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An Abstract of the Thesis of
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Major: Mathematics

Title: Least Gradient Problem

If f is a given function defined on the boundary 02 of a domain € in d-
dimensional Euclidean space, the least gradient problem (LGP) asks for the fol-
lowing: among all functions u in the space BV (£2), and having boundary values
equal to f, does there exist a function that minimizes the set of all L' norms of
the gradients of such functions? Furthermore, if such a minimizer exists, what
further smooth and minimizing properties does it have? The purpose of this
thesis is to study this problem in the two dimensional case, where €2 is strictly
convex, and to explore the situation where €2 is only convex.

The exposition will present a study of level sets of minimizers, as well as the
connection, through the co-area theorem, between the properties of those level

sets and the minimizing function.
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Chapter 1

Introduction

A lot of research has been done over the years on the least gradient problem.It
continues to be a problem of great interest, particularly because there are still
subtle questions regarding this problem.

We note that the least gradient problem (LGP) is defined on R™ for n > 1. In
fact, in case of a particular class of boundary data, a particular domain structure,
the existence of a continuous solution was achieved upon construction. Indeed,
we will later observe in this exposition that the continuity of the solution depends
on the continuity of boundary data and structure of domain.

First, uniqueness of the obtained solution was achieved by Stenberg, Williams, and
Ziemer, [1], with the fact that Bombieri, De Giorgi, and Giusti,[2], demonstrated
that the level sets are minimal surfaces. Since minimal surfaces are solutions of
a special differential equation, and because differential equation solutions are
unique, the uniqueness of the constructed LGP solution has been defined.
However, a different approach is given in [3] to develop the uniqueness of a solu-
tion. This approach focuses on the construction of level sets of solutions and the

fact that they are minimal surfaces.

In chapter 2, we will introduce some basic notions that are of great help to



understand the set of functions in which we will be working with in the LGP.
Furthermore, we will define the notion of perimeter and the co-area formula which

will help us in achieving the existence of a solution.

In chapter 3, we first introduce the LGP and observe the construction of a solu-
tion obtained for = R? plane domain strictly convex with C! lipchitz boundary
and boundary data f continuous on a part I' of the boundary of €. After illus-
trating the proof given in [3] that the constructed function is indeed a solution,
we aim on showing its uniqueness when f satisfies some monotonicity condition
on I' also given by [3].

We then go further in providing one of the most important results to be given
in [3] which is the existence and uniqueness of a solution when €2 is only convex
and not strictly convex.

Moreover, we will show a relation achieved by Gorny,Rybka and Sabra, [3], be-
tween the least gradient problem and a problem in free material design.

Then, examples will follow to illustrate this connection.

Lastly, in chapter 4, we define namely the constrained least gradient problem.
We now work in R”, n > 1. Similar to the LGP, the constrained least gradient
problem is the LGP with an additional constraint. This constraint requires the
solutions to be lipchitz. Also, we will observe the construction of solutions given
by [4] while noticing that the additional constraint will affect somehow the choice

of sets taken in the construction.



Chapter 2

Preliminary

As we aim later on introducing the least gradient problem and tend to solve it as
was done in [3], we realize that the set of functions in which the least gradient
problem is defined is for functions of bounded variation. Therefore, we first aim
on reviewing some basic definitions and some important theorems that will help
in solving the least gradient problem.

In this chapter, we review the classical notion of a function of bounded variation,
and consider its connection to differentiability. We will review this notion in one
dimension and then in higher dimensions. Also, we will define a new notion of
bounded variation and establish a relation between the classical notion and the
new one. As well, we will define a new notion of perimeter of measurable sets and
establish an important formula to be used later in this paper called the coarea

formula.

2.1 Bounded Variation in R

Definition 2.1.1. Let f : [a,b] — R

We define the essential variation of f to be:

n—1
essVUf = sup{E |f(tjs1)—f(t;)];a =ty <ty <..<t,_1 <t, =bpartitionof [a,b]}
=0

3



where each t; a point of approximate continuity of f Vi =0, .., n.

According to Tonelli we say f is of bounded variation and denote it by

feBV(a,b) <= essV'f < w.

Example If f : [a,b] — R is monotone then f € BV (a,b) and
essVyf = [f(b) — f(a)]

Proposition 1. Let f : [a,b] — R. The following implications hold:
If f is continuously differentiable = f is lipchitz continuous= f is absolutely con-

tinuous = f is of bounded variation = f is differentiable a.e. .

Theorem 2.1.1. [5] If f : [a,b] — R continuous on [a,b] and f' exists and is

bounded on (a,b) then f is absolutely continuous on [a,b].

Theorem 2.1.2. [5] If fis absolutely continuous then f  exists a.e. and is inte-

grable. Also, we have, essV(f) = SZ |f (z)|dx

Definition 2.1.2. Let f € L'(a,b). We now define the number

b b
[ 1011t = supl[ 15 i 19l < 1. g€ o)
to be the total variation of f.
Remark 1. If f € C®(a,b), then §_ |Df| = §"|f/|

Theorem 2.1.3. [6] Let [ defined on R™. Let Q@ < R" ¥n > 1.
If§o |IDf| <0 =3f;€ BV(Q) nC*(Q); fj — [ in L'(Q) and
§o [Dfil — §o|Df| as j — +o0

Theorem 2.1.4. [6] Let Q < R™.
If fj — [ in L*(Q) then 3 a subsequence {f; } such that f; — f a.e.

Theorem 2.1.5. [6] Let f € L'(a,b) then SZ IDf| = essVi(f)



Proof. <) Since each lebesgue point is a point of approximate continuity of f,
consider the partition a = t; <ty < ... < t, = b where each ¢; is a lebesgue point.

Let 1 be a mollifier satisfying:
1. 0 <n(zx) <1Vzxe(a,b)
2. suppn < [—1,1]
3. {1, n(x)dzr =1

Let € > 0.
Define the function n.(z) = 1n(%) and the convolution f€:=n * f € C*(a,b).

INgE

m
Z ]+1 =

| 6t = ) = nrstts = s |

7j=1
:2\[ W)t~ 5) = £t~ 9)ds|

o (2.1)
<0 | 0| s =) = £t -9 ds

j=1J-¢
:J ne Z ]+1 f(t—S)|dS

But as ; is a lebesgue point then ¢; — s is a lebesgue point and thus approximate

point Vj =1,..,m
= D[ () = f(t)] < essV(f) I ne(s)ds

But{®_n.(s)ds = §*_n(2)ds
Takexzfzdxzéds
= Sl_l n(x)dr =1

= 0y [ (i) = f(t)) [< essV(f)
Taking sup over all such partitions we get essV?(f€) < essV2(f)

NOWS fgda:——S Y gdx <\S |<S | (f) | dx

Hoewever, as f€ is continuously dlfferentlable, we have Sa | (f) | dov = essVPfe

5



= SZ fegdr < essVPfe < essVPf .

As f¢— fin L'(a,b) as e — 0
Then Sb fg'dx = lim_q Sb fegdr < essVPf
Taking sup over all such g, we finally get the first inequality S IDf| < essVP(f)

>) Now suppose Ss |Df| < oo = 3{f;} =« BV(a,b)nC®(a,b); f; — fin L*(a,b),
SZ |Df;| — SZ |Df|, and 3 a subsequence still denoted by {f;} such that f; — f

a.ce.

We write f;(z) = +S f] x)dr fora<y<z<b
Averaging with respect to y we get,
SLE() | dy= 0| () | dy+5, | 52(f) (2)da| dy
= 152) = § )| dy+ |5, f; (x)de]
= 1) < 1fHW)ldy+ § 1 (@)]de
= £ < 15w dy+ § 15 (@)]de

But as fj € BV(a,b)nC®(a,b) we have §* |Df;| = §* |f;'| < cc and as f; € L'(a,b)
then = S |fi(y)|dy < oo

= \fj(z)| <®

= f; is uniformly bounded

= il < 0 ¥

= supy||fyll.0 <

But || - || is continuous and f; — f a.e. = || f|[ < ©

= fe L%(a,b)

As f is essentially bounded then each approximate point of continuity of f is a
lebesgue point and thus f(z) — f a.e. x lebesgue point in (a,b).

Leta = t; < .. <t, = bbe a partition of (a,b) with each ¢; a point of approximate

6



continuity of f Vj = 1,..m.

31 050) = 10 1= g 33 0) = 0 |< s [
j=1 j=1 €~
since f € C(a,b) and thus essV?f¢ = S |(f¢)|dz.

Claim: §b| V|de < §|Df].

In fact, S Vg dr = SZ feg'de = — Ss(ne « f)g do = — SZ f(ne = g) dx
now 7. * g € Cg(a,b) and |n. * g| < 1

Taking sup over all such functions, = SZ( 1) gd < SZ |Df]

:S I(f)| da < S |Df] since f € C*(a,b) and thus

§o () |dx = §; [ D]

m b
Hence, Zj:l |f(tj+1 - f(ty)| < Sa |Df|
Taking sup over all such partitions we get:

essVPf < SZ|Df|

Conclusion, SZ |IDf| = essVif O

Remark 2. Hence, we now say f € BV (a,b) < SZ |IDf| < o0.

2.2 Bounded Variation in R?

Definition 2.2.1. Consider the rectangle I = [a, b] X [¢,d] and f defined on the
rectangle.

Fix y € [¢,d] and define fi(t) = f(t,y) for t € [a, b].

Similarly, fix z € [a, b] and define f5(t) = f(x,t) for t € [¢, d].

According to Tonelli, f is said to be of bounded variation on I if

Sf essVP fidy < oo and SZ essV4 fodr < oo where

7



m—1
essV! fi = Sup{Z | f(tje1,9)—f(tj,y);a =t <ty < .. <ty = bpartition of [a,b]}
=0

m—1

essVefy = supf Z | flz,tip1)—f(x,t));c =ty <ty < .. <ty = dpartition of [c,d]}
=0

with each t; a point of approximate continuity of f Vj = 1, ..m.

Remark 3. Now if f is absolutely continuous, then

b A d %)
essV?P fi =f \ﬁ|daj, essV2ef, =J \i]dy
o 0T ¢ 0y

Hence, f € BV(I) and Sf SZ 9L |dzdy < oo and SZ Sf |%|dydx < oo which gives

S[a,b]x[c,d] IVfl <o

2.3 Bounded variation in R" Vn > 1

Definition 2.3.1. Denote &' = (x1,..,24_1, Tpy1, .., ) and fi(t) = f(2',t) =
f(z1, . xp_1,t, Tps1, .., T,) as a function of t € (a,b), V— 0 < a < b < o,
Vk = 1,.,n. Let K < R"! compact, and L < R" with L = {z € R"; 2’ €
K, xj € (a,b)}.

According to Tonelli, f € BV(L) <= { essV!fudz' <o Vk=1,.n.

Remark 4. If f is absolutely continuous then f e BV(R") and { | Vf |< o

Definition 2.3.2. For Q = R" open and f € L'(Q) define:

| 1011 do = supt | fdivg dos g = (01,90) € G lal < 1)
the variation of f in €.

Remark 5. In fact, for f € L'(Q), {,|Df|dz = |Df|(Q) the total variation of
Df in Q where Df is the distributional derivative of f characterized to be a

vector valued radon measure.



However, if f € C*(Q) for k = 1 we get §,|Df|dz = {,|Vf| where V[ is the
gradient of f in the usual derivative sense.
If f € WH(Q) the sobelev space, then {, |D f|dx = §, |gradf|dz where now gradf

is the gradient of f in the distributional sense.

Theorem 2.3.1. [6] Let K < R"™ compact, ' = (x1, .., Tp_1, Tt1, .-, Tpn) and
={zeR%z e K,a<ux,<b} and f e L'(C). Then,

essVPfo di' <o\ |IDfldt <ooVk=1,.n,V—ow<a<b<w
K a C

Proof. <) Suppose { |Df|dz < co. We have that
1. f§f — frin L'(a,b)

2. Yg € C{(R"), |g] < 1, we have:
S (f9) gde = =, fedivgdz = — §, fdiv(ne = g)dz < §, |Df|dx
= Sc D fe|dx < Sc D fldz.
= limsup, o §[Df| <, |Dfldz < o

Now let g € C}(R"),|g] < 1,

§ frg dv =lim._¢§ fig dz < liminf essV?f{ by theorem 2.1.5.
= essVP fi, < liminf._oessVPfS for H" ' ae. 2/ e K

By Fatou’s lemma,

J essV fi, < J liminf essV? ff < liminfe_,of
K K

essV?! fida' = liminfe_,of 1(fS) |da
K c
But limin fe_o §. |(f5)'|dz < limsup §. |Df|dx < o
Then, SK essVPfi < oo
=) Let f e L} (R") and §, essV} fyda' < 0.
Let ge C3(R™) , |g| <1, suppg < {z;a <z, < b}
Sn [ 5L 29 -dx = Ssuppg fazk = §.( S fag dzy)dx < §, essV2 frda' < o
ﬁSRn\Df|dx<oo. O



Remark 6. Hence, we can now say f € BV(Q) <= {,|Df|dx < oo where

) < R" open.

Theorem 2.3.2. [6] Assume Q < R™ is open and bounded, with 0S) lipchitz

continuous. There exists a bounded linear mapping
T:BV(Q)— L'(oQ; H* )

such that
f fdivgdx = —f g d|Df] +J (v-g)TfdH"*
Q Q o0
for all f € BV(Q) and g € C*(R™;R™) where H"™' is the (n — 1)-dimensional

Hausdorff measure.

Definition 2.3.3. The function T'f which is uniquely defined up to sets of H"1-

measure zero on 0f), is called the trace of f on 0S2.

2.4 Perimeter of a measurable set

Definition 2.4.1. Now let f = 1g be the characteristic function for E < R" a

measurable set.

f |Dfldz = f | D1g | dx = sup{f divgdx ; g = (g1,-.,9n) € C&(Q), lg| < 1}
Q Q E

is said to be the perimeter of E and is denoted by P(FE, ().
We say E has finite perimeter if P(F,Q)) < co.

Theorem 2.4.1. [7] Suppose E = R™ has C? boundary, then
P(E,Q) = H"(0FE n Q)

where H"™! is the (n — 1)-dimensional Hausdorff measure.

Proof. <) Using Gauss Green theorem, we have,

f divgdr = J grdH" ' < H" Y (0E n Q)
E

oE

10



for all g € C3(9), |g| < 1 where v is the outer normal to JF.

Taking the supremum over all such g, we get, P(E,Q) < H" '(0F n Q)

>) As E has C? boundary, then vg(unit outer normal to 0F) exists as a C''-vector
valued function.

Let N be the extension of vg to R" satisfying:

1. N=vgonkE

2. I[IN(z)| <1VzeR"

3. Ne CY(R", R")

Now for n € C}(Q),|n| <1, define ¢ = Nn.

Then, ¢ € C3(Q), |¢| <1, and Nvg = |vg|> = 1 on E. Then,
Spdivode =, pvgdH™ = §  NnvpdH"' = §, ndH"".
Taking supremum over all such ¢ and n we get:

P(E,Q) = sup{§,pndH" ' ,ne C3(Q),In| <1} = H* 1(0E n Q) O

To observe the result better in R? and R3 we wil prove the result in another way.
We recall Green’s theorem in the plane:
Let Ec R? open, M\N € CY(E), Q = E , Q closed , 052 positively oriented, then

§on(Mdx + Ndy) = §§, (5 — Z)dA

Now let g = (g1, g2) € C3(R?) satisfying |g| < 1
Take N = g1, and M = —gs,

11



Jd’wgdA J %—l—@)dfl
dy

J __9_M

- LQ(de + Ndy)

= LQ(—92d$ + gidy) (22
V(P + (g2)Py/(dn)? + (dy)?

< | VPt (dy)?

— L(3Q)

By a special choice of g, we get,

supf f divgdz 3 g = (g1,9) € CL(Q, lg] < 1} = L(2Q)
0

with L(0Q) length of the boundary of €.

In R3, suppose | 7] <1
§o divgdr = §., 7. Tds < §,, [ 7| 7|ds < §,,, ds = surface area of Q.

By a special choice of g, we get,

suyo{f divgdz ; g = (g1,92,95) € C5(Q), lg] < 1} = sur face area of 0Q
Q

2.5 Coarea formula

We introduce now the co area formula that permits us to have a relation between
the variation of a function in L' and the perimeter of the superlevel sets of that

function. Indeed,

Theorem 2.5.1. [6] If Q < R™, f e BV(Q), and E; = {x € Q;f(x) >t} Vt e R,
then:

L \Df] = fj: P(E:, Q)dt

12



Proof. We will prove the following using several steps:

Stepl: If f e L'(Q)

For f >0, f can be written as f(z) = § 1g,(z)dt for a.e. z € Q

For f <0, f can be written as f(x) = SO_OO(ILEt(x) — 1)dt for a.e. x €.
Now let g € C}(Q2) and |g] < 1 then:

J fdivgdr = f fdivgdr + J fdivgdx
Q Qn{f<0}

Qn{f=0}

:‘L}J@m(la(x)—])dﬂdh@dx—%J;{[wﬂEJ$ﬁﬁﬁﬁU9¢t

_ JOOO(L(HEt(x) — 1)divgdz)dt +L (L L, (z)divgdr)dt — (2.3)

0 0 0
= f (f divgdx)dt — f (f divgdx)dt + J (J divgdx)dt
-0 JE; -0 JQ 0 By
+00
= J (J divgdx)dt
—0 on

with {, divgdz = 0 as §, divgde = §,, gvdH" ' = 0 as g|sq = 0.

o0

Hence, taking sup over all such g, we get: {,|Df| < {* P(E;, Q)dt

It remains to prove { [Df| > Siooo P(E, Q)dt
Step2: Let fe BV (Q2) n C*(Q)
Define m(t) = §,_p, [Df(z)ldz =, [Dfldz >0

JOO m (t)dt = lim m(t) — lim m(t)

—o t—0 t—>—00

| ipside~ | |pflds
Q—Fq O—F_o

:J mﬂm+f Df|da (2.4)
Qn{f<o}

Qn{fzw}

-| D flda
Qn{—oo< f<w}

<J |D fldz
0

13



Now, lim, o mtrl=m()

-l | |Dfla)

Ei—FEyr

Dfgdx
_Et+'r

§IDfldx.

> lim —
r—0 7 E;

As [ Dfgdx < §SIDfllgldz <

|§ D fgdz| <

Define for —0 <t <o, r>0,n(s) =% s=t t<s<

We recognize as r — 0, n(s) =

o

n is differentiable everywhere except at s = t+r and s = t = 7 (s) =

3 =

. 1
= Jim fE Dfldr - fE D f|dx))

(2.5)

t+r<s<t

t<s<t+r

= S5 5, Dfgde = §on (f(2))Dfgdr = §o(n(f(x))) gdw = — §on(f(x))divgdz.
Hence,

lim m(t +r) —m(t) > — lim | n(f(x))divgde = —J lim n(f(x))divgda: =
r—0 r r—0 Jq qr—0

= m/(t) = -, divgdx
= {7 m'(t) > - SiOOO(SEt divgdz)dt
= (| Df | de = — SiOOO(SEt divgdz)dt

Taking sup over all such g, we get,

§o | Df | de =, P(E,Q)dt

Step 3: fe BV(Q)

— J divgdz
Ey

= {fi} c BV(Q)nC*(Q), Dfy, — in L' and §, | fi [ — §, | Df |as k — ©

14



Let EF = {z € Q; fu(z) > 1)

Claim: §,(§7, | (Lg(2) = 1, (2)) | dt)dw = §, | fu(z) = f(2) | do

In fact, g (z) = 0 flo) <t
1 fu(z) =t
and 1g,(z) = 0 fla)<t
1 f(x)=>t

L fi(w) =2t = f(x) or f(x) =t = fulz)

0 otherwise

=| Lg(2) — Lp,(2)) |=

= §7, [ (@) = U (o)]dt = §rotl S0 dt = | fu(a) = ()]
. Now, as f — f in L' = Igi(r) — lg (2 ) in L

= limg__, SQ ILEfdivg = SQ 1g,divg
With the help of Fatou’s lemma, hence,

—o k—>0 — o

f | Df |= lim J | Dfy. |= hmf P(E,,Q /JOO hmian(Ef,Q)zfo P(E,, Q)

]

15



Chapter 3

Least Gradient Problem

In this chapter, we will first introduce the least gradient problem and prove the
existence and uniqueness of a solution. After, we will show relations with the

least gradient problem demonstrated with examples.

3.1 Introduction

Let Q be a bounded domain in R™, and let f be a given function defined on its

boundary 0€2. We seek a solution u € BV (€2) to the problem:

mind f IVl u= )

In fact, if we take a minimizing sequence of the LGP, we cannot ensure the limit-
ing function will satisfy the boundary conditions and thus we cannot ensure the
limiting function will be an element of the set. Therefore, we cannot guarantee

that a minimum does exist for every functions f and every domain 2.

Example 1 Consider the case in one dimension. Here 2 = [a,b] and we are
given a boundary function f i.e. given two values {f(a), f(b)}. We start with the

class of all absolutely continuous functions on €2, and we seek a solution of the
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LGP in this class.

We proceed as follows: given a function u absolutely continuous on [a, b], and
satisfying u(a) = f(a), uw(b) = f(b), how small can XZ |u/| be. Here, we resort to the
fact that, since u is absolutely continuous, its derivative exists almost everywhere,
is summable, and the integral of the derivative equals the total variation essV u.
But essV'u > |u(b) — u(a)| = |f(b) — f(a)|, and this lower bound is independent
of the particular function u. This gives us that mm{SZ W[} = |f(b) — f(a)|]. In
addition, any monotone absolutely continuous function v on [a, b], satisfies the
equality SZ V'] = |v(b) —v(a)| = |f(b) — f(a)]. Hence, the minimum is indeed

|f(b) — f(a)| and is attained by monotone functions.

Example 2 The previous example can be extended to cover the class of func-
tions of bounded variation. If u € BV (a,b), then its derivative exists a.e. but
does not usually integrate back to the function. It is however, possible to define
a generalized derivative Du, and then the question becomes that of minimizing
{|Du|. In this case, once again, we have {|Du| equals the variation of u on [a, ],
and as in previous example we find the minimum value and also the extremal

functions.

Example 3 It is natural to move from the one dimensional case to the two
dimensional. Let @) be the rectangle [a, b] x [c,d], let f be a function defined on
the boundary of @), and let u be defined and absolutely continuous on @), with
boundary values equal to f. Here again, the gradient Vu exists a.e. and we seek
to minimize its integral SQ |Vu|. We recall the concept of bounded variation due
to Tonelli. For each fixed = € (a,b), let essV.%uy(x) be the essential variation
of u(z,.) on [e,d]. If now we integrate this with respect to x on [a,b] and the
resulting integral is finite, we say u is of bounded variation on @). Of course we

could start with (essV’u;)(y) being the essential variation of u(., %) on [a, b], and
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then integrate with respect to z.

We point out that one of these integrals may very well be zero as is seen if we
start with a function u which depends only on x. So we need to concentrate on
a class of functions for which both integrals will be finite.

If we start with an absolutely continuous function u, then we can express in terms

of the partial derivative as follows:
b
0 ou(
essvun) = [ 17Dy essvtue) = [ 120D g

So we end up with two integrals namely

d rb b pd
C a ax a (& ay

Thus, if we start with a function having continuous partial derivatives on Q we
are guarenteed the finiteness of both of last integrals.
We can find ower bounds for each of these integrals in the most simple way,

namely to use trivial lower bounds for the variation.

Proposition 2. Let u be absolutely continuous on the rectangle Q@ = [a,b] x
[c,d]. Suppose that the boundary values of u are given by a function f. Then the
following lower bound for the integral of |Vu| holds

J|Vu| {f|fby ay|dy+f|fxd F(z,0)ldz}

A special case
Suppose @ = [0,a] x [0,b], and the boundary function f is non-negative and
satisfies f(z,0) = 0 for all z € [0,a]; and f(0,y) = 0 for all y € [0,b]. In this
case, we have the simplification

d b b a
f (b, y)—F(a)dy+ f s d)—f( 0) da = fo f(a,y>dy+f0 fab)de = [ fo,y)ds

oQ
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Example 4 Let Q be any plane domain in R? and v € BV (Q)

For Du defined in the distributional sense, we always have §, | Du |> 0.

Hence, min §, | Du |> 0. We now take f to be any constant function defined
on 0f) say f = k with k a positive constant. Among all functions u of bounded
variation defined on €2 and v = k on 02, one has the constant function u = k.
We get Vu = 0= {, | Vu |= 0.

Hence for f constant with 2 plane domain the solution to the LGP is 0.

The method illustrated above relies on the link between the essential varia-
tion and the LGP. However, particular classes of functions were taken. What we
need, is to find the least gradient function over all bounded variation functions
satisfying the boundary conditions. Therefore, in the modern treatment of the
subject, what we seem to need is the notion of perimeter of measurable sets. We
will use the help of the coarea formula, which connects the perimeter of a set

with §|Dul.

Remark 7. When saying u = f on 02 for u € BV(2), it is meant in the trace
sense; Tu = f on 02 by definition 2.4.1.

3.2 Prerequisites

Definition 3.2.1. Suppose F measurable set with P(E,R") < .

e The measure theoretic boundary 0y, F is the set of points z € R™ such that:

. |EnB(z,r)|
limsup, o~z 5 > 0 and
. |EnB(z,r)|
liminf, g Barl < 1

e For z € R", the measure theoretic exterior normal v(x, F) at = is a unit

vector v such that:
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[B(ar) oy (y—2) v<04¢E} _ () o1

rn

hng,O

|Blon) {wily—2)v=0ueEY| _ ()

TTL

limT_>0
The reduced boundary ¢*E' is the set of points x such that v(x, E) exists.

We have 0*FE < 0 FE < OF.

We will use the following convention, since sets of finite perimeter are defined up

|EnB(z,r)|

Bar Y

to measure zero, x € £ <= limsup,__,,

Definition 3.2.2. We say a function u € BV(Q) is of least gradient if Vw €
BV (Q), with compact support in Q, {, [Du| < §, |D(u + w)|.

Proposition 3. [8] If u, is a least gradient function Yn, and u, — wu in L

then u is a least gradient function

Definition 3.2.3. Let Q2 < R". We say JF is a minimal surface if
1. 1g € BVjoe()
2. 1g is a least gradient function.

Proposition 4. In R?, minimal surfaces are straight lines.

Proof. Let A = (a1, as), B(b1,by) be 2 points in the plane R?. Let (C') be a path
joining A to B parametrized by = = x(t), y = y(t) and
z(0) = a1, z(1) = by, y(0) = az, y(1) = by.

> | @) + iy (1)t | (3.1)




= an{L(C)} = \/(bl — CL1>2 + (bg - a2)2

Consider the line segment (C') joining A to B given by:

x=u2x()=(1—t)a; +tby and y = y(t) = (1 — t)ag + tbs.

Then, L(C) = §, /(' ()2 + ( (£))2dt = §5 /(b1 — a1)? + (b — ag)2dt = /(b1 — a1)? + (bs — as)?.
~ infL(C)} = L(C)

= (' is the curve of smallest euclidean length joining A to B. O

Theorem 3.2.1. [2] If u solution to min{§, |Dul;u € BV(Q),Toqu = f}, then

o{u =t} is a minimal surface for each real t.

Proof. Let u solution to min{{, |Dul;u € BV (Q),Tru = f}. Take w € BV (Q)
with suppw = K < Q with K compact. Set v = u + w.

We have v € BV (2) being the sum of 2 bounded variation functions in €2 and as
w has compact support, Trw = 0, so that Trv = Tr(u + w) = Tru = f.

Then, §|Du| < {|Dv| as u solution.

= {[Du| < §|D(u+ w)|.

Hence, u is a function of least gradient in 2 by definition 3.2.2.

Now as u € BV(f), we have by the coarea formula, {,|Du| = {* P(E), Q)d\
with By = {x € Q;u(z) = A} and A e R.
We then have P(E), Q) < oo for a.e. A since {, |[Du| < .

Also, by the coarea formula we have that, VA € R, K < ) compact, we have

§x |Dul = §72 P(Ey, K)d.

We now define u; = max{u — t,0} and us = min{u,t} for t € R.
We have u; and us € BV (Q) because u € BV(Q), t € BV (Q).
Hu—tz0=u>t=u =u—tand us =t = u = u; + us.

fu—t<0=u<t=u =0and us = u= u=u; + us.

21



Hence u = u; + ug Vt € R.

By the coarea formula, we have §, | Du |= §, | Duy | +§, | Dus |.

Now let w € BV () with compact support in 2.

S | Dur | 4§ | Duy |= 5,0 | Du |< 5,0 | Dt w) |< 5, | Dlwr + ) | 45, |
Dug |.

= wu; is a least gradient function. Similarly, by interchanging u; and wus in the
last inequality, we get us is a least gradient function.

We now define, for e > 0, A € R,

ey = tmin{e, maxz{u — X,0}} = tminfe, u}.

If min{e,u1} = € = u.n = 1. Then,u., is a least gradient function being a
constant function.

If min{e,u1} = u; = uc ) = %ul. Then, u, y is a least gradient function by proving
above u; is so.

Hence, u, ) is a least gradient function, Ve > 0, A € R.

If H({z e Qu(z)=A}) =0=u(z) #\ae 2eQ=u—A>0o0ru—\<0.
If u—X>0=maz{u— X0} =u— A= u=imin{e,u — A}

As e — 0,min{e,u — A} =ecasu—A>0

=uy—<=lase—0

= (i luer—1g,| = [1—1=0ase— 0.

fu—A<0=mazr{u—\0}=0=u,=0

= §|uen —1g,| = §, 100/ =0ase—0.
Hence, {, [ucy — 1g,| = 0 as e — 07.

As uc,y —> 1p, in L'(K) and u,y is a function of least gradient,by proposition
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3 then 1p, is a function of least gradient.

If H,({z € Qu(xz) = A}) > 0 then 3 a sequence A\, Ay < A, A, — A and
Ho({r € ule) = An}) = 0.

As the previous case, working with \,,, we get 1g, is a function of least gradient.

Hence, as 1p, € BV,(€2), and a function of least gradient, JF) is a minimal

surface. ]

Proposition 5. Let I' < 02 and f defined on I' bounded and continuous. Let u

be any solution to the LGP with Tu = f on I'. Then u(2) < f(I')

Proof. Let M = suprf and m = infrf.

Let w = min{M, max{m,u}}.

We have w € BV (Q) and Trw = f.

We have §, | Dw [< {, | Du|.

If u <m= maz{m,u} =m=w=m=§, | Dw|=0.

If u>M = max{m,u} =u=w=M= | Dw|=0.

In both cases, for u < m and u > M we get {, | Dw |< §, | Du |. But this is
impossible as u is a solution to the LGP.

Hence, we get m < u < M. 0

Proposition 6. Let ) < Qg domains with lipchitz boundaries. If u e BV () is

a least gradient function in Qg then u|q is a least gradient function in €.

3.3 Solution to the LGP

Theorem 3.3.1. [ 1] ForQ strictly convez, 02 lipchitz continuous, and f bounded
continuous on 0), there exists a unique continuous function u defined on @ so-

lution to to the problem

mm{f |\Vul|; ue BV(Q), u= f on 0Q}
Q
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The solution u is obtained upon construction and is proved to be the min-
imum of the LGP with the help of the coarea formula. Also, the fact that the
boundary of the superlevel sets of the solution is a minimal surface, by theorem

3.2.1, plays an important role.

Remark 8. The existence and uniqueness of solution will be proved for the LGP
min{§, |Dul,u € BV (Q),u = f on '} where I' = 02 open given by [3]. However,
the construction and existence of solution to the LGP stated in theorem 3.3.1 is

very similar to what will be proved. Uniqueness results also applies when I' = 0€).

Construction of the solution

Let I' € 02 such that f is bounded and continuous on I'.

Let 2y be a bounded domain such that €2 < Qg and Qg N 9 = 02 —T.
We will denote A := 0Q —T.

Let F be the extension of f to Qy so that F'e BV (Q — Q) n C ()

Let t € f(I'),as F € BV(Qy — Q) = by the coarea formula, P(L;,Qy — Q) < o
a.e. t where L, = {x € Qq, F(z) > t}.

Denote by T := f(I') n {t e R; P(Ly, Qo — Q) < o0}

Consider now the following problem: for each t € T’
min{P(E,Q), E — Q= L, — Q} (3.2)

This indeed has a solution. By [9], take a minimizing sequence, P(E,, ) — m
where m = inf{P(E,Q),E-Q=L,—Qland E, - Q =L, — Q

As 1g, € BV (£) then 3 a subsequence still denoted by 1g, and 1z € BV ()
such that 1y, — 1g in L'(Q) with E —Q = L, — Q.
We get, m < P(E, o) <liminf P(E,, Q) =m

:>P(E,Qo> =1m
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So the minimum does exist.

Now among all minimizers of (3.2) define the following:
max{|E|; E solves (3.2)} (3.3)

(3.3) has a unique solution. Indeed, by [9], let M = sup{|E|; E solves problem
(3.2)} and let |E,| —> M => there exists a subsequence still denoted by 1z, and
I]_E € BV(Q()) such that ]]‘En I I]_E in Ll(Qo)

First we note that :
1) |E|+|EAE,| = |E|+|E—E,|+|E,—E| = |EVUE,|+|E—FE,| = |EVE,| = |E,|

1 (zeE,andz¢ E)or (re Eand z ¢ E,)
2) |1g, — 1| =

0 zeE,nFEorx¢ E,UFE

= {115, — 15 |= S5 _pom_p, A =| BAE, |

Then we have M > |E| > |E,|—|EAE,| = |E,|—||1g, —1g|[1 — M asn —
= |E| = M and E solves (3.2).

So the maximum does exist.

Now one can claim that the solution to (3.3) is unique. In fact, let F4, Ey be 2
solutions to (3.3).

One knows that P(E; U Ey, Q) + P(E1 N Es, Qo) < P(Ey, Q) + P(E2, Q)
Then, E) u Ey and E; n Ey are solutions to (3.2).

As E; and FE5 are maximizers to (3.3),

\E\| > |Ey U By| = |Ey| + |Es — B

|Ea| = [Ev v Eo| = [Eo| + [Ey — By

= |E\AFEy| = 0= |E| = |Es|

Hence, there exists a unique solution to (3.3) which we will denote by E; for t € T'.
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Now define:
At = Et M Q

Definition 3.3.1. Define the function « on Q by
u(r) = sup{t; e A}
Lemma 3.3.1. u satisfies the following conditions:
1. u=fonTl
2. ue C(I'u Q)

Lemma 3.3.2. Let I' < 012,
We then have, {x e s f(z) >t} c E,nT c AunT c{xel; f(x) =t}

Lemma 3.3.3. Let v e BV (Q),Trv = f and v the extension of v to Qo; 0 = F
on Qo —Q andv =79 on Q.ForteT, define Gy := {0 > t}.
We have 0*Gy n T < f1(t).

Proof. Let x € 0*Gy n I'. Proceeding by contradiction, suppose f(x) >t =
f(z) =t + e for some € > 0.

By definition of trace, lim,_ m $peyna [0(y) = f(2)|dy = 0.

SB(Z,T),\Q,\{,;%} ‘17(3/)*f(x)|dy+SB(z,T)QO{5gt} [5(y)—f(2)ldy

[B(z,r) =0.

= hmr_,g

= 0 > limsup,_ g WM SB(x,r)QO{f;;t} [o(y) = f(x)|dy

|B(z,m) QNG|

= 0 > elimsup,_,, 1B(a) A0

[B(z,r)nQnGe| _ 0

= limsup,__,, B0
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Similarly, we obtain lim sup,__, ‘B|(§(Q:)(§(OQ; ﬁ_)g)‘G” —0onQy—0.

|B(z,r)nQonGe| _ 7- |B(z,r)nGt|
BT~ WS o Tpg o = 0-

Then, = ¢ 0);G;. Contradiction, as 0*G; < 0);Gy, Definition 3.2.1.

Hence, we get, limsup,__,,

A similar argument is made for f(x) < t¢. Hence, f(z) =t O
Lemma 3.3.4. For T, f, and E; given as above, we have 0F; n T < f71(t).
Lemma 3.3.5. If s <t then E, ¢ Ej.

Proof. Let F'=FE;, U E; and E = E;, n E,.
We begin by proving that F' and E are competitors to F; and Fy in (3.2) respec-
tively.

We realize that Ly ¢ L, sinceif r € Ly = F(x) >t > s= F(z) > s=x € L.
e F-Q=(E-QuU(E;—Q)=(Li—Qu(Ls—Q)=Ls—Qas L, c L
L] E—Q:(Et—Q)ﬁ<ES—Q):(Lt—Q)m(LS—Q):Lt—QaSLtCLS

Hence, P(F, ) = P(F,, Qo) and P(E,Qy) = P(E:, Q). As P(E; u E,, Q) +
P(E; n Eg, Q) < P(E, Q) + P(Es,Q), we then get P(F, ) = P(Fs, ) and
P(E,Qy) = P(FE;, Qo).

By problem 2,|E,| > |F| = |Eg| + |Ey — Es| = |Ey — Eg| =0

and |Ey| > |E| = |Ey| + |Es — Ey| = |Es — Ey| = 0.

Now we show E; c E,

|EinB(z,r)|
|B(z,r)|

Write E; = (E; — Es) u (E: n E's) union of 2 disjoint sets.

Let x € E; = by definition 3.2.1, limsup,__,, >0

|E:nB(z,r)|
|B(z,r)|

But (E; — Eg) n B(z,r) < (E; — Ey)
| (B, — ) Bla,r) |<] (B~ By) |=0

|(Bt—Es)nB(z,r

IERT [(EenEs)nB(a,r)|
B ()] +limsup,__,,

= limsup, [Blz.r)]

= limsup,__,,
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=| (Ey — Es) n B(z,r) |=0

= 0 < limsup,__, % = limsup,__,, W < limsup, g %
= limsup,_,, % >0
= xr e F,
Hence, F; ¢ E,
O

We shall now illustrate the proof of lemma 3.3.1 given by [3] :

Proof. 1. We prove Tu = f onI' i.e. for z e I',lim,,, ,equ(y) = f(2).

Let z € I and set f(z) =t and let s < t, then f(z) =t > s = by lemma 3.3.2
2e B9nT c A, nT.

As E? is open, 3 neighborhood of z, N,, such that N, nQ c E,n Q= A, n Q.
Now let z, € N, n Q;z,, — 2z = u(x,) = s, Yn = liminf, _,, . cqu(z,) = s,

Vs <t=liminf,, . ,.equ(z,) >t

We will now prove that it is not possible for limsup, . , .qu(z,) >t.
Proceeding by contradiction, suppose limsup,, . , cqu(x,) > t. Letlimsup, . , cqu(v,)=
T=7>t Then, IreTt<r<71. AsT>r=Yn,r <u(z,) =z, A, N
As z, — z and x, € A, closed = z € A, n T =By lemma 3.3.2, f(z) > r.

Contradiction as f(z) =t <.

Hence, for z € I', lim,,_,, . cou(z,) = f(2)

2. Claim 1: {z € Q: u(x) =t} = Mgy, serAs

Claim 2: {z € Qu(r) >t} = Usar, serAs

We now show u is continuous on I' U 2. We will do so by proving claim 1 is a
closed set and claim 2 is an open set in ().

The first claim is a closed set being a countable intersection of closed sets.
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[t remains to prove claim 2 is an open set in Q i.e. Yo € UgyAg, Ir > 0, B(x,r) <
Ut Asg

Solet # € Ugst Ag N Q =359 > t,x € Agy = u(x) = 59 > 1.

Since z € Q = dist(z, 82) > 0.

Since x € A,, < Ay = dist(z,0A;) >0

Take r = imin{dist(z, 0Q), dist(zx, 0A;)}.

We now need to prove B(z,7) € Ugsi As.

Let zg € B(z,r) = dist(z,z9) < r = dist(z,,04;) > 0 = x9 € A, = u(xg) >

t = 29 € Ugt Ay O
We now illustrate the proof given by [3] to theorem 3.3.1

Proof. Tt remains to prove u is a solution to the LGP i.e. Vv € BV(Q), Trv = f,
§o [Dul < §, |Dul.

Let u be the solution as constructed, and let v € BV (Q2), Trv = f and © the exten-
sion of v to Qp; ¥ = F on Qy—Q and v = 9 on Q. Then , & € BV (Qo)nC(Q—Q).
Let Gy = {0 > t}.

P(Gy, Q) = HY(0*Gin Q) = HY(*Gin (Q—Q))+ H (0*Gyn D)+ HY (0*Gin Q).
By lemma 3.3.3, 0*Gy n T < f71(t) = HY(*G; nT) < H' (f7'(t)) = 0 =
HY(0*G,nT) =0.

= HY(0*Gy n Q) = HY(0*Gy n T) + HY (0* Ly — Q).

On the other hand, P(E;, Q) = HY(0*E; n Qo) = HY (O*E, n (2 — Q) +
HY0*E, nT) + HY(0*E; n Q) = P(E;, Q) + H(0*L; — Q) because by lemma
3.3.4, H(0*E,nT) < HY(f'(t)) =0= H(0*E; nT) = 0.

Since by construction G, satisfies Gy — ) = L; — ) and E; minimizes the

perimeter of all such sets, we have, P(E;, Q) < P(Gy, Q).

From above, we get, P(E;, Q) < P(G, ).
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= (" P(E,Q)dt < {*, P(Gy,Q)dt.
By the coarea formula, theorem 2.5.1, we get, §, |Du| < {, |Duv|. O

Proposition 7. Let A as defined and v a connected component of 0E;. If ~

intersects A then it must intersect it orthogonally.

Proof. We know 7 is a line segment and JFE; in €2 is a minimal surface by propo-
sition 4 and theorem 3.2.1 Suppose v = [zf,3"]. We proceed by contradiction,
suppose v does not intersect A orthogonally at z‘. Consider the ball B(z!,r)
for > 0 such that B(z%,r) cuts v at z'. There exists a segment [z%,w'] that
cuts A orthogonally at w' and d(z%, w") < d(z*, z"). Contradiction as v is of least

length. ]

uniqueness of solution

We proceed in proving uniqueness to the solution by supposing if there is another
solution to the LGP min{{, | Du |;u € BV(Q), Turf}, and f satisfies a mono-
tonicity condition, then it’s a must that the 2 solutions have the same level sets

which will lead to the uniqueness of solution.

Let u be a solution to the LGP. We define ; = {u > t} for t € u(Q).

Lemma 3.3.6. Let ug be the constructed solution. If u is any other solution to

the LGP and 0g; = 0 then u = ug in L.

Lemma 3.3.7. If Q) convex and u solution to the LGP for f continuous and

bounded on T' = 09 open, we have 0z, n T <= f(1)

Theorem 3.3.2. [3] Let ug be the solution to the LGP constructed above and

09 = {ugy = t}.

1. Let I' < 092 open with endpoints a and b.

Let xp; € T such that f attains its mazimum at xp;.
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Let f strictly increasing on the arc @za; and strictly decreasing on b such
that f attains each value exactly twice, except at xy, and f(a) = f(b) =
infrf.

We then get ug is a unique solution and ug discontinuous on a and b. Also,

At € (infrf, suprf) such that | {ug = 7} |> 0.

2. Let g € T'; d(xg,\) = d(xg,a) = d(xo,b) with f(a) = f(b) = f(xo).
Suppose [ attains each value twice on the arc axy with x,, a local minimum
and suppose f attains each value exactly twice on the arc zob with xy local
Mazimum.

Then g is unique and continuous and |{ug = f(a)}| > 0.

3. Let S = {x e T:d(z,A) = d(z,y) for some y e A}.
D :={x € S;3 atleast two y € \;d(x,\) = d(x,y)}.
Let ¢ : S = P(A);é(x) = {y € Asd(x, A) = d(z,y)}.
One can prove that D is atmost countable.

If f monotone then ug is unique and discontinuous at a and b. Also, 3

atleast one T € u(p(D));|[{u =71} >0

Proof. 1. Let u be any solution to the LGP. We will first construct the level sets,
then prove the existence of 7. Since f takes each value at exactly 2 points in I’
except for xys, then for each t € (infrf, suprf), there exists 2 points zt, 3" € T}
) = f) =t

If T have a level set at t, dg;, then de; nT' < f~1(t) = Vx € 0g;, n T we must have
f(z) =t.

Since Vt, 3 2 points zt, 3" such that f(a') = f(y') = ¢ then if I have a level set
at t, and as level sets must intersect 02 and in particular I" so that the solution

will be continuous up to I', then z¢, ' must belong to Oe;.

We now consider the map h : ¢ — h(t) = d(z*,y") — d(2*,a) — d(y",b).
We suppose d(zf, A) = d(z,a) and d(y*, A) = d(y*,b).
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If {a!,y"} € T are very close to xj; such that f(xy) — ¢ > 0 and very small, we
have,d(z!, y) < d(z*,a) + d(y*,b) = h(t) < 0.
Since 0g; must contain {z',y'} and dg; " T' = f~1(¢) then Og; must be the line

segment [z°, y'].

If {«', y'} € T with 2" very close to a and y* very close to b with d(z*, A) = d(a*,a)
and d(y*, A) = d(y*,b) such that t — f(a) > 0 and very small we have

d(z', y") > d(z*, a) + d(y',b) = h(t) > 0.

Since 0g; must contain {z*,y'} and d(z',a) + d(y',b) is smaller than d(z',y"),
and Og; is a minimal surface i.e. the line segment must be of least length,

o =[x, a] U [y, b].

Since h is continuous and 3¢ such that h(¢) > 0 and 3¢ such that h(t) < 0, by
intermediate value theorem, 3!7 € (infrf, suprf); h(7) = 0.

= dlr € (infrf,suprf);d(z™,y") = d(z",a) + d(y",b).

= Og,; = [27,a] U [27,y"] U [y, b].

Indeed, de, is the boundary of the set {u = 7} with | {u = 7} |> 0.

Indeed, the set {u = 7} is unique because otherwise there will be another level
set to construct with de; = [c, d] with ¢,d € A.

Let v be the function constructed by its level sets the same way as u with an
additional level set located in {u = 7}. We then get {|Dv| > {|[Du| = 0 on
{u = 7}. But we require minimizing § |Du| over all u € BV (Q2) with u = f. Then

the construction of u is the best solution one can get.

If we take a sequence of level sets V¢ > 7 the limiting level set will be [27,y"]
and if we take a sequence of level sets V¢ < 7, the limiting level set will be
[27,a] U [y7,b]. Since u is continuous, for all that is beneath de,, we have u = 7.

We also have, Vo € Q — {u = 7}, t; x € dg;. We then have, g, = &Y.
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= u = ugy by lemma 3.3.6.

2. Let u be any solution to the LGP. We know that ds; n T' < f~1(¢).

As f attains each value twice on ' then f~1(t) = {zf,y'}.We will prove in this
case that de; nT' = f~1(t). Suppose 0g; " T # {x',y'} then de; = [2%,¢1] U [y, ca]
with ¢;,c0 € A. Tt is a necessity that ¢; and ¢, are either a or b as we re-
quire de; to be of smallest length and d(xo, A) = d(xg,a) = d(x¢,b). Without
loss of generality, suppose z,y € T' n xpb. If ¢; = a, then [2%,a] cuts de )
which is impossible. Then, de; = [z*,0] U [¢,b]. By the triangular inequality,
d(z',y') < d(z',b) +d(y",b). Contradiction as de; must be of least length. There-
fore, on the arc azg the level sets are de; = [2!,y'] with the limiting level set
[a,70] and on the arc b the level sets are 0g; = [z, y'] with the limiting level
set [xo,b]. We then get dcy@q) = [a, o] U [20,b] boundary of the set {u = f(a)}
with [{u = f(a)}| > 0.

By the same argument as the proof of 1. | we have uniqueness of the level sets

and uniqueness of the the set {u = f(a)} = u = uy.

3. Let u be any continuous solution on €2 to the LGP. Since f takes each value
exactly once then for each t € (infrf, suprf); there exists a unique z' € T
fla') =t

Then,ds; must have an endpoint z*, but the other endpoint y € A. Then,ds;, =
[2',y] for y € A.

For points z* close to a, dg; = [z, a]. As points get away from a, then de; = [z, y]
for some y € A. Similar reasoning for the point b.

Since D is atmost countable, then 3z € D, 3 atleast vy, y2 € A;d(z,y1) = d(z,y2) =
d(z,A). Let f(xz) = 7. Then de, = [z,y1] U [z,y2] and is the boundary of the set
{u=r7}=]{u=r7}|>0. Same argument of the above 2 proofs, we prove the

uniqueness of wug. O
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Remark 9. [10] We know if u solution to LGP and 2 convex then dg; n 0§ <
f71(t) by lemma 3.3.7. Take Q = [0, 1] x [0, 1] a square and f = 0 on 3 sides of
0€) and f a bell shaped curve on the bottom side of 0€).

Suppose there exist a continuous solution on  to LGP. Then, V¢ > 0, by lemma
3.3.7, de; will be subintervals of the bottom side of 02 and they will overlap.
This is impossible as de; N de, = ¢ Vs # t. Hence, there exists no continuous
solution on Q to LGP.

The problem was indeed in the convexity of 2 which led to the overlapping of
level sets. Therefore, to ensure a continuous solution for all functions f, strict

convexity of (2 is a must.

3.4 Special case

The above solution to the LGP exists when (2 strictly convex with lipchitz bound-
ary, and f continuous and bounded on 0f).

Here, we will take a special case of a convex set and prove the existence of a
unique continuous solution for the LGP with f continuous and satisfies a mono-
tonicity condition.

Then, for any convex set, one can proceed in a similar manner as for the special
case that we will take and guarantee the existence of the LGP for f continuous

and monotone.

We take Q be a rectangle; Q0 = [—L, L] x [—h, h] which is a convex but not strictly
convex domain.

Let hy = [—L, L] x {h}

hy =[—L,L] x {—h}

vy = {L} x [—h,h]

vy = {—L} x [—h, h]

and let I'y = {hy, v}
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[y = {ho, v}
Now let f to be strictly monotone on I'; and T's.

Without loss of generality, suppose f is strictly increasing on each I'y and I's.

Theorem 3.4.1. [3] For Q and f as stated, there exists u € C(Q); u is a unique
solution to

mm{f |Dul; we BV(Q), Toqu = f}
Q

Before we illustrate the proof of the theorem given by [3], we will state a lemma:

Lemma 3.4.1. Let Q be an open set of class C'.Then there exists a surjective
continuous linear map, denoted by ~yo that sends Wh1(Q) — LY(0Q). When U €
WLHQ) n O(Q), this trace coincides with the restriction to the boundary. Also,
3C > 0; Yu e L'(09), 3U € WHHQ), 4(U) = u and ||U||wria) < C|lul|11 @00

Proof. We will proceed in the proof for theorem 3.4.1 by several steps:

Step 1 We approximate €2 by a sequence €2,, of bounded strictly convex domains
in a way (), is made up of 4 circular arcs passing through the vertices of {2 and
d(z,08,) < + Vx e 0.

We then have 0€),, = 0 + v, with v unit outer normal to 0€2 and ~, a smooth

function; 0 < v, <
We also define for x € 092, f,(z+v7y,(x)) := f(x) which remains to be continuous
on 0, since f is so.

We now define the LGP :

min{{, | Dul;ue BV (), Too,u = fa}

From theorem 3.3.1 , we know that this problem has a unique continuous solution

on Q,, which we will denote by v,.

Step 2: We now restrict v,, to €2 by setting u,, = v,1q.
We now prove u, € BV (Q) and u,, — u in L'(Q).
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As f,, is continuous on 0€2,,, then there exists F,, € W'1(Q,); F,, = f, on 09, and
IDE 2 ,) < Cullfullzi@q,)- Then,

f Duy| < f Dval < IDFullusny < Callfullron
(9] Qn

But
Collfullzr@an) < Cullfallze@0,)| 00| < O] fallze@0,) < ©

= SQ |Du,,| < o0

= u, € BV (Q)

By compactness of BV in L', there exists a subsequence still denoted by u,, and
a function u such that u,, — u in L*(Q)

By semicontinuity, we get {,, [Du| < liminf {, |Du,| < o

= u € BV (Q)

Step 3 We now prove u obtained in Step 2 is a least gradient function for some
function g, such that Thou = g, by proving u, is a least gradient function satis-
fying Toou, = gn

In fact, for z € 09, g,(2) = lim,_,, yequ,(y) = limy,_,, yeqv,(y) = v,(2) as
veC(Q,).

Then, by section 3.2 proposition 6, as v, is a least gradient function on €2, by
step 1, then v,|q = u, is a least gradient function on €.

As u, — win L'(Q) then u is a least gradient function on Q to min{{, |Dvl;

ve BV(Q), Toqu = g,} by proposition 3.

Step 4 We prove u converge uniformly to a continuous function w. From step 2
and 3, we have u, — u in L'(Q) and u is a least gradient function satisfying
Toou = gp.

Then, we get v = w a.e. and thus w is a continuous least gradient function

satisfying Toow = g,.

36



Construction of w:

For t € (minf, maxf), let I' be the line segment joining z' € I'; and y* € T'y;
fa') = fly') =t
In fact, the " are disjoint because otherwise, suppose 3t1,ts € (minf, maxf),1", 1"
2 line segments joining z'', y" and x'2, y'? respectively such that [*1, ("2 meet at
some point inside 2.
Without loss of generality, we will get 2'* > 22 and y** < y'2. By continuty of f
and being strictly increasing on each I'; i = 1,2, we get f(2) =t > f(22) =5

and f(y") =t < f(y'?) = t5 . Contradiction.

Lemma 3.4.2. For z € Q, there exists a unique 1' passing through z Vt €

(minf, mazf)

Proof. Let z € Q. Without loss of generality, take z below diagonal joining
the endoints of I';. Let s be the arc length parameter of I';. We then get,
0<s<(§", Vide+§", Vidy) = 2(L + h).

Let z(s) be a parametrization of I'y.

For each s, let I(z(s), z) be the line segment passing through z and touching Iy
at y(s).

We then have y(s) continuous.

Now let lim,_,o+ f(x(s)) = minf , and lim,_,o(z4n))+ f(2(s)) = max f

Then, lim, o0+ (f(z(s)) — f(y(s))) = minf —lim,_o+ f(y(s)) <O

and limg,_,on4ny+ (f(2(s)) = f(y(s))) = max f — limy_,on+ny+ f(y(s)) =0

By intermediate value theorem, as f(z(s)) — f(y(s)) is continuous, there exists a

unique so; I* = [2(s0),y(s0)]; z € I and f(z(s0)) = f(y(so)) =t O
We now define w : Q — R defined by:

w(xz) =t for every x € ()
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By lemma 3.4.2, this map is well defined and bijective.
Indeed, one can prove w to be continuous on {2 resulting with the inequality |,
Vl’l, X9 € Q,

jw(w1) —w(x)| = [t —ta| = [f(x") — f(2")] S w(c|rr — a2 | +ean/|21 — 22])

with w the continuity modulus of f.

Lemma 3.4.3. u, converges uniformly to w

Proof. We first prove that u,, is a cauchy sequence.

Let w(x) = t; and ug(x) =ty for x € Q.

Since Tu,, = v, = level sets of w,, {u, > t}, are straight lines with endpoints
on 0f) at which v,, takes the value ¢.

But v,, takes the value ¢ along the level sets d{v,, > t} which has endpoints on
0f), at which f, takes the value t.

We have x € 0{u; > t,} = []' and x € d{uy, = t2} = [}*.

Let [t and "2 be the 2 line segments as defined in this section such that f takes
the value ¢; on the endpoints of !t and f takes the value t, on the endpoints
of I"2. By construction, as the endpoints of (" and ;' and the endpoints of [
and [2 < 1 n = min{k,l} then Vz; € I" and x4 € I we have d(z;,z) < L and

d(zp, x) < L.

= |t1 = to] = |w(z) — wlzw)| < wla|z — @] + ca/[z1 — @)

But |z — ap| = o —ap + @ — 2| < |oy — 2| + |op — 2| < 2
and \/z; — xp < \/i% with n = min{k,(}.

= [u(x) = up(w)] < w(%2 +22) — 0 as k1 — .

lw () — up ()

= 1u,, i a cauchy sequence.
As u, is a cauchy sequence in Q < R? complete = u,, converges uniformly to

w. [l
Step 5 It remains to prove Tw = f.
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Let z € 092. We need to prove lim,,, ,eow(y) = f(2).

Without loss of generality, suppose z € I';. For y € Q3" = [z y"] passing
through y; w(y) = t;.

Since z € dQ then there exists a unique [*? = [z,2'] with 2" € I'; and f(z) =

f(Z) = ta.

lw(y) = f(2)| = [t = to| = |f(2") = f(2)] Swlarly — 2| + can/]y — 2])
So as y — z, we get w(y) — f(2).
Hence, Tw = f

Step 6 We prove uniqueness of the solution.

We have that, for v any solution of min{{, | Du |;u e BV(Q),Tu = f},
Hv=thnoQc f7H1).

By minimality of the level sets, then d{v > t} = d{w > t} and thus u = w.

Remark 10. 1. In step 4, from the inequality resultng from continuity of the
the solution w, we can see that if f € C%(9Q) then w e C2 ().

2. One can take f to be strictly increasing on h; and constant on v;. (vice versa
also works) for i = 1,2. There will exist a unique solution by proceeding
in a similar manner and the level sets are constructed in the following way:
Vo € Q, 3! I! line segment with endpoints 2! on h; and y' on hy with
t € (minf, maxf). We define the solution w(z) =t and all other steps are

the same as was done.

3. One can now generalize to any convex set by proceeding in a similar way

as was done and constructing the level sets ' that fill up Q.
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3.5 Connection between LGP and FMD

Let 2 be a plane domain with lipchitz boundary.

Definition 3.5.1. We define the problem that appears in free material design to
be(FMD):
inf(| Ipl. pe QR divp =0, p- vl = g}
Q

FMD is the problem of finding the least material distribution of a body to handle
a load applied to its boundary. v is the unit outer normal to d€2. For the normal
trace to be well defined, we require €2 to belong to a special class of lipchitz do-
mains called deformable lipchitz domain.This special class contains convex sets.
Hence, we will consider 2 to be convex with 02 lipchitz continuous. Also, as
p e L), divp is viewed to be in the distributional sense.

As L' is not weakly™* closed, we cannot ensure the existence of minimizers to the

problem.

We now consider the following two problems:
1 —min{§, |Du|, ue BV(Q), Toqu = f}
2 — an{SQ |p|7 pe L1(97R2)a dwp = Oa b V|6Q = g}

As stated in previous section, Problem 1 is the least gradient problem(LGP). We
will take 00 to be lipchitz continuous and f € L*(09).

As we are interested in finding solution to LGP, it is proved in [3] that a relation
does exist between problem 1 and problem 2. This relation states that finding

an element to one of the 2 problems leads to finding an element of the second.

Proposition 8. Let p € L'(Q2, R?) with divp = 0 and Q convex. Then there exists
ue WHH(Q) € BV(Q) such that p= R_zVu.
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Also, if p-v]sa = g and Tequ = f, then g = %.

In other words, having an element in the set of problem 2 gives an element in the

set of problem 1.

Theorem 3.5.1. [3] Let u be a solution to problem 1 and ) convex. Then

q = R_zVu 1is a solution to problem 2 with g - Vg = % = g and divg = 0.

Proof. Let u be a solution to problem and let ¢ := R_zVu. Let M be the solution

to problem 2. We need to prove {,, |¢|dz = M, divg =0, q - v]sq = g.

Let p, be a minimizing sequence of problem 2 such that {, |p,|dz — M and
divp = 0, p, € LY(Q,R?), p, - v|sq = g. By Proposition 8, Jv, € WH(Q) <
BV (Q);p, = R—z Dv, and Tv, = f.

As u solution and v, is an element of the set of problem 1, M = SQ |pn|dz =
$o [Dvy|dx = §, |Duldz = §, |q|d.

We get M = {, |g|dz as it is impossible for M to be strictly greater than {, | Du|dzx

since by construction it is a minimizing sequence.
Also, as ¢ is the rotation of Du by angle =* = divg = 0.

It remains to show ¢ - v|sn = g.

Aswu e BV (Q), by approximation of BV functions Jw,, € BV (2) nC*(2); w,, —
win L*(Q) and §, | Dw, |— §, | Du | as n — c0. We set Tw,, = f = Tu.
Then, 7 a subsequence, still denoted by Dw,,; Dw,, — Du weakly as measures.
We set p,, := R—Twan. By Proposition 1, py, - v|aq = 67{;% = %.

Let ¢ € Lip(v, 092) with v > 1 and ® the extension of ¢ to Lip(R?),

< q- Vo, >=<divg,® > +§, ¢V@dx = |, ¢VPdz as divg = 0.

But Dw,, — Du = p,, = R%Dwn — R%ﬁ Du = q weakly as measures.

Then, < ¢ - v|og,¢ >= {,qVOdr = lim, o §,p,VOdzr = lim, ., < p, -
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V|6Qu§0 >= hmn—>00 <g,pp>=<4g,p>.

= q-V]og = 9. O

3.5.1 Example 1

We now show an example where the relation between FMD and LGP is used
resulting in a piecewise constant not continuous function f defined on d€2. We
find a solution to the LGP with this f.

Suppose €2 strictly convex, d€2 smooth. Consider the FMD problem with g a
distribution = ¢g = Zle ci0q, With a; € 092 and d,, the delta function. In other

words, we apply a load on some points of df2 and the rest of 0§2 remains free.

We assume () is at rest, then for stability we take SQ dg =0

=, A2, cida,) = 30 ¢ §o 0 dx = 3P e =0.

We take ¢; = a1 + an, o = —aq, ¢ = —ap so that Z?=1 c; = 0.

We parametrize 02 by s — x(s) for s € [0, L).

= g = aq + ax(s1) — asx(se) — ax(0) with z(sq),z(ss),x(sp) 3 points on OS2

and x(sg) = z(0).

By FMD and LGP relation, g = ‘;—f.

-

0 S € [O, 81)
We then get, g = < oy + ay s € [s1,52)

aq S € [s9, L)

\
f is piecewise constant and discontinuous on x(0), x(s1), x(s2). We assume aq, as

are positive, and f is unique up to a constant.

We now seek a soution to the LGP, min{{, | Du [;ue BV (Q),Tu = f}.
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We approximate f by a continuous function f¢ such that f = f¢ everywhere
except at {x;d(z,z(s;) < €,i = 0,1,2}. Then, by theorem 3.3.1, the LGP
min{{,, | Du [;u € BV(Q),Tu = f} has a solution which we will denote by

ue

Since u¢ and v’ differ on a neighborhood of x(s;) i = 0, 1,2,

[|us — U6||L1(Q) < Cfe, 0[] z(s0) — x(s1) [ + | w(s1) — x(s2) | + | 2(s2) — z(s0) []-
Ase,d — 0, |[u —0||pr ) — 0.

= u° is a cauchy sequence in L'(Q2) and as L'(Q2) Banach space= u* — u in

LY(Q).

Since u¢ is a least gradient function and u¢ — wu in L'()) = by proposition 3.
u is a least gradient function with tu = f¢. But as e — 0, f¢ = f.

=Tu=f

= u is a solution to min{{, | Du [;u € BV (Q),Tu = f} .

Uniqueness of the solution is claimed but still not proved rigorously. However,
[3] states that uniqueness is expected to be achieved as above by constructing

the level sets and claiming their uniqueness.

3.5.2 Example 2

We now represent an example given by [3] to find a solution to the LGP with
) a rectangle and f, not satisfying a monotonicity condition, being the function
resulting from the relation between LGP and FMD with the knowledge that a

load ¢ is applied on a part of 02 and €) remains at rest.

Let Q = (=L, L) x (—h, h) a rectangle and g a load applied on o€ in the following

way:
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Il [-b,0] x {—h}

9=131r [~tt]x {h}

0 on the rest of 0f)

\

where [—b,0],[—t,t] < [-L, L]

We suppose (2 is at rest such that Sm gdr =0
= §ou 3, lrdady + 5, 57 lpdady = 0

= hlrx|t, — higx|®, = 2tiph — 2blgh = 0

But h # 0 and h[2tlr — 2blg] = 0

= 2tlp = 2blp.

By FMD and LGP relation, 3f € L}(0Q);g = &L.

As we want f to be continuous, we proceed in the following way:

Asg=0on {—L} x [-h,h] = % = 0= f(—L,y) = C with C constant. We
take C' = 0.

= f(x,y) =0on {—L} x [—h,h].

By continuity of f, and as g remains to be 0 we get f(x,y) = 0 on [—L, —b|x{—h}.
On [-b,b]x{—h},g =l = f(x,y) = lgr+k(y). By continuity of f, f(—L,—h) =
f(=b,—h) =0= —Igb+ k(y) = 0= k(y) = Igb.

= f(z,y) = lpr + blg on [—b,b] x {—h}.

As we require f to be continuous and g = 0 on [b, L] x {—h} and on {L} x [—h, h]
and f(b,—h) = 2blgp = f(x,y) = 2blg on [b, L] x {—h} and on {L} x [—h, h].
We proceed in a similar way on [—L, L] x {h} to get:

f(x,y) = 0 on [-L, —t] x {h},

f(z,y) = lpx + tlp on [—t,t] x {h}

f(x,y) = 2tly on [t, L] x {h} and {L} x [—h, h].

In fact, as 2tlp = 2blg we then guarentee the continuity of f.
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Conclusion, f(z,y) = <

-

0
lB.T + blB
ZT.I' + tlT

2blg

2tlr
\

on {—L} x [~h,h] and [~L, —t] x {h} and [~L, —b] x {—h}
on [~b,b] x {~h}

on [—t,t] x {h}

on [b, L] x {~h} and {L} x [~h, h]

on [t, L]{h}

We now aim on finding a solution to the LGP, with boundary data f.

If we take t = b = L then f is strictly increasing on hq, ho and constant on vy, vo

where hq, ho, v1, v9 are defined in section 3.4.

Then, by theorem 3.4.1, there exists a unique continuous solution to the LGP.

However, we have that f is strictly increasing on [—t, t]x {h} and on [—b, b] x {—h},

which implies f attains each value at exactly 2 points, one in [—t,t] x {h} and one

in [—b, b] x {—h}, except for the minimum and maximum of f which are attained

at more than 2 points.

We extend f to a function f. = f + k. continuous and strictly increasing on h

and hy and constant on v; and vy with
(

on {—L} x [—h,h]

/{76(13,3/) = 9 (l‘-i-b)

on [—b,b] x {—h} and [—t,t] x {h}

on [—L,—t] x {h}

on [—L,—b] x {—h}

on [b, L] x {—h}

on [t, L] x {h}

on {L} x [—h,h]

By theorem 3.4.1, there exists unique u. € C(f), solution to the LGP with

Tu. = f. on 0S2.
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Denote by P; the polygon with 0P, = {{—L} x[—h, h],[—L, —t] x {h},[-L, —b] x
{—h}, and the line segment l; with 0l; = {(—t, h), (—b, —h)}} and P the polygon
with 0P = {l1,[—t,t] x {h},[—b,b] x {—h}, and the line segment [, with dly =
{(b,h),(t,h)}} and P, the polygon with 0P, = {ls, [t, L|{h}, [, L] x {—h},{L} x
(=R, h]}}-

By construction of level sets as in section 3.4, we now know that every level set
joins a point in A; to a point in hy and u. takes the value on each level set same
as the value of f. on the endpoints of the level set. Therefore, as

—e< fe<0ondP, — 1,

0 < fe <2blgp on 0P — {ly,1;} and

2blp < fe < 2blp + € on 0P, — .

Then:
—e<u.<0on P,
0<u.<2blgonP

2blg < u. < 2blg + con P

r

0 on P1
We now set u = < y, on P
2blg  on P,

As u, is independent of € on P then it is possible to take u = u, on P.

It is evident that u is continuous on Q.

I now prove u, converge in L' to u because as u, is a least gradient function and
if ue —> w in L'(Q) then u is a least gradient function. In fact,
—e<u.—u<0on P,

ue —u =0on P,
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O0<u—u<eon b
=|u—u.|<ein Q

= u,. converges uniformly to u in 2
= u, —> u in L'(Q)

= 1 is least gradient function.

It remains to show u has the correct trace Tu = f on 0€2. In fact,
On P: Tu=Tu. =u. = f.=f.

On Pp: Let z € {—L} x [—h,h] or [-L,—t] x {h} or [—L,—b] x {—h},
lim, . yeou(z,y) =limy .. 4en0=0= f(z)

On Py: Let z € [t, L] x {h} or [b, L] x {—h} or {L} x [—h,h]

lim, ., yeou(z,y) =lm, . ,eq2blp = 2blg = f(2)
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Chapter 4

Constrained Least Gradient

Problem

Based on [10], we now consider a rod and an external force applied on the rod.
We suppose the rod has an exterior constant cross section 2. Our aim is to find
the cross section with least area that will resist the load without deforming. We
can consider this problem as a 2-dimensional problem with stress satisfying a
yield condition. Without loss of generality, we suppose the stress never exceeds
1 in magnitude or else the cross section yields plastically.

We may vary the cross sections by removing material from €2 and aim for the
cross section with the least area and the stress not exceeding 1.

However, we instead fix {2 and vary the stresses in {2 and remove material where
the stress is zero.

We can translate this problem into the following:

We let u be a function defined on § that gives a stress R_zVu i.e. rotation of
Vu by angle —5. We let f be a function defined on 0f2 i.e. the load applied on

0f.

1 fort+#0
We define w : [0,1] — R by ¢t — w(t) =

0 for t=0
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Our problem is then:
mm{f w(|Vu|) ;|Vu| < 1 ae in Q, u= f on dQ}
Q

We know that {, w(]Vul) = 0 since [Vu| =0

For |[Vu| = 0 = min{{, w(|Vu|); [Vu| <1 ae. inQ, u= fon dQ} =0.

For |[Vu| # 0, w(|Vu ) = 1 = [, w(|Vu|)dA = Area ().

However, the integrand is nonconvex, and by a well known phenomenon in math-
ematics, it is a barrier to finding the existence of a solution. We then convexify
w by finding the greatest convex function smaller than w. It turns out that the
convexification of w is w(t) = t.

We now solve the problem:
mm{f w(|Vu]) ; [Vul <1 ae. in Q ,u= f on dQ}
Q

Asw < w = SQ SQ w = by attaining a solution to the convexified problem,
we attain an infimum, might not be a minimum, to our original problem.
We realize that the convexified problem is the least gradient problem with an

additional constraint.

Definition 4.0.1. We define the constrained least gradient problem to be:
mm{J |Vu| ;|Vu|l <1 ae inQ, u=f on dQ}
Q

with f lipchitz continuous on 09 satisfying |f(p) — f(q)| < da(p,q) ¥p,q € 09

where dg(p, q) = inf{ length of 7} with v any path joining p to ¢ lying in Q.

The main ingredient in the method of solution is to start by studying the sets
{z € Q; u(z) > t}, and then go on to studying their boundaries, with a view to
showing that those sets solve some minimum problem, in a well-defined notion of

perimeter.
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Now if € is a convex set, then the condition |Vu| < 1 a.e. in Q in equivalent
to |u(z) — u(y)| < |z —y| for all z,y € Q, as can be easily seen, since the line
segment joining x to y lies completely in ). If €2 is not convex, we can consider
all paths in §2 joining x to y, and then we will have that |u(x) — u(y)| < { length
of the shortest path in Q joining x to y}.

4.1 Characterization of level sets

Unlike the LGP, level sets of the solution to the constrained LGP need not to be
minimal surfaces due to the constraint |Vu| < 1. Indeed, consider a 2-dimensional
case with 2 = R2. Let 7, denote the level curve of u at t € R. The boundary
points at which u = f = t must belong to 7, and along ; one has u = t. 7, must
avoid all balls of center p € 02 and radius |f(p) — t| because then the distance
between the points that give v = ¢ inside the ball and p is less than |f(p) —t| i.e.
|z — p| < |u(p) — u(x)| for z € v, contradicting the fact that |Vu| < 1. Hence,
v may not need to be a straight line and thus a minimal surface. Indeed, each
level curve must avoid a set which is a union of open disks.

We shall now illustrate an example in R? given by [11] aiming for one to see the
difference in the construction of level sets between the LGP and the constrained

LGP with boundary data deduced by the connection between FMD and LGP.

Example Consider Q = [0, 1] x [0, 1] to be the unit square. Consider the FMD
problem with ¢ defined on 0f) in the following way: g = 1 on the bottom side,
g = —1 on the left side, and g = 0 on the right and top side.

By the connection between FMD and LGP, one has g = % = f = x on the
bottom side, f = y on the left side, and f = 1 on the right and top side.

As seen in previous chapter, without the constraint |Vu| < 1, one gets the LGP
with level sets as straight lines. As f takes each value exactly twice one on the

bottom side and one on the left side, level sets are straight lines joining these 2
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points (¢,0) and (0,¢) for each ¢ between 0 and 1. The lines equations will then
be y + x = t. Also, one has u constant with u = 1 in the square with y + x > 1.
As u takes a constant value t along each level set joining (¢,0) and (0,¢), then
one deduces the unique solution to the LGP is u(z,y) = = + y.

However, |Vu| = /2 > 1.

Therefore, for the constrained LGP with such boundary data f it is impossible
for u to have level sets as straight lines as they must avoid all disks B(z, | f(z)—t|)
for each boundary point z. One then gets that the level sets are circular arcs
joining the 2 points (¢,0) and (0,¢) with center 0 and radius ¢t. Also, u will be

constant in the square above the circular arc center 0 radius 1.

So in case () is convex we may consider what appears to be a slightly weaker
condition than |Vu| < 1 a.e. in . Namely we suppose that the condition
lu(z) — u(y)| < |z — y| holds for all x € 99, and y € Q. The corresponding

problem is then
{f [Vo|, v=fon dQ, |v(z)—v(y)| <|x—y| holds for all x € 09, ye N}
Q

It turns out that an analysis of this problem produces a unique solution of

the constrained problem.

Now let 2 be a bounded domain in R”, and let f be a given function defined on
its boundary 0€). Suppose that there is a function v defined on €2 and satisfying
the following conditions:

(i) v = f on 09 (ii) if x € 09, and y € Q, then |u(z) — u(y)| < |z —yl.

For such function v we aim on to study the sets A; = {x € Q; v(x) > t}, with t a
real number.

Fix t € R, and compare, for all points p € 0€2, the values f(p) of the boundary
function f with the real number t.

Case 1: Suppose that there is a point p € 092 such that f(p) < t. Thent—f(p) > 0,
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and we concentrate on a neighborhood of p of radius ¢t — f(p) > 0. If z € 2 and
is also in this neighborhood, then |z — p| <t — f(p). Then by condition (ii) on v
we have, since v(p) = f(p),

v(r) —v(p) =v(x) — f(p) < |z —p|l <t— f(p)

which implies that v(z) < t, and hence such a point = ¢ A;. In particular, the
point p itself is not in A;. This also implies that if M = max{f(p); p € 02} and
t > M, then f(p) < t for all point p € 02, and so the boundary of 2 can be
covered by an open set (a union of neighborhoods) which does not intersect that
particular A;. Later on, we shall be interested in the largest such possible set.

Case 2: Suppose there is a point p € 02 such that f(p) = ¢. Then f(p) —t =0
and if f(p) —t > 0, we concentrate on a neighborhood of p of radius f(p) —¢. If

x €  and is also in this neighborhood, then |x —p| < f(p) —t, and again we have

v(p) —v(z) = f(p) —v(z) < |p—x| < f(p) — ¢

which implies that v(x) > t, and so x € A;. This also implies that if

m = min{f(p); p € 0Q}, and t < m, then f(p) =t for all points p € 0€2, and so
the entire boundary of €2 along with an open set containing it will lie in A;. Once
again we are interested in the largest such possible set.

The previous analysis leads naturally to the introduction of 2 sets as follows:

given t € R, define two sets L; and M; by
Li={xeQ; 3ped, f(p)—t =0, [p—z| < f(p)—t} = {UpeoaB(p, f(0)—1); f(p) =t}

M, :={x e Q; Ipe dQ, f(p)—t <0, [p—z| < t—f(p)} = {UpeaaB(p.t—f(p)); f(p) <t}

Proposition 9. [10] Suppose that v satisfies the conditions (i)Jv = f on 09,
(i1) if x € 02, and y € 2, then |v(x) —v(y)| < |v —y|. Then, Ly < A, and
Ay n My = @ for each real t.
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Now for a given function v satisfying the conditions of the proposition, and
for each real t, we seek that subset £ — (2, which contains L; does not intersect

M; and has smallest perimeter i.e. we consider the problem
min{P(FE); Lyc E, En M, =92, E cQ} (4.1)

One can show that this problem always has a solution, but not necessarily a
unique solution. To obtain a unique solution, we search for those sets which have

largest possible measure i.e.
max{|E|; E solves the above problem} (4.2)

Now this problem has a unique solution, denoted by &; and we expect that the

boundary of this set corresponds with the level set v = ¢.

Another important characterization of the level sets is that the construction of
Oe; is independent of the construction of de,.

Indeed, we we shall present the proof of result based on reference [4] that the
distance between de; and Jey is no less than |t — s| for s < t.

First we extend (4.1) and (4.2) from 2 to R™ .

We now consider the following extended problems

min{P(E,R");Lyc E,M, nE =@, E —Q =L, — Q} (4.3)
and
maz{|E|; E solves (4.3)} (4.4)

We denote the solution of (4.4) by E}.

Remark 11. (4.1) and (4.3) are equivalent since
P(E,R") = P(E,Q) + H" *(0*L; — Q)
such that £, n Q = &
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Lemma 4.1.1. Ifs <t, then E; c E|
Lemma 4.1.2. Let s <t. Letne R™,|n|<t—s. Then E, +nc E;.

Proof. We first denote L, := L, +n, M, :== M, +n, Q = Q +1.

We consider the problem:
min{P(E);L,c E,M, nE = E,E—Q =L, —Q} (4.5)
mazx{|E|; E solves (4.5)} (4.6)

(4.5) and (4.6) have a unique solution which we will denote by FE,.

We have L, c L, since: forze L;, 2 = a+n,ae€ Ly = Ipe dQ;|a—p| < f(p) —t
= dpedfa—pl+n < f(p)—t+nl =Ipedla—p+n| < f(p)—t+i—s5=
f(p) =5 As f(p) 2t>s= f(p)—s=0

= dpe |z —p| < flp) —s=x€ L,

Let E = E, n E,
We need to prove, L;cE,EthI =EE-Q =L~

° L; cL,cE,
L, c E,
=L, cEnE=F
e We have E c E,
=N Mt/ cE, n Mt/
—~FEnM, =@asE nM =2
e AsL,c EcE,
=L, - QcE-QcE -Q=L -
=FE-Q =L, -
Hence, E = E, n E, competitor of F, in (4.5)
= P(E,R") > P(E,, R")
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Let F = F, u E,

We have M, = M, since: let z € My, = Ip € 0Q;s—f(p) = 0and | 2—p |< s—f(p).
Let a =2z —n.

We claima € My. |p—al=|p—(x—n)|=lp—xz+n|<|p—a |+ ]|7n|<
s—fo)+Inl<s—flp)+t—s=1t—f(p)

=1 =a+nwithae M, =z e M,.

As M, c M, = M, c M;.
But Mt' is the biggest open set in M, = M, M;

We need to prove LSCF,FGMSZQ,F—QZLS—Q

e L,cE,cE,UFE =F

e FAM,=(E,0E) M = (E,n M) u(E, nM,)
But E, n M, = FE as E, solves (4.3).
Since]\;.lscj\zﬁE;m]\O@cE;mj\Zzg
:Eém]\o@:@

Hence, F' n ]\OJS =g

o L. cE. =L, —QcE,—QcF-Q
It remains to show F'—Q c L, — Q
F-Q=(E,uE)-Q=(E -Qu(E,—Q)
SoweneedtoproveE;*QcLszandES*QCLS*Q
But we know E, — Q = L, — Q So it remains to prove E;—QC L,—Q
LetreE, - Q=zxel andes¢ Q=x=a+n acE, x¢
It is enough now to prove x € L

We consider two cases: a € €2 and a ¢ €.

Ifa¢Q:>aeEt—Q=Lt—Q:>xeL;cLS
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If a € Q then 3y’ € 0Q with 3/ = a + 1,0 < v < 1 since x ¢ Q.
Iff(y’)<twehaveaeEtandEtm]\O4t=®=>a¢Mt
=la—y|zt—fy)=la—a—ml=t-f)=Inl=t— f(y)
=t—s=t— fy)=s<f¥).

If f() =t,ast>s= f(y) > s.

Then as f(y') > s, [z —¢|=la+n—a—yn| = |1 -y <[l <t-s<
fy)—s

=qxel,
Hence, F is a competitor to E, in (4.3) = P(E, u E,, R") = P(E,, R")

But P(E, U E,,Q) + P(E,n E,,Q) < P(E,,Q) + P(E,,Q)

and from above we have, P(E,U E;, Q) < P(E,,Q) and P(E,nE;,Q) < P(E,, Q)
= P(E, U E,,Q) = P(E,,Q) and P(E, n E},Q) = P(E,,Q)

= FE, U E, and E, n E, solve (P’1) and (P’3) respectively

= (|EsUE)nQI<| (B)nQ]and | E,n B, n Q<] E; 0 Q|

But | (B, UE)nQ|=|EsnQ|+| (B —E,)nQ|

=B, n Q2| En Q|+ [ (B —E)nQ]

= (E,—E)nQ|=0

It remains to show E] ¢ Fj

|E;nB(z,r)nQ|
[B(z,r)]

Write E} = (E] — E;) u (F; n Es) union of 2 disjoint sets.
QN (E,—Es)nB(

Let x € E} n 2 = by definition 2.2.1, limsup,__,, >0

|E{nB(z,r)nQ| QN (E;nEs)nB(x,r)]

= limsup, = limsup,__, =0l 4 im sup,__,

|B(x,r)] |B(z,r)| |B(x,r)]
But (E; — E5) n B(z,7r) nQ c (E, — E5) n Q
=| (E; — Es) n B(x,r) nQI<| (E] — E5) nQ|=0
=| (B, — Es) nB(z, 1) nQ|=0
= 0 < limsup,__,, % = limsup,_,, ‘Eiﬁﬁgzg;f(x’r)l < limsup,_,, %

|EsnB(z,r)nQ|

B >V

= limsup,__,
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= x e F,

Hence, E{ nQ c E; 0 Q

Also, B, —Q=L,-QcL,—Q=¢,-Q

= [, c B, O

Corollary 4.2. Let s <t, dist(0E;, 0Es) >t — s

Proof. Proceeding by contradiction, suppose dist(0F;, 0E;) <t — s
Let x € 0E;. Then one can find y ¢ E, such that |y —z |=t — s.
Set n =y —x =y =n+xe E, Contradiction to lemma 4.1.2. . O]

Remark 12. If 2 not convex we then have f lipchitz with | f(p)—f(q) |< da(p, q)
Vp, q € €.
Corollary 4.2 will then be do(Q n 0E;,Q N 0E;) >t — s for s <.

4.3 Existence of a solution
Definition 4.3.1. Define a function u* on €2 by
u*(x) = sup{t; x € e}

Theorem 4.3.1. [/] The function u* is the unique continuous solution to the

problem

mm{f \Vul; uw=fondQ, |Vu| <1 a.e. in Q}
Q

Proposition 9 constitutes a characterization of the level sets of the solution to

the problem.

Since by definition of ¢; one has L; < ¢; and ¢, n M; = &, it is then easy to show
that u* = f on 0Q and |[u*(z) — u*(y)| < |z — y| for all z € 0, y € Q.
Indeed, Let x € 0Q such that f(z) =t If s <t = f(x) > s = x € Ly

Vs <t=1mxee, Vs <tsince Ly c g, = u(r) = s Vs <t = u(zr) >t
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Ifs>t= flr) <s=s—f(x)>0=mze M Vs>t=x¢e, Vs > t since

e, M, =@ = u(z) <sVs>t=u(z) <t Hence, u(z) =t = f().

Now let u*(y) = tforye Q =y € dey = y ¢ LioM, = y ¢ B(z,|f(z)—u*(y)|) for
allz € 00 = |f(z)—u*(y)| < |z —y| fory € Q, x € 00 = |u*(x) —u*(y)| < |z —vy|
for y € Q, x € 0N.

So to prove that u* is indeed the solution of the constrained least gradient problem
one still has to show that u* is continuous and that |u*(z) — u*(y)| < |z — y| for
x,y € 1ie. u* is lipchitz. The proof will be illustrated in what follows according
to reference [4].

We first begin by introducing new sets that can help in the characterization of

level sets. We set the following:
By = Ms<t€s, Cy = Us>tEs, Dy =B —Cy= By n th
Lemma 4.3.1. ¢, c &, Vs <t

Lemma 4.3.2. For each point x on 0D; <), one can find a sequence of points on
Uszt(0es N Q) converging to z. In other words, x is a limit point of Ug.(des N Q),

te R

Proof. Let x € 0D; n Q. Consider all r > 0; B(x,r) < €. Then one can find
ye Dy n B(z,r) and z € (2 — Dy) n B(x, 7).

=yeB,yé¢ Cy,and 2 ¢ D,

=yeBL,yeQ—C,z¢ Byor z¢ Cf

= [y € Nsis and z € Ug(Q —g5)] or [y € Ng=t(Q — €5) and z € Uy yeg]

= by first condition B(z,r) contains an element of dez; Vs < ¢ sufficiently close
to t knowing &; < €, Vs < t. Similarly, by second condition B(z,r) contains an
element of dg, Vs > t sufficiently close to t. These points will eventually converge

to z. O
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Lemma 4.3.3. Vit e R
1. D, is a closed set
2. D; = Qn {z;u*(z) =t}
3. Qe < (u*)~Ht)
4. gpc{zyu(x) =t} = By
5. w* is lipchitz on Q with lipchitz constant 1

Proof. 1. To prove D is closed in Q we prove (0D, U Dt) NnQ =D, nO.

We know D, < D,. So it remains to prove D; n Q < D, n Q.

But lo)t c D, = it suffices to prove 0D, nQ c D, n Qie. Yz e 0D, nQ,z € B,
and z € Q — C,.

Let z € 0D; n Q. Then 3z; € D, such that z; — z

But D; ¢ B; = dx; € By, x; — x.

As B, is a closed set ( being the intersection of closed sets ), the limit point = € B;.

It remains to show x ¢ C}.

Proceeding by contradiction, suppose x € Cy = sy > ¢ such that x € A,,.
We will conder 2 cases:

1) Assume 3r > 0; B(z,r) n Q = B(x,r) n Dy,

as T € £, N 0 = by definition 3.2.1 limsup,_, %ﬂ >0 =| B(z,r) n
Qneg|>0

But B(z,r)nQnCy = B(x,r)nDynCy=B(x,r) n BinCf nCy = &
As g5y © Ugies = Cy

=| B(xz,1) nQ ey, <] Blx,r) n Q2 C; |= 0 .Contradiction.

Then, x ¢ C}.

2) Assume Yr > 0, B(xz,r) n Q # B(x,r) n Dy

By lemma 4.3.2, 3{ys,} — r ass; — t.
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freé, =xe€ Co*t = x cannot belong to dD;. Contradiction. So x € de,,. But
by corollary 4.2, dist(x,ys,) = dist(Oeg,, 0cs,) = 59 — s; > 0
As i —> o0 we get a contradiction.

3$¢Ct$$EDt

2. D) Let xe Qu*(z) =t =z €5

If s<twehavee, ce,=x€e, Vs <t = x€ B,.
fs>t=u*(x)<s=axd¢ec,Vs>t=1ux¢C,.

Hence, = € D;.
c)letzeD;=reBandx¢Ci=Vs<trecsandVs>tarde, = Vs <t
u*(x) = sand Vs > t u*(z) < s

= u*(z) =t and u*(z) <t = u*(x) =t.

3. Let x € Q n Ogy. As g is closed then x € ¢, < B;.
It remains to prove x ¢ Cy. If x € Cy = ds¢g > ¢, € deg,

= dist(0es,, de;) = 0. Contradiction with the corollary 4.2.

4. We first prove By = {z;u*(z) > t}.
Let re By = Vs <t, xe€e,.

But gy cesVs<t=xeeg =u*(r) >t
Conversely, if u*(x) >t =2 €¢ < B,.
Now Vx € g; we have u*(x) > t.

Hence, &, < {z;u*(x) = t} = B,.

5. Let 2,y € Q. Let u*(z) = s and u*(y) =t. By 3, x € D; and y € D;. We will
suppose & € D, and Yy € D, = 32’ € 0D, and a geodesic joining = to y passing
through «’. Also 3y’ € 0D, such that y’ belongs to this geodesic. By lemma 4.3.2,
Has,} < des, and Iy, } < Ogy, such that x5, — 2’ and y;,, —> ' as s; —> s and

t; — t respectively.
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= disto(zs;, ;) = distq(0es,, Ocy,) = |s; — t;] by corollary 4.2.

= lim; o disto(zs,, yt;) = im0 |8 — t4]

= disto(2',y') = |s—t
= disto(z,y) = |s — t| as do(x,y) = do(2',y)
= disto(z,y) = |u(z) —u(y)|.

It remains to show u* continuous on 2. Let = € 0Q; u*(z) =t = f(x).
Vs < t we have Q n {y; dist(z,y) < f(z) — s} < L, < &,.
= Yy € Q. dist(z,y) <| f(z) —s | we have y € ¢ s = u*(y) = sVs < ¢
= liminf, ., eou*(y) > s Vs <t =liminf, ,, equ*(y) =1t = u*(z).
Vs > t, we have Q n {y;dist(z,y) < s — f(z)} © M, = Vy € Q,dist(x,y) <
s — f(r) we have y ¢ ¢, = u*(y) < s Vs >t = limsup, ,, qu*(y) < s

Vs >t = limsup, ., qu*(y) <t=u*(z).

Hence u* is lipchitz on Q. O

We shall now present the proof that the above u* is indeed the solution of the
constrained LGP given by [4]:

Proof. Since u* is lipchitz on Q, by lemma 4.3.3, |[Vu*| < 1 a.e. in Q.

Also by lemma 4.3.3, we have u* € C%1(Q) on 0Q. We shall now show that

§o [Vul < §, | Vo], for each v competitor of u in the constrained LGP.

So we let v e C%H(Q),|Vo| < 1 ae. in Q,v = f on 0.

We then have Vp € 0Q,x € Q,|v(z) — v(p)| < |z — p|.

Setting €, = {v > t}, one indeed has L, < ¢, and M, n £, = @ by proposition 9.
Hence, ¢, is a competitor to &, in (4.1) = P(g;, Q) < P(g;,Q)

= 77 P(e,9Q) < §77 Pe,, Q)

= by coarea formula, theorem 2.5.1, {, [Vu| < §, [Vo|.
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