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An Abstract of the Thesis of

Charbella Jean Abou Khalil for Master of Science
Major: Mathematics

Title: Theta Series and its Application to Sums of Squares

Let ) be a positive definite quadratic form on Z*. Consider the Theta Function
defined by 0(2) = 3,z €27Rm= for some z € H. As an interesting application of
Modular Forms, we study the number of representations of an integer s by Q). In
this regard, we begin by proving the transformation law of 6(z), following Goro
Shimura’s approach of the proof which uses some essential techniques such as the
Poisson Summation Formula and Fourier Transforms. This shows that 6(z) is a
modular form of weight % on the congruence subgroup I'g(4). After that, we study
the Eisenstein series of weight k >3 on I'(M) as well as write its Fourier expansion
used in expressing bases of the spaces of modular forms accordingly. To end, we
approach the growth of Theta’s Fourier coefficients to obtain asymptotic formulas
for the number of representations mentioned above.
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Chapter 1

Introduction

We denote the number of representations of an integer s by a positive definite

quadratic form by
ronn(s) = #{ (21, 2) € ZF | Q(z) = s and ¥ = h mod NZ"}.
In this thesis we limit Q(z) to 23 + -+ 22 and write
ri(s) = #{(z1, - xp) € ZF | %+ + 2} = s}

It turns out that r;(s) represents the Fourier coefficient of some function 6.

In his paper, [Shimura, 1973] proved the transformation law of # which allowed
us to show that 0 is a modular form on T'o(4). Then, according to the dimension of
Sk, we were able to write 6 as a combination of Eisenstein Series and cusp forms.
Indeed, for £ < 8, the space of cusp forms if trivial. Thus, we get the needed formulas
using particular methods and calculations. Furthermore, for k£ > 10, we notice that
the space of cusp forms is no longer trivial. However, getting ri(s) = a(s) + b(s)

where a(s) is the known Eisenstein part coefficient and b(s) is the cuspidal part



coefficient, and using the fact that % - 0 as s —» oo, we deduce that the growth of

the Fourier coefficient r4(s) of 6 is the same as that of a(s): 7;"(—(:)) — 1 as s — oo.

In chapter 2, we state basic definitions and properties. Furthermore, we establish
essential sections such as the Fourier transforms of some functions and Gauss Sums
in order to prove the transformation law of the Theta Function. After that, we give
a quick overview on the Lipschitz Summation Formula needed for the expansion of

the Eisenstein Series.

In chapter 3, we prove that 6 is a modular form on the congruence subgroup
['0(2,2N). This will allow us to define in the next chapter a new function denoted

by 6 and show that it is a modular form on I'o(4).

We start chapter 4 by obtaining an explicit formula for the Fourier expansion of
the Eisenstein Series on I'(4) and consequently on I'y(4) using some abstract algebra
tools. Next, we write the basis of Mj/2(I'1(4)), obtained by Magma Calculator, in
terms of the Eisenstein Series. In order to reach the main result, we express 6 in
terms of the generators of the Eisenstein space and the space of cusp forms, leading

to formulas for the number of representations r(s).



Chapter 2

Background Theory

In this chapter, we outline the relevant and essential theoretical tools. We first
introduce notations and some basic definitions. Besides giving some background
on the Poisson Summation Formula on Z" and the Fourier transforms of particular
functions, we establish relations and properties of Quadratic Residue Symbols. We

end the chapter by demonstrating a proof of the Lipschitz Summation Formula.

2.1 Notations

We always consider the following set of notations:

e 7,Q,R, and C denote the ring of rational integers, the rational number field,

the real number field, and the complex number field respectively.
e H denotes the upper half plane.

e All vectors in Z", R™ or C" will be considered column vectors with n a positive

integer.



e The upper right ¢ means ”transpose”.

1 ifax0,
e sgn(a) =
-1 otherwise.

e For z € C, we put e(z) = 2™ with i =/-1.
e For z € C, define /z = 27 such that -5 < arg(z%) <3
e For ze C\R and v € GLy(R), vz = %% defines a group action.

cz+d

e x denotes a character modulo N which is defined in details in the section on

Gauss Sums.

e The slash operator (f| Y)(2) = x(d)"(cz + d)*f(vz) with y a character,
k,x

a b
zeH and v = defines an action of I'g(4).

c d

e M, denotes the complex vector space of modular forms of weight k.
e S;. denotes the complex vector space of cusp forms of weight k.

e & denotes the Eisenstein space of weight k.

2.2 Basic Definitions

Definition 2.2.1. (Fourier transform) Consider an integrable function
fR">C.
Then the Fourier transform of f denoted by (F f)(¢) is the function

f:R”—>(C



o F(O = [ @)e(-Ca) e

For any u € R", f satisfies the following property:

If h(zx) = f(z +u), then h(¢) = e(Cu) f(C). (2.1)

Lemma 2.2.1. Let a >0 and p a prime number. If a divides p—1, then there exists

x such that ¢ =1 mod p but z* # 1 mod p for all 0 <b< a.

Lemma 2.2.2. Let a,b be odd integers. Then

Proof. Since a and b are odd, then a —1 and b -1 are even. So, we have

a—1and b—1 are even = (a—1)(b-1) =0 mod 4
= ab-a-b+1=0mod 4

= ab-1=(a-1)+(b-1) mod 4
ab_lza_1+b_1mod2. [
2 2 2

fr—

Definition 2.2.2. (Spherical Function) Let A be a real symmetric matrix.
A spherical function P of order v with respect to A is a C-valued function in R"

such that

constant if v=0,
P(z) =

> By (¢t Ax)r it v >0

with finitely many vectors ¢ € C" such that ¢*Aq =0 if v >0 and 3, € C.

Lemma 2.2.3. Suppose that A is a positive definite real symmetric n x n matriz.



Let \y,-+-, A, be the corresponding eigenvalues of A. Then
ot Ax > )\mm|a:|§

where Ay is the smallest eigenvalue of A and |x|, the Euclidean norm satisfying

wtr = |z,

Proof. Since A is a real symmetric matrix, then we can write A = UDU™! with U
orthogonal n xn matrix and D a diagonal matrix having A/s on its diagonal. Letting

x = Uy, the term z! Az can be expressed as:

2t Ax = (Uy)'UDU Y (Uy)

=y U'UDU Uy

y' Dy Since U is an orthogonal matrix

i Azyzz
i=1

Now notice that
n

i=1 i=1
with |zf5 = |Uy|3 = (Uy)(Uy) = ytUtUy = yty = |y|5. Thus the needed result. O
Theorem 2.2.4. (Dirichlet Prime Number Theorem) Let a and m be relatively

prime integers with a, m > 1. Then there exist infinitely many prime numbers p

such that p = a mod m.

Definition 2.2.3. (Meromorphic Function) A meromorphic function f on H is a
function that is holomorphic on all of H except for a set of isolated points, which
are poles of the function, where the Laurent Series can involve only finitely many

terms involving negative powers. Otherwise we have an essential singularity.

Definition 2.2.4. (Weakly Modular for Full Group) Let f be a meromorphic func-

tion on H. We say f is weakly modular of weight k € Z for the full group, if for

6



a b
v = € SLy(Z) we have
c d

f(72) = (cz +d)*f(2).

Definition 2.2.5. (Holomorphic at Infinity) Let f be a meromorphic function that
is weakly modular of weight k € Z. We say that f is holomorphic at infinity if it has
a removable singularity at ¢ = e(z) = 0, or equivalently f can be written as a Fourier

series with a, =0 Vn <0, i.e.

f(z) = i a,q" with g = e(z).
n=0

Definition 2.2.6. (Modular and Cusp Forms for SLy(Z)) A modular form of weight
k € Z for SLy(Z) is a holomorphic function f in H, that is weakly modular and
holomorphic at infinity. A cusp form of weight £ is a modular form of weight k
satisfying f(oo) = 0, where f(oo) represents the constant term ag of the Fourier

expansion of f.

Definition 2.2.7. (Congruence Subgroup) Consider the Principal Congruence
Subgroup of SLy(Z) of level N defined by:

a b a
[(N) = € SLy(Z);
c d c d 01

mod N ;.

Then, a Congruence Subgroup of SLy(Z) of level N is a subgroup that contains
T(N).

Example 2.2.1. The two most popular congruence subgroups are I'o(N) and I'1 (V)

which are defined as follows:

a b
[o(N) = € SLy(Z);c=0mod N ¢,
d

C



a b
['1(N) = €SLy(Z);a=d=1mod N and ¢ =0mod N
c d

Definition 2.2.8. (Weakly Modular for I') Let I be a congruent subgroup and f

be a meromorphic function on H. We say f is weakly modular of weight k € Z for

a b
I, if for v = e I' we have
c d

f(yz) =e(y)(cz+d)* f(2)

where €() is a multiplier system, i.e. a constant written in terms of a, b, ¢ and d.

Definition 2.2.9. (Modular Form on Congruence Subgroup) Let I' be a congruence
subgroup of SLy(Z) of finite index and ~; € SLy(Z) be such that ~;-00 = ¢. A modular
form of weight k£ on I' is a holomorphic function f in H that is weakly modular for

[ with |e(7;)| =1 and has the Fourier expansion given by

(Pl (2) = i gl = i(Z—)

at all inequivalent cusps C of width he of T'.

Definition 2.2.10. (Modular Form on I' with Character) a Modular Form f of
weight k£ and character y is a holomorphic function satisfying the transformation

law:

a b
f(yz) = x(d)(cz+ d)* f(z) Vv = ) el

Proposition 2.2.1. Every modular form of weight k is a unique linear combination

of Eisenstein series and a cusp form. This gives a direct sum decomposition

M, =5, @&



2.3 Poisson Summation Formula

Proposition 2.3.1. For any continuous function f : R* - C with rapid decay (at
least like |t|™ with ¢ > 1) as t — oo, the Poisson Summation Formula may be

stated as:

> f(m) =3 f(v)

mezmn VEL™

where f is the Fourier transform of f.

Proof. For t € Z™, define
St)y= > f(m+1).

mez™
Notice that

S(t+1)=S(t) Viezr,

so S(t) is periodic with respect to Z". Furthermore, every infinitely continuous

differentiable periodic function admits a Fourier series. Then, we can write

S(t)= > Che(v't)

VEL™

with

C’sz f S(z)e(-v'z) dzy-+-dx,
0<z1<1 0<xn<1
=/ f > f(m+a)e(—v'z) day - da,
ozi<t Jo

anﬁl meZmn

/ f(m+x)e(-v'z)dxy--dx,
e7n 0<z1<1 0<zr<1
f f f(z)e(=v'(z —m)) dxy- dx,
AL mi<x1<mi+1 Mp<Tn<Mmp+1
/ f(z)e(-v'z)e(vim) dx
xeR™
= / f(z)e(-v'z) dx
zeR"™

3

3



= f(v).

Thus we have,

S fm+t)=St) = fv)e(v't).

mezm™ veL™

Taking ¢ = 0 we get the needed result. ]

2.4 Fourier Transforms of Particular Functions

Lemma 2.4.1. For ( € R,

/ e~ (@ i gy = 1.
xeR

Proof. Using figure 2.1 on the top of the next page, let v be the rectangular contour
and consider f(z) = e™*. Notice that f is entire and 7 is a closed contour. Then

by Cauchy’s Integral Theorem, we have fq/f(z) dz=0.

On the other hand, we compute the integral along the contour.

e Along vi:z=x,dz=dr,-R; <x < Ry. So,

Ry
f f(2)dz = f e dx
gt -’

e Along v3:z=x+1i{,dz=dr,-R; <x < Ry. So,

R o
—f f(2) dz=[ e (@0 g
73 -Ry

e Along v, (Similarly ~4): 2= Ry +it,0 <t <& or £ <t <0 according as £ >0 or

10



_Rl + /Lg Y3 R2 + ZS

V4 V2

-R; N Ry

Figure 2.1: Rectangular Contour ~y

¢ <0. Then,

1] = et

—m(R3-t2-2Ryit)

:‘e

— e—W(Rg—tQ)

<em(REY),

Letting Ry — oo, we get that |f(z)| - 0 uniformly. Thus, we get that

3 4
lim / f(z)dz= lim e (B2ri)® gt — (),
72

Ro—o00 Ro—o00 JQ

Therefore, we get

v/;f(z)dz=v/;lf(z)dz+fwf(z)dz+fvgf(z)danfo(z)dz

— f e ™ dg — f e~ @+iE)? 10— )

— / e m(wHie)? dxz/ e ™ dy (2.2)

Finally, solving the integral on the right side of equation (2.2) by applying the change

of variable u = z\/7 we get that

[ e~ (@ i) o — 1 O

[ee]

11



Proposition 2.4.1. Consider the function

f:R->R

*71'332

T =€

Then the Fourier transform of f is the function itself.

Proof.

1O = [ f@e(ca)ds

— / efmv2—2m(:v dax
zeR

— / e—fr(12+2i:cC) dr
zeR

- f e—7r(a:+i()2e—7rC2 dx
zeR

— €—7r§2 / e—w(m+i<)2 dr
zeR

_ 2
:eﬂ-c

= f(¢)-

Proposition 2.4.2. For a >0, let

fulw) = e

We have

completing the square

by Lemma 2.4.1

]

2

Py L rca
fa(€) = \/Ee :

Proof. Notice that f,(z) = f(z\/a) where f is the function defined in

Propostion 2.4.1. Then,

Jo©) = [ fulw)e(=a)da

12



:/ e VO o () da
IER

\/_ f (—) du applying the change of variable
o S

¢aLRWkQF>u

= —f(

) by Proposition 2.4.1

e~¢*/a, O

Proposition 2.4.3. Let P be a Spherical function of order v, N a positive integer
and A a positive definite real symmetric matrix of size n. For z = ai with a >0, we

consider a function

f:R">C

2T Ax

x— f(x)=P(Nx)e( ).

Then we have
F(0) = X N8y (det A) Parti2(i) (g () e ¢ 47

Proof. Since A is a real symmetric matrix, then A is diagonalizable by an orthogonal

n by n matrix U.

ie,
A O 0
0 Xy = 0
A=U Ul=UDU.
0 0 An

13



Note that \; are positive because A is positive definite. Now let x = Uy, with

?Jl\

Y2

Y=1ys

)

Take g(y) = f(Uy), then

9(y) =f(Uy)
- ¥ B,(NqUDUUy) (5 (Uy) AUY))

= 3 B/(N¢'UDy)"e(Sy' Dy).

Set ¢ =q'U = (01 Cy Cn) € (C™)t. Notice that

¢'Aq=0 = ¢ (UDU")q=0

= cDct =0

C1
(A, 0 0
Co
0 X 0
= (01 Ca cn) e |=0
0O 0 An
Cn

Next, we get

g(y) = Zﬁq(Nch)”e(gytDy)

14



= Z N”ﬁq[z Aiciyi]ye(g Z Aiy?)
i=1 =1

= Z Nyﬁq[i \iciyi ] eT™ iy iyl
i=1

Hence,

9O = [ NG Nyl SRS ey, (2.9
Y1--Yn i=1
Using Proposition 2.4.2, we have that

/ e Tary;—2miy1 e TAARY; —2T1Ynln dyl .o dyn
Y1--Yn

(2.4)
N e

Va a,

Now, applying ».7*, /\Z-cz-a% to both sides of equation (2.4) and using the Leibniz

Integral Rule, we get

n
. _ n 29 SN -
f _272( E )\chyz)e T Zz:l Alyz 2mi Z7.:1 ZhCz dyl.dyn
Y1yn i=1

1 1

V_\/_

Then, apply Y7, )\icia% to the latter noting the following:

Z%)e‘“zl s

o (X Aicia%)(Z?:l Aiciyi) =0,

o (T Nicipe) (T eiGi) = Xty hic = 0.
So, we get

[ (_27'['@)2(2 )\,L'C,L-yi)Qe*ﬂ'a Z:’zlzl )‘iyl —2mi Zn 1 yzCz dyl dyn
Y1--Yn i=1

1 1 —27T

S an Van

o)

15



Thus, applying Y1, )\icia% v times to equation (2.4), we obtain

n
f (O Nicsys )V e o B AR UGy, .. dy,
Y

1Yn =1

Replacing in equation (2.3) gives:

~ _ v L—

Z n G
= YNy (det A) (i) (R ey e TER A
i=1
Going back to f, we get

= [ @) de
- [ STy Ol dy
=fyeRng(y)e(—thlC)dy
= 3(U7Q)

where J is the transition matrix satisfying |J| = |[det U| = 1. Letting U~'( =n e R»

and using the fact that

m
M 0 0
0 1/A o 1™
n 2
n; 2 _
Z;_.:(m o nn) o | [=0'D7n,
0 0 - 1/
M

16



we get

Q) = X N“Byam/2(det AY (i) (3 ey T
i=1

- 3 NG (det A) (i) (3 e B
i=1

= 3 Ny (det A)M2(=i)" () cimy) e s VOO
=1

= Y VY Bga T (det A) A (=i) (g/C)e AT, =

Proposition 2.4.4. Consider the shifted function:

z(x+u)tA(x +u) )

fulz) = f(z+u) = P(N (2 +u))e( 5

with u= N~Yh for h € Z". Then the Fourier transform of f, is
Fu(€) = e(¢tu) Y N” B2 (et A M2(=i) (g Q) e A,

Proof. This result follows from (2.1) and Proposition 2.4.3. O

2.5 Gauss Sums

The material in this section is mainly taken from [Lang, 1994] pages 83-90 and

[Ireland and Rosen, 1990] chapter 5.

Definition 2.5.1. (Character) Let G be a finite abelian group. A Character of G

is a homomorphism of GG into the multiplicative group C*. i.e,

x : G-C~.

In particular we define the following:

17



Definition 2.5.2. (Dirichlet Character Modulo M) Let M be a positive integer.

A Dirichlet Character modulo M is a function

with the property that there exists a group homomorphism
. |(Z * x
' (“/uz) ~C

X'(dmod M) if ged(d, M) =1,
such that x(d) =
0 Otherwise.

Example 2.5.1. Let M =4. We have

1 if m=1mod4,
x(m)=1-1 if m=3mod4,

0 Otherwise.

Definition 2.5.3. (Quadratic Residue Symbol) For an integer a and an odd integer

b, we define the Quadratic Residue Symbol (%) as follows:

(i) If ged(a,b) # 1, then (%) =0
(ii) (&) =sgn(a)

(iii) For b an odd prime, denoted by p, (%) coincides with the ordinary Quadratic

Residue Symbol, i.e.

(a) 1 if @ = non-zero square mod p,

-1 if a = non-square mod p.

18



(iv) For b>0, (%) coincides with the Jacobi Symbol defined next.

Example 2.5.2. We have for p an odd prime

(_1) 1 if p=1mod4,

-1 if p=3mod4.

Proof. By Definition 2.5.2. we know that
(_1) 1 if =1 =square mod p,
-1 if —1 =non-square mod p.

Now, notice that

e If p=1mod 4, then by Lemma 2.2.1 we have 4 divides p—1 == 3x such that
xz* =1 mod p but 22 # 1 mod p.
On the other hand (22)? =1 mod p = either 22 =1 mod p or 22 = -1 mod p.

Then z? = -1 mod p and (‘7}) =1.

e If p = 3mod4, then we can write p = 4k + 3 for some k € Z. Suppose by
contradiction that (‘7}) # —1. Then 3z such that z? = -1 mod p. Squarring

both sides, we get ¢ = 1 mod p. Next, by Fermat’s Little Theorem, we have
2Pt = 22 = 1 mod p.

However,

o2 = gtk 02 = (24)k . 22 = —1 mod p.

Contradiction. Therefore, (’7}) =-1. n

19



Example 2.5.3. We have for p an odd prime

(2) 1 if p=+1mod8,

-1 if p=+3 mod 8.

Proof. The proof of this example uses Gauss’s Lemma and is found in

[Ireland and Rosen, 1990] chapter 5, Proposition 5.1.3. [

Proposition 2.5.1. Here are some properties of the Quadratic Residue Symbol for

a,b integers and p and odd prime:

= (%) mod p (Euler Criterion)

3. If a=bmod p, then( ):(9)

a
p p

Theorem 2.5.1. (Law of Quadratic Reciprocity) Let p and q be odd primes. Then

B

Proof. See [Serre, 2012] chapter 1, section 3.3. O

Lemma 2.5.2. Note that the above theorem can be restated as follows:

(p) +<%) ifp orq=4k+1,

—(%) if p and q = 4k + 3.

Proof. eporg=4k+1 — (1%1) . (%) = 0 mod 2. Then by Theorem 2.5.1,
(-
q/ \p

20



e pand =4k +3 = (%) (%*) = 1 mod 2. Then by Theorem 2.5.1,

Definition 2.5.4. (Jacobi Symbol) Let b be an odd positive integer and a an integer.

Suppose that b = py---p,, where p;’s are primes. Then define the Jacobi Symbol by

(3)-G)-G)

Theorem 2.5.3. (Eztended Quadratic Reciprocity) Let a,b be 2 positive odd integers

having ged(a,b) = 1. Suppose that b = py---pp,, then

(B)E)-corm

Proof. Using Theorem 2.5.1, we have

-G
()62

= (~1) (L)

= (—1)(F (e )
= (_1)(%1)'(%) by Lemma 2.2.2

ENCSICS) O

Proposition 2.5.2. Let b and c be distinct odd integers and a € Z such that a > 1.

Then the extended quadratic reciprocity implies the following statement:
a
If b= +cmod 4a, then (B) = (—) :

Proof. Due to multiplicativity and Example 2.5.3, it is enough to prove the result

21



for @ an odd prime. By Theorem 2.5.3, we know that

() = )-coren ()

Now, suppose that b = +c¢ mod 4a (Similar calculations apply for b = —c mod 4a).

Then b = ¢ mod a and so

However,

b=cmod4a = b=cmod4
— b+c=2cmod4
= b+c-2=2c-2mod4=0mod4

e (a-1). (b+c 2

4
):(a—l)zrz(a—l)r for some r € Z.
Hence, using the fact that a — 1 is even we get

(o)) s

Definition 2.5.5. (Gauss Sum modulo p) Let p be an odd prime. Then the Gauss

Sum modulo p is defined by:

Gl)= ¥ (™).

z mod p
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Remark. 1f a = 0 mod p, then

G0)= Y e(0)=p.

x mod p

Lemma 2.5.4. Let p be an odd prime number. We have

> 6(]—))20

cmod p
Proof. Consider the expression

c+1

e()Ze( = ) e

p cmod p cmod p p

).

Notice that there exists a bijection between the two sets:

{07 ]-7"'7p_ ]-} <;> {07 17"'7p_ 1}

¢ ——— > c+ 1 mod p.
Thus the sum on the right hand side of the above expression is a reordering; we get

c+1

ety 3 e( 9= 3 (—=)= e(}%) (2.5)

p cmod p cmod p cmod p

with e(%) ¢ {0,1} since p is an odd prime. Thus equation (2.5) implies that
S e(5)=0. O
cmod p p

Proposition 2.5.3. For a # 0 mod p, we have

G(a) = (%) c(1).
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Proof. Case 1: If a = b?> mod p for some b = 0, then

G)- ¥ o5

z mod p

We now have a bijection:
Z|pZ +—— Z|pZ

br — vy
bly «—x
Thus
_ Yy - (©
= ¥ oL)=cm=(2)c0.

y mod p

Case 2: If a = non-square mod p, then

x? ay?
G(1)+Ga)= > e(=)+ > e(—).
x mod p p y mod p p
Notice that for z € Z/pZ’ we have p —x = —x mod p with 22 = (-x)?. Thus as z
varies mod p, z2 runs over 0 once and over each square mod p twice. Similarly, as
y varies mod p, ay?® runs over 0 once and over each non-square twice. Let & and T

denote the set of squares and set of non-squares mod p respectively. Hence,

G(1)+G(a) = e(%) 22 Y e(}%) s e(%o) s 226(2)

se6& te¥

=2[e(0)+ 3 e<]§>]

c+0
cmod p

=2 3 e(g)]

cmod p

=0 by Lemma 2.5.4.

— G(a)=-G(1) = (g)G(n. 0
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Lemma 2.5.5. For p an odd prime, define the following:

I

oo yQ
p= [oo 6(?)6@

This integral converges as an improper integral at both ends.

Proof. We have

oo 2 0 2 0o 2 00 2
= [ _eDyay= [ eDyay+ [Teyay=2 [T e(D)ay
—00 p —00 % 0 p 0 p

=2 lim

A—oo 0

Now, for A < B large enough, apply a change of variable y? = ¢, dy =

A 2

Yy
e(=)dy.
(p)y

ABe<y;f>dy=[ (D)ot

Integrate by parts with u = Tlﬁ and v’ = e(:;). So

fAB e(yg)dy =

B 2
= ‘/ e(—)dy‘
A p

Py P
Ariv/B D 47?2\/_
- 47m\/_ (_) B 4m\/_

_p
: 47TZ\/_ (_) B 47m\/_
|2y - L

4m\/_ 4rin/ A
| ey -

47m\/_ \/Z

dt
Tﬁ.Then
p) A2 4772753/26( ) dt
B2
D t
- P oYyat
( )+ fA2 4m’t3/26(p) ‘
B2
p
(_) +./A? i
p 51
6<;> i Lo oo
A? P 1 1
e )
P 2mi /B2 A2

Taking the limits as A, B - oo, I,, converges by Cauchy Criterion.

In the following proof, we denote G(a) for a =1 by G,(1).
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Proposition 2.5.4. For p an odd prime, we have

VP if p=1mod 4,
Gp(l) =

i/pP if p=3mod4.

Proof. We start by stating a property of the convergence of Fourier Series:

If ¢ is a function which is continuously differentiable on [0, 1], then

CORTIONE P

meZ

where ¢, is the m-th Fourier coefficient. i.e.

en(8)= [ o()e(-ma) da

For this reason, consider the function

and let fy(z)= f(z+k) for k=0,1,---,p— 1. Now we have the following:

ka O)+fk(1 Zf k’)+f(1+k)

B 16(’“2)+ ((“k) )

-2

11”1 k2. 183 (1+k)?

SR NICs

1101 k2

:_Z (—)+—Z (z)

= 5Gy(1) + 5Gy(1) = 56(0) + 5e(p)
1G(1)+ S (1) -2+ o
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= G,(1).

Hence, if ¢ = Zi;é fe=fo+ fi++ fpo1, then

¢(0) +¢(1)

5 = Jo(0) + f1(0) + -+ + fp1(0) + fo(1) + fr(1) + -+ + fpa (1)

Z « f1(0) + fk(l)

- G(1).

Thus by using the property stated above, it would be sufficient to compute the sum

of the Fourier coefficients of ¢ to get the value of G,(1). So now,

Go(1)= %, [ o(a)e(-ma)da
=;/{;1§fk(9&)e(—mx)dw
- [ Gl e+ (e de
;( [ h@emades [ fi@eemey s [ ha@eme) o)
S ([ s@emeyies [ vecmaydes s [N ep-1e-ma i)

Applying a change of variable x + k — x inside each integral, we get

Gp(1) = f(x)e(- mx)dx+fo(m)e(—m(x—l))dx+---+f f(x)e(-m(x-p+ 1))dx)

p-1

f(x)e(-mz) dx+f2f(x)e(—mx) dx+~~~+fpp1 f(x)e(-mz) dx)

=(f
i
( f(@)e(-ma) d:p)
)

™M 3M

Ope(—)e( mx) dx

Pz —pmx
J e
0
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2
Complete the square 22 — pmx = (x - Iﬂ) - #, hence

n-2 )
YT f e(im—%)z)m.

Notice that:

.2 . 2
. _mim“p _mi(2r)p
o If miseven (m=2r), thene "2 =e~ 2 =1,

. 7rim2p Trip(2r+1)2 47TipT2 4mirp Tip
e lfmisodd (m=2r+1),thene "2 =e = 2 =e 2 e 2z e 2

= (e%)_p = i_p_

Therefore, we split the sum between m even and odd.

G- ¥ e [Tt 3 e [T - B
:Z%fope( (x—@) )dx+7§z ‘/(; e(g(x_@)z)dm

p(2r+1)
2

Apply the following change of variables x — pr - y and = — — gy in the two

above consecutive integrals to get:

=3 [ e Dyar s [ o yay

rel

) p(S1) y? _ ) p(S2) 42
= lim e(=)dy+ lim z’pf e(—)dy
Ry,51—00 Jp(-Ry) p R2,S2—>00 o(

oo y2 _ oo y2
= e—dy+zpf e(=—)dy.
f %) (™)

Therefore,

Gp(1)=(1+i?)I, (2.6)
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which converges by Lemma 2.5.5. Finally, apply a change of variable % - u to get

I, = [: e(u?)\/pdu
= \/ﬁ[: e(u?) du
=/pl.

Note that the above calculation never used the fact that p is a prime. So now, using

equation (2.6) for p =1 we have:

Gi(1) = (i = T efa?) = (L) = 1= (1) = I :#
Thus obtaining the relation:
G, (1) = \/_1+z
e If p=1mod4, then G(1) = \/]_Jﬁi = /D
o If p=3mod 4, then G(1) = \/piy = /pit =i /p. 0

2.6 The Lipschitz Summation Formula

Proposition 2.6.1. Let k > 2 be an integer. Then we have

Y(z+n)F= ((;Wi))' de e(dz).

nez

Proof. By Complex Analysis, we have

™ COSTZ
T =

1 & ( 1 1 )
: -+ + :
tanmz smmz oz Sji\e—n o oz+n
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Moreover,

COS T2 7% 4 g7z
T— = Ti— .
SIN Tz €T —eT T
1+
= -7 e(2)
1-e(2)
1+
= —m'l q qg=-e(z)
—-q
2
=—7rz'(1+—q) lg =e?™ <1
l-q
= —m(l +22qd)
d=1
= - — 27 Z q°
d=1
1 & 1 1 -~
— —+ + =—mi—2mi Y ¢ 2.7
P e R ) 21
Notice that (== + =) = 2+ < L for large n. This implies convergence. So, taking
zZ—Nn zZ+n z n n

the derivative with respect to z on both sides of equation (2.7), we get

1 & -1 -1 N2 ol »
2" 2 ((Z—n)2 " (z+n)2) = =(2mi)* ) e(zd)d. (2.8)

n=1 d=1

Assuming absolute convergence, we can rearrange and combine the sum on the left

hand side to get

-1 & -1 -1 1
;+,;((Z—n)2+ (z+n)2):_z (z+n)%

nez

Therefore, equation (2.8) becomes:

1 g
-> Grnge = —(2mi) dZ::le(zd)d.

nez

Thus, by induction on the derivative we get the general formula. O]
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Chapter 3

Transformation Law of 0

This chapter aims to prove important transformation formulas in order to reach
the fact that Theta is a modular form of half integral weight. Most of this chapter

is taken from [Shimura, 1973], pages 440-456.

3.1 Transformation Formulas

We prove now explicit transformation formulas for the Theta Function needed
for the next section. We always assume that A and N A~ have coefficients in Z and

that Ah e NZ".

Definition 3.1.1. (Theta Function) Let n be a positive integer, A a positive definite
real symmetric matrix of size n, P a spherical function and N a positive integer such
that det A divides N™. Now, fix an element h € Z™ and consider a Theta Function

with z € H, defined by

zmtAm
0(z;h,A,N,.P)=" P(m)e(W)

m=h mod N
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where the sum is taken over all m € Z"™ congruent to h mod NZ".

Proposition 3.1.1. The Theta function is holomorphic on H.

Proof. Consider the subsets of H of the form
Rys={z+iy;|z| <ryy > s}

First, notice that R, form an exhaustion of H in the following way: Ry i/n is

contained in the set of interior points R°

n/+1,1/(n/+1) of Rpri1,1/(n+1) and thus

[ee] oo
_ _ o
H= ) R = U R
n’=1 n'=1

Next, by definition of compactness, any compact K c H will be covered by finitely

many R? So it suffices to prove uniform convergence of the series above on R, ,

171/,”/'

to get uniform convergence on K. Indeed, let z =z + iy € R, ;. Then we have

2mtAm TMEAM | | A N —rsmt A N
()| =[G e s iy

with Z g msmt AmIN ¢ Z e~ Amin|ml3/N® by Lemma 2.2.3.

mezn mez"
We now regroup the terms for each j = 0,1,2--- and notice that there are at most
(2/7 + 1)™ choices for m such that |m|§ = j. Knowing that (2\/7 + 1) < kj™/2 for

some constant k, we get

o0
Z e—ﬂsAmin\m\g/NQ < Z k,j’n/Qe—WS)\minj/N2
mezZn j=0

which converges due to the fast exponential decay. Therefore, the Theta series
converges uniformly on R, s by Weierstrass M-test. Hence the series converges

to a holomorphic function leading to the holomorphicity of Theta on H. O]

Remark. The spherical function P(m) is also bounded by a power of |m|, so this
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should fit into the convergence framework.

Lemma 3.1.1. For h € Z", we have a bijection between the following sets:

{(m,g)eZ"x(Z/CNZ) | 7Ziiﬁg§%v}<;>{mezn | m=hmod N}.

Proof. Given g € (Z/CNZ)n with g = hmod N, we can write g =h + Ngq
with ¢ € (Z/CZ)H. So we get

m=gmodcN = m=cNqg +g for some ¢' € Z"
= m=cN¢ +h+ Nq
= m=(c¢+q)N+h

— m=hmod N.

Conversely, given m € Z" with m = h mod N, there exists a unique g € (Z / c NZ)

such that m = g mod ¢V, and we have

m=gmodcN and m=hmod N = m=g+cNqg=h+ Nq
= g=h+N(¢ -cq)

== g=hmod N. O
Lemma 3.1.2. There exists a bijection between the following sets:
{peZr | Ap=0mod N} = {(k.p) e (B/ygz) <20 | Admaid).

Proof. Given p € Z" such that Ap = 0 mod N, then there exists a unique k €
(Z/NZ>" such that p = k mod NZ" and we have Ak =0 mod NZ".

Conversely, given k € (Z/Nz)n such that Ak =0 mod N, then every p = k mod N
satisfies Ap = Ak mod N =0 mod N. O]
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Denote the Theta function by 6(z;h, A, N) (dropping P) to prove what follows:
Proposition 3.1.2. We have the following transformation formulas for v =0:

htAh

9(z+2hAN)—e( 5)0(2:h, A, N) (3.1)
ForceZ,, 6(z;h,A,N) = Z 0(cz;g,cA,cN) (3.2)
g=h mod N
g mod cN
6(2.0,A,N) = (det A) 2 (—iz)? Y 0k A, N). (3.3)
z
AR oa N

Proof. (3.1):

0(z+2h,AN)= % e((“”ﬂ)

2
m=h mod N 2N
zmtAm . mtAm

(e,

m=h mod N

Since m = h mod NZ", then each m can be written as ¢/N + h for some ¢ € Z".

So we get

b v 2 AN) = ¥ e(UEIT (s )G+ )
- 3 oL fagye e e

Now using the fact that ¢ € Z® and Ah € NZ", we have ¢! Aq € Z and qt% €7Z.

Also, since A = A?, then hAq (q "\t € 7. Hence

zmtAm .  htAh

0 2;h,A,N) =
(Z+ Y ) mEhmOdNe( 2N? )6( NZ)

htAh zmtAm

m=h mod N
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htAh

)0(z;h, A, N).

(3.2):
czmtcAm
f(cz:g,cA,cN) = -
zmtAm
= e( )
m—g;ch 2N?
Then,
¢
Z 0(cz;9,cA,cN) = Z Z e(zm Am)

2
g=h mod N g=h mod N m=g mod ¢cN 2N

- Y

2
m=h mod N 2N

zmtAm

) by Lemma 3.1.1

=0(z;h, A, N).

(3.3): Notice that this identity is holomorphic on H on both sides since

e 0(z;0,A,N) is holomorphic on H by Proposition 3.1.1,

e §(=};0,A, N) is holomorphic on H as a composition of two holomorphic fun-

tions: #(z;0,4, N) and =

Thus, due to analytic continuation it would be enough to prove it for z = ai with

a > 0. Consider the function
zaxtAx
2

fx) = e ).

Having found the Fourier transform of f in Propostion 2.4.3 for h = v =0, apply the
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Poisson Summation Formula and set m = Ns e NZ" to get

Z e zs;As) _ (detA)*1/2(—iz)*"/2 Z 6(—StA71$

sezn sz 2z

)

amtAm mtA-lm
— — d t A —1/2 s —n/2 e
mGJZV:Z" 6( 2N2 ) ( ° ) ( ZZ) mgV:Z" 6( 2ZN2 )
m=0 mod N m=0 mod N

tA-1m
e, 0(2:0,A,N) = (det A)V2(=iz) "> _mem
e B0AN) = (et A) (i) T (T

).

Write m = Ap, p = A~'m. Note that since m =0 mod N and NA~! € M,,(Z) then

p e Z". Now apply a change of variable z — _71 to obtain:

z(prAY) A1 (Ap)

9(;;O,A,N) _ (det A)-1/2(§)-n/2 T )

Ap=0 mod N
(et Ay Ly Y (A
< perThzn - 2N?

zptAp

12,0\ n
S(@er ) Sy (P
Alzzr(r)lgéojvapzkmodN

) by Lemma 3.1.2

= (det A)V2(2) ™2 S G(zk, A N). O
V4

Ak=0 mod N
k mod N

Proposition 3.1.3. According to Definition 3.1.1, we have

_ t
0Lk, AN, P) = (ci) (et A) P (mizye Y (A
Z k mod N N2
Ak=0 mod N

)9(z;k, A, N, P).

(3.4)

Proof. For the same reason in the proof of (3.3), we prove the result for z = .
Consider the function

2(r+u)tA(z +u) )

fu(@) = P(N (2 +u))e( 5
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with u = N71h € %Z”. Having found the Fourier transform of f, in Proposition

2.4.4, apply the Poisson Summation Formula to get

z(s+u)tA(s+u

Z P(N(s+u))e(

)) = ZN”ﬁq(—iz)_“/z(detA)_l/Q(—i)” Z e(s'u)-

sz 2 sz
stAls
(gl e(-250),
z
Notice that for y = Ns+h
z(s+u)tA(s+u 2yt Ay
5 PN (s + ) CHIACTD o py L2
SEL™ y=h mod N
=0(z;h, A,N,P)
v c \—K[2 -1/2(_\v t to\V stAls
—> 0(s 1, AN, P) = 3Ny (i) ™ (det A) B (-0) 3 e(stu)('s)e(-5 =),
sz z
Now, applying a change of variable z — _71 and setting s = %,

-1 k2 2y . . zstAls
O(— 3, AN, P) = ¥ N8, (i) F2(det A) (=) T e(su)(a's)e(Z5—2)
SeZ™
t
= SINVB,(=iz) 2 (det A) 2=y Y > el AQh)-
k mod N peL™ N
Ak=0 mod N p=k mod N
Ap 2pt AA-T Ap
(A Ny 2 A P
R m )
tA
= ON"By(=iz) P (det A) P (=0)” Y > oEh
k mod N peZ™ N
Ak=0 mod N p=k mod N
Ap., zp'Ap
X t2 M\

In the inner sum over p, p has the form k + NI for some [ € Z". Then

ptAR k+ NI)tAh
)= e(g

ktAh  NItAh
tA
= e(kN2h) given that Ah e NZ".
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Thus,

9(;; h AN, P)= Y N"8,(-iz)*(det A) (=) T

tAp v
(@ Syl

= (=i)"(det A)"V2(=iz)"/?

Ap

(45

)"e(

= (=) (det A) 2 (=iz)"P2

-(q' Ap)”e(

= ()" (det A) M2 (=iz)~?

= (=i)" (det A) M2 (=iz)"P?

3.2

2pt Ap
2N?

zpt Ap

)

2N? )

zpt Ap
2N?

)

ktAh
N2

2

k mod N peZ™
Ak=0 mod N p=k mod N

(=7 )

ktAh
sl s v
kmod N peL™
Ak=0 mod N p=k mod N
ktAh
k mod N pez™
Ak=0 mod N p=k mod N
ktAh zp*Ap
e P(p)e
k:m%(:iN ( N? ) pEZZ:“ (et 2NV? :
Ak=0 mod N p=k mod N
ktAh
Yo e )0(z; k, A, N, P). O
k mod N
Ak=0 mod N

Transformation Law

In this section, our goal is to prove that the Theta function is a modular form

on the congruence subgroup I'g(2,2N) defined later. For this reason, we use the

previous section along with properties of Gauss Sums to obtain the desired result.

Lemma 3.2.1. For ke (Z/NZ)n’ we have

1 =det A.

k mod N
Ak=0 mod N

Proof. Notice that Y gmean 1 = # ker A with A viewed as a homomorphism
Ak=0mod N

A (Z/Nz)n - (Z/Nz)n'
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Since NA~! has integer coefficients, we have that NZ" c A(Z") c Z". So by the

Third Isomorphism Theorem,

(Z/Nz)n/

7, v = agn
A( /NZ)

This implies that,

(%/nz) < A(% nz) 1= 12 Az
= |det A

=det A since A is positive definite

with A (Z/Nz)n image of A. Next, by the First Isomorphism Theorem,

A (Z/NZ)n = (Z/Nz)n/kerA

0 Nn®
= #A(Z/NZ) T Yker A

m (%) nz) A (% )] = det A 0

= HkerA-=

In the following lemma, it is enough to assume that A and NA-! are integer

matrices, dropping the symmetric and positive definite conditions.

Lemma 3.2.2. Given v € Z™ with v!A =0 mod N, we have

vt Ak det A if v=0mod N,
Z e( N2 )=

ke(Z/NZ)™ ,
Ak=0 mod N 0 otherwise.
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Proof. e If v=0mod N (i.e. v=Ngq for some q € Z"):

vt Ak Nqt Ak
Z e N2 ) = Z e( N2 )
ke(Z/NZ)” ke(Z/NZ)"
Ak=0 mod N Ak=0 mod N
q' Ak
= Z e\——
ke(Z/NZ)" N
Ak=0 mod N
tAk
= Z 1 since e
ke(Z/NZ)"
Ak=0 mod N
=det A by Lemma 3.2.1.
o If v 20 mod N:
ag 0 - 0
0 a9 0
Consider first the case where A = an integer diagonal matrix.
0 0 - a,
The condition that NA-! € M,(Z) means that each a; is a divisor of N, and
we can write N = aydy = --- = a,d, with d; € Z. Next, we have
v!A=0mod N == v has the form (U1 vy e Un) such that v; =0 mod d;

So, the set of k mod N with Ak =0 mod N is the set

kt:(kl ky - kn)=(11d1 lody - lndn)

where [; ranges over integers mod a;. It follows that

n
UtAk’ = vlalkl + .-+ vnankn = Z wzallld?
=1

UtAk’ _ L wzazlzd? _ n UJZZZ

N2 Z azd? _Z

i=1 =1 A

fr—
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Therefore,

vt Ak w111 Wyly,
>, o )= > e(——=)e(=—).
ke(Z/NZ)™ N? l1 mod ay n
Ak=0 mod N ! m(:Jd a

Furthermore, we have

v£0mod N = N does not divide at least one v,

— 7 at least one w; such that w; # 0 mod a;.

Assuming that w; # 0 mod a;, we have by Lemma 2.5.3

> (wlll) 0.

11 mod a1

Hence, for varying [; and fixed Iy, -+, l,,, we get that

vt Ak wlll wnln
ke(Z/NZ)” I mod ay an
Ak=0 mod N I méd "
l
-c. ¥ (L
{1 mod a1 ay
-0,

Now, for the general case, we use the Smith normal form of A to write A =

UBYV with B an integer diagonal matrix and U and V integer matrices having

det U = det V = +1. Notice that the following are satisfied:

— U and V are integer matrices with detU =detV =+1 = U~ and V!

are integer matrices = B =U"1AV~! is an integer matrix,

— U,V and NA-! are integer matrices =—> NB~! =V NA-U is an integer

matrix,

— (U)!B =vtUUAV-! = 0! AV~ = 0 mod N since v*A =0 mod N.
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Moreover, there exists a bijection between the sets
{k e (Z/NZ)" | Ak=0mod N} +=— {ke (Z/NZ)" | BVk=0mod N}.

Finally, we get

vt Ak vtUBVEk
> e )= > el—m)
ke(Z/NZ)™ N2 ke(Z/NZ)™ N2
Ak=0 mod N BVEk=0 mod N
Utv)tBVk
= Z e(( ])\72 )
ke(Z/NZ)™
BV k=0 mod N
=0 by the above case. [

Proposition 3.2.1. Given «, § € Z, let a = 2a, d = 26. For ¢ > 0, consider the

a b
matriz y = € SLy(Z). Then we have cy(z) =a—(cz+d)™' and

c d

0(v(2);h, A, N) = (=i)"(det A) PP (=i(cz+d))* > ¢(h,k)0(cz;k,cA,cN)

Ak=0 mod N
k mod cN
where
agtAg + ktAg + 0kt Ak
o(hk)= Y (T ).
g mod cN cN
g=h mod N
Proof. First,
B 1 acz+ ad -1
cz+d cz+d
_acz +be
Cocz+d
_az+ b
S ez+d
=cy(2).

Next, apply in order the transformation formulas (3.2), (3.1) and (3.4). By (3.2),
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we have

1
9(7(2)7]17147]\7)_ Z e(a_m,g,CA,CN).

g mod cN
g=h mod N
By (3.1),
1 agtAg -1
0(a— ——;9,cA,cN) = :1g,cA,cN).
(a-——;g,cd,cN) =e(—57)0(——;9,cA,cN)

Then by (3.4) we get,

-1
9(02 + d;g, cA, CN) = (—i)y(det CA)_I/Q(—i(CZ " d)“/Q))-
tA
2. e(ka)e(cz+d;k,cA,cN).
c
CA]]z‘Er%Ol’?locéch
Moreover,
Okt Ak

O(cz+d;k,cA,eN) =e( )0(cz;k,cA cN).

cN?

So

B(— g, cA eN) = (=i)e ™ (det A) V2 (=i(cx + )P

cz+d’
ktAg, oktAk
km;cN el cN? Je( cN2 )0(cz;k,cA,cN).
cAk=0 mod ¢cN

Notice that there is an equality between the two sets:

{ke(Z|cNZ)" | cAk=0modcN} <~ {ke(Z/cNZ)" | Ak=0mod N}

due to the fact that

cAk =0mod ¢cN <= cAk=cNq for some qeZ"
<~ Ak=Ngq forc>0

<= Ak =0mod N.
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Combining the foregoing results we get,

0(v(z);h, A,N) = Z (=3)”(det A) Y22 (<i(cz + d))2

g=h mod N
g mod cN
k: g 51@ Ak,  agtAg
Z )6( N2 )
k mod cN C
Ak=0 mod N

Finally, interchange the finite sums to obtain:

0(~(2):h, A, N) = (=i)”(det A)~ 22 (=i(cz + d))"/>
(agtAg +ktAg + okt Ak
€

2
kmod ¢cN g=h mod N cN
Ak=0mod N g mod ¢N

)9(cz; k,cA,eN). O

Lemma 3.2.3. The expression ¢(h, k) in Proposition 3.2.1 can also be written as

—b(Skt Ak + KL AR)
N2

o(h k) = e Yo (h + 26k, 0).

Proof. Too see this, replace g by g := g + 20k and write

agtAg
9 -
d(h+20k,0) Z e( N?

g mod cN
g=h+26k mod N

a(g+20k)tA(g + 20k)
¥ oAl 200,

g=h mod N
g mod cN

e(

2
g=h mod N cN
g mod cN

)

2agt Adk
cN?

200kt Ag ., 4ad?ktAk

agtAg Je(
cN? cN?

)e( )e( ).

We have k*Ag = (k'Ag)! = gt Ak because k'Ag € Z. In addition, v € SLy(Z), so
4a) = 1 + be. Therefore,

dadktAg ., | 4ad?kt Ak

agtAg
cN? e cN?

o(h+20k,0) = e(
gzh;)dN cN?
g mod cN

e(
2
g=h mod N cN
g mod cN

)e( )

agtAg

(L+bo)kiAg, SkiAk, SbkiAk

(e (e ()
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agtAg+ktAg + 0ktAk . bektAg, obktAk
= 6( N2 )e( N2 )6( N2 )
g=h mod N c C
g mod cN

Use the fact that ¢ = hmod N with g mod ¢N to write g = h + Ng’ for some ¢’ €
(Z/CNZ)n. Also since Ak =0 mod N, we have:

bkt Ag
N2

bkt A(h + Ng’)) e bktAh.  bktAg' bkt Ah

e - (Tl = e

) =¢( ).

Hence,

agtAg+ ki Ag+okiAk, bk'Ah,.  SbktAk

o(h + 26k, 0) = g:h;we( T (e ()
g mod cN
= o(h k)e( b(ktAh];fktAk) )
L (CPKEAREORAR) o5k 0) = b(h k). (3.5)

N2
O

Proposition 3.2.2. The expression ¢(h,k) depends only on k modulo N and thus

0(v(2); h, A, N)i"(det A) 22 (=i(cz +d)) ™= > ¢(h,k)0(z;k, A, N).

k mod N
Ak=0 mod N

Proof. Replace k by k' + NI for some [ € Z" in equation (3.5).

e First, using the fact that A has coefficients in Z, Ah € NZ™ and Ak’ € NZ",

we get

(k' + NU'AR + (k' + NIOTA(E + ND)) . —b(k"Ah + 0k" Ak")
6( N2 ) = 6( N2 )
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e Second, we also have

, agtAg agtAg
h+26(k"+ NI),0) = E = E
¢( ( )7 ) g mod cN e( cN? ) g mod cN 6( cN? )
g=h+25(k'+N1) mod N g=h+26k" mod N

= ¢(h+20K',0).

Thus, ¢(h, k" + N1) = ¢(h, k"). So, using the latter in Proposition 3.2.1, we can take

o(h, k) as a common factor for each choice of k mod N.

0(v(2);h, A, N)i"(det A) 2 (=i(cz+d)) ™= Y ¢(h k)

Ak'=0 mod N
k' mod N
Z O(cz;k,cA,cN).
k=k’ mod N
k mod cN
Finally, by equation (3.2) we have
Z O(cz;k,cA,cN)=60(z; k' A N). ]
k=k" mod N
k mod cN

Proposition 3.2.3. Suppose that a =2a, d =26 and ¢>0. Then we have:

(2% 1 AL N (det A)e2(—sgn(d)i) " (dz — )2 =
C

dz -

ItAk

> X

l mod N k mod N
Al=0 mod N Ak=0 mod N

Proof. Substitute _71 for z in Proposition 3.2.2, then

6( ((_1)) h,A,N)z"’(detA)l/QC"/2(—z'(c(_71)+d))”/2: > o(h, k:)G( k A, N).

k mod N
Ak=0 mod N
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By (3.4) we write

_ t
0Lk A, N) = (i) (det A) (i) Y e(EE (0,4, N)
Z ! mod N N
Al=0 mod N
bz —a v 12 mf2(_ifog L -K[2
— H(d —h, A, N)i"(det A) /2= (=i(c(—) +d)) ™ =
z—c z
y _ Ak ItAE
Y, O(h k) (i) (det )T (=iz) 2 Y e(S5)0(=1 A, N)
k mod N I mod N
Ak=0 mod N Al=0 mod N
bz -a N2 (N N=KJ2( -1 —K[2
— G(dz—_c;h,A,N)(detA)c iV (=) (-iz) (—2(0(7)+d)) =

S Y AR AN

l mod N k mod N
Al=0 mod N Ak=0 mod N

We still need to show that
-1
(=) (=iz) P (=i(c(—) + d)) " = (-sgn(d)i) " (dz - ¢) 2.
z

Using the appropriate branch of the square root introduced in Chapter 2, we have

o Ifd>0:(~dz+c) "2 =i"(dz-c)™"?

o Ifd<0:(=dz+c)™"/?=(-i)"(dz-c)™"/2

Then,

() (i) e ) ) = () (i) S (e )
= (-1)" (1) P (sgn(d)i) " (dz - )
= (-1)" (1) PP (sgn(d)i) " (dz - ¢)
= (-1)" (1) (1) (1) (sgn(d)i) " (dz - ) P
= (1) (sgn(d)i) " (dz - )

= (—1)’"(sgn(d)i)’”(dz—c)’”/z. O
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Lemma 3.2.4. Suppose now that d =20 =0 mod 2N. Then

-bktAh

O k) = (1

)¢ (h,0).

Proof. Write 6 = Nq with ¢ € Z and we have

—b(okt Ak + Kt AR)
N2

-bgNKk'Ak . ,—bktAh agtAg

g mod cN
g=h+26k mod N

o(h, k) =e( )o(h +20k,0)

. _ t _ t .
Notice that e(%{z%) = e(%fm) =1 since 2£ e Z.

Also, g = h+ 20k mod N <= ¢ =hmod N; thus an identity of sets arises. Hence,

~ bktAh agtAg
¢(h’ak) - 6( N2 ) gmé:CN 6( CN2 )
g=h mod N
-bktAh
= (T )o(h0) 0

As a consequence of the latter, the right hand side of the equation in

Proposition 3.2.3. becomes:
[-bh)tAk
o.0) ¥ (> o AN @

I mod N k mod N
Al=0 mod N Ak=0 mod N

Proposition 3.2.4. Suppose now that b= -2 with a € Z, ¢ =0 mod 2N and d < 0.

Let u be a vector in (Z/dZ>n. We have

abhtAh
2N?

az+b
. —(_ -\ K/2
0(—Cz+d,h,A,N) (—=sgn(c)i)"(cz +d)"=e(

Yw(a, |d]))0(z;ah, A, N) (3.7)

with
autAu

v

w(an |d) =[d™" Y e

u mod |d|
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a b b -a

Proof. Write instead of in Proposition 3.2.3 and use (3.6) to get:
c d d -c
0250, A N) = () (s gnl(e)i)(e= + d) o h,0)
cz+d’ de tA
[ - ah tAk
>y o oA

I mod N k mod N
Al=0 mod N Ak=0 mod N

Now, using Lemma 3.2.2 for v =1 - ah =0 mod N, we obtain

9(a2+b h, A, N) = (=d)"™2(=sgn(c)i)"(cz + d)"2¢(h, 0) Z 0(z;1,A,N).
2+ d l mod N
Al=0 mod N
l=ah mod N

Note that the set {{mod N | Al =0mod N and [ = ah mod N} is the same as
the set {{mod N | [=ahmod N}, because [ =ahmod N = Al = aAh mod N
but Ah =0 mod N as part of our assumption. Hence, the resulting sum is over just

one element [ = ah. Consequently, we get

Q(Zj+2 h,A,N) = (=d)™"*(=sgn(c)i)"(cz + d)*¢(h,0)0(z; ah, A, N)
= () sgn(e)i)(ez v d)f 5 o(“T 29V (z;ah, A N)

t
= (—sgn(e)i)(cz + Ay 20(zah, A NP Y (249,
g mod dN |d|N

g=h mod N

Set W = |d|_"/2 > g mod dN e(°|‘d|]\‘?29) Notice that:

g=h mod

e g=hmod N and gmoddN == g=h+ Nu' forsomeu’e(z/dz>n,

e ad=1mod N = ad =1+ N¢ for some ¢’ € Z".

Therefore, we have g = hmod N = adh mod N. So we can write g = adh + Nu for
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some 1 € (Z/dz)n. Then

n agtAg
W =|d ™" e(
gmgi:dN |d|N2
g=h mod N

_ dh+ Nu)tA(adh + Nu)
g ala
oS o o )

uw mod d
_ d)?2htAh, ,aadNhtAu, ,aNutadAh,  ,aN?*utAu
e aa

v mod d

)

Now, we have the following:

a(ad)?htAh aa?dhtAh

e( RE ) = ¢ 7 ) since d < 0
1+ N¢')htAh
= e(aa( +—Nq2) ) since ad =1+ N¢'
aahtAh .  «aaq’htAh
abhtAh ., ,abq'htAh )
=e( e )e( N ) since b = -2«
abhtAh , "
=e( e ) since Ah e NZ".
Moreover,
dNh!tA htA
e(aa|d|N2 u) = e(aa_N u) =1 since Ah e NZ".
Similarly,
aNutadAh

G(W) =1.

Hence, we obtain

abhtAh. autAu

W = -n/2
P P T
abhtAh
- (AR o).

Suppose that ¢ =0, then since ad — bc =1 we get that d = -1.
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Then w(a,|d|) = e(0) = 1.

Therefore we assume in what follows that ¢ # 0.

Lemma 3.2.5. For m € Z and mc <0, we have

w(a,|d)) = w(a-am,|d+2em]).

Proof. First, notice that we have the following conditions:

e 2am+b=2am-2a=-2(a-am) = -2’ with o/ € Z,
e c=0mod 2N,

e 2em +d < 0.

These conditions allow us to substitute z + 2m for z in equation (3.7) to get,

a(z+2m) +b abhtAh

).

oy AN) = (- )" 9 K/2 ‘
9(0(z+2m) +d’h’ ,N) = (=sgn(c)i)"(c(z+2m) +d)*“e( e )
~w(a, |d))0(z + 2m;ah, A, N).
On the other hand, we have
az + (2am +b) n 1y ,a(2am +b)htAh
9( cz + (20m + d) vhs A, N) = (—Sgn(C)z) (CZ + (20m + d)) /26( e

~w(a—am,|2em +d|)0(z;ah, A, N).

Comparing the two equations, we get

a?mhtAh

0(z+2m;ah, A, N)w(a,|d]) = e( e )0(z;ah, A, N)w(a — am,|2cm + d)).
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However; from equation (3.1) we have

t
0(= + 2m: ah, A, N) = e(W)e(z ah, A N)
a’mhtAh
= e(T)Q(z;ah,A, N)
Thus w(a, |d]) = w(a - am,|d + 2cml). O

By Dirichlet Prime Number Theorem, we can take m so that —d — 2cm is

a positive prime p. Moreover, set 8 = a —am. Then,

But Au

w(a, |d)) = w(a—am,|d+2eml) =w(B,p) =p™* 3 e

u mod p p

). (3.8)

Lemma 3.2.6. Suppose that p is prime to det A. Then there exists an element S
of M,,(Z), whose determinant is prime to p, such that StAS is congruent modulo p

to a diagonal matriz D.

Proof. Consider the bilinear form

B (Z/pZ)nx( pZ)n_’Z/pZ

(v1 , v9) = B(vy,v9) = v} Avl,

Let {e1,:--,e,} be the standard basis where B(e;,e;) = A;;. Furthermore, we have
that B(vy,ve) = B(vs,v1). Indeed, B(e;,e;) = A;j = Ay = B(ej,e;) since A = Al
This implies that B is a symmetric bilinear form on the vector space (Z / pZ>n.
Then, by [Jacobson, 2012] section 6.3, Theorem 6.5, there exists an orthogonal basis
{b1,---,b,} for which the matrix of B relative to this basis is some diagonal matrix
D, or equivalently

non-zero if i = j,
B(Ula UQ) =

0 otherwise.
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So now, there exists a change of basis matrix S’ € GL,, (Z/pZ) such that

(b1 bn)=(61 en)g/_

Finally, lifting S’ to some S € M,,(Z) whose reduction modulo p is S’, we get a new

matrix representation for B given by S*AS = D mod p. O

Proposition 3.2.5. If q1,---,q, are the diagonal elements of D as in Lemma 3.2.6,

then

w(Bip) =p P TI(Y (@ql

i=1 x=1

a -20
Proof. Since € SLy(Z), we have 28c —ap = 1. But ¢ = 0 mod 2N, then p

¢ -p
is prime to 28N. Also, we know that det A is a divisor of N", then p is prime to

det A. To see this, suppose that ged(p, det A) # 1. We have:

ged(p, det A) divides det A and p = ged(p, det A) divides N™ and p
= gcd(p, det A) divides ged(p, N™)

= ged(p,N™) =p
= ged(p,N) =p
e

ged(p,26N) =p+ 1. Contradiction.

Thus Lemma 3.2.6 applies. Next, there exists a bijection
Z n ~ Z n
( pZ) é 5 ( pZ)

umod p —— S~lu mod p

Svmod p «—— vmod p

with S invertible matrix in M,, (Z / pZ)‘
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So replacing w mod p by Sumod p in (3.8) we get:

w(Bp) =yt Y oHENAGY,
Su mod p
L 5 PEWAGY),
u mod p p
_ 5utStASu
_ /2
P umzo:dp6 p )
=p? Z e(ﬁutDu) by Lemma 3.2.6
u mod p
:p—n/2 Z e(ﬁ(u%QI++u721Qn))
u mod p p
2
e ¥ Py Py,
ulmodp upn mod p p
—n/2 q(z:l (5% 0

Proposition 3.2.6. Let ¢, be 1 or i according as m =1 or 3mod 4. Then we have

w(B,p) = <" (B”detA)

Proof. From Proposition 3.2.5 and the definition of the Gauss Sum, we have

w(B,p) = p‘”/QH(Z 6(6%

i=1 z=1

=p/? H G(Ba:).
=1

By Proposition 2.5.3, G(8¢;) = (’Bgi) G(1), then

w(ip) =TI 22 6]

= p‘”/Q[H (BQi)][gp\/ﬁ]” by Proposition 2.5.4.
=1\ P
. ql)__.(ﬂ a
p p
=2 (m) enpl? by Euler Criteria
p
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(B
= T €p.

Now, by Lemma 3.2.6, we have that

@ 0 0
0 g -~ 0

STAS = ? mod p,
0 0 - g

— det S*AS = ¢-+-q,, mod p.

Hence,
(qlmqn ) ~ (det StAS)
p p )
Therefore,
. (B (det S)*det A
R
_n ( (det S)Q)) (ﬁ" detA)
8 p p
= ey (5 det A) since (det S)? is a non-zero square mod p.[]
p

Proposition 3.2.7. We have the following equality:

n [2¢)" (det A
w(anld) = = (sgn(0))" () (%57). (3.9)
Proof. e First, notice that

1 if p=1mod4,

<3

™ if p=3mod4

95



1 if —=d-2cm =1mod4,
= since p = —d — 2cm

i if —d-2cm=3mod4

1 if —d=1mod4,
= since ¢ = (0 mod 2

" if —d=3mod4

1 if d=3mod4,

" ifd=1mod4

1™ if d =3 mod 4,

1 ifd=1mod4

e Next, we have that 28c-ap=1 = 28c=1modp = [ =(2¢)"' mod p

= p does not divide 2¢. So,

)52 (2) () (£ 5)ermmecee

—_— = _— = e .

Cl

p=-dmod 2c = -d mod 4¢ — (—) = (—)

(5)-(53)- () (5) =m0 ()

e Next, consider the prime factorization of det A. Then write det A = DyK?

However,

Therefore,

where Dy = [1p;" is the product of primes that appear in det A with an odd
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power. Furthermore, det A divides N* = p? divides N* = p" divides
N = D, is a positive divisor of N. Also, ged(det A,p) =1

— ged(K,p) = 1. So, we get

(557)-(5)-()E)-(3)

Also, for —-d = dydy---d,,,, we have

(S0 (@)-(&)

where (g—f) depends on d; mod 4D, by Proposition 2.5.2. Then [T, (g—f)

depends on —d mod 4D,. Furthermore, we have

p=-d-2cm = p=-d-4¢'N
= p=-dmod 4N

= p=-dmod 4D, since Dy divides N

~ (2)-2)
2)-(3)-()(3)-()- ()

Hence, replacing in Proposition 3.2.6 we get

Therefore,

wald) =w(B.p) = (

) (52
oo (5 (7). :

Proposition 3.2.8. (Key Result) Let vy be an element of the congruence subgroup

ok detA)
det

D>~s:

a b
[0(2,2N) = € SLy(Z);b=0mod 2 and ¢ =0 mod 2N .
c d
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Then 0(z;h, A, N, P) is a modular form on T'g(2,2N) with the transformation law

t n
0(+(2):h, A, N, P) = e(“b;;V Ah, (de;A) (%C) e-1(cx +d)20(z:ah, A, N, P)

where kK =n+2v and v order of P.

Proof. We study two cases:

1. For d<0

a b
Let v = € I'0(2,2N). Replace equation (3.9) in equation (3.7). Then

c d
we get:
tA
00k AN, P) = (~sgn(e)i)(cz + d)P2e( S (e |d)6(z: ah, A, N, P)
cz+d 2N?2
tA 2c\"
- (-sgn()i) (2 + Ay oD T sgn(@)iy (55
A
‘(det )H(Z;ah,A,N,P)
abhtAh  (det A\ (2c\" _, .
- (s )( . )(3) = (cz + d)*260(z ah, A, N, P).
2. For d>0
a b
Let v = €[4(2,2N). Then, by using case 1 we have:
c d
O(4(2): h AN, PY = 0( 20 h A N PY = 02220 4 N, P)
7 3 10y 9 9 - CZ+d’ ) 9 9 - —CZ—d’ ) ) I

abhtAh) (det A) ( -2c

" - K[2 .
2N?2 —d —d) e7i(=cz = d)"*0(z;-ah, A, N, P).

:e(

Note that

—-d -1 d

(detA):(detA)(detA : :

): sgn(detA)(detA) _ (detA))
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(=) -G G -5 (&) 5) ()

- () Ganor ()

2mtAm 2mtAm
0(z;-ah,A,N,P) = P = P(-
(Z’ wna ) mz—ahzr:nodN (m)e( 2N? ) mEathodN ( m)e( 2N? )

= (-1)"0(z;ah, A, N, P).

Then, we get

0(v(z);h, A, N, P) = ¢(

al;f;:;;lh) (dectz A) (-1)" (}j)n (sgn(c))™

. (%) e (=cz = d)"*(-1)"0(z;ah, A, N, P).

(3.10)

Next, use the defined branch of (cz + d)'/? and distinguish among 4 separate

cases:

o [fc>0and d=1mod4:

(_71)” (sgn(c)) e n(—cz — d)"/?

=117 (igq) ™™ (=i)"(cz + d)’f/2 = (—1)"(—1)”65”(@2 + d)"“/Q7
o [fc>0and d=3mod4:

(_71)” (sgn(c))re(—cz —d)~/?
= (~1)m1n (i) (=) (ez + )12 = (<L) (1) (cz + d)2,

o [fc<0and d=1mod4:

()" (sgn(c))me(~cz — d)=/

= 17(=1)"(ieq) ™i"(cz + d)*/? = (-1)"(-1)7e;"(cz + d)*/?,
e [fc<Oand d=3mod4:

(_71)” (sgn(c))me(-cz —d)~/?

= (-D)(-1)"(—ieq) ™i"(cz + )2 = (1) (-1)Ve;"(cz + d)~/2.
Thus in each case, replacing in equation (3.10) gives the desired result. ]
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Chapter 4

Applications of Theta Series to

Some Quadratic Forms

4.1 Eisenstein Series of weight £ > 3 on I'(M)

At this point, in addition to studying relevant actions and orbits, we shall con-
struct the Fourier expansion of Ej ,, on I'(M) to get an explicit formula for the

Eisenstein Series on I'y(4).

Let M be a positive integer. Recall the Principal Congruence Subgroup of
SLy(Z) of level M

a b a
r(M) - ¢ SLy(Z);
c d c d 0 1

mod M } .

Definition 4.1.1. (Eisenstein Series on Congruence Subgroups) For any positive

60



integer k > 3, we define the Eisenstein Series on I'( M)

Eppuu(2) = Z (mz+n)™*

(m,n)=(u,v) mod M
where the sum is taken over all pairs of integers (m,n) except for (i, ) = (0,0).

Proposition 4.1.1. The above sum Ej ,, converges absolutely and uniformly on

compact subsets of H for k > 2.

Proof. See [Diamond and Shurman, 2005] chapter 4, corollary 4.2.2

or [Schoeneberg, 2012] chapter 7, section 1. ]

a b
Proposition 4.1.2. For v = eT'(M), we have
c d

By (12) = (c2 + d)* Ep o (2)
Proof. Set m’ =am + cn and n' = bm + dn. Then
(cz+d) Y(m'z+n') = (cz+d) ™ [(am + cn)z + bm + dn]

=(cz+d) [m(az+b) +n(cz+d)]

az+b

=m +n

cz+d

=myz +n. (4.1)

Using that fact that a =d=1mod M and b= c=0mod M, there exists a bijection

between

{(m,n)ez? | T3 00an} < {(am+cnbm+dn) eZ2 | R T00)
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Proof. Given (m,n) = (u,v) mod M, we get

m’' =am+cn = ap+cv mod M = ppmod M

n' =bm+dn = by + dv mod M = v mod M.

Conversely, given (m’,n’) = (u,v) mod M, we need to find m and n in terms of m’

and n'.
a b
m' ' =am+cn and n' =bm +dn — (m’ n’) = (m n)
c d
d -b
— (o oo o
-c a
So, we get
m=dm’'—cn' =dp—cvmod M = ymod M
n=-bm’+an = -bu + av mod M = v mod M.
|
Therefore,
By (72) = > (myz+n)™*
(m,n)=(u,v) mod M
= Y (cz+d)f(m'z+n/)F by equation (4.1)
m/=p mod M
n’=v mod M
= (cz+d)" By (2). O
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Proposition 4.1.3. The Fourier expansion of Ey,,(2) on I'(M) is

AL 1 C(2m)k &
Ek’l“/(Z) ) 5(M)n I/;)dMnk ’ m%ejZ Mk k- 1 : noz:ln e(n M +m0]z)€(ﬁ)
mo+%>0
2mi)k & 1 —noV
+ m%;z A (o 1)'n021n0 e(nol i +mp]z)e( Vi )
mo—ﬁ>0
1 ifzeZ,

where §(x) =

0 otherwise.

Proof. Starting with the definition of the Eisenstein series, we have

Eppuu(2) = Z (mz+n)™*

(m,n)=(u,v) mod M

= Z (mz+n)™"

m=Mmo+p

n=Mng+v
_ Z 1

momez, [(Mmo + p)z + (Mng +v) ]k

1

= M- k

M T T (v T

1

= M~ .

m%e:Z TLOEE:Z ((%+m0)z+_)+n0]k

Splitting the sum over mg, we get
1

Ekﬂu’,,(Z) = Z M Z

L+mo)z+45) +nolk

moEZ noEZ
m0+—>0
fY MY o
moeZ noeZ (M +mg)z + M) + 1] (4.2)
mo+ 47 <0
+ > MF Z ! -
moEZ ner + m )Z + ) + n(]]
’rno+f =0
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Notice that

1 M-
=2

,u +m0)z+ﬁ)+no]k noel (%+7’L0)k

2, MY o

moEZ n()EZ
0+ I'L =0

with mg + 47 = 0 and my € Z. Thus this term only exists if © =0 mod M.

In other words,

1 M-*

L
M7F 25(—) _— 4.3
DR A (T A Fr L TR R e
mo+-- =0

]M

Using equation (4.3) and the Lipschitz Summation Formula, equation (4.2) becomes:

1 M-F 1
B (2 =5(—) S M- _
ks (2) M noze:z(MJf”o)k m%ej noZE:Z [((37 +m0)2 + 57) + nol®
m0+”>0

1
4+ mo)z+45) +nolk

+ 2, NP o

moEZ noEZ
m0+—<0
1 M-* 1
() s e V
) 2 G 2 M R E e )y el
mo+—>0
Y MY
mocl noeZ [(- (—M+mo)Z+M)+n0]
mo——>0
1 M-* 1
AR S V
M nze:Z M+n)k m%e:Z noze:Z +m0)z+M)+n0]k
m0+”>0
(& k
e rocr (CDF((=47 + mo)z = §7) + o]
m077>0

M-k 27?2 ko v
D e B 16§ el o

k
no€Z \ M + no) mo€eZ

* no=1
mo+47>0
© Y g S b el o)) - 1)
mo€Z Mk ' no=1 M M
mo—ﬁ>0
2(5(&) Z i+ Z 27m) i nkLe(ng[ ﬁ+m 12)e( OV)
M nEVmodMnk moeZ Mk(k 1)'n0 1 ’ M ’ M
m0+ﬁ>0
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O i —nov
+ m%;Z Mk Fo 1) nOZ:In Ye(no[ —M+m0]z)e( i ).

mofﬁ>0

We restrict to M =4 in what follows.

Lemma 4.1.1. We have

To(4) =, T(4):

with the following set of coset representatives ; :

Proof. Since I'(4) is a normal subgroup of I'g(4), define the quotient group e\,

Now, consider the morphisms

1 To(4) ~ (Z/éLZ)X

a b
~ d mod 4

c d

with kernel I'1(4) and [T['g(4) : T'1(4)] =2, and

2 Ti@) > 247

a
~ bmod 4

c d

with kernel I'(4) and [T'1(4) : T'(4)] = 4. Therefore we have
[Co(4) :T'(4)] = [To(4) : T1(4)] - [[1(4) : T'(4)] =2-4 =38
Finally, it is possible to find the 8 representatives by easy calculations. [
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Proposition 4.1.4. Define

By = ZEIWMV . Vi

i X

Then Ey, ., is a modular form on To(4) with a character, i.e. Ey,, € My(To(4),x)-

Moreover,
Ek7u7,j = ZEk,,u’,l/X(di)71 with (Iu’ y’) = (,U/ y) Yi-
Vi
Proof. Note first that ; epay \'0) cpeyy \92(Z). Thus it is easy to check that the

slash operator is a group action from pe4)\%22(%) on the set M, (I'(4)) defined by

My (D(4)) xpeay \522®) - M (T(4))

f 7)'—>f-7=(f’k7X7)(2)-

, T 2 -
In other words f‘k 7y depends only on cosets I'(4)7y epey \¥72(%) and f‘k ~~' corre
7X 7X

sponds to multiplication in pg)\%2(%). Now, let o € I'g(4). Then,

(Ek,u,u

) = (E s

)|, a2) = (X Brg|, i) (2).
X kX 7 k.x

We have that a € To(4) = U, I'(4)7;, then y(4) = Tp(4)ar = U, T'(4)7;cr. Hence there
exists a function j depending on ¢ and « such that v« = §;7; with §; € I'(4). Thus

~;cv is another set of coset representatives for p(4)\F0(4). Therefore,

(Ek,u,u

k’xa)(Z) = (%: By m”yj)(z) = Eppu(2).

Moreover, we write

a;z + bl

Ek,,u,u ] + n)*k

k,x%(z) = x(di) ez + dy)™* Z (m[

(m,n)=(p,v) mod 4

= x(d;)™ > (mla;z +b;] +nfc;z + d;])7F

(m,n)=(u,v) mod 4

CiZ + dz
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=x(d;)™ > ([ma; + nc;)z + [mb; +nd;])~*
(m,n)=(u,v) mod 4

=x(d;)™ > (m'z+n')™

(m/,n")=(p',v') mod 4

= X(di)_lEk’,u’,V’(z)

where m’ = ma; + nc; = pa; + ve; = ' and n’ = mb; + nd; = pb; + vd; = v'. O

Due to the fact that p,v € Z/4Z’ ray\'°™ acts on (Z/4Z x Z/4Z)t. Thus, it
would be sufficient to find the set of all orbits of the corresponding elements. Note
that the idea is to use these orbits in addition to the Fourier expansion of Ej ,, to

get the Fourier coefficients of the Eisenstein series on I'g(4).

Proposition 4.1.5. There are 6 orbits of (Z/4Z X Z/4Z)t under the action of

ray\'°@ denoted by

(M u) -r(4)\FO(4):{(M V) i | vierg \F°(4)}-

Proof. Using Lemma 4.1.1, we have the following orbits:

1. Orbit of (1 2)

| O O I (U ) RO
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(696 6 bl b))

Apply a similar method of calculations in what follows to get
2. Orbit of (0 1)
()0 )
3. Orbit of (2 1)
() )
4. Orbit of (2 ())
{(2 0).(2 2)}
5. Orbit of (() 2)
{(02))
6. Orbit of (() 0)
}

{(00. O

4.2 Fourier Coefficients of a Cusp Form

In this section, we study the growth of the Fourier coefficients of a cusp form.

The material is taken from [Miyake, 2006] chapter 2, pages 42-43.

Lemma 4.2.1. Let f(z) be a cusp form of weight k on I', i.e. f has a zero at each

cusp. Then, f(2)3(z)*? is bounded on H.

a b
Proof. Let f(z) be a cusp form and set ¢(z) = |f(2)|[T(2)*2. Let ~ = el
c d

then notice that

o(v2) =1f(v2)3(v2)"? = (cz + )M f (2)I[(cz + d) 12T ()2 = [ £(2)[3(2)*"2,
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So ¢(z) is invariant on T' and continuous on r\H. Notice that I" has finitely many
inequivalent cusps. Let xy be an arbitrary cusp of width A and suppose that v’ is an
element of SL,(7Z) such that 4'- 00 = 2. Then f has the following Fourier expansion
at zg:

GRVOENIICS]

Thus we have

6(1'2) = [F(/ ()

S+ )22

(] @ e
IS ae (™) .
= nz::lane( - )3 (2)k? ST 0.

Hence, ¢(z) is bounded on a neighborhood of each cusp xq (since xoy was arbitrary),
and therefore ¢(z) is bounded on a compact subset of H defined by H ~\ union of
all these neighborhoods. O]

Theorem 4.2.2. Let f(z) be a modular form and x¢ a cusp of T'. Suppose that ~'

is an element of SLy(Z) such that '+ oo = xq. Then we have
_ k/2 / _ o nz
a, = O0(n"*)  where (f‘kfy )(2) = ane(r).
n=1

Proof. Set g(z) = (f‘kv’)(z). Then ¢(z) is a modular form of weight k& on '~1T'y’.

By the above lemma,

iM >0 such that |(f| Y)(2)| < MI(2)*? VzeH.
k

Therefore, we get

h
a =| [ gt + ige(-") do
0 h
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h ‘ nz

< [Tt ig)le(-25) lda]

0 h

M
< o k/2 27rny/h.
<oy e
In particular, taking y = %, we get
lan| < %e%mnk/2 — a, = O(n*/?). O

4.3 Representation of an Integer s by Sums of

Squares

As an application of the above, we are interested in the following question:
How to represent an integer s by a positive definite quadratic form?
In other words, given positive integers s and k, in how many ways can s be
represented by @Q(z) with x € Zk. For this reason, we introduce ¢, y(s) defined
by:
ronn(s)=#{(x1, 1) € Z¥ | Q(2) = s and x = h mod NZF}.

Then the question becomes if there are any interesting formulas for r¢g 5 x and how

to efficiently calculate them.

In this section, we let h =0, N =1, n = k and A = 1, identity matrix. As a result,

we get Q(z) = xf + 3+ +j and write
’f‘k(S) = #{(x1,-~,xk) e 7k | x% 4o +xz - 8}.

Notice that changing the signs or order of x; in this case results in giving different
representations.

Let us consider a particular example.
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D
(N

Figure 4.1: Geometric Interpretation of 75(10)

Example 4.3.1. For k =2 and s = 10 we have r5(10) = 8. To see this, write

10=12+3%=(-1)2+32 =12+ (-3)% = (-1)? + (-3)?

S32412= (=3)2 412232+ (=1)% = (=3)2 + (-1)2.

Geometrically, this is equivalent to saying that in the lattice Z? c R2?, there are 8

points having distance /10 from the origin.

Remark. Since () is a positive definite quadratic form, we can ensure that the set of

points is finite by limiting using an upper bound for each of the z; in term of x.

Now, denote 0(z;0,1,1,1) by 6(z) and consider the following:
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Proposition 4.3.1. For z ¢ H, let 8 be the function defined by

6 :H-C

2o 0(2)=0(22)= > e(zm'm).

meZk

Then 0 is a modular form of weight % on the congruence subgroup T'o(4).

a 2b
Proof. From Proposition 3.2.8, for v = €I'0(2,2) we have

2c d
020 =02
k (4.4)
- (2) ek (2cz + d)26(2)
with multiplier system e(v) = (g)kegk such that |e(vy)] = 1.
a v
Now let 7' = €'g(4), then we have
4c d'
~ ~az+ U
0(v'z)=0
(v'2) (4c’z+d’)
a'z+b
=0(2
( (4c’z +d' )
a'(2z) + 20
ICSEET]
2c(2z) +d
4c’ g -k / 1\k/2 :
=\ ) v (4c'z +d")"20(22) by equation (4.4)
c\F ~
_ (5) (4> + d)F2(2)
with multiplier system e(v) = (fl—/,)k&tg,k such that |e(~")| = 1. O

Remark. Notice that we have the following relation between 6 and ry;:

0(z) = > e(zm'm)

meZF
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= > e(z(mi+-+my))

my, -, myel

= Z Z B(SZ) Lettlng S = m% 4+ + mi

s€Z my, -, miel

—m?2 2
S=my+etmy

= Y e(sz) > 1

S€Zi>0 mi,,mrel

—on 2., 2
s=m7j+--+my

= > re(s)e(sz).

SGZZU

In what follows, we use the fact that Ej ,, € M(I'o(4),x) in order write § as a
combination of Eisenstein Series and Cusp Forms. Consequently, we obtain formulas

for r¢(s).

Proposition 4.3.2. For k = 3, the Eisenstein space is spanned by E~3,172 and E37071.

Proof. Using Propostion 4.1.4 and the orbits in Propostion 4.1.5, we get the follow-

ing:

SUPRE

E3,1,2 = E3,1,2X(1) + E3,1,3X(1) + E373,1X(—1) + E3,1,1X(1) + E3,3,2X(—1)
+ E3,3,3X(—1) + E3,3,0X(—1) + E3,1,0X(1)

= E3,1,2 + E3,1,3 - E3,3,1 + E3,1,1 - E3,3,2 - E3,3,3 - E3,3,0 + E3,1,0-
Notice that Ej _, -, = (-1)kEj, . ,. Then we get

E3,1,2(2’) = E3,1,2(Z) + E3,1,3(2) + E3,1,3(Z) + E3,1,1(2) + E3,1,2(Z) + E3,1,1(2)

+ E3,1,0(Z) + E3,1,0

= 2[E3,1,0(Z) + E3,1,1(Z) + E3,1,2(Z) + E3,1,3(Z)]
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:C+2f1§2.7;)!3[ > Y nge(no(mo+ — )Z)— 2 2”06(”0(m°__))

mer no>0 m()eZ np>0
mo+g 150 mo——>0
+ > > nge(no(mo + — )2)6( - > nge(no(mg - —)2)6(—
mer np>0 mOeZ no>0
m0+ >0 m0—7>0
+ > Y nge(no(mo += )z)e( - > nge(no(mo - —)z)e(——
mer no>0 m()EZ nop>0
mo+3 150 mo——>0
3710 2 3710
+ Z Z nae(no(mo + = )z)e( Z Z nge(no(mo - —)z)e(— ]
mer no>0 moeZ nop>0
m0+ >0 mo—l>0

:C+§[ m%;Z ngonoe(nO(mOJr )z)(1+e(—)+e( )+e(3no )

m%;Z n%:onoe(no(mo——)z) (1+e(—_)+ (__)+ (_3n0 )]

We distinguish now among 4 cases:

-If ng = 0 mod 4:

Tre(Z) +e()+e(3) =1+e(-2) +e(-L) +e(-222)=1+1+1+1=4.
- If ng =1 mod 4:
T+e(™)+e(B)+e(32)=1+i-1-i=0

and 1+e(-2) +e(-2) +e(-220)=1-i-1+i=0.
- If ng =2 mod 4:

T+e(Z) +e()+e(2)=1-1+1-1=0

and 1+e(-2) +e(-2) +e(-222)=1-1+1-1=0.
- If ng =3 mod 4:

T+e(®) +e()+e(32)=1-i-1+i=0

and 1+e(-2) +e(-2) +e(-222)=1+i-1-i=0.

Thus, the above sum does not vanish only for the case ng = 4ly. So,

Es15(2)=C+ 2—3[ S A(dl)e(lo(L+4me)z) — > 4(4lp)?e(lo(4mg - 1)2)]

’n’LQEZ moEZ
mo+1>0 mo—1>0
no=4lo>4 no=4lo>4
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=C+ z'(27r)3[ Y3 Bx (%) e(sz)].

s211g|s
refo )b

E3,0,1 = E3,0,1X(1) + E3,0,1X(1) + E3,0,3X(—1) + E0,1X(1) + E3,0,3X(—1)
+ E3,0,3X(—1) + E3,073X(—1) + E3,0,1X(1)

=4F301-4FE303.
Notice that Fs3o; = —F303. Then we get

E3,0,1(Z) = 8E3,0,1(Z)

0+ TS S 2o (ngmye) (e(%)—e(—% )

2 no>0mp>0

We distinguish now among 4 cases:
-If ng = 0mod 4: e(P)e(-%2)=1-1=0.
- If ng=1mod 4: e()e(-") =i+i=2i.

-1+1=0.

- If ng =2mod 4: e(2)e(-22)
- If np =3 mod 4: e()e(-%) =—i—i=-2i.
Thus, the above sum does not vanish only for the cases ng = 1,3 mod 4. So,

set s =ngmg to get

Es01(2)=C+ ? > > ng(2i)x(no)e(sz)

s21mnygls

=C -7 > ndx(no)e(sz).

s>1 n0|5

(o)

Es,o,z =4F302-4F302=0.
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(o) o
(o) (o )

E3,2,1 =2F391+2F393—2F351—-2k323=0.

(o) (e o

E3,2,0 =2E390+2F399—2E350—2E322=0.

E370,0 =0.

Thus, E3,1,2 and E&OJ generate the corresponding Eisenstein space. O

Theorem 4.3.1. Knowing that the spaces of cusp forms Sa(I'1(4)),S3(I'1(4)) and

S4(T'1(4)) are trivial, we have the following identities:

1. 19(s) =4 X g5 x(d),
2. 7“4(3) =8 Zd|s d7
4fd

3. re(s) = Zd‘5(16x (fl) - 4x(d))d?,

4. r8(s) = 16 Zys(-1)*7d.

Proof. 1. For k =2, see [Zagier, 1992] part 1.C, page 245.

2. First, for k =4, we have

0(z) = > e(zm'm) € My(To(4)) € Ma(T'1(4)).

meZ4

Knowing that

_ (2mi)? & o S s
Ey(z)=1+ m;ag_l(s)q =1- 24;01(s)q :
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our goal is to write 6 in terms of E,. Note that Es is not a modular form,
but combinations involving Fy(z), F2(22) and Fy(4z) are. For this reason, we
write:

Ey(2) =1-24q—-72¢* - 96¢°> + -,
FEy(22) = 1-24¢* - 72¢" - 96¢° + ---,
Ey(4z) =1-24¢" - 72¢% +---.
Next, by using Magma Calculator, we find a basis for My(I"1(4)) :
o Jy:=1+24¢% +24¢* + 96¢° + 24¢8... = 2E5(42) — Eq(22),
o Jo:=q+4¢3+6¢°+8¢"... = g—i(Eg(z) - 3E5(22) +2E5(42)).

Moreover, by the previous remark we have

0(z) = > ra(s)e(sz)

SGZZ()
=1+ Z rq(s)e(sz)
s=1
=1+7r4(1)g +74(2)q* +
=1+8q+ 24> + -
=1(1+24¢* +-) +8(q +4¢> +-+-)
=J, +8J,
1
= 2E2(4Z) - EQ(QZ) - § (EQ(Z) - 3E2(2Z) + 2E2(4Z))
-1 4
= ?EQ(Z) + §E2(4Z)
-1 ad 4 ad
= ?(1—24201(3)(;8) + 5(1_24201(8)(]43)
s=1 s=1
=1+8) o1(s)qg® - 32> o1(s)g™
s=1 s=1
o0 (o) S
=1+8 Zal(s)qs -32 Zal(z)qs
s=1 s=1

=1 +§;(801(s) —3201(2))@9.
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Hence,

r4(s) =801(s) - 3201(2).

We still need to prove that

o1(s) - 401(2) - %:d.

4fd

Proof. To see this, we study separate cases:

e If 4 does not divide s:

Then 4 does not divide any divisor of s. So,

o1(s) :dz|:d= dz:d.

4yd
o If 4 divides s:
2.d=)d=).d
d| d| d|
4yd 4ld
=oi1(s)->.d
d
Ald
=o1(s)- > 4l Taking 4l = d

05

= 1(s) -401(2).

Thus, the needed formula.
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3. First, for k=6, we have

0(z)= > e(zm'm) € M3(To(4)) c M3(T1(4)).

meZ5

Next, by using Magma Calculator, we find a basis for M3(I'1(4)) :

o Jy:=1+12¢%+64¢3 +60q*...,

o Jo:=q+4q¢%+8¢>+16¢*...

So, our goal now is to find relations between .J;, J; and the elements of the
Eisenstein Space. By Proposition 4.3.2, the Eisenstein space as well as M3(I"1(4))

is spanned by E37172 and E37071. We write

E519(2) = ——=F319(2) = C+ZZlox( )e(sz) C+qg+4¢> +8¢> +.

(2 )3 s>1 lo|s
. 1 -
E's01(2) := ?E&o,l(z) =C+ Z Z nax(no)e(sz) =C+q+q¢* -8¢* + ...
- 521 ngls
Now we have J; = 4(E’3,172 —E,3’071) and Jy = E’g,ljg. Moreover, by the previous

remark

0(=) = 3 ro(s)e(sz)

s€lx0

=1+ i re(s)e(sz)
s=1

=1+76(1)q +76(2)¢* + -
=1+12¢+60g> +---
=1(1+12¢% + ) +12(q + 4¢* +--)
=J;+12.J,
=A4(E'312- E'501) + 12F'31 5

= 16E'3,1,2 - 4E'3,o,1
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=16(C + Z Zlgx (%) e(sz))—4(C + Z Z nax(ng)e(sz))

s2110g|s 521 ngp|s

=C+ 2 (162[8 -4y ngx(no)) e(sz).

lo|s nols

Hence,

re(s) =16 d* -4 d*x(d).

d|s d|s

. First, for k =8, we have

0(z)= Y e(zm'm) e My(To(4)) c My(T1(4)).

meZ8

Next, by using Magma Calculator, we find a basis for My(I'1(4)) :

o Jyi=1+240¢" +216045...,
o Jyi=q+28¢3 +126¢° + 34447 ...,

o J3:=q%+8¢*+ 28¢5 +64¢8...

Knowing that

_ (@2mi)t & . _ S :
Ei(z)=1+ m;m_l(s)q =1+ 240;::103(n)q :

our goal is to write 6 in terms of E,. For this reason, we write:
Ey(2) =1+ 240q + 2160g° + - = J; + 240.J; + 2160.J3,

E4(22) = 1+ 240¢* + 2160g* + -+ = J; +240.J3,
E,(42) = 1+ 240¢* + 2160¢® + --- = J;.

Moreover, by the previous remark we have

0(z) = > rs(s)e(sz)

s€Zs0
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=1+ rg(s)e(sz)
s=1
=1+75(1)g +7s8(2)q* + -
—1+16g+112¢% +---
= 1(1 +240¢" + ) +16(q + 28¢® + --) + 112(¢* + 8¢* + --+)

= Jl + 16J2 + 112J3

Thus,
Eu(2) 1 240 2160 \|{ J;

E«22) =1 o 240 ||k

-1

Ji| (1 240 2160) [ Eu(2)
— | Ll=1 0 240 | |Eu(22)

2% I T B Ey(42)
7 0 0 240|[ Eu(2)
1
== | Lo|= 210 1 -9 8 || Eu(22)
Ty 0 1 -1[\E2)

Therefore, (4.5) becomes:

0(2) = Fa(42) + 16 (ﬁﬂl(z) _ %@(22) . %&(4;;))

| |
12— Ey(22) - — Ey(4
+l (240 1(22) = g5 Fal Z))

16 32 256

= O B2 - 22 B (22) + 2 B, (4
510 1(2) ~ 50 Fa(22) + 5 Fa(42)
16 32 256

= O B2 - 22 E(22) + 22 B, (4
sa0 2 (2) = gy Fa(22) + 515 Fa(42)

16 = 32 e .
= %(1 + 240;ag(s)q ) - %(1 + 2408203(5)q2 )
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256
240

=1+16 Z o3(s)q® - 32 Z o3(8)q* +256 )" o3(s)g"
s=1 s=1 s=1

~—(1+240 Z o3(s)q*)

) 0 S 0 S
= 1416 ), 03(s)q" = 32 )] 03(5)a" + 256 ) 05(7)q”
s=1 s=1 s=1

=1+ Z (1603(5) - 3203(%) + 25603(2)) ¢

Hence,

rs(s) = 1605(s) - 3203(3) N 25603(2).

It remains to prove that

os(s) - 203( )+1603( ) Z|:( 1)5 a3,

Proof. To see this, we study separate cases:

e If 2 does not divide s:

Then 2 does not divide any divisor of s. Then s - d is even. So,

o3(s) = Y d* = (1),

d|s d|s

o If 2 divides s and 4 does not divide s:
Apply a change of variable s = 2¢ with ¢t odd. Then, d divides s

<= d=2% with i=0,1 and e divides ¢. So,

o3(s) 203( =Y d-2)d

d|s dl5
= > (2e)*-2> ¢
i=0,1 elt
elt
= Z€3+23263—2Z€3
elt elt elt
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==Y e+ > (2e)?

elt elt
— Z d3 _ Z d3
d|s d|
d even d odd
=Y (-1)" 4.
d|s

o If 4 divides s:
Apply a change of variable s = 2/t with ¢ odd. Then, d divides s

<= d=2e with 0<j<iand e divides t. So,

o3(s) - 203(3) + 1603(2) =SB -2Y d+ 163 d?
d

dl$ dl§

= Y (el -2 Y (Pel+16 ) (2e)?

0<yj<i 0<j<i-1 0<j<i-2
elt elt elt
=Yt Y (e -2>e-2 Y (2e)?
elt 1<j<i elt 1<j<i-1
elt elt

1222 % (2e)?

0<j<i-2
elt
= Y (Ze)->Y -2 Y (Ze)P+2 Y (2*e)?
1<j<i elt 1<j<i-1 0<j<i-2
elt elt elt
= Y (Ze)P-> -2 Y (2e)P+2 Y (2e)?
1<g<i elt 1<5<i-1 1<5<i-1
elt elt elt
= Z (2j6)3—263
1<y<i elt
elt
— Z d3_ Z d3
d|s d|
d even d odd

=Y (-1)"d.
d|s

Thus we obtain the needed formula for rg(s). ]
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Theorem 4.3.2. We have

4 s
r10(8) = R % [X(d) + 16)g(3)] + 5 2 z
s

Proof. For k =10, we have

0(2)= Y e(zmtm)e Ms(To(4)) ¢ M5(T'1(4)).

meZ10

By using Magma Calculator, we find a basis for M;(I'1(4)) :

o J;:=1-80¢>-60¢*+ ...,
o Jy:i=q+216¢> +64¢* + ...,

o Jy:i=q®+4¢>+12¢* + ...
Now, we aim to obtain relations between the above basis and the elements of
the Eisenstein space. For this reason, using similar procedure and calculations
as in Proposition 4.3.2, we find out that the Eisenstein space is spanned by

two elements and we write :

~ 12
E's510(2) 1= - i(2r )5E512(Z C+ZZZ ( )6(82 =C +q+16¢* +80¢> + ...
5>1l0|8
= J2 + 16J3
) 48 & 2 3
Es01(2):= —E50 1(2)=C+ Z Z ngx(no)e(sz) =C+q+q*-80¢° + ...
521 ngls
5
= ZlJl + J2 + Jg.

Notice that in this case we have a non-trivial space of cusp forms. Furthermore,

by Proposition 2.2.1 we have that M5 = S5 & . Thus M5(I'1(4)) is spanned
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by E5,172, Eg)’o’l and a cusp form C with the following g-expansion according to

Magma:
C:=q—4¢*> +16¢* - 14¢° — 64¢% + 81¢° + 56¢'0 + O(¢'?) = J, — 4.J3.
By the previous remark,

é(z) = Z r10(s)e(sz)

SEZzO
=1+ rip(s)e(sz)
s=1
=1+ Tlo(l)q + 7’10(2)q2 + Tlo(g)qg”'
=1+ 20q + 180¢> + 960¢> + ---

= Jl + QOJQ + 180J3 (46)

Thus,
E’571,2(Z) 0 1 16 Jl

EI570’1(Z) = % 1 1 JQ
C 01 -4J\Js

J1 0 1 16 E’57172(2)

== | J|= g 1 1 E,5’071(Z)

J3 01 -4 C

J —% % —% E'5,1,2(2’)
- J2 = % 0 % E~V57071(2)

Js 35 0 -5 C

85



Therefore, (4.6) becomes:

~ 1~ 4 - 3 1~ 4
9(2) = _EE’E)’LQ(Z) + SEI570’1(Z') - gc + 20 (5E’571’2(Z') + gC)

+180 (2—1()E’5,172(z) - iC)

= 65—4E’5 12(2) + £ E'50 1(2) + 2

- 65—4E’5 a(2) 4 2 E'50 L)+ 2

_ _(0+ Sy ( ) (52)) + = (c+ > 3 nfx(m)e(s2) + —c
=gl =1 nls

=C+- Z 1 16)(( ) +x(d)]d*e(sz) + ;C

s>1 d|

Hence,

ro(s) = £ 206 (5] @)+ e

dls
where ¢, cusp is the Fourier coefficient of the cusp part of 6. However, by Section
4.2, we know that ¢, cusp = O(n*/?) meaning that this term grows less fast than
the main term 2 ¥, [16x( ) +x(d)]d* which defines the Fourier coefficient of
the Eisenstein part of 6. To conclude, we can say that 710(s) would be the sum

of a main term and some smaller order error. OJ
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