $p \in \partial \Omega$, and so the entire boundary of Ω along with an open set containing it will lie in A_{t}. Once again we are interested in the largest such possible set.

The previous analysis leads naturally to the introduction of 2 sets as follows: given $t \in R$, define two sets L_{t} and M_{t} by
$L_{t}:=\{x \in \Omega ; \exists p \in \partial \Omega, f(p)-t \geqslant 0,|p-x| \leqslant f(p)-t\}=\left\{\cup_{p \in \partial \Omega} \bar{B}(p, f(p)-t) ; f(p) \geqslant t\right\}$
$M_{t}:=\{x \in \Omega ; \exists p \in \partial \Omega, f(p)-t<0,|p-x|<t-f(p)\}=\left\{\cup_{p \in \partial \Omega} \bar{B}(p, t-f(p)) ; f(p)<t\right\}$

Proposition 9. [10] Suppose that v satisfies the conditions (i)v $=f$ on $\partial \Omega$, (ii) if $x \in \partial \Omega$, and $y \in \Omega$, then $|v(x)-v(y)| \leqslant|x-y|$. Then, $L_{t} \subset A_{t}$, and $A_{t} \cap M_{t}=\varnothing$ for each real t.

Now for a given function v satisfying the conditions of the proposition, and for each real t, we seek that subset $E \subset \Omega$, which contains L_{t} does not intersect M_{t} and has smallest perimeter i.e. we consider the problem

$$
\begin{equation*}
\min \left\{P(E) ; L_{t} \subset E, E \cap M_{t}=\varnothing, E \subset \Omega\right\} \tag{4.1}
\end{equation*}
$$

One can show that this problem always has a solution, but not necessarily a unique solution. To obtain a unique solution, we search for those sets which have largest possible measure i.e.

$$
\begin{equation*}
\max \{|E| ; E \text { solves the above problem }\} \tag{4.2}
\end{equation*}
$$

Now this problem has a unique solution, denoted by ε_{t} and we expect that the boundary of this set corresponds with the level set $v=t$.

Another important characterization of the level sets is that the construction of $\partial \varepsilon_{t}$ is independent of the construction of $\partial \varepsilon_{s}$.
Indeed, we we shall present the proof of result based on reference [4] that the distance between $\partial \varepsilon_{t}$ and $\partial \varepsilon_{s}$ is no less than $|t-s|$ for $s<t$.

First we extend (4.1) and (4.2) from Ω to R^{n}.
We now consider the following extended problems

$$
\begin{equation*}
\min \left\{P\left(E, R^{n}\right) ; L_{t} \subset E, \mathscr{M}_{t} \cap E=\varnothing, E-\Omega=L_{t}-\Omega\right\} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \{|E| ; E \text { solves }(4.3)\} \tag{4.4}
\end{equation*}
$$

We denote the solution of (4.4) by E_{t}.
Remark 11. (4.1) and (4.3) are equivalent since

$$
P\left(E, R^{n}\right)=P(E, \Omega)+H^{n-1}\left(\partial^{*} L_{t}-\Omega\right)
$$

such that $E_{t} \cap \Omega=\varepsilon_{t}$

Lemma 4.1.1. If $s<t$, then $E_{t} \subset E_{s}$
Lemma 4.1.2. Let $s<t$. Let $\eta \in \mathbb{R}^{n},|\eta| \leqslant t-s$. Then $E_{t}+\eta \subset E_{s}$.
Proof. We first denote $L_{t}^{\prime}:=L_{t}+\eta, M_{t}^{\prime}:=M_{t}+\eta, \Omega^{\prime}:=\Omega+\eta$.
We consider the problem:

$$
\begin{gather*}
\min \left\{P(E) ; L_{t}^{\prime} \subset E, \AA_{t}^{\prime} \cap E=E, E-\Omega^{\prime}=L_{t}^{\prime}-\Omega^{\prime}\right\} \tag{4.5}\\
\max \{|E| ; E \text { solves }(4.5)\} \tag{4.6}
\end{gather*}
$$

(4.5) and (4.6) have a unique solution which we will denote by E_{t}^{\prime}.

We have $L_{t}^{\prime} \subset L_{s}$ since: for $x \in L_{t}^{\prime}, x=a+\eta, a \in L_{t} \Rightarrow \exists p \in \partial \Omega ;|a-p| \leqslant f(p)-t$
$\Rightarrow \exists p \in \partial \Omega ;|a-p|+|\eta| \leqslant f(p)-t+|\eta| \Rightarrow \exists p \in \partial \Omega ;|a-p+\eta| \leqslant f(p)-t+t-s=$
$f(p)-s$. As $f(p) \geqslant t>s \Rightarrow f(p)-s \geqslant 0$
$\Rightarrow \exists p \in \partial \Omega ;|x-p| \leqslant f(p)-s \Rightarrow x \in L_{s}$.

Let $E=E_{t}^{\prime} \cap E_{s}$
We need to prove, $L_{t}^{\prime} \subset E, E \cap ﹎{t}^{\prime}=E, E-\Omega^{\prime}=L_{t}^{\prime}-\Omega^{\prime}$

- $L_{t}^{\prime} \subset L_{s} \subset E_{s}$

$$
\begin{aligned}
& L_{t}^{\prime} \subset E_{t}^{\prime} \\
& \Rightarrow L_{t}^{\prime} \subset E_{t}^{\prime} \cap E_{s}=E
\end{aligned}
$$

- We have $E \subset E_{t}^{\prime}$
$\Rightarrow E \cap \grave{M}_{t}^{\prime} \subset E_{t}^{\prime} \cap \dot{M}_{t}^{\prime}$
$\Rightarrow E \cap M_{t}^{\prime}=\varnothing$ as $E_{t}^{\prime} \cap \stackrel{\circ}{M}_{t}^{\prime}=\varnothing$
- As $L_{t}^{\prime} \subset E \subset E_{t}^{\prime}$

$$
\begin{aligned}
& \Rightarrow L_{t}^{\prime}-\Omega^{\prime} \subset E-\Omega^{\prime} \subset E_{t}^{\prime}-\Omega^{\prime}=L_{t}^{\prime}-\Omega^{\prime} \\
& \Rightarrow E-\Omega^{\prime}=L_{t}^{\prime}-\Omega^{\prime}
\end{aligned}
$$

Hence, $E=E_{t}^{\prime} \cap E_{s}$ competitor of E_{t}^{\prime} in (4.5)
$\Rightarrow P\left(E, R^{n}\right) \geqslant P\left(E_{t}^{\prime}, R^{n}\right)$

Let $F=E_{t}^{\prime} \cup E_{s}$

We have $M_{s} \subset M_{t}^{\prime}$ since: let $x \in M_{s} \Rightarrow \exists p \in \partial \Omega ; s-f(p) \geqslant 0$ and $|x-p| \leqslant s-f(p)$.
Let $a=x-\eta$.
We claim $a \in M_{t} .|p-a|=|p-(x-\eta)|=|p-x+\eta| \leqslant|p-x|+|\eta| \leqslant$ $s-f(p)+|\eta| \leqslant s-f(p)+t-s=t-f(p)$.
$\Rightarrow x=a+\eta$ with $a \in M_{t} \Rightarrow x \in M_{t}^{\prime}$.

As $M_{s} \subset M_{t}^{\prime} \Rightarrow \grave{M}_{s} \subset M_{t}^{\prime}$.
But \grave{M}_{t}^{\prime} is the biggest open set in $M_{t}^{\prime} \Rightarrow \grave{M}_{s} \subset M_{t}^{\prime}$

We need to prove $L_{s} \subset F, F \cap \dot{M}_{s}=\varnothing, F-\Omega=L_{s}-\Omega$

- $L_{s} \subset E_{s} \subset E_{s} \cup E_{t}^{\prime}=F$
- $F \cap \grave{M}_{s}=\left(E_{s} \cup E_{t}^{\prime}\right) \cap \grave{M}_{s}=\left(E_{s} \cap \stackrel{\circ}{M}_{s}\right) \cup\left(E_{t}^{\prime} \cap \grave{M}_{s}\right)$

But $E_{s} \cap \stackrel{\circ}{M}_{s}=E$ as E_{s} solves (4.3).
Since $\stackrel{\circ}{M}_{s} \subset \stackrel{\circ}{M}_{t}^{\prime} \Rightarrow E_{t}^{\prime} \cap \stackrel{\circ}{M}_{s} \subset E_{t}^{\prime} \cap \stackrel{\circ}{M}_{t}^{\prime}=\varnothing$
$\Rightarrow E_{t}^{\prime} \cap \stackrel{\circ}{M}_{s}=\varnothing$
Hence, $F \cap \stackrel{\circ}{M}_{s}=\varnothing$

- $L_{s} \subset E_{s} \Rightarrow L_{s}-\Omega \subset E_{s}-\Omega \subset F-\Omega$

It remains to show $F-\Omega \subset L_{s}-\Omega$
$F-\Omega=\left(E_{t}^{\prime} \cup E_{s}\right)-\Omega=\left(E_{t}^{\prime}-\Omega\right) \cup\left(E_{s}-\Omega\right)$
So we need to prove $E_{t}^{\prime}-\Omega \subset L_{s}-\Omega$ and $E_{s}-\Omega \subset L_{s}-\Omega$
But we know $E_{s}-\Omega=L_{s}-\Omega$ So it remains to prove $E_{t}^{\prime}-\Omega \subset L_{s}-\Omega$
Let $x \in E_{t}^{\prime}-\Omega \Rightarrow x \in E_{t}^{\prime}$ and $x \notin \Omega \Rightarrow x=a+\eta, a \in E_{t}, x \notin \Omega$
It is enough now to prove $x \in L_{s}$
We consider two cases: $a \in \Omega$ and $a \notin \Omega$.
If $a \notin \Omega \Rightarrow a \in E_{t}-\Omega=L_{t}-\Omega \Rightarrow x \in L_{t}^{\prime} \subset L_{s}$

If $a \in \Omega$ then $\exists y^{\prime} \in \partial \Omega$ with $y^{\prime}=a+\gamma \eta, 0 \leqslant \gamma \leqslant 1$ since $x \notin \Omega$.
If $f\left(y^{\prime}\right) \leqslant t$ we have $a \in E_{t}$ and $E_{t} \cap \grave{M}_{t}=\varnothing \Rightarrow a \notin M_{t}$
$\Rightarrow\left|a-y^{\prime}\right| \geqslant t-f\left(y^{\prime}\right) \Rightarrow|a-a-\gamma \eta| \geqslant t-f\left(y^{\prime}\right) \Rightarrow|\eta| \geqslant t-f\left(y^{\prime}\right)$
$\Rightarrow t-s \geqslant t-f\left(y^{\prime}\right) \Rightarrow s \leqslant f\left(y^{\prime}\right)$.
If $f\left(y^{\prime}\right) \geqslant t$, as $t>s \Rightarrow f\left(y^{\prime}\right)>s$.
Then as $f\left(y^{\prime}\right)>s,\left|x-y^{\prime}\right|=|a+\eta-a-\gamma \eta|=|(1-\gamma) \eta| \leqslant|\eta| \leqslant t-s \leqslant$
$f\left(y^{\prime}\right)-s$
$\Rightarrow x \in L_{s}$

Hence, F is a competitor to E_{s} in $(4.3) \Rightarrow P\left(E_{s} \cup E_{t}^{\prime}, R^{n}\right) \geqslant P\left(E_{s}, R^{n}\right)$

But $P\left(E_{s} \cup E_{t}^{\prime}, \Omega\right)+P\left(E_{s} \cap E_{t}^{\prime}, \Omega\right) \leqslant P\left(E_{s}, \Omega\right)+P\left(E_{t}^{\prime}, \Omega\right)$
and from above we have, $P\left(E_{s} \cup E_{t}^{\prime}, \Omega\right) \leqslant P\left(E_{s}, \Omega\right)$ and $P\left(E_{s} \cap E_{t}^{\prime}, \Omega\right) \leqslant P\left(E_{t}^{\prime}, \Omega\right)$
$\Rightarrow P\left(E_{s} \cup E_{t}^{\prime}, \Omega\right)=P\left(E_{s}, \Omega\right)$ and $P\left(E_{s} \cap E_{t}^{\prime}, \Omega\right)=P\left(E_{t}^{\prime}, \Omega\right)$
$\Rightarrow E_{s} \cup E_{t}^{\prime}$ and $E_{s} \cap E_{t}^{\prime}$ solve ($\mathrm{P}^{\prime} 1$) and ($\mathrm{P}^{\prime} 3$) respectively
$\Rightarrow\left(\mid E_{s} \cup E_{t}^{\prime}\right) \cap \Omega\left|\leqslant\left|\left(E_{s}\right) \cap \Omega\right|\right.$ and $| E_{s} \cap E_{t}^{\prime} \cap \Omega\left|\leqslant\left|E_{t}^{\prime} \cap \Omega\right|\right.$
But $\left|\left(E_{s} \cup E_{t}^{\prime}\right) \cap \Omega\right|=\left|E_{s} \cap \Omega\right|+\left|\left(E_{t}^{\prime}-E_{s}\right) \cap \Omega\right|$
$\Rightarrow\left|E_{s} \cap \Omega\right| \geqslant\left|E_{s} \cap \Omega\right|+\left|\left(E_{t}^{\prime}-E_{s}\right) \cap \Omega\right|$
$\Rightarrow\left|\left(E_{t}^{\prime}-E_{s}\right) \cap \Omega\right|=0$

It remains to show $E_{t}^{\prime} \subset E_{s}$
Let $x \in E_{t}^{\prime} \cap \Omega \Rightarrow$ by definition 2.2.1, $\limsup _{r \rightarrow 0} \frac{\left|E_{t}^{\prime} \cap B(x, r) \cap \Omega\right|}{|B(x, r)|}>0$
Write $E_{t}^{\prime}=\left(E_{t}^{\prime}-E_{s}\right) \cup\left(E_{t}^{\prime} \cap E s\right)$ union of 2 disjoint sets.
$\Rightarrow \lim \sup _{r \rightarrow 0} \frac{\left|E_{t}^{\prime} \cap B(x, r) \cap \Omega\right|}{|B(x, r)|}=\lim \sup _{r \rightarrow 0} \frac{\left|\Omega \cap\left(E_{t}^{\prime}-E_{s}\right) \cap B(x, r)\right|}{|B(x, r)|}+\lim \sup _{r \rightarrow 0} \frac{\left|\Omega \cap\left(E_{t}^{\prime} \cap E_{s}\right) \cap B(x, r)\right|}{|B(x, r)|}$
But $\left(E_{t}^{\prime}-E_{s}\right) \cap B(x, r) \cap \Omega \subset\left(E_{t}^{\prime}-E_{s}\right) \cap \Omega$
$\Rightarrow\left|\left(E_{t}^{\prime}-E_{s}\right) \cap B(x, r) \cap \Omega\right| \leqslant\left|\left(E_{t}^{\prime}-E_{s}\right) \cap \Omega\right|=0$
$\Rightarrow\left|\left(E_{t}^{\prime}-E_{s}\right) \cap B(x, r) \cap \Omega\right|=0$
$\Rightarrow 0<\lim \sup _{r \rightarrow 0} \frac{\left|E_{t}^{\prime} \cap B(x, r) \cap \Omega\right|}{|B(x, r)|}=\lim \sup _{r \rightarrow 0} \frac{\left|E_{t}^{\prime} \cap E_{s} \cap \Omega \cap B(x, r)\right|}{|B(x, r)|} \leqslant \lim \sup _{r \rightarrow 0} \frac{|E s \cap B(x, r) \cap \Omega|}{|B(x, r)|}$
$\Rightarrow \lim \sup _{r \rightarrow 0} \frac{|E s \cap B(x, r) \cap \Omega|}{|B(x, r)|}>0$
$\Rightarrow x \in E_{s}$
Hence, $E_{t}^{\prime} \cap \Omega \subset E_{s} \cap \Omega$
Also, $E_{t}^{\prime}-\Omega=L_{t}^{\prime}-\Omega \subset L_{s}-\Omega=\varepsilon_{s}-\Omega$
$\Rightarrow E_{t}^{\prime} \subset E_{s}$

Corollary 4.2. Let $s<t$, $\operatorname{dist}\left(\partial E_{t}, \partial E_{s}\right) \geqslant t-s$

Proof. Proceeding by contradiction, suppose $\operatorname{dist}\left(\partial E_{t}, \partial E_{s}\right)<t-s$
Let $x \in \partial E_{t}$. Then one can find $y \notin E_{s}$ such that $|y-x|=t-s$.
Set $\eta=y-x \Rightarrow y=\eta+x \in E_{t}^{\prime}$. Contradiction to lemma 4.1.2. .

Remark 12. If Ω not convex we then have f lipchitz with $|f(p)-f(q)| \leqslant d_{\Omega}(p, q)$ $\forall p, q \in \partial \Omega$.
Corollary 4.2 will then be $d_{\Omega}\left(\overline{\Omega \cap \partial E_{s}}, \overline{\Omega \cap \partial E_{t}}\right) \geqslant t-s$ for $s<t$.

4.3 Existence of a solution

Definition 4.3.1. Define a function u^{*} on Ω by

$$
u^{*}(x)=\sup \left\{t ; x \in \varepsilon_{t}\right\}
$$

Theorem 4.3.1. [4] The function u^{*} is the unique continuous solution to the problem

$$
\min \left\{\int_{\Omega}|\nabla u| ; u=f \text { on } \partial \Omega,|\nabla u| \leqslant 1 \text { a.e. in } \Omega\right\}
$$

Proposition 9 constitutes a characterization of the level sets of the solution to the problem.

Since by definition of ε_{t} one has $L_{t} \subset \varepsilon_{t}$ and $\varepsilon_{t} \cap M_{t}=\varnothing$, it is then easy to show that $u^{*}=f$ on $\partial \Omega$ and $\left|u^{*}(x)-u^{*}(y)\right| \leqslant|x-y|$ for all $x \in \partial \Omega, y \in \Omega$.
Indeed, Let $x \in \partial \Omega$ such that $f(x)=t$. If $s<t \Rightarrow f(x)>s \Rightarrow x \in L_{s}$ $\forall s<t \Rightarrow x \in \varepsilon_{s} \forall s<t$ since $L_{s} \subset \varepsilon_{s} \Rightarrow u(x) \geqslant s \forall s<t \Rightarrow u(x) \geqslant t$.

If $s>t \Rightarrow f(x)<s \Rightarrow s-f(x)>0 \Rightarrow x \in \stackrel{\circ}{M}_{s} \forall s>t \Rightarrow x \notin \varepsilon_{s} \forall s>t$ since $\varepsilon_{s} \cap \grave{M}_{s}=\varnothing \Rightarrow u(x)<s \forall s>t \Rightarrow u(x) \leqslant t$. Hence, $u(x)=t=f(x)$.

Now let $u^{*}(y)=t$ for $y \in \Omega \Rightarrow y \in \partial \varepsilon_{t} \Rightarrow y \notin L_{t} \cup M_{t} \Rightarrow y \notin B\left(x,\left|f(x)-u^{*}(y)\right|\right)$ for all $x \in \partial \Omega \Rightarrow\left|f(x)-u^{*}(y)\right| \leqslant|x-y|$ for $y \in \Omega, x \in \partial \Omega \Rightarrow\left|u^{*}(x)-u^{*}(y)\right| \leqslant|x-y|$ for $y \in \Omega, x \in \partial \Omega$.

So to prove that u^{*} is indeed the solution of the constrained least gradient problem one still has to show that u^{*} is continuous and that $\left|u^{*}(x)-u^{*}(y)\right| \leqslant|x-y|$ for $x, y \in \Omega$ i.e. u^{*} is lipchitz. The proof will be illustrated in what follows according to reference [4].

We first begin by introducing new sets that can help in the characterization of level sets. We set the following:

$$
B_{t}=\cap_{s<t} \varepsilon_{s}, C_{t}=\cup_{s>t} \varepsilon_{s}, \quad D_{t}=B_{t}-C_{t}=B_{t} \cap C_{t}^{c}
$$

Lemma 4.3.1. $\varepsilon_{t} \subset \varepsilon_{s} \forall s<t$

Lemma 4.3.2. For each point x on $\partial D_{t} \cap \Omega$, one can find a sequence of points on $\cup_{s \neq t}\left(\partial \varepsilon_{s} \cap \Omega\right)$ converging to x. In other words, x is a limit point of $\cup_{s \neq t}\left(\partial \varepsilon_{s} \cap \Omega\right)$, $t \in R$

Proof. Let $x \in \partial D_{t} \cap \Omega$. Consider all $r>0 ; B(x, r) \subset \Omega$. Then one can find $y \in D_{t} \cap B(x, r)$ and $z \in\left(\Omega-D_{t}\right) \cap B(x, r)$.
$\Rightarrow y \in B_{t}, y \notin C_{t}$, and $z \notin D_{t}$
$\Rightarrow y \in B_{t}, y \in \Omega-C_{t}, z \notin B_{t}$ or $z \notin C_{t}^{c}$
$\Rightarrow\left[y \in \cap_{s<t} \varepsilon_{s}\right.$ and $\left.z \in \cup_{s<t}\left(\Omega-\varepsilon_{s}\right)\right]$ or $\left[y \in \cap_{s>t}\left(\Omega-\varepsilon_{s}\right)\right.$ and $\left.z \in \cup_{s>t} \varepsilon_{s}\right]$
\Rightarrow by first condition $B(x, r)$ contains an element of $\partial \varepsilon_{s} \forall s<t$ sufficiently close to t knowing $\varepsilon_{t} \subset \varepsilon_{s} \forall s<t$. Similarly, by second condition $B(x, r)$ contains an element of $\partial \varepsilon_{s} \forall s>t$ sufficiently close to t. These points will eventually converge to x.

Lemma 4.3.3. $\forall t \in \mathbb{R}$

1. D_{t} is a closed set
2. $D_{t}=\bar{\Omega} \cap\left\{x ; u^{*}(x)=t\right\}$
3. $\Omega \cap \partial \varepsilon_{t} \subset\left(u^{*}\right)^{-1}(t)$
4. $\varepsilon_{t} \subset\{x ; u(x) \geqslant t\}=B_{t}$
5. u^{*} is lipchitz on $\bar{\Omega}$ with lipchitz constant 1

Proof. 1. To prove D_{t} is closed in $\bar{\Omega}$ we prove $\left(\partial D_{t} \cup ْ_{t}\right) \cap \bar{\Omega}=D_{t} \cap \bar{\Omega}$.
We know $D_{t} \subset \overline{D_{t}}$. So it remains to prove $\overline{D_{t}} \cap \bar{\Omega} \subset D_{t} \cap \bar{\Omega}$.
But $\stackrel{\circ}{D}_{t} \subset D_{t} \Rightarrow$ it suffices to prove $\partial D_{t} \cap \bar{\Omega} \subset D_{t} \cap \bar{\Omega}$ i.e. $\forall x \in \partial D_{t} \cap \bar{\Omega}, x \in B_{t}$ and $x \in \bar{\Omega}-C_{t}$.
Let $x \in \partial D_{t} \cap \bar{\Omega}$. Then $\exists x_{i} \in D_{t}$ such that $x_{i} \longrightarrow x$
But $D_{t} \subset B_{t} \Rightarrow \exists x_{i} \in B_{t} ; x_{i} \longrightarrow x$.
As B_{t} is a closed set (being the intersection of closed sets), the limit point $x \in B_{t}$.

It remains to show $x \notin C_{t}$.
Proceeding by contradiction, suppose $x \in C_{t} \Rightarrow \exists s_{0}>t$ such that $x \in A_{s_{0}}$.
We will conder 2 cases:

1) Assume $\exists r>0 ; B(x, r) \cap \Omega=B(x, r) \cap D_{t}$, as $x \in \varepsilon_{s_{0}} \cap \bar{\Omega} \Rightarrow$ by definition 3.2.1 $\left.\lim \sup _{r \rightarrow 0} \frac{\left|B(x, r) \cap \Omega \cap \varepsilon_{s_{0}}\right|}{|B(x, r)|}>0 \Rightarrow \right\rvert\, B(x, r) \cap$ $\Omega \cap \varepsilon_{s_{0}} \mid>0$
But $B(x, r) \cap \Omega \cap C_{t}=B(x, r) \cap D_{t} \cap C_{t}=B(x, r) \cap B_{t} \cap C_{t}^{c} \cap C_{t}=\varnothing$
As $\varepsilon_{s_{0}} \subset \cup_{s>t} \varepsilon_{s}=C_{t}$
$\Rightarrow\left|B(x, r) \cap \Omega \cap \varepsilon_{s_{0}}\right| \leqslant\left|B(x, r) \cap \Omega \cap C_{t}\right|=0$.Contradiction.
Then, $x \notin C_{t}$.
2) Assume $\forall r>0, B(x, r) \cap \Omega \neq B(x, r) \cap D_{t}$

By lemma 4.3.2, $\exists\left\{y_{s_{i}}\right\} \longrightarrow x$ as $s_{i} \longrightarrow t^{-}$.

If $x \in \stackrel{\circ}{\varepsilon}_{s_{0}} \Rightarrow x \in \stackrel{\circ}{C}_{t} \Rightarrow \mathrm{x}$ cannot belong to ∂D_{t}. Contradiction. So $x \in \partial \varepsilon_{s_{0}}$. But by corollary 4.2, $\operatorname{dist}\left(x, y_{s_{i}}\right) \geqslant \operatorname{dist}\left(\partial \varepsilon_{s_{0}}, \partial \varepsilon_{s_{i}}\right) \geqslant s_{0}-s_{i}>0$
As $i \longrightarrow \infty$ we get a contradiction.
$\Rightarrow x \notin C_{t} \Rightarrow x \in D_{t}$
2. $\supset)$ Let $x \in \bar{\Omega} ; u^{*}(x)=t \Rightarrow x \in \varepsilon_{t}$.

If $s<t$ we have $\varepsilon_{t} \subset \varepsilon_{s} \Rightarrow x \in \varepsilon_{s} \forall s<t \Rightarrow x \in B_{t}$.
If $s>t \Rightarrow u^{*}(x)<s \Rightarrow x \notin \varepsilon_{s} \forall s>t \Rightarrow x \notin C_{t}$.
Hence, $x \in D_{t}$.
$\subset)$ Let $x \in D_{t} \Rightarrow x \in B_{t}$ and $x \notin C_{t} \Rightarrow \forall s<t x \in \varepsilon_{s}$ and $\forall s>t x \notin \varepsilon_{s} \Rightarrow \forall s<t$
$u^{*}(x) \geqslant s$ and $\forall s>t u^{*}(x)<s$
$\Rightarrow u^{*}(x) \geqslant t$ and $u^{*}(x) \leqslant t \Rightarrow u^{*}(x)=t$.
3. Let $x \in \Omega \cap \partial \varepsilon_{t}$. As ε_{t} is closed then $x \in \varepsilon_{t} \subset B_{t}$.

It remains to prove $x \notin C_{t}$. If $x \in C_{t} \Rightarrow \exists s_{0}>t ; x \in \partial \varepsilon_{s_{0}}$
$\Rightarrow \operatorname{dist}\left(\partial \varepsilon_{s_{0}}, \partial \varepsilon_{t}\right)=0$. Contradiction with the corollary 4.2.
4. We first prove $B_{t}=\left\{x ; u^{*}(x) \geqslant t\right\}$.

Let $x \in B_{t} \Rightarrow \forall s<t, x \in \varepsilon_{s}$.
But $\varepsilon_{t} \subset \varepsilon_{s} \forall s<t \Rightarrow x \in \varepsilon_{t} \Rightarrow u^{*}(x) \geqslant t$.
Conversely, if $u^{*}(x) \geqslant t \Rightarrow x \in \varepsilon_{t} \subset B_{t}$.
Now $\forall x \in \varepsilon_{t}$ we have $u^{*}(x) \geqslant t$.
Hence, $\varepsilon_{t} \subset\left\{x ; u^{*}(x) \geqslant t\right\}=B_{t}$.
5. Let $x, y \in \Omega$. Let $u^{*}(x)=s$ and $u^{*}(y)=t$. By $3, x \in D_{s}$ and $y \in D_{t}$. We will suppose $x \in \stackrel{\circ}{D}_{s}$ and $y \in \circ_{D} \Rightarrow \exists x^{\prime} \in \partial D_{s}$ and a geodesic joining x to y passing through x^{\prime}. Also $\exists y^{\prime} \in \partial D_{t}$ such that y^{\prime} belongs to this geodesic. By lemma 4.3.2, $\exists\left\{x_{s_{i}}\right\} \subset \partial \varepsilon_{s_{i}}$ and $\exists\left\{y_{t_{i}}\right\} \subset \partial \varepsilon_{t_{i}}$ such that $x_{s_{i}} \longrightarrow x^{\prime}$ and $y_{t_{i}} \longrightarrow y^{\prime}$ as $s_{i} \longrightarrow s$ and $t_{i} \longrightarrow t$ respectively.
$\Rightarrow \operatorname{dist}_{\Omega}\left(x_{s_{i}}, y_{t_{i}}\right) \geqslant \operatorname{dist}_{\Omega}\left(\partial \varepsilon_{s_{i}}, \partial \varepsilon_{t_{i}}\right) \geqslant\left|s_{i}-t_{i}\right|$ by corollary 4.2.
$\Rightarrow \lim _{i \rightarrow \infty} \operatorname{dist}_{\Omega}\left(x_{s_{i}}, y_{t_{i}}\right) \geqslant \lim _{i \rightarrow \infty}\left|s_{i}-t_{i}\right|$
$\Rightarrow \operatorname{dist}_{\Omega}\left(x^{\prime}, y^{\prime}\right) \geqslant|s-t|$
$\Rightarrow \operatorname{dist}_{\Omega}(x, y) \geqslant|s-t|$ as $d_{\Omega}(x, y) \geqslant d_{\Omega}\left(x^{\prime}, y^{\prime}\right)$
$\Rightarrow \operatorname{dist}_{\Omega}(x, y) \geqslant|u(x)-u(y)|$.

It remains to show u^{*} continuous on $\partial \Omega$. Let $x \in \partial \Omega ; u^{*}(x)=t=f(x)$.
$\forall s<t$ we have $\bar{\Omega} \cap\{y ; \operatorname{dist}(x, y) \leqslant f(x)-s\} \subset L_{s} \subset \varepsilon_{s}$.
$\Rightarrow \forall y \in \bar{\Omega}, \operatorname{dist}(x, y) \leqslant|f(x)-s|$ we have $y \in \varepsilon_{-} s \Rightarrow u^{*}(y) \geqslant s \forall s<t$
$\Rightarrow \liminf _{y \longrightarrow x, y \in \Omega} u^{*}(y) \geqslant s \forall s<t \Rightarrow \liminf _{y \longrightarrow x, y \in \Omega} u^{*}(y) \geqslant t=u^{*}(x)$.
$\forall s>t$, we have $\bar{\Omega} \cap\{y ; \operatorname{dist}(x, y) \leqslant s-f(x)\} \subset M_{s} \Rightarrow \forall y \in \bar{\Omega}, \operatorname{dist}(x, y) \leqslant$
$s-f(x)$ we have $y \notin \varepsilon_{s} \Rightarrow u^{*}(y)<s \forall s>t \Rightarrow \lim _{\sup }^{y \rightarrow x, y \in \Omega}{ } u^{*}(y)<s$ $\forall s>t \Rightarrow \lim \sup _{y \rightarrow x, y \in \Omega} u^{*}(y) \leqslant t=u^{*}(x)$.

Hence u^{*} is lipchitz on $\bar{\Omega}$.

We shall now present the proof that the above u^{*} is indeed the solution of the constrained LGP given by [4]:

Proof. Since u^{*} is lipchitz on $\bar{\Omega}$, by lemma 4.3.3, $\left|\nabla u^{*}\right| \leqslant 1$ a.e. in Ω.
Also by lemma 4.3.3, we have $u^{*} \in C^{0,1}(\bar{\Omega})$ on $\partial \Omega$. We shall now show that
$\int_{\Omega}|\nabla u| \leqslant \int_{\Omega}|\nabla v|$, for each v competitor of u in the constrained LGP.
So we let $v \in C^{0,1}(\bar{\Omega}),|\nabla v| \leqslant 1$ a.e. in $\Omega, v=f$ on $\partial \Omega$.
We then have $\forall p \in \partial \Omega, x \in \Omega,|v(x)-v(p)| \leqslant|x-p|$.
Setting $\varepsilon_{t}^{\prime}=\{v \geqslant t\}$, one indeed has $L_{t} \subset \varepsilon_{t}^{\prime}$ and $\grave{M}_{t} \cap \varepsilon_{t}^{\prime}=\varnothing$ by proposition 9 .
Hence, ε_{t}^{\prime} is a competitor to ε_{t} in $(4.1) \Rightarrow P\left(\varepsilon_{t}, \Omega\right) \leqslant P\left(\varepsilon_{t}^{\prime}, \Omega\right)$
$\Rightarrow \int_{-\infty}^{+\infty} P\left(\varepsilon_{t}, \Omega\right) \leqslant \int_{-\infty}^{+\infty} P\left(\varepsilon_{t}^{\prime}, \Omega\right)$
\Rightarrow by coarea formula, theorem 2.5.1, $\int_{\Omega}|\nabla u| \leqslant \int_{\Omega}|\nabla v|$.

Bibliography

[1] W. Ziemer, G. Williams, and P. Sternberg, "Existence, uniqueness, and regularity for functions of least gradient," Journal Fur Die Reine Und Angewandte Mathematik - J REINE ANGEW MATH, vol. 1992, pp. 35-60, 01 1992.
[2] E. Bombieri, E. D. Giorgi, and E. Giusti, "Minimal cones and the bernstein problem," Inventiones mathematicae, vol. 7, no. 3, p. 243-268, 1969.
[3] W. Górny, P. Rybka, and A. Sabra, "Special cases of the planar least gradient problem," Nonlinear Analysis: Theory, Methods Applications, vol. 151, p. 66-95, 2017.
[4] P. Sternberg, G. Williams, and W. P. Ziemer, "The constrained least gradient problem in \mathbf{r}^{n}," Transactions of the American Mathematical Society, vol. 339, p. 403-432, Jan 1993.
[5] N. Grady, "Functions of bounded variation," 2009.
[6] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, 2015.
[7] E. GIUSTI, Minimal surfaces and functions of bounded variation. Birkhauser, 1984.
[8] M. Miranda, "Comportamento delle successioni convergenti di frontiere minimali," Rendiconti del Seminario Matematico della Università di Padova, vol. 38, pp. 238-257, 1967.
[9] W. Górny, "Planar least gradient problem: existence, regularity and anisotropic case," Calculus of Variations and Partial Differential Equations, vol. 57, Dec 2018.
[10] G. Williams, "Least gradient problems," in Theoretical and Numerical Aspects of Geometric Variational Problems, (Canberra AUS), pp. 255-264, Centre for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National University, 1991.
[11] R. Kohn and G. Strang, "The constrained least gradient problem," NonClassical Continuum Mechanics, p. 226-243, 1987.

