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An Abstract of the Thesis of

Raphaelle Maria Akhras for Master of Science
Major: Computer Science

Title: Securing Smart Grid Communication Using Ethereum Smart Contracts

Smart grids are being continually adopted as a replacement of the traditional
power grid systems to ensure safe, efficient, and cost-effective power distribution.
The smart grid is a heterogeneous communication network made up of various
devices and components such as smart meters, automation, and emerging tech-
nologies interacting with each other. As a result, the smart grid inherits most
of the security vulnerabilities of cyber systems, putting the smart grid at risk of
cyber-attacks. To secure the communication between smart grid entities, namely
the smart meters and the utility, we propose in this thesis a communication infras-
tructure built on top of a blockchain network, specifically Ethereum. All two-way
communication between the smart meters and the utility is assumed to be trans-
actions governed by smart contracts. Smart contracts are designed in such a
way to ensure that each smart meter is authentic and each smart meter reading
is reported securely and privately. We present a simulation of a sample smart
grid and report the costs incurred from building such a grid. Each architecture
discussed will contain a solution to a problem previously faced and will come
with trade-offs that are analyzed in terms of certain metrics. The simulations
illustrate the feasibility and security of the proposed architectures.
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Chapter 1

Introduction

The power system infrastructure faces an imbalance between the growing demand
for electric power and the limited available supply. The emergence of smart grids
came as a solution to a lot of the limitations that accompany the traditional
electric grid system. The replacement of old technologies with new ones is not
unheard of in this time and age, across all sectors such as the arts, economics,
education, environment, governance, health, infrastructure, justice, media, and
science. What makes these grids smart is the usage of smart meters, which are
far more sophisticated than the currently used meters, at the consumer side. To
understand how the different components in the energy sector work together,
a network model is used. This model represents objects and their relationships
with each other. The data retrieved from smart meters will be used to understand
the relationship between the utility and the consumers in terms of energy needs.
Thus, network modelling will be based on smart meter data. The shift from the
traditional electric grid to the new smart grid brings with it a new set of possibili-
ties for enhancement and improvement at the level of both efficiency and security.

Utility companies have already started enhancing the management of the en-
ergy sector while simultaneously increasing the system’s reliability and reducing
the environmental consequences. Additionally, various approaches have been pro-
posed in order to increase the operational efficiency of many parts of the power
network. A recently proposed improvement to the distribution networks high-
lights the involvement of customers in the demand side management (DSM) and
demand response (DR) programs. The goal of DSM programs is to optimize
consumer-side energy usage for the long-term whereas the goal of DR programs
is to encourage end-users to reduce energy consumption during peak hours for
a short-term. Most existing DSM and DR programs entail reducing the power
consumption of customers according to predetermined policies of load priorities
during peak times. Accordingly, optimized DSM and DR programs play a signif-
icant role in helping these programs reach their full potential. These programs
cannot function properly or even exist if the data provided to the utility by the
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customers is incorrect. If the data that is received at the utility server side con-
tains incorrect information about the energy needs and loads during peak and off
hours, the utility cannot make correct decisions or take the appropriate actions in
DSM, DR, or other programs aimed at improving the power grid and maximizing
its potential.

1.1 Motivation
The smart grid is considered to be a communication network with control devices,
smart meters, automation, computers, and emerging technologies interacting. All
of these entities must be able to communicate efficiently with one another, mak-
ing the smart grid a large heterogeneous network. As a result, the smart grid
inherits most of the security vulnerabilities of cyber systems, putting the electric
grid at risk of cyber-attacks. Accordingly, security breaches in the smart grid can
have detrimental consequences and may impact a country’s entire infrastructure,
its economy, and its citizens’ lives. The smart grid’s two most critical vulnera-
bilities are reporting false data and gaining private information about the user.
The former vulnerability involves the active interception of data to drop or alter
messages sent by the smart meter to the utility and causes the smart grid to act
on demands that do not exist and take wrong shedding decisions and actions.
The latter vulnerability encompasses the passive interception of messages, which
could result in a unauthorized gain of private information about the user. This
information could engender more severe attacks such as theft. The targeted data
can also be sent from the utility to the smart meters. To address these vulnerabil-
ities, we propose a secure-by-construction prevention mechanism that focuses on
Blockchain as the underlying technology to secure the two-way communication
between the smart meters and the utility servers.
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1.2 Problem Definition
Due to the high risks associated with potential attacks targeting the two-way
communication between the smart meters and the utility servers, it is vital to
ensure confidentiality, integrity, availability, authorization, authenticity, and non-
repudiation. Normal security measures, which are employed in traditional com-
munication and network systems, fail to secure the complex network that com-
poses the smart grid for various reasons which will be discussed in this work.
The technique we focus on for resolving the risk associated with the smart grid
is a prevention technique. It relies on Blockchain as a building block, where
communicated data is treated as transactions that are encrypted and stored in a
distributed fashion to ensure security and privacy. Blockchain prevents any alter-
ation of the communicated data, and through cryptographic techniques, content
and message authenticity are secured.

In order to demonstrate the prevention approach, a lab setup will be used to
prove the practicality of the secure communication between smart meters and
servers at the utility. We will first set up a group of nodes (computers) in or-
der to create a Blockchain network. The Blockchain protocols and the security
protocols will be configured on every node, while tailoring all cryptographic al-
gorithms for a network that is supposedly composed of thousands of nodes.The
smart meters and utility will act as nodes – generators of transactions. We will
then perform actual testing on a Blockchain that will be implemented. Algorithm
and protocol refinement will be carried out according to how resilient the network
is. This setup aims to emulate an AMI and its interaction with the energy man-
agement system (EMS) which supports monitoring, controlling, and optimizing
the performance of the electric grid. It will include multiple simulations of the
various approaches suggested in this paper. These approaches differ in architec-
ture but serve the same purpose. The goal here is to find the approach with the
best outcomes and the fewest trade-offs.
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1.3 Objectives
The two thematic priorities addressed here are cyber security and Blockchain.
Cyber-security comes into play as a concept when dealing with securing the
two-way communication between the smart meters and utility servers in smart
grids. Blockchain is the tool to accomplish this security goal. The end goal is
to have communication that satisfies the CIA triad: confidentiality which is the
most important theme in this work in terms of dealing with securing the data
from malicious entities (thieves, eavesdroppers, counterfeiters), integrity which is
imperative for the communication to be successful (no power outages, theft of
power), and availability which is the core necessity of the communication since
without the relay of data (in both directions), nothing has been accomplished
compared with traditional grids. The work aims to contribute to the improve-
ment of power data distribution and proposes new approaches to secure it. These
approaches will be implemented on smart grids; the encompassing theme being
smart and customizable security solutions that ensure system protection.

4



1.4 Organization
This thesis is divided into several chapters beginning with this introduction in
Chapter 1. Chapter 2 discusses relevant background information ranging from
traditional and smart grids to blockchain and Ethereum specifics. Chapter 3
presents the work related to blockchain implementations for securing communica-
tion, smart grid current implementations for securing meter communication, and
smart grid meter communication securing with a focus on blockchain proposed
solutions. Chapter 4 details the proposed architecture concepts and chapter 5 de-
scribes the simulation setup for its various components. Chapters 6, 7, 8 describe
the architectures in terms of the followed scenario, the smart contracts devised,
the corresponding user interface created, the results recorded, the security prop-
erties achieved and the limitations inferred. Finally, Chapter 9 concludes this
thesis and presents possible future work and prospects. Refer to Appendix B
for any abbreviations made throughout this thesis. Refer to Appendix A for the
smart contract code also found at this GitHub repository [1].
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Chapter 2

Background

This thesis is composed of many different concepts combined into our architec-
tures. The thesis discusses the securing of the smart grid metering infrastructure.
The shift from the traditional electrical grid to the smart grid brought with it
many issues which have been tackled in various ways.

In this chapter, we provide an overview of the topics related to our work start-
ing with the traditional grid. We then shift towards the smart grid, discuss its
limitations, explain the details of the blockchain platform, and finally move into
the Ethereum blockchain platform we use in this thesis and the cloud platform.
The limitations that plague the traditional grid are not discussed since this is
not within the scope of the thesis. Moreover, the smart grid metering commu-
nication limitations, threats, and attacks are discussed in this chapter. These
challenges lead to the use of the blockchain platform with all its advantages. In
order to emphasize Blockchain’s promising role in this thesis, we first aim to pro-
vide a comprehensive understanding of the technology by exploring its different
aspects. Finally, we discuss Ethereum, the blockchain platform we have selected
to provide secure communication between the consumers and the utility in the
electric smart grid. The different sections in this chapter provide the necessary
foundation for the concepts brought forward in chapters 4, 5, 6, 7, and 8.
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2.1 Traditional Grids
The power system infrastructure faces an imbalance between the growing demand
for electric power and the limited available supply. There exists a growing con-
cern over suppliers’ continued ability to meet new and increasing electric needs.
The development of renewable energy sources (RES) is difficult to integrate and
implement in the traditional outdated power system infrastructure. These new
needs and developments engender myriad obstacles to the operation of genera-
tion, transmission, and distribution systems. Moreover, the distribution system
is not equipped to deal with periods of intense power consumption. The exces-
sively aged and thermally overloaded transformers can fail, causing interruption
to the electric power supply. These concerns, coupled with the ongoing limited
capital investment in new transmission systems, necessitate the development of
new cost-effective intelligent power systems and infrastructure.

The traditional power grid connects various power system elements,in order to
allow electricity to be transferred from the point of generation to the end con-
sumers. It employs electromechanical infrastructure, one-way distribution, and
sensors. It is centralized in the sense that power is generated from a central loca-
tion. These characteristics prevent the traditional power grid from acquiring real
time data about the health of the grid’s equipment and the exact consumption
rates. Thus, it is unfit to meet the increasing demand and is not suitable to in-
corporate renewable energy sources, such as wind and solar. The smart grid, on
the other hand, is becoming a natural replacement to the traditional power grid
where digital infrastructure is being used to enhance communication. The emer-
gence of smart grids came as a solution to a lot of the limitations that accompany
the traditional electric grid system.
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2.2 Smart Grids

The smart grid is not a singular technology. It is a combination of communica-
tion, management, and engineering. It was created to save energy and, in turn,
to save the environment. Smart grids provide increased power reliability. Unlike
in traditional grids, consumers can control their energy usage. They can view
their energy consumption through in-home displays.

Smart grids are composed of several entities: the utility company, transmission
and distribution entities, and consumers. Many sensors are deployed to pinpoint
problems and reroute power as needed. An integral part of the smart grid is
the use of sophisticated smart meters, which allow data to be tracked more effi-
ciently, at the consumer side. The meter data management system, promoted by
the utility, the smart meter, the communication network, and the advanced me-
tering infrastructure, are discussed in this section since these are the components
that are covered in this thesis.

2.2.1 Meter Data Management System and Utility

At the utility side, there is the meter data management system which handles the
smart meter data, collected from the Advanced Metering Infrastructure (AMI)
and delivered by smart metering systems. The MDMS deals with data manage-
ment and long-term data storage. It collects the data, cleans it, stores it, and
processes it to be analyzed for Demand Side Management, Demand Response,
and billing. These storage facilities have to be disaster proof since the data is
important to the utility’s load or outage management programs. Given the high
cost of securing this data, concepts such as virtualization and cloud computing
are implemented.

2.2.2 Smart Meter

Smart meters or energy consumption meters are deployed as gateways to the
smart grid. Smart meters have the ability to report the electrical data back to
the utility at different preset intervals. Smart meters/devices measure and gather
electrical consumption data. This data is timestamped to show the time at which
it was measured. The data also contains the unique meter identifier. A smart
meter is designed to be able to communicate with the MDMS and to receive com-
munication from the MDMS. The data received from the MDMS, which we refer
to as load balancing data, is accepted by the smart meter and is acted upon. By
replacing the old analogue meters with the new smart meters, the data measure-
ments provided by the consumers are more precise. Different billing mechanisms
are set to allow adaptive billing. This can motivate consumers to shift their en-
ergy consumption based on the utility control data. The consumers are more in
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control of their energy consumption due to the in-home display (IHD) units.

The properties that a smart meter should possess are placed in six categories
[2].

• Quantitative measurement which encompasses the accurate measurement
of the data.

• Control and calibration which encompasses the ability to adapt to variations
in the network.

• Communication which encompasses the sending and receiving of relevant
data.

• Power management which encompasses the ability of a system to maintain
functionality despite power loss.

• Synchronization which encompasses the reliable transmission of data in a
timely fashion.

• Display which encompasses the customers’ ability to view their electrical
consumption data.

2.2.3 Communication Network

The means through which the smart meters can send data to the utility and
vice versa is called the communication channel. The communication channel
can be wired or wireless. In our work, we focus on the wireless communication
channel between the consumers and the utility, specifically the Internet. As will
be mentioned in chapter 3, the communication network faces certain attacks and
threats that can be mitigated through the use of our blockchain-based solution

2.2.4 Advanced Metering Infrastructure

The advanced metering infrastructure (AMI) consists of smart meters, a two-way
communication network, and a utility. AMI has been used to facilitate the visu-
alization, processing, and management of data for both the consumers and the
utility. The AMI transmits the electrical data measured by the smart meters to
the utility. The AMI communication network should provide the path for secure
information flow.

The use of AMI enables demand side management and allows the integration
of green technologies. Smart meter systems provide efficient power system con-
trol and monitoring in addition to operation decisions that can be performed in
real-time and minimize outages and monetary and electrical loses. Conventional
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energy metering systems required manual collection of data and manual billing
whereas smart meter systems do not require any manual intervention; the smart
meters and the utility communicate via the AMI. The collection of consumers’
electrical data allows the utility to manage the electricity demand efficiently.

AMI is not limited to the distribution of energy and the communication of elec-
trical data. It also encompasses the water and gas distribution networks. Figure
2.1 shows the interaction of the smart meters on the consumer end with the
MDMS on the utility end via the communication network providing two-way
communication (blue and orange arrows).

Figure 2.1: AMI Subsystem Interaction
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2.3 Blockchain

Blockchain was invented by people/group of people under the name of Satoshi
Nakamoto as a transaction ledger for the Bitcoin cryptocurrency [3]. A blockchain
can be best described as a distributed computing architecture [4, 5, 6, 7]. Blockchain
is a peer-to-peer network that achieves consensus to manage a secure network. It
is a chain of blocks where each block contains transactions and a hash of the pre-
vious block. Blockchain creates trust through its decentralized nature where no
node has control (autonomous) or the power to modify the distributed ledger. It
enforces integrity through cryptographically secure transactions and the removal
of trusted third parties. It is a decentralized, transparent, auditable, incorrupt-
able chain of data. The traits that characterize blockchain are explained in the
coming subsections.

2.3.1 Network

A centralized network is a network that has a central network owner which is
a single point of contact for information sharing. A decentralized network is
a network that has multiple central owners that have copies of the resources.
This eliminates the problem of having a single point of failure that exists in the
centralized network. Finally, a distributed network is a network that avoids cen-
tralization completely where everyone get full access. Blockchain is a distributed
network where all nodes in the network have access to all the information avail-
able. The blockchain network is completely decentralized with no dependency on
a trusted third party.

2.3.2 Ledger

A database is where data can be managed, stored, edited, and accessed at any
time. A blockchain ledger is basically a database where data can be stored
and accessed anytime but cannot be altered. Thus, this ledger is append-only
and accordingly cannot be corrupted thereby guaranteeing immutability. Each
node in the blockchain network will have a copy (distributed over the blockchain
network as explained in subsection 2.3.1) of the synchronized ledger. This ledger
contains the transactions that were created and signed by different blockchain
nodes. These transactions are added to the ledger through the mining process
described in subsection 2.3.3.

2.3.3 Consensus

The act of adding a block to the blockchain is known as mining. The miner com-
pletes the proof needed to add a block to receive a financial reward. The miner
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takes transactions from the transaction pool and hashes them in a particular pat-
tern, in addition to producing other hashes as explained in subsection 2.4.6. The
hash of the previous block, nonce and timestamp are added to the block. There
are various proofs that can be completed, each with varying computational cost
and speed. The miner that has a higher stake, is trusted the most in completing
the proof, or succeeds in cracking the puzzle will add the block after the other
nodes verify that the proof is correct.

Proof of Work

Proof of Work requires miners to solve a hard math puzzle that changes frequently
(to limit the rate at which new blocks can be generated by the network) and is
agreed upon by all miners. Once the node validates the transactions and solves
the puzzle, the block is submitted to the network which validates the block to
guarantee that the submitter isn’t falsifying. If it is valid, it is added to the
distributed ledger, and the submitter gets a reward. The agreement is based on
majority consensus which is impossible to fake unless attackers have control of
more than 50 percent of the mining nodes. This needs high computational power.

Proof of Stake

Proof of Stake does not require solving computationally expensive problems. The
miner is chosen pseudo-randomly depending on the node’s wealth or stake. At-
tacking it would be expensive since attacking the network requires one to own the
near majority; therefore, the attacker will suffer severely from their own attack.

Proof of Space

Proof of Space is similar to Proof of Work. However, the puzzle requires that the
node has access to a lot of storage, so any node that has enough space to perform
mining can create a new block. This needs high storage capacity.

2.3.4 Cryptographic Techniques

Cryptographic techniques have been developed to provide data security, which
ensures that data transferred between parties has confidentiality, integrity, au-
thenticity, privacy, and to prevent malicious users from accessing and misusing
data. We mention a brief description of the concepts used in this thesis which
are hash functions, digital signatures, and asymmetric cryptography.

Hash Function

A hash function is a cryptographic technique used to ensure the integrity of the
data. Hashes of data are added to blocks that are chained together to produce
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the blockchain, which ensures it is tamper-proof. Transactions are also hashed
before being broadcast. This allows miners to verify the transaction’s integrity.

Digital Signature

A digital signature is a cryptographic technique used to ensure the authenticity
of the data. The user who is creating a transaction can sign the transaction using
his/her private key. The recipient of the transaction can use the creator’s public
key to validate it before adding it to the blockchain.

Asymmetric Cryptography

Asymmetric cryptography is a cryptographic technique used to ensure the confi-
dentiality of the data. The user creating a transaction can encrypt the data using
his/her public key and the recipient of the transaction can decrypt the data using
his/her private key.
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2.3.5 Platforms

There are various blockchain platforms that can be used. There are many
blockchain platforms currently in the ecosystem and table 2.1 shows three differ-
ent options: Bitcoin, Ethereum, and Hyperledger.

Table 2.1: Blockchain - Bitcoin vs. Ethereum vs. Hyperledger

Platform Bitcoin Ethereum Hyperledger
Currency Bitcoin Ether None
TPS 7 15 3000
Transaction
Mode

Manual Programmable Programmable

Transaction
Speed

Minutes Seconds Milliseconds

Transaction Fee Higher Lower None
Smart Contract None Yes Yes
Decentralized
Application

None Yes Yes

Type Public Public Private
Consensus PoW PoW/PoS PBFT
Model Transaction-

based
Account-based Account-based

Goal Digital Currency DApp Platform Platform to
Create Private
Blockchains

Bitcoin allows consumers to buy and sell items, property, or assets without being
easily traced. This has made Bitcoin a popular platform for illegal and illicit ac-
tivities. Ethereum allows entities or companies to build and deploy decentralized
applications. These applications could belong to many different sectors. Hyper-
ledger allows industry-wide collaboration in the process of developing blockchain
solutions and distributed ledger-based technology.
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2.3.6 Types

There are various blockchain platforms that can be used and each of these plat-
forms has a certain type. There are four blockchain types currently in the ecosys-
tem. Table 2.2 provides information on these four different options: public,
private, consortium, or hybrid.

Table 2.2: Blockchain - Public vs. Private vs. Consortium vs. Hybrid

Type Public Private Consortium Hybrid
Centralization No Yes Yes Yes / No
Security High Low Low Depends
Trust Needed No Yes Yes Depends
Participation Permissionless Permissioned Permissioned Depends
Access Everyone Selected Selected Depends
User Anonymous Known Known Depends
Mining Anyone Selected Selected Depends
Consensus Depends Depends Depends Depends
Ledger Per-
missions

Append-only Append-only Append-only Append-
only

Performance Slow Fast Fast Depends
Scalability Weak Good Good Depends
Transparency Full Restricted Restricted Depends
Privacy No Yes Yes Depends
Examples Bitcoin /

Ethereum
Hyperledger /
Ripple

Quorum /
Corda

Depends

Public

Public blockchain is open, which means that anyone can read the distributed
ledger and participate in the blockchain consensus mechanism. Accordingly, there
are no regulations for who can participate in the blockchain network activities.
The greater the number of nodes in the network, the more secure it is. Thus,
nodes are provided incentives to participate in the blockchain activities (mining
for instance). In order to mine, each participant in the whole blockchain network
must partake in consensus (PoW, PoS, PoSpace as explained in subsection 2.3.3)
leading to a low transactional throughput. Any transaction made can be viewed
by everyone in the blockchain network. The public blockchain, as its name states,
is public for everyone to use, and the distributed ledger is public for anyone to
read. Therefore, transactions on the ledger are not private. Public blockchains
are used in sectors that can afford for their data to be publicly viewed. Public
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blockchains can be used for voting systems, currencies, betting, and even video
games.

Private

Private blockchain is closed which means that anyone cannot read the distributed
ledger or participate in the blockchain consensus mechanism. Accordingly, there
are certain regulations for who can participate in the blockchain network ac-
tivities. A node must be invited to join based on certain rules. The number
of number of nodes in the network does not affect the security of the network.
There are rules set up to decide what each node’s role is. In order to mine,
dedicated miners must partake in consensus (PoW, PoS, PoSpace as explained
in subsection 2.3.3) leading to a high transactional throughput. Any transaction
that is made can only be viewed by the participants who have knowledge about
it in the blockchain network. The private blockchain, as its name states, is not
public for everyone to use, and the distributed ledger is not public for anyone to
read. Thus, transactions on the ledger are private to the nodes in the private
blockchain network. Private blockchains are used in sectors that cannot afford
for their data to be publicly viewed. Private blockchains can be used for mil-
itary or national defense systems, tax return benefits, supply chains, and even
government records.

2.3.7 Security Properties

Various security properties characterize the blockchain platform. These described
security properties - such as integrity, availability, authenticity, transparency,
auditability, accountability, and anonymity provided by blockchain - are integral
to our thesis work.

Integrity

Blockchain’s resistance to the modification of data can be accredited to their
distributed ledgers. These ledgers are immutable: they cannot be changed (mod-
ified or removed). Blockchain is thus tamper-proof since any modification to the
ledger will be detected.

Availability

Blockchain’s decentralization, as explained in subsection 2.3.1, provides availabil-
ity since each node has a full copy of the ledger. Therefore, attacks on the ledger
at certain nodes cannot cause damage to the entire network. There is no single
server that has complete control. In addition, transactions that already exist
cannot be deleted which maintains data persistence.
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Authenticity

Blockchain’s use of asymmetric cryptography (explained in subsection 2.3.4) pro-
vides the tools needed to generate a digital signature (explained in subsection
2.3.4) for a transaction. This authenticates the transaction that is sent. This
transaction is further verified for authenticity by nodes in the network.

Transparency

Blockchain’s transparency of information is provided through a verified distributed
ledger of transactions. It allows any of the nodes in the network (depending on
the blockchain platform used) to view the transactions made.

Auditabiliy

Blockchain’s transactions are traceable since every transaction made, added to
a block, and broadcast to the network is documented in the distributed ledger.
Tracking transactions is possible through the sue of the blockchain platform.

Accountability

Blockchain’s transparency and auditability provide the necessary tools to accom-
modate accountability. The distributed ledger can be referenced to check for any
needed data related to a certain blockchain address.

Anonymity

Blockchain’s blockchain-specific account per user provides anonymity. This ac-
count is used for all of the user’s transactions in the network. As long as there is
no link between the user’s blockchain address and his/her identity, the transaction
remains anonymous.

17



2.4 Ethereum

Ethereum is an open source, public, blockchain-based distributed computing plat-
form and operating system featuring smart contract functionality. Ethereum is
a transaction-based state machine where every transaction changes the state of
the blockchain. A transaction, after verification and placement in a block, be-
comes part of an immutable ledger. This ledger allows the Ethereum blockchain
to be tamper-proof. Other qualities include the ability to audit data and trace it
throughout its life-cycle. It is a programmatic platform that allows decentralized
applications (DApps) to run on a decentralized network. These decentralized ap-
plications running on the Ethereum network use smart contracts. The concepts
mentioned in this introduction will be described in detail in this section. All
details mentioned in section 2.3 are relevant.

2.4.1 Account

There are two types of accounts in the Ethereum blockchain network. The first
is the externally owned account (EOA) which is the user Ethereum account that
contains a public and private key. The EOA can send and sign transactions as
well as receive transactions. The second is the contract account which is the
address of the deployed smart contract. The contract account can only receive
transactions and execute smart contract code.

Each Ethereum externally owned account has a key pair: public key and pri-
vate key. The account’s private key should be kept safe. The account’s public
key is derived using the account’s private key. The account’s address is generated
by taking part of the hash of the account’s public key. The public key cannot be
used to derive the public key.

The Ethereum account’s private key is used to sign the transactions to prove
authenticity. This prevents a transaction from being altered after it is issued.

2.4.2 Smart Contracts

A smart contract is very similar to a real contract which governs a certain agree-
ment between two entities. Neither entity can break the contract. Similarly,
a smart contract is a digital agreement between two entities which enforces the
contract rules, negotiation, and performance. The code in the smart contract can
enforce conditions in an automated manner. The code includes predetermined
rules that if met, execute automatically. The transparency involved in these de-
centralized smart contract transactions as well as the elimination of the third
party actors makes the smart contract a desirable conflict-free resource.
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Many properties are ensured by the use of smart contracts. Transparency is
ensured through the availability of these smart contracts for everyone to see.
The smart contracts are thus trustworthy since any interaction with the smart
contract is documented for everyone to see. Through processing transactions us-
ing smart contracts, the time taken to complete a certain task with third party
entities is eliminated where if conditions are met, transactions will succeed oth-
erwise they will fail. This process eliminates along the way any issues that come
with the third party interaction including human error. The elimination of the
third party entities eliminates any additional costs.

A smart contract may be written in the Solidity programming language. It is
currently the most popular language in which to write smart contracts. Solidity
is compiled into EVM bytecode know as ABI (Application Binary Interface), and
can then be deployed to the platform. It is deployed onto the Ethereum network
to ensure certain conditions are met between different parties. Ethereum is the
most popular blockchain platform for creating and deploying smart contracts.
Deploying a contract is an Ethereum transaction and results in a contract ad-
dress. Just as an Ethereum account contains an Ethereum address, so does a
smart contract. This address is used by other Ethereum nodes to interact with
the smart contract.

Once deployed into the network, these contracts are stored safely in the state
storage on the ledger of each node in the network, making the contract tamper-
proof like any other transaction in the distributed ledger. Thus, when the smart
contract is deployed onto the network, the contract may not be altered. The
only way to edit a smart contract is to delete it, fix what is wrong, and re-deploy
it. Also, once deployed, this contract will be accessible by any account in the
blockchain network through the contract address mentioned above. All details
concerning the smart contract are accessible including the senders and recipients
of transactions, the transaction data, the bytecode executed, and the state of
each variable stored in the contract.

The smart contract also contains a balance like other Ethereum addresses. A
smart contract may receive a transaction that includes a transfer of ether (using
a Solidity payable function). This adds to the contract balance. A smart contract
may also send a transaction that includes a transfer of ether. This removes from
the contract balance.

A smart contract must be deterministic: given the same input, the same out-
put will be produced every time. A smart contract must be terminable: the
smart contract function execution must end given a certain time limit. Finally,
a smart contract must be isolated: the smart contract function execution will be
separated from the entire ecosystem to stop negative side-effects.
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2.4.3 Decentralized Application

A decentralized application is a new type of application that is not controlled by
a single entity. It can be noted from its name that it is decentralized. Decentral-
ized applications run on a peer-to-peer network of computers unlike centralized
applications. The smart contract is the core logic of the DApp on the blockchain
networks. Decentralized applications are not necessarily run on a blockchain net-
work. However, the DApps we discuss are. These DApps that are built on top
of the blockchain network ensure data may not be altered or deleted. The smart
contract source code which is the core logic is open-source; it can be viewed by
all blockchain users.

Developers can code smart contracts on Ethereum, which serves as a decentral-
ized application blueprint. There are various categories of DApps that currently
exist on the Ethereum blockchain including currency exchanges, identity man-
agement, energy management, health management and others. There are other
platforms that allow the creation of decentralized applications such as EOS, Tron,
Hyperledger and others.

Thus, to create a decentralized application, a developer must go through the
process of creating, testing, and deploying a smart contract. The smart contract
will govern how the DApp will function on the blockchain network. The smart
contract is tamper-proof and thus so is the DApp. The smart contract is open
source and consequently so is the DApp. Finally, the smart contract is not con-
trolled by a trusted third party and accordingly neither is the DApp. After having
dealt with the smart contract which can be seen as the back-end of the decentral-
ized application, the development of the front-end of the decentralized application
must be considered. The front-end of the application that can be coded using
basic HTML/CSS/JS, or it can be developed using the React library, Angular, or
any other framework. Using the web3 JavaScript library, which will be discussed
later on in this thesis, the user can interact with the Ethereum blockchain and
its existing smart contracts. The decentralized application thus consists of the
smart contract as back-end, the web3 library as intermediary, and the front-end.
It is important to note that the web3 library is not the only option in providing
interaction with Ethereum.

2.4.4 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) provides a run-time environment where
the smart contract code can execute. The smart contract must first be compiled
into bytecode that the EVM can read and execute. The EVM is hosted on each
of the Ethereum nodes. Any program that is executed in the EVM can be solved
due to the Turing Completeness of the EVM. The EVM is needed since smart
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contracts have an important property - isolation property - that makes interact-
ing with it dangerous. Subsection 2.4.2 discusses three properties. Anyone can
deploy a smart contract and interact with a smart contract. The smart contract
deployer could willingly or unknowingly introduce a virus or malicious software.
If the execution of smart contract interactions is not isolated, then this could
contaminate the whole system. This environment is sandboxed which means it
is safe and isolated.

2.4.5 Transaction

A transaction can be anything from sending Ether to another account, deploying
a smart contract, or communicating with a smart contract. When a transaction
is created, data is written to the blockchain. This updates the Ethereum state.
Transactions are available to any node in the network in real-time.

A smart contract contains functions that may be interacted with by different
Ethereum blockchain nodes. A smart contract call does not consume any gas
and does not update the Ethereum state. It is a call to a function that does not
update any variables and only returns a certain value. This is done by using the
“call” method. A smart contract can also create a transaction that modifies the
Ethereum state and consumes gas. This is done by using the “send” method.

A transaction is composed of various fields. There is the “nonce” field which
represents the previous transaction count for the account completing the trans-
action. There is the “to” field which represents the Ethereum address to which
the account completing the transaction is sending their transaction. There is
the “from” field which is the account completing the transaction’s Ethereum ad-
dress. There is the “value” field which is the amount of Ether that the account
completing the transaction wants to send. There is the “gasLimit” field which
is the maximum amount of gas that the transaction should consume. There is
the “gasPrice” field which is the amount to pay per unit of gas. Finally, there is
the optional “data” field. This field has multiple purposes. In the case of send-
ing Ether from one account to another or sending Ether from an account to a
smart contract or sending Ether from the smart contract to an account or send-
ing Ether from one smart contract to another smart contract, it will contain the
binary data (payload). In the case of smart contract deployment, it will contain
the desired smart contract bytecode. In the case of smart contract function call,
it will contain the hexadecimal representation of the desired function in addition
to any parameters that are required.

A transaction that leads to the deployment of a smart contract will not con-
tain a “to” field (this will be seen in subsections 6.4, 7.4, and 8.5) whereas any
other transaction will have a “to” field containing the Ethereum address for which
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the transaction is meant.

After the transaction is complete, the account creating the transaction will sign
it with its private key thereby authenticating the transaction. The transaction
can be validated by using the creator the transaction’s public key.

2.4.6 Storage

Ethereum is a state machine meaning an Ethereum transaction can modify the
state of the network. Ethereum stores and manages data using a trie. It is known
as the Merkle Patricia Trie1 which is a combination of the Merkle tree and the
Patricia trie.

Merkle Tree

is a structure that is used to efficiently determine if nodes contain the same data
through a tree of hashes. The top hash is the hash of their children nodes and the
hash on the level below is the hash of their children nodes. This hashing occurs
until the leaves that store data are reached. The hash tree structure is used in
Ethereum to detect inconsistencies in hashes in the blockchain. If the top hash
matches the hash contained, then the data stored preserves its integrity. If the
top hash does not match the hash contained, the data has been tampered with
and thus the whole path from the leaf to the root has been modified. This proof
is faster than other techniques and the data broadcast onto the network to prove
validity is small. The use of the Merkle tree structure in a distributed network
allows nodes to quickly identify if the data has been tampered with.

Patricia Trie

is a structure that is used to find the common prefixes. Each path from each
node contains a key that can be followed to the next node and so on building up
the prefix.
Ethereum has four trie data structures that serve different purposes in the net-
work. Account balance data is not stored in the blocks. Root hashes for the state
trie, transaction trie, and receipt trie will exist in each block header where the
block is mined into the blockchain network.

State Trie

This structure contains the Ethereum addresses. The root hash of this state trie
exists in the block header. There is only one state trie in the whole Ethereum
network, and it is constantly updated.

1https://medium.com/shyft-network-media/understanding-trie-databases-in-ethereum-
9f03d2c3325d
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Storage Trie

This structure contains the smart contract data specific to the Ethereum account.
The root hash of this storage trie exists in the global state trie. There is a storage
trie root hash for each Ethereum account.

Transaction Trie

This structure contains the records of the transactions made and will be added to
a specific block. The root hash of this transaction trie exists in the block header.
Once the block has been successfully mined, this structure cannot be updated.
There is a transaction trie root hash for each block.

Receipt Trie

This structure contains the results of the transaction made and will be added
to a specific block. The root hash of this receipt trie exists in the block header.
Once the block has been successfully mined, this structure cannot be updated.
There is a receipt trie root hash for each block.

2.4.7 Gas and Gas Limit

There exists two important fields to always consider in an Ethereum transaction:
gas limit and gas used. The gas is the amount of fuel required for a transaction
to be mined. The gas needed by the transaction is then multiplied by the cost
of the gas-per-unit to get the total gas price. The amount of gas used is can
be determined by looking at the function that is called. This function contains
smart contract code that is composed of instructions internally. Each instruction
in turn has a certain cost. Thus, the total cost, in terms of gas, for a called
function is the summation of the individual instruction costs.

The gas limit is the upper boundary a user is willing to pay for the transac-
tion to be successful. If the gas limit is high, the function is computationally
complex and hence needs more work to be executed. A standard ether trans-
fer needs a gas limit of 21,000 units of gas. This transfer does not include any
restrictions or complicated expressions that would jack up the gas used. Gas is
paid in ether, the cryptocurrency used in Ethereum.

The used gas per transaction differs drastically from deploying a contract, to
calling the simplest smart contract function concerned with changing a state
variable. In fact, in a smart contract, the amount of gas used differs if the func-
tion invoked is a call or an update. If the function is a call, this means that no
gas will be consumed, where a value is simply returned from the local distributed
ledger. If the function is an update, then gas will be consumed according to the
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simplicity or complexity of the function, where a change in the Ethereum state
will occur.

2.4.8 Event

An Ethereum event logs the change in state of the Ethereum blockchain which
can easily be retrieved and filtered. Events contain data about the change of
the state that occurred. They facilitate the communication between the user
interface of an application and the smart contract. Events can also trigger data
events in the user application and are a much cheaper form of storage. Storage
is expensive; therefore, using an event can be multiple times cheaper.

When an event is fired/emitted, logs are written to the blockchain. Events are
emitted through smart contract functions. When a user calls a smart contract
function that contains an event, and this transaction is mined in a block, the
event will be included with all parameters that it contains. The event is found in
the transaction receipt. Events may also be filtered to tailor the user need. Appli-
cations that interact with Ethereum smart contracts can easily track changes to
these smart contracts using events. Listing 2.1 shows an example of the structure
of an event.

1 event LoadBalancingSent(address indexed _to , bytes32 _value);

Listing 2.1: Example of Event

Each event log consists of topics and data. There can be up to 4 topics in an
event. The first topic will typically be the name of the event in addition to the
types of its parameters hashed using keccak256 hash. This signature is not in-
cluded if the sender emits an anonymous event. In this case it will be:
Keccak-256 Hash(LoadBalancingSent(address,bytes32)).

If the argument is declared as indexed, then it is treated like an additional topic.
So in this case, there are now two topics. One for the signature, and another for
the indexed argument. If the argument is not declared as indexed, then it will
be attached as data. Using data is a lot cheaper than including topics. Creating
an event takes a minimum of 375 gas. Any additional topic will cost 375 gas as
well, and each byte of data will cost 8 gas. This is the cost of emitting an event
and not the total cost of the transaction.

To be able to retrieve events, the web3 library is used to subscribe to an event or
just watch for an event. The web3 library will be explained in upcoming sections.
Users do not have to query the distributed ledger for data which is cumbersome;
they just have to watch for incoming events using the provided functions in the
web3 library. They can also filter these events based on the topics discussed
above to receive only certain events that matter to them.
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Event sourcing is used to automatically update state and publish events. Instead
of using the traditional approach and storing a variable in the smart contract to
save its current state, event sourcing uses the sequence of events that alter the
Ethereum state to recreate the current state.

2.4.9 Fee

A fee is an amount to be paid for services rendered. For every update function in
the Ethereum smart contract, there is a fee that must be paid in order to process
the transaction. This is due to the fact that an update function will change the
state of the Ethereum blockchain. This fee is calculated based on the instructions
in the function. The more complex the function, the more the transaction fee will
be. It takes, as mentioned, a certain amount of gas per statement. For every call
function in the Ethereum smart contract, there is no fee that must be paid since
a call does not change the state of the Ethereum blockchain and consequently
does not cost the user any money.

Ethereum is a Turing Complete system and can face the halting problem. Ex-
ecuting code depletes gas. Each function consumes a certain amount of gas. If
this amount of gas consumed by the function is more than the gas given, the
execution will exit before the code finishes running, and the transaction will be
aborted. This mechanism keeps Ethereum safe from Denial of Service Attacks
(DoS). Thus, if a function is called multiple times in an attempt to disrupt the
network, the attacker will have a hefty fee to pay. This also applies to creating
a function with a for loop that can consume all the gas allotted and lead to pre-
mature termination. The smart contracts are made in such a way that for loops
are expensive. The fact that fees exist on transactions denies malicious users
the ability to disrupt the network through infinitely sending transactions using a
loop.

2.4.10 Security Properties

Various security properties characterize the Ethereum blockchain platform. The
security properties described including integrity, availability, authenticity, au-
ditability, anonymity, and transparency provided by blockchain are integral to
our thesis work. The security against cyber attacks is mentioned in [2] concern-
ing confidentiality, integrity, availability, and accountability. Confidentiality is
compromised when unauthorized entities access stored meter data. Integrity is
compromised when unauthorized users pretend they are authorized and issue il-
legal commands. Availability is compromised when a component fails. Finally,
accountability is compromised when audit logs are tampered with.
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Subsection 2.3.7 describes in detail these different security properties that the
blockchain platforms achieve. The Ethereum blockchain achieves these same
properties. The Ethereum blockchain maintains the integrity of data. It main-
tains the availability of data. It ensures the authenticity and auditability of
data. The Ethereum blockchain ensures the pseudo-anonymity of the Ethereum
accounts. Finally, it ensures the transparency of data.
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2.5 Cloud
Cloud storage is a remote platform for scalable storage resources. The user can
send files manually or in an automated fashion to data servers. This data is
accessible through the cloud interface. Multiple servers exist and the fact that
data is replicated on multiple servers ensures availability.

2.5.1 Database

A database is a structured collection of information. It can either be centralized,
decentralized, or distributed. A cloud-native database is specifically built for the
cloud, runs on the cloud, and will provide the best services. The way the data
is stored improves flexibility and enhances clustering capabilities. Non-relational
databases can be deployed easily on the cloud, and Relational databases can be
used in the cloud but were not originally designed for distributed systems.

2.5.2 Security Properties

Various security properties characterize the cloud platform. The security proper-
ties described, including disaster recovery, accessibility and availability, scalability
and the benefit of low cost provided by the cloud, are integral to our thesis work.

Disaster Recovery

Cloud storage provides data recovery for issues faced. There is no risk of losing
data due to system failures since it is stored and backed up on external devices.
Cloud storage also provides easy back-up of data.

Accessibility and Availability

Cloud storage provides accessible data through consistent replication. The data
is stored on multiple data servers so it is accessible from any location with con-
nectivity. The remote data locations allow easy access.

Scalability

Cloud storage consumers only have to pay for the storage needed. The cloud
operator can accommodate growth or shrinkage in data storage needs.

Low Cost

Cloud storage is a cheaper alternative for local storage since it can be expensive.
The cloud provides the infrastructure and man power needed. It also allows
consumers to avoid the need to invest in expensive server infrastructure.
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Chapter 3

Literature Review

The objective of this literature survey is to give a general overview about some
important concepts related to the thesis work. We start by giving an overview
about the different attacks that can compromise the smart grid network includ-
ing Advanced Meter Infrastructure Attacks, False Data Injection Attacks, GPS
Spoofing Attacks, Time Stamp Attacks, Topology Attacks, and Man in the Mid-
dle Attacks. We move on to explain how blockchain (our selected platform) is
used in both the electrical field and various other fields to secure the communica-
tion between several entities. Our work depends on the wireless communication
protocols as described in [8]. The Advanced Metering Infrastructure uses wireless
systems for data communication in the smart grid.
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3.1 Advanced Meter Infrastructure Attacks

The Advanced Meter Infrastructure (AMI) is composed of a smart meter, a com-
munication link, and the Meter Data Management System (MDMS). These three
components work together to provide bi-directional communication in the smart
grid network. [9] proposes coupling the Public Key Infrastructure (PKI) mech-
anism and the ID-based authentication to offer authentication of smart meters.
This provides a secure environment for smart meters through mutual authenti-
cation and reduces the message exchanges. However, this solution relies on a
Trusted Third Party (TTP). [10] describes the need for authentication of the
entities that are part of the smart grid network to determine whether or not
they are authorized to interact in the network. These measures must ensure
confidentiality, integrity, availability and accountability in the AMI systems. Il-
legitimate control commands can be sent from the AMI headend to
reset meters. Audit logs of grid interactions are also vulnerable to
tampering. [11] discusses the security concerns in the AMI and the paths that
can be exploited to attack. A model is used to provide a metric to evaluate the
security mechanisms and a simulation study is conducted. Vulnerability analy-
sis, cyber security investment optimization, and cyber contingency analysis show
the impact on information exposure. The papers mentioned tackle few security
properties but none tackle confidentiality, integrity, availability, authentication,
and accountability which our thesis’s blockchain solution provides.

[12] discusses different aspects of the smart metering system by exploring the
advantages and disadvantages in terms of both the utility and the customers.
Smart meter communication networks are also presented in addition to the chal-
lenges in development and maintenance of smart meters. The communication
technologies are important to secure for the delivery of data. [13] proposes that
the meters can be Bluetooth based and will send the data wirelessly to the control
center. This paper proposes to change the current meters. [14] discusses
the Power Line Carrier (PLC) as being an effective technology for the power grid.
[15] also describes the Broadband Power Line and the PLC communications that
can transfer data using TCP/IP. This paper is vulnerable to attacks from
other TCP/IP devices. [16] proposes an algorithm that combines the MAC
algorithm and the IPv6 protocol to deliver the data. [17] proposes the use of
the Session Initiation Protocol (SIP) to communication in the smart grid. SIP,
however, is vulnerable to eavesdropping. [18] provides enhancements to
the Distributed Network Protocol 3 (DNP3) protocol to create a more secure
protocol. An enhancement is the addition of access rules for data to provide
authorization. [19] suggests using The Zigbee protocol for data transfer and [20]
proposes a peer-to-peer network over the internet that is cost-effective. Gen-
eral Packet Radio Service provides another communication medium [21]. These
three papers mention the use of a wireless communication which we
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use in our thesis but they do not address all the security measures
ensured in our thesis. Data transmitted through wireless communi-
cation is usually encrypted and authenticated allowing a decrease in
eavesdropping but the availability of the data is not ensured [22].

[2] and [23] are both surveys on the Advanced Metering Infrastructure. [23]
is the journal from which [2] is extracted. [23] mentions encryption to secure the
communication network since it must be reliable for transferring huge loads of
data. Everything mentioned in [2] is contained in the journal. [2] mentions the
different security aspects of the AMI. The privacy of the end user’s information
should be ensured. Detailed private data can be collected as shown in [24, 25].
Privacy can be ensured through load signature modernization [26]. Another pro-
cedure called minimization can be used to protect the consumer privacy through
hiding, smoothing, and mystifying data [27]. [2] mentions the attacks on meter
data through data collection or data transit, or from stored data. The details of
these attacks can be seen in [28]’s attack tree. Moreover, spoofing can occur if
encryption/authentication is not implemented properly. It can also lead to Man
In the Middle (MIM).

[29] surveys the threats to the metering systems in the smart grids where the
objectives are to maintain the availability of the power grid, provide legitimate
power consumption and delivery, and provide privacy for consumer data. Solu-
tions include authentication and encryption of communication to avoid tampering
of messages and eavesdropping. In addition, key management must be secure.
There could be attacks on the concentrator nodes where the data is aggregated.
Solutions include online monitoring of network traffic and detection techniques.
This paper does not tackle preventative measures related to data availability
and auditability. [30] also surveys the metering and communication systems and
identifies the possible threats/attacks and their solutions. [25] shows how fifteen
minutes of consumer data is sufficient to understand consumer usage patterns.
The threats and their solutions are documented in the miscellaneous attacks sec-
tion 3.4.

[31] and [32] both discuss techniques to prevent malware propagation in the AMI.
[31] proposes on-site investigation at certain time periods and monitoring of the
system to investigate anomalies using the Markovian decision process. This pa-
per implements a detection approach by checking deployed meters regularly. [32]
proposes a policy engine to check for anomalies in AMI traffic. This paper also
implements a detection approach by detecting a disturbance in certain properties
in the data payload.
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3.2 False Data Injection Attacks

A false data injection attack (FDIA) is when a malicious user compromises smart
meter electrical data (collected measurements) to evade detection at the utility
side. BY doing so, the malicious user causes the utility to act on incorrect data
and send out load balancing commands that compromise the power system either
physically or economically. Injecting incorrect data measurements into the smart
meter must be studied and performed in a coordinated fashion. The attack can
evade detection by allowing the estimation residual to fall below the test hypoth-
esis threshold. [33] describes the 2015 Ukraine blackout which was caused by a
cyber-attack. The attackers were able to covertly operate for extended periods
of time to gather information about the smart grid. They were able to intercept
from SCADA servers communication messages due to the lack of a crypto-
graphically secure communication protocol in the SCADA communication
layer.

To mitigate the threat of receiving incorrect data from consumers, the utility
put in place the bad data detection (BDD) unit which gets rid of incorrect mea-
surements. FDIA can still circumvent this unit and inject false data into the
value of the estimated state. [34] provides a survey on FDIA literature. It states
that measurements can be altered in two ways. The RTUs could be manipu-
lated or the meter could be compromised leading to incorrect data reported
to the utility. [35] provides a review of the FDIA literature as well. Measures
that protect the power grid against FDIAs include securing physical power grid
components [36], enhancing the communication security, or changing the
structure of information flow in the grid [37]. Many papers explain the attack-
based cyber topology capable of disrupting the electrical data through false data
injection attacks. [38] discusses an attack that causes the customers in the market
to pay higher electrical bills. This is done by small continuous attacks extending
over a long period of time. This affects the customers and not the power system.
This attack is done by attackers with full knowledge of the smart grid network
topology and can compromise several meters to send false information to
the utility. [39] and [40] state that full knowledge of the smart grid network is
not necessary. Information about the region that will be attacked is sufficient for
the attack [41]. [42] discusses the attacks where the malicious users control a set
of smart meters and can alter the measurements of these meters. [43] discusses
the influences of FDIAs on the power system’s static security assessment (SSA).
The attacker can manipulate the secure and insecure signals by injecting false
data which would lead the utility to operate using false data. This is possible
through the assumption that an attacker can falsify meter measurements.
[44] shows the economic impact of the false data injection attacks on the power
market. It displays how attacks can be constructed and executed without being
detected and their economic effects. [45] discusses the relationship between false
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data injection attacks and the electrical market operations. It proposes an on-
line attack that does not need the network topology to launch an attack. It can
execute the attack in real-time through data streams of meter mea-
surements. To defend against this attack, a detection scheme is put in place.
Unlike our work, this paper tends toward a detection scheme rather than a pre-
vention scheme. The papers in the section show the need for a secure
communication channel for the cases where false data is injected in the
network and not through compromised meters.
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3.3 Miscellaneous Attacks

Many other attacks exist on the smart grid network and operations. One of the
various attacks is the time stamp attack (TSA). [46] shows the effectiveness of
time stamp attacks which target the smart grid time information. The smart
meters are equipped with a global positioning system to get precise times for the
synchronous activities in the smart grid. GPS spoofing is performed. In the com-
munication infrastructure of the smart grid, meter data is transferred with the
time stamps. The utility uses this data for taking actions for DSM and analyzing
the system state. As a result, a time stamp attack will have a negative impact
on the utility’s decisions for the grid. The paper shows the need for a se-
cure communication infrastructure that will not be vulnerable to time
stamp attacks. [47, 48, 49] describe other instances of GPS spoofing attacks
leading to synchronization issues in the grid.

Topology attacks in smart grids are discussed in the next few papers. In [50],
a proposed method to determine an attacking region based on minimal network
information is discussed. They show the real-time topology of the grid’s vul-
nerability. [51] describes the undetectable attacks on the smart grid network
and how to prevent them. Man in the Middle attacks, which exploit the lack of
an authentication system to allow a user to impersonate a legitimate user, are
considered. This allows the malicious user to replace authentic packets
with fake packets. This misleads the utility and can falsify network topology.
To prevent such strong attacks, [51] proposes to secure a subset of meters as
their solution. [52] describes different cyber-topology attacks: line-addition at-
tack, line-removal attack, and line-switching attack. The attacks mislead the
utility in their decision-making process through introducing fake grid
topology information. These attacks lead to economic loss for both the utility
and the consumers. Topology errors lead to erroneous state estimation [53] and
influence optimal power flow [54].

The traditional communication systems are already vulnerable to attacks vio-
lating integrity, privacy, authorization, and accountability. The new smart com-
munication systems integrate information and communication technology, leading
to even more vulnerabilities. [22] provides a survey of the power system cyber
security issues and their solutions. Unauthorized access to private networks can
be solved by using firewalls.Firewalls need to contain numerous rules to
cover all aspects and this is not feasible. In addition, they cannot
secure against spoofing attacks and other vulnerabilities. Ensuring con-
fidentiality and integrity will require cryptographic mechanisms. However, most
communication networks (DNP3 and MODBUS) used to secure SCADA and
others do not use these mechanisms [55, 56]. [57, 58] proposes a secure frame
format in addition to a lightweight authentication mechanism in DNP3 to secure
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the communication protocol, and [59, 60] proposes authentication mechanisms in
MODBUS to secure the communication protocol. Our thesis uses blockchain
to secure the communication network since there limitations in fire-
walls and Intrusion Detection Systems that still lead to malicious at-
tacks such as coordinated cyber attacks. In addition, the SCADA system
is a target for attacks that can later target AMI and DER systems. Information
exchange through WANs is vulnerable [61].

[62] mentions different cybersecurity issues in the power system communication
systems. One of these issues is the possibility of reading the consumers’ consump-
tion or the utility’s control data remotely without being detected. [63] mentions
customer information leakage due to networking intrusion. [64] reviews threats
on the smart grid communication networks. Attacks are studied on network
availability, data integrity, and information privacy all of which are our concerns.
In data integrity and information privacy, attackers target consumer information
with the goal of modifying it to corrupt data exchange (data integrity) or eaves-
droping to acquire information (information privacy). Solutions for these types
of attacks include authentication protocols [65, 66, 67], intrusion detection, and
firewall/gateway design. Energy fraud, which could occur as shown in the Hack
in Paris1 because of re-injected old packets, could not occur with our solution
due to the use of timestamps.

Another attack that will be discussed is the infamous attack on the Ukrainian
power grid. [68] explains the steps taken during the attack and provides measures
that could be taken to mitigate the resulting issues. It describes ways to deal
with the SCADA defense. The Ukrainian grid experienced a set of coordinated
cyber attacks where illegal third parties accessed the computers and SCADA
systems. This attack lead to power outages affecting around 225,000 customers
for several hours. One of the recommendations made to ensure the safety of the
power grid system is to ensure that logging of actions on the grid is enabled. This
guarantees accountability; in the event of a future attack, the malicious users will
be identified. Other recommendations include event monitoring systems, config-
uring intrusion detection systems, and personnel training. This paper identifies
techniques and procedures used in this attack. It shows the need for a secure
communication infrastructure that contains authentication standards
in addition to data provenance.

1https://hackinparis.com/archives/2014/
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3.4 Various Solutions

[69] proposes an architecture that utilizes distributed intrusion detection to im-
prove cybersecurity in the wireless mesh network by analyzing network traffic
using machine learning and artificial immune systems. This paper does not tar-
get preventing malicious attacks. Instead, it aims to detect and identify these
malicious attacks in order to prevent them from recurring. [66] discusses an
encryption scheme used to secure electricity grids against adaptive ciphertext
attacks. This paper tackles confidentiality of data but does not concern itself
with the other properties we tackle. [70] discusses the Camenisch-Lysyanskaya
signature that provides privacy, authenticity, and auditability.

[71] describes a privacy preserving mechanism where utilities consumers can col-
lect measurement data. It introduces privacy preserving nodes that are controlled
by independent parties. These parties could be a point of failure. [72] mentions
attribute-based encryption as well as pseudonyms to ensure anonymity which
in turn enhances privacy whereas [73] uses homomorphic encryption to ensure
privacy. [74] introduced a privacy preserving range query scheme over encrypted
metering data to provide privacy of data and authorization of consumers accessing
data. These solutions achieve confidentiality and privacy but do not tackle other
security properties in the metering and communication systems. [75] proposes
a key management scheme that lacks scalability and suffers from desynchroniza-
tion attack. [76] proposes a scalable key management scheme by using both an
efficient key tree technique and an identity-based cryptosystem. It also mentions
that key management schemes designed for IT systems are not compatible with
the smart grid heterogeneous components. Authentication can occur using Diffie-
Hellman for lightweight message authentication in smart grid communication in
[77]. [78] shows that a proposed key management system protocol that mitigates
man-in-the-middle attacks [79] is susceptible to man-in-the-middle attacks, and
[78] proposes a key distribution protocol using trusted third parties for the smart
grid. This paper depends on a trusted third party which we remove in our work
for security purposes. [75] also discusses a key graph solution based on key man-
agement systems. [80] employs Physically Unclonable Function for key exchange
and authentication in the smart grid’s advanced metering infrastructure. It relies
on a single centralized server to store all the smart meter data thus making it un-
scalable. These solutions achieve availability and integrity but do not tackle other
security properties in the metering and communication systems. [81] mentions the
mutual inspection strategy between the data aggregator and the smart meters.
It does not consider other communications. [82] discuss communication proto-
cols based on peer review strategy that provide accountability in the smart grid
communication. These solutions achieve non-repudiation but do not tackle other
security properties in the metering and communication systems. [83] surveys the
cyber security threats on communication and their solutions for the smart grid.
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For privacy, [84] proposes compressed meter reading for communicating the data
where the randomness of the sequence provides privacy. [85] proposes encrypting
the data using keys. [86] puts forward a method to securely anonymize the data
communicated but requires a third party for authentication. For integrity, [87]
proposes semantic checks, certificates, and trusted third parties. For availabil-
ity, the International Standards Organization and International Electrotechnical
Commission propose adding to the data transmission information that will be
used to verify the authenticity. [88] proposes the use of digital signatures and
timestamps to authenticate users. These solutions tackle each security property
individually but do not handle them all at once.
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3.5 Using Blockchain in the Energy Field

In most of these papers, blockchain technology is used on top of the smart grid
to facilitate energy trading in its various forms. It is used to promote the buying
and selling of electricity/power in local neighborhoods and microgrids. These pa-
pers assume the smart grid’s advanced metering infrastructure’s communication
is secure.

LO3 Energy2 uses the Ethereum blockchain to allow members of the microgrid
to interact using transactions which provided more flexibility in the microgrid.
It also allowed “prosumers” to sell their energy to other microgrid members. It
enables transparency of the transactions. Brooklyn Microgrid3 and the New York
TransActive Grid4 are blockchain-based energy marketplaces. Decentralised En-
ergy Exchange5 is a non-blockchain-based online marketplace that allows house-
holds to sell their excess renewable energy. Likewise, in Australia, AGL6 also
began implementing a blockchain-based solar trading program. WePower7 offers
a green marketplace using blockchain to buy and sell energy from producers.
In Singapore, SP Group8 created a blockchain-powered certificate marketplace
platform that allows consumers to buy electricity from green energy providers.
ACCIONA Energía9 is using blockchain technology to trace renewable electricity
generation. Volt Markets10 is an energy tracking platform. Ethereum blockchain’s
smart contracts are used to trade and track energy. European utilities are also
participating in the new trend of using blockchain technology in energy trad-
ing. Ponton11 uses Enerchain, a blockchain-based energy trading market. Lition
Energy Exchange12 developed Ethereum smart contracts to provide buyers and
sellers the ability to sign energy transactions for trading energy. EW13 launched
the blockchain-based Energy Web Chain to track the ownership of renewable en-
ergy production. In Texas, GridPlus14 customers can trade electricity utilizing
cryptopayments. Even Shell15, invested in blockchain-based energy tracking star-
tups.

2https://lo3energy.com/
3https://www.brooklyn.energy/
4http://www.solutionsandco.org/project/transactive-grid/
5https://arena.gov.au/projects/decentralised-energy-exchange-dex/
6https://www.agl.com.au/
7https://www.wepower.com/
8https://rec.spdigital.io/
9https://www.acciona.com/pressroom/news/2020/february/acciona-pioneering-

application-blockchain-emissions-trading-alliance-climatetrade/
10https://voltmarkets.com/
11https://www.ponton.de/b2b-integration/blockchain/
12https://www.lition.io/
13https://www.energyweb.org/
14https://gridplus.io/
15https://www.shell.com/inside-energy/blockchain.html
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[89] mentions the pros and cons of using blockchain in the energy system. It
discusses the use of Ethereum smart contracts for making energy transactions
and the issues regarding transaction limitations, the need for data manipulations
at time, and the need for legal regulation. [90] mentions using blockchain tech-
nology to optimize distributed energy systems. [91] proposes the use of a private
blockchain for distributed communication to provide energy within a decentral-
ized local energy market. [92] proposes a game theory approach to provide a
demand side management model using blockchain to ensure secure implemen-
tation. Blockchain provides a flexible peer-to-peer power trading system. It
is used to communicate privately. [93] discusses using blockchain to set up a
microgrid electric network where local microgrid consumers and producers can
trade energy. This paper proposes the use of smart contracts to manage the
energy trading transactions. [94] proposes the use of blockchain technology to
exchange information for energy trading by utilizing the distributed ledger to
improve quality of life. [95] proposes the use of blockchain, multi-signatures, and
anonymously encrypted messaging streams to secure energy trading. This paper
provides more privacy than centralized trading solutions. [96] proposes a frame-
work using blockchain for the energy sector and explores the challenges of doing
so. The framework incorporates institutional, environmental, social, economic,
and technological aspects. [97] is a thesis dissertation expressing the advantages
and challenges of using the blockchain in the smart grid. The use of blockchain
is mentioned for trading energy in microgrids where “prosumers” can exchange
their surplus energy in the local market.

The papers mentioned in this section have been placed in table 3.1 for a clearer
understanding of the concepts we have implemented in this thesis. The occur-
rence or lack thereof of these concepts shows the difference between these papers
and what we have implemented.
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Table 3.1: Using Blockchain in Energy Field: Paper - Blockchain - Type - Smart
Contract - Simulation

Paper Blockchain Type Smart Contract Simulation
[89] Ethereum - Yes No
[90] - Private No No
[91] - Private No Yes
[92] ZigLedger Consortium Yes Yes
[93] - - Yes No
[94] - - No Yes
[95] - - No Yes
[96] - - No No

In all the papers above, blockchain technology is used to promote the buying and
selling of electricity/power in local neighborhoods and microgrids. These papers
assume the smart grid’s advanced metering infrastructure’s communication is
secure. In our approach, we do not adopt the assumption that the two-way com-
munication is secure and propose an architecture that ensures the security of this
two-way communication. Any breach in the two-way communication between the
utility and the consumer entities rules any proposed application in the smart grid
as useless. Hence, our architecture can act as a building block that augments the
proposed approaches and secures all communication between any two points in
the smart grid, using public Ethereum blockchain and cryptography functions.
A few other papers have tackled the use of the blockchain network in the smart
grid. We will discuss these papers and have formulated two tables for a clearer
understanding of their concepts. The occurrence or lack thereof of these concepts
shows the difference between these papers and what we have implemented.

[98] briefly discusses using the Ethereum blockchain for dealing with smart meter
data. They show a simple, one function contract, that handles meter data. The
paper is very brief in its description of what happens in the network, lacks many
details for a proof-of-concept, and contains no mention of a simulation or security
properties achieved. [99] discusses the use of blockchain in the smart grid. The
authors in [99] propose a new distributed blockchain-based protection framework.
This framework protects the power system in terms of self-defensive capabilities.
This, in turn, increases the robustness of the modern power grid by implement-
ing a private blockchain and re-configuring some blockchain concepts such as
broadcasting transactions, verifying transactions, mining and block generation,
and consensus, while using the smart meters as nodes in this private network.
This proposed framework does not implement smart contracts using
the Ethereum network as we have done in our thesis. The use of smart
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contracts enhances security and provides reliability. This framework
also could lead to information disclosure since the data is redundantly
placed in distributed storage without considering data confidentiality
or user privacy. [100] uses blockchain technology, including smart contracts, to
mitigate the issue of compromising data and to provide consumers accessibility to
their data. [100] uses a sovereign blockchain with side blocks. The architecture
proposed depends on a registration and an authentication layer initially. This
layer is accessed every time a node logs onto the system. Once in the system,
nodes can communicate data to the smart grid network. This data will also be
stored in a data center which causes redundancy. In addition, certain details
such as using the smart contract for creating private and public keys is
not effective since everything done on the smart contract is public and
documented on the ledger. Thus, all data encrypted using these keys
is neither authentic nor confidential. [101] suggests using Rainbowchain to
secure the smart grid and energy exchange. Rainbowchain is a blockchain tech-
nology that contains seven authentication techniques. It is described in detail
in [101], proving that it provides superior performance in terms of integrity and
scalability. However, the data collected by the smart meters may lead
to the disclosure of the users’ personal information. [102] proposes the
use of private blockchains and pseudonyms to preserve privacy. As we discuss
in this thesis, the use of pseudonyms is not enough to preserve the
anonymity of the user and thus the users’ privacy. In addition, the
division of the users into small groups increases the risk of the 51%
attack.

The three works we discuss all revolve around providing integrity-first IoT com-
munication using the Ethereum blockchain. [103, 104] describe the use of the
Ethereum blockchain to provide integrity-first communication in the smart grid.
This paper focuses on reducing the blockchain code size in addition to not stor-
ing blockchain data on the device. The focus of the paper is just on the
integrity of the data and does not deal with data privacy. In the the-
sis which tackles IoT integrity-first communication, [105] discusses a light client
that is an integrity first communication protocol for IoT devices based on the
Ethereum blockchain. This ensures the data is not compromised and the frame-
work is lightweight. This proposed framework does not implement smart
contracts using the Ethereum network as we have done in our thesis.
The use of smart contracts enhances security and provides reliability.
The three works we’ve discussed revolve around IoT integrity in communication
using the Ethereum blockchain. The works, however, do not tackle the trans-
action latency problem which is found in the Ethereum blockchain. The works
describe light clients in the Ethereum network which leads to the need for trust
in the network. The works also do not mention the use of smart contracts we
discuss in our work.
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In order to provide a clearer understanding of the papers we compare ourselves
with respect to the usage of the blockchain in the smart grid, these papers have
been organized in tables 3.2 and 3.3. The occurrence or lack thereof of these
properties and concepts shows the difference between these papers and what we
have implemented.

Table 3.2: Comparing Security Properties (Part 1): Paper - Confidentiality -
Integrity - Availability - Privacy - Scalability

Paper Confidentiality Integrity Availability Privacy Scalability
[98] No Yes Yes No No
[99] No Yes Yes No Yes
[100] No Yes Yes No Yes
[101] No Yes Yes Yes Yes
[102] No Yes Yes No Yes

[103, 104] No Yes Yes No No
[105] No Yes Yes No No

This Thesis Yes Yes Yes Yes Minimal

Table 3.3: Comparing Concepts: Paper - Blockchain - Type - Smart Contract -
Simulation - Other Components (Components)

Paper Blockchain Type Smart Contract Simulation Components
[98] Ethereum - Yes No None
[99] - Private No Yes Distributed Storage
[100] Sovereign Private Yes No None
[101] Rainbowchain Private Yes Yes None
[102] - Private No Yes None

[103, 104] Ethereum Public No Yes None
[105] Ethereum Public No Yes None

This Thesis Ethereum Public Yes Yes Cloud
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3.6 Using Blockchain for Security in Various Fields
In section 3.5, blockchain technology is used on top of the smart grid to facilitate
energy trading in its various forms. It is used to promote the buying and selling
of electricity/power in local neighborhoods and microgrids. These papers assume
the smart grid’s advanced metering infrastructure’s communication is secure. In
this section, blockchain technology is used in various fields to secure commu-
nication and provide security features for applications, governments, protocols,
and systems. The lack of use of blockchain to secure the two-way communica-
tion in the smart grid has led us to research the ways blockchain has secured
communication in other fields and applications to compare the effectiveness.

3.6.1 Performance

Blockchain is discussed in terms of security issues, scalability problems, and other
performance metrics. Its performance in various fields is discussed specifically in
the area of the Internet of Things.

[106] surveys the security issues that IoT devices tackle. It also reports the differ-
ent ways blockchain can mitigate certain issues using the blockchain properties
such as secure communication, integrity assurance, authentication, authorization,
and privacy. [107] describes the environments where blockchain mechanisms play
an important role for the Internet of Things. It also describes how blockchain
can be used for sensors that don’t have encryption or have weak encryption and
have weak communication protocols. Using blockchain technology can provide
integrity for information transfer, store sensor data, and enable micro-payments.

Security issues in the Internet of Things can be solved using blockchain which
will secure communication between devices. Two systems are created with and
without blockchain to study the effects of blockchain on IoT security in [108]. It
shows that implementing blockchain proves to provide a higher level of security
than systems without it. Avalanche effects are observed in relation to the hash
algorithm and encryption where blockchain system proved to be more secure.

[109] compares the performance and scalability of a web-based groupware com-
munication application using blockchain and non-blockchain technologies. The
system performance is tested using multiple cloud computing configurations.
The blockchain implementation scales linearly until a certain threshold and high
throughput and low response time can be achieved if enough servers are deployed.
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3.6.2 IoT and Communication

Blockchain’s communication mechanisms in various fields are discussed specifi-
cally in the area of the Internet of Things.

[110] describes how blockchain can be used to solve security and trust issues in
the Internet of Things through the insertion of sensor data in blockchain trans-
actions. This provides duplication of the sensors’ data in public and distributed
ledgers, timestamps, data authentication, and non-repudiation. [111] states that
the solution to making IoT systems more secure is the use of blockchain. To
provide secure communication, when IoT devices communicate, they will pro-
cess a transaction and store it in the ledger. In addition, to ensure integrity
and confidentiality, communication must be authenticated and encrypted effi-
ciently. The use of a decentralized system provides a peer to peer network and
removes the need for a central server. [112] provides a lightweight blockchain-
based architecture for smart greenhouse farms to provide security and privacy;
in this architecture, a local blockchain is centrally managed by the owner. By
adopting blockchain technology, challenges such as decentralization, anonymity,
and security in IoT are addressed because blockchain provides increased data
transparency and immutability. [113] proposes a security framework for smart
devices to provide secure communication using blockchain. [114] explores the op-
portunities that blockchain provides to secure the IoT communication. Various
blockchain platforms are used to develop applications for IoT such as IoTify16 and
IOTA17. [115] proposes the use of blockchain’s transparent and redundant nature
to secure communication. The proposed solution uses smart contracts to verify
users’ identities and their public keys by mimicking the PKI mechanism. This
paper’s future work will focus on using blockchain’s smart contracts to deal with
certificate creation, validation, and storage. [116] proposes the use of blockchain
technology and the cloud to secure drone communication for the collection and
transmission of data. The system proves to be reliable for a large number of
drones in addition to the securing of data integrity and cloud auditing. This
thesis resembles work done in this paper to provide data integrity as well as scal-
ability through the use of blockchain and cloud services in unison. [117] proposes
the use of smart contracts in the blockchain for the payment of toll fees through
vehicle to vehicle communication. [118] describes the use of a smart contract on a
private blockchain to store, access, and monitor the data flow in the home. This
helps amend privacy issues in smart home systems due to centralization.

16https://iotify.org/
17https://www.iota.org/
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3.6.3 Services

Blockchain’s services in various fields are discussed specifically in the area of the
Internet of Things.

[119] also describes a blockchain-based PKI solution. It is a certificate sys-
tem based on a permissioned blockchain. [120] shows how blockchain replaces
the need for centralized applications. Blockchain resolves traditional challenges
where it is fully distributed and provably secure. Blockchain-based Identity-Based
Cryptography (IBC) solutions can use blockchain as a distributed database to re-
solve traditional IBC problems such as centralization and single point of failure.
Blockchain-based Public Key Infrastructure (PKI) solutions are distributed so
they don’t have a central point of failure. [121] explains that interacting things
can authenticate each other and communicate securely through the Ethereum
blockchain based on principal of “the friend of my friend is my friend”. It ensures
that stored information is available for all participating nodes and protected from
modifications using blockchain. [122] proposes a data sharing solution for health-
care that uses blockchain technology in addition to a channel formation scheme.
Integrity is preserved by using proof of integrity validation which is found on the
cloud. [123] proposes the use of blockchain for government services to remove the
need for a trusted third party and to create a cheaper alternative while reduc-
ing fraud. Governmental activities that can be done on the blockchain include
identity management, voting systems, record keeping, healthcare management,
and smart cities. [124] also proposes the use of blockchain for ensuring the ac-
countability and integrity of government operations specifically for military use.
[125] discusses the use of blockchain for logging application events. [126] discusses
the possibility of using blockchain for authentication requirements in distributed
environments to overcome the issues encountered with Kerberos. It discusses
the strong points that blockchain provides in a general sense. [127] presents
a blockchain-based distributed access control system for IoT devices. This pa-
per mentions the issue of scalability in such a system and discusses how it was
handled. In this thesis, we deal with the issue of scalability and mitigate it sim-
ilarly. [128] tackles the use of blockchain to replace the traditional client-server
request-response mechanism. This provides the auditability needed for controlled
resources.

[129] describes the use of the blockchain smart contracts to facilitate negotia-
tions for trustless transactions. Role based access control is provided through
the use of blockchain. [130] describes the use of the ledger to log the electrical
market exchange data. [131] describes how to use a blockchain-based solution for
electricity trading. The use of smart contracts increases the scale and security of
this energy application. [132] proposes a blockchain-based anonymous reputation
system to break the link between real identities and public keys. This proposed
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method preserves privacy through the use of pseudonyms. The messages are
saved on the distributed ledger. [133] proposes a blockchain-based solution for
distributed access control systems for the Internet of Things. Smart contracts
are used to control devices that post data by creating a transaction between IoT
devices and the ethereum network. It is proposed to standardize communication
and create a fault-tolerant infrastructure using the Ethereum blockchain. [134] is
a decentralized DApp that uses smart contracts on the Ethereum blockchain to
share objects. It is fully deterministic and publicly available on blockchain. [135]
describes a full distributed access control system for the Internet of Things based
on blockchain technology. The simulation results prove blockchain could be used
as access management technology in specific scenarios in IoT. [136] proposes the
use of blockchain for the election process. Encrypted votes are accumulated in
the form of block on each polling booth. This method provides data provenance
and ensures the infeasibility of tampering with the votes through the distributed
ledger. [137] proposes the use of a blockchain-based architecture for sensory data
produced and stored in semi-trusted data storage locations. Blockchain provides
trust and a decentralized mechanism for IoT.
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In order to ensure a clearer understanding of the security properties and concepts
we have implemented in this thesis, the papers mentioned in this section have
been organized into tables 3.4, 3.5, 3.6, and 3.7. The occurrence or lack thereof of
these security properties and concepts show the difference between these papers
and what we have implemented.

Table 3.4: Using Blockchain for Security – Properties (Part 1): Paper - Confi-
dentiality (C) - Privacy (P) - Integrity (I) - Availability (Av)- Authenticity (Au)
- Anonymity (An) - Scalability (S)

Paper C P I Av Au An S
[117] - - Yes Yes Yes - -
[133] Yes Yes Yes Yes Yes - -
[134] - - Yes Yes Yes - -
[118] - Yes Yes Yes Yes - -
[121] - - Yes Yes Yes - -
[111] - - Yes Yes Yes - -
[112] - - Yes Yes Yes - Yes
[131] - - Yes Yes Yes - -
[109] - - Yes Yes Yes - Yes
[135] - - Yes Yes Yes - Yes
[130] - - Yes Yes Yes Yes -
[99] - - Yes Yes Yes - -
[136] - - Yes Yes Yes - -
[137] - - Yes Yes Yes - -
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Table 3.5: Using Blockchain for Security – Concepts (Part 1): Paper - Blockchain
(BC) - Type - Smart Contract (SC) - Simulation - Other Components (Compo-
nents) - Size - Sector

Paper BC Type SC Simulation Components Size Sector
[117] - Public Yes No - Big Toll Payment
[133] Ethereum Private Yes No - Big Secure IoT Communication
[134] Ethereum Public Yes No - Big Sharing App
[118] Ethereum Public/Private Yes No Cloud Small Secure Smart Home
[121] Ethereum Public Yes Yes - Big Authentication System
[111] - - No No Cloud Big Secure IoT Communication
[112] - Private No No Cloud Small Greenhouse Farming
[131] - - Yes No - Big Distributed Energy Markets
[109] Tendermint Private No Yes Database Big Communication Protocols
[135] Ethereum Private Yes Yes - Big IoT Access Management
[130] - - No No Cloud Small Communication in Microgrid
[99] - Private No Yes - Big Data Protection in Power
[136] - - No No Database Small Securing Electoral Voting
[137] Ethereum Private Yes Yes Cloud Big IoT Data Integrity

Table 3.6: Using Blockchain for Security – Properties (Part 2): Paper - Confi-
dentiality (C) - Privacy (P) - Integrity (I) - Availability (Av)- Authenticity (Au)
- Anonymity (An) - Scalability (S)

Paper C P I Av Au An S
[113] - - Yes Yes Yes - -
[122] - - Yes Yes Yes - Yes
[123] - - Yes Yes Yes - -
[98] - - Yes Yes Yes - -
[115] Yes - Yes Yes Yes - -
[100] Yes Yes Yes Yes Yes - -
[125] - - Yes Yes Yes - -
[116] - - Yes Yes Yes - Yes
[127] - - Yes Yes Yes - Yes
[124] Yes Yes Yes Yes Yes - -
[128] Yes Yes Yes Yes Yes - -
[101] Yes - Yes Yes Yes - Yes
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Table 3.7: Using Blockchain for Security – Concepts (Part 2): Paper - Blockchain
(BC) - Type - Smart Contract (SC) - Simulation - Other Components (Compo-
nents) - Size - Sector

Paper BC Type SC Simulation Components Size Sector
[113] Ethereum Private Yes No - Big Securing Smart Cities
[122] Hyperledger Private No Yes Cloud Big Healthcare App
[123] - - No No - Big Government Services
[98] Ethereum - Yes No - Big Meter Management System
[115] Ethereum - Yes No - Big Secure Communication
[100] - - Yes No Database Big Secure Communication
[125] - - Yes No - Big Secure Applications
[116] - Public No Yes Cloud Big Drone communication
[127] - - No Yes Cloud Big Access Control System
[124] - - No No - Big Military Usage
[128] - - No Yes - Big Audited Communication
[101] Rainbowchain - Yes Yes Cloud Big Secure Smart Grid
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3.7 Cloud Solutions in the Energy Field
The cloud computing technology can be used in the information infrastructure
which is currently a centralized structure. Control activities done by the utility
are also centralized. Power applications can benefit from the cloud computing
technology.[138] discusses using cloud computing in the the power system. The
control center cannot handle the huge amounts of data generated by
the grid thereby creating a storage bottleneck. Dealing with comput-
ing in relation to big data will be an issue in a centralized infrastructure. In
this paper’s layered model the communication layer is secured using encryption
and authentication.This layer thus is secured in terms of confidentiality
and authenticity but integrity, availability, and data provenance are
not ensured. Many benefits come from using the cloud infrastructure including
distributed power data management, scalable and elastic virtualized resource pro-
vision, scalable high-performance computing, security and fault tolerance, cost
reduction, and access anytime and anywhere as cited in [138]. The paper shows
the limitation of the centralized control center in storing the data. The
need for a decentralized storage infrastructure is evident and it is what
we have used in this thesis.

The application of cloud computing to the power grid has been studied in various
studies. [139] describes an algorithm using cloud computing and power grids. It
is a dispatch algorithm (incorporated in the cloud dispatch infrastructure) that
considers the computational resources on the power grid. [140] explores the lim-
itations of the power grid related to the data management in the control center.
This paper proposes a cloud framework for data management in the power grid.
[141] describes a demand-response application for the smart grid based on the
cloud. [142] describes multilayer services to be used in the smart grid. [143]
explains the benefit of cloud computing technology in various applications in the
smart grid including monitoring SCADA monitoring. The papers in this section
describe the use of the cloud computing technology / cloud platform in different
aspects of the smart grid. They do not mention the use of the cloud platform for
the safe storage of meter measurement data in the smart grid. We use the cloud
platform in this thesis to store the data from the advances metering infrastruc-
ture for availability of the data.

[116] mentioned above proposes the use of blockchain technology and the cloud
to secure drone communication for the collection and transmission of data. This
thesis resembles work done in [116] that aims to provide data integrity in addi-
tion to scalability through the usage of blockchain and cloud services in unison.
[127] presents a blockchain-based distributed access control system for IoT de-
vices with the use of cloud for storage. In this thesis, we use the cloud platform
for a similar purpose.
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Chapter 4

Architecture Preface

The two main actors in this work are the utility and the smart meters. The
utility servers are on the utility side and the smart meters are on the consumer
side. For the grid to be effective, the utility must receive correct smart meter
data. If the data is not representative of the actual occurrences, this will result
in the utility making the wrong decisions with respect to load balancing, load
shedding, demand response, and other functionalities that the utility is in charge
of providing and maintaining.

The security in the power system involves both the physical security and the
cyber security of the power system. In this thesis, the aim is to secure the cyber
security of the power system, specifically the two-way communication flow be-
tween the utility and the consumers. The constant flow of electrical information
from the consumer to the utility provides malicious users/attackers the oppor-
tunity to monitor the information flow. Malicious actors intend to disrupt the
system through sending fake loads which could have consequences such as nation-
wide power outages which may lead to fatalities. If fake loads are projected to the
utility, it will make wrong decisions and take wrong actions, the consequences of
which can be very severe and affect entire infrastructures. In addition, malicious
actors can masquerade as legitimate users to send false data or as the MDMS to
send false load balancing commands, access confidential information, and prevent
legitimate consumers from accessing the network.

The approach we plan on taking in this thesis is implementing a prevention
mechanism instead of detecting the issue once it has occurred and then taking
effective action. Anomaly detection can be used to alarm the utility when there
are abnormal meter readings reported and can only be done using large amounts
of data for training and learning. As for the prevention approach, it depends on
putting in place intuitive security measures to avoid any unwanted intrusion on
the network. This ensures the security and privacy of the communicated data,
and accordingly the network as a whole.
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4.1 Blockchain
Using the advanced smart metering system (referred to in subsection 2.1) involves
the two-way communication between the consumers and the utility. This com-
munication network will be transferring a huge amount of data (electrical or load
balancing). This data should represent the complete information sent or received
by either party without any tampering. This data is sensitive and access to it
should be by authorized users.

The goal of using the blockchain platform as the prevention approach in the
energy sector is to create a communication link between the consumers of energy
and the controllers of energy (MDMS). This direct link is secure and simplifies the
current energy system. The transactions that occur between the utility and the
consumers are related to electrical data consumption or load balancing directives.
The use of smart contracts in blockchain allows prosumers1 to sell their energy
without the need for a third party. This smart contract could initiate transactions
that would need manual assistance in a traditional grid. This greatly improves
the flexibility, security, and cost of neighborhood selling energy. In addition, the
blockchain platform provides secure storage space for electrical data and load
balancing data on a distributed ledger. The data on this ledger is transparent
and tamper proof.

Thus, to ensure the safe transfer of data, this thesis uses the Ethereum blockchain.
The details of the blockchain platform and Ethereum specifically are found in sec-
tions 2.3 and 2.4 respectively.

1Electricity consumers - “sumers” - that produce - “pro” - electricity
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4.1.1 Why a Public Blockchain?

In chapter 2, we discuss the different concepts used in this thesis. Section 2.3
discusses the network, ledger, consensus, cryptographic techniques, platforms,
types, and security properties of the blockchain platform. Distinguishing differ-
ences between the different types of blockchains are noted in subsection 2.3.6. The
question of why a public blockchain is chosen as opposed to a private or consor-
tium blockchain comes to mind. To understand the need for a public blockchain,
we will discuss the limitations of a private/consortium blockchain.

We discuss both the private and consortium blockchains’s limitations, but we
only refer to the private blockchain in our discussion.

The private blockchain is closed: a random individual cannot read the distributed
ledger or participate in the blockchain consensus mechanism. As such, there are
certain rules that determine who can participate in the blockchain network ac-
tivities. This means that trust is needed. Therefore, the integrity of the private
blockchain depends on the credibility of the authorized participants. The private
network is built and maintained by specific users. This leads to a certain degree
of centralization which we specifically try to avoid in our thesis.

A node must be invited to join based on certain rules. There are rules set up to
decide each node’s role. These nodes are also known to all in the network. Thus,
the user is not anonymous in the private blockchain. Furthermore, with fewer
nodes in the private blockchain network, it becomes easier for malicious users to
gain control of the network. The private blockchain is more vulnerable to risks
of data manipulation. To mine, dedicated miners must partake in consensus.
These miners need to be trusted to verify and validate authentic transactions.
The validity of records cannot be independently verified so external actors have
to trust private blockchain without having any control over the various processes
of verification. Any transaction that is made can only be viewed by the partici-
pants who know about it in the blockchain network. The private blockchain, as
its name states, is not public for everyone to use, and the distributed ledger is
not public for anyone to read. Thus, transparency in the private blockchain is
restricted.

The public blockchain we use in this thesis encompasses the security properties
we require from the blockchain platform. The public blockchain is open: anyone
can read the distributed ledger and participate in the blockchain consensus mech-
anism. Accordingly, there are no rules that determine who can participate in the
blockchain network activities. Consequently, no trust is needed. The integrity of
the public blockchain does not depend on the credibility of the authorized par-
ticipants or trusted parties. This leads to the decentralization that we want to
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achieve in our thesis.

The greater the number of nodes in the network, the greater the decentralization
and the more secure it is. Nodes are provided with incentives to participate in
the blockchain activities (mining for instance) which makes the network trustless.
Thus, with more nodes in the public blockchain network, it becomes harder for
malicious users to gain control of the network. The public blockchain makes the
risk of data manipulation almost impossible. To mine, each participant in the
whole blockchain network must partake in consensus. This eliminates intermedi-
aries and removes the need for trust. These miners do not need to be trusted to
verify and validate authentic transactions since the whole network will be taking
part in the consensus mechanism. Any transaction made can be viewed by ev-
eryone in the blockchain network. The public blockchain, as its name states, is
public for everyone to use and the distributed ledger is public for anyone to read.
Thus, transactions on the ledger are not private and transparency in ensured.

For more details about the public/private/consortium blockchains types refer
to table 2.2 in subsection 2.3.6.
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4.1.2 Why Ethereum?

In chapter 2, we discuss the different concepts used in this thesis. Section 2.3
discusses the network, ledger, consensus, cryptographic techniques, platforms,
types, and security properties of the blockchain platform. Distinguishing differ-
ences between the different blockchain platforms are noted in subsection 2.3.5.
The question of why the Ethereum blockchain is chosen as opposed to another
blockchain platform like Bitcoin or Hyperledger comes to mind. To understand
the need for the Ethereum blockchain, we will discuss the Bitcoin and Hyper-
ledger blockchains.

Bitcoin allows consumers to buy and sell items, property, or assets without be-
ing easily traced. This has made Bitcoin a popular platform for illegal and illicit
activities. Hyperledger allows industry-wide collaboration in the process of devel-
oping blockchain solutions and distributed ledger-based technology. Therefore,
Bitcoin is a digital currency platform and Hyperledger is a blockchain implemen-
tation, testing, and deployment platform. Both of these platforms do not achieve
this thesis’s goal which is to secure the two-way communication between the util-
ity and the smart meters.

Ethereum is an open source, public, blockchain-based distributed computing plat-
form and operating system featuring smart contract functionality as discussed in
section 2.4. It allows entities or companies to build and deploy decentralized ap-
plications. These applications could belong to many different sectors. Ethereum
allows us to achieve secure two-way communication between the utility and the
smart meters, according to the security properties it achieves which are discussed
in subsection 2.4.10.

For more details about the Bitcoin/Ethereum/Hyperledger blockchains platforms
refer to table 2.1 in subsection 2.3.5.
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4.2 Smart Grid Communication Network
The smart grid is composed of various entities, as indicated in figure 4.1. As in
the traditional grid, the electricity is generated, transmitted and distributed to
the consumer. Electricity in the traditional grid is generated in traditional power
plants (thermal or nuclear), transmitted, and distributed. In addition to the tra-
ditional generation methods, the smart grid includes the generation of electricity
by renewable energy resources such as renewable power plants (solar, wind, hy-
draulic, or geothermal). Electricity may also be generated in the smart grid by
consumers that use renewable energy resources. Consumers that produce elec-
tricity are known as prosumers. The integration of renewable energies allows the
creation of microgrids - small electric networks that permit close-by consumers
to produce and sell electricity. The electricity generated by different sources is,
in turn, distributed to different consumers. The consumers that do not contain
their own source of electricity (a.k.a renewable energy resources) need to have
electricity delivered. Electric vehicles need to be charged. In all three modes of
generation, the electricity produced is transmitted and distributed as seen by the
red arrows in figure 4.1.

The traditional grid only deals with a flow of electricity in which it is usually
generated in traditional power plants, transmitted, and distributed. The smart
grid, on the other hand, deals with a flow of electricity in which it can be gener-
ated by various entities, transmitted, and distributed. It also contains two-way
communication between entities. The entities we considered while formulating
our approach are the smart meters, located at the consumer establishments, and
the utility, the smart grid control center. Data is expected to flow both ways be-
tween the utility and the smart meters. The consumers send the utility electrical
data for reporting purposes and the utility sends the consumers load balancing
data in order to manage electricity demand. The electrical data sent to the util-
ity and the load balancing data sent to the consumers encompass the two-way
communication as seen by the green arrows in figure 4.1.
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Figure 4.1: General Layout of Smart Grid Communication System

We propose the use of the Ethereum blockchain as the underlying technology in
addition to some cryptographic techniques to secure the two-way communication
between the utility and the smart meters. As shown in figure 4.1, the smart
grid control center, otherwise referred to as the utility, manages the distribution
of electricity and interacts with the Ethereum blockchain to monitor consumers’
electric consumption and manage it accordingly. Ethereum implements the con-
cept of smart contracts, which we will use extensively, in order to ensure that our
suggested architectures behave securely and are able to mitigate threats on the
smart grid metering communication. Architecture 1 in chapter 6 and architec-
ture 2 in chapters 7 and 8 will deal with a different number of smart contracts
interacting in various ways but will ultimately result in the same end-goal which
is a secure smart grid communication network. In our work, many trade-offs will
be taken into consideration and choices will be made based on the architecture
that best suits the market and the current needs of new technologies in the smart
grid. In chapters 6, 7, and 8 we discuss the architectures proposed to deal with
securing the smart meter - utility communication.
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Chapter 5

Simulation Environment

Simulation in this thesis will help show the interaction of the consumer and util-
ity with the smart contracts deployed in our proposed system. We are using the
Ethereum blockchain to deploy our smart contracts. The point of this simulation
is to see the interaction between the consumer, the utility, and the smart con-
tracts deployed to provide secure communication between them in order to relay
electrical data consumption needed for DR, DSM, and load balancing (explained
in section 2.2). We use Metamask in this thesis as well as JavaScript/React li-
braries to provide the user with an interface to interact with the created smart
contracts. Figure 5.1 shows the interaction of the various tools in our simulation.

Figure 5.1: Simulation Tools Interaction
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5.1 JavaScript-based Tools
Through the use of JavaScript, a high-level, just-in-time compiled, multi-paradigm
language, we create the necessary files to compile, test, deploy, and interact with
smart contracts. The JS files written for compiling and deploying the smart con-
tracts will be explained in subsections 5.3 and 5.5 respectively, and the details
concerning the various smart contracts can be found in chapters 6, 7, and 8. JS
files are also written for testing smart contracts, which is explained in subsection
5.4 using a JS framework known as Mocha.

Web31 is an important collection of JS libraries we used to interact with re-
mote or local Ethereum nodes. It allows the client to interact with the Ethereum
blockchain. It also allows the client to send Ether, deploy smart contracts, and
interact with smart contracts. Web3 must first be installed, and then an instance
of it can be created. The instance of web3 will be injected into the browser using
Metamask. Web3 will need a provider that is running a geth node that talks
to the Ethereum network. In this thesis, the provider used is Infura2 which is
a hosted Ethereum node cluster, to run applications without the need for an
Ethereum node. This provides the client access to a remote Ethereum node
instead of having to run our own Ethereum node which requires a lot of data
download and maintenance.

React3, a JS library, is used to create interactive user interfaces with ease. Re-
act works with the concept of components that contain their own state updating
and rendering the state of variables defined and used. Components may interact
making the passing of data from one to the other simple. We use the React
library to create components for the different smart contract interactions (calls
and updates to the Ethereum Network).

Using Node.js4, a cross-platform run-time environment, we can run JS code on a
server. For our simulation, we run the code on localhost using port 3000. Using
Node.js, we can host the front-end application created using React, which will
be seen in sections 6.3, 7.3 and 8.4. We also use Next.js5 for an intuitive page
routing system, allowing dynamic page routing which in turn allows the creation
of dynamic URLs.

1https://web3js.readthedocs.io/en/v1.2.6/
2https://infura.io/
3https://reactjs.org/
4https://nodejs.org/en/about/
5https://nextjs.org/docs
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5.2 Metamask

MetaMask provides a secure and simple way to connect to decentralized appli-
cations on the blockchain network. DApps may be built using technologies that
some browsers cannot support. Metamask handles this and provides the users
with a set of accounts that are secured using a seed phrase. A seed phrase is a
recovery phrase that contains the information that allows the generation of the
private keys for the accounts generated by Metamask. This seed phrase must be
backed up and stored securely since any external access to it compromises the
accounts. In addition, this seed phrase can be used to restore the Metamask ac-
count at any time. Moreover, Metamask supports hardware wallets that protect
the user’s funds. Through Metamask, cryptocurrencies are managed in addition
to tokens or collectibles.

Most importantly, Metamask allows the users to interact with decentralized ap-
plications through smart contract calls and updates. Metamask has access to the
Main Ethereum Network and its various Test Networks. The user may generate
multiple accounts, each with its own Ethereum address and associated private
key, and use these to deposit or send Ether onto the network and interact with
smart contracts.

5.2.1 Main Ethereum Network

The mainnet is a fully developed blockchain protocol. It is deployed onto the
network where the cryptocurrency transactions go through the process of being
broadcast, verified, and recorded on a distributed ledger. Users can send and
receive transactions related to cryptocurrency or digital data. The mainnet net-
work is used for real transactions containing real monetary value meaning the
currency is real whereas testnets are used for testing smart contracts and DApps
in an environment where the currency has no value.

5.2.2 Rinkeby Test Network

Testnets, a.k.a test networks, are used to test software. These testnets are usu-
ally used by developers to ensure that the software or application is working as
desired. It functions the same way as the mainnet. By containing computers
running nodes, DApps deployed onto it, and smart contracts running, it simu-
lates the real-world environment. In Ethereum, there are several known testnets:
Ropsten Test Network, Kovan Test Network, and Rinkeby Test Network, which
we use in this thesis. The value of the currency on these testnets in non-existent.
The ether used for the transactions on these testnets can be retrieved from ether
faucets.
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Rinkeby is an Ethereum test network. Rinkeby testnet is a proof-of-authority
network unlike the Ethereum mainnet that uses proof-of work network. It is
immune to spam attacks, unlike the Ropsten Test Network, making the Ropsten
Test Network less stable. The ether needed for these transactions can be ob-
tained, as mentioned, from a Rinkeby ether faucet6. As we know, ether is used
to pay the transaction fees that come with sending transactions in the Ethereum
network (as discussed in subsection 2.4.9).

6https://faucet.rinkeby.io/
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5.3 Compiling Smart Contracts
The smart contracts written in the Solidity language are saved in a file with
extension “.sol”. These contracts need to be compiled, tested, and then deployed
for use. To compile to a contract object and get the necessary JSON file for
deployment, the solidity compiler must be installed as well as other steps shown
in listing 5.1. Once compiled, the code will produce a JSON file per smart
contract containing the interface and ABI (explained in subsection 2.4.2) needed
for deployment. The “compile” file in listing 5.1 is that of the second architecture
in chapters 7 or 8.

1 const path = require("path"); // getting paths
2 const solc = require("solc"); // compiler for solidity
3 const fs = require("fs-extra"); //file manipulation
4

5 //if build folder exists delete it
6 //find the directory and delete it
7 const buildPath = path.resolve(__dirname , "build");
8 fs.removeSync(buildPath);
9

10 //find directory where contract is and get path
11 const simulationPath = path.resolve(__dirname , "contracts",

"Simulation.sol");
12

13 //get the source code of file
14 const source = fs.readFileSync(simulationPath , "utf8");
15

16 // provides the json for our contracts
17 const output = solc.compile(source , 1).contracts;
18

19 // create build directory if folder doesn’t already exist
20 fs.ensureDirSync(buildPath);
21

22 //loop over all contracts and write to files
23 for(let contract in output) {
24 fs.outputJSONSync(
25 path.resolve(buildPath , contract.replace(":","")+".json"),
26 output[contract]
27 );
28 }

Listing 5.1: Compile Contract
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5.4 Testing Smart Contracts
Remix is an IDE that allows users to write Solidity in the browser. It supports
testing, debugging, and deploying smart contracts. Due to its simplicity, we
used Remix to test the smart contracts we created. The contract is written out
and saved in an “.sol” file. It is then deployed using one of the many Ethereum
addresses Remix provides. Function calls and updates can be made using the
easy-to-use interface. Events can be viewed by opening the logs and the gas us-
age can be seen as well. We also used Ganache, Mocha, and Web3 to test more
extensively. Ganache provides us with a set of unlocked accounts; accounts that
do not need to use public or private keys to access. Ganache is an Ethereum node
Emulator. Mocha is a JS test framework that runs on Node.js. Finally, Web3 is
used to interact with Ethereum nodes. So using Ganache, we can connect to a
local node.

The smart contracts written in the Solidity language have now been compiled
and are ready to be tested. To test to a contract, we use both methods, Remix
and Ganache/Mocha/Web3. The code shown in listing 5.2 is using the latter. In
the small example, two concepts are being tested. The first is whether or not the
contract was deployed successfully - lines 28 to 30. The second is whether or not
the user who deployed the contract is the utility - lines 32 to 35. Figure 5.2 is an
example run of the code in listing 5.2. The “test” file in listing 5.2 is that of the
second architecture in chapters 7 or 8.
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1 const assert = require("assert"); //make assertions about deployed
contract

2 const ganache = require("ganache -cli");
3 const Web3 = require("web3"); // constructor to create instance of

web3 library
4 const web3 = new Web3(ganache.provider ()); // create instance and

try to connect to network
5 web3.currentProvider.setMaxListeners (300);
6

7 //get access to compiled files
8 const compiledSimulation =

require("../ ethereum/build/Simulation.json");
9

10 let accounts;
11 let simulation;
12 let utility;
13

14 // deploy contract
15 beforeEach(async () => {
16 accounts = await web3.eth.getAccounts ();
17 utility = accounts [0];
18

19 // deploy factory contract
20 simulation = await new

web3.eth.Contract(JSON.parse(compiledSimulation.interface))
21 .deploy ({data: compiledSimulation.bytecode })
22 .send({from: utility , gas: "1100000"});
23 });
24

25 describe("Simulation", () => {
26

27 // checking if the contract is deployed successfully
28 it("deploys contract", () => {
29 assert.ok(simulation.options.address);
30 });
31

32 it("caller is utility", async () => {
33 const isUtility = await simulation.methods.utility ().call();
34 assert.equal(utility , isUtility);
35 });
36

37 });

Listing 5.2: Test Contract
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Figure 5.2: Testing Smart Contract Functionality

64



5.5 Deploying Smart Contracts
The smart contracts have now been compiled and tested and are ready to be
deployed. To deploy a contract, the JSON files produced in section 5.1 can be
used by extracting the interface and ABI as shown in listing 5.3 in addition to
other steps (smart contract concepts are explained in detail in subsection 2.4.2).
Once deployed, the code will produce an Ethereum contract address per contract
which is used to access the instance of the contract. In the example, there are
two contracts being deployed by the utility. The “deploy” file in listing 5.3 is that
of the second architecture in chapters 7 and 8.
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1 const HDWalletProvider = require("truffle -hdwallet -provider");
2 const Web3 = require("web3");
3

4 //get access to compiled code
5 const compiledSimulation =

require("../ ethereum/build/Simulation.json");
6 const compiledCommunication =

require("../ ethereum/build/Communication.json");
7

8 // provide mnemonic and Rinkeby API
9 const provider = new HDWalletProvider("mnemonic", "rinkeby api");

10

11 // connect to provider and get an instance of web3 that is enabled
for Rinkeby network (unlocked account)

12 const web3 = new Web3(provider);
13

14 //code
15 const deploy = async () => {
16 const accounts = await web3.eth.getAccounts ();
17 const utility = accounts [0];
18 console.log("account used: ", utility);
19

20 //for simulation contract
21 const result1 = await new

web3.eth.Contract(JSON.parse(compiledSimulation.interface))
22 .deploy ({data: "0x" + compiledSimulation.bytecode })
23 .send({from: utility })
24

25 // address of the simulation contract
26 console.log("address: ",result1.options.address);
27

28 //for communication contract
29 const result2 = await new

web3.eth.Contract(JSON.parse(compiledCommunication.interface))
30 .deploy ({data: "0x" + compiledCommunication.bytecode ,

arguments: [result1.options.address ]})
31 .send({from: utility })
32

33 // address of the communication contract
34 console.log("address: ",result2.options.address);
35 };
36

37 deploy ();

Listing 5.3: Deploy Contract
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The smart contracts have now been compiled, tested, and deployed. To get the
instance of a contract, the JSON files produced in section 5.1 can be used by
extracting the interface and ABI. The interface and contract address produced in
listing 5.3 are used to refer to the Communication contract instance. This will be
used in the rest of the user interface code implemented in sections 7.3 and 8.4. In
the example, there is an instance of one of the deployed contracts. The “deploy”
file instance in listing 5.4 is that of the second architecture in chapters 7 and 8.

1 import web3 from ’./web3’;
2 import Communication from ’./build/Communication.json’;
3

4 // contract instance
5 const instance = new web3.eth.Contract(
6 JSON.parse(Communication.interface),
7 ’contract address ’
8 );
9

10 export default instance;

Listing 5.4: Deployed Contract Instance
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5.6 Observing Smart Contracts
To understand what occurs when transactions are submitted to the Ethereum
network, Etherscan7 is used. Etherscan is a block explorer. Users that are in-
teracting with the Ethereum Blockchain Network can access Etherscan to find
transactions that have occurred. It is a search engine that provides users with
the ability to search for Ethereum addresses (contract or externally owned) and
see their corresponding transactions. This fortifies the notion of transparency in
blockchain. Etherscan has many uses including monitoring gas price and mon-
itoring statistics, but in this thesis it is used to monitor the transaction fees
and gas consumed; both of these concepts are discussed in subsections 2.4.9 and
2.4.7 respectively. We use Etherscan to track transactions and observe our smart
contract interactions.

7https://etherscan.io/
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5.7 Subscription to Smart Contract Events

A subscription is when a customer pays for a certain commodity at regular in-
tervals. Subcriptions, using the Web3.j libraries explained in subsection 5.1, are
possible for many different Ethereum blockchain functionalities. An Ethereum
user can subscribe to events/logs, pending transactions, newly added block head-
ers, and syncing events (in the process of being added). In this thesis, we deal with
Ethereum events that are explained in subsection 2.4.8. The “web3.eth.subscribe”
function allows us to subscribe to particular events in the Ethereum blockchain.
The structure of the subscription is explained in detail to facilitate the work ex-
plained in subsections 7.3 and 8.4. Listing 5.5 shows an example of the structure
of a subscription.

1 web3.eth.subscribe(’logs’, {
2 address: ....,
3 topics:

[web3.utils.sha3("NameOfEvent(parameter1 ,parameter2)") ,...]
4 }, function(error , result) {
5 if (!error)
6 console.log(result);
7 });

Listing 5.5: Subscription to Smart Contract Event

The subscription is on the logs - where the event data is stored. We can select
from which blockchain block, using the “fromBlock” parameter. The function
takes the optional “address” and “topics” parameters. The address array parame-
ter is the only list of addresses from which events are to be accepted. The topics
array parameter is the list of values that must be present to accept the event.

We only use the topics parameter, which was explained in subsection 2.4.8, when
discussing events and the indexing of their parameters. When an event is created
it will always contain one indexed parameter, which is the signature of the event
called, and it can contain other parameters. Of these parameters, only two more
can be indexed. Indexed parameters are parameters on which the event can be
filtered. In the example in listing 5.5, the topics array contains the one default
indexed parameter which is the signature of the event - line 2.

If an event is found with the correct filters applied and no error, the result-
ing subscription instance will be shown in the console - line 5. In this thesis, we
work with the returned subscription instance, as is demonstrated in sections 7.3
and 8.4.
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5.7.1 Subscribed Events in the Front-End

When the React component is loaded in the web browser, we begin listening for
either of the two events emitted by our smart contracts. Events are explained in
subsection 2.4.8. The utility will listen for the event containing the electrical data
and the consumer will listen for the event containing the load balancing data as
explained in subsection 7.2.2 listings 7.8 and 7.9 respectively. The details and
code showing the interaction with the events and subscription to the events will
be shown in chapters 7 and 8 subsections 7.3.2 and 8.4.2 respectively.

If an event is detected, the component will reload and render the respective
tables showing the data the events contained. The whole process is known as
event sourcing. The events will be filtered based on what each user needs. For
the utility, the event containing the electrical data will be filtered by the name
of the event: “DataSent” in addition to the optional desired timestamp. For the
consumer, the event containing the load balancing data will be filtered by the
name of the event: “LoadBalancingSent” in addition to the consumer’s Ethereum
address.
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5.8 Public Key Management
The confidentiality and privacy of the consumer’s electrical data and the utility’s
load balancing data is of the utmost importance in this thesis. The combination
of the Ethereum blockchain platform and cryptographic tools ensure this secu-
rity property. Confidentiality is usually ensured through the use of symmetric or
asymmetric encryption as seen in chapter 3. In this thesis, specifically chapters 7
and 8, we use asymmetric cryptography, combined with the Ethereum platform
alone or with the Ethereum platform in addition to the cloud platform respec-
tively.

In this thesis, we use Rivest-Shamir-Adelman (RSA) asymmetric encryption.
With the help of a Node.js package named node-rsa8, we produce the code shown
in listing 5.6 that describes the steps taken to produce the public-private key
pair needed for encryption in architecture 2. The PEM format or base64 format
the keys are exported to is encoded in base64 with additional header and footer
lines “—–BEGIN PUBLIC KEY—–” and the corresponding “—–END PUBLIC
KEY—–” for the public keys and “—–BEGIN PRIVATE KEY—–” and the corre-
sponding “—–END PRIVATE KEY—–” for the private keys. This PEM format
allows us to add both the utility and consumers’ public keys to the first smart
contract as will be seen in sections 7.3 and 8.4.

1 //in class named getKeys
2 function keys () {
3 const NodeRSA = require(’node -rsa’);
4 const key = new NodeRSA ({b:512});
5

6 // export the public and private keys from the key generated
7 //in PEM format so it is readable (base64)
8 this.publicK = key.exportKey(’pkcs8 -public -pem’);
9 this.privateK = key.exportKey(’pkcs8 -private -pem’);

10 };
11

12 // export keys
13 module.exports = keys

Listing 5.6: Public-Private Key Creation

8https://www.npmjs.com/package/node-rsa
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5.8.1 Key Management for Electrical Data (Utility Keys)

The utility will need to create a public-private key pair. This will be done once
and will occur before the smart contracts are deployed. The utility can then
include its public key in the contract for all the nodes to use, as will be seen in
sections 7.3 and 8.4. The private key will be kept locally and safeguarded in the
utility’s smart meter.

The consumer will use the utility’s public key found in the first smart contract
to encrypt the electrical data it sends to utility. The JS class, in listing 5.7, is
used by the consumers to get the utility’s public key in the appropriate RSA for-
mat9 - line 17. The asynchronous10 transaction - line 8 - calls the smart contract
getter function for the constant public key variable “publicKey” (as discussed in
subsection 7.2.1 listing 7.1). Once the promise is resolved - line 15 - the utility’s
public key will be retrieved in the PEM format.

1 const NodeRSA = require(’node -rsa’);
2 const key = new NodeRSA ();
3

4 const get = async () => {
5

6 //call the smart contract getter of public key variable
7 //0 params
8 const publicKey = await simulation.methods.publicKey ().call();
9

10 //the asynchronous function call needs to be resolved
11 var promise1 = Promise.resolve(publicKey);
12

13 //we wait for the promise to be resolved
14 //when it is we get value of the public key
15 promise1.then(function(value) {
16 // import the public key in pkc8 format
17 key.importKey(publicKey , ’pkcs8 -public ’);
18 });
19 }
20

21 get();
22 export default key;

Listing 5.7: Get Utility Public Key

9pkcs8: one of the standards in Public-Key Cryptography Standards (PKCS) created by
RSA Laboratories

10The async keyword is used in the function definition to declare it is asynchronous. The
await keyword used to show the action of waiting for a promise. The function is paused in a
non-blocking way until the promise settles. The value is returned if the promise fulfills.
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The utility will use the its private key found locally to decrypt the electrical data
sent. The JS class in listing 5.8 is used by the utility to get their private key in
the appropriate RSA format - line 8.

1 //found locally
2 const privateKey = "utility ’s private key";
3

4 const NodeRSA = require(’node -rsa’);
5 const key = new NodeRSA ();
6

7 // import the private key in pkc8 format
8 key.importKey(privateKey , ’pkcs8 -private ’);
9

10 export default key;

Listing 5.8: Get Utility Private Key
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5.8.2 Key Management for Load Balancing Data (Con-
sumer Keys)

Each consumer in the network will need to create a public-private key pair. This
will be done once. Each consumer’s public key will be distributed through the
first smart contract as will be seen in sections 7.3 and 8.4. The private key will
be kept locally and safeguarded in the consumer’s smart meter.

The utility will use the consumer’s public key found through the first smart
contract to encrypt the load balancing data it sends to consumers. The JS class
in listing 5.9 is used by the utility to get the consumer’s public key in the appro-
priate RSA format - line 8. The passed argument is the PEM format of the key
available through the first smart contract.

1 var keys = function (given) {
2 const NodeRSA = require(’node -rsa’);
3 const key = new NodeRSA ();
4

5 const publicKey = given;
6

7 // import the public key in pkc8 format
8 key.importKey(publicKey , ’pkcs8 -public ’);
9 this.key = key;

10 };
11

12 module.exports = keys

Listing 5.9: Get Consumer Public Key

The consumer will use his/her private key found locally to decrypt the load
balancing data sent. The JS class in listing 5.10 is used by the consumer to get
their private key in the appropriate RSA format - line 8. The passed argument
is the PEM format of the key available locally.

1 var keys = function (given) {
2 const NodeRSA = require(’node -rsa’);
3 const key = new NodeRSA ();
4

5 const privateKey = given;
6

7 // import the private key in pkc8 format
8 key.importKey(privateKey , ’pkcs8 -private ’);
9 this.key = key;

10 };
11

12 module.exports = keys

Listing 5.10: Get Consumer Private Key
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Chapter 6

Architecture 1

We propose to create three separate smart contracts each for a different function-
ality. The first smart contract is the one that allows consumers to join the smart
grid communication network. It is called the simulation smart contract. The
second smart contract is the contract deployed by the utility to allow consumers
to create a customized smart contract that organizes consumer-utility commu-
nication. It is called the factory smart contract. The third smart contract is
the contract that defines the protocols used in the transmission of data from the
consumer to the utility and vice versa. It is called the data smart contract. These
smart contracts have been carefully designed to reduce the cost of using them
(to understand the concept of smart contract fees and transaction costs refer to
subsections 2.4.2 and 2.4.9). This chapter shows the scenarios the architecture
will follow in section 6.1, the smart contract details in section 6.2, the user in-
terface used to interact with the smart contracts in section 6.3, the results in
section 6.4, the security properties achieved in section 6.5, and the limitations of
this architecture in section 6.6.

This proof of concept architecture, along with the corresponding simulations
and results, have been accepted at the 16th International Wireless Communi-
cations and Mobile Computing Conference (IWCMC 2020), scheduled to be held
at Limassol, Cyprus, June 15 - 19, 2020. Due to the COVID-19 pandemic, the
conference will be held virtually this year.

R. Akhras, W. El-Hajj, M. Majdalani, H. Hajj, R. Jabr, and K. Sha-
ban, "Securing Smart Grid Communication using Ethereum Smart
Contracts", IEEE International Wireless Communications and Mo-
bile Computing Conference (IWCMC 2020), Limassol, Cyprus, June
15-19, 2020.
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6.1 Scenario
Using a control flow graph (CFG), we display the order of execution of the calls
and updates to the smart contract. The CFG1 shows all possible steps that can
be executed in our program.

6.1.1 Initial Contract Deployment

Figure 6.1 shows the steps taken by the utility to deploy the smart contract
needed to join the smart grid communication network and the smart contract
needed to deploy the data contract. The utility initially deploys the simulation
contract that would lead to a transaction that would update the blockchain state
(step 1). This contract deals with the consumers requesting entry and the util-
ity accepting consumers into the network. The utility also deploys the factory
contract that would lead to a transaction which would update the blockchain
state (step 2). This contract allows consumers to deploy their own data smart
contracts.

Deploying the simulation contract and the factory contract lead to changes in
the Ethereum state.

Figure 6.1: Architecture 1: Initial Contract Deployment

1https://en.wikipedia.org/wiki/Control-flow_graph
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6.1.2 Contract Interaction

Figure 6.2 shows the steps taken by the consumer to try and enter the network.
The consumer can request entry that would lead to a transaction that would
update the blockchain state (step 1).

Figure 6.2 also shows the steps taken by the utility to accept or reject the con-
sumer. The utility queries for requests from consumers. The utility finds a request
(step 2). If there is a request and the utility wishes to reject the consumer, then
it would lead back to a state of waiting for a request. For instance, the utility can
choose to reject a consumer if they did not register with the utility beforehand.
If there is a request and the utility wishes to accept the consumer, then it would
lead to a transaction that would update the blockchain state (step 3). If the
utility does not find a request, it waits 15 minutes before rechecking (step 4).
The 15 minute wait can be updated to 30 minutes or an hour depending what
the utility wants. The 15 minute intervals will recur throughout the architecture
and can be updated to 30 minutes or an hour also depending on what the utility
wants. The utility can also remove a consumer from the network that would lead
to a transaction that would update the blockchain state (step 5).

Requesting, accepting and removing consumers lead to changes in the Ethereum
state. Querying for requests does not lead to changes in the Ethereum state.
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Figure 6.2: Architecture 1: Contract Interaction (Part 1)

Figure 6.3 shows the steps taken by both the utility and the consumer to send
data and get data. Electrical data can be sent from the consumer to the util-
ity. This electrical data can be received by the utility. The consumer may not
send any data till it has deployed its individual data contract. The consumer
must query at 15 minute intervals for acceptance into the network (step 4). If
the consumer can send data (step 1), then the consumer would deploy its indi-
vidual data contract that would lead to a transaction which would update the
blockchain state (step 2). It would also lead to a transaction that would update
the blockchain state (step 3).

Deploying the data contract and marking the consumer as having deployed the
data contract lead to changes in the Ethereum state. Querying for ability to send
data does not lead to changes in the Ethereum state.

Every 15 minutes the consumer sends electrical data (step 6) that would lead
to a transaction which would update the blockchain state (step 5). Every 15
minutes the utility will check for electrical data (step 7).

The consumer sending data leads to changes in the Ethereum state. The utility
querying for data (receiving) does not lead to changes in the Ethereum state.
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Figure 6.3: Architecture 1: Contract Interaction (Part 2)
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6.2 Smart Contract Details
Now that we have gone through the control flow of the smart contracts’ execu-
tions, we answer next the following questions for each smart contract: By who
was the contract deployed? When was it deployed? For what purpose? What
are the contracts’ contents?

6.2.1 First Smart Contract - Joining the Network

This contract is deployed by the utility only once at inception. Figure 6.4 shows
a high level view of the smart grid communication network in relation to the first
smart contract. This figure illustrates a city in Qatar that contains 10 household-
s/establishments (HHs) numbered 1 through 10 and the utility numbered 11. All
of the establishments numbered 1 through 10 contain smart meters that measure
their electrical consumption.

There are two distinguishable components in figure 6.4. The first component
is the blockchain network. This network contains all the households and the util-
ity. The HHs and the utility are part of the peer-to-peer Ethereum blockchain
network as illustrated by the road which connects all the HHs and establishments.
The HHs are nodes in the blockchain network and have access to the distributed
blockchain ledger. Node 11, the utility, contains the first smart contract known
as the simulation smart contract. Once deployed at the inception of the smart
grid communication network, the smart contract becomes accessible by all other
nodes on the blockchain since it is now part of the blockchain’s ledger. This
smart contract is deployed to allow the consumers to join the network, composed
of the different consumers that contain legal smart meters registered at the utility.

The second component is the distributed ledger. This is the Ethereum ledger
to which every node will have access. This ledger will contain all the transactions
that have been mined and added to the blockchain. The transactions include all
the updates to the Ethereum state (explained in subsection 2.4.5).

The symbol table explains that the different nodes 1 through 11 can send a
transaction “T” at a certain time “t” that is added to the distributed ledger. The
legend displays the objects that exist in the smart grid communication network.
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Figure 6.4: Architecture 1: Smart Contract #1 Distribution

As we’ve explained in subsection 2.4.2, variables are set up to be interacted with
and functions exist to allow actions to occur on the blockchain. The detailed
code of the first smart contract variables and functions is available in Appendix
A listing A.1. Here, we will briefly explain the variables, functions, and their
purpose in the smart contract.

Listing 6.1 displays the variable names and descriptions in this contract. These
variables are used in functions we discuss below.

• Line 1 - utility: Utility’s Ethereum address

• Line 2 - countNodes: Number of consumers accepted onto the network

• Lines 5 till 10 - Node: Node structure that contains properties such as
smart meter id, mac address, Ethereum address, and contract completion
attribute - lines 6, 7, 8, 9 respectively. It will be used to create requests by
consumers

• Line 11 - requestedNodes: Array of requesters (represented by the node
structure)

• Line 13 - hasRequested: Map of requested consumers which are con-
sumers that want to enter the network
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• Line 14 - isDeployed: Map of deployed consumers which are consumers
that have been accepted onto the network

• Line 15 - hasContract: Map of consumers who have deployed their data
contract (to be discussed in the subsection 6.2.3)

The array of requesters will be used by the utility to display the requesters in the
user interface whereas the mapping of requesters will be used by the smart con-
tract to ensure that the requester cannot request entry again (security measure).

1 address public utility;
2 uint public countNodes;
3

4 // request for node
5 struct Node {
6 string smId;
7 string mac;
8 address add;
9 bool complete;

10 }
11 Node[] public requestedNodes; //to be added to network by utility
12

13 mapping(address => bool) hasRequested;
14 mapping(address => bool) isDeployed;
15 mapping(address => bool) hasContract;

Listing 6.1: Variables

The functions included in this smart contract are listed below and will be ex-
plained in listings 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, and 6.8 respectively.

• Constructor

• Request entry

• Accept node

• Remove node

• Get requesters count

• Can deploy

• Mark as done

We assume that the smart grid communication network is starting with no con-
sumers (smart meters). The “constructor” function - line 3 - initializes the vari-
ables in listing 6.1 as seen in listing 6.2. The Ethereum utility address is set to
the caller of the constructor function “msg.sender” which is the utility - line 4.
The number of nodes is set to 0 since we assume the network is starting with no
consumers - line 5.
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1 //only called once by utility
2 //since deployed by utility
3 function Simulation () public {
4 utility = msg.sender;
5 countNodes = 0;
6 }

Listing 6.2: Constructor

Via this smart contract, the consumer (smart meter) must request entry into the
network to become part of it. Using the “requestEntry” function - line 3 - shown
in listing 6.3, the consumers can request to enter the network providing certain
properties to be approved by utility. Before the function can be completed, certain
rules must be checked. The caller of the function must not be the utility since
this function is not used by the utility - line 5. The function must not be called
by a consumer that has previously requested entry (called this function) - line 6
- and must also not be called by a consumer that is currently a consumer in the
network (accepted by utility) - line 7. These restrictions force the function to be
called only when necessary thereby alleviating any problems with overusing this
function and stressing the network. If any of these conditions are not satisfied,
the function will throw an exception which we will further discuss in subsection
6.3.1. If they are satisfied, a node structure is created with the passed properties
- line 9. The consumer’s node is now added to the mapping of requesters - line
10 - and array of requesters - line 11 - and waits for the utility to accept it.

1 //node requests access to network
2 //must be accepted by utility
3 function requestEntry(string smId , string mac) public {
4 // shouldn ’t be the utility AND shouldn ’t be a requestor AND

shouldn ’t already be a Node
5 require(msg.sender != utility
6 && !hasRequested[msg.sender]
7 && !isDeployed[msg.sender ]);
8

9 Node memory r = Node(smId , mac , msg.sender , false);
10 requestedNodes.push(r);
11 hasRequested[msg.sender] = true;
12 }

Listing 6.3: Request entry

The utility can accept the entry request using the “acceptNode” function - line 3
- shown in listing 6.4 or reject it (by not accepting it). If the caller of the function
is not the utility, the function will throw an exception which we will further dis-
cuss in subsection 6.3.1. The node is retrieved from the array of requesters - line
4. If the consumer is not already added to the network, the function continues
execution - line 11 - otherwise, the function will throw an exception which we
will further discuss in subsection 6.3.1. Once the utility accepts the consumer,
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the consumer is added to the mapping of deployed consumers - line 14 - and
the number of nodes is increased by one - line 15. The node is now marked as
complete which means that it can be considered part of the network - line 20.

The utility also has the ability to accept an entry and then remove it later for
any reason using the “removeNode” function - line 2 - in listing 6.5. If the caller
of the function is not the utility, the function will throw an exception which we
will further discuss in subsection 6.3.1. Removal reasons can be caused by an en-
tity requesting to stop its power service due to relocation, or disciplinary actions
taken by the utility against malicious consumers. The node is retrieved from the
array of requesters - line 4. If the consumer is part of the network (can be found
in mapping of deployed consumers), the function continues execution - line 7,
otherwise, the function will throw an exception which we will further discuss in
subsection 6.3.1. Once the utility removes the consumer, the number of nodes is
decreased by one - line 9 - and the consumer is removed from all the mappings
(requesters, deployed consumers, and consumers that have data contract - lines
10, 11, 12 respectively) thus clearing it from the network.

1 //can only add node if the utility accepts
2 function acceptNode(uint index) public restrictedUtility {
3 //the node requested
4 Node storage r = requestedNodes[index];
5

6 //check if this node is valid
7 //based on smId db at utility
8 //done manually by calling verify function -> comparing values

to values they have -> making the call
9

10 // shouldn ’t already be a Node
11 require(r.complete != true);
12

13 //add node to list that needs to create a contract
14 isDeployed[r.add] = true;
15 countNodes ++;
16

17 //mark as complete in request
18 //for ui:
19 //when complete true the row is disabled
20 r.complete = true;
21 }

Listing 6.4: Accept node
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1 // utility can remove a node from network
2 function removeNode(uint index) public restrictedUtility {
3 //the node requested
4 Node storage r = requestedNodes[index];
5

6 // should already be a Node
7 require(isDeployed[r.add]);
8

9 countNodes --;
10 hasRequested[r.add] = false;
11 isDeployed[r.add] = false;
12 hasContract[r.add] = false;
13 }

Listing 6.5: Remove node

In addition, the contract includes a function that allows the utility to view how
many requesters there are in the array of requesters using “getRequestsCount”
function - line 3 - provided in listing 6.6. It returns the length of the array
of requesters which is the number of consumers’ nodes that have been added
previously upon requesting entry - line 4.

1 // number of requests
2 //for ui
3 function getRequestsCount () public view returns (uint) {
4 return requestedNodes.length;
5 }

Listing 6.6: Get requests count

Finally, the consumer may call the “canDeploy” function - line 4 - in listing 6.7
that allows the consumer to check if it is allowed to deploy its data contract (to be
discussed in subsection 6.2.2). It returns if the consumer is in the deployed con-
sumers mapping and is not in the deployed data contract mapping - line 5. The
deployed consumer mapping shows if the utility has accepted it into the smart
grid communication network. The deployed data contract mapping shows if the
consumer has deployed its data contract (to be discussed in subsection 6.2.3). If
the consumer is not in this mapping, it means it is allowed to deploy its data
contract.

If it can deploy, it calls the “markDone” function in listing 6.8 after having called
the “createDataContract” function in listing 6.11 found in subsection 6.2.2. Call-
ing the “markDone” function - line 2 - makes sure the consumer can no longer
request to create another data contract (for security purposes) by adding it to
the deployed data contract mapping - line 5. The caller of this function must be
the one updating their own record - line 4.

85



1 //is node in network but does not have deployed contract
2 // evaluates to true when the node is in the network (accepted by

the utility)
3 //and when the node has not deployed a contract yet
4 function canDeploy(address add) public view returns (bool) {
5 return isDeployed[add] && !hasContract[add];
6 }

Listing 6.7: Can deploy

1 //mark as not able to deploy data contract anymore
2 function markDone(address add) public {
3 // marking should be done by node not any other node
4 require(msg.sender == add);
5 hasContract[add] = true;
6 }

Listing 6.8: Mark done
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6.2.2 Second Smart Contract - Setting Up the Communi-
cation

This contract is deployed by the utility only once at inception. Figure 6.5 shows
a high level view of the smart grid communication network in relation to the
second smart contract. The specifics of the city, households, and utility can be
found in subsection 6.2.1.

Node 11, the utility, contains the second smart contract known as the factory
smart contract. Once deployed at the inception of the smart grid communica-
tion network, the smart contract becomes accessible by all other nodes on the
blockchain since it is now part of the blockchain’s ledger. This smart contract is
deployed to allow the consumers to create their data smart contracts needed for
the data exchange between the consumer with the utility.

Figure 6.5: Architecture 1: Smart Contract #2 Distribution

As we’ve explained in subsection 2.4.2, variables are set up with which to interact
and functions exist to allow actions to occur on the blockchain. The detailed code
of the second smart contract variables and functions is available in Appendix A
listing A.2. Here, we will explain the variables and functions briefly and their
purpose in the smart contract.

Listing 6.9 displays the variable names and descriptions in this contract. These
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variables are used in functions we discuss below.

• Line 1 - deployedDataContracts: Array of all the deployed data con-
tracts

• Line 2 - utility: Utility’s Ethereum address

• Line 3 - numberContracts: Number of deployed data contracts

• Line 5 - Deployed: Event declaration for contract deployment that re-
turns the deployed contract’s address (the concept of smart contract events
is discussed extensively in subsection 2.4.8)

1 address [] public deployedDataContracts;
2 address public utility;
3 uint public numberContracts;
4

5 event Deployed(address indexed _add);

Listing 6.9: Variables

The functions included in this smart contract are listed below and will be ex-
plained in listings 6.10 and 6.11 respectively.

• Constructor

• Create data contract

The “constructor” function - line 3 - initializes the variables above as seen in
listing 6.10. The Ethereum utility address is set to the caller of the constructor
function “msg.sender” which is the utility - line 4.

1 //only called once by utility
2 //since deployed by utility
3 function Factory () public {
4 utility = msg.sender;
5 }

Listing 6.10: Constructor

Via this smart contract, the consumer will be able to create his/her data smart
contract which they will use to communicate smart meter electrical data to the
utility and where the utility may send load balancing data to the consumer.
Using the “createDataContract” function - line 2 - in listing 6.11, the consumer
may complete the task of creating the data contract. This deploys the data
smart contract by calling the data smart contract constructor - line 3 - discussed
in subsection 6.2.3. This call returns the address of the deployed data contract
that can be accessed by both the consumer and the utility - line 3. This address
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will be added to the array of deployed data contracts - line 4 - and the counter of
deployed contracts is incremented - line 5. This address is also sent as an event so
that the consumer can log it and access the smart contract - line 7. The concept
of smart contract events is discussed extensively in subsection 2.4.8.

1 // create the factory contract
2 function createDataContract () public returns (address){
3 address c = new Data(utility , msg.sender);
4 deployedDataContracts.push(c);
5 numberContracts ++;
6

7 Deployed(c);
8 return c;
9 }

Listing 6.11: Create data contract

In addition, the contract includes a function that allows the nodes in the network
to get the array of deployed data smart contracts using the “getDeployedData-
Contract” function - line 2 - shown in listing 6.12. It returns the length of the
array of all the deployed data contracts which is the number of deployed data
contracts in the smart grid communication network - line 3.

1 //get addresses for all contracts
2 function getDeployedDataContracts () public view returns(address []) {
3 return deployedDataContracts;
4 }

Listing 6.12: Get deployed data contracts
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6.2.3 Third Smart Contract - Communicating

This contract is deployed by the consumer only once through the factory contract
described in subsection 6.2.2. Figure 6.6 shows a high level view of the smart grid
communication network in relation to the third smart contract. The specifics of
the city, households, and utility can be found in subsection 6.2.1.

Nodes 1 through 10, the consumers, contain an instance of the third smart con-
tract known as the data smart contract. Once deployed by each consumer, the
smart contract becomes accessible by all other nodes on the blockchain because
it is now part of the blockchain’s ledger. This smart contract is deployed to allow
the consumers to communicate their energy data securely and the utility to send
load balancing data back to the consumer (demand-response). This preserves the
two-way data flow for which the smart grid is known.

Figure 6.6: Architecture 1: Smart Contract #3 Distribution

As we’ve explained in subsection 2.4.2, variables are set up with which to interact
and functions exist to allow actions to occur on the blockchain. The detailed code
of the third smart contract variables and functions is available in Appendix A
listing A.3. Here, we will explain the variables and functions briefly and their
purpose in the smart contract.
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Listing 6.13 displays the variable names and descriptions in this contract. These
variables are used in functions we discuss below.

• Line 1 - owner: Owner’s Ethereum address. The owner of this contract
is the consumer that has deployed it

• Line 2 - utility: Utility’s Ethereum address

• Line 3 - entries: Number of entries that counts the number of electrical
data entries

• Line 4 - loadBalancing: Load balancing data that is received from the
utility

• Line 5 - electricity: Map of electrical data that is sent from the consumer
to the utility

1 address public owner;
2 address public utility;
3 uint public entries;
4 uint public loadBalancing;
5 mapping(string => uint) electricity;

Listing 6.13: Variables

The functions included in this smart contract are listed below and will be ex-
plained in listings 6.14, 6.15, 6.16, and 6.17 respectively.

• Constructor

• Send data

• Check data

• Fix data

We assume that the consumers using this smart contract have been accepted onto
the network and are accessing this contract to send electrical data to the utility
and to get load balancing data from the utility. The “constructor” function - line
1 - initializes the variables above as seen in listing 6.14. The Ethereum consumer
address is set to “creator” - line 2 - which, as we have mentioned in subsection
6.2.2, is called by the consumer. The Ethereum utility address is set to the
address of the utility - line 3 - which is previously known through the simulation
smart contract discussed in subsection 6.2.1. The load balancing data is set to 0
since we assume the consumers do not need to receive any load balancing data
upon entry - line 4.
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1 function Data(address utilityAdd , address creator) public {
2 owner = creator;
3 utility = utilityAdd;
4 loadBalancing = 0;
5 }

Listing 6.14: Constructor

Via this smart contract, the consumer can send electrical data to the utility.
Sending data using the “sendData” function - line 5 - in listing 6.15 can only
be done if the caller of the function is the owner of the contract, otherwise,
the function will throw an exception which we will further discuss in subsection
6.3.3. It will add electrical data to the mapping of the electrical data by taking
the date and time (following a certain format) - line 6. The data entries will be
incremented by one - line 7.

1 //node requests access to network
2 //must be accepted by utility
3 //send the Data
4 // timestamp should follow certain convention yyyymdhm
5 function sendData(string timestamp , uint value) public

restrictedOwner {
6 electricity[timestamp] = value;
7 entries ++;
8 }

Listing 6.15: Send data

The utility can check the electrical data of the consumer using the “lookupData”
function - line 2 - in listing 6.16. The utility will query the mapping of the elec-
trical data using the date and time and return the resulting value - line 3. This
will provide the electrical data for the given date and time.

The utility may also send load balancing data using the “fixData” function -
line 4 - in listing 6.17 setting the load balancing variable to the load balancing
value decided by the utility - line 5. The consumer can then query the smart
contract to access this variable at specific intervals.

1 //check this data
2 function lookupData(string timestamp) public restrictedUtility view

returns (uint) {
3 return electricity[timestamp ];
4 }

Listing 6.16: Look-up data
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1 // utility
2 //send load balancing data
3 //will be enumerator 0->decrease 1->increase ....
4 function fixData(uint value) public restrictedUtility {
5 loadBalancing = value;
6 }

Listing 6.17: Fix data
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6.2.4 Summary

A smart grid communication network will start out empty with only the util-
ity present. The utility initially deploys two smart contracts. The first smart
contract (simulation contract) will allow consumers to enter the smart grid com-
munication network, and the second smart contract (factory contract) will allow
the consumers to deploy their own data smart contract. Each consumer must
deploy its own data smart contract.

The consumers that wish to join the network and become part of the smart
grid can do so by requesting to join. The utility can then accept or reject this
consumer. Once accepted, the consumer may now proceed to deploy his/her data
smart contract. If rejected, the consumer cannot proceed with deploying his/her
data smart contract.

The consumers can now deploy their third smart contract (data contract) through
the factory contract. The consumer now has access to his/her newly deployed
data contract.

The consumer can now use the third smart contract (data contract) to send
data periodically to the utility. The utility can also send balancing data to the
consumer through the respective data contract.

The utility may use the factory contract to view all the smart contracts de-
ployed by the consumers, query the consumers’ data contracts for electric data,
and send load balancing data to the consumers’ data contracts.
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6.3 User Interface
To complete the preventative proposed solution, we set up a user interface for
user data interaction. The user may interact with Ethereum blockchain using
the Rinkeby Test Network discussed above. Sections 6.1 and 6.2 discuss the
general architecture execution and details and this section will describe the user
interface put in place to interact with the Ethereum network smart contracts.
Some front-end components provide the consumer access to the different smart
contracts deployed by the utility or consumers. Other front-end components
provide the utility access to the different smart contracts deployed by the utility
or consumers. The user interface does not show the deployment of the simulation
and factory smart contracts because it should be completed by the utility before
any interaction with the smart contracts can occur.

6.3.1 First Smart Contract - Joining the Network

Figure 6.7 shows the user interface where a consumer can request entry into the
smart grid communication network. There are certain fields that need to be filled
in which the utility needs (to confirm the user is authentic).

Figure 6.7: Architecture 1: Join

Listing 6.18 shows the code used to interact with the simulation smart contract
(first smart contract) using the interface in figure 6.7. The asynchronous2 trans-
action - line 14 - calls the smart contract function “requestEntry” (discussed in
subsection 6.2.1 listing 6.3) that takes two parameters evident in figure 6.7. The
function uses the “send” keyword which leads to a transaction that changes the
Ethereum state. As discussed in subsection 2.4.5 the “from” keyword shows who
is creating the transaction.

2The async keyword is used in the function definition to declare it is asynchronous. The
await keyword used to show the action of waiting for a promise. The function is paused in a
non-blocking way until the promise settles. The value is returned if the promise fulfills.

95



1 onSubmit = async (event) =>{
2 event.preventDefault ();
3

4 try{
5 // enable use of web3 instance
6 await ethereum.enable ();
7

8 //get the accounts provided by metamask
9 const accounts = await web3.eth.getAccounts ();

10 console.log(accounts [0]);
11

12 //call the smart contract function to request entry
13 //2 params: smart meter id, and mac address
14 await simulation.methods.requestEntry(this.state.smId ,

this.state.mac).send({from: accounts [0]});
15

16 } catch(err) {
17 this.setState ({ errorMessage: err.message });
18 }
19 };

Listing 6.18: Join Code

The interaction between the consumer and the first smart contract’s “requestEn-
try” function could either be successful or unsuccessful due to a certain property
not being satisfied in the smart contract. This could happen for many reasons:

• The consumer requesting entry is the utility

• The consumer has previously requested entry into the network

• The consumer has previously deployed the data contract

• The consumer has not provided enough gas for the transaction to succeed

Figures 6.8 and 6.9 show the user interface where the utility can accept consumers
based on the properties provided. The utility may also reject the consumers by
not accepting them. Beneath the list of consumers to accept/remove, there are
two values: the total number of requesters and the number of nodes accepted
into the network both queried from the smart contract.

Figure 6.8: Architecture 1: Accept Initial
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Figure 6.9: Architecture 1: Accept

Listing 6.19 shows the code used to interact with the simulation smart contract
(first smart contract) using the interface in figure 6.9.

The asynchronous transaction - line 4 - calls the smart contract function “countN-
odes” (discussed in subsection 6.2.1 listing 6.1) that doesn’t take any parameters.
This variable is placed below the table of pending requests indicating the number
of nodes accepted into the network. The function uses the “call” keyword which
does not lead to a change the Ethereum state.

The asynchronous transaction - line 8 - calls the smart contract function “ge-
tRequestsCount” (discussed in subsection 6.2.1 listing 6.1) that doesn’t take any
parameters. This variable is placed below the table of pending requests, indicat-
ing the number of nodes requesting entry into the network. The function uses
the “call” keyword, which does not lead to a change the Ethereum state.

The asynchronous transaction - line 14 - calls the smart contract getter func-
tion for the array of requesters “requestedNodes” (discussed in subsection 6.2.1
listing 6.1) that takes one parameter. The array elements are the requesters dis-
played in the table of pending requests where each requester is placed in a row of
the table. The function uses the “call” keyword, which does not lead to a change
the Ethereum state.

97



1 static async getInitialProps(props) {
2 //call the smart contract function to get number of nodes in

network
3 //0 params
4 const currentNodes = await

simulation.methods.countNodes ().call();
5

6 //call the smart contract function to get the number of
requesters

7 /0 params
8 const requestCount = await

simulation.methods.getRequestsCount ().call();
9

10 const requests = await Promise.all(
11 Array(parseInt(requestCount)).fill().map((element ,index) =>

{
12 //call the smart contract function to mark node as

having deployed data contract
13 //0 params
14 return simulation.methods.requestedNodes(index).call()
15 })
16 );
17

18 return {requests , requestCount ,currentNodes };
19 }

Listing 6.19: Get Counter Code

Listing 6.20 shows the code used to interact with the simulation smart contract
(first smart contract) using the interface in figure 6.9. The asynchronous trans-
action - line 6 - calls the smart contract function “acceptNode” (discussed in
subsection 6.2.1 listing 6.4) that takes one parameter. The function uses the
“send” keyword which leads to a transaction that changes the Ethereum state.

1 onApprove = async () => {
2 const accounts = await web3.eth.getAccounts ();
3

4 //call the smart contract function to accept node
5 //1 param: id in list
6 await simulation.methods.acceptNode(this.props.id).send({from:

accounts [0]});
7 };

Listing 6.20: Accept Code

The interaction between the utility and the first smart contract’s “acceptNode”
function could either be successful or unsuccessful due to a certain property not
being satisfied in the smart contract. This could happen for many reasons as
indicated:

• The caller of the function is not the utility
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• The utility has previously accepted the consumer into the network

• The utility has not provided enough gas for the transaction to succeed

Figure 6.10 shows the user interface where the utility may remove consumers. The
figure shows that the consumers have already been accepted onto the network (no
accept button). Only these consumers may be removed.

Figure 6.10: Architecture 1: Remove

Listing 6.21 shows the code used to interact with the simulation smart contract
(first smart contract) using the interface in figure 6.10. The asynchronous trans-
action - line 6 - calls the smart contract function “removeNode” (discussed in
subsection 6.2.1 listing 6.5) that takes one parameter. The function uses the
“send” keyword which leads to a transaction that changes the Ethereum state.

1 onRemove = async () => {
2 const accounts = await web3.eth.getAccounts ();
3

4 //call the smart contract function to remove node
5 //1 param: id in list
6 await simulation.methods.removeNode(this.props.id).send({from:

accounts [0]});
7 };

Listing 6.21: Remove Code

The interaction between the utility and the first smart contract’s “removeNode”
function could either be successful or unsuccessful due to a certain property not
being satisfied in the smart contract. This could happen for many reasons as
indicated:
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• The caller of the function is not the utility

• The utility has not previously accepted the consumer into the network

• The utility has not provided enough gas for the transaction to succeed

Before being able to send data back and forth between the consumer and the
utility, the consumer must have deployed its data contract. Figure 6.11 shows
the screen the consumer will see till the data contract has been deployed.

Figure 6.11: Architecture 1: Check

Listing 6.22 shows the code used to interact with the simulation smart con-
tract (first smart contract) using the interface in figure 6.11. The asynchronous
transaction - line 4 - calls the smart contract function “canDeploy” (discussed
in subsection 6.2.1 listing 6.7) that takes one parameter. The function uses the
“call” keyword which does not lead to a change in the Ethereum state.

1 checkStatus = async () => {
2 await ethereum.enable ();
3 const accounts = await web3.eth.getAccounts ();
4

5 //call the smart contract function to check if consumer can
deploy

6 //1 param: address
7 const status = await

simulation.methods.canDeploy(accounts [0]).call();
8 }

Listing 6.22: Check Code

We do not show the Metamask interaction between the utility and the first
smart contract’s “canDeploy” function since this function is not a transaction
that changes the Ethereum state. Therefore, it does not need to be verified. It
is considered to be querying the distributed ledger.
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6.3.2 Second Smart Contract - Setting Up the Communi-
cation

Listing 6.23 shows the code used to interact with the simulation smart contract
(first smart contract) and the factory smart contract (second smart contract).
As noticed, this listing includes listing 6.22 since the three functions, “canDe-
ploy”, “createDataContract”, and “markDone”, directly depend on each other as
explained in subsection 6.1 figure 6.3.

The asynchronous transaction - line 14 - calls the smart contract function “create-
DataContract” (discussed in subsection 6.2.2 listing 6.11) that doesn’t take any
parameters. The function uses the “send” keyword which leads to a transaction
that changes the Ethereum state.

Line 18 shows the extraction of the deployed data contract’s Ethereum address
(explained in 2.4.2) from the event sent (shown in listing 6.11).

The asynchronous transaction - line 23 - calls the smart contract function “mark-
Done” (discussed in subsection 6.2.1 listing 6.8) that takes one parameter. The
function uses the “send” keyword which leads to a transaction that changes the
Ethereum state.

The consumer is rerouted to the page where he/she can send and receive data
through the deployed data smart contract (whose address is specified in the URL)
- line 26.
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1 checkStatus = async () => {
2 await ethereum.enable ();
3 const accounts = await web3.eth.getAccounts ();
4

5 //call the smart contract function to check if consumer can
deploy

6 //1 param: address
7 const status = await

simulation.methods.canDeploy(accounts [0]).call();
8

9 let dataAddress="";
10 if(status)
11 {
12 //call the smart contract function to deploy data contract
13 //0 param
14 dataAddress = await

factory.methods.createDataContract ().send({from:
accounts [0]});

15

16 //get address from event
17 //use contract address to access smart contract
18 dataAddress = dataAddress.events.Deployed.returnValues._add;
19 console.log(dataAddress);
20

21 //call the smart contract function to mark node as having
deployed data contract

22 //1 param: address
23 await simulation.methods.markDone(accounts [0]).send({from:

accounts [0]});
24

25 // reroute to send
26 Router.pushRoute(‘/data/send/${dataAddress}‘);
27 }
28 }

Listing 6.23: Check Code

The interaction between the consumer and the second smart contract’s “create-
DataContract” function could be either successful or unsuccessful due to a certain
property not being satisfied in the smart contract. The interaction between the
consumer and the first smart contract’s “markDone” function could be either suc-
cessful or unsuccessful due to a certain property not being satisfied in the smart
contract. This could happen for many reasons as indicated:

• The consumer attempting to call this function is not trying to call it for
themselves

• The consumer has not provided enough gas for the transaction to succeed
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6.3.3 Third Smart Contract - Communicating

Now that the smart contract is deployed by the consumer, who is called the owner
of the contract, he/she can send data to the utility. Figure 6.12 shows the user
interface where a consumer can input the electrical data needed by the utility
and send it.

Figure 6.12: Architecture 1: Send Electrical Data

Listing 6.24 shows the code used to interact with the simulation smart contract
(first smart contract) using the interface in figure 6.12.

Line 7 shows the smart contract’s Ethereum address that is used to access the
consumer’s data smart contract.

Line 15 shows the combination of the current year, month, date, hour, and minute
needed to form a timestamp the utility will use to find the electrical data.

The asynchronous transaction - line 19 - calls the smart contract function “send-
Data” (discussed in subsection 6.2.3 listing 6.15) that takes two parameters, one
of which is the timestamp explained in line 15 and the other is the electrical data
and is evident in figure 6.12. The function uses the “send” keyword which leads
to a transaction that changes the Ethereum state.
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1 onSubmit = async (event) => {
2 const {address} = this.props;
3 event.preventDefault ();
4 await ethereum.enable ();
5

6 // getting the instance of the contract
7 const contract = data(address);
8

9 try {
10 const accounts = await web3.eth.getAccounts ();
11 const today = new Date();
12

13 //used for the timestamp
14 //gets current date in specific format
15 const time = "" + today.getFullYear () +

(today.getMonth ()+1) + today.getDate () +
today.getHours () + today.getMinutes ();

16

17 //call the smart contract function to send electrical data
18 //2 params: timestamp , electrical data
19 await contract.methods.sendData(time ,

this.state.data).send({from: accounts [0]});
20

21 } catch(err) {
22 this.setState ({ errorMessage: err.message });
23 }
24 }

Listing 6.24: Send Code

The interaction between the consumer and the third smart contract’s “sendData”
function could be either successful or unsuccessful due to a certain property not
being satisfied in the smart contract. This could happen for many reasons as
indicated:

• The caller of the function is not the owner of the contract

• The consumer has not provided enough gas for the transaction to succeed

Finally, figure 6.13 shows the user interface where the utility can get the electrical
data needed at a certain time by interacting with the third smart contract’s
“lookupData” function.
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Figure 6.13: Architecture 1: Get Electrical Data at Time

Listing 6.25 shows the code used to interact with the data smart contract (third
smart contract) using the interface in figure 6.13.

Line 7 shows the smart contract’s Ethereum address that is used to access the
consumer’s data smart contract.

The asynchronous transaction - line 13 - calls the smart contract function “lookup-
Data” (discussed in subsection 6.2.3 listing 6.16) that takes one parameter evident
in figure 6.13.

Line 15 shows the load balancing data retrieved in the asynchronous function
call. The function uses the “call” keyword which does not lead to a change in the
Ethereum state.

1 onSubmit = async (event) => {
2 const {address} = this.props;
3 event.preventDefault ();
4 await ethereum.enable ();
5

6 // getting the instance of the contract
7 const contract = data(address);
8

9 const accounts = await web3.eth.getAccounts ();
10

11 //call the smart contract function to send electrical data
12 //1 param: timestamp , electrical data
13 const valueReturned = await

contract.methods.lookupData(this.state.timeDate).call({from:
accounts [0]});

14 console.log(valueReturned);
15 this.setState ({value: valueReturned });
16 }

Listing 6.25: Look-up Code

We do not show the Metamask interaction between the utility and the third
smart contract’s “lookupData” function since this function is not a transaction
that changes the Ethereum state. Therefore, it does not need to be verified. It
is considered to be querying the distributed ledger.
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6.4 Results
The results show the various smart contract components in the different archi-
tectures. These components include variables and functions used in the deployed
smart contracts. The functions consume certain amounts of gas; thus, the cost
of using them varies. These concepts have been discussed in subsection 2.4.7.
The test network used in this thesis, as mentioned in section 5.2, is the Rinkeby
Test Network where the price of gas is constant and is set at 1 GWei. However,
in the real network, the cost of gas varies at an average price of 20 GWei. We
used 1 Ether equivalent to 186 USD. The cost is not influenced by the size of the
network but by the complexity of the transaction. Thus, simulating a network
with few consumers versus many consumers will not affect the results in any way.

The results are those of a smart grid communication network composed of various
smart meters and one utility connected via the Ethereum infrastructure. This
architecture describes the entry of a consumer into the smart grid communica-
tion network created. Entering the smart grid communication network will allow
the consumer to send electrical data to the utility and the utility to send load
balancing data to the consumer. The details concerning these smart contracts
are found in sections 6.1 and 6.2.

For each of the contracts, there will be a table discussing the transaction ti-
tle, who the transaction is sent from, who the transaction is sent to, the amount
of gas used, and the fee (in ether). Moreover, there will be tables discussing: the
transaction title, the fee (in ether), the cost (in $), the frequency the transac-
tion is sent at, and the total cost (in $) which is relative to the frequency the
transaction is sent at and the cost per transaction.
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6.4.1 First Smart Contract - Joining the Network

All the transactions in Table 6.1 and Table 6.2 found in the first column (deploy
simulation contract action, join action, accept action, and mark data contract de-
ployed action), are made through smart contract functions. Both the consumer
and the utility will be interacting through the use of the simulation smart con-
tract (refer to section 6.2.1 for more details about the smart contract).

Table 6.1 describes the steps a consumer takes to enter into the network. Since
the utility deploys the simulation contract, it carries the burden of using up a big
amount of gas. The join actions, carried out by the consumers, and the accept
actions, carried out by the utility, are transactions sent to the smart contract.
They use up varying amounts of gas depending on the complexity of the func-
tions in the smart contract. Clearly the join action is more complex than the
accept action, as shown by the difference in the gas consumption. The mark data
contract deployed action is a transaction sent to the smart contract and is carried
out by the consumer. It will cost considerably less than the deploy action, the
join action, and the accept action. The following table describes the logistics of
the transactions.

Table 6.1: Architecture 1: Joining the Smart Grid Communication Network -
Smart Contract #1

Transaction From To Gas Used Fee (ether)
Deploy Simulation Contract Utility - 616950 0.00061695

Join Home Contract 125301 0.000125301
Accept Utility Contract 60764 0.000060764

Mark Data Contract Deployed Home Contract 42910 0.00004291

Table 6.2 complements Table 6.1 and includes the dollar amount of the cost of
entering into the network for both the utility and the consumers. The deployment
action will occur once at inception and is quite inexpensive. The join action will
be completed once by every consumer that wishes to enter the network. The
accept action will be completed once for every consumer that is allowed to enter
the network. Finally, the mark data contract deployed action will be completed
once by every consumer that has successfully deployed their data contract.
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Table 6.2: Architecture 1: Cost of Transactions in Joining - Smart Contract #1

Transaction Fee (ether) Cost ($) Frequency Total Cost($)
Deploy Simulation
Contract

0.00061695 0.099 1 0.099

Join 0.000125301 0.023 1 * # HH 0.023 * # HH
Accept 0.000060764 0.011 1 * # HH 0.011 * # HH
Mark Data Contract
Deployed

0.00004291 0.0079 1 * # HH 0.0079 * # HH

Assuming the population in Qatar is currently 2,869,4583 and the number of
buildings built are 216,7404. It is safe to estimate that there are around 2,167,400
households (HHs)/establishments that need electricity. Equation 6.1 shows the
payment needed to be made by the utility once in the smart grid communication
network, and equation 6.2 shows the payment needed to be made by the consumer
once in the smart grid communication network.

Utility Payment #1 = deploy simulation contract action+ accept action ∗# HH
= 0.099$ + 0.011$ ∗ 2, 167, 400
= 26, 008.884$

(6.1)

Consumer Payment #1 = join action+mark data contract deployed action
= 0.023$ + 0.0079$

= 0.0309$

(6.2)

3https://www.worldometers.info/world-population/qatar-population/
4https://www.gulf-times.com/story/635497/45-6-percent-jump-in-number-of-buildings-in-

10-years
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6.4.2 Second Smart Contract - Setting Up the Communi-
cation & Third Smart Contract - Communicating

All the transactions in Table 6.3, Table 6.4, or Table 6.5 found in the first col-
umn (deploy factory contract action, deploy data contract action, and send data
action), are made through smart contract functions. Both the consumer and the
utility will be interacting through the use of the factory smart contract or the
data smart contract (refer to sections 6.2.2 and 6.2.3 respectively for more details
about the smart contracts).

Table 6.3 describes the steps a consumer takes to communicate in the network.
Since the utility deploys the factory contract, it carries the burden of using up
a big amount of gas. The consumer deploys the data contract and carries the
burden of using up a big amount of gas. The amounts of gas consumption vary
from factory contract to data contract depending on the number of variables,
functions, and other factors. The send data actions, done by the consumers are
transactions sent to the smart contract. Clearly the deployment actions are more
complex than the send data action. The following table describes the logistics of
the transactions.

Table 6.3: Architecture 1: Communication in the Smart Grid Communication
Network - Smart Contract #2 & #3

Transaction From To Gas Used Fee (ether)
Deploy Factory Contract Utility - 533826 0.000533826
Deploy Data Contract Home Contract 345470 0.00033047

Send Data Home Contract 63916 0.000063916

Table 6.4 and Table 6.5 complement Table 6.3 and include the dollar amount of
the cost of communicating in the network for both the utility and the consumers.
The factory contract will be deployed by the utility once at inception and is
quite inexpensive. The data contract will be deployed by each consumer once
at inception and is quite inexpensive (Table 6.4). The send data action (Table
6.5) will be completed by every consumer that wishes to communicate electrical
data to the utility. This action could occur at 15 minute intervals, 30 minute
intervals, or 60 minute intervals a day. The total cost per day is calculated for
these different intervals and a significant difference can be seen.
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Table 6.4: Architecture 1: Cost of Transactions in Initializing the Communication
Environment - Smart Contract #2 & #3

Transaction Fee (ether) Cost ($) Frequency Total Cost ($)
Deploy Factory Contract 0.000533826 0.099 1 0.099
Deploy Data Contract 0.00033047 0.061 1 * # HH 0.061 * # HH

Table 6.5: Architecture 1: Cost of Transactions in Sending Electrical Data -
Smart Contract #3

Transaction Fee (ether) Cost ($) Frequency/Day (min) Total Cost/Day ($)
Send Data 0.000063916 0.011 15 * # HH 1.056 * # HH
Send Data 0.000063916 0.011 30 * # HH 0.528 * # HH
Send Data 0.000063916 0.011 60 * # HH 0.264 * # HH

We assume the same statistics mentioned above about the population, the number
of buildings built, and the number of households (HHs)/establishments that need
electricity are applicable. Equation 6.3 shows the payment needed to be made
by the utility once in the smart grid communication network. Equation 6.4
shows the payment needed to be made by the consumer once in the smart grid
communication network. Equation 6.5 shows the maximum payment needed to
be made by the consumer once every year.

Utility Payment #2 = deploy factory contract action
= 0.099$

(6.3)

Consumer Payment #2 = deploy data contract action
= 0.061$

(6.4)

Consumer Payment #3 = send data action ∗ 365
= 1.056$ ∗ 365
= 385.44$

(6.5)
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6.4.3 Summary

As noticed, the prices are high for an operational smart grid especially when you
take the price of gas into consideration in the Main Ethereum Network. The
high cost that comes with this approach is tackled in architecture 2. Less smart
contracts can be deployed leading to less fees by the consumer and less storage
consumption on the distributed ledger. Other steps can be taken to decrease the
cost including simplifying the functions in the smart contract while maintaining
the efficiency of the security measures. The architecture’s limitations will be dis-
cussed in section 6.6.

The three smart contracts used in this architecture pose different sums to be
paid by both the utility and the consumer at different points in time of the smart
grid communication network. Equation 6.1, equation 6.2, equation 6.3, equation
6.4, and equation 6.5 show the payments that need to be made by the utility
and the consumer at different points in the smart grid communication process.
We wrap up these equations by summing up all the expenses that are paid by
the utility and the consumer. Equation 6.6 sums up the expenses paid by the
utility to set up the smart grid communication network for themselves and the
consumers. Equation 6.7 sums up the expenses paid by each consumer to set up
their interaction with the smart grid communication network. Finally, equation
6.8 sums up the expenses that have to be paid by each consumer yearly to interact
with the utility in the smart grid communication network.

Total Initial Utility Payment = Utility Payment #1
+ Utility Payment #2
= 26, 008.884$ + 0.099$

= 26, 008.983$

(6.6)

Total Initial Consumer Payment = Consumer Payment #1
+ Consumer Payment #2
= 0.0309$ + 0.061$

= 0.0919$

(6.7)

Total Consumer Payment Per Year = Consumer Payment #3
= 385.44$

(6.8)
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6.5 Security Properties
The security properties achieved in this architecture can be credited to the use of
both the blockchain network and the smart contracts. The Ethereum blockchain
ensures various security properties discussed in subsection 2.4.10 whereas the
smart contracts and their details are discussed in subsection 2.4.2. Both the
Ethereum blockchain and its smart contracts are discussed in terms of the security
properties achieved.

6.5.1 Smart Contract Properties

The architecture’s three smart contracts discussed in section 6.2 subsections 6.2.1,
6.2.2, and 6.2.3 were structured to provide certain security properties alongside
the innate blockchain security properties. The smart contracts contain certain
restrictions and requirements that force functions to be constrictive and serve
the purpose of securing the use of the smart grid communication network. It is
important to note that the use of the term “network” is synonymous with the
“smart grid communication network” and not the whole blockchain network.
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First Smart Contract - Joining the Network

This contract is deployed only once by the utility. Once deployed, at the in-
ception of the smart grid communication network, the simulation smart contract
becomes accessible by all other nodes on the blockchain since it is now part of
the blockchain’s ledger. This smart contract is deployed to allow the consumers
to join the network composed of the different consumers containing legal smart
meters registered at the utility. The details of this smart contract can be found
in subsection 6.2.1.

The “constructor” function is used by the utility to deploy the contract. The
utility places its Ethereum address on the smart contract to restrict the use of
some smart contract functions. This provides authenticity and limits who can
call the functions to secure the network.

The “requestEntry” function contains three requirements. The first is that the
caller of the function is not the utility in order to avoid the confusion of adding
the utility as a consumer. This requirement can be removed based on the require-
ments of the utility, but it is put in place on the off-chance that the utility has
been compromised and attempts to masquerade as a legitimate consumer and
send false data. This provides integrity of data and security of the network.
The second is that the caller of the function must not have previously requested
entry into the network. This requirement stops the consumer from bombarding
the network with useless requests. If the consumer is a malicious user, they could
use any of the smart contract functions to overload the network. This function
ensures that the consumer has not previously requested entry. This requirement
provides availability of the blockchain services. The third is that the caller of
the function must not already be part of the network. This requirement stops the
consumer from bombarding the network with useless requests. If the consumer
is a malicious user, they could use any of the smart contract functions to over-
load the network. This function ensures that the consumer has not already been
added to the network. This also provides availability of the blockchain services.

The “acceptNode” function contains two requirements. The first is that the caller
of the function is the utility. This stops any user in the blockchain network from
accepting themselves or any other malicious users onto the network. This pro-
vides legitimacy of the consumers on the network and integrity of the electrical
data to be sent by this consumer. The second is that the consumer the utility
is trying to accept into the network must not already be part of the network.
This requirement stops the utility from accepting a consumer multiple times and
wasting resources. This provides availability of the blockchain services. Once
the consumer is added to the network, we can know that the consumer is a legit-
imate user. This provides reliability of the network.
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The “removeNode” function contains two requirements. The first is that the
caller of the function is the utility. This stops any user in the blockchain net-
work from accepting themselves or any other malicious users onto the network.
This provides legitimacy of the consumers on the network and integrity of the
electrical data to be sent by this consumer. The second is that the consumer the
utility is trying to remove from the network must already be part of the network.
This requirement stops the utility from removing a consumer multiple times and
wasting resources or even attempting to remove a consumer that does not exist
on the network to begin with. This provides availability of the blockchain ser-
vices.

The “markDone” function contains one requirement: the caller of the function
is the consumer. He/she needs to mark himself/herself as having deployed their
data smart contract. This action should not be done by any other user since it
could stop a legitimate consumer from deploying their data smart contract or
accessing their data smart contract. This requirement provides reliability of the
network by ensuring the legitimate consumers can access their smart contract to
send and receive data on.

All the measures above provide accountability of the users and transparency
and auditability of the data.
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Second Smart Contract - Setting Up the Communication

This contract is deployed by the utility only once. Once deployed at the in-
ception of the smart grid communication network, the factory smart contract
becomes accessible by all other nodes on the blockchain since it is now part of
the blockchain’s ledger. This smart contract is deployed to allow the consumers
to create their data smart contracts, which are needed for the data exchange
between the consumer with the utility. The details of this smart contract can be
found in subsection 6.2.2.

The “constructor” function is used by the utility to deploy the contract. The util-
ity places its Ethereum address on the smart contract to be used in the creation
of the data smart contracts. The utility’s Ethereum address will be automati-
cally included in the data smart contracts deployed by all the consumers. This
provides authenticity of the utility in the data smart contracts. As noticed, this
step provides security for the to-be-deployed data smart contracts by consumers.

The “createDataContract” function contains no requirements. It is important to
note that it does not lead to any security breaches. Any user on the blockchain
network will be able to create this data smart contract. If a legitimate consumer
creates the data smart contract through the appropriate steps in the first smart
contract, then the utility will access this smart contract, gather the electrical
data sent from the consumer, and send load balancing data when needed. If an
illegitimate user creates the data smart contract, then the utility will not access
this smart contract since the user is not one of the accepted users on the net-
work. This provides reliability and security of the network. It also provides
integrity of the data supplied.

All the measures above provide accountability of the users and transparency
and auditability of the data.
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Third Smart Contract - Communicating

This contract is deployed by the consumer only once through the factory con-
tract described in subsection 6.2.2. Once deployed by each consumer, the data
smart contract becomes accessible by all other nodes on the blockchain since it
is now part of the blockchain’s ledger. This smart contract is deployed to allow
the consumers to communicate their energy data securely and the utility to send
load balancing data back to the consumer (demand-response). This preserves the
two-way data flow for which the smart grid is known. The details of this smart
contract can be found in subsection 6.2.3.

The “constructor” function is used by the consumer to deploy the contract through
the factory smart contract. The consumer places his/her Ethereum address on
the smart contract as the owner of the smart contract and the utility’s Ethereum
address to use for load balancing data to be sent and verified. This provides au-
thenticity of the consumer and the utility and limits who can call the functions
to secure the network.

The “sendData” function contains one requirement: the caller of the function
is the consumer that owns the data smart contract which stops any malicious
user in the blockchain network from sending incorrect electrical data on behalf
of the consumer. This provides integrity of the electrical data sent by this con-
sumer.

The “fixData” function contains one requirement: the caller of the function is the
utility which stops any malicious user in the blockchain network from sending
incorrect load balancing data on behalf of the utility. This requirement provides
integrity of the load balancing data sent by the utility for this specific consumer.

All the aforementioned measures provide accountability of the users and trans-
parency and auditability of the data.
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6.5.2 Blockchain Properties

Various security properties characterize the blockchain platform. These described
security properties, including integrity, availability, authenticity, transparency,
auditability, accountability, anonymity, privacy, reliability, and termination pro-
vided by blockchain, are integral to our thesis work. All the security properties
are ensured through the structure of the blockchain and the usage of smart con-
tracts in Ethereum to provide secure communication between the smart meters
and the utility.

Integrity

Blockchain’s resistance to the modification of data can be accredited to their dis-
tributed ledgers. These ledgers are immutable meaning they cannot be changed
(modified or removed). Blockchain is thus tamper-proof since any modification
to the ledger will be detected.

Integrity in this architecture is ensured through the immutable ledger. Any
transactions made are placed on this ledger and no modifications can be made to
these transactions. The cryptographic hash function and signatures for transac-
tions and blocks guarantee integrity.

The electrical data sent from the consumer through a transaction will be placed
on this immutable ledger. The load balancing data sent from the utility through
a transaction will also be placed on this immutable ledger.

Availability

Blockchain’s decentralization (explained in subsection 2.3.1) provides availability
since each node has a full copy of the ledger. Therefore, attacks on the ledger
at certain nodes cannot cause damage to the entire network. There is no single
server that has total control. In addition, transactions that already exist cannot
be deleted which maintains data persistence.

Availability in this architecture is ensured through the distributed ledger. The
blockchain network is a network of nodes connected together. Each node contains
the ledger, making the transactions available at any time. The blockchain veri-
fication, authentication, and mining services are always available since no single
point of failure exists which guarantees availability.

The electrical data sent from the consumer through a transaction and the load
balancing data sent from the utility through a transaction are placed on the
distributed ledger to be accessed at any time.
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Authenticity

Blockchain’s use of asymmetric cryptography (discussed in subsection 2.3.4) pro-
vides the tools needed to generate a digital signature (discussed in subsection
2.3.4) for a transaction. This authenticates the transaction that is sent. This
transaction is further verified for authenticity by nodes in the network.

Authenticity in this architecture is ensured through the cryptographic digital
signatures. The transactions made by the utility or the consumers will be signed
using their private key. This can later be verified using the corresponding public
key.

Smart contract functions were designed in a way to only allow specific users
to call them as is shown in the description of the smart contracts of this archi-
tecture in section 6.2. Malicious users cannot access certain functions to change
data stored in the smart contract.

The electrical data sent from the consumer through a transaction is signed by the
consumer. The load balancing data sent from the utility through a transaction
is signed by the utility.

Transparency

Blockchain’s transparency of information is provided through a verified distributed
ledger of transactions. It allows any of the nodes in the network (depending on
the blockchain platform used) to view the transactions made.

Transparency in this architecture is ensured through the immutable distributed
ledger. The electrical data sent from the consumer through a transaction and
the load balancing data sent from the utility through a transaction are placed
on the distributed ledger to be accessed at any time by anyone in the blockchain
network.

Auditabiliy

Blockchain’s transactions are traceable since every transaction made, added to
a block, and broadcast to the network is documented in the distributed ledger.
Tracking transactions is possible through the sue of the blockchain platform.

Data provenance can be seen through the distributed ledger. All transactions
are placed on the ledger, so any address’s transactions can be traced to the very
first transaction.

Auditability in this architecture is ensured through the immutable ledger. The
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transactions are stored on every node’s ledger creating a log of all transactions
occurring in the blockchain network.

The electrical data sent from the consumer through a transaction will be placed
on this immutable ledger. The load balancing data sent from the utility through
a transaction will also be placed on this immutable ledger.

Accountability

Blockchain’s transparency and auditability provide the necessary tools to accom-
modate accountability. The distributed ledger can be referenced to check for any
needed data related to a certain blockchain address.

Accountability in this architecture is ensured through the immutable ledger. The
transactions contain the Ethereum address of the transaction creator. This en-
sures that the transaction is always linked back to the account making the trans-
actions auditable.

The electrical data sent from the consumer through a transaction contains the
consumer’s Ethereum address. The load balancing data sent from the utility
through a transaction contains the utility’s Ethereum address.

Anonymity

Blockchain’s blockchain-specific account per user provides anonymity. This ac-
count is used for all the user’s transactions in the network. As long as there is no
link between the user’s blockchain address and the user’s identity, the transaction
remains anonymous.

Anonymity in this architecture is ensured through the Ethereum address. Each
account has its own Ethereum address that is used in the blockchain network.
The Ethereum address is unique to each account. The account does not need to
provide any personal information; thus, the account is not linked to any personal
information.

The electrical data is sent from the consumer through a transaction, using the
consumer’s Ethereum address. The load balancing data is sent from the utility
through a transaction, using the utility’s Ethereum address. Both of these ad-
dresses do not link back to any personal data of the user of the account thereby
guaranteeing pseudo-anonymity.
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Privacy

Privacy is ensured through the pseudo-anonymity of the blockchain addresses.
The blockchain ledger is readable by any node in the network and transactions
can be traced for every address but these addresses cannot be linked to real iden-
tities.

Privacy in this architecture is ensured through the Ethereum address. This
address allows the consumer to use an account address instead of personal in-
formation to send the electrical data through transactions.

By remaining pseudo-anonymous, the consumer can send electrical data openly
without worrying about the data being traced back to them personally. The
data can only be traced back to the Ethereum address which, as mentioned, is
not linked to the consumer’s personal information.

The utility can send load balancing data openly without worrying about the
data being traced back to the consumer personally since this consumer is pseudo-
anonymous. The data can only be traced back to their Ethereum address which,
as mentioned, is not linked to the consumer’s personal information.

The electrical data is sent from the consumer through a transaction, using the
consumer’s Ethereum address. The load balancing data is sent from the utility
through a transaction, using the utility’s Ethereum address. Both of these ad-
dresses do not link back to any personal data of the user of the account and thus
do not disclose who is sending the data.

Termination

In our smart contracts, there are no for loops written out to avoid issues leading
to gas depletion at both the utility and consumer sides.

Termination in this architecture is ensured through the use of gas/gas limit (ex-
plained in subsection 2.4.7). Utilizing gas and gas limits forces the function to
terminate whether complete or incomplete.

Reliability

Reliability in this architecture is ensured through the blockchain structure. The
distributed ledger provides all the security properties mentioned in this section.
The smart contract provides restrictions for the functions. Both the smart con-
tract and ledger provide the reliability needed. The ledger makes sure the data
has integrity and is available, authentic, auditable, transparent, and private. The
ledger makes sure the user is anonymous and accountable. The smart contract
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makes sure the transactions called are terminable. The smart contract is also
the entity that contains all the rules that the users in the network must follow to
enter the network and communicate data.
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6.6 Limitations
Various security properties are achieved in this architecture, which are mentioned
in section 6.5. These properties make the Ethereum blockchain a good solution
for securing the two-way communication between the consumers and the util-
ity. However, a few limitations arise such as issues with privacy using pseudo-
anonymity, the cost of smart contracts, and scalability.

6.6.1 Privacy using Pseudo-anonymity

In the blockchain network, a user that has a blockchain account cannot be con-
sidered fully anonymous. Pseudo-anonymity is when a user is linked back to their
blockchain address but not to any of their personal information. All transactions
are stored publicly on the blockchain ledger and are visible to anyone to analyze
and interpret. Anonymity of the sender depends on the pseudonym not being
linked to his/her true identity. Thus, a user can preserve his/her privacy as long
as pseudonym is not linked back to the individual. If a link is made, the iden-
tity of the user is revealed and the pseudo-anonymity is broken. All transactions
made by the user and previously identified through the blockchain address can
now be traced back to the user’s identity.

Tools are used by attackers to break the link between the user’s account and
the user’s identity called deanonymization. Users can attempt to avoid linking
their blockchain address with any personal information, but it is not very feasi-
ble. Users can turn to virtual private networks (VPNs) and other services (Tor
[144], Tumbler/Mixer5). Users can even use a new blockchain address for each
transaction. Each of these solutions comes with its own set of problems.

6.6.2 Cost of Smart Contracts

The deployment and interaction with the three smart contracts discussed in sec-
tion 6.2 subsections 6.2.1, 6.2.2, and 6.2.3 is costly as demonstrated in the results
section 6.4 of this chapter. The cost incurred - the use of gas in the smart con-
tracts - could be reduced using certain optimizations.

Data Types

The Ethereum Virtual Machine, when dealing with storage, manages storage slots
of size 256 bits. The use of variables with smaller data type sizes will force the
EVM to fill in the rest of the bits with zeros which costs gas. Another thing
that costs gas when storing small variable types are the calculations that are
performed. The calculations are performed on integer variables of size 256 thus

5https://cryptomixer.io/
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any variable with any other type and size will need to be converted before the
calculations takes place.

Data in Contract Bytecode

The data that needs to be stored in the blockchain from the beginning can be
placed there through the bytecode of the smart contract. There is no need to
waste transactions and pay fees when the variables can be placed there before
deployment. This allows the contract to save a lot on gas consumption. However,
these values cannot be altered afterwards.

Packing Variables

When data is stored on the blockchain smart contract, it must be done in a way
that maintains the order of the different variables types. Variables of the same
type should be placed after one another to allow them to be tightly packed and
reduce padded zeros.

6.6.3 Scalability

Both the utility and the consumers in the smart grid communication network will
have to send an abundance of messages. The consumers will each have to send
data at intervals of 15 minutes, 30 minutes, or an hour. The utility will have to
send load balancing data to consumers when required. All these transactions are
not scalable on the Ethereum blockchain network. As described in table 2.1 from
section 2.3, the number of transactions per second in the Ethereum network is
15. This scalability issue will have to be amended in order to allow our solution
to work properly and scalably.
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Chapter 7

Architecture 2 (Part A)

The first part of Architecture 2, discussed in this chapter, explores a method
for sending encrypted data using a combination of the Ethereum platform and
cryptographic tools. We propose to create two separate smart contracts each
for a different functionality. The first smart contract is the contract that allows
consumers to join the smart grid communication network. It greatly resembles
the first smart contract in the first architecture (subsection 6.2.1). It is called the
simulation smart contract. The second smart contract is the contract that defines
the protocols used in the transmission of data from the consumer to the utility and
vice versa. It is called the communication smart contract. These smart contracts
have been carefully designed to reduce the cost of using them (to understand the
concept of smart contract fees and transaction costs refer to subsections 2.4.2 and
2.4.9). This chapter shows the scenarios the architecture will follow in section 7.1,
the smart contract details in section 7.2, the user interface used to interact with
the smart contracts in section 7.3, the results in section 7.4, the security properties
achieved in section 7.5, and the limitations of this architecture in section 7.6.
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7.1 Scenario

Using a control flow graph (CFG), we display the order of execution of the calls
and updates to the smart contract. It shows all possible steps that can be exe-
cuted in our program.

7.1.1 Initial Contract Deployment

Figure 7.1 shows the steps taken by the utility to deploy the two smart contracts
needed to join and communicate in the smart grid communication network. The
utility initially deploys the simulation contract which would lead to a transaction
that would update the blockchain state (step 1). This contract deals with con-
sumers requesting entry and utility accepting consumers into the network.

If the simulation contract is deployed successfully (step 2), the utility can de-
ploy the communication contract (step 3) which would lead to a transaction that
would update the blockchain state (step 4). This contract deals with the con-
sumer and utility data interaction. If the simulation contract is not deployed
successfully, the utility will try to deploy the simulation contract again.

Deploying the simulation contract and the communication contract lead to changes
in the Ethereum state.

Figure 7.1: Architecture 2A: Initial Contract Deployment
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7.1.2 Contract Interaction

Figure 6.2 from chapter 6 shows the steps taken by the consumer to try and enter
the network. The consumer can request entry that would lead to a transaction
that would update the blockchain state (step 1).

Figure 6.2 from chapter 6 also shows the steps taken by the utility to accept
or reject the consumer. The utility queries for requests from consumers. The
utility finds a request (step 2). If there is a request and the utility wishes to re-
ject the consumer, then it would lead back to a state of waiting for a request. For
instance, the utility can choose to reject a consumer if they did not register with
the utility beforehand. If there is a request and the utility wishes to accept the
consumer, then it would lead to a transaction that would update the blockchain
state (step 3). If the utility does not find a request, it waits 15 minutes before
rechecking (step 4). The 15 minute wait can be updated to 30 minutes or an hour
depending what the utility wants. The 15 minute intervals will recur throughout
the architecture and can be updated to 30 minutes or an hour also depending on
what the utility wants. The utility can also remove a consumer from the network
that would lead to a transaction that would update the blockchain state (step 5).

Requesting, accepting, and removing consumers leads to changes in the Ethereum
state. Querying for requests does not lead to changes in the Ethereum state.

Figure 7.2 shows the steps taken by the consumer to send data. Electrical data
can be sent from the consumer to the utility through an event and can be received
by the utility. The consumer first encrypts the electrical data (step 1) and at-
tempts to send an event containing the encrypted electrical data. The consumer
checks if it is allowed to send data (step 2). If the consumer is not allowed to send
data, then it would lead back to a state of waiting to send electrical data. If the
consumer is allowed to send data, then it would lead to a transaction that would
update the blockchain state (step 3). The consumer attempts to send data every
hour (step 4). The 15 minute intervals or 1 hours intervals will recur throughout
the architecture and can be updated depending on what the utility wants.

Figure 7.2 also shows the steps taken by the utility to send data. Load bal-
ancing data can be sent from the utility to the consumer through an event and
can be received by the consumer. The utility first encrypts the load balancing
data (step 5) and sends an event containing the encrypted load balancing data
that would lead to a transaction that would update the blockchain state (step 6).

Sending data, electrical data by the consumer and load balancing data by the
utility, leads to changes in the Ethereum state.
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Every 15 minutes the consumer can get an event containing the encrypted load
balancing data (step 8) if the utility has sent load balancing data. The data is
decrypted for use (step 7). Every hour the utility gets an event containing the
encrypted electrical data (step 10). The data is decrypted for use (step 9). The
use of cryptographic techniques here is to ensure the data remains confidential,
unchanged, and authentic. These properties will be explained further in section
7.5.

The consumer receiving load balancing data and the utility receiving electrical
data does not lead to changes in the Ethereum state.

Figure 7.2: Architecture 2A: Contract Interaction (Part 2)
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7.2 Smart Contract Details
Now that we have gone through the control flow of the smart contracts’ execu-
tions, we answer the following questions, for each smart contract: By who was
the contract deployed? When was it deployed? For what purpose? What are the
contracts’ contents?

7.2.1 First Smart Contract - Joining the Network

This contract is deployed by the utility only once at inception. Figure 7.3 shows
a high level view of the smart grid communication network in relation to the first
smart contract. This figure illustrates a city in Qatar that contains 10 household-
s/establishments (HHs) numbered 1 through 10 and the utility numbered 11. All
of the establishments numbered 1 through 10 contain smart meters that measure
their electrical consumption.

There are two distinguishable components in figure 7.3. The first component
is the blockchain network. This network contains all the households and the util-
ity. The HHs and the utility are part of the peer-to-peer Ethereum blockchain
network as illustrated by the road which connects all the HHs and establishments.
The HHs are nodes in the blockchain network and have access to the distributed
blockchain ledger. Node 11, the utility, contains the first smart contract known
as the simulation smart contract. Once deployed at the inception of the smart
grid communication network, the smart contract becomes accessible by all other
nodes on the blockchain since it is now part of the blockchain’s ledger. This
smart contract is deployed to allow the consumers to join the network, which is
composed of the different consumers containing legal smart meters registered at
the utility.

The second component is the distributed ledger. This is the Ethereum ledger
that every node will have access to. This ledger will contain all the transactions
that have been mined and added to the blockchain. The transactions include all
the updates to the Ethereum state (explained in subsection 2.4.5).

The symbol table explains that the different nodes 1 through 11 can send a
transaction “T” at a certain time “t” that is added to the distributed ledger. The
legend displays the objects that exist in the smart grid communication network.

128



Figure 7.3: Architecture 2A: Smart Contract #1 Distribution

As we’ve explained in subsection 2.4.2, variables are set up to be interacted with,
and functions exist to allow actions to occur on the blockchain. The detailed
code of the first smart contract variables and functions is available in Appendix
A listing A.4. Here, we will briefly explain the variables, functions, and their
purpose in the smart contract.

Listing 7.1 displays the variable names and descriptions in this contract. These
variables are used in functions we discuss below.

• Line 1 - countNodes: Number of consumers accepted onto the network

• Line 2 - publicKey: Public key of the utility

• Line 3 - utility: Utility’s Ethereum address

• Line 5 - requestedNodes: Array of requesters (represented by the node
structure)

• Line 7 - hasRequested: Map of requested consumers which are consumers
that want to enter the network

• Line 8 - isAccepted: Map of accepted consumers which are consumers
that have been accepted onto the network
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• Lines 11 till 16 - Node: Node structure that contains properties such as
the consumer’s public key, smart meter id, Ethereum address, and contract
completion attribute - lines 12, 13, 14, 15 respectively. It will be used to
create requests by consumers

The array of requesters will be used by the utility to display the requesters in the
user interface whereas the mapping of requesters will be used by the smart con-
tract to insure that the requester cannot request entry again (security measure).

1 uint32 public countNodes;
2 string constant public publicKey = "public key";
3 address public utility;
4

5 Node[] public requestedNodes; //to be added to network by utility
6

7 mapping(address => bool) private hasRequested;
8 mapping(address => bool) public isAccepted;
9

10 // request for node
11 struct Node {
12 string key;
13 uint32 smId;
14 address add;
15 bool complete;
16 }

Listing 7.1: Variables

The functions included in this smart contract are listed below and will be ex-
plained in listings 7.2, 7.3, 7.4, and 7.5 respectively whereas the “getRequester-
sCount” function is provided in listing 6.6 in subsection 6.2.1.

• Constructor

• Request entry

• Accept node

• Remove node

• Get requesters count

We assume that the smart grid communication network is starting with no con-
sumers (smart meters). The “constructor” function - line 3 - initializes the vari-
ables in listing 7.1 as seen in listing 7.2. The Ethereum utility address is set to
the caller of the constructor function “msg.sender” which is the utility - line 4.
The number of nodes is set to 0 since we assume the network is starting with no
consumers - line 5.
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1 //only called once by utility
2 //since deployed by utility
3 function Simulation () public {
4 utility = msg.sender;
5 countNodes = 0;
6 }

Listing 7.2: Constructor

Via this smart contract, the consumer (smart meter) must request entry into the
network to become part of it. Using the “requestEntry” function - line 3 - shown
in listing 7.3, the consumers can request to enter the network providing certain
properties to be approved by the utility. Before the function can be completed,
a rule must be checked. The function must not be called by a consumer that has
previously requested entry (called this function) - line 6. This restriction forces
the function to be called only when necessary thereby alleviating any problems
with overusing this function and stressing the network. The consumer is added
to the mapping of requesters and array of requesters and waits for the utility
to accept it. If these conditions are not satisfied, the function will throw an
exception which we have discussed in subsection 7.3.1. If it is satisfied, a node
structure is created with the passed properties - line 8. The consumer’s node is
now added to the mapping of requesters - line 9 - and array of requesters - line
10 - and waits for the utility to accept it.

1 //node requests access to network
2 //must be accepted by utility
3 function requestEntry(uint32 smId , string key) public {
4 // shouldn ’t be a requestor
5 //we don’t have to check if it isn’t already be a Node becuase

once accepted we do not sent hasRequested to false ...
6 require (! hasRequested[msg.sender ]);
7

8 Node memory r = Node(key , smId , msg.sender , false);
9 requestedNodes.push(r);

10 hasRequested[msg.sender] = true;
11 }

Listing 7.3: Request entry

The utility can accept the entry request using the “acceptNode” function - line 2
- shown in listing 7.4 or reject it (by not accepting it). If the caller of the function
is not the utility, the function will throw an exception which we have discussed
in subsection 7.3.1. The node is retrieved from the array of requesters - line 4. If
the consumer is not already part of the network, the function continues execution
- line 11, otherwise, the function will throw an exception which we have discussed
in subsection 7.3.1. Once the utility accepts the consumer, the consumer is added
to the mapping of accepted consumers - line 14 - and the number of nodes is in-
creased by one - line 15. The node is now marked as complete meaning it can be
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considered part of the network - line 20.

The utility also has the ability to accept an entry and then remove it later for
any reason using the “removeNode” function - line 2 - in listing 7.5. If the caller
of the function is not the utility, the function will throw an exception which we
have discussed in subsection 7.3.1. Removal reasons can be caused by an en-
tity requesting to stop its power service due to relocation, or disciplinary actions
taken by the utility against malicious consumers. The node is retrieved from
the array of requesters - line 4. If the consumer is part of the network (can be
found in mapping of accepted consumers), the function continues execution - line
7, otherwise, the function will throw an exception which we have discussed in
subsection 7.3.1. Once the utility removes the consumer, the number of nodes
is decreased by one - line 9 - and the consumer is removed from both mappings
(requesters and accepted consumers - lines 10, 11 respectively) thus clearing it
from the network.

1 //can only add node if the utility accepts
2 function acceptNode(uint32 index) public restrictedUtility {
3 //the node requested
4 Node storage r = requestedNodes[index];
5

6 //check if this node is valid
7 //based on smId db at utility
8 //done manually by calling verify function -> comparing values

to values they have -> making the call
9

10 // shouldn ’t already be a Node
11 require (! isAccepted[r.add]);
12

13 //add node to list that needs to create a contract
14 isAccepted[r.add] = true;
15 countNodes ++;
16

17 //mark as complete in request
18 //for ui:
19 //when complete true the row is disabled
20 r.complete = true;
21 }

Listing 7.4: Accept node
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1 // utility can remove a node from network
2 function x_removeNode(uint32 index) public restrictedUtility {
3 //the node requested
4 Node storage r = requestedNodes[index];
5

6 // should already be a Node
7 require(isAccepted[r.add]);
8

9 countNodes --;
10 hasRequested[r.add] = false;
11 isAccepted[r.add] = false;
12 }

Listing 7.5: Remove node

In addition, the contract includes a function that allows the utility to view how
many requesters there are in the array of requesters using “getRequestsCount”
function which provided in chapter 6’s listing 6.6 subsection 6.2.1.
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7.2.2 Second Smart Contract - Communicating

This contract is deployed by the utility only once at inception. Figure 7.4 shows
a high level view of the smart grid communication network in relation to the
second smart contract. The specifics of the city, households, and utility can be
found in subsection 7.2.1.
The symbol table explains that the different nodes 1 through 11 can send a mes-
sage with the data “M” at a certain time “t”. It shows the encrypt “E” and decrypt
“D” symbols that are used to encrypt and decrypt the data sent to and received
from the distributed ledger respectively. The legend displays the objects that
exist in the smart grid communication network.

Node 11, the utility, contains the second smart contract known as the communi-
cation smart contract. Once deployed at the inception of the smart grid commu-
nication network, the smart contract becomes accessible by all other nodes on the
blockchain since it is now part of the blockchain’s ledger. This smart contract is
deployed to allow the consumers to communicate their energy data securely and
the utility to send load balancing data back to the consumer (demand-response).
This preserves the two-way data flow for which the smart grid is known.

Figure 7.4: Architecture 2A: Smart Contract #2 Distribution

As we have explained in subsection 2.4.2, variables are set up to be interacted
with, and functions exist to allow actions to occur on the blockchain. The detailed
code of the second smart contract variables and functions is available in Appendix
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A listing A.5. Here, we will briefly explain the variables, functions, and their
purpose in the smart contract.
Listing 7.6 displays the variable names and descriptions in this contract. These
variables are used in functions we discuss below.

• Line 1 - S: Simulation contract instance declaration

• Line 4 - DataSent: Event declaration for electrical data to be sent by the
consumer that returns the consumer’s Ethereum address, the timestamp of
the data, and the value of the data (the concept of smart contract events
is discussed extensively in subsection 2.4.8)

• Line 5 - LoadBalancingData: Event declaration for load balancing data
to be sent by the utility that returns the consumer’s Ethereum address (the
consumer to which the data should be sent) and the value of the data

Both of these events will be discussed further below.

1 Simulation private S;
2

3 // events
4 event DataSent(address _from , bytes32 indexed _timestamp , string

_value);
5 event LoadBalancingSent(address indexed _to , string _value);

Listing 7.6: Variables

The functions included in this smart contract are listed below and will be ex-
plained in listings 7.7, 7.8, and 7.9 respectively.

• Constructor

• Send data

• Fix data

We assume that the consumers using this smart contract have been accepted into
the network and are accessing this contract to send electrical data to the utility
and to get load balancing data from the utility. The “constructor” function - line
3 - initializes the variables above as seen in listing 7.7. The address that is passed
as a parameter is the simulation smart contract address - line 3. This address is
produced when the utility deploys its simulation smart contract. It is passed to
the constructor so that the communication smart contract can make use of the
components in the simulation smart contract. Using this smart contract address,
the simulation contract may be referenced - line 4.
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1 // constructor
2 //takes the simulation contract to refer to it later
3 function Communication(address a) public {
4 S = Simulation(a);
5 }

Listing 7.7: Constructor

Via this smart contract, the consumer can send electrical data to the utility.
Sending data using the “sendData” function - line 3 - in listing 7.8 will emit an
event containing the electrical data in addition to the date and time (following a
certain format which is year-moth-day-hour-minute). Before doing so, the caller
of this function must be proven to be a member of the smart grid communica-
tion network - line 4. If this condition is not satisfied, the function will throw
an exception which we will further discuss in subsection 7.3.2. If it is satisfied,
the consumer’s Ethereum address, the timestamp of the data, and the value of
the data are sent as an event - line 5. The concept of smart contract events is
discussed extensively in subsection 2.4.8. By checking the simulation contract’s
mapping of accepted consumers, the smart contract can ensure that the caller of
this function is part of the communication network before allowing the transac-
tion to be processed.

The utility can then watch for the event at specific intervals. It will watch for
events related to electrical data sent by the consumers. These events are filtered
based on what timestamp is needed (to be discussed in subsection 7.3.2).

1 //send the Data
2 // timestamp should follow certain convention yyyymdhm
3 function sendData(bytes32 timestamp , string value) public {
4 require(S.isAccepted(msg.sender));
5 DataSent(msg.sender ,timestamp ,value);
6 }

Listing 7.8: Send data

The utility can also send load balancing data to the consumer. Sending data
using the “fixData” function - line 3 - in listing 7.9 will emit an event containing
the load balancing data. Before doing so, the caller of this function must be
proven to be the utility since load balancing data can only be sent by the utility
(whose address is derived from the simulation contract) - line 4. If this condition
is not satisfied, the function will throw an exception which we will further discuss
in subsection 7.3.2. If it is satisfied, the consumer’s Ethereum address and the
value of the data are sent as an event - line 5. The concept of smart contract
events is discussed extensively in subsection 2.4.8.

The consumer can then watch for the event at specific intervals. They will watch
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for events related to load balancing data sent by the utility. These events are fil-
tered based on who their Ethereum address (to be discussed in subsection 7.3.2).

1 // utility
2 //send load balancing data
3 function fixData(address to, string value) public {
4 require(msg.sender == S.utility ());
5 LoadBalancingSent(to, value);
6 }

Listing 7.9: Fix data
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7.2.3 Summary

A smart grid communication network will start out empty with only the util-
ity present. The utility initially deploys two smart contracts. The first smart
contract (simulation contract) will allow consumers to enter the smart grid com-
munication network and the second smart contract (communication contract) will
allow the consumers and the utility to communicate data.

The consumers that wish to join the network and become part of the smart
grid can do so by requesting to join. The utility can then accept or reject this
consumer. Once accepted, the consumer may now proceed to send and receive
data. If rejected, the consumer cannot send and receive data.

The consumer can now use the second smart contract (communication contract)
to send data periodically to the utility. The utility can also send load balancing
data to the consumer through the respective communication contract.
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7.3 User Interface
To complete the preventative proposed solution, we set up a user interface for
user data interaction. The user may interact with Ethereum blockchain using
the Rinkeby Test Network discussed above. Sections 7.1 and 7.2 discussed the
general architecture execution and details and this section will describe the user
interface put in place to interact with the Ethereum network smart contracts.
Some front-end components provide the consumer access to the different smart
contracts deployed by the utility or consumers. Other front-end components
provide the utility access to the different smart contracts deployed by the utility
or consumers. The user interface does not show the deployment of the simulation
and communication smart contracts (found in subsection 5.5) since it should be
completed by the utility before any interaction with the smart contracts can
occur.

7.3.1 First Smart Contract - Joining the Network

There are minor differences between the first smart contract from Architecture 1
in chapter 6 and the first smart contract from Architecture 2 Part A.

Figure 7.5 shows the user interface where a consumer can request entry into
the smart grid communication network. The smart meter id field needs to be
filled in which the utility needs (to confirm the user is authentic).

Figure 7.5: Architecture 2A: Join

Listing 7.10 shows the code used to interact with the simulation smart contract
(first smart contract) using the interface in figure 7.5.

The public-private key pair explained in section 5.8 listing 5.6 is created by the
consumer - line 13 - and the private key is stored locally - line 14 - as explained
in subsection 5.8.2.

The asynchronous1 transaction - line 18 - calls the smart contract function “re-
1The async keyword is used in the function definition to declare it is asynchronous. The

await keyword used to show the action of waiting for a promise. The function is paused in a
non-blocking way until the promise settles. The value is returned if the promise fulfills.
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questEntry” (discussed in subsection 7.2.1 listing 7.3) that takes two parameters
one of which is evident in figure 7.5 and the the public key created for the con-
sumer. The function uses the “send” keyword which leads to a transaction that
changes the Ethereum state. As discussed in subsection 2.4.5 the “from” keyword
shows who is creating the transaction.

1 onSubmit = async (event) =>{
2 event.preventDefault ();
3

4 try{
5 // enable use of web3 instance
6 await ethereum.enable ();
7

8 //get the accounts provided by metamask
9 const accounts = await web3.eth.getAccounts ();

10

11 //store private key
12 // console.log(k.publicK);
13 var k = new (require(’../ encryption/getKeys ’))();
14 localStorage.setItem(accounts [0], k.privateK);
15

16 //call the smart contract function to request entry
17 //2 params: smart meter id, and public key
18 await simulation.methods.requestEntry(web3.utils.utf8ToHex(

this.state.smId) , k.publicK).send({from: accounts [0]});
19 } catch(err) {
20 this.setState ({ errorMessage: err.message });
21 }
22 };

Listing 7.10: Join Code

The interaction between the consumer and the first smart contract’s “requestEn-
try” function could either be successful or unsuccessful due to a certain property
not being satisfied in the smart contract. This could happen for many reasons:

• The consumer has previously requested entry into the network

• The consumer has not provided enough gas for the transaction to succeed

Figures 7.6 and 7.7 show the user interface where the utility can accept consumers
based on the properties provided. The utility may also reject the consumers by
not accepting them. We can notice the new field labeled “Public Key” that
contains the consumer’s shared public key. Beneath the list of consumers to
accept/remove, there are two values: the total number of requesters and the
number of nodes accepted into the network both queried from the smart contract.
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Figure 7.6: Architecture 2A: Accept Initial

Figure 7.7: Architecture 2A: Accept

The utility can navigate to the page used to send load balancing data to a
specific consumer through the hyperlink seen on the smart meter id. Figures
7.8 and 7.9 show the URL created when the utility clicks on the hyperlink
marked for the smart meter id. It includes the smart meter’s Ethereum address:
“0x88B1A85759a33971f6647d77C7c691BB91c125bc” as shown in figure 7.8 with
the smart contract Ethereum address (converted to HEX for simplicity of the
URL) as shown in figure 7.9. The page the utility will navigate to will also con-
tain the electrical data received from that consumer in real-time or by querying
using a timestamp. This page will be further discussed in subsection 7.3.2.

Figure 7.8: Architecture 2A: URL - Account Address

Figure 7.9: Architecture 2A: URL - Contract Address

Listing 7.11 shows the code used to navigate to the selected consumer’s page
which is used by the utility to send load balancing data and receive electrical
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data through the URL seen in figures 7.8 and 7.9. Line 2 shows the route taken
that navigates to the next page including the smart meter’s Ethereum address:
“0x88B1A85759a33971f6647d77C7c691BB91c125bc” as shown in figure 7.8 with
the smart contract Ethereum address (converted to HEX for simplicity of the
URL) as shown in figure 7.9. Line 3 shows the hyperlink marked for the smart
meter id.

1 <Table.Cell >
2 <Link route={‘/data/read/${request.add}/${web3.utils.utf8ToHex(

request.key)}‘}>
3 <a>{web3.utils.hexToUtf8(request.smId)}</a>
4 </Link >
5 </Table.Cell >

Listing 7.11: URL Code

Listing 7.12 shows the code used to interact with the simulation smart contract
(first smart contract) using the interface in figure 7.7.

The asynchronous transaction - line 4 - calls the smart contract function “countN-
odes” (discussed in subsection 7.2.1 listing 7.1) that doesn’t take any parameters.
This variable is placed below the table of pending requests indicating the number
of nodes accepted into the network. The function uses the “call” keyword which
does not lead to a change the Ethereum state.

The asynchronous transaction - line 8 - calls the smart contract function “ge-
tRequestsCount” (discussed in subsection 7.2.1 listing 7.1) that doesn’t take any
parameters. This variable is placed below the table of pending requests indicating
the number of nodes requesting entry into the network. The function uses the
“call” keyword which does not lead to a change the Ethereum state.

The asynchronous transaction - line 14 - calls the smart contract getter func-
tion for the array of requesters “requestedNodes” (discussed in subsection 7.2.1
listing 7.1) that takes one parameter. The array elements are the requesters dis-
played in the table of pending requests where each requester is placed in a row of
the table. The function uses the “call” keyword which does not lead to a change
the Ethereum state.
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1 static async getInitialProps(props) {
2 //call the smart contract function to get number of nodes in

network
3 //0 params
4 const currentNodes = await

simulation.methods.countNodes ().call();
5

6 //call the smart contract function to get the number of
requesters

7 /0 params
8 const requestCount = await

simulation.methods.getRequestsCount ().call();
9

10 const requests = await Promise.all(
11 Array(parseInt(requestCount)).fill().map((element ,index) =>

{
12 //call the smart contract function to mark node as

having deployed data contract
13 //0 params
14 return simulation.methods.requestedNodes(index).call()
15 })
16 );
17

18 return {requests , requestCount ,currentNodes };
19 }

Listing 7.12: Get Counter Code

Listing 7.13 shows the code used to interact with the simulation smart contract
(first smart contract) using the interface in figure 7.7. The asynchronous trans-
action - line 6 - calls the smart contract function “acceptNode” (discussed in
subsection 7.2.1 listing 7.4) that takes one parameter. The function uses the
“send” keyword which leads to a transaction that changes the Ethereum state.

1 onApprove = async () => {
2 const accounts = await web3.eth.getAccounts ();
3

4 //call the smart contract function to accept node
5 //1 param: id in list
6 await simulation.methods.acceptNode(this.props.id).send({from:

accounts [0]});
7 };

Listing 7.13: Accept Code
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The interaction between the utility and the first smart contract’s “acceptNode”
function could be either successful or unsuccessful due to a certain property not
being satisfied in the smart contract. This could happen for many reasons:

• The caller of the function is not the utility

• The utility has previously accepted the consumer into the network

• The utility has not provided enough gas for the transaction to succeed

Figure 7.10 shows the user interface where the utility may remove consumers. The
figure shows that the consumers have already been accepted onto the network (no
accept button). Only these consumers may be removed.

Figure 7.10: Architecture 2A: Remove

Listing 7.14 shows the code used to interact with the simulation smart contract
(first smart contract) using the interface in figure 7.10. The asynchronous trans-
action - line 6 - calls the smart contract function “removeNode” (discussed in
subsection 7.2.1 listing 7.5) that takes one parameter. The function uses the
“send” keyword which leads to a transaction that changes the Ethereum state.

1 onRemove = async () => {
2 const accounts = await web3.eth.getAccounts ();
3

4 //call the smart contract function to remove node
5 //1 param: id in list
6 await simulation.methods.removeNode(this.props.id).send({from:

accounts [0]});
7 };

Listing 7.14: Remove Code
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The interaction between the utility and the first smart contract’s “removeNode”
function could be either successful or unsuccessful due to a certain property not
being satisfied in the smart contract. This could happen for many reasons:

• The caller of the function is not the utility

• The utility has not previously accepted the consumer into the network

• The utility has not provided enough gas for the transaction to succeed
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7.3.2 Second Smart Contract - Communicating

Figure 7.11 shows the user interface with which the consumer can interact. The
consumer can send electrical data to the utility in figure 7.12 and can receive load
balancing data from the utility in figure 7.13.

Figure 7.11: Architecture 2A: Consumer Interface

Figure 7.12 shows the user interface where a consumer can input the electrical
data needed by the utility and send it.

Figure 7.12: Architecture 2A: Send Electrical Data

Listing 7.15 shows the code used to interact with the communication smart con-
tract (second smart contract) using the interface in figure 7.12.

The public-private key pair explained in section 5.8 listing 5.6 and created by
the utility (explained in subsection 5.8.1) is used. The consumer extracts the
utility’s public key and converts it to the appropriate RSA key format (explained
in listing 5.7) - line 1.

Line 13 shows the combination of the current year, month, date, hour, and minute
needed to form a timestamp the utility will use to find the electrical data.

The utility’s public key is used to encrypt the electrical data sent - line 17.
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The asynchronous transaction - line 21 - calls the smart contract function “send-
Data” (discussed in subsection 7.2.2 listing 7.8) that takes two parameters, one
of which is the timestamp explained in line 13 and the other is the encrypted
electrical data explained in line 17. The function uses the “send” keyword which
leads to a transaction that changes the Ethereum state.

1 import key from ’../../ encryption/publicKey ’;
2

3 onSubmit = async (event) => {
4 event.preventDefault ();
5 await ethereum.enable ();
6

7 try {
8 const accounts = await web3.eth.getAccounts ();
9 const today = new Date();

10

11 //used for the timestamp
12 //gets current date in specific format
13 const time = "" + today.getFullYear () +

(today.getMonth ()+1) + today.getDate () +
today.getHours () + today.getMinutes ();

14 console.log(time);
15

16 // encrypt and send
17 const enc = key.encrypt(this.state.data ,’base64 ’);
18

19 //call the smart contract function to send electrical data
20 //2 params: timestamp , encrypted electrical data
21 await

communication.methods.sendData(web3.utils.utf8ToHex(time)
, web3.utils.utf8ToHex(enc)).send({from: accounts [0]});

22

23 } catch(err) {
24 this.setState ({ errorMessage: err.message });
25 }
26 }

Listing 7.15: Send Electrical Data Code

The interaction between the consumer and the second smart contract’s “send-
Data” function could be either successful or unsuccessful due to a certain property
not being satisfied in the smart contract. This could happen for many reasons:

• The caller of the function has not been previously accepted into the network

• The consumer has not provided enough gas for the transaction to succeed

147



Figure 7.13 shows the user interface where the consumer can get the load balanc-
ing data from the utility instantaneously.

Figure 7.13: Architecture 2A: Get Load Balancing Data Instantaneously

Listing 7.16 shows the code used to display the events received as a result of
the utility sending load balancing data (explained in subsection 7.2.2) using the
interface in figure 7.13.

The public-private key pair explained in section 5.8 listing 5.6 and created by
the consumer in listing 7.10 (explained in subsection 5.8.2) is used. The con-
sumer extracts his/her private key from local storage - line 7 - and converts it to
the appropriate RSA key format (explained in listing 5.10) - line 8.

The subscription (explained in section 5.7) - lines 12 to 29 - subscribes the con-
sumer to the event containing the load balancing data from the utility.

Line 13 describes the topics of this subscription which are the signature of the
event (event name with the parameters) and the Ethereum address of the con-
sumer. Only the event containing the load balancing data will be read. In addi-
tion, by adding the Ethereum address of the consumer to the topics, we can now
filter the events by this address. This means that only the events that contain
this consumer’s Ethereum address will be read. For example, the consumer with
Ethereum account “0x88B1A85759a33971f6647d77C7c691BB91c125bc” will only
receive load balancing data from the utility where the event contains the con-
sumer’s Ethereum account: “0x88B1A85759a33971f6647d77C7c691BB91c125bc”.

Line 19 gets the load balancing data from the event. This data is not one of
the topics mentioned since it is not an indexed variable in the event (explained
in subsection 2.4.8).

The consumer’s private key is used to decrypt the load balancing data received
from the utility through the event - line 23.

The consumer can now display any load balancing data received in real-time
and place it in the table seen in figure 7.13 - lines 26 to 28.
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1 async componentDidMount () {
2 let accounts = await web3.eth.getAccounts ();
3 const t = this;
4 let b = web3.utils.padLeft(accounts [0], 64);
5

6 //get private key locally
7 var privateKey = localStorage.getItem(accounts [0]);
8 var k = new (require(’../ encryption/privateKey2 ’))(privateKey);
9

10 // subscription
11 //2 params: event signature , consumer address (in topics)
12 web3.eth.subscribe(’logs’, {
13 topics:

[web3.utils.sha3("LoadBalancingSent(address ,string)"),b]
14 }, function(error , result){
15 if (!error)
16 console.log(result);
17

18 //get the data value (not indexed)
19 let d = web3.eth.abi.decodeParameters ([’string ’],

result.data);
20 console.log(d);
21

22 // decrypt the data
23 const dec =

k.key.decrypt(web3.utils.hexToUtf8(d[0]),’utf8’);
24

25 //place all the values in the table
26 t.setState ({
27 lst: (t.state.lst).concat ([{to:result.topics [1],

value:dec}])
28 });
29 });
30 }

Listing 7.16: Instantaneously Getting Load Balancing Data Code

We do not show the Metamask interaction between the consumer and the event
containing the load balancing data since the receipt of an event is not a trans-
action that changes the Ethereum state and consequently does not need to be
verified. It is considered to be querying the distributed ledger.
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Figure 7.14 shows the user interface that the utility can interact with. The
utility can send load balancing data to a consumer in figure 7.15 and can receive
electrical data from a consumer in figures 7.16 and 7.17.

Figure 7.14: Architecture 2A: Utility Interface

Figure 7.15 shows the user interface where the utility can input the load balancing
data needed by a consumer and send it.

Figure 7.15: Architecture 2A: Send Load Balancing Data

Listing 7.17 shows the code used to interact with the communication smart con-
tract (second smart contract) using the interface in figure 7.15.

The public-private key pair explained in section 5.8 listing 5.6 and created by
the consumer in listing 7.10 (explained in subsection 5.8.2) is used. The utility
extracts the consumer’s public key and converts it to the appropriate RSA key
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format (explained in listing 5.9) - line 6.

The consumer’s public key is used to encrypt the load balancing data - line
12.

The asynchronous transaction - line 16 - calls the smart contract function “fix-
Data” (discussed in subsection 7.2.2 listing 7.9) that takes two parameters, one
of which is the consumer’s Ethereum address and is evident in figure 7.15 and
the other is the encrypted load balancing data explained in line 12. The function
uses the “send” keyword which leads to a transaction that changes the Ethereum
state.

1 onSubmit = async (event) =>{
2 event.preventDefault ();
3 this.setState ({ loading:true , errorMessage:’’});
4 await ethereum.enable ();
5

6 var k = new
(require(’../ encryption/publicKey2 ’))(web3.utils.hexToUtf8(
this.props.pk));

7

8 try {
9 const accounts = await web3.eth.getAccounts ();

10

11 // encrypt and send
12 const enc = k.key.encrypt(this.state.data ,’base64 ’);
13

14 //call the smart contract function to send load balancing
data

15 //2 params: address , encrypted load balancing data
16 await communication.methods.fixData(this.props.address ,

web3.utils.utf8ToHex(enc)).send({from: accounts [0]});
17 } catch(err) {
18 this.setState ({ errorMessage: err.message });
19 }
20 };

Listing 7.17: Send Load Balancing Data Code

The interaction between the consumer and the second smart contract’s “fixData”
function could be either successful or unsuccessful due to a certain property not
being satisfied in the smart contract. This could happen for many reasons:

• The caller of the function is not the utility

• The consumer has not provided enough gas for the transaction to succeed

151



Figure 7.16 shows the user interface where the utility can get the electrical data
from the utility instantaneously.

Figure 7.16: Architecture 2A: Get Electrical Data Instantaneously

Listing 7.18 shows the code used to display the events received as a result of the
consumer sending electrical data (explained in subsection 7.2.2) using the inter-
face in figure 7.16.

The public-private key pair explained in section 5.8 listing 5.6 and created by
the utility (explained in subsection 5.8.1) is used. The utility extracts their pri-
vate key from local storage and converts it to the appropriate RSA key format
(explained in listing 5.8) - line 1.

The subscription (explained in section 5.7) - lines 8 to 25 - subscribes the utility
to the event containing the electrical data from the consumers.

Line 9 describes the topic of this subscription which is the signature of the event
(event name with the parameters). Only the event containing the electrical data
will be read.

Line 15 gets the electrical data from the event. This data is not one of the
topics mentioned since it is not an indexed variable in the event (explained in
subsection 2.4.8).

The utility’s private key is used to decrypt the electrical data received from the
consumers through the event - line 19.

The utility can now display any electrical data received in real-time and place it
in the table seen in figure 7.16 - lines 22 to 24.
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1 import key from ’../ encryption/privateKey ’;
2

3 componentDidMount () {
4 const t = this;
5

6 // subscription
7 //1 param: event signature (in topics)
8 web3.eth.subscribe(’logs’, {
9 topics:

[web3.utils.sha3("DataSent(address ,bytes32 ,string)")]
10 }, function(error , result){
11 if (!error)
12 console.log(result);
13

14 //get the data value (not indexed)
15 let d = web3.eth.abi.decodeParameters ([’address ’,

’string ’], result.data)
16 console.log(d);
17

18 // decrypt the data
19 const dec =

key.decrypt(web3.utils.hexToUtf8(d[1]),’utf8’)
20

21 //place all the values in the table
22 t.setState ({
23 lst: (t.state.lst).concat ([{ from:d[0],

time:web3.utils.hexToUtf8(result.topics [1]),
value:dec}])

24 });
25 });
26 }

Listing 7.18: Instantaneously Getting Electrical Data Code

We do not show the Metamask interaction between the utility and the event
containing the electrical data since the receipt of an event is not a transaction
that changes the Ethereum state and consequently does not need to be verified.
It is considered to be querying the distributed ledger.
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Figures 7.17 and 7.18 show the user interface where the utility can get the elec-
trical data from a consumer using a specific timestamp.

Figure 7.17: Architecture 2A: Get Electrical Data at Time Initial

Figure 7.18: Architecture 2A: Get Electrical Data at Time

Listing 7.19 shows the code used to display the events received as a result of the
consumer sending electrical data (explained in subsection 7.2.2) at a certain time
of the day (timestamp) using the interface in figure 7.18.

The public-private key pair explained in section 5.8 listing 5.6 and created by
the utility (explained in listing 5.8.1) is used. The utility extracts their private
key from local storage and converts it to the appropriate RSA key format (ex-
plained in listing 5.8) - line 1.

Lines 9 to 25 look for an event containing the electrical data from the consumers
at the given timestamp.

Line 10 describes the filter used on the event which is the timestamp at which the
utility needs the consumer electrical data. Only the event containing the electri-
cal data will be read. Moreover, by adding the timestamp to the filter, we can
now filter the events by this timestamp which means that only the events that
contain this timestamp will be read. Line 11 describes which block the lookup
should start from for this event with the specific timestamp.

The utility’s private key is used to decrypt the electrical data received from the
consumers through the event retrieved - line 17.
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The utility can now display the electrical data received at a certain time of the
day and place it in the table seen in figure 7.18 - lines 21 to 23.

1 import key from ’../../ encryption/privateKey ’;
2

3 onSubmit = async (event) =>{
4 event.preventDefault ();
5 const t = this;
6

7 //look for event
8 //2 params: timestamp (in filter) , which block to start from
9 communication.events.DataSent ({

10 filter: {
_timestamp :[web3.utils.utf8ToHex(this.state.time)]}

11 , fromBlock: 0
12 })
13 .on(’data’, function(event){
14 console.log(event);
15

16 // decrypt
17 const dec =

key.decrypt(web3.utils.hexToUtf8(event.returnValues [2]),
’utf8’)

18

19

20 //place all the values in the table
21 t.setState ({
22 lst: t.state.lst.concat ([{ from:event.returnValues [0],

time:web3.utils.hexToUtf8(event.returnValues [1]),
value:dec}])

23 });
24 })
25 .on(’error’, console.error);
26 };

Listing 7.19: Getting Electrical Data by Timestamp Code

We do not show the Metamask interaction between the utility and the event
containing the electrical data since the receipt of an event is not a transaction
that changes the Ethereum state and consequently does not need to be verified.
It is considered to be querying the distributed ledger.
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7.4 Results
The results show the various smart contract components in the different archi-
tectures. These components include variables and functions used in the deployed
smart contracts. The functions consume certain amounts of gas; therefore, the
cost of using them varies. These concepts have been discussed in subsection 2.4.7.
The test network used in this thesis, as mentioned in section 5.2, is the Rinkeby
Test Network where the price of gas is constant and is set at 1 GWei. However,
in the real network, the cost of gas varies at an average price of 20 GWei. We
used 1 Ether equivalent to 186 USD. The cost is not influenced by the size of the
network but by the complexity of the transaction. Thus, simulating a network
with few consumers versus many consumers will not affect the results in any way.

The results are those of a smart grid communication network composed of various
smart meters and one utility connected via the Ethereum infrastructure. This
architecture describes the entry of a consumer into the smart grid communica-
tion network created. Entering the smart grid communication network will allow
the consumer to send electrical data to the utility and the utility to send load
balancing data to the consumer. The details concerning these smart contracts
are found in sections 7.1 and 7.2.

For each of the contracts, there will be a table discussing: the transaction ti-
tle, who the transaction is sent from, who the transaction is sent to, the amount
of gas used and the fee (in ether). Furthermore, there will be tables discussing:
the transaction title, the fee (in ether), the cost (in $), the frequency the trans-
action is sent at, and the total cost (in $) which is relative to the frequency the
transaction is sent at, and the cost per transaction.
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7.4.1 First Smart Contract - Joining the Network

All the transactions in Table 7.1 and Table 7.2, found in the first column (deploy
simulation contract action, join action, and accept action), are made through
smart contract functions. Both the consumer and the utility will be interacting
through the use of the simulation smart contract (refer to section 7.2.1 for more
details about the smart contract).

Table 7.1 describes the steps a consumer takes to enter into the network. Since
the utility deploys the simulation contract, it carries the burden of using up a big
amount of gas. The join actions, carried out by the consumers, and the accept
actions, carried out by the utility, are transactions sent to the smart contract
and use up varying amounts of gas depending on the complexity of the functions
in the smart contract. Clearly the join action is more complex than the accept
action as demonstrated by the difference in the gas consumption. This table
describes the logistics of the transactions.

Table 7.1: Architecture 2A: Joining the Smart Grid Communication Network -
Smart Contract #1

Transaction From To Gas Used Fee (ether)
Deploy Simulation Contract Utility - 512023 0.000512023

Join Home Contract 215753 0.000215753
Accept Utility Contract 46863 0.000046863

Table 7.2 complements Table 7.1 and includes the dollar amount of the cost of
entering into the network for both the utility and the consumers. The deployment
action will occur once at inception and is quite inexpensive. The join action will
be completed once by every consumer that wishes to enter the network. The
accept action will be completed once for every consumer that is allowed to enter
the network.

Table 7.2: Architecture 2A: Cost of Transactions in Joining - Smart Contract #1

Transaction Fee (ether) Cost ($) Frequency Total Cost($)
Deploy Simulation Contract 0.000512023 0.09 1 0.09

Join 0.000215753 0.04 1 * # HH 0.04 * # HH
Accept 0.000046863 0.0087 1 * # HH 0.0087 * # HH
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Assuming the population in Qatar is currently 2,869,4582 and the number of
buildings built are 216,7403. It is safe to estimate that there are around 2,167,400
households (HHs)/establishments that need electricity. Equation 7.1 shows the
payment needed to be made by the utility once in the smart grid communication
network. Equation 7.2 shows the payment needed to be made by the consumer
once in the smart grid communication network.

Utility Payment #1 = deploy simulation contract action+ accept action ∗# HH
= 0.09$ + 0.0087$ ∗ 2, 167, 400
= 18, 856.47$

(7.1)

Consumer Payment #1 = join action
= 0.04$

(7.2)

2https://www.worldometers.info/world-population/qatar-population/
3https://www.gulf-times.com/story/635497/45-6-percent-jump-in-number-of-buildings-in-

10-years
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7.4.2 Second Smart Contract - Communicating

All the transactions in Table 7.3, Table 7.4, Table 7.5, or Table 7.6 found in the
first column (deploy communication contract action, send data action, and fix
data action), are made through smart contract functions. Both the consumer
and the utility will be interacting through the use of the communication smart
contract (refer to section 7.2.2 for more details about the smart contract).

Table 7.3 describes the steps a consumer takes to communicate in the network.
Since the utility deploys the communication contract, it carries the burden of us-
ing up a big amount of gas. The send data actions, carried out by the consumers
are transactions sent to the smart contract and the fix data actions, done by
the utility are transactions sent to the smart contract. Clearly the deployment
actions are more complex than the send data action and fix data action. This
table describes the logistics of the transactions.

Table 7.3: Architecture 2A: Communication in the Smart Grid Communication
Network - Smart Contract #2

Transaction From To Gas Used Fee (ether)
Deploy Communication Contract Home Contract 264086 0.000264086

Send Data Home Contract 33069 0.000033069
Send Fix Home Contract 32915 0.000032915

Table 7.4 complements Table 7.3 and includes the dollar amount of the cost
of communicating in the network for both the utility and the consumers. The
communication contract will be deployed by the utility once at inception and is
quite inexpensive.

Table 7.4: Architecture 2A: Cost of Transactions in Initializing the Communica-
tion Environment - Smart Contract #2

Transaction Fee (ether) Cost ($) Frequency Total Cost ($)
Deploy Communication Contract 0.000264086 0.054 1 0.054

Table 7.5 and Table 7.6 complement Table 7.3 and include the dollar amount of
the cost of communicating in the network for both the utility and the consumers.
The send data action (Table 7.5) will be completed by every consumer that
wishes to communicate electrical data to the utility. This action could occur at
15 minute intervals, 30 minute intervals, or 60 minute intervals a day. The total
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cost per day is calculated for these different intervals and a significant difference
can be seen. The fix data action (Table 7.6) will be completed by the utility that
wishes to communicate load balancing data to a consumer. This action could
occur anytime the utility believes there is a need to send load balancing data. It
could be as frequent as 1 hour or could go up to every 6 hours.

Table 7.5: Architecture 2A: Cost of Transactions in Sending Electrical Data -
Smart Contract #2

Transaction Fee (ether) Cost ($) Frequency (min) Total Cost / Day ($)
Send Data 0.000033069 0.0061 15 * # HH 0.58 * # HH
Send Data 0.000033069 0.0061 30 * # HH 0.29 * # HH
Send Data 0.000033069 0.0061 60 * # HH 0.14 * # HH

Table 7.6: Architecture 2A: Cost of Transactions in Sending Load Balancing Data
- Smart Contract #2

Transaction Fee (ether) Cost ($) Frequency / Day Total Cost / Day ($)
Fix Data 0.000032915 0.0061 1 * # HH 0.0061 * # HH

We assume the same statistics mentioned above about the population, the number
of buildings built, and the number of households (HHs)/establishments that need
electricity are applicable. Equation 7.3 shows the payment needed to be made by
the utility once in the smart grid communication network. Equation 7.4 shows
the maximum payment needed to be made by the consumer once every year.
Finally, equation 7.5 shows the payment needed to be made by the utility every
time they send a load balancing transaction to a consumer.

Utility Payment #2 = deploy communication contract action
= 0.054$

(7.3)

Consumer Payment #2 = send data action ∗ 365
= 0.14$ ∗ 365
= 51.1$

(7.4)

Utility Payment #3 = fix data action
= 0.0061$

(7.5)
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7.4.3 Summary

As noticed, the prices are lower than in chapter 6’s architecture. This is due to
optimizations made. Some payments may have increased because of the inclusion
of the utility’s public key in the contract and the change in certain variable types.
The architecture’s limitations will be discussed in section 7.6.

The two smart contracts used in this architecture pose different sums to be paid
by both the utility and the consumer at different points in time of the smart
grid communication network. Equation 7.1, equation 7.2, equation 7.3, equation
7.4, and equation 7.5 show the payments that need to be made by the utility
and the consumer at different points in the smart grid communication process.
We wrap up these equations by summing up all the expenses that are paid by
the utility and the consumer. Equation 7.6 sums up the expenses paid by the
utility to set up the smart grid communication network for themselves and the
consumers. Equation 7.7 sums up the expenses paid by the utility to interact
with the utility in the smart grid communication network. Equation 7.8 sums up
the expenses paid by each consumer to set up their interaction with the smart
grid communication network. Finally, equation 7.9 sums up the expenses that
have to be paid by each consumer yearly to interact with the utility in the smart
grid communication network.

Total Initial Utility Payment = Utility Payment #1
+ Utility Payment #2
= 18, 856.47$ + 0.054$

= 18, 856.524$

(7.6)

Utility Payment Per Load Balancing Data = Utility Payment #3
= 0.0061$

(7.7)

Total Initial Consumer Payment = Consumer Payment #1
= 0.04$

(7.8)

Total Consumer Payment Per Year = Consumer Payment #2
= 51.1$

(7.9)
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7.5 Security Properties
The security properties achieved in this architecture can be credited to the use of
both the blockchain network and the smart contracts. The Ethereum blockchain
ensures various security properties discussed in subsection 2.4.10 whereas the
smart contracts and their details are discussed in subsection 2.4.2. Both the
Ethereum blockchain and its smart contracts are discussed in terms of the security
properties achieved.

7.5.1 Smart Contract Properties

The architecture’s two smart contracts discussed in section 7.2 subsections 7.2.1
and 7.2.2 were structured to provide certain security properties alongside the
innate blockchain security properties. The smart contracts contain certain re-
strictions and requirements that force functions to be constrictive and serve the
purpose of securing the use of the smart grid communication network. It is im-
portant to note that the use of the term “network” is synonymous with the “smart
grid communication network” and not the whole blockchain network.
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First Smart Contract - Joining the Network

This contract is deployed by the utility only once. Once deployed at the incep-
tion of the smart grid communication network, the simulation smart contract
becomes accessible by all other nodes on the blockchain since it is now part of
the blockchain’s ledger. This smart contract is deployed to allow the consumers
to join the network composed of the different consumers containing legal smart
meters registered at the utility. The details of this smart contract can be found
in subsection 7.2.1.

The “constructor” function is used by the utility to deploy the contract. The
utility places its Ethereum address on the smart contract to restrict the use of
some smart contract functions. This provides authenticity and limits who can
call the functions to secure the network.

The “requestEntry” function contains one requirement: the caller of the function
must not have previously requested entry into the network. This requirement
stops the consumer from bombarding the network with useless requests. If the
consumer is a malicious user, they could use any of the smart contract func-
tions to overload the network. This function ensures that the consumer has not
previously requested entry. This provides availability of the blockchain services.

The “acceptNode” function contains two requirements. The first is that the caller
of the function is the utility. This stops any user in the blockchain network from
accepting themselves or any other malicious users onto the network. This pro-
vides legitimacy of the consumers on the network and integrity of the electrical
data to be sent by this consumer. The second is that the consumer the utility
is trying to accept into the network must not already be part of the network.
This requirement stops the utility from accepting a consumer multiple times and
wasting resources. This provides availability of the blockchain services. Once
the consumer is added to the network, we can know that the consumer is a legit-
imate user. This provides reliability of the network.

The “removeNode” function contains two requirements. The first is that the
caller of the function is the utility. This stops any user in the blockchain net-
work from accepting themselves or any other malicious users onto the network.
This provides legitimacy of the consumers on the network and integrity of the
electrical data to be sent by this consumer. The second is that the consumer the
utility is trying to remove from the network must already be part of the network.
This requirement stops the utility from removing a consumer multiple times and
wasting resources or even attempting to remove a consumer that does not exist
on the network to begin with. This provides availability of the blockchain ser-
vices.
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All the measures above provide accountability of the users and transparency
and auditability of the data.
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Second Smart Contract - Communicating

This contract is deployed by the utility only once. Once deployed at the inception
of the smart grid communication network, the communication smart contract be-
comes accessible by all other nodes on the blockchain since it is now part of the
blockchain’s ledger. This smart contract is deployed to allow the consumers to
communicate their energy data securely and the utility to send load balancing
data back to the consumer (demand-response). This preserves the two-way data
flow for which the smart grid is known. The details of this smart contract can be
found in subsection 7.2.2.

The “constructor” function is used by the utility to deploy the contract. The
first smart contract’s Ethereum address is passed to this function to be able to
access it in order to check for the existence or non-existence of a consumer in the
network. The reference is used to restrict the use of the smart contract function
used to send electrical data. This provides authenticity and limits who can
call specific functions to secure the network. It also provides integrity of the
electrical data to be sent by this consumer.

The “sendData” function contains one requirement: the caller of the function is
already be part of the network. This stops any malicious user in the blockchain
network from sending incorrect electrical data on behalf of the consumer. This
requirement provides integrity of the electrical data sent by this consumer.

The “fixData” function contains one requirement: the caller of the function is
the utility. This stops any malicious user in the blockchain network from sending
incorrect load balancing data on behalf of the utility. This requirement provides
integrity of the load balancing data sent by the utility for this specific consumer.

All the measures above provide accountability of the users and transparency
and auditability of the data.
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7.5.2 Blockchain Properties

Various security properties characterize the blockchain platform. These secu-
rity properties described including confidentiality and privacy, integrity, availabil-
ity, authenticity, transparency, auditability, accountability, anonymity, reliability,
and termination provided by blockchain are integral to our thesis work. All the
security properties are ensured through the structure of the blockchain and the
use of smart contracts in Ethereum to provide secure communication between
the smart meters and the utility.

Confidentiality and Privacy

By remaining pseudo-anonymous, the consumer can send electrical data openly
without worrying about the data being traced back to them personally. The
data can only be traced back to the Ethereum address which, as mentioned,
is not linked to the consumer’s personal information. Even if the link between
the consumer’s personal information and the consumer’s account, the consumer’s
data will still remain confidential due to the encryption of both the electrical data
and the load balancing data.

The electrical data sent from the consumer through a transaction is encrypted
using the utility’s public key and sent using the consumer’s Ethereum address.
The load balancing data sent from the utility through a transaction is encrypted
using the consumer’s public key and sent using the utility’s Ethereum address.

Integrity

The electrical data sent from the consumer through a transaction will be placed
on the immutable ledger. The load balancing data sent from the utility through
a transaction will also be placed on the immutable ledger.

Availability

The electrical data sent from the consumer through a transaction and the load
balancing data sent from the utility through a transaction are placed on the
distributed ledger to be accessed at any time.

Authenticity

Smart contract functions were designed in a way to only allow specific users to
call them as can be seen in the description of the smart contracts of this archi-
tecture in section 7.2. Malicious users cannot access certain functions to change
data stored in the smart contract.
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The electrical data sent from the consumer through a transaction is signed by the
consumer. The load balancing data sent from the utility through a transaction
is signed by the utility.

Transparency

The electrical data sent from the consumer through a transaction and the load
balancing data sent from the utility through a transaction are placed on the
distributed ledger to be accessed at any time by anyone in the blockchain network.

Auditabiliy

The electrical data sent from the consumer through a transaction will be placed
on this immutable ledger. The load balancing data sent from the utility through
a transaction will also be placed on this immutable ledger.

Accountability

The electrical data sent from the consumer through a transaction contains the
consumer’s Ethereum address. The load balancing data sent from the utility
through a transaction contains the utility’s Ethereum address.

Anonymity

The electrical data sent from the consumer through a transaction is sent using
the consumer’s Ethereum address. The load balancing data sent from the utility
through a transaction sent using the utility’s Ethereum address. Both of these
addresses do not link back to any personal data of the user of the account and
thus guarantee pseudo-anonymity.

Termination

Utilizing gas and gas limits (explained in subsection 2.4.7) forces the function to
terminate whether complete or incomplete.

Reliability

The distributed ledger provides all the security properties mentioned in this sec-
tion. The smart contract provides restrictions for the functions. Both the smart
contract and ledger provide the reliability needed. The ledger makes sure the
data has integrity and is available, authentic, auditable, transparent, and pri-
vate. The ledger makes sure the user is anonymous and accountable. The smart
contract makes sure the transactions called are terminable. The smart contract
is also the entity that contains all the rules that the users in the network must
follow to enter the network and communicate data.
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7.6 Limitations
Various security properties are achieved in this architecture, which are mentioned
in section 7.5 and make the Ethereum blockchain a good solution for securing
the two-way communication between the consumers and the utility. However, a
limitation arises which is scalability. Before discussing the issue of scalability, we
will go over the limitations mentioned in chapter 6 section 6.6 to discuss how this
architecture overcame them.

7.6.1 Privacy using Pseudo-anonymity

In the blockchain network, a user that has a blockchain account cannot be con-
sidered fully anonymous. Pseudo-anonymity is when a user is linked back to their
blockchain address but not to any of their personal information. All transactions
are stored publicly on the blockchain ledger and are visible to anyone to analyze
and interpret. Anonymity of the sender depends on the pseudonym not being
linked to his/her true identity. Thus, a user can preserve his/her privacy as long
as pseudonym is not linked back to the individual. If a link is made, the identity
of the user is revealed and the pseudo-anonymity is broken. Even if this link is
made, the consumer’s electrical data will not be compromised. The data has been
encrypted. This data is still transparent but it will no longer be understandable
unless the private key of the consumer is available to decrypt the load balancing
data or the private key of the utility is available to decrypt the electrical data.

7.6.2 Cost of Smart Contracts

The deployment and interaction with the three smart contracts discussed in chap-
ter 6 section 6.2 is costly, and the two smart contracts discussed in this chapter
have reduced this cost as seen in section 7.4. This reduction in cost is due to
the optimizations made in the smart contract structure such as carefully picking
data types, introducing data in the contract bytecode, packing variables, and
other optimizations.

7.6.3 Scalability

Both the utility and the consumers in the smart grid communication network will
have to send an abundance of messages. The consumers will each have to send
data at intervals of 15 minutes, 30 minutes, or an hour. The utility will have
to send load balancing data to consumers when required. All these transactions
are not scalable on the Ethereum blockchain network. As described in table 2.1
section 2.3, the number of transactions per second in the Ethereum network is
15. This scalability issue will have to be amended in order to allow our solution
to work properly and scalably.
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Chapter 8

Architecture 2 (Part B)

The second part of Architecture 2, discussed in this chapter, explores an alter-
native method for sending encrypted data using a combination of the Ethereum
platform, cryptographic tools, and the cloud. We propose to create two separate
smart contracts each for a different functionality. These smart contracts resemble
the ones found in chapter 8 with minor differences to accommodate a change in
handling electrical and load balancing data. This chapter shows the scenarios the
architecture will follow in section 8.1, the smart contract details in section 8.2 and
the cloud database details in section 8.3, the user interface used to interact with
the smart contracts in section 8.4, the results in section 8.5, the security prop-
erties achieved in section 8.6, and the limitations of this architecture in section
8.7.
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8.1 Scenario
Using a control flow graph (CFG), we display the order of execution of the calls
and updates to the smart contract. It shows all possible steps that can be exe-
cuted in our program.

8.1.1 Initial Contract Deployment

Figure 7.1 from chapter 7 shows the steps taken by the utility to deploy the two
smart contracts needed to join the smart grid communication network and com-
municate in the smart grid communication network. The utility initially deploys
the simulation contract which would lead to a transaction that would update the
blockchain state (step 1). This contract deals with consumers requesting entry
and utility accepting consumers into the network.

If the simulation contract is deployed successfully (step 2), the utility can de-
ploy the communication contract (step 3) which would lead to a transaction that
would update the blockchain state (step 4). This contract deals with the con-
sumer and utility data interaction. If the simulation contract is not deployed
successfully, the utility will try to deploy the simulation contract again.

Deploying the simulation contract and the communication contract leads to changes
in the Ethereum state.
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8.1.2 Contract Interaction

Figure 6.2 from chapter 6 shows the steps taken by the consumer to try and enter
the network. The consumer can request entry which would lead to a transaction
that would update the blockchain state (step 1).

Figure 6.2 from chapter 6 also shows the steps taken by the utility to accept
or reject the consumer. The utility queries for requests from consumers. The
utility finds a request (step 2). If there is a request and the utility wishes to re-
ject the consumer, then it would lead back to a state of waiting for a request. For
instance, the utility can choose to reject a consumer if they did not register with
the utility beforehand. If there is a request and the utility wishes to accept the
consumer, then it would lead to a transaction that would update the blockchain
state (step 3). If the utility does not find a request, it waits 15 minutes before
rechecking (step 4). The 15 minute wait can be updated to 30 minutes or an hour
depending what the utility wants. The 15 minute intervals will recur throughout
the architecture and can be updated to 30 minutes or an hour also depending on
what the utility wants. The utility can also remove a consumer from the network
that would lead to a transaction that would update the blockchain state (step 5).

Requesting, accepting and removing consumers leads to changes in the Ethereum
state. Querying for requests does not lead to changes in the Ethereum state.

Figure 8.1 shows the steps taken by the consumer to send data. Electrical data
can be sent from the consumer to the utility through an event and can be re-
ceived by the utility. The consumer first encrypts the electrical data and sends it
to the cloud (step 1), it then hashes the electrical data (step 2) and attempts to
send an event containing the hashed electrical data. The consumer checks if it is
allowed to send data (step 3). If the consumer is not allowed to send data, then
it would lead back to a state of waiting to send electrical data. If the consumer
is allowed to send data, then it would lead to a transaction that would update
the blockchain state (step 4). The consumer attempts to send data every hour
(step 5). The 15 minute intervals or 1 hours intervals will recur throughout the
architecture and can be updated depending on what the utility wants.

Figure 8.1 also shows the steps taken by the utility to send data. Load bal-
ancing data can be sent from the utility to the consumer through an event and
can be received by the consumer. The utility first encrypts the load balancing
data and sends it to the cloud (step 6). It then hashes the load balancing data
(step 7) and sends an event containing the hashed load balancing data that would
lead to a transaction that would update the blockchain state (step 8).

Sending data, electrical data by the consumer and load balancing data by the
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utility, leads to changes in the Ethereum state.

Every 15 minutes the consumer can get an event containing the hashed load
balancing data (step 12) if the utility has sent load balancing data. The con-
sumer queries the cloud for the load balancing data and decrypts it (step 9). The
consumer then hashes the decrypted load balancing data (step 10) and compares
the hashed load balancing data queried from the cloud with the hashed load bal-
ancing data received from the event (step 11). If the hashes match, then the data
has not been tampered with, otherwise it has been. The use of cryptographic
techniques here is to ensure the data remains confidential, unchanged, and au-
thentic. These properties will be explained further in section 8.6.

Every hour the utility can get an event containing the hashed electrical data
(step 16) if the utility has sent electrical data. The utility queries the cloud for
the electrical data and decrypts it (step 13). The utility then hashes the de-
crypted electrical data (step 14) and compares the hashed electrical data queried
from the cloud with the hashed electrical data received from the event (step 15).
If the hashes match, then the data has not been tampered with, otherwise it has
been. The use of cryptographic techniques here is to ensure the data remains
confidential, unchanged, and authentic. These properties will be explained fur-
ther in section 8.6.

The consumer receiving load balancing data and the utility receiving electrical
data does not lead to changes in the Ethereum state.
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Figure 8.1: Architecture 2B: Contract Interaction (Part 2)
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8.2 Smart Contract Details
Now that we have gone through the control flow of the smart contracts’ execu-
tions, we answer the following questions for each smart contract: By who was
the contract deployed? When was it deployed? For what purpose? What are the
contracts’ contents?

This chapter explores an alternative method for sending encrypted data using
a combination of the Ethereum platform, cryptographic tools, and the cloud.
The two smart contracts described in section 7.2 are the smart contracts used in
this chapter. As we’ve explained in subsection 2.4.2, variables are set up to be
interacted with and functions exist to allow actions to occur on the blockchain.

8.2.1 First Smart Contract - Joining the Network

The specifics of the first smart contract can be found in subsection 7.2.1 from
chapter 7. The detailed code of the first smart contract variables and functions
is available in Appendix A listing A.6.
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8.2.2 Second Smart Contract - Communicating

This contract is deployed by the utility only once at inception. Figure 8.2 shows
a high level view of the smart grid communication network in relation to the first
smart contract. This figure illustrates a city in Qatar that contains 10 household-
s/establishments (HHs) numbered 1 through 10 and the utility numbered 11. All
of the establishments numbered 1 through 10 contain smart meters that measure
their electrical consumption.

There are three distinguishable components in figure 8.2. The first component is
the blockchain network. This network contains all the households and the utility.
The HHs and the utility are part of the peer-to-peer Ethereum blockchain net-
work as illustrated by the road which connects all the HHs and establishments.
The HHs are nodes in the blockchain network and have access to the distributed
blockchain ledger. Node 11, the utility, contains the first smart contract known
as the simulation smart contract. Once deployed at the inception of the smart
grid communication network, the smart contract becomes accessible by all other
nodes on the blockchain since it is now part of the blockchain’s ledger. This
smart contract is deployed to allow the consumers to communicate their energy
data securely and the utility to send load balancing data back to the consumer
(demand-response). This preserves the two-way data flow for which the smart
grid is known.

The second component is the distributed ledger which is the Ethereum ledger
that every node will have access to. This ledger will contain all the transactions
that have been mined and added to the blockchain. The transactions include all
the updates to the Ethereum state (explained in subsection 2.4.5).

The third component is the cloud database which is the database that every
node will access to store their electrical data and to access their load balancing
data. The data will be encrypted and stored on the cloud database. The con-
sumers and utility can now access the data and decrypt it for use.

The symbol table explains that the different nodes 1 through 11 can send a mes-
sage with the data “M” at a certain time “t”. It shows the encrypt “E” and decrypt
“D” symbols that are used to encrypt and decrypt the data sent to and received
from the cloud respectively. It also shows the hash function “H” which is used on
the message to produce a digest “D” that is added to the distributed ledger. The
legend displays the objects that exist in the smart grid communication network.
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Figure 8.2: Architecture 2B: Smart Contract #2 Distribution

As we’ve explained in subsection 2.4.2, variables are set up to be interacted with
and functions exist to allow actions to occur on the blockchain. The detailed code
of the second smart contract variables and functions is available in Appendix A
listing A.7. Here, we will briefly explain the variables, functions, and their pur-
pose in the smart contract.

Listing 8.1 displays the variable names and descriptions in this contract. These
variables are used in functions we discuss below.

• Line 1 - S: Simulation contract instance declaration

• Line 4 - DataSent: Event declaration for electrical data to be sent by the
consumer that returns the consumer’s Ethereum address, the timestamp of
the data, and the value of the data (the concept of smart contract events
is discussed extensively in subsection 2.4.8)
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• Line 5 - LoadBalancingData: Event declaration for load balancing data
to be sent by the utility that returns the consumer’s Ethereum address (the
consumer to which the data should be sent) and the value of the data

Both of these events will be discussed further below. It can be noticed that the
change from architecture 2 (Part A) in subsection 7.3.2 listing 7.6 to listing 8.1 is
in the event’s parameters. The type of the parameters changed from the “string”
type to the “bytes32” type - lines 4 and 5. This change will lead to a difference
in smart contract cost as will be seen in section 8.5.

1 Simulation private S;
2

3 // events
4 event DataSent(address _from , bytes32 indexed _timestamp , bytes32

_value);
5 event LoadBalancingSent(address indexed _to , bytes32 _value);

Listing 8.1: Variables

The functions included in this smart contract are listed below and will be ex-
plained in listings 8.2, 8.3, and 8.4 respectively.

• Constructor

• Send data

• Fix data

We assume that the consumers using this smart contract have been accepted onto
the network and are accessing this contract to send electrical data to the utility
and to get load balancing data from the utility. The “constructor” function - line
3 - initializes the variables above as seen in listing 8.2. The address that is passed
as a parameter is the simulation smart contract address - line 3. This address is
produced when the utility deploys its simulation smart contract. It is passed to
the constructor so that the communication smart contract can make use of the
components in the simulation smart contract. Using this smart contract address,
the simulation contract may be referenced - line 4.

1 // constructor
2 //takes the simulation contract to refer to it later
3 function Communication(address a) public {
4 S = Simulation(a);
5 }

Listing 8.2: Constructor

Via this smart contract, the consumer can send electrical data to the utility.
Sending data using the “sendData” function - line 3 - in listing 8.3 will emit an
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event containing the electrical data in addition to the date and time (following a
certain format which is year-moth-day-hour-minute). Before doing so, the caller
of this function must be proven to be a member of the smart grid communica-
tion network - line 4. If this condition is not satisfied, the function will throw
an exception which we will further discuss in subsection 8.4.2. If it is satisfied,
the consumer’s Ethereum address, the timestamp of the data, and the value of
the data are sent as an event - line 5. The concept of smart contract events is
discussed extensively in subsection 2.4.8. By checking the simulation contract’s
mapping of accepted consumers, the smart contract can ensure that the caller of
this function is part of the communication network before allowing the transac-
tion to be processed.

The utility can then watch for the event at specific intervals. It will watch for
events related to electrical data sent by the consumers. These events are filtered
based on what timestamp is needed (to be discussed in subsection 8.4.2).

It can be noticed that the change from architecture 2 (Part A) in subsection
7.3.2 listing 7.8 to listing 8.3 is in the event’s parameters. The type of the pa-
rameters changed from the “string” type to the “bytes32” type - line 3. This
change will lead to a difference in smart contract cost as will be seen in section
8.5.

1 //send the Data
2 // timestamp should follow certain convention yyyymdhm
3 function sendData(bytes32 timestamp , bytes32 value) public {
4 require(S.isAccepted(msg.sender));
5 DataSent(msg.sender ,timestamp ,value);
6 }

Listing 8.3: Send data

The utility can also send load balancing data to the consumer. Sending data
using the “fixData” function - line 4 - in listing 8.4 will emit an event containing
the load balancing data. Before doing so, the caller of this function must be
proven to be the utility since load balancing data can only be sent by the utility
(whose address is derived from the simulation contract) - line 5. If this condition
is not satisfied, the function will throw an exception which we will further discuss
in subsection 8.4.2. If it is satisfied, the consumer’s Ethereum address and the
value of the data are sent as an event - line 6. The concept of smart contract
events is discussed extensively in subsection 2.4.8.

The consumer can then watch for the event at specific intervals. They will watch
for events related to load balancing data sent by the utility. These events are fil-
tered based on who their Ethereum address (to be discussed in subsection 8.4.2).
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It can be noticed that the change from architecture 2 (Part A) in subsection
7.3.2 listing 7.9 to listing 8.4 is in the event’s parameters. The type of the
parameters changed from the “string” type to the “bytes32” type - line 4. This
change will lead to a difference in smart contract cost as will be seen in section
8.5.

1 // utility
2 //send load balancing data
3 //will be enumerator 0->decrease 1->increase ....
4 function fixData(address to, bytes32 value) public {
5 require(msg.sender == S.utility ());
6 LoadBalancingSent(to, value);
7 }

Listing 8.4: Fix data
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8.2.3 Summary

A smart grid communication network will start out empty with only the util-
ity present. The utility initially deploys two smart contracts. The first smart
contract (simulation contract) will allow consumers to enter the smart grid com-
munication network, and the second smart contract (communication contract)
will allow the consumers and the utility to communicate data.

The consumers that wish to join the network and become part of the smart
grid can do so by requesting to join. The utility can then accept or reject this
consumer. Once accepted, the consumer may now proceed to send and receive
data. If rejected, the consumer cannot send and receive data.

The consumer can now use the second smart contract (communication contract)
to send data periodically to the utility. The utility can also send load balancing
data to the consumer through the respective communication contract.
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8.3 Cloud Details
This chapter explores an alternative method for sending encrypted data using a
combination of the Ethereum platform, cryptographic tools, and the cloud. Now
that we have gone through the smart contract details, we discuss next, the follow-
ing questions: Which database will be used? Why is the database used? Who will
have access to the database? What will be sent to the database and by what en-
tities? What is the procedure followed in the smart grid communication network?

The cloud platform we use for communicating grid data, in this work, is Mi-
crosoft Azure. A database is created to store two tables each for a different
purpose. A table is created for the electrical data sent by the consumers that
the utility will have access to, and another is created for the load balancing data
sent by the utility that the consumers will have access to. The table that stores
the load balancing data is called “LoadBalancingData”, matching the Ethereum
event used for sending the hash of the load balancing data. The table that stores
the electrical data is called “DataSent” matching the Ethereum event used for
sending the hash of the electrical data.

The utility will need to connect to the database once a day, week, or month.
It will then have to check for any electrical data that should be sent at a specific
interval of 15 minutes, 30 minutes, or an hour to the database. Finally, the util-
ity could update the database by sending load balancing data. Thus, the three
operations are connecting, querying, and updating the database.

The same logic applies on the consumer side. The consumer will need to con-
nect to the database once a day, week, or month. It will then have to update
the database by sending electrical data. Finally, the consumer could check for
any load balancing data at 15 minute intervals. Thus, the three operations are
connecting, updating, and querying.

The smart grid communication network will need the cloud database to store
electrical and load balancing data to improve scalability. To access the cloud
database, certain steps must be taken by the entities which we refer to as opera-
tions.
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8.3.1 Connecting to the Database

The first operation - the update operation - is done by the consumer and the
utility to connect to the database. Listing 8.5 shows the code for connecting to
the cloud database designated to store both electrical data and load balancing
data. To test how long it would take to update the database table we record the
time before and after the connection - lines 10 and 16. The connection is made
to the database - line 13.

1 try {
2 // connect
3 Class.forName("com.mysql.cj.jdbc.Driver");
4

5 String connectionUrl =
"jdbc:sqlserver ://s-1. database.windows.net :1433;" +
"database=Data;"

6 + "user=rxa05@s -1;" + "password=Raphaelle2000;" +
"encrypt=true;" + "trustServerCertificate=false;"

7 + "hostNameInCertificate =*. database.windows.net;" +
"loginTimeout =30;";

8

9 // record
10 long startTime = System.nanoTime ();
11

12 // connect
13 Connection con = DriverManager.getConnection(connectionUrl);
14

15 //stop recording
16 long endTime = System.nanoTime ();
17 long timeElapsed = endTime - startTime;
18

19 values = timeElapsed / 1000000;
20

21 con.close();
22 } catch (Exception e) {
23 System.out.println(e);
24 }

Listing 8.5: Connect to Database in Cloud Code
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8.3.2 Updating the Tables

The second operation, the update operation, is done by the consumer to send elec-
trical data and by the utility to send load balancing data. Listing 8.6 shows the
consumer’s code for updating the data onto the cloud database’s table “DataSent”
designated for the electrical data. To test how long it would take to update the
database table, we record the time before and after the update of the data - lines
16 and 22. A string is created that contains the smart meter id, electrical data,
and timestamp needed - line 11. The data is updated in the table - line 19.

1 try {
2 //send
3 Statement stmt = con.createStatement ();
4

5 // variables for insert statement
6 int data = (int)(Math.random () *1000);
7 int hour = (int)(Math.random () *22+1);
8 int minute = (int)(Math.random ()*59);
9 int second = (int)(Math.random ()*59);

10

11 String sql = "INSERT INTO Data.dbo.[ DataSent] VALUES
("+counter+","+data+" ,’2020-02-27
"+hour+":"+minute+":"+second+"’);";

12 System.out.println(sql);
13

14 try {
15 // record
16 long startTime = System.nanoTime ();
17

18 // update
19 stmt.executeUpdate(sql);
20

21 //stop recording
22 long endTime = System.nanoTime ();
23 long timeElapsed = endTime - startTime;
24

25 values [1] = timeElapsed / 1000000;
26 } catch (Exception e) {
27 System.out.println(e);
28 }
29 } catch (Exception e) {
30 System.out.println(e);
31 }

Listing 8.6: Send Electrical Data in Cloud Code
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8.3.3 Querying from the Tables

The third operation, the query operation, is carried out by the consumer to
retrieve load balancing data and by the utility to retrieve electrical data. Listing
8.7 shows the utility’s code for querying the data from the cloud database’s table
“DataSent” designated for the electrical data. To test how long it would take to
query the database table, we record the time before and after the receipt of the
data - lines 6 and 12. The data is queried from the table - line 9.

1 try {
2 // receive
3 Statement stmt = con.createStatement ();
4

5 // record
6 long startTime = System.nanoTime ();
7

8 //query at timestamp
9 ResultSet rs = stmt.executeQuery("select * from

Data.dbo.DataSent where timestamp=’"+t+"’");
10

11 //stop recording
12 long endTime = System.nanoTime ();
13 long timeElapsed = endTime - startTime;
14

15 values [2] = timeElapsed / 1000000;
16

17 } catch (Exception e) {
18 System.out.println(e);
19 }

Listing 8.7: Query Electrical Data from Cloud Code
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8.4 User Interface
To complete the preventative proposed solution, we set up a user interface for
user data interaction. The user may interact with Ethereum blockchain using
the Rinkeby Test Network discussed above. Sections 8.1 and 8.2 discussed the
general architecture execution and details and this section will describe the user
interface put in place to interact with the Ethereum network smart contracts.
Some front-end components provide the consumer access to the different smart
contracts deployed by the utility or consumers. Other front-end components
provide the utility access to the different smart contracts deployed by the utility
or consumers. The user interface does not show the deployment of the simulation
and communication smart contracts (found in subsection 5.5) since it should be
completed by the utility before any interaction with the smart contracts can
occur.

8.4.1 First Smart Contract - Joining the Network

The specifics of the first smart contract can be found in subsection 7.2.1. The
detailed code of the first smart contract variables and functions is available in
Appendix A listing A.6. The specifics of the user interface for the first smart
contract can be found in subsection 7.3.1.
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8.4.2 Second Smart Contract - Communicating

Figure 8.3 shows the user interface that the consumer can interact with. The
consumer can send electrical data to the utility in figure 8.4 and can receive load
balancing data from the utility.

Figure 8.3: Architecture 2B: Consumer Interface

Figure 8.4 shows the user interface where a consumer can input the electrical
data needed by the utility and send it.

Figure 8.4: Architecture 2B: Send Electrical Data

Listing 8.8 shows the code used to interact with the communication smart con-
tract (second smart contract) using the interface in figure 8.4.
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Line 8 shows the hash of the provided parameters which are four sets of the
electrical data and their timestamps. This hashes all the data together. The
utility will have to hash the electrical data and the timestamps in the same order
to get the same hash value.

The first timestamp is selected out of the four timestamps since it will be the
beginning sequence from which the utility will start collecting the electrical data
and timestamps to hash. This will provide the correct ordering needed by the
utility to get the correct hash.

The asynchronous transaction - line 13 - calls the smart contract function “send-
Data” (discussed in subsection 8.2.2 listing 8.3) that takes two parameters one of
which is the first timestamp as explained and the other is the the hash explained
in line 8 that is evident in figure 8.4. The function uses the “send” keyword which
leads to a transaction that changes the Ethereum state.

1 onSubmit = async (event) => {
2 event.preventDefault ();
3 this.setState ({ loading:true , errorMessage:’’});
4 await ethereum.enable ();
5

6 try {
7 // calculate the hash using multiple values
8 var hash =

web3.utils.soliditySha3(this.state.data ,this.state.time ,
this.state.data1 ,this.state.time1 ,this.state.data2 ,
this.state.time2 ,this.state.data3 ,this.state.time3);

9

10 //call the smart contract function to send electrical data
11 //2 params: timestamp , hashed electrical data
12 //time1 is placed as the timestamp , because it was the

first time recorded for this sequence
13 await

communication.methods.sendData(web3.utils.utf8ToHex(time)
, hash).send({from: accounts [0]});

14 } catch(err) {
15 this.setState ({ errorMessage: err.message });
16 }
17 }

Listing 8.8: Send Electrical Data Code

The specifics of the user interface for receiving load balancing data from the
utility can be found in subsection 7.3.2.
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Figure 8.5 shows the user interface that the utility can interact with. The utility
can send load balancing data to a consumer and can receive electrical data from
a consumer in seen figure 8.6.

Figure 8.5: Architecture 2B: Utility Interface

The specifics of the user interface for sending load balancing data to a consumer
can be found in subsection 7.3.2.

Figure 8.6 shows the user interface where the utility can get the electrical data
from the consumer instantaneously.

Figure 8.6: Architecture 2B: Get Electrical Data Instantaneously

Listing 8.9 shows the code used to display the events received as a result of the
consumer sending electrical data (explained in subsection 8.2.2) using the inter-
face in figure 8.6.
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The subscription (explained in section 5.7) - lines 6 to 20 - subscribes the utility
to the event containing the electrical data from the consumers.

Line 7 describes the topic of this subscription which is the signature of the event
(event name with the parameters). Only the event containing the electrical data
will be read.

Line 13 gets the electrical data from the event. This data is not one of the
topics mentioned since it is not an indexed variable in the event (explained in
subsection 2.4.8).

The utility can now display any electrical data received in real-time and place it
in the table seen in figure 8.6 - lines 17 to 19.

1 componentDidMount () {
2 const t = this;
3

4 // subscription
5 //1 param: event signature (in topics)
6 web3.eth.subscribe(’logs’, {
7 topics:

[web3.utils.sha3("DataSent(address ,bytes32 ,bytes32)")]
8 }, function(error , result){
9 t.setState ({lst :[]});

10 if (!error)
11 console.log(result);
12 //get the data value (not indexed)
13 let d = web3.eth.abi.decodeParameters ([’address ’,

’bytes32 ’], result.data)
14 console.log(d);
15

16 //place all the values in the table
17 t.setState ({
18 lst: (t.state.lst).concat ([{ from:d[0],

time:web3.utils.hexToUtf8(result.topics [1]),
value:d[1]}])

19 });
20 })
21 }

Listing 8.9: Instantaneously Getting Electrical Data Code

We do not show the Metamask interaction between the utility and the event
containing the electrical data since the receipt of an event is not a transaction
that changes the Ethereum state and consequently does not need to be verified.
It is considered to be querying the distributed ledger.
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8.5 Results
The results show the various smart contract components in the different archi-
tectures. These components include variables and functions used in the deployed
smart contracts. The functions consume certain amounts of gas and thus the cost
of using them varies. These concepts have been discussed in subsection 2.4.7. The
test network used in this thesis, as mentioned in section 5.2, is the Rinkeby Test
Network where the price of gas is constant and is set at 1 GWei. However, in the
real network, the cost of gas varies at an average price of 20 GWei. We used 1
Ether equivalent to 186 USD. The cost is not influenced by the size of the network
but by the complexity of the transaction. Thus, simulating a network with few
consumers versus many consumers will not affect the results in any way.

The results are those of a smart grid communication network composed of various
smart meters and one utility connected via the Ethereum infrastructure. This
architecture describes the entry of a consumer into the smart grid communica-
tion network created. Entering the smart grid communication network will allow
the consumer to send electrical data to the utility and will allow the utility to
send load balancing data to the consumer. The details concerning these smart
contracts are found in sections 8.1 and 8.2.

For each of the contracts, there will be a table discussing: the transaction ti-
tle, who the transaction is sent from, who the transaction is sent to, the amount
of gas used and the fee (in ether). In addition, there will be tables discussing:
the transaction title, the fee (in ether), the cost (in $), the frequency the trans-
action is sent at, and the total cost (in $) which is relative to the frequency the
transaction is sent at and the cost per transaction.

The results also show the tests performed on the Azure Cloud platform to test
the feasibility of the communication at the different stages mentioned in section
8.3. The smart grid communication network will need the cloud database to store
electrical and load balancing data. To access the cloud database, certain opera-
tions must be handled by the entities specifically connecting to the database in
the cloud, updating the tables in the database, and querying the tables in the
database.

Testing the cloud database performance in relation to these three different op-
erations is done at 5 minute intervals over the span of 10 runs. It was done a
minimum of 4 times for each of the operations. Each of these operations is done
using a certain number of synchronous users between 1 and 300. Graphs will dis-
play averaged data at the different intervals for each number of users and other
graphs will display averaged data compared for the different user quantities.
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8.5.1 First Smart Contract - Joining the Network

All the transactions in Table 8.1 and Table 8.2, found in the first column (deploy
simulation contract action, join action, and accept action), are made through
smart contract functions. Both the consumer and the utility will be interacting
through the use of the simulation smart contract (refer to section 8.2.1 for more
details about the smart contract).

Table 8.1 describes the steps a consumer takes to enter into the network. Since
the utility deploys the simulation contract, it carries the burden of using up a big
amount of gas. The join actions, carried out by the consumers, and the accept
actions, carried out by the utility, are transactions sent to the smart contract
and use up varying amounts of gas depending on the complexity of the functions
in the smart contract. Clearly the join action is more complex than the accept
action as seen by the difference in the gas consumption. The following table
describes the logistics of the transactions.

Table 8.1: Architecture 2B: Joining the Smart Grid Communication Network -
Smart Contract #1

Transaction From To Gas Used Fee (ether)
Deploy Simulation Contract Utility - 512023 0.000512023

Join Home Contract 195537 0.000195537
Accept Utility Contract 46863 0.000046863

Table 8.2 complements Table 8.1 and includes the dollar amount of the cost of
entering into the network for both the utility and the consumers. The deployment
action will occur once at inception and is quite inexpensive. The join action will
be completed once by every consumer that wishes to enter the network. Finally,
the accept action will be completed once for every consumer that is allowed to
enter the network.

Table 8.2: Architecture 2B: Cost of Transactions in Joining - Smart Contract #1

Transaction Fee (ether) Cost ($) Frequency Total Cost($)
Deploy Simulation Contract 0.000512023 0.09 1 0.09

Join 0.000195537 0.036 1 * # HH 0.036 * # HH
Accept 0.000046863 0.0087 1 * # HH 0.0087 * # HH
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Assuming the population in Qatar is currently 2,869,4581 and the number of
buildings built are 216,7402. It is safe to estimate that there are around 2,167,400
households (HHs)/establishments that need electricity. Equation 8.1 shows the
payment needed to be made by the utility once in the smart grid communication
network and equation 8.2 shows the payment needed to be made by the consumer
once in the smart grid communication network.

Utility Payment #1 = deploy simulation contract action+ accept action ∗# HH
= 0.09$ + 0.0087$ ∗ 2, 167, 400
= 18, 856.47$

(8.1)

Consumer Payment #1 = join action
= 0.036$

(8.2)

1https://www.worldometers.info/world-population/qatar-population/
2https://www.gulf-times.com/story/635497/45-6-percent-jump-in-number-of-buildings-in-

10-years
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8.5.2 Second Smart Contract - Communicating

All the transactions in Table 8.3, Table 8.4, Table 8.5, or Table 8.6 found in the
first column (deploy communication contract action, send data action, and fix
data action), are made through smart contract functions. Both the consumer
and the utility will be interacting through the use of the communication smart
contract (refer to section 8.2.2 for more details about the smart contract).

Table 8.3 describes the steps a consumer takes to communicate in the network.
Since the utility deploys the communication contract, it carries the burden of us-
ing up a big amount of gas. The send data actions, carried out by the consumers
are transactions sent to the smart contract and the fix data actions, carried out
by the utility are transactions sent to the smart contract. This table describes
the logistics of the transactions.

Table 8.3: Architecture 2B: Communication in the Smart Grid Communication
Network - Smart Contract #2

Transaction From To Gas Used Fee (ether)
Deploy Communication Contract Home Contract 194077 0.000194077

Send Data Home Contract 33069 0.000027365
Send Fix Home Contract 27186 0.000027186

Table 8.4 complements Table 8.3 and includes the dollar amount of the cost
of communicating in the network for both the utility and the consumers. The
communication contract will be deployed by the utility once at inception and is
quite inexpensive.

Table 8.4: Architecture 2B: Cost of Transactions in Initializing the Communica-
tion Environment - Smart Contract #2

Transaction Fee (ether) Cost ($) Frequency Total Cost ($)
Deploy Communication Contract 0.000194077 0.036 1 0.036

Table 8.5 and Table 8.6 complement Table 8.3 and include the dollar amount of
the cost of communicating in the network for both the utility and the consumers.
The send data action (Table 8.5) will be completed by every consumer that
wishes to communicate electrical data to the utility. This action could occur at
15 minute intervals, 30 minute intervals, or 60 minute intervals a day. The total
cost per day is calculated for these different intervals and a significant difference
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can be seen. The fix data action (Table 8.6) will be completed by the utility that
wishes to communicate load balancing data to a consumer. This action could
occur anytime the utility believes there is a need to send load balancing data. It
could be as frequent as 1 hour or could go up to every 6 hours.

Table 8.5: Architecture 2B: Cost of Transactions in Sending Electrical Data -
Smart Contract #2

Transaction Fee (ether) Cost ($) Frequency (min) Total Cost / Day ($)
Send Data 0.000027365 0.0050 15 * # HH 0.48 * # HH
Send Data 0.000027365 0.0050 30 * # HH 0.24 * # HH
Send Data 0.000027365 0.0050 60 * # HH 0.12 * # HH

Table 8.6: Architecture 2B: Cost of Transactions in Sending Load Balancing Data
- Smart Contract #2

Transaction Fee (ether) Cost ($) Frequency / Day Total Cost / Day ($)
Fix Data 0.000027186 0.0050 1 * # HH 0.0050 * # HH

We assume the same statistics mentioned above about the population, the number
of buildings built, and the number of households (HHs)/establishments that need
electricity are applicable. Equation 8.3 shows the payment needed to be made by
the utility once in the smart grid communication network. Equation 8.4 shows
the maximum payment needed to be made by the consumer once every year.
Finally, equation 8.5 shows the payment needed to be made by the utility every
time they send a load balancing transaction to a consumer.

Utility Payment #2 = deploy communication contract action
= 0.036$

(8.3)

Consumer Payment #2 = send data action ∗ 365
= 0.12$ ∗ 365
= 43.8$

(8.4)

Utility Payment #3 = fix data action
= 0.0050$

(8.5)
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8.5.3 Connecting to the Database

Connecting to the database in Azure can be done by either the consumer or the
utility. To test the connection time, we attempt to connect to the database once
every 5 minutes for the span of an 50 minutes (10 runs). Multiple different users
attempt to access the database. In this test, we connect to the database using 1
user, 100 concurrent users, 200 concurrent users, and 300 concurrent users. Each
of these users is a color in the graph. The x-axis shows the different time intervals
at which we attempt to connect to the database. The y-axis shows the connection
time in milliseconds (ms). We notice that the pattern is almost similar for all
different numbers of users connecting. This shows that the connection time for 1
user is almost as much as for 300 concurrent users.

Figure 8.7: Architecture 2B: Connection Time at Intervals

Now that we’ve seen the connection time for each user at a point in time, we
take the average of the connections of each user. For instance, throughout the
50 minute time span where the 1 user is connecting to the database, we collect
the time taken to connect every 5 minutes as mentioned. These values are then
averaged and form the average connection time for 1 user. The same goes for
the other users. We notice that the averages are almost similar for all different
numbers of users connecting.
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Figure 8.8: Architecture 2B: Connection Time on Average

We can state that no matter the number of users trying to connect to the
database, the performance of the cloud is steady and provides good results. The
average connection time is around 1.2 seconds.
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8.5.4 Updating the Tables

Updating the tables in the database in Azure can be done by either the consumer
or the utility. The consumer updates the “DataSent” table to add electrical data
for the utility to access and the utility updates the “LoadBalancingData” table
to add load balancing data for the consumer to access. To test the update time,
we attempt to update the database tables once every 5 minutes for the span of
an 50 minutes (10 runs). Multiple different users attempt to update the database
tables. In this test, we update the database tables using 1 user, 100 concurrent
users, 200 concurrent users, and 300 concurrent users. Each of these users is a
color in the graph. The x-axis shows the different time intervals at which we
attempt to update the database tables. The y-axis shows the connection time in
milliseconds (ms). We notice that all different numbers of users updating follow
a similar pattern minus a few outliers. This shows that the update time for 1
user is almost as much as for 300 concurrent users.

Figure 8.9: Architecture 2B: Consumer Updating at Intervals

Now that we’ve seen the update time for each user at a point in time, we take
the average of the updates of each user. For instance, throughout the 50 minute
time span where the 1 user is updating the database tables, we collect the time
taken to update every 5 minutes as mentioned. These values are then averaged
and form the average update time for 1 user. The same goes for the other users.
We notice that the averages are almost similar for all different numbers of users
connecting.
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Figure 8.10: Architecture 2B: Consumer Updating on Average

We can state that no matter the number of users trying to update the database
tables, the performance of the cloud is steady and provides good results. The
average update time is around 0.17 seconds.
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8.5.5 Querying from the Tables

Querying the tables in the database in Azure can be done by either the consumer
or the utility. The consumer queries the “LoadBalancingData” table to get load
balancing data from the utility and the utility updates the “DataSent” table to
get electrical data from the consumer. To test the query time, we attempt to
query the database tables once every 5 minutes for the span of an 50 minutes (10
runs). Multiple different users attempt to query the database tables. In this test,
we query the database tables using 1 user and 10 concurrent users. Each of these
users is a color in the graph. The x-axis shows the different time intervals at
which we attempt to query the database tables. The y-axis shows the connection
time in milliseconds (ms). We notice that the 1 user querying the database table
is the utility and the pattern it follows is almost linear.

Figure 8.11: Architecture 2B: Utility Querying at Intervals
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Now that we’ve seen the query time for each user at a point in time, we take the
average of the queries of each user. For instance, throughout the 50 minute time
span where the 1 user is querying the database tables, we collect the time taken
to query every 5 minutes as mentioned. These values are then averaged and form
the average query time for 1 user. We notice that the average for the 1 user, the
utility, querying the table is almost identical for 1,000 rows, 100,000 rows, and
1,000,000 rows of electrical data.

Figure 8.12: Architecture 2B: Utility Querying on Average

We can state that when the utility tries to query the database tables, the perfor-
mance of the cloud is steady and provides good results. The average query time
for 1,000 rows, 100,000 rows, and 1,000,000 rows of electrical data is around 0.16
seconds.
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8.5.6 Summary

As observed, the prices are lower than in chapter 8’s architecture. This is due to
differences in variables types due to the lack of encrypted data sent. The archi-
tecture’s limitations will be discussed in section 8.7.

The two smart contracts used in this architecture pose different sums to be paid
by both the utility and the consumer at different points in time of the smart
grid communication network. Equation 8.1, equation 8.2, equation 8.3, equation
8.4, and equation 8.5 show the payments that need to be made by the utility
and the consumer at different points in the smart grid communication process.
We wrap up these equations by summing up all the expenses that are paid by
the utility and the consumer. Equation 8.6 sums up the expenses paid by the
utility to set up the smart grid communication network for themselves and the
consumers. Equation 8.7 sums up the expenses paid by the utility to interact
with the utility in the smart grid communication network. Equation 8.8 sums up
the expenses paid by each consumer to set up their interaction with the smart
grid communication network. Finally, equation 8.9 sums up the expenses that
have to be paid by each consumer yearly to interact with the utility in the smart
grid communication network.

Total Initial Utility Payment = Utility Payment #1
+ Utility Payment #2
= 18, 856.47$ + 0.036$

= 18, 856.506$

(8.6)

Utility Payment Per Load Balancing Data = Utility Payment #3
= 0.0050$

(8.7)

Total Initial Consumer Payment = Consumer Payment #1
= 0.036$

(8.8)

Total Consumer Payment Per Year = Consumer Payment #2
= 43.8$

(8.9)

201



8.6 Security Properties

The security properties achieved in this architecture can be credited to the
use of both the blockchain network and the use of the smart contracts. The
Ethereum blockchain ensures various security properties discussed in subsection
2.4.10 whereas the smart contracts and their details are discussed in subsection
2.4.2. Both of the Ethereum blockchain and its smart contracts are discussed in
terms of the security properties achieved.

8.6.1 Smart Contract Properties

The architecture’s two smart contracts discussed in section 8.2 subsections 8.2.1,
and 8.2.2 were structured to provide certain security properties alongside the in-
nate blockchain security properties. The smart contracts contain certain restric-
tions and requirements that force functions to be constrictive and serve the pur-
pose of securing the use of the smart grid communication network. The specifics
of the security properties achieved through smart contracts can be found in sub-
section 7.5.1.

8.6.2 Blockchain Properties

Various security properties characterize the blockchain platform. These described
security properties, including confidentiality and privacy, integrity, availability,
authenticity, transparency, auditability, accountability, anonymity, reliability, and
termination provided by blockchain, are integral to our thesis work. All the secu-
rity properties are ensured through the structure of the blockchain and the use of
smart contracts in Ethereum to provide secure communication between the smart
meters and the utility. The specifics of the security properties achieved through
the blockchain can be found in subsection 7.5.2. Moreover, the cloud platform
provides supplementary security properties.

Confidentiality and Privacy

The electrical data sent from the consumer is encrypted using the utility’s public
key and sent to the cloud database. Only the utility will have access to the elec-
trical data using their private key. Thus, the data on the cloud is confidential.
The hash of the electrical data sent from the consumer through a transaction will
be placed on the immutable ledger. Thus, the data on the blockchain is private.

The load balancing data sent from the utility is encrypted using the consumer’s
public key and sent to the cloud database. Only the consumer will have access
to the load balancing data using their private key. Thus, the data on the cloud
is confidential. The hash of the load balancing data sent from the utility through
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a transaction will be placed on the immutable ledger. Thus, the data on the
blockchain is private.

Integrity

The electrical data is sent to a cloud database where it can be stored for fu-
ture retrieval. The hash of the electrical data sent from the consumer through a
transaction will be placed on the immutable ledger. The utility can query for the
electrical data from the cloud and hash it. If this hash matches the hash queried
from the blockchain, the data has not been tampered with and can be considered
by the utility.

The load data is sent to a cloud database where it can be stored for future
retrieval. The hash of the load balancing data sent from the utility through a
transaction will be placed on the immutable ledger. The consumer can query for
the load balancing data from the cloud and hash it. If this hash matches the
hash queried from the blockchain, the data has not been tampered with and can
be used by the consumer.

Availability

The electrical data sent from the consumer through a transaction will not be
placed on the immutable ledger as it was before. The electrical data will now be
sent to a cloud database where it can be stored for future retrieval. The cloud
platform will always provide access to the electrical data. The load balancing
data sent from the utility through a transaction will be not be placed on the
immutable ledger as it was before. The load balancing data will now be sent to
a cloud database where it can be stored for future retrieval. The cloud platform
will always provide access to the load balancing data.
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8.7 Limitations

Various security properties are achieved in this architecture, mentioned in section
8.6, that make the Ethereum blockchain a good solution for securing the two-
way communication between the consumers and the utility. We will go over the
limitation mentioned in chapter 8 section 7.6 to discuss how this architecture
overcame it.

8.7.1 Scalability

Both the utility and the consumers in the smart grid communication network will
have to send an abundance of messages. The consumers will each have to send
data at intervals of 15 minutes, 30 minutes, or an hour. The utility will have
to send load balancing data to consumers when required. All these transactions
are not scalable on the Ethereum blockchain network. As described in table 2.1
section 2.3, the number of transactions per second in the Ethereum network is
15. This scalability issue will have to be amended in order to allow our solution
to work properly and scalably.

Instead of sending electrical data every 30 minutes to the blockchain which has
proven to not be scalable, we use the cloud platform to send this electrical data
every 30 minutes. The hash of the electrical data will be placed on the blockchain
every 4 hours thereby decreasing the transactions on the blockchain network and
making this architecture more scalable than the previous architecture. This ar-
chitecture will need to be made even more scalable and this can be done through
improvements that are coming soon to Ethereum. It can also be made more scal-
able through the use of the EOS blockchain which is the intended goal for our
future work.

Sharding

Sharding is the process of breaking up the ledger in the blockchain network that
each node has access to. It moves away from the full node concept which is
resource intensive. This benefits us in our work where the smart meters can now
handle the ledger better. The node will now store a subset of the data that was
found in the distributed ledger and only verifies the transactions related to the
data stored in this subset. Nodes will have to trust other nodes in the network.
Trust can be insured by providing incentives to ensure that nodes act in a non-
malicious way. This trust poses a bit of an issue where nodes could get access to
data that could have been tampered with.

204



Off-Chain Transactions

Creating transactions that will not be stored on the chain can also benefit the
blockchain network. This solution will not require nodes to trust other nodes
like in Sharding. Payment channels will be used to create off-chain channels.
These micro-payment channels will be set up between two accounts and will
allow transactions to be made without the need to document them all on the
chain. When the accounts are done sending transactions, the channel can be
closed. Both opening and closing the channel will, however, be documented on
the blockchain ledger. The use of payment channels increases in importance
as the number of transactions increase. This is very useful in our work where
transactions must occur every 15, 30, or 60 minutes.

Proof of Stake

As mentioned in subsection 2.3.3, Proof of Stake (PoS) does not require solving
computationally expensive problems. The miner is chosen pseudo-randomly de-
pending on the node’s wealth or stake. Attacking it would be expensive since
to attack the network you need to own the near majority and the attacker will
suffer severely from their own attack.

The process of shifting from Proof of Work (PoW) consensus to Proof of Stake
consensus has already begun. Ethereum is exchanging its resource intensive con-
sensus mechanism with PoS, a less resource intensive mechanism, to achieve a
more scalable Ethereum blockchain. The shift will also make it more feasible con-
cerning the smart meters in our work as PoS does not require high computational
capabilities.

EOS

EOS is a blockchain platform that also supports decentralized applications through
smart contract functionality. This blockchain platform outperforms Ethereum in
terms of scalability. It can complete millions of transactions per second. The con-
sensus mechanism used is Delegated Proof of Stake (DPoS). DPoS provides block
validation of transactions in seconds. This will make our architectures completely
scalable. The nodes on the EOS platform also complete transactions without the
need for transaction fees. In doing so, the cost is completely eradicated in terms
of our architectures.
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Chapter 9

Conclusion

The shift from the traditional electric grid to the new smart grid brings with it
a new set of possibilities for enhancement and improvement at the level of both
efficiency and security. The smart grid is considered a heterogeneous network
that inherits the security vulnerabilities of cyber systems; therefore, it puts the
electric grid at risk of cyber-attacks. If the data communicated from the meters
to the utility is not secured, the energy management programs used by the utility
might act on wrong data and issue actions that lead to harmful consequences.
The impact of security breaches in the smart grid can be severe and may affect a
country’s entire infrastructure, its economy, and people’ s lives. These risks are
further elevated at times when there are growing concerns of malicious intentions
for electronic intrusions on consumer devices.

A robust and comprehensive security solution must be devised to ensure smart
grid security. Hence, it is vital to ensure confidentiality, integrity, availability,
authorization, authenticity, and non-repudiation in different parts of the smart
grid. Regular security measures, which are employed in traditional communica-
tion and network systems, fail to secure the complex network that composes the
smart grid, given the specificity of the smart grid components.

Securing the smart grid communication is imperative for the safety of its users and
the integrity of the data used to improve and enhance the grid. Securing the grid
using traditional techniques falls short from achieving good security due to the
heterogeneity of the smart grid components. Blockchain, specifically Ethereum,
presents itself as a good solution. Blockchain is emerging as a prominent solu-
tion in power systems [145] where its applications are generally concentrated on
financial solutions concerning currency and payment strategies without a trusted
third party. By structure, the blockchain ensures transparency and prevents any
alteration of the communicated data.
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In this thesis, we proposed a prevention technique to secure smart grid communi-
cation between the utility and the customer meters using blockchain as a building
block. In this technique, communicated data is treated as transactions that are
stored in a distributed fashion to ensure security and privacy. In addition to the
blockchain and in order to ensure confidentiality and non-repudiation, we employ
cryptographic and authentication techniques.

The first architecture discussed, which uses three smart contracts, provides the
security properties targeted but falls short in terms of privacy. It also proved
to be quite costly and did not scale well in terms of the excess storage needs of
the architecture. The first part of the second architecture discussed, which uses
two smart contracts, provides the security properties targeted including privacy.
It also greatly improved the cost for both the utility and the consumers. How-
ever, the issue of scalability remained. Finally, the second part of the second
architecture discussed, which also uses two smart contracts, provides all the se-
curity properties target and even improves the cost. The scalability issue was
decreased through the use of the cloud platform. It is important to note that,
in all three of these architectures, we notice an issue in the scalability of the
Ethereum blockchain.

Of all the blockchain platforms, even though Ethereum is the most flexible smart
contract platform, it still suffers from the issue of scalability. Improvements are
being made to allow the Ethereum blockchain to scale better, thereby providing
our architectures with more scalability in the process. In the meantime, our fu-
ture work will focus on implementing our architectures on the EOS blockchain
platform to test its performance and compare it to our current work.
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Appendix A

Smart Contract Code

A.1 Architecture 1

A.1.1 First Smart Contract - Joining the Network

1 pragma solidity ^0.4.17;
2

3 contract Simulation {
4 address public utility;
5 uint public countNodes;
6

7 // request for node
8 struct Node {
9 string smId;

10 string mac;
11 address add;
12 bool complete;
13 }
14 Node[] public requestedNodes; //to be added to network by

utility
15

16 mapping(address => bool) hasRequested;
17 mapping(address => bool) isDeployed;
18 mapping(address => bool) hasContract;
19

20 //only the utility can see the information
21 modifier restrictedUtility () {
22 require(msg.sender == utility);
23 _;
24 }
25

26 //only called once by utility
27 //since deployed by utility
28 function Simulation () public {
29 utility = msg.sender;
30 countNodes = 0;
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31 }
32

33 //node requests access to network
34 //must be accepted by utility
35 function requestEntry(string smId , string mac) public {
36 // shouldn ’t be the utility AND shouldn ’t be a requestor AND

shouldn ’t already be a Node
37 require(msg.sender != utility && !hasRequested[msg.sender]

&& !isDeployed[msg.sender ]);
38

39 Node memory r = Node(smId , mac , msg.sender , false);
40 requestedNodes.push(r);
41 hasRequested[msg.sender] = true;
42 }
43

44 //can only add node if the utility accepts
45 function acceptNode(uint index) public restrictedUtility {
46 //the node requested
47 Node storage r = requestedNodes[index];
48

49 //check if this node is valid
50 //based on smId db at utility
51 //done manually by calling verify function -> comparing

values to values they have -> making the call
52

53 // shouldn ’t already be a Node
54 require(r.complete != true);
55

56 //add node to list that needs to create a contract
57 isDeployed[r.add] = true;
58 countNodes ++;
59

60 //mark as complete in request
61 //for ui:
62 //when complete true the row is disabled
63 r.complete = true;
64 }
65

66 // utility can remove a node from network
67 function removeNode(uint index) public restrictedUtility {
68 //the node requested
69 Node storage r = requestedNodes[index];
70

71 // should already be a Node
72 require(isDeployed[r.add]);
73

74 countNodes --;
75 hasRequested[r.add] = false;
76 isDeployed[r.add] = false;
77 hasContract[r.add] = false;
78 }
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79

80 // number of requests
81 //for ui
82 function getRequestsCount () public view returns (uint) {
83 return requestedNodes.length;
84 }
85

86 //the next two functions are called one after the other
87 //the first is called ...
88 //if it evaluates to true ...
89 //the second is called
90 //else the second isnt called
91

92 //is node in network but does not have deployed contract
93 // evaluates to true when the node is in the network (accepted

by the utility)
94 //and when the node has not deployed a contract yet
95 function canDeploy(address add) public view returns (bool) {
96 return isDeployed[add] && !hasContract[add];
97 }
98

99 //mark as not able to deploy data contract anymore
100 function markDone(address add) public {
101 // marking should be done by node not any other node
102 require(msg.sender == add);
103

104 hasContract[add] = true;
105 }
106 }

Listing A.1: Architecture 1: Joining the Network
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A.1.2 Second Smart Contract - Setting Up the Communi-
cation

1 pragma solidity ^0.4.17;
2

3 contract Factory {
4 address [] public deployedDataContracts;
5 address public utility;
6 uint public numberContracts;
7

8 event Deployed(address indexed _add);
9

10 function Factory () public {
11 utility = msg.sender;
12 }
13

14 // create the factory contract
15 function createDataContract () public returns (address){
16 address c = new Data(utility , msg.sender);
17 deployedDataContracts.push(c);
18 numberContracts ++;
19

20 Deployed(c);
21 return c;
22 }
23

24 //get addresses for all contracts
25 function getDeployedDataContracts () public view

returns(address []) {
26 return deployedDataContracts;
27 }
28 }

Listing A.2: Architecture 1: Setting Up the Communication
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A.1.3 Third Smart Contract - Communicating

1 pragma solidity ^0.4.17;
2

3 contract Data {
4 address public owner;
5 address public utility;
6 uint public entries;
7 uint public loadBalancing;
8 mapping(string => uint) electricity;
9

10

11 //only the utility can see the information
12 modifier restrictedUtility () {
13 require(msg.sender == utility);
14 _;
15 }
16

17 //only the owner can see the information
18 modifier restrictedOwner () {
19 require(msg.sender == owner);
20 _;
21 }
22

23 function Data(address utilityAdd , address creator) public {
24 owner = creator;
25 utility = utilityAdd;
26 loadBalancing = 0;
27 }
28

29 //send the Data
30 // timestamp should follow certain convention yyyymdhm
31 function sendData(string timestamp , uint value) public

restrictedOwner {
32 electricity[timestamp] = value;
33 entries ++;
34 }
35

36 //check this data
37 function lookupData(string timestamp) view returns (uint) {
38 return electricity[timestamp ];
39 }
40

41 // utility
42 //send load balancing data
43 //will be enumerator 0->decrease 1->increase ....
44 function fixData(uint value) public restrictedUtility {
45 loadBalancing = value;
46 }
47 }

Listing A.3: Architecture 1: Communicating
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A.2 Architecture 2 (Part A)

A.2.1 First Smart Contract - Joining the Network

1 pragma solidity ^0.4.17;
2

3 contract Simulation {
4 uint32 public countNodes;
5 string constant public publicKey = "public key";
6 address public utility;
7

8 Node[] public requestedNodes; //to be added to network by
utility

9

10 mapping(address => bool) private hasRequested;
11 mapping(address => bool) public isAccepted;
12

13 //event Initialize(string k);
14

15 // request for node
16 struct Node {
17 string key;
18 uint32 smId;
19 address add;
20 bool complete;
21 }
22

23 //node requests access to network
24 //must be accepted by utility
25 function requestEntry(uint32 smId , string key) public {
26 // shouldn ’t be a requestor
27 //we don’t have to check if it isn’t already be a Node

becuase once accepted we do not sent hasRequested to
false ...

28 require (! hasRequested[msg.sender ]);
29

30 Node memory r = Node(key , smId , msg.sender , false);
31 requestedNodes.push(r);
32 hasRequested[msg.sender] = true;
33 }
34

35 //can only add node if the utility accepts
36 function acceptNode(uint32 index) public restrictedUtility {
37 //the node requested
38 Node storage r = requestedNodes[index];
39

40 //check if this node is valid
41 //based on smId db at utility
42 //done manually by calling verify function -> comparing

values to values they have -> making the call
43
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44 // shouldn ’t already be a Node
45 require (! isAccepted[r.add]);
46

47 //add node to list that needs to create a contract
48 isAccepted[r.add] = true;
49 countNodes ++;
50

51 //mark as complete in request
52 //for ui:
53 //when complete true the row is disabled
54 r.complete = true;
55 }
56

57 // utility can remove a node from network
58 function x_removeNode(uint32 index) public restrictedUtility {
59 //the node requested
60 Node storage r = requestedNodes[index];
61

62 // should already be a Node
63 require(isAccepted[r.add]);
64

65 countNodes --;
66 hasRequested[r.add] = false;
67 isAccepted[r.add] = false;
68 }
69

70 // number of requests
71 //for ui
72 function getRequestsCount () public view returns (uint) {
73 return requestedNodes.length;
74 }
75

76 //only the utility can see the information
77 modifier restrictedUtility () {
78 require(msg.sender == utility);
79 _;
80 }
81

82 //only called once by utility
83 //since deployed by utility
84 function Simulation () public {
85 utility = msg.sender;
86 countNodes = 0;
87 }
88 }

Listing A.4: Architecture 2A: Joining the Network
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A.2.2 Second Smart Contract - Communicating

1 pragma solidity ^0.4.17;
2

3 contract Communication {
4 Simulation private S;
5

6 // events
7 event DataSent(address _from , bytes32 indexed _timestamp ,

string _value);
8 event LoadBalancingSent(address indexed _to , string _value);
9

10 //send the Data
11 // timestamp should follow certain convention yyyymdhm
12 function sendData(bytes32 timestamp , string value) public {
13 require(S.isAccepted(msg.sender));
14 DataSent(msg.sender ,timestamp ,value);
15 }
16

17 // utility
18 //send load balancing data
19 //will be enumerator 0->decrease 1->increase ....
20 function fixData(address to, string value) public {
21 require(msg.sender == S.utility ());
22 LoadBalancingSent(to, value);
23 }
24

25 // constructor
26 //takes the simulation contract to refer to it later
27 function Communication(address a) public {
28 S = Simulation(a);
29 }
30 }

Listing A.5: Architecture 2A: Communicating
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A.3 Architecture 2 (Part B)

A.3.1 First Smart Contract - Joining the Network

1 pragma solidity ^0.4.17;
2

3 contract Simulation {
4 uint32 public countNodes;
5 string constant public publicKey = "public key";
6 address public utility;
7

8 Node[] public requestedNodes; //to be added to network by
utility

9

10 mapping(address => bool) private hasRequested;
11 mapping(address => bool) public isAccepted;
12

13 // request for node
14 struct Node {
15 string key;
16 uint32 smId;
17 address add;
18 bool complete;
19 }
20

21 //node requests access to network
22 //must be accepted by utility
23 function requestEntry(uint32 smId , string key) public {
24 // shouldn ’t be a requestor
25 //we don’t have to check if it isn’t already be a Node

because once accepted we do not sent hasRequested to
false ...

26 require (! hasRequested[msg.sender ]);
27

28 Node memory r = Node(key , smId , msg.sender , false);
29 requestedNodes.push(r);
30 hasRequested[msg.sender] = true;
31 }
32

33 //can only add node if the utility accepts
34 function acceptNode(uint32 index) public restrictedUtility {
35 //the node requested
36 Node storage r = requestedNodes[index];
37

38 //check if this node is valid
39 //based on smId db at utility
40 //done manually by calling verify function -> comparing

values to values they have -> making the call
41

42 // shouldn ’t already be a Node
43 require (! isAccepted[r.add]);
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44

45 //add node to list that needs to create a contract
46 isAccepted[r.add] = true;
47 countNodes ++;
48

49 //mark as complete in request
50 //for ui:
51 //when complete true the row is disabled
52 r.complete = true;
53 }
54

55 // utility can remove a node from network
56 function x_removeNode(uint32 index) public restrictedUtility {
57 //the node requested
58 Node storage r = requestedNodes[index];
59

60 // should already be a Node
61 require(isAccepted[r.add]);
62

63 countNodes --;
64 hasRequested[r.add] = false;
65 isAccepted[r.add] = false;
66 }
67

68 // number of requests
69 //for ui
70 function getRequestsCount () public view returns (uint) {
71 return requestedNodes.length;
72 }
73

74 //only the utility can see the information
75 modifier restrictedUtility () {
76 require(msg.sender == utility);
77 _;
78 }
79

80 //only called once by utility
81 //since deployed by utility
82 function Simulation () public {
83 utility = msg.sender;
84 countNodes = 0;
85 }
86 }

Listing A.6: Architecture 2B: Joining the Network
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A.3.2 Second Smart Contract - Communicating

1 pragma solidity ^0.4.17;
2

3 contract Communication {
4 Simulation private S;
5

6 // events
7 event DataSent(address indexed _from , bytes32 indexed

_timestamp , bytes32 _value);
8 event LoadBalancingSent(address indexed _to , bytes32 _value);
9

10 //send the Data
11 // timestamp should follow certain convention yyyymdhm
12 function sendData(bytes32 timestamp , bytes32 value) public {
13 require(S.isAccepted(msg.sender));
14 DataSent(msg.sender ,timestamp ,value);
15 }
16

17 // utility
18 //send load balancing data
19 //will be enumerator 0->decrease 1->increase ....
20 function fixData(address to, bytes32 value) public {
21 require(msg.sender == S.utility ());
22 LoadBalancingSent(to, value);
23 }
24

25 function Communication(address a) public {
26 S = Simulation(a);
27 }
28 }

Listing A.7: Architecture 2B: Communicating
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Appendix B

Abbreviations

SG Smart Grid
SM Smart Meter
BC Blockchain
IoT Internet of Things
MDMS Meter Data Management System
AMI Advanced Meter Infrastructure
DR Demand Response
DSM Demand Side Management
EMS Energy Management System
PKI Public Key Infrastructure
TTP Trusted Third Party
EVM Ethereum Virtual Machine
DApp Decentralized Application
SC Smart Contract
ABI Application Binary Interface
TPS Transaction per Second
HH Household
# HH Number of Households
CIA Confidentiality, Integrity, Availability
JS JavaScript
HTML Hyper Text Markup Language
CSS Cascading Style Sheet
CFG Control Flow Graph
A.K.A Also Know As
HEX Hexadecimal
URL Uniform Resource Locator
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