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An Abstract of the Thesis of

Charbella Jean Abou Khalil for Master of Science
Major: Mathematics

Title: Theta Series and its Application to Sums of Squares

Let Q be a positive definite quadratic form on Zk. Consider the Theta Function
defined by θ̃(z) = ∑m∈Zk e

2πiQ(m)z for some z ∈ H. As an interesting application of
Modular Forms, we study the number of representations of an integer s by Q. In
this regard, we begin by proving the transformation law of θ̃(z), following Goro
Shimura’s approach of the proof which uses some essential techniques such as the
Poisson Summation Formula and Fourier Transforms. This shows that θ̃(z) is a
modular form of weight k

2 on the congruence subgroup Γ0(4). After that, we study
the Eisenstein series of weight k ≥ 3 on Γ(M) as well as write its Fourier expansion
used in expressing bases of the spaces of modular forms accordingly. To end, we
approach the growth of Theta’s Fourier coefficients to obtain asymptotic formulas
for the number of representations mentioned above.
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Chapter 1

Introduction

We denote the number of representations of an integer s by a positive definite

quadratic form by

rQ,h,N(s) = #{(x1,⋯, xk) ∈ Zk ∣ Q(x) = s and x ≡ h mod NZk}.

In this thesis we limit Q(x) to x2
1 +⋯ + x2

k and write

rk(s) = #{(x1,⋯, xk) ∈ Zk ∣ x2
1 +⋯ + x2

k = s}.

It turns out that rk(s) represents the Fourier coefficient of some function θ̃.

In his paper, [Shimura, 1973] proved the transformation law of θ which allowed

us to show that θ̃ is a modular form on Γ0(4). Then, according to the dimension of

Sk, we were able to write θ̃ as a combination of Eisenstein Series and cusp forms.

Indeed, for k ≤ 8, the space of cusp forms if trivial. Thus, we get the needed formulas

using particular methods and calculations. Furthermore, for k ≥ 10, we notice that

the space of cusp forms is no longer trivial. However, getting rk(s) = a(s) + b(s)

where a(s) is the known Eisenstein part coefficient and b(s) is the cuspidal part
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coefficient, and using the fact that b(s)
a(s) → 0 as s→∞, we deduce that the growth of

the Fourier coefficient rk(s) of θ̃ is the same as that of a(s): rk(s)
a(s) → 1 as s→∞.

In chapter 2, we state basic definitions and properties. Furthermore, we establish

essential sections such as the Fourier transforms of some functions and Gauss Sums

in order to prove the transformation law of the Theta Function. After that, we give

a quick overview on the Lipschitz Summation Formula needed for the expansion of

the Eisenstein Series.

In chapter 3, we prove that θ is a modular form on the congruence subgroup

Γ0(2,2N). This will allow us to define in the next chapter a new function denoted

by θ̃ and show that it is a modular form on Γ0(4).

We start chapter 4 by obtaining an explicit formula for the Fourier expansion of

the Eisenstein Series on Γ(4) and consequently on Γ0(4) using some abstract algebra

tools. Next, we write the basis of Mk/2(Γ1(4)), obtained by Magma Calculator, in

terms of the Eisenstein Series. In order to reach the main result, we express θ̃ in

terms of the generators of the Eisenstein space and the space of cusp forms, leading

to formulas for the number of representations rk(s).
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Chapter 2

Background Theory

In this chapter, we outline the relevant and essential theoretical tools. We first

introduce notations and some basic definitions. Besides giving some background

on the Poisson Summation Formula on Zn and the Fourier transforms of particular

functions, we establish relations and properties of Quadratic Residue Symbols. We

end the chapter by demonstrating a proof of the Lipschitz Summation Formula.

2.1 Notations

We always consider the following set of notations:

• Z,Q,R, and C denote the ring of rational integers, the rational number field,

the real number field, and the complex number field respectively.

• H denotes the upper half plane.

• All vectors in Zn, Rn or Cn will be considered column vectors with n a positive

integer.
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• The upper right t means ”transpose”.

• sgn(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if a ≥ 0,

−1 otherwise.

• For z ∈ C, we put e(z) = e2πiz with i =
√
−1.

• For z ∈ C, define
√
z = z 1

2 such that −π2 < arg(z 1
2 ) ≤ π

2 .

• For z ∈ C ∖R and γ ∈ GL2(R), γz = az+b
cz+d defines a group action.

• χ denotes a character modulo N which is defined in details in the section on

Gauss Sums.

• The slash operator (f ∣
k,χ
γ)(z) = χ(d)−1(cz + d)−kf(γz) with χ a character,

z ∈ H and γ =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠

defines an action of Γ0(4).

• Mk denotes the complex vector space of modular forms of weight k.

• Sk denotes the complex vector space of cusp forms of weight k.

• Ek denotes the Eisenstein space of weight k.

2.2 Basic Definitions

Definition 2.2.1. (Fourier transform) Consider an integrable function

f ∶ Rn → C.

Then the Fourier transform of f denoted by (Ff)(ζ) is the function

f̂ ∶ Rn → C
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ζ ↦ f̂(ζ) = ∫
x∈Rn

f(x)e(−ζtx)dx.

For any u ∈ Rn, f̂ satisfies the following property:

If h(x) = f(x + u), then ĥ(ζ) = e(ζtu)f̂(ζ). (2.1)

Lemma 2.2.1. Let a > 0 and p a prime number. If a divides p−1, then there exists

x such that xa ≡ 1 mod p but xb ≢ 1 mod p for all 0 < b < a.

Lemma 2.2.2. Let a, b be odd integers. Then

a − 1

2
+ b − 1

2
≡ ab − 1

2
mod 2

Proof. Since a and b are odd, then a − 1 and b − 1 are even. So, we have

a − 1 and b − 1 are even Ô⇒ (a − 1)(b − 1) ≡ 0 mod 4

Ô⇒ ab − a − b + 1 ≡ 0 mod 4

Ô⇒ ab − 1 ≡ (a − 1) + (b − 1) mod 4

Ô⇒ ab − 1

2
≡ a − 1

2
+ b − 1

2
mod 2.

Definition 2.2.2. (Spherical Function) Let A be a real symmetric matrix.

A spherical function P of order ν with respect to A is a C-valued function in Rn

such that

P (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

constant if ν = 0,

∑βq(qtAx)ν if ν > 0

with finitely many vectors q ∈ Cn such that qtAq = 0 if ν > 0 and βq ∈ C.

Lemma 2.2.3. Suppose that A is a positive definite real symmetric n × n matrix.
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Let λ1,⋯, λn be the corresponding eigenvalues of A. Then

xtAx ≥ λmin∣x∣22

where λmin is the smallest eigenvalue of A and ∣x∣2 the Euclidean norm satisfying

xtx = ∣x∣22.

Proof. Since A is a real symmetric matrix, then we can write A = UDU−1 with U

orthogonal n×n matrix and D a diagonal matrix having λ′is on its diagonal. Letting

x = Uy, the term xtAx can be expressed as:

xtAx = (Uy)tUDU−1(Uy)

= ytU tUDU−1Uy

= ytDy Since U is an orthogonal matrix

=
n

∑
i=1

λiy
2
i .

Now notice that

λmin
n

∑
i=1

y2
i ≤

n

∑
i=1

λiy
2
i Ô⇒ λmin∣y∣22 ≤ xtAx

with ∣x∣22 = ∣Uy∣22 = (Uy)t(Uy) = ytU tUy = yty = ∣y∣22. Thus the needed result.

Theorem 2.2.4. (Dirichlet Prime Number Theorem) Let a and m be relatively

prime integers with a, m ≥ 1. Then there exist infinitely many prime numbers p

such that p ≡ a mod m.

Definition 2.2.3. (Meromorphic Function) A meromorphic function f on H is a

function that is holomorphic on all of H except for a set of isolated points, which

are poles of the function, where the Laurent Series can involve only finitely many

terms involving negative powers. Otherwise we have an essential singularity.

Definition 2.2.4. (Weakly Modular for Full Group) Let f be a meromorphic func-

tion on H. We say f is weakly modular of weight k ∈ Z for the full group, if for
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γ =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL2(Z) we have

f(γz) = (cz + d)kf(z).

Definition 2.2.5. (Holomorphic at Infinity) Let f be a meromorphic function that

is weakly modular of weight k ∈ Z. We say that f is holomorphic at infinity if it has

a removable singularity at q = e(z) = 0, or equivalently f can be written as a Fourier

series with an = 0 ∀n < 0, i.e.

f(z) =
∞
∑
n=0

anq
n with q = e(z).

Definition 2.2.6. (Modular and Cusp Forms for SL2(Z)) A modular form of weight

k ∈ Z for SL2(Z) is a holomorphic function f in H, that is weakly modular and

holomorphic at infinity. A cusp form of weight k is a modular form of weight k

satisfying f(∞) = 0, where f(∞) represents the constant term a0 of the Fourier

expansion of f.

Definition 2.2.7. (Congruence Subgroup) Consider the Principal Congruence

Subgroup of SL2(Z) of level N defined by:

Γ(N) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL2(Z);

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
≡
⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠

mod N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

Then, a Congruence Subgroup of SL2(Z) of level N is a subgroup that contains

Γ(N).

Example 2.2.1. The two most popular congruence subgroups are Γ0(N) and Γ1(N)

which are defined as follows:

Γ0(N) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL2(Z); c ≡ 0 mod N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,
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Γ1(N) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL2(Z);a ≡ d ≡ 1 mod N and c ≡ 0 mod N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

Definition 2.2.8. (Weakly Modular for Γ) Let Γ be a congruent subgroup and f

be a meromorphic function on H. We say f is weakly modular of weight k ∈ Z for

Γ, if for γ =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ Γ we have

f(γz) = ε(γ)(cz + d)kf(z)

where ε(γ) is a multiplier system, i.e. a constant written in terms of a, b, c and d.

Definition 2.2.9. (Modular Form on Congruence Subgroup) Let Γ be a congruence

subgroup of SL2(Z) of finite index and γt ∈ SL2(Z) be such that γt ⋅∞ = t. A modular

form of weight k on Γ is a holomorphic function f in H that is weakly modular for

Γ with ∣ε(γt)∣ = 1 and has the Fourier expansion given by

(f ∣kγt)(z) =
∞
∑
n=0

anq
n
C =

∞
∑
n=0

ane(
nz

hC
)

at all inequivalent cusps C of width hC of Γ.

Definition 2.2.10. (Modular Form on Γ with Character) a Modular Form f of

weight k and character χ is a holomorphic function satisfying the transformation

law:

f(γz) = χ(d)(cz + d)kf(z) ∀γ =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ Γ.

Proposition 2.2.1. Every modular form of weight k is a unique linear combination

of Eisenstein series and a cusp form. This gives a direct sum decomposition

Mk = Sk ⊕ Ek.
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2.3 Poisson Summation Formula

Proposition 2.3.1. For any continuous function f ∶ Rn → C with rapid decay (at

least like ∣t∣−c with c > 1) as t → ∞, the Poisson Summation Formula may be

stated as:

∑
m∈Zn

f(m) = ∑
v∈Zn

f̂(v)

where f̂ is the Fourier transform of f .

Proof. For t ∈ Zn, define

S(t) = ∑
m∈Zn

f(m + t).

Notice that

S(t + l) = S(t) ∀l ∈ Zn,

so S(t) is periodic with respect to Zn. Furthermore, every infinitely continuous

differentiable periodic function admits a Fourier series. Then, we can write

S(t) = ∑
v∈Zn

Cve(vtt)

with

Cv = ∫
0≤x1≤1

⋯∫
0≤xn≤1

S(x)e(−vtx)dx1⋯dxn

= ∫
0≤x1≤1

⋯∫
0≤xn≤1

∑
m∈Zn

f(m + x)e(−vtx)dx1⋯dxn

= ∑
m∈Zn

∫
0≤x1≤1

⋯∫
0≤xn≤1

f(m + x)e(−vtx)dx1⋯dxn

= ∑
m∈Zn

∫
m1≤x1≤m1+1

⋯∫
mn≤xn≤mn+1

f(x)e(−vt(x −m))dx1⋯dxn

= ∫
x∈Rn

f(x)e(−vtx)e(vtm)dx

= ∫
x∈Rn

f(x)e(−vtx)dx
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= f̂(v).

Thus we have,

∑
m∈Zn

f(m + t) = S(t) = ∑
v∈Zn

f̂(v)e(vtt).

Taking t = 0 we get the needed result.

2.4 Fourier Transforms of Particular Functions

Lemma 2.4.1. For ζ ∈ R,

∫
x∈R

e−π(x+iζ)
2

dx = 1.

Proof. Using figure 2.1 on the top of the next page, let γ be the rectangular contour

and consider f(z) = e−πz2 . Notice that f is entire and γ is a closed contour. Then

by Cauchy’s Integral Theorem, we have ∫γ f(z)dz = 0.

On the other hand, we compute the integral along the contour.

• Along γ1 ∶ z = x, dz = dx,−R1 ≤ x ≤ R2. So,

∫
γ1
f(z)dz = ∫

R2

−R1

e−πx
2

dx

• Along γ3 ∶ z = x + iξ, dz = dx,−R1 ≤ x ≤ R2. So,

−∫
γ3
f(z)dz = ∫

R2

−R1

e−π(x+iξ)
2

dx

• Along γ2 (Similarly γ4): z = R2 + it,0 ≤ t ≤ ξ or ξ ≤ t ≤ 0 according as ξ > 0 or

10



γ1

γ2

γ3

γ4

−R1 R2

R2 + iξ−R1 + iξ

Figure 2.1: Rectangular Contour γ

ξ < 0. Then,

∣f(z)∣ = ∣e−π(R2+it)2 ∣

= ∣e−π(R2
2−t2−2R2it)∣

= e−π(R2
2−t2)

≤ e−π(R2
2−ξ2).

Letting R2 →∞, we get that ∣f(z)∣→ 0 uniformly. Thus, we get that

lim
R2→∞

∫
γ2
f(z)dz = lim

R2→∞
∫

ξ

0
e−π(R2+it)2 dt = 0.

Therefore, we get

∫
γ
f(z)dz = ∫

γ1
f(z)dz + ∫

γ2
f(z)dz + ∫

γ3
f(z)dz + ∫

γ4
f(z)dz

Ô⇒ ∫
∞

−∞
e−πx

2

dx − ∫
∞

−∞
e−π(x+iξ)

2

dx = 0

Ô⇒ ∫
∞

−∞
e−π(x+iξ)

2

dx = ∫
∞

−∞
e−πx

2

dx (2.2)

Finally, solving the integral on the right side of equation (2.2) by applying the change

of variable u = x
√
π we get that

∫
∞

−∞
e−π(x+iξ)

2

dx = 1

11



Proposition 2.4.1. Consider the function

f ∶ R→ R

x↦ e−πx
2

.

Then the Fourier transform of f is the function itself.

Proof.

f̂(ζ) = ∫
x∈R

f(x)e(−ζx)dx

= ∫
x∈R

e−πx
2−2πiζx dx

= ∫
x∈R

e−π(x
2+2ixζ) dx

= ∫
x∈R

e−π(x+iζ)
2

e−πζ
2

dx completing the square

= e−πζ2 ∫
x∈R

e−π(x+iζ)
2

dx

= e−πζ2 by Lemma 2.4.1

= f(ζ).

Proposition 2.4.2. For a > 0, let

fa(x) = e−πax
2

.

We have

f̂a(ζ) =
1√
a
e−πζ

2/a.

Proof. Notice that fa(x) = f(x
√
a) where f is the function defined in

Propostion 2.4.1. Then,

f̂a(ζ) = ∫
x∈R

fa(x)e(−ζx)dx

12



= ∫
x∈R

e−π(x
√
a)2e(−xζ)dx

= 1√
a
∫
x∈R

e−πu
2

e(−uζ√
a
)du applying the change of variable

= 1√
a
∫
x∈R

f(u)e(−uζ√
a
)du

= 1√
a
f̂( ζ√

a
)

= 1√
a
f( ζ√

a
) by Proposition 2.4.1

= 1√
a
e−πζ

2/a.

Proposition 2.4.3. Let P be a Spherical function of order ν, N a positive integer

and A a positive definite real symmetric matrix of size n. For z = αi with α > 0, we

consider a function

f ∶ Rn → C

x↦ f(x) = P (Nx)e(zx
tAx

2
).

Then we have

f̂(ζ) =∑Nνβq(detA)−1/2α−κ/2(−i)ν(qtζ)νe−πζtA−1ζ/α.

Proof. Since A is a real symmetric matrix, then A is diagonalizable by an orthogonal

n by n matrix U .

i.e,

A = U

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ1 0 ⋯ 0

0 λ2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

U−1 = UDU−1.
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Note that λi are positive because A is positive definite. Now let x = Uy, with

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y1

y2

y3

⋮

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Take g(y) = f(Uy), then

g(y) =f(Uy)

=∑βq(NqtUDU−1Uy)νe(z
2
(Uy)tA(Uy))

=∑βq(NqtUDy)νe(
z

2
ytDy).

Set c = qtU = (c1 c2 ⋯ cn) ∈ (Cn)t. Notice that

qtAq = 0 Ô⇒ qt(UDU t)q = 0

Ô⇒ cDct = 0

Ô⇒ (c1 c2 ⋯ cn)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ1 0 ⋯ 0

0 λ2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

c1

c2

c3

⋮

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0

Ô⇒
n

∑
i=1

λic
2
i = 0.

Next, we get

g(y) =∑βq(NcDy)νe(
z

2
ytDy)

14



=∑Nνβq[
n

∑
i=1

λiciyi]νe(
z

2

n

∑
i=1

λiy
2
i )

=∑Nνβq[
n

∑
i=1

λiciyi]νe−πα∑
n
i=1 λiy

2
i .

Hence,

ĝ(ζ) = ∫
y1⋯yn

∑N νβq[
n

∑
i=1

λiciyi]νe−πα∑
n
i=1 λiy

2
i −2πi∑ni=1 yiζi dy1⋯dyn. (2.3)

Using Proposition 2.4.2, we have that

∫
y1⋯yn

e−παλ1y
2
1−2πiy1ζ1⋯e−παλny2n−2πiynζn dy1⋯dyn

= 1√
αλ1

⋯ 1√
αλn

e−π(ζ
2
1/αλ1+⋯+ζ2n/αλn).

(2.4)

Now, applying ∑n
i=1 λici

∂
∂ζi

to both sides of equation (2.4) and using the Leibniz

Integral Rule, we get

∫
y1⋯yn

−2πi(
n

∑
i=1

λiciyi)e−πα∑
n
i=1 λiy

2
i −2πi∑ni=1 yiζi dy1⋯dyn

= 1√
αλ1

⋯ 1√
αλn

(−2π

α

n

∑
i=1

ciζi)e
−π∑ni=1

ζ2i
αλi .

Then, apply ∑n
i=1 λici

∂
∂ζi

to the latter noting the following:

• (∑n
i=1 λici

∂
∂ζi

)(∑n
i=1 λiciyi) = 0,

• (∑n
i=1 λici

∂
∂ζi

)(∑n
i=1 ciζi) = ∑n

i=1 λic
2
i = 0.

So, we get

∫
y1⋯yn

(−2πi)2(
n

∑
i=1

λiciyi)2e−πα∑
n
i=1 λiy

2
i −2πi∑ni=1 yiζi dy1⋯dyn

= 1√
αλ1

⋯ 1√
αλn

(−2π

α

n

∑
i=1

ciζi)2e
−π∑ni=1

ζ2i
αλi .
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Thus, applying ∑n
i=1 λici

∂
∂ζi

ν times to equation (2.4), we obtain

∫
y1⋯yn

(
n

∑
i=1

λiciyi)νe−πα∑
n
i=1 λiy

2
i −2πi∑ni=1 yiζi dy1⋯dyn

= 1√
αλ1

⋯ 1√
αλn

(−i
α

n

∑
i=1

ciζi)νe
−π∑ni=1

ζ2i
αλi .

Replacing in equation (2.3) gives:

ĝ(ζ) =∑N νβq
1√
αλ1

⋯ 1√
αλn

(−i
α

n

∑
i=1

ciζi)νe
−π∑ni=1

ζ2i
αλi

=∑N νβqα
−κ/2(detA)−1/2(−i)ν(

n

∑
i=1

ciζi)νe
−π∑ni=1

ζ2i
αλi .

Going back to f , we get

f̂(ζ) = ∫
x∈Rn

f(x)e(−xtζ)dx

= ∫
y∈Rn

f(Uy)e(−(Uy)tζ)∣J ∣dy

= ∫
y∈Rn

g(y)e(−ytU−1ζ)dy

= ĝ(U−1ζ)

where J is the transition matrix satisfying ∣J ∣ = ∣detU ∣ = 1. Letting U−1ζ = η ∈ Rn

and using the fact that

n

∑
i=1

η2
i

λi
= (η1 η2 ⋯ ηn)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1/λ1 0 ⋯ 0

0 1/λ2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1/λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

η1

η2

η3

⋮

ηn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= ηtD−1η,
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we get

f̂(ζ) =∑Nνβqα
−κ/2(detA)−1/2(−i)ν(

n

∑
i=1

ciηi)νe
− π
α ∑

n
i=1

η2i
λi

=∑Nνβqα
−κ/2(detA)−1/2(−i)ν(

n

∑
i=1

ciηi)νe−
π
α
ηtD−1η

=∑Nνβqα
−κ/2(detA)−1/2(−i)ν(

n

∑
i=1

ciηi)νe−
π
α
(U−1ζ)tD−1(U−1ζ)

=∑Nνβqα
−κ/2(detA)−1/2(−i)ν(qtζ)νe−πζtA−1ζ/α.

Proposition 2.4.4. Consider the shifted function:

fu(x) = f(x + u) = P (N(x + u))e(z(x + u)
tA(x + u)
2

)

with u = N−1h for h ∈ Zn. Then the Fourier transform of fu is

f̂u(ζ) = e(ζtu)∑N νβqα
−κ/2(detA)−1/2(−i)ν(qtζ)νe−πζtA−1ζ/α.

Proof. This result follows from (2.1) and Proposition 2.4.3.

2.5 Gauss Sums

The material in this section is mainly taken from [Lang, 1994] pages 83–90 and

[Ireland and Rosen, 1990] chapter 5.

Definition 2.5.1. (Character) Let G be a finite abelian group. A Character of G

is a homomorphism of G into the multiplicative group C×. i.e,

χ ∶ G→ C×.

In particular we define the following:

17



Definition 2.5.2. (Dirichlet Character Modulo M) Let M be a positive integer.

A Dirichlet Character modulo M is a function

χ ∶ Z→ C

with the property that there exists a group homomorphism

χ′ ∶ (Z/MZ)
×
→ C×

such that χ(d) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

χ′(d mod M) if gcd(d,M) = 1,

0 Otherwise.

Example 2.5.1. Let M = 4. We have

χ(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if m ≡ 1 mod 4,

−1 if m ≡ 3 mod 4,

0 Otherwise.

Definition 2.5.3. (Quadratic Residue Symbol) For an integer a and an odd integer

b, we define the Quadratic Residue Symbol (a
b
) as follows:

(i) If gcd(a, b) ≠ 1, then (a
b
) = 0

(ii) ( a
−1

) = sgn(a)

(iii) For b an odd prime, denoted by p, (a
b
) coincides with the ordinary Quadratic

Residue Symbol, i.e.

(a
p
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if a ≡ non-zero square mod p,

−1 if a ≡ non-square mod p.
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(iv) For b > 0, (a
b
) coincides with the Jacobi Symbol defined next.

Example 2.5.2. We have for p an odd prime

(−1

p
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if p ≡ 1 mod 4,

−1 if p ≡ 3 mod 4.

Proof. By Definition 2.5.2. we know that

(−1

p
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if − 1 ≡ square mod p,

−1 if − 1 ≡ non-square mod p.

Now, notice that

• If p ≡ 1 mod 4, then by Lemma 2.2.1 we have 4 divides p−1 Ô⇒ ∃x such that

x4 ≡ 1 mod p but x2 ≢ 1 mod p.

On the other hand (x2)2 ≡ 1 mod p Ô⇒ either x2 ≡ 1 mod p or x2 ≡ −1 mod p.

Then x2 ≡ −1 mod p and (−1
p ) = 1.

• If p ≡ 3 mod 4, then we can write p = 4k + 3 for some k ∈ Z. Suppose by

contradiction that (−1
p ) ≠ −1. Then ∃x such that x2 ≡ −1 mod p. Squarring

both sides, we get x4 ≡ 1 mod p. Next, by Fermat’s Little Theorem, we have

xp−1 = x4k+2 ≡ 1 mod p.

However,

x4k+2 = x4k ⋅ x2 = (x4)k ⋅ x2 ≡ −1 mod p.

Contradiction. Therefore, (−1
p ) = −1. ∎
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Example 2.5.3. We have for p an odd prime

(2

p
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if p ≡ ±1 mod 8,

−1 if p ≡ ±3 mod 8.

Proof. The proof of this example uses Gauss’s Lemma and is found in

[Ireland and Rosen, 1990] chapter 5, Proposition 5.1.3. ∎

Proposition 2.5.1. Here are some properties of the Quadratic Residue Symbol for

a, b integers and p and odd prime:

1. a
p−1
2 ≡ (ap) mod p (Euler Criterion)

2. (abp ) = (ap) ( bp)

3. If a ≡ b mod p, then (ap) = ( bp)

Theorem 2.5.1. (Law of Quadratic Reciprocity) Let p and q be odd primes. Then

(p
q
)(q

p
) = (−1)(

p−1
2

)⋅( q−1
2

).

Proof. See [Serre, 2012] chapter 1, section 3.3.

Lemma 2.5.2. Note that the above theorem can be restated as follows:

(p
q
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+ ( qp) if p or q = 4k + 1,

− ( qp) if p and q = 4k + 3.

Proof. • p or q = 4k + 1 Ô⇒ (p−1
2 ) ⋅ ( q−1

2 ) ≡ 0 mod 2. Then by Theorem 2.5.1,

(p
q
)(q

p
) = +1.
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• p and q = 4k + 3 Ô⇒ (p−1
2 ) ⋅ ( q−1

2 ) ≡ 1 mod 2. Then by Theorem 2.5.1,

(p
q
)(q

p
) = −1.

Definition 2.5.4. (Jacobi Symbol) Let b be an odd positive integer and a an integer.

Suppose that b = p1⋯pm where pi’s are primes. Then define the Jacobi Symbol by

(a
b
) = ( a

p1

)⋯( a

pm
) .

Theorem 2.5.3. (Extended Quadratic Reciprocity) Let a, b be 2 positive odd integers

having gcd(a, b) = 1. Suppose that b = p1⋯pm, then

(a
b
)( b

a
) = (−1)(a−12 )⋅( b−1

2
).

Proof. Using Theorem 2.5.1, we have

(a
b
)( b

a
) = ( a

p1⋯pm
)(p1⋯pm

a
)

= ( a
p1

)⋯( a

pm
)(p1

a
)⋯(pm

a
)

= (−1)(a−12 )⋅( p1−1
2

)⋯(−1)(a−12 )⋅( pm−1
2

)

= (−1)(a−12 )( p1−1
2

+⋯+ pm−1
2

)

= (−1)(a−12 )⋅( p1⋯pm−1
2

) by Lemma 2.2.2

= (−1)(a−12 )⋅( b−1
2

).

Proposition 2.5.2. Let b and c be distinct odd integers and a ∈ Z such that a ≥ 1.

Then the extended quadratic reciprocity implies the following statement:

If b ≡ ±c mod 4a, then (a
b
) = (a

c
) .

Proof. Due to multiplicativity and Example 2.5.3, it is enough to prove the result
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for a an odd prime. By Theorem 2.5.3, we know that

(a
b
)( b

a
) = (−1)(a−12 )⋅( b−1

2
) Ô⇒ (a

b
) = (−1)(a−12 )⋅( b−1

2
) ( b
a
) .

Now, suppose that b ≡ +c mod 4a (Similar calculations apply for b ≡ −c mod 4a).

Then b ≡ c mod a and so

(a
b
) = (−1)(a−12 )⋅( b−1

2
) ( c
a
)

= (−1)(a−12 )⋅( b−1
2

)(−1)( c−12 )⋅(a−1
2

) (a
c
)

= (−1)(a−12 )⋅( b+c−2
2

) (a
c
)

= (−1)(a−1)⋅( b+c−2
4

) (a
c
) .

However,

b ≡ c mod 4a Ô⇒ b ≡ c mod 4

Ô⇒ b + c ≡ 2c mod 4

Ô⇒ b + c − 2 ≡ 2c − 2 mod 4 ≡ 0 mod 4

Ô⇒ (a − 1) ⋅ (b + c − 2

4
) = (a − 1)4r

4
= (a − 1)r for some r ∈ Z.

Hence, using the fact that a − 1 is even we get

(a
b
) = (−1)(a−1)⋅( b+c−2

4
) (a
c
) = (−1)(a−1)r (a

c
) = (a

c
) .

Definition 2.5.5. (Gauss Sum modulo p) Let p be an odd prime. Then the Gauss

Sum modulo p is defined by:

G(a) = ∑
x mod p

e(ax
2

p
).
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Remark. If a ≡ 0 mod p, then

G(0) = ∑
x mod p

e(0) = p.

Lemma 2.5.4. Let p be an odd prime number. We have

∑
c mod p

e( c
p
) = 0

Proof. Consider the expression

e(1

p
) ∑
c mod p

e( c
p
) = ∑

c mod p

e(c + 1

p
).

Notice that there exists a bijection between the two sets:

{0,1,⋯, p − 1} {0,1,⋯, p − 1}

c c + 1 mod p.

∼

Thus the sum on the right hand side of the above expression is a reordering; we get

e(1

p
) ∑
c mod p

e( c
p
) = ∑

c mod p

e(c + 1

p
) = ∑

c mod p

e( c
p
) (2.5)

with e(1
p) ∉ {0,1} since p is an odd prime. Thus equation (2.5) implies that

∑
c mod p

e( c
p
) = 0.

Proposition 2.5.3. For a ≢ 0 mod p, we have

G(a) = (a
p
)G(1).
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Proof. Case 1: If a ≡ b2 mod p for some b ≠ 0, then

G(a) = ∑
x mod p

e(b
2x2

p
).

We now have a bijection:

Z/pZ Z/pZ

bx y

b−1y x

∼

Thus

G(a) = ∑
y mod p

e(y
2

p
) = G(1) = (a

p
)G(1).

Case 2: If a ≡ non-square mod p, then

G(1) +G(a) = ∑
x mod p

e(x
2

p
) + ∑

y mod p

e(ay
2

p
).

Notice that for x ∈ Z/pZ, we have p − x ≡ −x mod p with x2 = (−x)2. Thus as x

varies mod p, x2 runs over 0 once and over each square mod p twice. Similarly, as

y varies mod p, ay2 runs over 0 once and over each non-square twice. Let S and T

denote the set of squares and set of non-squares mod p respectively. Hence,

G(1) +G(a) = e(0

p
) + 2∑

s∈S
e(s
p
) + e(a.0

p
) + 2∑

t∈T
e( t
p
)

= 2[e(0) + ∑
c≠0

c mod p

e( c
p
)]

= 2[ ∑
c mod p

e( c
p
)]

= 0 by Lemma 2.5.4.

Ô⇒ G(a) = −G(1) = (ap)G(1).
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Lemma 2.5.5. For p an odd prime, define the following:

Ip = ∫
∞

−∞
e(y

2

p
)dy.

This integral converges as an improper integral at both ends.

Proof. We have

Ip = ∫
∞

−∞
e(y

2

p
)dy = ∫

0

−∞
e(y

2

p
)dy + ∫

∞

0
e(y

2

p
)dy = 2∫

∞

0
e(y

2

p
)dy

= 2 lim
A→∞∫

A

0
e(y

2

p
)dy.

Now, for A ≤ B large enough, apply a change of variable y2 = t, dy = dt
2
√
t
. Then

∫
B

A
e(y

2

p
)dy = ∫

B2

A2
e( t
p
) 1

2
√
t
dt.

Integrate by parts with u = 1
2
√
t

and v′ = e( tp). So

∫
B

A
e(y

2

p
)dy = p

4πi
√
B
e(B

2

p
) − p

4πi
√
A
e(A

2

p
) + ∫

B2

A2

p

4πit3/2
e( t
p
)dt

Ô⇒ ∣∫
B

A
e(y

2

p
)dy∣ ≤ ∣ p

4πi
√
B
e(B

2

p
) − p

4πi
√
A
e(A

2

p
)∣ + ∣∫

B2

A2

p

4πit3/2
e( t
p
)dt∣

≤ ∣ p

4πi
√
B
e(B

2

p
) − p

4πi
√
A
e(A

2

p
)∣ + ∫

B2

A2

p

4πit3/2
dt

= ∣ p

4πi
√
B
e(B

2

p
) − p

4πi
√
A
e(A

2

p
)∣ + p

4πi ∫
B2

A2

1

t3/2
dt

= ∣ p

4πi
√
B
e(B

2

p
) − p

4πi
√
A
e(A

2

p
)∣ − p

2πi
( 1√

B2
− 1√

A2
).

Taking the limits as A,B →∞, Ip converges by Cauchy Criterion.

In the following proof, we denote G(a) for a = 1 by Gp(1).
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Proposition 2.5.4. For p an odd prime, we have

Gp(1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
p if p ≡ 1 mod 4,

i
√
p if p ≡ 3 mod 4.

Proof. We start by stating a property of the convergence of Fourier Series:

If φ is a function which is continuously differentiable on [0,1], then

φ(0) + φ(1)
2

= ∑
m∈Z

cm

where cm is the m-th Fourier coefficient. i.e.

cm(φ) = ∫
1

0
φ(x)e(−mx)dx.

For this reason, consider the function

f ∶ [0,1]→ R

x↦ e(x
2

p
)

and let fk(x) = f(x + k) for k = 0,1,⋯, p − 1. Now we have the following:

p−1

∑
k=0

fk(0) + fk(1)
2

=
p−1

∑
k=0

f(k) + f(1 + k)
2

=
p−1

∑
k=0

e(k2p ) + e( (1+k)2
p )

2

= 1

2

p−1

∑
k=0

e(k
2

p
) + 1

2

p−1

∑
k=0

e((1 + k)
2

p
)

= 1

2

p−1

∑
k=0

e(k
2

p
) + 1

2

p

∑
k=1

e(k
2

p
)

= 1

2
Gp(1) +

1

2
Gp(1) −

1

2
e(0) + 1

2
e(p)

= 1

2
Gp(1) +

1

2
Gp(1) −

1

2
+ 1

2
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= Gp(1).

Hence, if φ = ∑p−1
k=0 fk = f0 + f1 +⋯ + fp−1, then

φ(0) + φ(1)
2

= f0(0) + f1(0) +⋯ + fp−1(0) + f0(1) + f1(1) +⋯ + fp−1(1)

=
p−1

∑
k=0

fk(0) + fk(1)
2

= G(1).

Thus by using the property stated above, it would be sufficient to compute the sum

of the Fourier coefficients of φ to get the value of Gp(1). So now,

Gp(1) =∑
m
∫

1

0
φ(x)e(−mx)dx

=∑
m
∫

1

0

p−1

∑
k=0

fk(x)e(−mx)dx

=∑
m
∫

1

0
(f0(x) + f1(x) +⋯ + fp−1(x))e(−mx)dx

=∑
m

(∫
1

0
f0(x)e(−mx)dx + ∫

1

0
f1(x)e(−mx)dx +⋯ + ∫

1

0
fp−1(x)e(−mx)dx)

=∑
m

(∫
1

0
f(x)e(−mx)dx + ∫

1

0
f(x + 1)e(−mx)dx +⋯ + ∫

1

0
f(x + p − 1)e(−mx)dx) .

Applying a change of variable x + k → x inside each integral, we get

Gp(1) =∑
m

(∫
1

0
f(x)e(−mx)dx + ∫

2

1
f(x)e(−m(x − 1))dx +⋯ + ∫

p

p−1
f(x)e(−m(x − p + 1))dx)

=∑
m

(∫
1

0
f(x)e(−mx)dx + ∫

2

1
f(x)e(−mx)dx +⋯ + ∫

p

p−1
f(x)e(−mx)dx)

=∑
m

(∫
p

0
f(x)e(−mx)dx)

=∑
m
∫

p

0
e(x

2

p
)e(−mx)dx

=∑
m
∫

p

0
e(x

2 − pmx
p

)dx.
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Complete the square x2 − pmx = (x − pm
2
)2 − p2m2

4 , hence

Gp(1) =∑
m
∫

p

0
e(1

p
(x − pm

2
)2)e(−1

p
.
p2m2

4
)dx

=∑
m

e−
πipm2

2 ∫
p

0
e(1

p
(x − pm

2
)2)dx.

Notice that:

• If m is even (m = 2r), then e−
πim2p

2 = e−
πi(2r)2p

2 = 1,

• If m is odd (m = 2r + 1), then e−
πim2p

2 = e−
πip(2r+1)2

2 = e−
4πipr2

2 e−
4πirp

2 e−
πip
2

= (eπi2 )−p = i−p.

Therefore, we split the sum between m even and odd.

Gp(1) = ∑
m even

e−
πipm2

2 ∫
p

0
e(1

p
(x − pm

2
)2)dx + ∑

m odd

e−
πipm2

2 ∫
p

0
e(1

p
(x − pm

2
)2)dx

=∑
r∈Z
∫

p

0
e(1

p
(x − 2pr

2
)2)dx +∑

r∈Z
i−p∫

p

0
e(1

p
(x − p(2r + 1)

2
)2)dx.

Apply the following change of variables x − pr → y and x − p(2r+1)
2 → y in the two

above consecutive integrals to get:

Gp(1) =∑
r∈Z
∫

p(−r+1)

p(−r)
e(y

2

p
)dy +∑

r∈Z
i−p∫

p(−r+ 1
2
)

p(−r− 1
2
)
e(y

2

p
)dy

= lim
R1,S1→∞

∫
p(S1)

p(−R1)
e(y

2

p
)dy + lim

R2,S2→∞
i−p∫

p(S2)

p(−R2)
e(y

2

p
)dy

= ∫
∞

−∞
e(y

2

p
)dy + i−p∫

∞

−∞
e(y

2

p
)dy.

Therefore,

Gp(1) = (1 + i−p)Ip (2.6)
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which converges by Lemma 2.5.5. Finally, apply a change of variable y√
p → u to get

Ip = ∫
∞

−∞
e(u2)√pdu

= √
p∫

∞

−∞
e(u2)du

= √
pI1.

Note that the above calculation never used the fact that p is a prime. So now, using

equation (2.6) for p = 1 we have:

G1(1) = (1+i−1)I1 Ô⇒ ∑
x mod 1

e(x2) = (1+i−1)I1 Ô⇒ 1 = (1+i−1)I1 Ô⇒ I1 =
1

1 + i−1
.

Thus obtaining the relation:

Gp(1) =
√
p

1 + i−p
1 + i−1

.

• If p ≡ 1 mod 4, then G(1) = √
p1+i−1

1+i−1 =
√
p,

• If p ≡ 3 mod 4, then G(1) = √
p1+i−3

1+i−1 =
√
p1+i

1−i = i
√
p.

2.6 The Lipschitz Summation Formula

Proposition 2.6.1. Let k ≥ 2 be an integer. Then we have

∑
n∈Z

(z + n)−k = (−2πi)k
(k − 1)!

∞
∑
d=1

dk−1e(dz).

Proof. By Complex Analysis, we have

π

tanπz
= π cosπz

sinπz
= 1

z
+

∞
∑
n=1

( 1

z − n
+ 1

z + n
) .
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Moreover,

π
cosπz

sinπz
= πie

πiz + e−πiz
eπiz − e−πiz

= −πi1 + e(z)
1 − e(z)

= −πi1 + q
1 − q

q = e(z)

= −πi(1 + 2q

1 − q
) ∣q∣ = e−2πy < 1

= −πi(1 + 2
∞
∑
d=1

qd)

= −πi − 2πi
∞
∑
d=1

qd.

Ô⇒ 1

z
+

∞
∑
n=1

( 1

z − n
+ 1

z + n
) = −πi − 2πi

∞
∑
d=1

qd. (2.7)

Notice that ( 1
z−n +

1
z+n) =

2
z2−n2 ≤ L

n2 for large n. This implies convergence. So, taking

the derivative with respect to z on both sides of equation (2.7), we get

−1

z2
+

∞
∑
n=1

( −1

(z − n)2
+ −1

(z + n)2
) = −(2πi)2

∞
∑
d=1

e(zd)d. (2.8)

Assuming absolute convergence, we can rearrange and combine the sum on the left

hand side to get

−1

z2
+

∞
∑
n=1

( −1

(z − n)2
+ −1

(z + n)2
) = −∑

n∈Z

1

(z + n)2
.

Therefore, equation (2.8) becomes:

−∑
n∈Z

1

(z + n)2
= −(2πi)2

∞
∑
d=1

e(zd)d.

Thus, by induction on the derivative we get the general formula.
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Chapter 3

Transformation Law of θ

This chapter aims to prove important transformation formulas in order to reach

the fact that Theta is a modular form of half integral weight. Most of this chapter

is taken from [Shimura, 1973], pages 440–456.

3.1 Transformation Formulas

We prove now explicit transformation formulas for the Theta Function needed

for the next section. We always assume that A and NA−1 have coefficients in Z and

that Ah ∈ NZn.

Definition 3.1.1. (Theta Function) Let n be a positive integer, A a positive definite

real symmetric matrix of size n, P a spherical function and N a positive integer such

that detA divides Nn. Now, fix an element h ∈ Zn and consider a Theta Function

with z ∈ H, defined by

θ(z;h,A,N,P ) = ∑
m≡h mod N

P (m)e(zm
tAm

2N2
)
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where the sum is taken over all m ∈ Zn congruent to h mod NZn.

Proposition 3.1.1. The Theta function is holomorphic on H.

Proof. Consider the subsets of H of the form

Rr,s = {x + iy; ∣x∣ ≤ r, y ≥ s}.

First, notice that Rr,s form an exhaustion of H in the following way: Rn′,1/n′ is

contained in the set of interior points Ro
n′+1,1/(n′+1) of Rn′+1,1/(n′+1) and thus

H =
∞
⋃
n′=1

Rn′,1/n′ =
∞
⋃
n′=1

Ro
n′,1/n′ .

Next, by definition of compactness, any compact K ⊂ H will be covered by finitely

many Ro
n′,1/n′ . So it suffices to prove uniform convergence of the series above on Rr,s

to get uniform convergence on K. Indeed, let z = x + iy ∈Rr,s. Then we have

∣e(zm
tAm

2N2
)∣ = ∣e(xm

tAm

2N2
)∣.∣e−πymtAm/N2 ∣ ≤ e−πsmtAm/N2

with ∑
m∈Zn

e−πsm
tAm/N2 ≤ ∑

m∈Zn
e−πsλmin∣m∣22/N2

by Lemma 2.2.3.

We now regroup the terms for each j = 0,1,2⋯ and notice that there are at most

(2
√
j + 1)n choices for m such that ∣m∣22 = j. Knowing that (2

√
j + 1)n ≤ kjn/2 for

some constant k, we get

∑
m∈Zn

e−πsλmin∣m∣22/N2 ≤
∞
∑
j=0

kjn/2e−πsλminj/N
2

which converges due to the fast exponential decay. Therefore, the Theta series

converges uniformly on Rr,s by Weierstrass M-test. Hence the series converges

to a holomorphic function leading to the holomorphicity of Theta on H.

Remark. The spherical function P (m) is also bounded by a power of ∣m∣, so this
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should fit into the convergence framework.

Lemma 3.1.1. For h ∈ Zn, we have a bijection between the following sets:

{(m,g) ∈ Zn × (Z/cNZ)
n

∣ m≡g mod cN
g≡h mod N } {m ∈ Zn ∣ m ≡ h mod N}.∼

Proof. Given g ∈ (Z/cNZ)
n

with g ≡ h mod N , we can write g = h +Nq

with q ∈ (Z/cZ)
n
. So we get

m ≡ g mod cN Ô⇒ m = cNq′ + g for some q′ ∈ Zn

Ô⇒ m = cNq′ + h +Nq

Ô⇒ m = (cq′ + q)N + h

Ô⇒ m ≡ h mod N.

Conversely, given m ∈ Zn with m ≡ h mod N, there exists a unique g ∈ (Z/cNZ)
n

such that m ≡ g mod cN, and we have

m ≡ g mod cN and m ≡ h mod N Ô⇒ m = g + cNq = h +Nq′

Ô⇒ g = h +N(q′ − cq)

Ô⇒ g ≡ h mod N.

Lemma 3.1.2. There exists a bijection between the following sets:

{p ∈ Zn ∣ Ap ≡ 0 mod N} {(k, p) ∈ (Z/NZ)
n
×Zn ∣ Ak≡0 mod N

p≡k mod N }.∼

Proof. Given p ∈ Zn such that Ap ≡ 0 mod N, then there exists a unique k ∈

(Z/NZ)
n

such that p ≡ k mod NZn and we have Ak ≡ 0 mod NZn.

Conversely, given k ∈ (Z/NZ)
n

such that Ak ≡ 0 mod N , then every p ≡ k mod N

satisfies Ap ≡ Ak mod N ≡ 0 mod N.
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Denote the Theta function by θ(z;h,A,N) (dropping P ) to prove what follows:

Proposition 3.1.2. We have the following transformation formulas for ν = 0:

θ(z + 2;h,A,N) = e(h
tAh

N2
)θ(z;h,A,N) (3.1)

For c ∈ Z+, θ(z;h,A,N) = ∑
g≡h mod N
g mod cN

θ(cz; g, cA, cN) (3.2)

θ(−1

z
; 0,A,N) = (detA)−1/2(−iz)n/2 ∑

k mod N
Ak≡0 mod N

θ(z;k,A,N). (3.3)

Proof. (3.1):

θ(z + 2;h,A,N) = ∑
m≡h mod N

e((z + 2)mtAm

2N2
)

= ∑
m≡h mod N

e(zm
tAm

2N2
)e(m

tAm

N2
).

Since m ≡ h mod NZn, then each m can be written as qN + h for some q ∈ Zn.

So we get

θ(z + 2;h,A,N) = ∑
q∈Zn

e(z(qN + h)tA(qN + h)
2N2

)e((q + h

N
)tA(q + h

N
))

= ∑
q∈Zn

e(z(qN + h)tA(qN + h)
2N2

)e(qtAq)e(q
tAh

N
)e(h

tAq

N
)e(h

tAh

N2
).

Now using the fact that q ∈ Zn and Ah ∈ NZn, we have qtAq ∈ Z and qtAh
N ∈ Z.

Also, since A = At, then htAq
N = ( q

tAh
N )t ∈ Z. Hence

θ(z + 2;h,A,N) = ∑
m≡h mod N

e(zm
tAm

2N2
)e(h

tAh

N2
)

= e(h
tAh

N2
) ∑
m≡h mod N

e(zm
tAm

2N2
)
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= e(h
tAh

N2
)θ(z;h,A,N).

(3.2):

θ(cz; g, cA, cN) = ∑
m≡g mod cN

e(czm
tcAm

2c2N2
)

= ∑
m≡g mod cN

e(zm
tAm

2N2
)

Then,

∑
g≡h mod N

θ(cz; g, cA, cN) = ∑
g≡h mod N

∑
m≡g mod cN

e(zm
tAm

2N2
)

= ∑
m≡h mod N

e(zm
tAm

2N2
) by Lemma 3.1.1

= θ(z;h,A,N).

(3.3): Notice that this identity is holomorphic on H on both sides since

• θ(z; 0,A,N) is holomorphic on H by Proposition 3.1.1,

• θ(−1
z ; 0,A,N) is holomorphic on H as a composition of two holomorphic fun-

tions: θ(z; 0,A,N) and −1
z .

Thus, due to analytic continuation it would be enough to prove it for z = αi with

α > 0. Consider the function

f(x) = e(zx
tAx

2
).

Having found the Fourier transform of f in Propostion 2.4.3 for h = ν = 0, apply the
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Poisson Summation Formula and set m = Ns ∈ NZn to get

∑
s∈Zn

e(zs
tAs

2
) = (detA)−1/2(−iz)−n/2 ∑

s∈Zn
e(−s

tA−1s

2z
)

Ô⇒ ∑
m∈NZn

m≡0 mod N

e(zm
tAm

2N2
) = (detA)−1/2(−iz)−n/2 ∑

m∈NZn
m≡0 mod N

e(−m
tA−1m

2zN2
)

i.e. θ(z; 0,A,N) = (detA)−1/2(−iz)−n/2 ∑
m≡0 mod N

e(−m
tA−1m

2zN2
).

Write m = Ap, p = A−1m. Note that since m ≡ 0 mod N and NA−1 ∈Mn(Z) then

p ∈ Zn. Now apply a change of variable z → −1
z to obtain:

θ(−1

z
; 0,A,N) = (detA)−1/2( i

z
)−n/2 ∑

p∈Zn
Ap≡0 mod N

e(z(p
tAt)A−1(Ap)

2N2
)

= (detA)−1/2( i
z
)−n/2 ∑

p∈A−1NZn
e(zp

tAp

2N2
)

= (detA)−1/2( i
z
)−n/2 ∑

Ak≡0 mod N
k mod N

∑
p≡k mod N

e(zp
tAp

2N2
) by Lemma 3.1.2

= (detA)−1/2( i
z
)−n/2 ∑

Ak≡0 mod N
k mod N

θ(z;k,A,N).

Proposition 3.1.3. According to Definition 3.1.1, we have

θ(−1

z
;h,A,N,P ) = (−i)ν(detA)−1/2(−iz)κ/2 ∑

k mod N
Ak≡0 mod N

e(k
tAh

N2
)θ(z;k,A,N,P ).

(3.4)

Proof. For the same reason in the proof of (3.3), we prove the result for z = αi.

Consider the function

fu(x) = P (N(x + u))e(z(x + u)
tA(x + u)
2

)
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with u = N−1h ∈ 1
NZn. Having found the Fourier transform of fu in Proposition

2.4.4, apply the Poisson Summation Formula to get

∑
s∈Zn

P (N(s + u))e(z(s + u)
tA(s + u)
2

) =∑Nνβq(−iz)−κ/2(detA)−1/2(−i)ν ∑
s∈Zn

e(stu)⋅

⋅ (qts)νe(−s
tA−1s

2z
).

Notice that for y = Ns + h

∑
s∈Zn

P (N(s + u))e(z(s + u)
tA(s + u)
2

) = ∑
y≡h mod N

P (y)e(zy
tAy

2N2
)

= θ(z;h,A,N,P )

Ô⇒ θ(z;h,A,N,P ) =∑N νβq(−iz)−κ/2(detA)−1/2(−i)ν ∑
s∈Zn

e(stu)(qts)νe(−s
tA−1s

2z
).

Now, applying a change of variable z → −1
z and setting s = Ap

N ,

θ(−1

z
;h,A,N,P ) =∑Nνβq(−iz)κ/2(detA)−1/2(−i)ν ∑

s∈Zn
e(stu)(qts)νe(zs

tA−1s

2
)

=∑Nνβq(−iz)κ/2(detA)−1/2(−i)ν ∑
k mod N

Ak≡0 mod N

∑
p∈Zn

p≡k mod N

e(p
tAh

N2
)⋅

⋅ (qtAp
N

)νe(zp
tAA−1Ap

2N2
)

=∑Nνβq(−iz)κ/2(detA)−1/2(−i)ν ∑
k mod N

Ak≡0 mod N

∑
p∈Zn

p≡k mod N

e(p
tAh

N2
)⋅

⋅ (qtAp
N

)νe(zp
tAp

2N2
).

In the inner sum over p, p has the form k +Nl for some l ∈ Zn. Then

e(p
tAh

N2
) = e((k +Nl)

tAh

N2
)

= e(k
tAh

N2
+ Nl

tAh

N2
)

= e(k
tAh

N2
) given that Ah ∈ NZn.
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Thus,

θ(−1

z
;h,A,N,P ) =∑Nνβq(−iz)κ/2(detA)−1/2(−i)ν ∑

k mod N
Ak≡0 mod N

∑
p∈Zn

p≡k mod N

e(k
tAh

N2
)⋅

⋅ (qtAp
N

)νe(zp
tAp

2N2
)

= (−i)ν(detA)−1/2(−iz)κ/2 ∑
k mod N

Ak≡0 mod N

e(k
tAh

N2
) ∑

p∈Zn
p≡k mod N

∑N νβq ⋅

⋅ (qtAp
N

)νe(zp
tAp

2N2
)

= (−i)ν(detA)−1/2(−iz)κ/2 ∑
k mod N

Ak≡0 mod N

e(k
tAh

N2
) ∑

p∈Zn
p≡k mod N

∑βq ⋅

⋅ (qtAp)νe(zp
tAp

2N2
)

= (−i)ν(detA)−1/2(−iz)κ/2 ∑
k mod N

Ak≡0 mod N

e(k
tAh

N2
) ∑

p∈Zn
p≡k mod N

P (p)e(zp
tAp

2N2
)

= (−i)ν(detA)−1/2(−iz)κ/2 ∑
k mod N

Ak≡0 mod N

e(k
tAh

N2
)θ(z;k,A,N,P ).

3.2 Transformation Law

In this section, our goal is to prove that the Theta function is a modular form

on the congruence subgroup Γ0(2,2N) defined later. For this reason, we use the

previous section along with properties of Gauss Sums to obtain the desired result.

Lemma 3.2.1. For k ∈ (Z/NZ)
n
, we have

∑
k mod N

Ak≡0 mod N

1 = detA.

Proof. Notice that ∑ k mod N
Ak≡0 mod N

1 = # kerA with A viewed as a homomorphism

A ∶ (Z/NZ)
n
→ (Z/NZ)

n
.
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Since NA−1 has integer coefficients, we have that NZn ⊂ A(Zn) ⊂ Zn. So by the

Third Isomorphism Theorem,

(Z/NZ)
n

/
A (Z/NZ)

n ≃ Zn/AZn .

This implies that,

[(Z/NZ)
n
∶ A (Z/NZ)

n
] = [Zn ∶ AZn]

= ∣detA∣

= detA since A is positive definite

with A (Z/NZ)
n

image of A. Next, by the First Isomorphism Theorem,

A (Z/NZ)
n
≃ (Z/NZ)

n

/kerA

Ô⇒ #A (Z/NZ)
n
= Nn

# kerA

Ô⇒ # kerA = Nn

#A (Z/NZ)
n = [(Z/NZ)

n
∶ A (Z/NZ)

n
] = detA.

In the following lemma, it is enough to assume that A and NA−1 are integer

matrices, dropping the symmetric and positive definite conditions.

Lemma 3.2.2. Given v ∈ Zn with vtA ≡ 0 mod N, we have

∑
k∈(Z/NZ)n
Ak≡0 mod N

e(v
tAk

N2
) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

detA if v ≡ 0 mod N,

0 otherwise.
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Proof. • If v ≡ 0 mod N (i.e. v = Nq for some q ∈ Zn) ∶

∑
k∈(Z/NZ)n
Ak≡0 mod N

e(v
tAk

N2
) = ∑

k∈(Z/NZ)n
Ak≡0 mod N

e(Nq
tAk

N2
)

= ∑
k∈(Z/NZ)n
Ak≡0 mod N

e(q
tAk

N
)

= ∑
k∈(Z/NZ)n
Ak≡0 mod N

1 since
qtAk

N
∈ Z

= detA by Lemma 3.2.1.

• If v ≢ 0 mod N :

Consider first the case where A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1 0 ⋯ 0

0 a2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

an integer diagonal matrix.

The condition that NA−1 ∈Mn(Z) means that each ai is a divisor of N , and

we can write N = a1d1 = ⋯ = andn with di ∈ Z. Next, we have

vtA ≡ 0 mod N Ô⇒ vt has the form (v1 v2 ⋯ vn) such that vi ≡ 0 mod di

Ô⇒ vt = (v1 v2 ⋯ vn) = (w1d1 w2d2 ⋯ wndn) with wi ∈ Z.

So, the set of k mod N with Ak ≡ 0 mod N is the set

kt = (k1 k2 ⋯ kn) = (l1d1 l2d2 ⋯ lndn)

where li ranges over integers mod ai. It follows that

vtAk = v1a1k1 +⋯ + vnankn =
n

∑
i=1

wiailid
2
i

Ô⇒ vtAk

N2
=

n

∑
i=1

wiailid2
i

a2
i d

2
i

=
n

∑
i=1

wili
ai

.
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Therefore,

∑
k∈(Z/NZ)n
Ak≡0 mod N

e(v
tAk

N2
) = ∑

l1 mod a1
⋮

ln mod an

e(w1l1
a1

)⋯e(wnln
an

).

Furthermore, we have

v ≢ 0 mod N Ô⇒ N does not divide at least one vi

Ô⇒ ∃ at least one wi such that wi ≢ 0 mod ai.

Assuming that w1 ≢ 0 mod a1, we have by Lemma 2.5.3

∑
l1 mod a1

e(w1l1
a1

) = 0.

Hence, for varying l1 and fixed l2,⋯, ln, we get that

∑
k∈(Z/NZ)n
Ak≡0 mod N

e(v
tAk

N2
) = ∑

l1 mod a1
⋮

ln mod an

e(w1l1
a1

)⋯e(wnln
an

)

= C ⋅ ∑
l1 mod a1

e(w1l1
a1

)

= 0.

Now, for the general case, we use the Smith normal form of A to write A =

UBV with B an integer diagonal matrix and U and V integer matrices having

detU = detV = ±1. Notice that the following are satisfied:

– U and V are integer matrices with detU = detV = ±1 Ô⇒ U−1 and V −1

are integer matrices Ô⇒ B = U−1AV −1 is an integer matrix,

– U,V and NA−1 are integer matrices Ô⇒ NB−1 = V NA−1U is an integer

matrix,

– (U tv)tB = vtUU−1AV −1 = vtAV −1 ≡ 0 mod N since vtA ≡ 0 mod N.
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Moreover, there exists a bijection between the sets

{k ∈ (Z/NZ)
n

∣ Ak ≡ 0 mod N} {k ∈ (Z/NZ)
n

∣ BV k ≡ 0 mod N}.∼

Finally, we get

∑
k∈(Z/NZ)n
Ak≡0 mod N

e(v
tAk

N2
) = ∑

k∈(Z/NZ)n
BV k≡0 mod N

e(v
tUBV k

N2
)

= ∑
k∈(Z/NZ)n

BV k≡0 mod N

e((U
tv)tBV k
N2

)

= 0 by the above case.

Proposition 3.2.1. Given α, δ ∈ Z, let a = 2α, d = 2δ. For c > 0, consider the

matrix γ =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL2(Z). Then we have cγ(z) = a − (cz + d)−1 and

θ(γ(z);h,A,N) = (−i)ν(detA)−1/2c−n/2(−i(cz+d))κ/2 ∑
Ak≡0 mod N
k mod cN

φ(h, k)θ(cz;k, cA, cN)

where

φ(h, k) = ∑
g mod cN
g≡h mod N

e(αg
tAg + ktAg + δktAk

cN2
).

Proof. First,

a − 1

cz + d
= acz + ad − 1

cz + d

= acz + bc
cz + d

= caz + b
cz + d

= cγ(z).

Next, apply in order the transformation formulas (3.2), (3.1) and (3.4). By (3.2),
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we have

θ(γ(z);h,A,N) = ∑
g mod cN
g≡h mod N

θ(a − 1

cz + d
; g, cA, cN).

By (3.1),

θ(a − 1

cz + d
; g, cA, cN) = e(αg

tAg

cN2
)θ( −1

cz + d
; g, cA, cN).

Then by (3.4) we get,

θ( −1

cz + d
; g, cA, cN) = (−i)ν(det cA)−1/2(−i(cz + d)κ/2))⋅

⋅ ∑
k mod cN

cAk≡0 mod cN

e(k
tAg

cN2
)θ(cz + d;k, cA, cN).

Moreover,

θ(cz + d;k, cA, cN) = e(δk
tAk

cN2
)θ(cz;k, cA, cN).

So

θ( −1

cz + d
; g, cA, cN) = (−i)νc−n/2(detA)−1/2(−i(cz + d))κ/2⋅

⋅ ∑
k mod cN

cAk≡0 mod cN

e(k
tAg

cN2
)e(δk

tAk

cN2
)θ(cz;k, cA, cN).

Notice that there is an equality between the two sets:

{k ∈ (Z/cNZ)n ∣ cAk ≡ 0 mod cN} {k ∈ (Z/cNZ)n ∣ Ak ≡ 0 mod N}∼

due to the fact that

cAk ≡ 0 mod cN ⇐⇒ cAk = cNq for some q ∈ Zn

⇐⇒ Ak = Nq for c > 0

⇐⇒ Ak ≡ 0 mod N.
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Combining the foregoing results we get,

θ(γ(z);h,A,N) = ∑
g≡h mod N
g mod cN

(−i)ν(detA)−1/2c−n/2(−i(cz + d))κ/2⋅

⋅ ∑
k mod cN

Ak≡0 mod N

e(k
tAg

cN2
)θ(cz;k, cA, cN)e(δk

tAk

cN2
)e(αg

tAg

cN2
).

Finally, interchange the finite sums to obtain:

θ(γ(z);h,A,N) = (−i)ν(detA)−1/2c−n/2(−i(cz + d))κ/2⋅

⋅ ∑
k mod cN

Ak≡0 mod N

∑
g≡h mod N
g mod cN

e(αg
tAg + ktAg + δktAk

cN2
)θ(cz;k, cA, cN).

Lemma 3.2.3. The expression φ(h, k) in Proposition 3.2.1 can also be written as

φ(h, k) = e(−b(δk
tAk + ktAh)
N2

)φ(h + 2δk,0).

Proof. Too see this, replace g by g̃ ∶= g + 2δk and write

φ(h + 2δk,0) = ∑
g̃ mod cN

g̃≡h+2δk mod N

e(αg̃
tAg̃

cN2
)

= ∑
g≡h mod N
g mod cN

e(α(g + 2δk)tA(g + 2δk)
cN2

)

= ∑
g≡h mod N
g mod cN

e(αg
tAg

cN2
)e(2αgtAδk

cN2
)e(2αδktAg

cN2
)e(4αδ2ktAk

cN2
).

We have ktAg = (ktAg)t = gtAk because ktAg ∈ Z. In addition, γ ∈ SL2(Z), so

4αδ = 1 + bc. Therefore,

φ(h + 2δk,0) = ∑
g≡h mod N
g mod cN

e(αg
tAg

cN2
)e(4αδktAg

cN2
)e(4αδ2ktAk

cN2
)

= ∑
g≡h mod N
g mod cN

e(αg
tAg

cN2
)e((1 + bc)k

tAg

cN2
)e(δk

tAk

cN2
)e(δbk

tAk

N2
)
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= ∑
g≡h mod N
g mod cN

e(αg
tAg + ktAg + δktAk

cN2
)e(bck

tAg

cN2
)e(δbk

tAk

N2
).

Use the fact that g ≡ h mod N with g mod cN to write g = h +Ng′ for some g′ ∈

(Z/cNZ)
n
. Also since Ak ≡ 0 mod N , we have:

e(bk
tAg

N2
) = e(bk

tA(h +Ng′)
N2

) = e(bk
tAh

N2
)e(bk

tAg′

N
) = e(bk

tAh

N2
).

Hence,

φ(h + 2δk,0) = ∑
g≡h mod N
g mod cN

e(αg
tAg + ktAg + δktAk

cN2
)e(bk

tAh

N2
)e(δbk

tAk

N2
)

= φ(h, k)e(b(k
tAh + δktAk)

N2
)

Ô⇒ e(−b(k
tAh + δktAk)
N2

)φ(h + 2δk,0) = φ(h, k). (3.5)

Proposition 3.2.2. The expression φ(h, k) depends only on k modulo N and thus

θ(γ(z);h,A,N)iν(detA)1/2cn/2(−i(cz + d))−κ/2 = ∑
k mod N

Ak≡0 mod N

φ(h, k)θ(z;k,A,N).

Proof. Replace k by k′ +Nl for some l ∈ Zn in equation (3.5).

• First, using the fact that A has coefficients in Z, Ah ∈ NZn and Ak′ ∈ NZn,

we get

e(−b((k
′ +Nl)tAh + δ(k′ +Nl)tA(k′ +Nl))

N2
) = e(−b(k

′tAh + δk′tAk′)
N2

).
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• Second, we also have

φ(h + 2δ(k′ +Nl),0) = ∑
g mod cN

g≡h+2δ(k′+Nl) mod N

e(αg
tAg

cN2
) = ∑

g mod cN
g≡h+2δk′ mod N

e(αg
tAg

cN2
)

= φ(h + 2δk′,0).

Thus, φ(h, k′ +Nl) = φ(h, k′). So, using the latter in Proposition 3.2.1, we can take

φ(h, k) as a common factor for each choice of k mod N.

θ(γ(z);h,A,N)iν(detA)1/2cn/2(−i(cz + d))−κ/2 = ∑
Ak′≡0 mod N
k′ mod N

φ(h, k′)⋅

⋅ ∑
k≡k′ mod N
k mod cN

θ(cz;k, cA, cN).

Finally, by equation (3.2) we have

∑
k≡k′ mod N
k mod cN

θ(cz;k, cA, cN) = θ(z;k′,A,N).

Proposition 3.2.3. Suppose that a = 2α, d = 2δ and c > 0. Then we have:

θ(bz − a
dz − c

;h,A,N)(detA)cn/2(−sgn(d)i)−n(dz − c)−κ/2 =

∑
l mod N

Al≡0 mod N

{ ∑
k mod N

Ak≡0 mod N

e( l
tAk

N2
)φ(h, k)}θ(z; l,A,N).

Proof. Substitute −1
z for z in Proposition 3.2.2, then

θ(
a(−1

z ) + b
c(−1

z ) + d
;h,A,N)iν(detA)1/2cn/2(−i(c(−1

z
)+d))−κ/2 = ∑

k mod N
Ak≡0 mod N

φ(h, k)θ(−1

z
;k,A,N).

46



By (3.4) we write

θ(−1

z
;k,A,N) = (−i)ν(detA)−1/2(−iz)κ/2 ∑

l mod N
Al≡0 mod N

e( l
tAk

N2
)θ(z; l,A,N)

Ô⇒ θ(bz − a
dz − c

;h,A,N)iν(detA)1/2cn/2(−i(c(−1

z
) + d))−κ/2 =

∑
k mod N

Ak≡0 mod N

φ(h, k)(−i)ν(detA)−1/2(−iz)κ/2 ∑
l mod N

Al≡0 mod N

e( l
tAk

N2
)θ(z; l,A,N)

Ô⇒ θ(bz − a
dz − c

;h,A,N)(detA)cn/2iν(−i)−ν(−iz)−κ/2(−i(c(−1

z
) + d))−κ/2 =

∑
l mod N

Al≡0 mod N

{ ∑
k mod N

Ak≡0 mod N

e( l
tAk

N2
)φ(h, k)}θ(z; l,A,N).

We still need to show that

iν(−i)−ν(−iz)−κ/2(−i(c(−1

z
) + d))−κ/2 = (−sgn(d)i)−n(dz − c)−κ/2.

Using the appropriate branch of the square root introduced in Chapter 2, we have

• If d > 0 ∶ (−dz + c)−κ/2 = i−κ(dz − c)−κ/2,

• If d < 0 ∶ (−dz + c)−κ/2 = (−i)−κ(dz − c)−κ/2.

Then,

iν(−i)−ν(−iz)−κ/2(−i(c(−1

z
) + d))−κ/2 = (−1)ν(−i)−κ/2i−κ/2(−dz + c)−κ/2

= (−1)ν(−i)−κ/2i−κ/2(sgn(d)i)−κ(dz − c)−κ/2

= (−1)ν(−1)−κ/2i−κ/2i−κ/2(sgn(d)i)−n−2ν(dz − c)−κ/2

= (−1)ν(−1)−κ/2(−1)−κ/2(−1)−ν(sgn(d)i)−n(dz − c)−κ/2

= (−1)2ν−k(sgn(d)i)−n(dz − c)−κ/2

= (−1)−n(sgn(d)i)−n(dz − c)−κ/2.
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Lemma 3.2.4. Suppose now that d = 2δ ≡ 0 mod 2N . Then

φ(h, k) = e(−bk
tAh

N2
)φ(h,0).

Proof. Write δ = Nq with q ∈ Z and we have

φ(h, k) = e(−b(δk
tAk + ktAh)
N2

)φ(h + 2δk,0)

= e(−bqNk
tAk

N2
)e(−bk

tAh

N2
) ∑

g mod cN
g≡h+2δk mod N

e(αg
tAg

cN2
).

Notice that e(−bqNk
tAk

N2 ) = e(−bqk
tAk
N ) = 1 since Ak

N ∈ Zn.

Also, g ≡ h + 2δk mod N ⇐⇒ g ≡ h mod N ; thus an identity of sets arises. Hence,

φ(h, k) = e(−bk
tAh

N2
) ∑
g mod cN
g≡h mod N

e(αg
tAg

cN2
)

= e(−bk
tAh

N2
)φ(h,0).

As a consequence of the latter, the right hand side of the equation in

Proposition 3.2.3. becomes:

φ(h,0) ∑
l mod N

Al≡0 mod N

{ ∑
k mod N

Ak≡0 mod N

e((l − bh)
tAk

N2
)}θ(z; l,A,N). (3.6)

Proposition 3.2.4. Suppose now that b = −2α with α ∈ Z, c ≡ 0 mod 2N and d < 0.

Let u be a vector in (Z/dZ)
n
. We have

θ(az + b
cz + d

;h,A,N) = (−sgn(c)i)n(cz + d)κ/2e(abh
tAh

2N2
)w(α, ∣d∣)θ(z;ah,A,N) (3.7)

with

w(α, ∣d∣) = ∣d∣−n/2 ∑
u mod ∣d∣

e(αu
tAu

∣d∣N2
).
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Proof. Write

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠

instead of

⎛
⎜⎜
⎝

b −a

d −c

⎞
⎟⎟
⎠

in Proposition 3.2.3 and use (3.6) to get:

θ(az + b
cz + d

;h,A,N) = 1

detA
(−d)−n/2(−sgn(c)i)n(cz + d)κ/2φ(h,0)⋅

⋅ ∑
l mod N

Al≡0 mod N

{ ∑
k mod N

Ak≡0 mod N

e((l − ah)
tAk

N2
)}θ(z; l,A,N).

Now, using Lemma 3.2.2 for v = l − ah ≡ 0 mod N , we obtain

θ(az + b
cz + d

;h,A,N) = (−d)−n/2(−sgn(c)i)n(cz + d)κ/2φ(h,0) ∑
l mod N

Al≡0 mod N
l≡ah mod N

θ(z; l,A,N).

Note that the set {l mod N ∣ Al ≡ 0 mod N and l ≡ ah mod N} is the same as

the set {l mod N ∣ l ≡ ah mod N}, because l ≡ ah mod N Ô⇒ Al ≡ aAh mod N

but Ah ≡ 0 mod N as part of our assumption. Hence, the resulting sum is over just

one element l = ah. Consequently, we get

θ(az + b
cz + d

;h,A,N) = (−d)−n/2(−sgn(c)i)n(cz + d)κ/2φ(h,0)θ(z;ah,A,N)

= (−d)−n/2(−sgn(c)i)n(cz + d)κ/2 ∑
g mod dN
g≡h mod N

e(αg
tAg

−dN2
)θ(z;ah,A,N)

= (−sgn(c)i)n(cz + d)κ/2θ(z;ah,A,N)∣d∣−n/2 ∑
g mod dN
g≡h mod N

e(αg
tAg

∣d∣N2
).

Set W = ∣d∣−n/2∑ g mod dN
g≡h mod N

e(αg
tAg

∣d∣N2 ). Notice that:

• g ≡ h mod N and g mod dN Ô⇒ g = h +Nu′ for some u′ ∈ (Z/dZ)
n
,

• ad ≡ 1 mod N Ô⇒ ad = 1 +Nq′ for some q′ ∈ Zn.

Therefore, we have g ≡ h mod N ≡ adh mod N. So we can write g = adh +Nu for
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some u ∈ (Z/dZ)
n
. Then

W = ∣d∣−n/2 ∑
g mod dN
g≡h mod N

e(αg
tAg

∣d∣N2
)

= ∣d∣−n/2 ∑
u mod d

e(α(adh +Nu)
tA(adh +Nu)

∣d∣N2
)

= ∣d∣−n/2 ∑
u mod d

e(α(ad)
2htAh

∣d∣N2
)e(αadNh

tAu

∣d∣N2
)e(αNu

tadAh

∣d∣N2
)e(αN

2utAu

∣d∣N2
).

Now, we have the following:

e(α(ad)
2htAh

∣d∣N2
) = e(αa

2dhtAh

−N2
) since d < 0

= e(αa(1 +Nq
′)htAh

−N2
) since ad = 1 +Nq′

= e(αah
tAh

−N2
)e(αaq

′htAh

−N
)

= e(abh
tAh

2N2
)e(abq

′htAh

N
) since b = −2α

= e(abh
tAh

2N2
) since Ah ∈ NZn.

Moreover,

e(αadNh
tAu

∣d∣N2
) = e(αah

tAu

−N
) = 1 since Ah ∈ NZn.

Similarly,

e(αNu
tadAh

∣d∣N2
) = 1.

Hence, we obtain

W = ∣d∣−n/2 ∑
u mod d

e(abh
tAh

2N2
)e(αu

tAu

∣d∣
)

= e(abh
tAh

2N2
)w(α, ∣d∣).

Suppose that c = 0, then since ad − bc = 1 we get that d = −1.
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Then w(α, ∣d∣) = e(0) = 1.

Therefore we assume in what follows that c ≠ 0.

Lemma 3.2.5. For m ∈ Z and mc < 0, we have

w(α, ∣d∣) = w(α − am, ∣d + 2cm∣).

Proof. First, notice that we have the following conditions:

• 2am + b = 2am − 2α = −2(α − am) = −2α′ with α′ ∈ Z,

• c ≡ 0 mod 2N,

• 2cm + d < 0.

These conditions allow us to substitute z + 2m for z in equation (3.7) to get,

θ(a(z + 2m) + b
c(z + 2m) + d

;h,A,N) = (−sgn(c)i)n(c(z + 2m) + d)κ/2e(abh
tAh

2N2
)⋅

⋅w(α, ∣d∣)θ(z + 2m;ah,A,N).

On the other hand, we have

θ(az + (2am + b)
cz + (2cm + d)

;h,A,N) = (−sgn(c)i)n(cz + (2cm + d))κ/2e(a(2am + b)htAh
2N2

)⋅

⋅w(α − am, ∣2cm + d∣)θ(z;ah,A,N).

Comparing the two equations, we get

θ(z + 2m;ah,A,N)w(α, ∣d∣) = e(a
2mhtAh

N2
)θ(z;ah,A,N)w(α − am, ∣2cm + d∣).
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However; from equation (3.1) we have

θ(z + 2m;ah,A,N) = e(m(ah)tA(ah)
N2

)θ(z;ah,A,N)

= e(a
2mhtAh

N2
)θ(z;ah,A,N).

Thus w(α, ∣d∣) = w(α − am, ∣d + 2cm∣).

By Dirichlet Prime Number Theorem, we can take m so that −d − 2cm is

a positive prime p. Moreover, set β = α − am. Then,

w(α, ∣d∣) = w(α − am, ∣d + 2cm∣) = w(β, p) = p−n/2 ∑
u mod p

e(βu
tAu

p
). (3.8)

Lemma 3.2.6. Suppose that p is prime to detA. Then there exists an element S

of Mn(Z), whose determinant is prime to p, such that StAS is congruent modulo p

to a diagonal matrix D.

Proof. Consider the bilinear form

B ∶ (Z/pZ)
n
× (Z/pZ)

n
→ Z/pZ

(v1 , v2)↦ B(v1, v2) = vt1Avt2.

Let {e1,⋯, en} be the standard basis where B(ei, ej) = Aij. Furthermore, we have

that B(v1, v2) = B(v2, v1). Indeed, B(ei, ej) = Aij = Aji = B(ej, ei) since A = At.

This implies that B is a symmetric bilinear form on the vector space (Z/pZ)
n
.

Then, by [Jacobson, 2012] section 6.3, Theorem 6.5, there exists an orthogonal basis

{b1,⋯, bn} for which the matrix of B relative to this basis is some diagonal matrix

D, or equivalently

B(v1, v2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

non-zero if i = j,

0 otherwise.
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So now, there exists a change of basis matrix S′ ∈ GLn (Z/pZ) such that

(b1 ⋯ bn) = (e1 ⋯ en)S
′.

Finally, lifting S′ to some S ∈Mn(Z) whose reduction modulo p is S′, we get a new

matrix representation for B given by StAS ≡D mod p.

Proposition 3.2.5. If q1,⋯, qn are the diagonal elements of D as in Lemma 3.2.6,

then

w(β, p) = p−n/2
n

∏
i=1

(
p

∑
x=1

e(βqix
2

p
)).

Proof. Since

⎛
⎜⎜
⎝

a −2β

c −p

⎞
⎟⎟
⎠
∈ SL2(Z), we have 2βc − ap = 1. But c ≡ 0 mod 2N , then p

is prime to 2βN . Also, we know that detA is a divisor of Nn, then p is prime to

detA. To see this, suppose that gcd(p,detA) ≠ 1. We have:

gcd(p,detA) divides detA and p Ô⇒ gcd(p,detA) divides Nn and p

Ô⇒ gcd(p,detA) divides gcd(p,Nn)

Ô⇒ gcd(p,Nn) = p

Ô⇒ gcd(p,N) = p

Ô⇒ gcd(p,2βN) = p ≠ 1. Contradiction.

Thus Lemma 3.2.6 applies. Next, there exists a bijection

(Z/pZ)
n

(Z/pZ)
n

u mod p S−1u mod p

Sv mod p v mod p

∼

with S̄ invertible matrix in Mn (Z/pZ) .
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So replacing u mod p by Su mod p in (3.8) we get:

w(β, p) = p−n/2 ∑
Su mod p

e(β(Su)
tA(Su)
p

)

= p−n/2 ∑
u mod p

e(β(S̄u)
tA(S̄u)
p

)

= p−n/2 ∑
u mod p

e(βu
tS̄tAS̄u

p
)

= p−n/2 ∑
u mod p

e(βu
tDu

p
) by Lemma 3.2.6

= p−n/2 ∑
u mod p

e(β(u
2
1q1 +⋯ + u2

nqn)
p

)

= p−n/2{ ∑
u1 mod p

e(βu
2
1q1

p
)}⋯{ ∑

un mod p

e(βu
2
nqn
p

)}

= p−n/2
n

∏
i=1

(
p

∑
x=1

e(βqix
2

p
)).

Proposition 3.2.6. Let εm be 1 or i according as m ≡ 1 or 3 mod 4. Then we have

w(β, p) = εnp (
βn detA

p
) .

Proof. From Proposition 3.2.5 and the definition of the Gauss Sum, we have

w(β, p) = p−n/2
n

∏
i=1

(
p

∑
x=1

e(βqix
2

p
))

= p−n/2
n

∏
i=1

G(βqi).

By Proposition 2.5.3, G(βqi) = (βqip )G(1), then

w(β, p) = p−n/2
n

∏
i=1

[(βqi
p

)G(1)]

= p−n/2[
n

∏
i=1

(βqi
p

)][εp
√
p]n by Proposition 2.5.4.

= p−n/2 (β
nq1

p
)⋯(β

nqn
p

)

= p−n/2 (β
nq1⋯qn
p

) εnppn/2 by Euler Criteria
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= (β
nq1⋯qn
p

) εnp .

Now, by Lemma 3.2.6, we have that

StAS ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

q1 0 ⋯ 0

0 q2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ qn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

mod p,

Ô⇒ detStAS ≡ q1⋯qn mod p.

Hence,

(q1⋯qn
p

) = (detStAS

p
) .

Therefore,

w(β, p) = εnp (
βn(detS)2 detA

p
)

= εnp (
(detS)2)

p
)(β

n detA

p
)

= εnp (
βn detA

p
) since (detS)2 is a non-zero square mod p.

Proposition 3.2.7. We have the following equality:

w(α, ∣d∣) = ε−nd (sgn(c)i)n (2c

d
)
n

(detA

d
) . (3.9)

Proof. • First, notice that

εnp =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if p ≡ 1 mod 4,

in if p ≡ 3 mod 4
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=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if − d − 2cm ≡ 1 mod 4,

in if − d − 2cm ≡ 3 mod 4

since p = −d − 2cm

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if − d ≡ 1 mod 4,

in if − d ≡ 3 mod 4

since c ≡ 0 mod 2

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if d ≡ 3 mod 4,

in if d ≡ 1 mod 4

= in ⋅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

i−n if d ≡ 3 mod 4,

1 if d ≡ 1 mod 4

= inε−nd .

• Next, we have that 2βc − ap = 1 Ô⇒ 2βc ≡ 1 mod p Ô⇒ β ≡ (2c)−1 mod p

Ô⇒ p does not divide 2c. So,

(β
p
) = ((2c)

−1

p
) = (2c

p
)
−1

= (2c

p
) = (4c′

p
) = (c

′

p
) for some c′ ∈ Z.

On the other hand,

( 2c

−d
) = (4c′

−d
) = ( c

′

−d
) .

However,

p ≡ −d mod 2c ≡ −d mod 4c′ Ô⇒ (c
′

p
) = ( c

′

−d
) .

Therefore,

(β
p
) = ( 2c

−d
) = ( 2c

−1
)(2c

d
) = sgn(c) (2c

d
) .

• Next, consider the prime factorization of detA. Then write detA = D0K2

where D0 = ∏pαii is the product of primes that appear in detA with an odd
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power. Furthermore, detA divides Nn Ô⇒ pαii divides Nn Ô⇒ pαii divides

N Ô⇒ Do is a positive divisor of N . Also, gcd(detA,p) = 1

Ô⇒ gcd(K,p) = 1. So, we get

(detA

p
) = (D0K2

p
) = (D0

p
)(K

2

p
) = (D0

p
) .

Also, for −d = d1d2⋯dm, we have

(D0

−d
) = (D0

d1

)⋯(D0

dm
)

where (D0

di
) depends on di mod 4D0 by Proposition 2.5.2. Then ∏m

i=1 (D0

di
)

depends on −d mod 4D0. Furthermore, we have

p = −d − 2cm Ô⇒ p = −d − 4c′N

Ô⇒ p ≡ −d mod 4N

Ô⇒ p ≡ −d mod 4D0 since D0 divides N

Ô⇒ (D0

p
) = (D0

−d
) .

Therefore,

(D0

p
) = (D0

−d
) = (D0

−1
)(D0

d
) = (D0

d
) = (detA

d
) .

Hence, replacing in Proposition 3.2.6 we get

w(α, ∣d∣) = w(β, p) = εnp (
βn detA

p
) = εnp (

β

p
)
n

(detA

p
)

= ε−nd (sgn(c)i)n (2c

d
)
n

(detA

d
) .

Proposition 3.2.8. (Key Result) Let γ be an element of the congruence subgroup

Γ0(2,2N) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL2(Z); b ≡ 0 mod 2 and c ≡ 0 mod 2N

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.
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Then θ(z;h,A,N,P ) is a modular form on Γ0(2,2N) with the transformation law

θ(γ(z);h,A,N,P ) = e(abh
tAh

2N2
) (detA

d
)(2c

d
)
n

ε−nd (cz + d)κ/2θ(z;ah,A,N,P )

where κ = n + 2ν and ν order of P.

Proof. We study two cases:

1. For d < 0

Let γ =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ Γ0(2,2N). Replace equation (3.9) in equation (3.7). Then

we get:

θ(az + b
cz + d

;h,A,N,P ) = (−sgn(c)i)n(cz + d)κ/2e(abh
tAh

2N2
)w(α, ∣d∣)θ(z;ah,A,N,P )

= (−sgn(c)i)n(cz + d)κ/2e(abh
tAh

2N2
)ε−nd (sgn(c)i)n (2c

d
)
n

⋅

⋅ (detA

d
) θ(z;ah,A,N,P )

= e(abh
tAh

2N2
) (detA

d
)(2c

d
)
n

ε−nd (cz + d)κ/2θ(z;ah,A,N,P ).

2. For d > 0

Let γ =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ Γ0(2,2N). Then, by using case 1 we have:

θ(γ(z);h,A,N,P ) = θ(az + b
cz + d

;h,A,N,P ) = θ(−az − b
−cz − d

;h,A,N,P )

= e(abh
tAh

2N2
) (detA

−d
)(−2c

−d
)
n

ε−n−d(−cz − d)κ/2θ(z;−ah,A,N,P ).

Note that

(detA

−d
) = (detA

−1
)(detA

d
) = sgn(detA) (detA

d
) = (detA

d
) ,
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(−2c

−d
)
n

= (−1

−d
)
n

( 2c

−d
)
n

= (−1

−1
)
n

(−1

d
)
n

( 2c

−1
)
n

(2c

d
)
n

= (−1)n (−1

d
)
n

(sgn(c))n (2c

d
)
n

,

θ(z;−ah,A,N,P ) = ∑
m≡−ah mod N

P (m)e(zm
tAm

2N2
) = ∑

m≡ah mod N

P (−m)e(zm
tAm

2N2
)

= (−1)νθ(z;ah,A,N,P ).

Then, we get

θ(γ(z);h,A,N,P ) = e(abh
tAh

2N2
) (detA

d
) (−1)n (−1

d
)
n

(sgn(c))n⋅

⋅ (2c

d
)
n

ε−n−d(−cz − d)κ/2(−1)νθ(z;ah,A,N,P ).
(3.10)

Next, use the defined branch of (cz + d)1/2 and distinguish among 4 separate

cases:

• If c > 0 and d ≡ 1 mod 4 ∶

(−1
d
)n (sgn(c))nε−n−d(−cz − d)κ/2

= 1n1n(iεd)−n(−i)κ(cz + d)κ/2 = (−1)n(−1)νε−nd (cz + d)κ/2,

• If c > 0 and d ≡ 3 mod 4 ∶

(−1
d
)n (sgn(c))nε−n−d(−cz − d)κ/2

= (−1)n1n(−iεd)−n(−i)κ(cz + d)κ/2 = (−1)n(−1)νε−nd (cz + d)κ/2,

• If c < 0 and d ≡ 1 mod 4 ∶

(−1
d
)n (sgn(c))nε−n−d(−cz − d)κ/2

= 1n(−1)n(iεd)−niκ(cz + d)κ/2 = (−1)n(−1)νε−nd (cz + d)κ/2,

• If c < 0 and d ≡ 3 mod 4 ∶

(−1
d
)n (sgn(c))nε−n−d(−cz − d)κ/2

= (−1)n(−1)n(−iεd)−niκ(cz + d)κ/2 = (−1)n(−1)νε−nd (cz + d)κ/2.

Thus in each case, replacing in equation (3.10) gives the desired result.
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Chapter 4

Applications of Theta Series to

Some Quadratic Forms

4.1 Eisenstein Series of weight k ≥ 3 on Γ(M)

At this point, in addition to studying relevant actions and orbits, we shall con-

struct the Fourier expansion of Ek,µ,ν on Γ(M) to get an explicit formula for the

Eisenstein Series on Γ0(4).

Let M be a positive integer. Recall the Principal Congruence Subgroup of

SL2(Z) of level M

Γ(M) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ SL2(Z);

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
≡
⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠

mod M

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

Definition 4.1.1. (Eisenstein Series on Congruence Subgroups) For any positive
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integer k ≥ 3, we define the Eisenstein Series on Γ(M)

Ek,µ,ν(z) = ∑
(m,n)≡(µ,ν) mod M

(mz + n)−k

where the sum is taken over all pairs of integers (m,n) except for (µ, ν) = (0,0).

Proposition 4.1.1. The above sum Ek,µ,ν converges absolutely and uniformly on

compact subsets of H for k > 2.

Proof. See [Diamond and Shurman, 2005] chapter 4, corollary 4.2.2

or [Schoeneberg, 2012] chapter 7, section 1.

Proposition 4.1.2. For γ =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ Γ(M), we have

Ek,µ,ν(γz) = (cz + d)kEk,µ,ν(z)

Proof. Set m′ = am + cn and n′ = bm + dn. Then

(cz + d)−1(m′z + n′) = (cz + d)−1[(am + cn)z + bm + dn]

= (cz + d)−1[m(az + b) + n(cz + d)]

=maz + b
cz + d

+ n

=mγz + n. (4.1)

Using that fact that a ≡ d ≡ 1 mod M and b ≡ c ≡ 0 mod M , there exists a bijection

between

{(m,n) ∈ Z2 ∣ m≡µ mod M
n≡ν mod M } {(am + cn, bm + dn) ∈ Z2 ∣ am+cn≡µ mod M

bm+dn≡ν mod M}.∼
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Proof. Given (m,n) ≡ (µ, ν) mod M, we get

m′ = am + cn ≡ aµ + cν mod M ≡ µ mod M

n′ = bm + dn ≡ bµ + dν mod M ≡ ν mod M.

Conversely, given (m′, n′) ≡ (µ, ν) mod M, we need to find m and n in terms of m′

and n′.

m′ = am + cn and n′ = bm + dn Ô⇒ (m′ n′) = (m n)
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠

Ô⇒ (m n) = (m′ n′)
⎛
⎜⎜
⎝

d −b

−c a

⎞
⎟⎟
⎠
.

So, we get

m = dm′ − cn′ ≡ dµ − cν mod M ≡ µ mod M

n = −bm′ + an ≡ −bµ + aν mod M ≡ ν mod M.

∎

Therefore,

Ek,µ,ν(γz) = ∑
(m,n)≡(µ,ν) mod M

(mγz + n)−k

= ∑
m′≡µ mod M
n′≡ν mod M

(cz + d)k(m′z + n′)−k by equation (4.1)

= (cz + d)kEk,µ,ν(z).
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Proposition 4.1.3. The Fourier expansion of Ek,µ,ν(z) on Γ(M) is:

Ek,µ,ν(z) = δ (
µ

M
) ∑
n≡ν mod M

1

nk
+ ∑

m0∈Z
m0+ µ

M
>0

(−2πi)k
Mk(k − 1)!

∞
∑
n0=1

nk−1
0 e(n0[

µ

M
+m0]z)e(

n0ν

M
)

+ ∑
m0∈Z

m0− µ
M
>0

(2πi)k
Mk(k − 1)!

∞
∑
n0=1

nk−1
0 e(n0[−

µ

M
+m0]z)e(

−n0ν

M
)

where δ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if x ∈ Z,

0 otherwise.

Proof. Starting with the definition of the Eisenstein series, we have

Ek,µ,ν(z) = ∑
(m,n)≡(µ,ν) mod M

(mz + n)−k

= ∑
m=Mm0+µ
n=Mn0+ν

(mz + n)−k

= ∑
m0,n0∈Z

1

[(Mm0 + µ)z + (Mn0 + ν)]k

= ∑
m0,n0∈Z

M−k 1

[( µ
M +m0)z + ( ν

M + n0)]k

= ∑
m0∈Z

M−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k
.

Splitting the sum over m0, we get

Ek,µ,ν(z) = ∑
m0∈Z

m0+ µ
M
>0

M−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k

+ ∑
m0∈Z

m0+ µ
M
<0

M−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k

+ ∑
m0∈Z

m0+ µ
M
=0

M−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k
.

(4.2)
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Notice that

∑
m0∈Z

m0+ µ
M
=0

M−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k
= ∑
no∈Z

M−k

( ν
M + n0)k

with m0 + µ
M = 0 and m0 ∈ Z. Thus this term only exists if µ ≡ 0 mod M.

In other words,

∑
m0∈Z

m0+ µ
M
=0

M−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k
= δ ( µ

M
) ∑
no∈Z

M−k

( ν
M + n0)k

. (4.3)

Using equation (4.3) and the Lipschitz Summation Formula, equation (4.2) becomes:

Ek,µ,ν(z) = δ (
µ

M
) ∑
no∈Z

M−k

( ν
M + n0)k

+ ∑
m0∈Z

m0+ µ
M
>0

M−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k

+ ∑
m0∈Z

m0+ µ
M
<0

N−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k

= δ ( µ
M

) ∑
no∈Z

M−k

( ν
M + n0)k

+ ∑
m0∈Z

m0+ µ
M
>0

M−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k

+ ∑
m0∈Z

m0− µ
M
>0

M−k ∑
n0∈Z

1

[(−(− µ
M +m0)z + ν

M ) + n0]k

= δ ( µ
M

) ∑
no∈Z

M−k

( ν
M + n0)k

+ ∑
m0∈Z

m0+ µ
M
>0

M−k ∑
n0∈Z

1

[(( µ
M +m0)z + ν

M ) + n0]k

+ ∑
m0∈Z

m0− µ
M
>0

M−k ∑
n0∈Z

1

(−1)k[((− µ
M +m0)z − ν

M ) + n0]k

= δ ( µ
M

) ∑
no∈Z

M−k

( ν
M + n0)k

+ ∑
m0∈Z

m0+ µ
M
>0

(−2πi)k
Mk(k − 1)!

∞
∑
n0=1

nk−1
0 e(n0[(

µ

M
+m0)z +

ν

M
])

+ ∑
m0∈Z

m0− µ
M
>0

(2πi)k
Mk(k − 1)!

∞
∑
n0=1

nk−1
0 e(n0[(−

µ

M
+m0)z) −

ν

M
])

= δ ( µ
M

) ∑
n≡ν mod M

1

nk
+ ∑

m0∈Z
m0+ µ

M
>0

(−2πi)k
Mk(k − 1)!

∞
∑
n0=1

nk−1
0 e(n0[

µ

M
+m0]z)e(

n0ν

M
)
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+ ∑
m0∈Z

m0− µ
M
>0

(2πi)k
Mk(k − 1)!

∞
∑
n0=1

nk−1
0 e(n0[−

µ

M
+m0]z)e(

−n0ν

M
).

We restrict to M = 4 in what follows.

Lemma 4.1.1. We have

Γ0(4) = ⋃̇γi
Γ(4)γi

with the following set of coset representatives γi ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

−1 0

0 −1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

1 1

0 1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

1 2

0 1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

1 3

0 1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

−1 1

0 −1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

−1 2

0 −1

⎞
⎟⎟
⎠
,

⎛
⎜⎜
⎝

−1 3

0 −1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

.

Proof. Since Γ(4) is a normal subgroup of Γ0(4), define the quotient group Γ(4)/Γ0(4).

Now, consider the morphisms

φ1 ∶ Γ0(4)→ (Z/4Z)
×

⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
↦ d mod 4

with kernel Γ1(4) and [Γ0(4) ∶ Γ1(4)] = 2, and

φ2 ∶ Γ1(4)→ Z/4Z
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
↦ b mod 4

with kernel Γ(4) and [Γ1(4) ∶ Γ(4)] = 4. Therefore we have

[Γ0(4) ∶ Γ(4)] = [Γ0(4) ∶ Γ1(4)] ⋅ [Γ1(4) ∶ Γ(4)] = 2 ⋅ 4 = 8.

Finally, it is possible to find the 8 representatives by easy calculations.
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Proposition 4.1.4. Define

Ẽk,µ,ν =∑
γi

Ek,µ,ν ∣
k,χ
γi.

Then Ẽk,µ,ν is a modular form on Γ0(4) with a character, i.e. Ẽk,µ,ν ∈Mk(Γ0(4), χ).

Moreover,

Ẽk,µ,ν =∑
γi

Ek,µ′,ν′χ(di)−1 with (µ′ ν′) = (µ ν)γi.

Proof. Note first that γi ∈Γ(4) /Γ0(4) ⊂Γ(4) /SL2(Z). Thus it is easy to check that the

slash operator is a group action from Γ(4)/SL2(Z) on the set Mk(Γ(4)) defined by

Mk(Γ(4)) ×Γ(4) /SL2(Z) →Mk(Γ(4))

(f , γ)↦ f.γ = (f ∣
k,χ
γ)(z).

In other words, f ∣
k,χ
γ depends only on cosets Γ(4)γ ∈Γ(4) /SL2(Z) and f ∣

k,χ
γγ′ corre-

sponds to multiplication in Γ(4)/SL2(Z). Now, let α ∈ Γ0(4). Then,

(Ẽk,µ,ν ∣
k,χ
α)(z) = (∑

γi

Ek,µ,ν ∣
k,χ
γi)∣

k,χ
α(z) = (∑

γi

Ek,µ,ν ∣
k,χ
γiα)(z).

We have that α ∈ Γ0(4) = ⋃̇γiΓ(4)γi, then Γ0(4) = Γ0(4)α = ⋃̇γiΓ(4)γiα. Hence there

exists a function j depending on i and α such that γiα = δiγj with δi ∈ Γ(4). Thus

γiα is another set of coset representatives for Γ(4)/Γ0(4). Therefore,

(Ẽk,µ,ν ∣
k,χ
α)(z) = (∑

γj

Ek,µ,ν ∣
k,χ
γj)(z) = Ẽk,µ,ν(z).

Moreover, we write

Ek,µ,ν ∣
k,χ
γi(z) = χ(di)−1(ciz + di)−k ∑

(m,n)≡(µ,ν) mod 4

(m[aiz + bi
ciz + di

] + n)−k

= χ(di)−1 ∑
(m,n)≡(µ,ν) mod 4

(m[aiz + bi] + n[ciz + di])−k
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= χ(di)−1 ∑
(m,n)≡(µ,ν) mod 4

([mai + nci]z + [mbi + ndi])−k

= χ(di)−1 ∑
(m′,n′)≡(µ′,ν′) mod 4

(m′z + n′)−k

= χ(di)−1Ek,µ′,ν′(z)

where m′ =mai + nci ≡ µai + νci = µ′ and n′ =mbi + ndi ≡ µbi + νdi = ν′.

Due to the fact that µ, ν ∈ Z/4Z, Γ(4)/Γ0(4) acts on (Z/4Z × Z/4Z)t. Thus, it

would be sufficient to find the set of all orbits of the corresponding elements. Note

that the idea is to use these orbits in addition to the Fourier expansion of Ek,µ,ν to

get the Fourier coefficients of the Eisenstein series on Γ0(4).

Proposition 4.1.5. There are 6 orbits of (Z/4Z × Z/4Z)t under the action of

Γ(4)/Γ0(4) denoted by

(µ ν) .Γ(4)/Γ0(4) = {(µ ν) .γi ∣ γi ∈Γ(4) /Γ0(4)}.

Proof. Using Lemma 4.1.1, we have the following orbits:

1. Orbit of (1 2)

• (1 2)
⎛
⎜⎜
⎝

1 0

0 1

⎞
⎟⎟
⎠
= (1 2) (1 2)

⎛
⎜⎜
⎝

−1 0

0 −1

⎞
⎟⎟
⎠
= (3 2) ,

• (1 2)
⎛
⎜⎜
⎝

1 1

0 1

⎞
⎟⎟
⎠
= (1 3) (1 2)

⎛
⎜⎜
⎝

−1 1

0 −1

⎞
⎟⎟
⎠
= (3 3) ,

• (1 2)
⎛
⎜⎜
⎝

1 2

0 1

⎞
⎟⎟
⎠
= (1 0) (1 2)

⎛
⎜⎜
⎝

−1 2

0 −1

⎞
⎟⎟
⎠
= (3 0) ,

• (1 2)
⎛
⎜⎜
⎝

1 3

0 1

⎞
⎟⎟
⎠
= (1 1) (1 2)

⎛
⎜⎜
⎝

−1 3

0 −1

⎞
⎟⎟
⎠
= (3 1) .
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{(1 2) ,(3 2) ,(1 3) ,(3 3) ,(1 0) ,(3 0) ,(1 1) ,(3 1)}.

Apply a similar method of calculations in what follows to get

2. Orbit of (0 1)

{(0 1) ,(0 3)}.

3. Orbit of (2 1)

{(2 1) ,(2 3)}.

4. Orbit of (2 0)

{(2 0) ,(2 2)}.

5. Orbit of (0 2)

{(0 2)}.

6. Orbit of (0 0)

{(0 0)}.

4.2 Fourier Coefficients of a Cusp Form

In this section, we study the growth of the Fourier coefficients of a cusp form.

The material is taken from [Miyake, 2006] chapter 2, pages 42-43.

Lemma 4.2.1. Let f(z) be a cusp form of weight k on Γ, i.e. f has a zero at each

cusp. Then, f(z)I(z)k/2 is bounded on H.

Proof. Let f(z) be a cusp form and set φ(z) = ∣f(z)∣I(z)k/2. Let γ =
⎛
⎜⎜
⎝

a b

c d

⎞
⎟⎟
⎠
∈ Γ,

then notice that

φ(γz) = ∣f(γz)∣I(γz)k/2 = (cz + d)k∣f(z)∣[(cz + d)−2]k/2I(z)k/2 = ∣f(z)∣I(z)k/2.
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So φ(z) is invariant on Γ and continuous on Γ/H. Notice that Γ has finitely many

inequivalent cusps. Let x0 be an arbitrary cusp of width h and suppose that γ′ is an

element of SL2(Z) such that γ′ ⋅∞ = x0. Then f has the following Fourier expansion

at x0 ∶

(f ∣
k
γ′)(z) =

∞
∑
n=1

ane(
nz

h
).

Thus we have

φ(γ′z) = ∣f(γ′z)∣I(γ′z)k/2

= ∣f(γ′z)∣[(c′z + d′)−2]k/2I(z)k/2

= ∣(f ∣
k
γ′)(z)∣I(z)k/2

= ∣
∞
∑
n=1

ane(
nz

h
)∣I(z)k/2 ÐÐÐÐÐ→

as I(z)→∞
0.

Hence, φ(z) is bounded on a neighborhood of each cusp x0 (since x0 was arbitrary),

and therefore φ(z) is bounded on a compact subset of H defined by H ∖ union of

all these neighborhoods.

Theorem 4.2.2. Let f(z) be a modular form and x0 a cusp of Γ. Suppose that γ′

is an element of SL2(Z) such that γ′ ⋅ ∞ = x0. Then we have

an = O(nk/2) where (f ∣
k
γ′)(z) =

∞
∑
n=1

ane(
nz

h
).

Proof. Set g(z) = (f ∣
k
γ′)(z). Then g(z) is a modular form of weight k on γ′−1Γγ′.

By the above lemma,

∃M > 0 such that ∣(f ∣
k
γ′)(z)∣ ≤MI(z)−k/2 ∀z ∈ H.

Therefore, we get

∣an∣ = ∣∫
h

0
g(x + iy)e(−nz

h
)dx∣
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≤ ∫
h

0
∣g(x + iy)∣∣e(−nz

h
)∣ ∣dx∣

≤ M
h
y−k/2e2πny/h.

In particular, taking y = 1
n , we get

∣an∣ ≤
M

h
e2π/hnk/2 Ô⇒ an = O(nk/2).

4.3 Representation of an Integer s by Sums of

Squares

As an application of the above, we are interested in the following question:

How to represent an integer s by a positive definite quadratic form?

In other words, given positive integers s and k, in how many ways can s be

represented by Q(x) with x ∈ Zk. For this reason, we introduce rQ,h,N(s) defined

by:

rQ,h,N(s) = #{(x1,⋯, xk) ∈ Zk ∣ Q(x) = s and x ≡ h mod NZk}.

Then the question becomes if there are any interesting formulas for rQ,h,N and how

to efficiently calculate them.

In this section, we let h = 0, N = 1, n = k and A = 1k identity matrix. As a result,

we get Q(x) = x2
1 + x2

2 +⋯ + x2
k and write

rk(s) = #{(x1,⋯, xk) ∈ Zk ∣ x2
1 +⋯ + x2

k = s}.

Notice that changing the signs or order of xi in this case results in giving different

representations.

Let us consider a particular example.
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Figure 4.1: Geometric Interpretation of r2(10)

Example 4.3.1. For k = 2 and s = 10 we have r2(10) = 8. To see this, write

10 = 12 + 32 = (−1)2 + 32 = 12 + (−3)2 = (−1)2 + (−3)2

= 32 + 12 = (−3)2 + 12 = 32 + (−1)2 = (−3)2 + (−1)2.

Geometrically, this is equivalent to saying that in the lattice Z2 ⊂ R2, there are 8

points having distance
√

10 from the origin.

Remark. Since Q is a positive definite quadratic form, we can ensure that the set of

points is finite by limiting using an upper bound for each of the xi in term of x.

Now, denote θ(z; 0,1k,1,1) by θ(z) and consider the following:
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Proposition 4.3.1. For z ∈ H, let θ̃ be the function defined by

θ̃ ∶ H→ C

z ↦ θ̃(z) = θ(2z) = ∑
m∈Zk

e(zmtm).

Then θ̃ is a modular form of weight k
2 on the congruence subgroup Γ0(4).

Proof. From Proposition 3.2.8, for γ =
⎛
⎜⎜
⎝

a 2b

2c d

⎞
⎟⎟
⎠
∈ Γ0(2,2) we have

θ(γ(z)) = θ(az + 2b

2cz + d
)

= ( c
d
)
k

ε−kd (2cz + d)k/2θ(z)
(4.4)

with multiplier system ε(γ) = ( c
d
)k ε−kd such that ∣ε(γ)∣ = 1.

Now let γ′ =
⎛
⎜⎜
⎝

a′ b′

4c′ d′

⎞
⎟⎟
⎠
∈ Γ0(4), then we have

θ̃(γ′z) = θ̃( a
′z + b′

4c′z + d′
)

= θ(2( a
′z + b′

4c′z + d′
))

= θ(a
′(2z) + 2b′

2c′(2z) + d′
)

= (4c′

d′
)
k

ε−kd′ (4c′z + d′)k/2θ(2z) by equation (4.4)

= ( c
′

d′
)
k

ε−kd′ (4c′z + d′)k/2θ̃(z)

with multiplier system ε(γ′) = ( c′
d′ )

k
ε−kd′ such that ∣ε(γ′)∣ = 1.

Remark. Notice that we have the following relation between θ̃ and rk:

θ̃(z) = ∑
m∈Zk

e(zmtm)
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= ∑
m1,⋯,mk∈Z

e(z(m2
1 +⋯ +m2

k))

=∑
s∈Z

∑
m1,⋯,mk∈Z
s=m2

1+⋯+m2
k

e(sz) Letting s =m2
1 +⋯ +m2

k

= ∑
s∈Z≥0

e(sz) ∑
m1,⋯,mk∈Z
s=m2

1+⋯+m2
k

1

= ∑
s∈Z≥0

rk(s)e(sz).

In what follows, we use the fact that Ẽk,µ,ν ∈Mk(Γ0(4), χ) in order write θ̃ as a

combination of Eisenstein Series and Cusp Forms. Consequently, we obtain formulas

for rk(s).

Proposition 4.3.2. For k = 3, the Eisenstein space is spanned by Ẽ3,1,2 and Ẽ3,0,1.

Proof. Using Propostion 4.1.4 and the orbits in Propostion 4.1.5, we get the follow-

ing:

• For (µ ν) = (1 2)

Ẽ3,1,2 = E3,1,2χ(1) +E3,1,3χ(1) +E3,3,1χ(−1) +E3,1,1χ(1) +E3,3,2χ(−1)

+E3,3,3χ(−1) +E3,3,0χ(−1) +E3,1,0χ(1)

= E3,1,2 +E3,1,3 −E3,3,1 +E3,1,1 −E3,3,2 −E3,3,3 −E3,3,0 +E3,1,0.

Notice that Ek,−µ,−ν = (−1)kEk,µ,ν . Then we get

Ẽ3,1,2(z) = E3,1,2(z) +E3,1,3(z) +E3,1,3(z) +E3,1,1(z) +E3,1,2(z) +E3,1,1(z)

+E3,1,0(z) +E3,1,0

= 2[E3,1,0(z) +E3,1,1(z) +E3,1,2(z) +E3,1,3(z)]
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= C + 2i(2π)3

43 ⋅ 2!
[ ∑

m0∈Z
m0+ 1

4
>0

∑
n0>0

n2
0e(n0(m0 +

1

4
)z) − ∑

m0∈Z
m0− 1

4
>0

∑
n0>0

n2
0e(n0(m0 −

1

4
)z)

+ ∑
m0∈Z
m0+ 1

4
>0

∑
n0>0

n2
0e(n0(m0 +

1

4
)z)e(n0

4
) − ∑

m0∈Z
m0− 1

4
>0

∑
n0>0

n2
0e(n0(m0 −

1

4
)z)e(−n0

4
)

+ ∑
m0∈Z
m0+ 1

4
>0

∑
n0>0

n2
0e(n0(m0 +

1

4
)z)e(n0

2
) − ∑

m0∈Z
m0− 1

4
>0

∑
n0>0

n2
0e(n0(m0 −

1

4
)z)e(−n0

2
)

+ ∑
m0∈Z
m0+ 1

4
>0

∑
n0>0

n2
0e(n0(m0 +

1

4
)z)e(3n0

4
) − ∑

m0∈Z
m0− 1

4
>0

∑
n0>0

n2
0e(n0(m0 −

1

4
)z)e(−3n0

4
)]

= C + iπ
3

23
[ ∑

m0∈Z
m0+ 1

4
>0

∑
n0>0

n2
0e(n0(m0 +

1

4
)z) (1 + e(n0

4
) + e(n0

2
) + e(3n0

4
))

− ∑
m0∈Z
m0− 1

4
>0

∑
n0>0

n2
0e(n0(m0 −

1

4
)z) (1 + e(−n0

4
) + e(−n0

2
) + e(−3n0

4
)) ].

We distinguish now among 4 cases:

-If n0 ≡ 0 mod 4:

1 + e(n0

4 ) + e(n0

2 ) + e(3n0

4 ) = 1 + e(−n0

4 ) + e(−n0

2 ) + e(−3n0

4 ) = 1 + 1 + 1 + 1 = 4.

- If n0 ≡ 1 mod 4:

1 + e(n0

4 ) + e(n0

2 ) + e(3n0

4 ) = 1 + i − 1 − i = 0

and 1 + e(−n0

4 ) + e(−n0

2 ) + e(−3n0

4 ) = 1 − i − 1 + i = 0.

- If n0 ≡ 2 mod 4:

1 + e(n0

4 ) + e(n0

2 ) + e(3n0

4 ) = 1 − 1 + 1 − 1 = 0

and 1 + e(−n0

4 ) + e(−n0

2 ) + e(−3n0

4 ) = 1 − 1 + 1 − 1 = 0.

- If n0 ≡ 3 mod 4:

1 + e(n0

4 ) + e(n0

2 ) + e(3n0

4 ) = 1 − i − 1 + i = 0

and 1 + e(−n0

4 ) + e(−n0

2 ) + e(−3n0

4 ) = 1 + i − 1 − i = 0.

Thus, the above sum does not vanish only for the case n0 = 4l0. So,

Ẽ3,1,2(z) = C + iπ
3

23
[ ∑

m0∈Z
m0+ 1

4
>0

n0=4l0≥4

4(4l0)2e(l0(1 + 4m0)z) − ∑
m0∈Z
m0− 1

4
>0

n0=4l0≥4

4(4l0)2e(l0(4m0 − 1)z)]
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= C + i(2π)3[∑
s≥1

∑
l0∣s
l20χ( s

l0
) e(sz)].

• For (µ ν) = (0 1)

Ẽ3,0,1 = E3,0,1χ(1) +E3,0,1χ(1) +E3,0,3χ(−1) +E0,1χ(1) +E3,0,3χ(−1)

+E3,0,3χ(−1) +E3,0,3χ(−1) +E3,0,1χ(1)

= 4E3,0,1 − 4E3,0,3.

Notice that E3,0,1 = −E3,0,3. Then we get

Ẽ3,0,1(z) = 8E3,0,1(z)

= C + iπ
3

2
∑
n0>0

∑
m0>0

n2
0e(n0m0z) (e(

n0

4
) − e(−n0

4
)) .

We distinguish now among 4 cases:

-If n0 ≡ 0 mod 4: e(n0

4 )e(−n0

4 ) = 1 − 1 = 0.

- If n0 ≡ 1 mod 4: e(n0

4 )e(−n0

4 ) = i + i = 2i.

- If n0 ≡ 2 mod 4: e(n0

4 )e(−n0

4 ) = −1 + 1 = 0.

- If n0 ≡ 3 mod 4: e(n0

4 )e(−n0

4 ) = −i − i = −2i.

Thus, the above sum does not vanish only for the cases n0 ≡ 1,3 mod 4. So,

set s = n0m0 to get

Ẽ3,0,1(z) = C + iπ
3

2
∑
s≥1

∑
n0∣s

n2
0(2i)χ(n0)e(sz)

= C − π3∑
s≥1

∑
n0∣s

n2
0χ(n0)e(sz).

• For (µ ν) = (0 2)

Ẽ3,0,2 = 4E3,0,2 − 4E3,0,2 = 0.
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• For (µ ν) = (0 0)

Ẽ3,0,0 = 0.

• For (µ ν) = (2 1)

Ẽ3,2,1 = 2E3,2,1 + 2E3,2,3 − 2E3,2,1 − 2E3,2,3 = 0.

• For (µ ν) = (2 0)

Ẽ3,2,0 = 2E3,2,0 + 2E3,2,2 − 2E3,2,0 − 2E3,2,2 = 0.

Thus, Ẽ3,1,2 and Ẽ3,0,1 generate the corresponding Eisenstein space.

Theorem 4.3.1. Knowing that the spaces of cusp forms S2(Γ1(4)), S3(Γ1(4)) and

S4(Γ1(4)) are trivial, we have the following identities:

1. r2(s) = 4∑d∣s χ(d),

2. r4(s) = 8∑d∣s
4/∣ d
d,

3. r6(s) = ∑d∣s(16χ ( s
d
) − 4χ(d))d2,

4. r8(s) = 16∑d∣s(−1)s−dd3.

Proof. 1. For k = 2, see [Zagier, 1992] part 1.C, page 245.

2. First, for k = 4, we have

θ̃(z) = ∑
m∈Z4

e(zmtm) ∈M2(Γ0(4)) ⊂M2(Γ1(4)).

Knowing that

E2(z) = 1 + (2πi)2

ζ(2)(2 − 1)!

∞
∑
s=1

σ2−1(s)qs = 1 − 24
∞
∑
s=1

σ1(s)qs,
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our goal is to write θ̃ in terms of E2. Note that E2 is not a modular form,

but combinations involving E2(z),E2(2z) and E2(4z) are. For this reason, we

write:

E2(z) = 1 − 24q − 72q2 − 96q3 +⋯,

E2(2z) = 1 − 24q2 − 72q4 − 96q6 +⋯,

E2(4z) = 1 − 24q4 − 72q8 +⋯.

Next, by using Magma Calculator, we find a basis for M2(Γ1(4)) ∶

• J1 ∶= 1 + 24q2 + 24q4 + 96q6 + 24q8... = 2E2(4z) −E2(2z),

• J2 ∶= q + 4q3 + 6q5 + 8q7... = −1
24 (E2(z) − 3E2(2z) + 2E2(4z)).

Moreover, by the previous remark we have

θ̃(z) = ∑
s∈Z≥0

r4(s)e(sz)

= 1 +
∞
∑
s=1

r4(s)e(sz)

= 1 + r4(1)q + r4(2)q2 +⋯

= 1 + 8q + 24q2 +⋯

= 1(1 + 24q2 +⋯) + 8(q + 4q3 +⋯)

= J1 + 8J2

= 2E2(4z) −E2(2z) −
1

3
(E2(z) − 3E2(2z) + 2E2(4z))

= −1

3
E2(z) +

4

3
E2(4z)

= −1

3
(1 − 24

∞
∑
s=1

σ1(s)qs) +
4

3
(1 − 24

∞
∑
s=1

σ1(s)q4s)

= 1 + 8
∞
∑
s=1

σ1(s)qs − 32
∞
∑
s=1

σ1(s)q4s

= 1 + 8
∞
∑
s=1

σ1(s)qs − 32
∞
∑
s=1

σ1(
s

4
)qs

= 1 +
∞
∑
s=1

(8σ1(s) − 32σ1(
s

4
)) qs.
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Hence,

r4(s) = 8σ1(s) − 32σ1(
s

4
).

We still need to prove that

σ1(s) − 4σ1(
s

4
) =∑

d∣s
4/∣ d

d.

Proof. To see this, we study separate cases:

• If 4 does not divide s ∶

Then 4 does not divide any divisor of s. So,

σ1(s) =∑
d∣s
d =∑

d∣s
4/∣ d

d.

• If 4 divides s ∶

∑
d∣s
4/∣ d

d =∑
d∣s
d −∑

d∣s
4∣d

d

= σ1(s) −∑
d∣s
4∣d

d

= σ1(s) −∑
l∣ s
4

4l Taking 4l = d

= σ1(s) − 4σ1(
s

4
).

∎

Thus, the needed formula.
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3. First, for k=6, we have

θ̃(z) = ∑
m∈Z6

e(zmtm) ∈M3(Γ0(4)) ⊂M3(Γ1(4)).

Next, by using Magma Calculator, we find a basis for M3(Γ1(4)) ∶

• J1 ∶= 1 + 12q2 + 64q3 + 60q4...,

• J2 ∶= q + 4q2 + 8q3 + 16q4...

So, our goal now is to find relations between J1, J2 and the elements of the

Eisenstein Space. By Proposition 4.3.2, the Eisenstein space as well asM3(Γ1(4))

is spanned by Ẽ3,1,2 and Ẽ3,0,1. We write

Ẽ′
3,1,2(z) ∶=

1

i(2π)3
Ẽ3,1,2(z) = C +∑

s≥1

∑
l0∣s
l20χ( s

l0
) e(sz) = C + q + 4q2 + 8q3 + ...

Ẽ′
3,0,1(z) ∶=

1

−π3
Ẽ3,0,1(z) = C +∑

s≥1

∑
n0∣s

n2
0χ(n0)e(sz) = C + q + q2 − 8q3 + ...

Now we have J1 = 4(Ẽ′
3,1,2−Ẽ′

3,0,1) and J2 = Ẽ′
3,1,2. Moreover, by the previous

remark

θ̃(z) = ∑
s∈Z≥0

r6(s)e(sz)

= 1 +
∞
∑
s=1

r6(s)e(sz)

= 1 + r6(1)q + r6(2)q2 +⋯

= 1 + 12q + 60q2 +⋯

= 1(1 + 12q2 +⋯) + 12(q + 4q2 +⋯)

= J1 + 12J2

= 4(Ẽ′
3,1,2 − Ẽ′

3,0,1) + 12Ẽ′
3,1,2

= 16Ẽ′
3,1,2 − 4Ẽ′

3,0,1
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= 16(C +∑
s≥1

∑
l0∣s
l20χ( s

l0
) e(sz)) − 4(C +∑

s≥1

∑
n0∣s

n2
0χ(n0)e(sz))

= C +
∞
∑
s=1

⎛
⎝

16∑
l0∣s
l20 − 4 ∑

n0∣s
n2

0χ(n0)
⎞
⎠
e(sz).

Hence,

r6(s) = 16∑
d∣s
d2 − 4∑

d∣s
d2χ(d).

4. First, for k = 8, we have

θ̃(z) = ∑
m∈Z8

e(zmtm) ∈M4(Γ0(4)) ⊂M4(Γ1(4)).

Next, by using Magma Calculator, we find a basis for M4(Γ1(4)) ∶

• J1 ∶= 1 + 240q4 + 2160q8...,

• J2 ∶= q + 28q3 + 126q5 + 344q7...,

• J3 ∶= q2 + 8q4 + 28q6 + 64q8...

Knowing that

E4(z) = 1 + (2πi)4

ζ(4)(4 − 1)!

∞
∑
s=1

σ4−1(s)qs = 1 + 240
∞
∑
n=1

σ3(n)qs,

our goal is to write θ̃ in terms of E4. For this reason, we write:

E4(z) = 1 + 240q + 2160q2 +⋯ = J1 + 240J2 + 2160J3,

E4(2z) = 1 + 240q2 + 2160q4 +⋯ = J1 + 240J3,

E4(4z) = 1 + 240q4 + 2160q8 +⋯ = J1.

Moreover, by the previous remark we have

θ̃(z) = ∑
s∈Z≥0

r8(s)e(sz)
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= 1 +
∞
∑
s=1

r8(s)e(sz)

= 1 + r8(1)q + r8(2)q2 +⋯

= 1 + 16q + 112q2 +⋯

= 1(1 + 240q4 +⋯) + 16(q + 28q3 +⋯) + 112(q2 + 8q4 +⋯)

= J1 + 16J2 + 112J3. (4.5)

Thus,

⎛
⎜⎜⎜⎜⎜⎜
⎝

E4(z)

E4(2z)

E4(4z)

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 240 2160

1 0 240

1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

J1

J2

J3

⎞
⎟⎟⎟⎟⎟⎟
⎠

Ô⇒

⎛
⎜⎜⎜⎜⎜⎜
⎝

J1

J2

J3

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 240 2160

1 0 240

1 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

−1
⎛
⎜⎜⎜⎜⎜⎜
⎝

E4(z)

E4(2z)

E4(4z)

⎞
⎟⎟⎟⎟⎟⎟
⎠

Ô⇒

⎛
⎜⎜⎜⎜⎜⎜
⎝

J1

J2

J3

⎞
⎟⎟⎟⎟⎟⎟
⎠

= 1

240

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 240

1 −9 8

0 1 −1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

E4(z)

E4(2z)

E4(4z)

⎞
⎟⎟⎟⎟⎟⎟
⎠

Therefore, (4.5) becomes:

θ̃(z) = E4(4z) + 16( 1

240
E4(z) −

9

240
E4(2z) +

8

240
E4(4z))

+ 112( 1

240
E4(2z) −

1

240
E4(4z))

= 16

240
E4(z) −

32

240
E4(2z) +

256

240
E4(4z)

= 16

240
E4(z) −

32

240
E4(2z) +

256

240
E4(4z)

= 16

240
(1 + 240

∞
∑
s=1

σ3(s)qs) −
32

240
(1 + 240

∞
∑
s=1

σ3(s)q2s)

81



+ 256

240
(1 + 240

∞
∑
s=1

σ3(s)q4s)

= 1 + 16
∞
∑
s=1

σ3(s)qs − 32
∞
∑
s=1

σ3(s)q2s + 256
∞
∑
s=1

σ3(s)q4s

= 1 + 16
∞
∑
s=1

σ3(s)qs − 32
∞
∑
s=1

σ3(
s

2
)qs + 256

∞
∑
s=1

σ3(
s

4
)qs

= 1 +
∞
∑
s=1

(16σ3(s) − 32σ3(
s

2
) + 256σ3(

s

4
)) qs.

Hence,

r8(s) = 16σ3(s) − 32σ3(
s

2
) + 256σ3(

s

4
).

It remains to prove that

σ3(s) − 2σ3(
s

2
) + 16σ3(

s

4
) =∑

d∣s
(−1)s−dd3.

Proof. To see this, we study separate cases:

• If 2 does not divide s:

Then 2 does not divide any divisor of s. Then s − d is even. So,

σ3(s) =∑
d∣s
d3 =∑

d∣s
(−1)s−dd3.

• If 2 divides s and 4 does not divide s:

Apply a change of variable s = 2t with t odd. Then, d divides s

⇐⇒ d = 2ie with i = 0,1 and e divides t. So,

σ3(s) − 2σ3(
s

2
) =∑

d∣s
d3 − 2∑

d∣ s
2

d3

= ∑
i=0,1
e∣t

(2ie)3 − 2∑
e∣t
e3

=∑
e∣t
e3 + 23∑

e∣t
e3 − 2∑

e∣t
e3
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= −∑
e∣t
e3 +∑

e∣t
(2e)3

= ∑
d∣s

d even

d3 − ∑
d∣s
d odd

d3

=∑
d∣s

(−1)s−dd3.

• If 4 divides s:

Apply a change of variable s = 2it with t odd. Then, d divides s

⇐⇒ d = 2je with 0 ≤ j ≤ i and e divides t. So,

σ3(s) − 2σ3(
s

2
) + 16σ3(

s

4
) =∑

d∣s
d3 − 2∑

d∣ s
2

d3 + 16∑
d∣ s

4

d3

= ∑
0≤j≤i
e∣t

(2je)3 − 2 ∑
0≤j≤i−1
e∣t

(2je)3 + 16 ∑
0≤j≤i−2
e∣t

(2je)3

=∑
e∣t
e3 + ∑

1≤j≤i
e∣t

(2je)3 − 2∑
e∣t
e3 − 2 ∑

1≤j≤i−1
e∣t

(2je)3

+ 2 ⋅ 23 ∑
0≤j≤i−2
e∣t

(2je)3

= ∑
1≤j≤i
e∣t

(2je)3 −∑
e∣t
e3 − 2 ∑

1≤j≤i−1
e∣t

(2je)3 + 2 ∑
0≤j≤i−2
e∣t

(2j+1e)3

= ∑
1≤j≤i
e∣t

(2je)3 −∑
e∣t
e3 − 2 ∑

1≤j≤i−1
e∣t

(2je)3 + 2 ∑
1≤j≤i−1
e∣t

(2je)3

= ∑
1≤j≤i
e∣t

(2je)3 −∑
e∣t
e3

= ∑
d∣s

d even

d3 − ∑
d∣s
d odd

d3

=∑
d∣s

(−1)s−dd3.

∎

Thus we obtain the needed formula for r8(s).
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Theorem 4.3.2. We have

r10(s) =
4

5
∑
d∣s

[χ(d) + 16χ(s
d
) ]d4 + 8

5
∑
z∈Z[i]
∣z∣2=s

z4.

Proof. For k = 10, we have

θ̃(z) = ∑
m∈Z10

e(zmtm) ∈M5(Γ0(4)) ⊂M5(Γ1(4)).

By using Magma Calculator, we find a basis for M5(Γ1(4)) ∶

• J1 ∶= 1 − 80q3 − 60q4 + ...,

• J2 ∶= q + 216q3 + 64q4 + ...,

• J3 ∶= q2 + 4q3 + 12q4 + ...

Now, we aim to obtain relations between the above basis and the elements of

the Eisenstein space. For this reason, using similar procedure and calculations

as in Proposition 4.3.2, we find out that the Eisenstein space is spanned by

two elements and we write :

Ẽ′
5,1,2(z) ∶ = −

12

i(2π)5
Ẽ5,1,2(z) = C +∑

s≥1

∑
l0∣s
l40χ( s

l0
) e(sz) = C + q + 16q2 + 80q3 + ...

= J2 + 16J3

Ẽ5,0,1(z) ∶ =
48

π5
Ẽ5,0,1(z) = C +∑

s≥1

∑
n0∣s

n4
0χ(n0)e(sz) = C + q + q2 − 80q3 + ...

= 5

4
J1 + J2 + J3.

Notice that in this case we have a non-trivial space of cusp forms. Furthermore,

by Proposition 2.2.1 we have that M5 = S5 ⊕ E5. Thus M5(Γ1(4)) is spanned
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by Ẽ5,1,2, Ẽ5,0,1 and a cusp form C with the following q-expansion according to

Magma:

C ∶= q − 4q2 + 16q4 − 14q5 − 64q8 + 81q9 + 56q10 +O(q12) = J2 − 4J3.

By the previous remark,

θ̃(z) = ∑
s∈Z≥0

r10(s)e(sz)

= 1 +
∞
∑
s=1

r10(s)e(sz)

= 1 + r10(1)q + r10(2)q2 + r10(3)q3⋯

= 1 + 20q + 180q2 + 960q3 +⋯

= J1 + 20J2 + 180J3. (4.6)

Thus,

⎛
⎜⎜⎜⎜⎜⎜
⎝

Ẽ′
5,1,2(z)

Ẽ′
5,0,1(z)

C

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 16

5
4 1 1

0 1 −4

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

J1

J2

J3

⎞
⎟⎟⎟⎟⎟⎟
⎠

Ô⇒

⎛
⎜⎜⎜⎜⎜⎜
⎝

J1

J2

J3

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 16

5
4 1 1

0 1 −4

⎞
⎟⎟⎟⎟⎟⎟
⎠

−1
⎛
⎜⎜⎜⎜⎜⎜
⎝

Ẽ′
5,1,2(z)

Ẽ′
5,0,1(z)

C

⎞
⎟⎟⎟⎟⎟⎟
⎠

Ô⇒

⎛
⎜⎜⎜⎜⎜⎜
⎝

J1

J2

J3

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

−1
5

4
5 −3

5

1
5 0 4

5

1
20 0 − 1

20

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

Ẽ′
5,1,2(z)

Ẽ′
5,0,1(z)

C

⎞
⎟⎟⎟⎟⎟⎟
⎠
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Therefore, (4.6) becomes:

θ̃(z) = −1

5
Ẽ′

5,1,2(z) +
4

5
Ẽ′

5,0,1(z) −
3

5
C + 20(1

5
Ẽ′

5,1,2(z) +
4

5
C)

+ 180( 1

20
Ẽ′

5,1,2(z) −
1

20
C)

= 64

5
Ẽ′

5,1,2(z) +
4

5
Ẽ′

5,0,1(z) +
32

5
C

= 64

5
Ẽ′

5,1,2(z) +
4

5
Ẽ′

5,0,1(z) +
32

5
C

= 64

5
(C +∑

s≥1

∑
l0∣s
l40χ( s

l0
) e(sz)) + 4

5
(C +∑

s≥1

∑
n0∣s

n4
0χ(n0)e(sz)) +

32

5
C

= C + 4

5
∑
s≥1

∑
d∣s

[16χ(s
d
) + χ(d)]d4e(sz) + 32

5
C

Hence,

r10(s) =
4

5
∑
d∣s

[16χ(s
d
) + χ(d)]d4 + cn,cusp

where cn,cusp is the Fourier coefficient of the cusp part of θ̃. However, by Section

4.2, we know that cn,cusp = O(nk/2) meaning that this term grows less fast than

the main term 4
5 ∑d∣s[16χ ( s

d
)+χ(d)]d4 which defines the Fourier coefficient of

the Eisenstein part of θ̃. To conclude, we can say that r10(s) would be the sum

of a main term and some smaller order error.
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