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AN ABSTRACT OF THE THESIS 

 

 

 

Mahmoud Khaled Elcheikh Mahmoud for Master of Science 

                                                Major: Chemistry 

 

 

 

Title: Synthesis and characterization of new metal-organic frameworks (MOFs) for 

sensing and catalysis applications. 

 

 Metal organic frameworks (MOFs) are an emerging class of porous materials that 

have earned a significant amount of attention due to their design flexibility from their 

building blocks of organic linkers and inorganic clusters. In order to enhance the 

performance and to develop novel applications using MOFs, we outline here the design 

and synthesis of new kind of MOFs using new type of linkers. From the proposed linkers, 

we will be able to prepare a set of new materials with unprecedented electrical, chemical, 

and topological properties for applications including sensing and catalysis. In our 

proposed research work, we aimed to synthesize new type of MOFs to be used in sensing 

and photocatalysis. To this end, a new series of Lanthanides Metal Organic Frameworks 

(LnMOFs) was synthesized via solvothermal reaction. The four new luminescent MOFs 

synthesized by mating LnNO3.6H2O where Ln is (La and Ce) cations with 1,5 dihydroxy-

2,6-naphthalenedicarboxylic and 2,6-naphthalenedicarboxylic acid. In this project, 

AUBM-2(Ce) and AUBM-3(Ce) were selected for sensing the heavy toxic metals (Pb(II), 

Cr(IV), As(III), Cd(II), Hg(II)) and for paraquat. The hydroxyl-functionalized structures 

have shown to be promising luminescent sensory materials with high selectivity and 

sensitivity towards the detection of mercury. In a second part of our research work, our 

focus was on the development of new MOFs for photocatalysis applications. We report 

the successful incorporation of the photo-active bis(4̍-(4-carboxyphenyl)-

terpyridine)Ruthenium(II) (Ru(cptpy)2 strut into a robust metal organic framework, 

AUBM-4. The single crystal X-ray analysis revealed the formation of a new one-

dimensional structure of Ru(cptpy)2 complexes linked together by Zr atoms that are eight 

coordinated with O atoms. The chemically stable MOF structure was employed as an 

efficient photocatalyst for carbon dioxide conversion to formate under visible light 

irradiation. To the best of our knowledge, the obtained conversion rate was among the 

highest reported in the literature for similar systems. Our strategy of using the Ru(cptpy)2 

complex as a linker to construct the MOF catalyst appears to be very promising in 

artificial photosynthesis.  
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CHAPTER I 

INTRODUCTION 

1. Preamble    

Metal organic frameworks (MOFs) are a novel class of crystalline materials 

comprised of metal nodes and organic linkers connected via coordination bonds. These 

materials are   organized in a 1D, 2D, or 3D extended network so that  pores of regular 

sizes are obtained 8. MOFs constitute an active research topic for the past twenty years 

due to their rich chemistry and unique characteristics such as high surface area exceeding 

10000 m2/g,9-10 relatively high mechanical and thermal stabilities11-12, along with the 

possibility of being adjusted while conserving the functional sites13. MOFs showed great 

potential applications in several fields including catalysis14, gas storage15, magnetism16, 

sensing, adsorption17 and luminescence18, in addition to drug delivery19, biomedical 

imaging20, antimicrobial activity21, dye sensitized solar cells22, storage and encapsulation 

of dyes and pH sensitive molecules23-24.Moreover, synthesis of MOFs  is directed under 

mild conditions. Where many kinds of functional groups can be incorporated directly into 

their structure, which is sometimes problematic for zeolites and carbon-based porous 

materials. Interestingly the pore shape, pore size, surface functionalities, and network 

topology can be tuned systematically by altering the metal clusters and /or the organic 

linkers. Therefore, the structures and properties of MOFs can be designed to fit the needs 

of specific applications. MOFs are very attractive because of their tunability and 

remarkable degree of diversity in the inorganic and organic units they can possess in their 

structures, a feature that make MOF chemistry as one of the most developed field in 
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material science1. In this chapter, the development of MOFs is reviewed, and their 

applications in sensing and catalysis will be discussed. 

 

Figure 1.1. Number of metal–organic frameworks (MOFs) structures reported in the 

Cambridge Structural Database (CSD) from 1978 through 20061. The bar graph illustrates 

the recent dramatic increase in the number of reports. 

 

2. Overview of History 

Coordination compounds were studied for the first time by  Alfred Werner(1866–

1919),.Werner-type complexes were based on using metal centers and nitrogen organic 

linkers with ageneral formula of MX2L4. Where M is consigned to divalent metal in an 

octahedral geometry (e.g. Zn, Cu), X is assigned to an anionic ligand (e.g. NCO-, CN-, 

NO3
-), and L is consigned to pyridine coordinated molecule (Figure 1.2). 
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Figure 2.1. Part of a Werner complex, Ni(SCN)2(4-methylpyridine) crystal structure. 

Color code : Ni: green, C: grey, S: yellow, and N: blue2. 

 

At the era of 1960s, other illustrations that involved compounds of Hofmann-type 

clathrate were discovered and fully investigated by Iwamoto and co-workers, and these 

compounds were extracted from an original one that had the formula 

Ni(NH3)2(CN)4(C6H6) and was discovered by K.A. Hofmann (Figure 1.3). 

 

Figure 2.2. Example of Hofmann clathrate structure3. 
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In the early 1970, another type of compounds, known as Prussian blue, were 

synthesized, consisting of mixed valence Fe ions bridged via cyano-entity, and identified 

by X-ray technique (Figure 1.4). 

 

Figure 2.3. Example of Prussian blue crystal structure3. 

In 1956, the first natural Zeolites were discovered by Axel Frederik Cronstedt, 

namely Stilbite. Since then, research on this class of porous materials has increased 

significantly.  Moreover, in 1990, functional microporouss materials started to appear 

when Robson and co-workers reported porous coordination polymers which exhibited ion 

exchange properties25. In the meantime, Omar M. Yaghi and co-workers synthesized an 

innovator compound (MOF-5) that has been reported to be the first robust and highly 

porous hybrid material, as compared to zeolite and activated carbon4. MOF-5 is 

synthesized from zinc acetate building block and 1,4-dicarboxylic acid, having a pcu-

topology (Figure 1.5). 
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Figure 2.4. Crystal structure of MOF-54. C: black, red: oxygen and yellow ball 

describes the pore in the network. 

 

From 1990s, MOFs have become one of the hottest topics in material chemistry, 

which have worldly-wise unique growth. The variability in the potential geometry, size, 

permanent porosity, adjusted pore size, and functionality has opened the way for more 

than 20,000 various MOFs to be created and characterized over the past few decades13. 

 

3. Design and Synthesis of Metal-Organic Frameworks 

Metal-organic frameworks (MOFs) are composed of metal nodes and organic 

linkers connected via strong bonds organized in 1D, 2D or 3D networks (Figure 1.6). 

Technically, an extensive variety of structural, electrical, optical, and catalytic properties 

can be incorporated into the frameworks by coherent design.  
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The inorganic components of MOFs are usually transition metal ions.  Importantly 

many different metal ions are known to favor different coordination numbers and 

geometries, which include tetrahedral, linear, square-planer, octahedral, trigonal-

bipyramidal, T-shaped, and square-planer. For instance, Cu(II) ions that are known to 

have d9 electronic configurations favor the square-planer geometries; however, it can also 

exist with other coordination numbers, contingent on the choice of organic solvents and 

ligands26. Moreover lanthanide ions are also used to create and design novel network 

topologies due to their large coordination numbers (up to 10)27.  

For the organic part of the MOFs, there are extensive diversity of selections as 

well. Ligands with rigid backbones are frequently chosen, because these types of linkers 

facilitate to predict the network geometry prior synthesis. In addition, the rigidity plays 

an important role in sustaining the open pore structure of the MOF after the removal of 

the included solvents. The organic linkers used in MOFs can be classified into three 

groups anionic, or cationic linkers, and electrically neutral organic linkers (Figure 1.7). 

The mostly used anionic linkers are carboxylates28 since they have the ability to aggregate 

metal ions into clusters in this manner forming more stable frameworks. Cationic organic 

linkers are little used because of their low attractions for cationic metal ion29-30. 

Interestingly the most regularly used neutral organics linkers are pyrazine and 4,4’-

bipyridine (bpy)31-32. These linkers are particularly suitable as pillars in the creation of 

pillared layer in 3D network33-34.  
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Figure 3.1. Scheme showing different components of MOFs5. 
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Figure 3.2. Examples of organic linkers35. 

Metal Organic frameworks (MOFs) are usually synthesized via solvothermal 

techniques, where the reactions are accomplished in an organic solvent or in water at high 

temperatures in a closed system. However, these methods demand long reaction times, 

Neutral organic linkers 

Anionic organic linkers 

Cationic organic linkers 
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from some hours up to several days, depending upon the desired MOF and the reaction 

solvent, concentration, temperature, and other conditions. Alternative synthetic strategies 

have been developed based on exploiting conventional electric or microwave heating, 

electrochemistry, mechanochemistry, and ultrasonication. 36-37. These techniques can also 

regulate the crystal size from millimeter down to micrometer by varying the concentration 

and the temperature of the reactants in the solution. One of the main advantages of MOFs 

is the ability to incorporate complex functionalities into the frameworks backbones. 

However , it is difficult sometimes  to introduce functional groups during MOFs 

synthesis, nevertheless integrating the functionality may be accomplished through post 

synthetic modification (PSM), which is the chemical derivatization of MOFs after their 

formation38 (Figure 1.8). MOFs can be post synthetically modified by different methods, 

where new functional groups are incorporated using covalent 39-40, non-covalent 25, 41, or 

coordinative interactions42-43. Some of the common reactions to accomplish PSM are 

postmetallation44-45 and protonation46. Interestingly, PSM method can incorporate a broad 

range of functional groups to create a series of functionally within the MOF structures 

without altering the topology. 
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Figure 3.3. A general scheme for the post synthetic modification (PSM) of MOFs (top). 

Example of post-synthetic modification reactions performed with IRMOF-3(bottom) 47. 

 

The conspicuous interest in MOFs does not rely back on their high surface areas 

only, but also on the immense number of metal salts and organic linkers that could be 

incorporated in the synthesis processes48 (Figure 1.9). This variety in the choice of metal 

ions and organic linkers leads to a diversity of MOFs having different structures with 

altered properties and targeted for various applications including gas storage, separations 

and catalysis. In some cases, neither the crystal structure nor the properties of the MOF 

change upon varying the functionalities of the organic linkers, such types are called 

isoreticular MOFs (IRMOFs)49 as shown in (Figure 1.10). 
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(A) 

Zn4(CO2)6 

Zr6O4(OH)4
-(CO2)12 Mn3(CO2)8 

M3O3(CO2)3 

(M = Zn, Mg, Co, 

Ni, Mn, and Fe) 

 

M2(CO2)4 

(M = Zn, Cu, Co, 

Mo, Cr, Ru and Fe) 

 

In(C5HO4N2)4 

CuCl(C2H2N3)8 Fe(C2O2)2(H2O)2 

Oxalic acid 

1,3,5-Benzenetricarboxylic acid 2,5-Pyridinedicarboxylic acid 

H2BDC-OH H3THBTS 

H4ADB TIPA H4DH11PhDC 

(B) 

Figure 3.4. The prominent diversity of (A) metal clusters, (B) organic linkers 

incorporated in the synthesis of MOFs. 
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Figure 3.5. Crystal Structure of a series of IRMOFs and their corresponding 

functionalized ligand derivatives. R1= -H, R2= -Br, R3= -NH2, R4= -O-CH2-CH2-CH3, 

R5= -O-CH2-CH2-CH2-CH2-CH3, R6= -C4H2, R7= -C6H4. 

 

 

4. Metal-Organic Frameworks for Gas Storage and Separation 

Metal-organic frameworks (MOFs) are porous materials made from the 

coordinative bonding between inorganic clusters (metal ions) and organic linkers. These 

materials are considered as a unique adsorbent due to many extraordinary properties. One 

of these, is the diversity in the functionality of metal ions and linkers that provide a great 

improvement in gas adsorption/selectivity properties. Moreover, since the pores of these 

materials are homogenous in size and cohesive in their function, a non-hysteretic 

recyclability in the uptake and release of gases was reported. Additionally, compared to 

other porous materials, the pores in MOFs have no walls, which in turn can provide a 
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facile uptake and release of carbon dioxide (several orders of magnitude faster than in 

zeolites and porous carbon materials).Most importantly, what characterizes MOFs is that 

they are made from a readily available highly scalable starting materials (from grams to 

multi-ton quantities) in addition to their high thermal stability in air (up to 400-500 0C) 

as well as a high chemical stability (boiling water, organic solvents). Therefore, the 

flexibility with which these materials can be tailored on the molecular level for many 

applications including gas storage and separation has led to the highest uptakes ever 

reported for many gases including hydrogen, methane, and carbon dioxide.  

Recently, the energy needs of the world are gradually increasing, which is leading 

to a depletion in the fossil fuel reserves. Therefore, renewable ways to generate, store, 

and deliver energy are being investigated. Interestingly, Hydrogen has been considered 

as a near-ideal clean energy material due to its zero-carbon content, and its high 

gravimetric energy density, which can nearly triple that of gasoline. Besides, hydrogen 

can be generated from an almost inexhaustible resource water. However, one of the 

biggest bottlenecks in achieving a hydrogen economy, is the lack of a safe, efficient, and 

economical on-board hydrogen storage system., the US department of Energy (DOE) has 

set certain standards for a hydrogen storage system which are 0.075 kg/kg and 0.070 kg/L 

for gravimetric and volumetric storage, respectively.  By 2012, Those capacities reached 

0.055 kg/kg for the gravimetric and 0.040 kg/L for the volumetric systems. In addition, 

these storage systems should be able to operate between -40 and 85 oC, at pressures less 

than 100 bar, and tolerate 1000 use-cycles by 2010 and 1500 use-cycles by 20151. 

MOF-5, which is called IRMOF-1 or Zn4O(BDC)3 (BDC = 1,4-benzenedicarboxylate), 

was one of the first MOFs examined for hydrogen storage due to its high porosity, high 

surface area (4400 m2/g), and stable structure in the absence of guest molecules50. The 
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measured sorption isotherm for H2 at 78 K reveals type I behaviour, in which saturation 

is reached at low pressures followed by a pseudo-plateau at higher pressures. At 78 K and 

1 bar, the H2 uptake of IRMOF-1 is 4.5 wt%, which corresponds to 17.2 H2 per 

Zn4O(BDC)3 formula unit. However, at room temperature, the uptake of H2 by IRMOF-

1 increases linearly with pressure reaching 1.0 wt % at 20 bars. Researchers further 

realized   that the H2 uptake capacity of IRMOF-1 varies  according to the method used 

to prepare and activate it51-56.  

According to several computational studies, MOFs at room temperature adsorb 

little hydrogen even under high pressures. This is due to the low interaction energy 

between the framework and physiosorbed H2... To overcome this problem,  researchers 

synthesized new MOFs containing  unsaturated metal centers, which are able to 

chemisorb H2 either as intact molecules or by oxidative addition57-59. This method has 

been shown to enhance the H2 adsorption enthalpies. 

Recently, Yaghi and his research team  synthesized a new MOF namely MOF-

210 with ultra-high surface area60,(6240 m2/g) .The team found that the H2 uptake of this 

newly MOF (86 mg g-1), was higher than the H2 uptake of MOF-5, MOF-177, UMCM-

2, and NOTT-112.9-12 Additionally, the calculated total hydrogen uptake in MOF-210 

(176 mg g-1) exceeds that of typical alternative fuels (methanol and ethanol and 

hydrocarbons (pentane and hexane)). Moreover, MOF-210 also showed large total 

hydrogen uptake (163 mg g-1, which was   higher than that of MOF-177)61.Unfortunately, 

there is currently no material that demonstrates promising hydrogen uptake at room 

temperature (RT). This could be due to the weak adsorbent-adsorbate interaction caused 

by insufficient binding sites. As a result, novel materials having high micro-porosity must 
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be developed in order to realize a compact fuel tank. Noting that, MOF-210 is reported 

to have the highest hydrogen uptake of 2.7 wt% at RT. 

 

4.1 Methane storage in MOFs 

 As an alternative fuel, methane is also an important candidate62-64. Methane is the 

primary component of natural gas, is cleaner than petrol, provides more energy because 

of its higher hydrogen to carbon ratio, and produces lower carbon emissions. Methane is 

abundant and inexpensive compared with conventional fossil fuels, such as gasoline and 

diesel. However, in order to produce compact automobiles with a driving range of several 

hundred miles, an effective and safe on-board storage system must be achieved. The 

current storage target set by the DOE is 180 cm3 cm-3 (standard condition for temperature 

and pressure (STP)) at 35 bars, which is comparable to the energy density of compressed 

natural gas at 250 bar23. For a porous framework to achieve the DOE targets, it must 

satisfy the following requirements: significant adsorption capacity, efficient 

charge/discharge rate, high hydrophobicity, moderate adsorption enthalpy and high heat 

capacity65.   

The gravimetric uptake of methane is generally proportional to the BET surface 

area of porous solids. Furthermore, most conventional inorganic materials with BET 

surface areas of 1000 m2 g-1 do not take up large amounts of methane at 35 bar; for 

example zeolites (31-82 mg g-1)66-69 and mesoporous silicas (14-65 mg g-1)62. However, 

if the BET surface area reaches more than 2000 m2 g-1, we can expect a large amount of 

methane uptake; this is the case for activated carbons and MOFs with methane uptake of 

160mg g-1.13 One of the best performing MOFs takes up 253 mg g-1 of methane at 290 
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K70, which is even greater than the uptake of high-surface-area carbons (211 mg g-1 for 

Maxsorb and 250 mg g-1 for chemically activated anthracite taken at 293 K)71-72. On the 

other hand, methane uptake by MOFs with ultra-high surface area was also measured at 

298 K.  The calculated total uptakes for MOF-200, 205 and 210 were 446, 394, and 476 

mg g-1 respectively  which were 50% greater than those of the anthracene-based MOFs. 

, Porous Coordination Network-14 (PCN-14)70. It is worth noting that the corresponding 

volumetric methane densities in the present MOFs are 2, 3, and 2.5 times greater than 

volumetric bulk density (g L-1) of methane at the same temperature and pressure. More 

importantly, the isotherms are nearly linear up to 80 bars, so that these materials can 

deliver most of the sorbet methane in the pressure range of 10–100 bar.  

4.2. Carbon dioxide capture and separation 

To stabilize atmospheric CO2 levels, it is necessary to develop CO2 capture and 

sequestration technologies (i.e. short- and long-term CO2 storage as well as selective CO2 

separation73-74. The capture and separation of CO2 can be achieved by using solvents, 

cryogenic techniques, and solid sorbents75. To date, most of the processes in large-scale 

operations are performed by amine-based wet scrubbing systems (i.e. post-combustion 

CO2 capture by chemisorption)76-77, because the low CO2 partial pressure and high flue 

gas temperature (50-120 °C) require strong interaction with CO2.
73 However, these 

processes suffer from high regeneration energy, large equipment size, solvent degradation 

and equipment corrosion75. Therefore, adsorption separation is considered a more 

promising method for cost-effective CO2 recovery. Recently, two novel technological 

pathways were proposed for CO2 capture systems: pre-combustion capture and oxy-

combustion76-77. Since CO2 concentrations in these gas streams are much higher than in 

the flue gas streams in post-combustion capture, many limitations of the state-of-the-art 
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amine-based systems may be resolved by using these technological pathways in 

combination with highly porous solids.  

The saturation CO2 uptake in porous solids is again proportional to the porosity 

of the materials. High surface area MOFs such as MOF-177 and MIL-101 show good 

CO2 uptakes (1490 and 1760 mg g-1)78-79, which are greater than those of MOF-5 (970 

mg g-1), carbon materials (420 and 370 mg g-1 for Norit RB2 and BPL carbon) and zeolites 

(220-350 mg g-1) 78-80. The high CO2 storage capacity is a requirement for short-term CO2 

storage and transport of CO2. More recently, the CO2 uptake capacity of the ultra-high 

surface area MOFs were tested. Owing to the large storage volumes, the CO2 uptake value 

of 2,400 cm3 g-1 in both MOF-200 and 210 exceeds those of any other porous materials.  

Regarding CO2 separation, strong binding energy is relatively more important than large 

storage space. The materials presently used for separation applications are amine 

solutions, zeolites, and porous membranes. MOFs have been shown to exhibit exceptional 

CO2 storage capacity under equilibrium conditions when pure CO2 is introduced into the 

pores81-86. However, their capacities are dramatically reduced when exposed to mixtures 

of gases under dynamic conditions, as would be the case in power plant flue gas and 

methane mining applications. Recently, it is reported that a MOF replete with open 

magnesium sites (Mg-MOF-74) has excellent selectivity, facile regeneration, and among 

the highest dynamic capacities reported for CO2 in porous materials. Through separation 

experiments, the metal environment in the framework can drastically change the gas 

selectivities if these metals are coordinatively unsaturated78, 87.Therefore, the 

incorporation of heterogeneity into the MOF system plays a key role in improving the 

selective gas capture. 
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5. Metal-Organic Frameworks for Chemical Sensing. 

Luminescence quenching is a significant method to detect small amount of analyte 

in a solution88. Luminescence can be divided into three essential types. The first one is 

fluorescence; which spin is allowed and has numerous lifetimes values in nanoseconds. 

The second type is phosphorescence, which spin is prohibited and has some lifetime 

values that can be as long as numerous seconds. While the third type is scintillation, which 

is a light emission stimulated by exposition to ionizing radiation89. Scintillation also has 

lifetimes in the order of nanoseconds.  

There are several routes to synthesize luminescent MOFs (Figure 5.1). The most 

common way is to combine luminescence inorganic metal clusters. The best choices for 

these materials are lanthanide ions, particularly La(III) and Ce(III), due to the robust 

visible luminescence of these ions in the red and green regions. Moreover, the electronic 

transitions of lanthanide ions are prohibited according to Laporte selection rules, which 

leads to low quantum yields and weak absorbance, the prohibition can be exceeded by 

mating a strongly absorbing element called a lumiphore into the MOF framework. When 

exposed to irradiation, lumiphores can easily transfer energy from their triplet excited 

state to the lanthanides emitting states, in condition that there is a robust vibronic 

connection between the lumiphore and the cluster (Figure 5.2). This phenomenon, called 

the antenna effect, is responsible for a great increase in luminescence production by the 

lanthanide ion. Decent organic lumiphores are molecules with large conjugate pi systems. 

In the solid state, if lumiphores are in near immediacy, electronic interaction,  ligand to 

ligand charge transfer, can influence, the luminescence90. 
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Figure 5.1. Illustration of emission prospects in a porous Metal-Organic Frameworks, 

where the inorganic clusters (blue) are coordinated to organic linkers (yellow) with an 

incorporated guest (green) 6. 

 

 

Figure 5.2. A schematic diagram of the antenna effect7. 
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Numerous detection methods have been projected to use luminescent MOFs as 

prospective sensors. One of these ways is wavelength shift. For instance, the fluorescence 

emission wavelength of Zn4O(NTB)2·3DEF·EtOH (H3NTB is 4,4’,4’’-nitrilotrisbenzoic 

acid) shifts depend on the existence of the guest molecules in the MOF framework. The 

desolvation of this MOF result into a blue shift in the luminescence maximum by the 

reason of the absence of π-π interactions between the interpenetrated networks.  

Another detection method engages intensity changes. For example, Eu(BTC) 

MOF shows an expressive quenching and enhancement of it photoluminescence when 

exposed to acetone and DMF, respectively91. Also, the Eu(PDC) and Tb(BTC) MOFs 

have the ability to sense and detect anions and metal ions, which bind to nitrogen atoms 

and O-H groups in the MOF, respectively92-93. Moreover, Li and co-workers used 

luminescence quenching of MOFs in the detection of explosives94. They created a Zn-

MOF that includes 4,4’-biphenyldicarboxylate and 1,2-bipyridylethene linkers. The MOF 

fluorescence shows a clear quenching by 2,3-dimethyl-2,3-dinitrobutane (DMNB) and 

2,4-dinitrotoluene (DNT)94. 

6. Metal-Organic Frameworks for Catalysis. 

MOFs are used as rigid platforms for physical interactions such as gas storage and 

separation, as well as chemical reactions such as catalysis. MOFs not only have the same 

catalytic features of zeolites such as porosity, diversity in pore sizes and shapes, but also 

contain functionalizable organic linkers. These features make the materials great 

candidates as heterogeneous catalysts, which can have liquid-like diffusion properties, a 

variety of chemical functionalities, and can be tuneable95-96. Most catalytic applications 

have been explored by using parts of the structure as the catalytic function, either through 
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the metal moiety or the organic linker molecules. It has been shown that the introduction 

of open metal centers into MOFs can offer a promising tool in catalysis because of the 

regular arrangement of metal centers in the pore channels that induces regioselectivity or 

shape or size selectivity97. Catalytically active coordinately unsaturated metal sites can 

be introduced into MOFs in two ways, either as metal connecting points or as part of the 

linker98 (Figure 6.1). 

MOFs can be used as heterogenous catalysts, which offer many potential 

advantages in photocatalytic process, due to the fact that: (i) their band-gap values can be 

tuned to absorb visible light efficiently; (ii) their high surface area results in good contact 

with CO2 and water; it is expected that MOFs will have a high affinity towards CO2 

molecules,99 thus increasing the interaction between the photocatalyst and the reactant, 

and increasing the efficiency of photocatalytic reactions;100 (iii) their particles can be 

easily synthesized with different sizes; (iv) their synthesis is very cost effective; (v) the 

crystals are stable and can be easily dispersed in water (Zr, Al, and Cu versions); (vi) their 

electrical properties can be tuned upon incorporation of different metal cations into their 

SBUs101 and (vii) only very few MOFs have been explored as photocatalysts for carbon 

dioxide reduction, water splitting, and their application towards solar fuels production. 

Because of the strong chemical bonding and higher coordination number, the Zr-based 

SBU, Zr6O4(OH)4(CO2)12, found in UiO-66102 (Zr6O4(OH)4(BDC)6; BDC = 

terephthalate) is one of most stable inorganic clusters.103 Thus, this inorganic SBU 

appears as a notable platform to construct the thermally and chemically stable MOFs that 

are critical for practical applications.  
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Figure 6.1. (a) Coordinatively unsaturated metal connecting points as active catalytic 

sites. (b) Incorporation of active catalytic sites into the bridging ligands of MOFs104. 

 

6.1. Photocatalytic CO2 by metal organic framework (MOFs) 

Due to the redundant emission of carbon dioxide (CO2) that has greatly affected 

the global environment., effective capture and transformation of CO2 has become a top 

priority from the point of sustainable development. Among several methods, one of the 

particularly attractive solutions is the photocatalytic reduction of CO2 into useful and high 

value-added industrial chemicals such as formic acid, formaldehyde, methanol or 

methane105-106. The photocatalytic reduction of CO2 can progress at a normal operation 

temperature and pressure. The development of efficient photocatalysts is of great 

importance. Traditional inorganic semiconductor materials, like TiO2, have shown a 

certain photocatalytic activity for CO2 reduction, while some of them are active under 

only UV light or display a high recombination rate of photoinduced electron–hole pairs, 

hence hinder the promotion of catalytic efficiency107-109. Thus, the design and 

development of a new photocatalyst is a promising method to realize efficient 



28 
 

photochemical transformation. The use of metal organic frameworks (MOFs) as new 

functional hybrid materials have shown excellent performance in the field of gas 

adsorption/separation, luminescence, sensing and catalysis due to their flexible structures 

and tunable porosity110. Photoactive MOFs have made outstanding progress in the field 

of photocatalysis, especially for CO2 reduction111-112. By presenting appropriate optical 

functional organic or inorganic components, MOFs can adjust their own photochemical 

properties and realize light harvesting. The integration of new structures and 

functionalities makes MOFs tunable porous photocatalysts for CO2 reduction. Among 

numerous MOFs, zirconium based MOFs have attracted general attention because of their 

high thermal and chemical stability where their robust nature could deal with complicated 

and harsh catalytic conditions113. Through the excited ligand to Zr clusters charge transfer 

process (LMCT) or the catalytic role of the ligand itself, Zr-MOFs show selective 

catalytic reduction of CO2
114-115. Moreover, due to the large band gap of Zr clusters, the 

visible light response of Zr-MOFs mainly depends on the functional ligand. Some 

strategies such as utilizing a precious metal complex ligand or highly conjugated ligand 

have been investigated while taking advantage of an amino group functionalized ligand, 

which is an easy and effective strategy to extend the light absorption of MOFs116.  

The possibility of functionally altering MOFs, by post-synthetic modification 

(PSM), leads to the formation of advanced MOF materials that are suitable for more 

specialized applications117-120. Following this route, free functional groups in a polytopic 

ligand constituting the MOF, can be modified after the MOF synthesis and isolation. An 

example of PSM is the work done by Farrusseng and his team that aimed at converting 

the amino group in MIL-53(Al)-NH2 into isocyanate through a multiple-step process121. 

On the other hand, Cohen and his team managed to perform several approaches to utilize 
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the free functional group for catalysis; as in the case of post metalation of UIO-67-bpydc 

(a zirconium-based MOF) with manganese, thus achieving a photocatalyst for CO2 

reduction. In addition, Lin and coworkers have incorporated light-harvesting molecules, 

such as Ru(bpy)3
2+, into the backbones of MOFs to study the exciton transport in 

molecular solids and catalysis of light-driven organic transformations. Moreover, they 

included water oxidation and proton/carbon dioxide reduction catalysts into MOF 

structures to catalyze water oxidation and proton/CO2 reduction half reactions, 

respectively122-125. 

While the reported studies on Carbon dioxide reduction are interesting and 

informative, these works have raised a number of questions and produced a collection of 

uncertainties and confusions, relating to the difficulty of quantitatively analyzing and 

comparing the performance metrics of different kinds of photocatalysts. The concomitant 

challenge of evaluating and distinguishing a real effect from artifacts associated with 

adventitious carbon contamination pervasive on the surface of these photocatalysts can 

provide false positives of their real performance metrics. Indeed, integrated 13C and 2H 

isotope tracer capability to probe mechanistic details of photoactivity should be used in 

routine analysis. 

Our work will focus on the design and synthesis of new MOF photocatalysts by 

combining molecular complexes linkers and zirconium-based clusters into highly stable 

frameworks. 

 

 

. 
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CHAPTER II 

 

A. Sensing properties of two lanthanides-based metal organic frameworks. 

In this work, we targeted the development of new sensors based on MOF 

structures. For an efficient and successful MOFs sensor, the ligands should have both a 

binding site and possess luminescent properties. Our metals of choice were lanthanides 

due to their interesting binding and fluorescence properties. When synthesizing Ln-

MOFs, the organic linkers are important for the structure because of the antenna effect 

that may occur in such structures.126 Thereby, in agreement with the hard-soft acid base 

model, carboxylated ligands are convenient in building lanthanides MOFs. This is 

because lanthanide ions are hard acceptors, favoring the coordination with hard 

carboxylate oxygen. Moreover, the luminescence of the lanthanides can be enhanced and 

intensified upon choosing aromatic carboxylic groups, the latter being a fine luminescent 

chromophore.127 Thus to obtain an effective lanthanides MOFs sensor,128 the best 

approach is to select a conjugated aromatic organic linker with Lewis base sites where 

the luminescence can be improved along with a potential metal ion binding site.129  

In this part 2,6-Naphthalenedicarboxylic and 1,5dihydroxy 2,6-

Naphthalenedicarboxylic were selected to react with Lanthanides cations where 

lanthanides are (La, Ce). After varying many experimental conditions such as reagent 

concentrations, solvent mixtures, temperature and pHs, we succeeded in synthesizing two 

sets of new lanthanides MOFs namely AUBM-2 and AUBM-3 using both linkers (NP 

and DNP). The synthesis and full characterization (e.g. SXRD analysis, 
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thermogravimetric analysis, and Fluorescence) of the MOFs are reported, in addition to 

their applications for heavy metal sensing and paraquat were investigated. The results of 

this work are presented in the form of a research paper published in the Solid-State 

Chemistry Journal in 2020. 
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B. Supporting information: Sensing properties of two lanthanides-based metal 

organic framework 
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CHAPTER III 

 

 

A. Metal Organic Framework-Photocatalyst Incorporating Bis(4’-(4-

Carboxyphenyl)-Terpyridine)Ruthenium(II) for Visible Light-Driven Carbon 

Dioxide Reduction. 

  

In this part of our research work, our focus was on the development of new MOFs 

for photocatalysis applications. Our new approach is to construct metal organic 

frameworks (MOF) from multiple photoactive secondary building units (SBUs) to be 

used as photocatalysts. Initially, chemically and thermally stable molecular complexes 

(Ru and Os based complexes) are synthesized using heterotopic linkers (Bis(4’-(4-

Carboxyphenyl)-Terpyridine)Ruthenium(II)). This molecular complex incorporating a 

secondary binding unit will be employed to construct the new photoactive MOFs. Finally, 

the ability of the frameworks to act as photocatalysts will be tested.   Notably, pre-

incorporation of the catalytic metal units into molecular building blocks (such as 

inorganic coordination clusters) can significantly increase the number of gas molecules 

on the surfaces of the frameworks without mitigating the specific surface area. As a proof 

of concept, we synthesized Ru-terpyridine based complex with carboxylate ends to be 

used as linkers for the MOFs synthesis. After trying different experimental conditions, 

we finally succeeded in growing single crystals of the Zr-Ru-Ext-Terpy-MOFs. 

Interestingly, the obtained structure is 1D structure namely (AUBM-4) with an unusual 

Zr cluster that is composed of only one Zirconium atom coordinated to 2 linkers and the 

rest of the coordination sphere is occupied by solvent molecules. Our strategy of using 

the Ru-terpyridine based complex as a linker to construct the MOF catalyst appears to be 
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very promising in artificial photosynthesis. The results of this work are presented in the 

form of a research paper published in Journal of American Chemical Society (JACS) in 

2019. 
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B. Supporting information: Metal Organic Framework-Photocatalyst  
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CHAPTER IV 

CONCLUSION 

 

This work demonstrated the design and synthesis of new kind of Metal Organic 

Frameworks (MOFs) using new type of linkers. From the proposed linkers, we have 

succeeded to prepare a set of new materials with unprecedented electrical, chemical, and 

topological properties for sensing and photocatalysis applications.  

In the first project, we succeeded to create a new set of luminescent MOFs, namely 

AUBM-2 and AUBM-3. The single crystals of Lanthanides MOFs were obtained by the 

solvothermal reaction of DNP and NP and LnNO3.6H2O where Ln is (La and Ce) in a 

mixture of DMF/H2O/EtOH. All the four lanthanides-based MOFs were thoroughly 

characterized using single crystal and powder X-ray diffraction, TGA, IR, UV-Vis, 

fluorescence analysis. Their sensing properties were further investigated for toxic 

elements (Pb(II), Cr(IV), As(III), Cd(II), Hg(II)) and paraquat. The quenching effect 

induced by the mercury metals for AUBM-3(Ce) was great with Ksv values of 2061 M-1 

and 1289 M-1 after exciting at 300 nm and 370 nm respectively. Compared to the other 

heavy metals tested, this quenching effect was only evident in the case of mercury thus 

the AUBM-3(Ce) could be reported as a sensitive and selective detector for mercury ions. 

In the second project, we report the first structure of a photoactive Zr-MOF 

incorporating bis(4̍-(4-carboxyphenyl)-terpyridine)Ru(II) complex (Ru(cptpy)2) in its 

backbone. Interestingly, the obtained Zr cluster was based on the simple ZrO8 cluster and 

not the conventional Zr6O4(OH)4(CO2)12, found in UiO-66 topology. The crystal obtained 
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structure is 1D structure with an unusual Zr cluster that is composed of only one 

Zirconium atom coordinated to two linkers and the rest of the coordination sphere is 

occupied by solvent molecules. The new MOF structure was found to be highly stable 

and highly efficient for the visible light driven conversion of CO2 to formate, the 

conversion rate (366 µmol∙g-1∙h-1) was among the highest reported in the literature. 

Recyclability of the MOF catalyst was further investigated and showed that our MOF 

catalyst was highly stable and was successfully regenerated. 13CO2 was used to confirm 

the origin of the formate ions produced throughout the photochemical reaction. Finally, a 

mechanism of the CO2 photoreduction was discussed based on the experimental analysis 

and the Density Functional Theory (DFT) calculations.  
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