

AMERICAN UNIVERSITY OF BEIRUT

BLOCKCHAIN DEVELOPMENT PLATFORMS:
PERFORMANCE COMPARISON

by
IMAN RABIE DERNAYKA

A thesis
submitted in partial fulfillment of the requirements
for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering
of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
June 2020

AMERICAN UNIVERSITY OF BEIRUT

BLOCKCHAIN DEVELOPMENT PLATFORMS: PERFORMANCE

COMPARISON
by
IMAN RABIE DERNAYKA
Approved by:
~)
Dr. Ali Chehab, Professor Advisor
Electrical and Computer Engineering W
8l
Dr. Ayman Kayssi, Professor Member of Committee

Electrical and Computer Engineering

a—

Dr. Imad Elhajj, Professor ___—Member of Committee
Electrical and Computer Engineering

Date of thesis defense: June 17, 2020

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT RELEASE FORM

Student Name: __Dernayka Iman Rabie
Last First Middle
X Master’s Thesis (O Master’s Project O Doctoral Dissertation

[authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital
repositories of the University; and (c¢) make freely available such copies to third parties for
research or educational purposes.

D [authorize the American University of Beirut, to: (a) reproduce hard or electronic copies

of'it; (b) include such copies in the archives and digital repositories of the University; and (c)

make freely available such copies to third parties for research or educational purposes

after: One ---- year from the date of submission of my thesis, dissertation, or project.
Two ---- years from the date of submission of my thesis, dissertation, or project.
Three ---- years from the date of submission of my thesis, dissertation, or project.

é’ July 2, 2020

)

Signature Date

ACKNOWLEDGMENTS

Without the constant help from my supervisor, Professor Ali Chehab, this work would
not been possible. I would like to thank him for always being supportive and cheerful
while mentoring me throughout this research work.

Also, I would like to thank Mher Kazandjian and the IT team at AUB for providing so
many hours of help concerning the experimentation on HPC and Azure.

Lastly, I would like to thank my family members and my dear husband for their nonstop
love and encouragement.

AN ABSTRACT OF THE THESIS OF

Iman Rabie Dernayka for Master of Engineering
Major: Electrical and Computer Engineering

Title: Blockchain Development Platforms: Performance Comparison

In this master’s thesis, two of the main Blockchain development platforms
Ethereum and EOS.IO were compared. In the aim of helping developers choose between
the platforms as the backend Blockchain for their apps, a decentralized application along
with a corresponding smart contract was implemented on each of the platforms triggering
basic operations and timing them. The simulation was tested on both AUB’s High
Performance Computing facility and Microsoft’s Azure, running up to 150 Blockchain
nodes while recording the user response time, the CPU utilization, and the totally used
memory megabytes. The results in this study show that although recognized as a major
competitor to Ethereum, EOS.IO fails to outperform the Ethereum platform, recording a
very high response time in comparison to Ethereum.

Vi

CONTENTS

ACKNOWLEDGMENTS ..ot Vv

ABSTRACT .o e e VI

ILLUSTRATIONS ...ttt IX

TABLES .. oottt e e aa X
Chapter

I. INTRODUCTION ..ottt 1

| LY o) # V71 o) o H TSR 1

1.2 REIAted WOTK ..o e ee e e tee e e e e eenns 3

1.3 AIMS & ODJECHIVES ...ouvieuieiieieeiieie et ste ettt e st s st et e saeeseeseesseesaesseensesseensessaensenseenes 5

1.4 Limitations & Challengescccveoieriiiieriieieieieeeeet ettt enee s 6

2. TECHNICAL BACKGROUNDooiiieiiiiiiiieeiiieeeieee, 8

0 B 2 3177 o 1 W 10

2.1.1 BItCOIN SIIUCLUTEeeieerieeeeieeeeeeeee et eeee e e e e e e e e e nreeeenneeeeneeeens 10

2.1.2 Bitcoin SCripting SYSIEIM......cecuervieiirieieeieieeee ettt e te st seeeteeseeseeseeseeennenees 11

2.1.3 Consensus Algorithm: Proof-of=-Workcccovivieiiniiiiceeeee 12

2.1.4 EcONOmIC INCENLIVEveiiiieiieiiieeeeie et eaeeeens 15

2.1.5 Turing INCOMPIELENESSeevveeererrieiieieieeienteete e ete st e e steeeesseesseeseeseeneenseennenees 16

A 21 s <) (10 1 o SRR 17

2.2.1 COMSEIISUS ..uvveeeeeeiirieeeeeeeitteeeeeeeetreeeeeesttreeeeeeeetareeeeeestasreeeeeseatreeeeeenasrsseeeeenarreeeeas 17

2.2.2 RESOUICES...uuviieiieeiiieeeeeeeiiee e eeetre e eeet e e e e eetar e e e e eestareeeeeeseataeeeeeeestareeeeenanreeeeas 19

2.2.3 Smart Contracts & Code EXECULIONccvvvevviiieiiieeiieeeeeeeeeeeeeeeee e 20

2,24 SEOTAZE ...veeveeeneeeite ettt ettt e e b et et e e st et e s et e bt e s it e e bt e sabe et e e sabe e bt e sabeebeenaees 22

2.2.5 ECONOMIC INCENLIVEveiiiiieieiiiieeeeie e eneeeens 24

2 T 2 1 T8 (O 2T 24

2.3.1 COMSEIISUS ..uvveeeeeeirieeeeeeeitteeeeeeeettreeeeeestreeeeeeeetareeeeeestareeeeeeaearreeeeeenasrsreeeeenarreeeeas 25

2.3.2 RESOUICES...uvviieiieiirieee e e ettt eeetee e eeet e e e e eetaa e e e eeetaaeeeeeesataaeeeeeesrrreeeeenarreeeeas 27

2.3.3 Smart Contracts & Code EXECULIONccuvvvevviiieiieeiieeeeeeee e 28

2.3.4 SEOTAZE ...veeveeenteeite ettt ettt rb e ettt sttt e st e bt e s it e e bt e s it e et e e sabe e bt esabeebeenaees 31

2.3.5 ECONOMIC INCENLIVEveiiieieieiiieeeeeee et eaeeeens 32

2.3.6 PIMISSIONSuvieiueieeeetieeeeeeeeeteeeeeee e eetee e et e e eeaeeeeetaeeeeaeeeeaeeeeeaeeeeenseseenseeeenneeeens 32

A 111 1< gl o P o) s 1 RO 33

o T 21 14 Te) <] ¥ 1o RN 33

2.4.2 Hyperled@er FabIiC........ccccvvieiiiiieiieieie ettt 36

3. METHODOLOGY & SIMULATIONcovvvvviieiiiieennn. 40

3.1 Testing ENVIIONIMENLcc.eeciirieieeieiesteiestete et eteie et e see et e sseeseesseensesseensesnnensessnensens 41

3.2 SiNUIATILY CONLAINETS.ccuieieeieieriieieeeesiestetesteteeeeteeeaesteeneesseessesseesesseensesnsensessnensens 41

3.3 AUB HPC OCTOPUS CIUSEETccvviiuriiireeeteeeteeeeeeeteeeeeeeteeeeaeeereeesaeeeneseaeeesseessessneeeneens 42

3.4 AZUTE HB-SEIIES ...t e e e e e e eeaeeeeeaseeeenneeeeneeeens 42

3.5 INEIWOTK STIUCTUIE ...ttt e e e e e e et e e eaeeeeeaeeeeenseeeenneeeeneeeens 43

3.6 BaSh SCIIPHNG ...c.veeviiiieiieie ettt ettt et e e e st ense s et ensesneeseennensens 43

vii

3.7 Node.js promiSes and DAPPSccvereerierierierierieeierie ettt eee s eseeseessesaessesnaesens 43

3.8 SAMPIES ..euveeniieiieieeiieeeete ettt sttt ettt et e et e eneente st eseeneeseenaenneas 44
3.9 Performance MELIICScoceeueriruiriinierenieniententetetet ettt ettt sttt neaene 45
3.10 TeSting ASSUMPLIONSecvieiereieiereietestestesteetesetesteesseseessesseessesseessesseesesseessesssessesssensens 47
3.11 Details of the Ethereum Setup..........cccccveverieriiiieiieeeeeeee et 47
3.12 Details 0f the EOS SEIUP....eeoiiiiirieieeiete ettt snaeneas 49
4. RESULTS & ANALYSIS ..o, 52
More Analysis on Ethereum and EOS.JTO LOEScoveveriieiieriieieciieiecieie e 66
5. CONCLUSION ...ttt 70
6. BIBLIOGRAPHY ..ot 71

viii

ILLUSTRATIONS

Figure 2: Ethereum Dapps Statistics [2]. Screenshot By AUthor.ccccoceveiinininininincnincecccceee, 2
Figure 1 Eos Dapps Statistics [2]. Screenshot By AUthOr........cccceciiiriiininininininncceeeeececeee 2
Figure 3: Blockchain Data STrUCLUIEc..coeririiriinieiieietcctctete ettt 8
FIUIE 41 METKIE TTEE....c.eiuviuiiiiinieieitete ettt ettt ettt sttt be sttt be st sttt eenean 10
Figure 5: Unspent Transaction OULPULccceeerireririinerenienteteteteit ettt ettt st se et neenees 11
Figure 6: Double Spending Problem..........cccueiiiiiiiiiii et 12
Figure 7: Mining (Proof-Of-WOrK)cccieieriieieieiet ettt et enas 13
Figure 8: Bitcoin Reward Halving. Screenshot By AUthor..........ccccvvieiiiiieiiiieeeeeeeee e 15
Figure 9: Ethash SEEPS ...c.eoueriiiiieieieieeeeet ettt ettt ettt be e e s e 17
Figure 10: Gas Cost EXAMPIE....c..coueiiiiiriiriiiniieiirescstetes ettt ettt ettt st 19
Figure 11: Deploying An Ethereum Smart Contract STEPSc.couevverieieieririninenereneneseesese e 20
Figure 12: Storing Two Words In The Same Trie (Ether & Ethereum), To The Left Is A Standard Trie
And To The Right IS A Patricia TIi€ccceeverieeieiieieieeieeteie ettt sre e ae e esesseense e 22
Figure 13: Smart Contract Storage RESOUITEScoiruiriiriiriinieiieieicieieeetee et 23
Figure 14: Top Producers On The Main Eos Network. Screenshot By Author.ccccocovevenencnicncnene. 26
Figure 15: Eos Local Chain Example. Screenshot By Author.cccooivieiiiienieeeeeeeee e 29
Figure 16: Eos Blockchain StrUCLUIE.c.coiviiiriiiiriiieeceecctete et 31
Figure 17: Eos Inflation DIStITBULIONcc.ceiriririireriniinienenetetetet ettt ettt 32
Figure 18: Kafka CONSEISUS.couetiutiieitiiirtirierteeteetest ettt ettt ettt et et ettt be bt et s b et be b e ebe s eneeneen 37
Figure 19: Singularity CONLAINETSccveruieieriieierieeieeteetesteeeeseeaesseesesseesesseesseeseesessaesseessesseensesseensenses 41
Figure 20: Singularity RUN SCIIPE ...cocveiiiririririinereestes ettt et 44
FIUIE 21: DaAPP STEPS c-euvententeiieteieiteit ettt ettt ettt ettt et et b bt bt sb e bt s bt sae st be e e st et et eneeneen 46
Figure 22: General Steps Of The Performance EXperiment...........cccccueoveeieerininieninencnincneneneeeeeeenes 47
Figure 23: EOS HPC RESUILS ...ttt st 57
Figure 24: EOs AZUIE RESUILSccueuiiiiiiiiieeiet sttt st 57
Figure 25: Ethereum HPC RESUILSccociiiiiiiiiiiiiiiieeeceetc ettt 58
Figure 26: Ethereum Azure RESUILSccccoiriiiriiiriiieeeceetctetete ettt 58
Figure 27: Azure - Eos Vs Ethereum (Network Of 50 NOAES)cevverveerierieiieiieieeeeieeiee e 59
Figure 28: Azure - Eos Vs Ethereum (Network Of 10 NOAES)cocverveeieriieiieiieieeieieeee e 59
Figure 29: Azure - Eos Vs Ethereum (Network Of 150 NOAES)ccvevvverieriieriiriieieeieieeeeeeeee e 60
Figure 30: Azure - Eos Vs Ethereum (Network Of 100 NOAES)cvevvveveriierieriieieeieieeiee e 60
Figure 31: Hpc - Eos Vs Ethereum (Network Of 50 NOdES)ccuevveieieiiinininerienienerieseesteseeneeeeeeeeneen 61
Figure 32: Hpc - Eos Vs Ethereum (Network Of 10 NOdES)ccvevveieieiiirininirenenienesteseseneeeeeeeenen 61
Figure 33: Hpc - Eos Vs Ethereum (Network Of 150 NOAES)c..evveieuieieirininininenencsteeseeneeeeeeeenen 62
Figure 34: Hpc - Eos Vs Ethereum (Network Of 100 NOAES)c..evveveieiiirinininienienenentesesee e 62
Figure 35: Ethereum 50 Transactions SUbmission LOZS.......c.coevuererieieiiininiiineneneresee e 66
Figure 36: Ethereum 10 Transactions SUbmission LOgS.......c.cocvuereriiieiiinininnenencneseese e 66
Figure 37: Ethereum 100 Transactions Submission LOS........cceeuererieieirrininineneneneresesese e 67
Figure 39: Eos 10 Transactions Submission LOZSc.cocereririeiienieiieiiiitnteencnieeesiese e 68
Figure 38: Eos 50 Transactions Submission LOZSc..ccceriririeiienieiieiiiiieinencsieeesie st 68
Figure 41: Eos 100 Transactions Submission LOgs - 2......cc.coevierieniiiieieiiiininineseeesie st 69
Figure 40: Eos 100 Transactions Submission Logs - 1......ccccoevieviiriiiiiiiiiininiinnenceecese e 69

X

TABLES

table 1: Eos.lo System Contracts And SyStem ACCOUNTS........cc.evverueruierierieieeieieeeeieeeeseeeeeseeene e eneenees 30
Table 2: Octopus Vs AZUre HD-Series SPECS......c.erirrierieriirieiesteiesteteseeteseeeseeseesseesaesseessesseensesseensenses 42
Table 3: Summary Of Dapp FUNCLIONS........cccooieiiiieieeit ettt eeas 51
Table 4: EOS AZUIC SUIMIMATYocveiiiiieiieeietieeeieeteseeetesseeaesseesaesseessesseessesseensesseesesssessesssenseensesseensesses 53
Table 5: EOS HPC SUMMATY.......cciiiiiiiieiieieii ettt sttt ettt e e eseeseesseeneenseennesseensennas 54
Table 6: Ethereum AZUTIEC SUMIMALYcceeieriieierieeieeeeetesteeseesteaeseeesesseesesseeseeseeseeseeseessesseensesseensenses 55
Table 7: Ethereum HPC SUMMATYocveiiieieiieieii ettt sttt e e eneesseennesneennennes 56
Table 8: Low And High Values Of Eos On HPC VS AZUIEcceeiiiiieiicieieeieeeeeeee e 63
Table 9: Low And High Values Of Ethereum On Hpc VS AZUTC........cooveveieiiviieiieieeeeeeee e 64

CHAPTER 1

INTRODUCTION

1.1 Motivation

The Blockchain is bringing big things to the world, much more than cryptocurrencies, it’s
building the path for everyone to decentralized computing. The Blockchain along with
open protocols, server-less applications and the right incentives are shaping the meaning
of decentralized computing altogether. Blockchains became very popular because they
made everyone discover the beauty of decentralization and transparency. It is now the
beginning of a new era, the era of decentralization.

Many platforms arose in this new era, all are very innovative and very crucial for
sculpting future coming Blockchains. Though the platforms are very competitive in the
market, one should not deny the importance of their variety. We should all acknowledge
that this technology is very new and appreciate the different paths to apply it. The first
Blockchain platform ever is Bitcoin (2008), it is the Godfather of all Blockchains. It
introduced us to this new era and forms till this day the most secure Blockchain.

In 2013, Ethereum was proposed as a programmable Blockchain, introducing smart
contracts to the Blockchain community. Smart contracts are programs that exist on the
blockchain and their state is part of the Blockchain state. One would invoke the operations

of these programs via an API now so called DApps (decentralized Apps).

Ethereum’s concept definitely revolutionized the concept of a cryptocurrency Blockchain

2 Platform Category Users (24h) 2 Volume (7d) 2 Dev activity (30d) 2 User activity (30d) 2

1,249,310 EOS
201 BLUEBET o5 Gambiing o 10 41853,569 USD j m
A6 First cross-chain spinach application 4.0 2 Ve
WhaleEx 464,613 £0S B
3 ; e EOS Exchanges w2 1,805,020 USD
va gl Trade Cryptos on WhaleEx e +117.42 -
398 Dice 114 308,643 EOS B
£0s Gamblin 1,199,078 USD
v2 0 EOS Betting platform g +1.58 +136.34; -
1359 EOSPLAY 19 274,779 EOS -
E EOS Gamblin¢ " 1,067,517 USD
v3 Lottery and dice games J .60% +15.80 -
66 Bethash - 138,092 €05 .
vis [Betonfuture blocks and earn a passive EOS Gambling ik 543,644 USD - \/VV\I\/\/V\/\A

income

Z5) EOSHash €05 Gambli 53 7416 usp - JW\W
va =l The fairest crypto casino built on EOS ambling -21.30% ot =
558 SportBet 50 47,008 EO0S 0
EOS 1% 182,627 USD
v3 Sportsbook on EOS blockchain Sy -10.71% 62 U0 =
587 Newdex o 42,008 €05 R
P 163,199 USD
vi £0S Decentralised Exchange £o8 Exchanges +15.52 g -

Figure 2 EOS DApps Statistics [2]. Screenshot by author.
2 Platform Category Users (24h) 2 Volume (7d) 2 Dev activity (30d) 2 User activity (30d) 2
MakerDAQ e 46,918 ETH L 10s
1 NP1 Where you can interact with the Dai Ethereum Finance s 11,094,251 USD o
Credit System -30.18%
Compound 46,172 ETH
S PG Ethereum Finance Jyiod 10,917,891 Usp w222
mll Algorithmic money market 12 LR 12.30
‘sidg Uniswa 32,317 ETH
‘N o R Ethereum Exchanges 638 7,641,645 USD &y
&) Protocol for automated token exchange +6.21 R 0.00%
KyberNetwork 26,300 ETH
5 ‘ i3 . Ethereum Exchanges Lo 6,218,861 USD L
P Enabling Token Swaps Everywhere 8.56; e 2614
a7 @ imToken Tokenlon s 16,036 ETH s
a3 Iclick trading in your imToken wallet Ethereum Exchanges +5.73 3,791,914 USD -41.80%
based on Ox -20.12%
- linch.exchange ves i) G o
e DEX Aggregator with the best prices on Ethereum Exchanges +27.23 3,457,085 USD +185. 71!
the market. +8.89 ‘
. IDEX o 8,453 ETH .
e Distributed exchange made of smart Ethereum Exchanges it 2,008,274 USD o008

contracts

629 Scezuin Ethereum Gambling 2 1,568,621 0D 5 /\/\/_/\W
va Simple and fair dice game +29.1 T D) -28.57%

Figure 1: Ethereum DApps Statistics [2]. Screenshot by author.

by adding on-chain computation. Nonetheless, many decentralized computing critics kept
demanding better performance from decentralized platforms in order for them to replace
centralized platforms. Another important platform that appeared as a competitor for
Ethereum was EOS (initially released in 2018). EOS promised better performance than

Ethereum. Till this day, Ethereum and EOS are the most popular decentralized computing

platforms. In the last decade, Bitcoin and its follow-ups were not just buzzwords, rather
they were important projects funded by the biggest investors who believed in their power.
A huge amount of money was spent for the sake of their growth. Ethereum for example
was crowdfunded in 2014 with 18 million dollars, whereas EOS’s ICO (Initial Coin
Offering on Ethereum platform) raised 4 billion dollars in 2018 [1]. Figures 1 and 2 [2]
show the Ethereum and EOS DApps statistics ranked by volume. The volume (7d) in the
figures represent the amounts of Ethereum and EOS tokens that have been traded in the
last seven days. Millions of dollars of cryptocurrencies are traded daily in thousands of
DApps of different categories varying from finance and exchanges to games and
gambling. This confirms the importance of understanding these platforms and their
characteristics before developing DApps on them which will transfer lots of valuable
assets.

Having this significant value, everyone is joining in on these platforms. From
decentralized healthcare to transparent supply chains and much more, everyone is eager
to implement their own decentralized version of the existing systems. Jumping into this
world so enthusiastically with fear of missing out means fast decisions and fast results.
One could not deny the importance of performance studies comparing the most well-
known Blockchain platforms and the benefit it could provide for new developers and
entrepreneurs.

1.2 Related Work

The tradeoffs between security and performance were studied in [3] regarding only PoW

Blockchains via a quantitative framework. The authors aimed to analyze the effect of

changing several Blockchain parameters (block interval, block size...) on the risks of
double-spending and selfish-mining attacks. The processes of double-spending and
selfish-mining were each modeled into Markov Decision Process (MDP). The authors
also built a Bitcoin Blockchain Simulator and changed its parameters in order to match
the other PoW Blockchains (block interval, mining power, ...). In [4], the authors
compared the time to process transactions on two well-known Ethereum clients: Geth and
Parity. Each of the nodes was tested by itself only, not in a network with other nodes. The
time to execute up to 10000 transactions while varying the RAM was compared in this
paper. Others compared a single Ethereum Geth node and a Hyperledger Fabric network
[5]. The consensus mechanism is not included in the study. A simple money transfer
application was implemented on each platform. By varying the number of transactions
sent to each of the networks, the throughput, latency, and execution time where compared.
In [6], a comparative analysis was conducted between Ethereum, Hyperledger Fabric, and
Corda.

The author of the Master Thesis in [7] discussed techniques to improve the performance
and scalability in each of Bitcoin, Ethereum, and Hyperledger Fabric. Some tests have
been run on Hyperledger Fabric varying the block size and the number of nodes and
analyze the effect it has on the transaction throughput. Blockbench [8] is a framework to
analyze the performance of private blockchains. The authors compared two Ethereum
networks (Geth network and Parity network), and a Hyperledger Fabric network.

[9] provided a comparative analysis between Ethereum and Fabric. A smart contract was

implemented on each and the programming techniques were explained. [10] measured

the performance of the Ethereum Blockchain on the proposed Whiteblock Blockchain
testing platform. The study was done on a network of 10 Geth nodes, and several network
conditions were varied and several attack scenarios were conducted.

Concerning EOS, [11] detailed the architecture of the EOSIO platform, and also
conducted an EOS performance study on the Whiteblock testing framework. Various
network conditions were varied upon an EOS network and the effects of the transaction
throughput were analyzed.

The authors in [12] benchmarked the amount of computational resources needed per some
Ethereum opcodes on different hardware computers. In [13], the most commonly used
smart contracts on Ethereum were studied in order to compare the execution time in
proportion to the amount of gas used, and thus conclude if the profits of miners are fair.
Another Blockchain benchmarking tool is Hyperledger Caliper [14], it is still under
development at the time of writing this thesis. Also, OpBench [15] is a benchmarking
platform and it is utilized in order to measure the CPU time required to execute opcodes
in the Ethereum Virtual Machine.

Many have addressed Blockchain performance as seen. However, to the best of author’s
knowledge, there have been no direct comparison of Ethereum vs EOS under the same
testing environment. Comparing such popular platforms is a very important study that the
Blockchain community needs.

1.3 Aims & Objectives

The aim of this thesis is to compare the performance of the Ethereum and the EOSIO

platforms by implementing a decentralized application along with a corresponding smart

contract on each of the platforms, triggering specific operations and measuring the time
to complete these operations while varying some variables.
There are primary operations every DApp needs to perform. The research contribution of
this thesis is to show the difference in the timing of these primary operations, and
therefore help DApp developers choose between Ethereum and EOS as the backend
Blockchain.
The study will be conducted according to these objectives:
e The study will be conducted on a network of nodes
e The study will include the load of the consensus, even if minimized
e The study will be conducted on the DApp layer in order to abstract all the
differences and complexity of each platform
e The implementation of the two smart contracts and the two DApps should be as
close as possible in order to obtain a fair comparison
e The study will compare Ethereum and EOS platforms, which are two public
Blockchain platforms.
1.4 Limitations & Challenges
As the study is conducted on a single machine, we know that the study does not accurately
simulate real-life behaviors, and that the numbers obtained in this research do not indicate
real numbers if taken for each platform by itself. However, because the two platforms
were put under same testing environment, and the same conditions were applied, this will

give us a decent reflection of the relationships between the tested variables.

EOS’s permissioned network is not part of the study, the network is implemented in a
P2P fashion, similar to Ethereum.

One of the biggest challenges of this study is how fast the platforms evolve every day,
which makes it very hard to keep up. The software versions used in this study are 1.9.1-
stable for Geth (Go Ethereum Client), 0.4.25 for Solidity compiler (also the contract
successfully compile by the latest 0.6.0 solc version), 1.6.6 for EOSIO and 1.6.1 for

eosio.cdt (EOSIO Contract development kit).

CHAPTER 2

TECHNICAL BACKGROUND

Block
header

prev_hash

nonce (PoW)
timestamp

Merkle Root

prev_hash

..... nonce (PoW) [annus
timestamp

Merkle Root

tx: a4f02c478 tx: 59fe87
x: 91b8904db H

Block /

Body

Block n Block n+1

Figure 3: Blockchain Data Structure

Because of its popularity, a big number of people complicated the meaning of Blockchain
to the point it is intimidating. But the Blockchain itself is something very simple. The
Blockchain is a data structure that looks a lot like a linked list, but the bonds use
cryptographic hashes instead of just normal pointers (See Fig.3). The elements in this
structure are transactions holding digital assets; these transactions are grouped into blocks
and then added, in a single write, as part of the chain. It grows in one direction only,
meaning that data can be only appended to it. This data structure is synced between a
network of nodes based on an ordering algorithm that ensures all nodes have the same
data structure. The Blockchain’s main function is to provide an immutable log of
transactions. When in the context of financial transactions, the Blockchain is referred as
an immutable ledger. Every Blockchain system is composed of 3 main components: the

Blockchain by itself enforced by public-key cryptography (structure), the consensus
8

protocol (ordering), and an incentive mechanism. The order of blocks matters a lot in the
Blockchain: The Blockchain is not maintained on a single computer, but a replica of it is
available on not just few, but maybe thousands of other nodes. As such, it is crucial to
have the same blocks in the same order on all nodes. This is where the role of the
consensus comes in. A consensus algorithm makes sure all nodes agree on the next block,
and if nodes agree every time on the next block, then they agree on the order of all blocks
and stay synchronized. Lastly, something is needed to incentivize nodes to behave in a
good way, this is where validators of the system gain some benefit. Some view the
Blockchain as an infinite state-machine [16], and the consensus as the managing

algorithm that validates every state-transition.

Centralization has always been the strategy in everything. This is how the human brain
thought for years. If two complete strangers wanted to exchange some money, a
middleman that both parties trust should be part of the transaction, like the bank. Even in
public key cryptography, we need a CA that issues certificates proving the validity of
public keys and identities. This middle man showed to be unreliable in several cases [17].
Some [18] proposed an interesting problem that represents the meaning of
decentralization. This problem is The Byzantine Generals Problem (BGP). The problem
states that a group of Byzantine Generals each along with their armies are waiting to
attack a city. All armies should attack at the same time or the attack will fail. The issue is
that amongst the generals, there are some traitors who want the attack to fail. So, the
traitors try to alter the messages spread between the generals to change the time of the

attack of some armies, and thus fail the attack.

A solution to this problem would be a method that guarantees reaching the agreement
between the good generals even though there are some traitors trying to mess everything
up. What we have been doing for years is put a general in the middle who everyone gets
information from, and if this general got compromised in any way, the whole system fails.
However, Bitcoin (2008) [19] has been the only real working solution to this problem
with its Proof-of-Work consensus algorithm. In this chapter, a detailed background on

Bitcoin, Ethereum, EOS.IO, and two other Blockchain platforms is presented.

2.1 Bitcoin

Bitcoin [19] is the first Blockchain ecosystem which introduced the best ever proposed
decentralized cash system till this day. Satoshi Nakamoto aimed to design a cash system
without a middleman, and with all the Blockchain components, proper consensus and

proper incentive, he succeeded in creating the largest digital ledger ever made.

2.1.1 Bitcoin Structure

Merkle Root
of tx (1—6)
tig=hash (ti,...,ts) ts,s=hash (ts,tc)
ti2=hash (t,t2) t34=hash (t3,t4)

AN /N

4 ts te

Figure 4: Merkle Tree

Transactions are grouped together into a Block following Merkle Trees structure (also
known as a hash tree structure). The hash used in Bitcoin is SHA-256 which is considered
a secure cryptographic hash function till this day. All transactions are hashed together
until one hash is obtained at the end, the Merkle Root. Any bit change in any of the
transactions will result in a very different root due to the Avalanche effect of
cryptographic hash functions. Each block has a header and a payload. The transactions
are stored in the body of the block. In each block header, several fields are stored, mainly
the Merkle root, the timestamp, the SHA-256 hash of the previous block, and the Proof-
of-Work nonce (see Section 2.1.D). A chain of blocks, that is where the name
“Blockchain” came from. Blocks are chained together because each new block contains
the hash of the Block before it. By linking blocks together through hashing functions, the
integrity of all the blocks is safe-guarded. Changing a single bit in any block will result

in a totally different cryptographically linked chain of blocks.

2.1.2 Bitcoin Scripting System

Bitcoin users are assigned addresses for identification, it is basically the hash of the public

Tx OUTPUT Tx OUTPUT

A owns: B owns:

a N
/ UTXO 9 BTC

UTXO 2.5 BTC
A owns:

UTXO 5 BTC

UTXO 2 BTC

UTXO 0.5 BTC]

Figure 5: Unspent Transaction Output
key. Using the different Bitcoin wallets, it might seem that Bitcoin transactions happen

11

like normal bank transactions. However, the wallet processes Bitcoin transactions very
differently in the background. Bitcoin transactions are actually scripts written in Bitcoin’s
scripting language called Script [20]. In order to check the validity of the transaction, the
transaction script should exit with no error when executed by the validator. Bitcoin uses
the model of Unspent Transaction Output (UTXO) to manipulate state. The state of
Bitcoin is in specific the collection of all UTXOs, a full node has to have all UTXOs
synced. If A wants to transfer 9 Bitcoins to B, A does not necessarily own 9 Bitcoins
UTXO, it might own 3 UTXOs (2.5 Bitcoins, 5 Bitcoins, and 2 Bitcoins). To transfer the
money, the wallet assembles the transaction in the background using the 3 UTXOs
mentioned, and signs it with the private key of A (ECDSA) to make sure that only A
made this transaction. The public key of B is specified in the output, and if the remaining
0.5 BTC are not redeemed, it will be counted as transaction fee and gained by the miner
of the transaction. The model is called UTXO because it only uses the output of previous
transactions to be consumed in new transactions and generate new UTXOs to be

consumed later. All unconsumed UTXOs represent the state of the Bitcoin Blockchain.

2.1.3 Consensus Algorithm: Proof-of-Work

new tx Address C
UTXO 1BTC =t

y

t=to new tx t=t"

Figure 6: Double Spending Problem

12

To develop a digital currency, the biggest challenge is to make sure the double spending
problem is solved. In simple words, if user x has 1 coin and spends it, the user should not
be able to spend it again. This is not possible with normal physical currency, because
when you spend it, you do not have it physically. Things in the digital world are different,

a solution is needed to tell if a file of zeroes and ones representing an asset digitally is

YES
|—>? < difficulty? Broadcast

new Block
> w OUTPUT NO

SHA-256 (Block n) —— ™

SHA-256 (potential next Block) —

nonce _—

Chang{

nonce

91eUu9d1eduo)

Figure 7: Mining (Proof-of-Work)

real or just a fake copy. Figure 6 shows the double-spending problem. For a coin to be
spent once, the order of transactions is key. Ordering depends on the consensus
mechanism adopted. In Bitcoin, Satoshi selected Proof-of-Work (PoW). A subset of peers
(miners) deliberately choose to validate blocks. Miners are the ones who contribute the
most in the consensus. Miner ‘A’ groups transactions into a ‘block x’ according to the
timestamp of transactions and to the miner’s preference in transaction fees. Then, ‘A’
must compute a proof that involves a lot of processing (work) and compete with other
miners. The miner who computes the proof first sends it to all other nodes in the network.
The other nodes can quickly verify the correctness of the proof and add the block to their
own copy of the Blockchain. The proof is computed using these steps:

a) Check the latest difficulty value such as:

0x000000000003ba27aa200blcecaad478d2b00432346¢3f1£3986dalafd33e506)
13

b) Hash the current block concatenated with the potential new block, and a

random value (nonce), result OUTPUT
c) Compare the OUTPUT with the difficulty (is OUTPUT < difficulty?)

d) If yes, stop and broadcast the new block with the random value and add it to

the chain
e) Ifnot, repeat b) with a new random value until d) or until f)
f) A broadcast received containing a new block with its nonce

The difficulty of the hash is adjusted according to the current hashing power of all nodes
in such a way that one block is generated every 10 minutes.

Proof-of-Work requires a big hashing power in order to find a valid proof. Miners usually
use GPUs and ASICs for mining Bitcoin. However, for non-miner nodes, verifying the
proof of a block can be done on a regular processor, requiring only one hash per proof.
Using cryptographic hashing as the work needed to validate a block is very powerful,
because finding the proof is very hard and resource expensive, while verifying the proof

is very easy and fast.

14

2.1.4 Economic Incentive

All miners are racing to compute the proof of the next block because there is an incentive
behind it. In Bitcoin, those who work for the good of the network get a mining reward
whenever they successfully mine a block and collect transaction fees for every transaction

in the mined block. (See Fig. 8 [21])

1/3/2009 1st halving 2nd halving
Genesis block established 11/28/2012 7/9/2016 3rd halving
at 18:15:05 GMT $12.22 $657.61 Mid-2020
6,25 new BTC
50 new BTC created 25 new BTC created 12,5 new BTC created created
every 10 minutes every 10 minutes every 10 minutes every 10 minutes
10,500,000 BTC 5,250,000 BTC 2,625,000 BTC 1,312,500 BTC
created 1/3/09-11/28/12 created 11/28/12-7/9/16 created 7/9/16-2020 halving 2020-2024
$10 000 000
1000000
100 000
10000 A/q/ﬁ“w-
100 W -
100 ’/L-v'
10 A‘WM
1 l/‘[
0 T T T T T

T T T T T T T 1

2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Figure 8: Bitcoin Reward Halving. Screenshot by author.
Bitcoin’s supply is fixed to target 21 million Bitcoins. New Bitcoins can only be generated
when mining a block. When Bitcoin first started in 2008, the reward was 50 Bitcoins per
block mined. Satoshi implemented the protocol to half every 4 years [22]. As seen in Fig.
8, in 2008 the reward was 50 Bitcoins. In 2012, it halved to 25. Then, it halved again in
2016 to 12.5 Bitcoins. The reward will keep on halving until almost zero. Then,
transaction fees would be the only incentive for miners. From here we understand why

the process is called mining; because of the controlled supply and the increasing demand,

15

Bitcoin is very scarce, and its price is very high. It is often referred as digital gold, so it
is logical that the name of the process by which one obtains digital gold is called mining.
These decentralized ecosystems and the game theory involved in incentivizing benign
participation have opened the doors to a new science of Cryptoeconomics. Indeed,
Cryptoeconomics is needed in order to choose the right incentive mechanism, and thus
motivate peers to cooperate and to ensure the truthfulness of the whole system. Damaging
the system would mean damaging your own money. In order to break the Proof-of-Work
system, a conspiracy between 51% of the mining power of the network is needed. This is
not feasible however in a truly decentralized network. But many concerns have been
raised about the centralization mining pools make as for hashing power [23]. This is why
the cryptocurrency community is constantly searching for solutions to minimize the risks
of such attacks or researching other consensus algorithms to completely replace Proof-

of-Work.

2.1.5 Turing Incompleteness

Bitcoin’s Scripting language is made non-turing complete [20] on purpose with no loops
to avoid any mistake or vulnerability that could cause a transaction to run forever. When
Bitcoin succeeded as the first functioning decentralized cash system, few proposals for
different useful applications that could be useful in a decentralized network got
implemented like Namecoin [24]. And because of the turing incompleteness of Script, all
these proposals either started a new Blockchain or were built on top of the Bitcoin

Blockchain without a good foundational layer.

16

2.2 Ethereum

Due to the Turing incompleteness issue, in late 2013 Vitalik Buterin proposed a new
Blockchain platform [25] with a more flexible programming language to be the
foundational layer of all new ideas. The ideas are implemented on this Blockchain as what
is known today as Smart Contracts. A new Gas system was proposed to limit the
processing on the network and put a bound on every transaction. The system was called

Ethereum, and till this day, it is one of the most important existing Blockchain platforms.

2.2.1 Consensus

Write contract with
solidity

Compile contract
into EVM bytecode

No compile
errors and
Sender has

enough ether?

Create account for
the new contract &
upload bytecode
into it

Figure 9: Ethash Steps

The current Ethereum consensus algorithm is called Ethash. Ethash is a proof-of-work

algorithm as in Bitcoin, but it is made ASIC-resistant. This implies that mining with

17

ASICs will not add any extra benefit in Ethereum. Mining with ASICs on Bitcoin
however is much better than mining with GPUs.
Though Ethash is a PoW algorithm as the consensus algorithm of Bitcoin, but the hashing
process happens differently:

e First, compute the seed for the potential new block from all the previous block

headers

e Second, compute a 16 MB pseudorandom cache from the seed

e Third, generate a 1 GB dataset from the cache

e Start the mining process by hashing random slices of the dataset
The 1 GB dataset will be updated once every 30000 blocks, not generated for every block
mined. As in Bitcoin, the mining difficulty is adjusted according to the current hashing
power of all nodes, but a block is generated every 10-20 seconds instead of every 10
minutes. Because Ethereum’s consensus algorithm is a PoW algorithm, all transactions
have probabilistic finality. In other words, the probability of a transaction being
irreversible increases as the number of blocks chained after increases. Generally, a block
in Ethereum or in Bitcoin is considered irreversible if six more blocks were committed
after it. Ethereum 1.0 adopted Proof-of-Work for its consensus. However, very soon

phase 0 of Ethereum 2.0 will start with a Proof-of-Stake consensus algorithm.

18

2.2.2 Resources

30000 gas were actually burned

Please deploy my

during contract deployement!

contract with: Transaction fee = 30000*20 GWei

-stargas: 100000
-gasprice: 20 GWet

Figure 10: Gas Cost Example

Resources are protected from abuse on the Ethereum Blockchain through a Gas system
as previously mentioned. As the name implies, users need to pay for the fuel necessary
for their transactions to get verified by the miners. The amount of gas needed for the
verification of a transaction totally depends on the operations the transaction triggers.
Users need to specify two things in each transaction: startgas, and gasprice. startgas is
the maximum amount of gas (computation steps) the sender of the transaction is willing
to provide for the execution of his transaction. gasprice is the amount of Ethers (Ethereum
Cryptocurrency) the sender of the transaction is willing to pay per one computational step
(gas). The miner who validates the transaction gets a transaction fee equal to
ActualGasBurned * gasprice (See Fig.16). If for any reason the amount of Gas burned
gets above the startgas specified in the transaction, the execution stops, and everything
reverts back to its original state, and the miner still gets his transaction fee in order to
make any attack costly. Resources in Ethereum are all monetized through the gas system,;

The amount of gas needed for the execution of a transaction varies according to the

19

resources it uses. A storing transaction needs more fuel than that only needing processing.
Plus, for every byte in a transaction, there is a fee of 5 gas to also monetize bandwidth.
As one can see, Ethereum’s resource usage is somehow a rental mechanism. A user must
pay the fees to rent the resources of the miner in order to validate the transactions. More

info on Ethereum gas prices and price recommendations can be found here [26].

2.2.3 Smart Contracts & Code Execution

Write contract with
solidity

Compile contract
into EVM bytecode

No compile
errors and
Sender has

enough ether?

Create account for
the new contract &
upload bytecode
into it

Figure 11: Deploying an Ethereum Smart Contract Steps

A Gas system cannot be implemented without a controlled environment with controlled
operations. In order to achieve this over all computers which will be running Ethereum
nodes and for better portability, a virtual machine implementation is a must. Ethereum
implements the Ethereum Virtual Machine (EVM) which abstracts the whole code
execution mechanism. The EVM language is stack-based, it has specific opcodes each

requiring different amount of resource usage. Every opcode has a gas cost relative to its
20

resource consumption. Opcodes are encoded in bytecode in order to achieve better storage
efficiency. The code running on EVM is completely isolated from the filesystem,
network, and all possible processes. In order to write a smart contract, one must write the
code in a high-level language (like Solidity and others). After that, the code should be
compiled into the lower level bytecode and integrated in the transaction. If there are no
compile errors, and the sender has enough Ether to reserve a place in the Blockchain for
the code, a new contract account is created, and the bytecode is uploaded to it (See
Fig.11). Solidity is a high-level language for developing Ethereum smart contracts, other
languages exists but Solidity seem to be the most established. Solidity has been partially
designed after ECMAScript, which makes it similar to Javascript [27]. It is also important
to note that in Ethereum, identification is done through accounts, and there are two types
of accounts: externally owned accounts and contract accounts. The former is the normal
user account; it is identified by a public-key address and it is used to sign transactions.
The second one is specific to smart contracts; it is also identified by a public-key address,
plus it has the code field which holds the code of the smart contract program. In Ethereum,
the term “transaction” is used when referencing signed data sent from an externally owned
account, and the term “message” is used when referencing a smart contract call to another
smart contract. If a transaction triggers the execution of smart contract A and A triggers
smart contract B, the startgas specified in the transaction should be enough to execute A
and everything A calls. Once a transaction is constructed from a local node, the node
broadcasts this transaction to the entire network. Mining nodes have a transaction pool

where a finite number of the broadcasted transactions get stored according to their

21

gasprice. Most miners assemble the highest paid transactions in a block and start solving
the PoW puzzle. Once a miner succeeds to compute the proof, it broadcasts the block
along with the proof to the whole network. Other nodes upon receiving this block execute

all the transactions in this block, and thus sync their Blockchain accordingly.

2.2.4 Storage

ETHER

\D UM\D

Figure 12: Storing two words in the same trie (Ether & Ethereum), to the left is a standard
trie and to the right is a PATRICIA trie

Though all blockchains are basically similar to Bitcoin’s Blockchain structure,
Ethereum’s Blockchain structure is a bit different. Ethereum utilizes Patricia Tries
(Practical Algorithm to Retrieve Information Coded in Alphanumeric) for its persistent
storage (See Fig. 12). In order to store the tries, the geth client uses Leveldb as its

database software. Leveldb is a high speed google key/value store.

22

Memory

oelg

Storage

Figure 13: Smart Contract Storage Resources

There are four types of tries in Ethereum:

e Transaction Tries: every block contains a transaction trie storing its transactions.

e Transaction Receipt Tries: every block contains a transaction receipt trie which
store the outcome of the transactions.

e Storage Tries: every account has its data stored in its own storage trie.

e State Trie: One and only state trie in Ethereum. It has the address of each
account as a ‘path’ and the value is the RLP (Recursive Length Prefix) encoding
of these four fields: nonce, balance, storageRoot, codeHash.

In every block header, the root hashes of the block’s transaction trie, transaction
receipt’s trie, and state trie are included.
There are three storage resources utilized by every smart contract (See Fig. 13):

e Storage: Non-volatile memory storing the executable code of the contract, the
Ether balance, persistent state variables and local variables. It is expensive to use.
This is the storage used in the storage trie mentioned. The storage is a key/value

store that maps 256-bit words to 256-bit words.

e Memory: Temporary infinitely expandable array to hold temporary variables,
arrays, structures and function arguments. It gets reset after the execution ends.

Of course, the cost of expansion must be paid in gas.
23

e Stack: Temporary non-modifiable call-stack where the EVM code execution
happens and can only hold 1024 256-bit words. It gets reset after the execution

ends.

2.2.5 Economic Incentive

Though Ethereum and Bitcoin have the same concept of mining rewards and transaction
fees, some prefer mining Ethereum over mining Bitcoin. One could mine ~60 Ethereum
blocks for every 1 Bitcoin block. This is due to the difficulty of mining which adapts in
a way a block is generated every 10-20 seconds in Ethereum and every 10 minutes in
Bitcoin. Also, because of the very easy to learn smart contract language, many people
are more drawn to Ethereum and believe in its bright future. In addition, Ethereum
incentivizes individual miners with not much hashing power to participate in the mining
process by giving rewards to uncle blocks miners. Uncle blocks are generated when two
valid blocks are mined simultaneously. One gets accepted as a valid block and the other
becomes an uncle block. The miner of the uncle block receives 75% of the block
reward. This not only incentivizes individual miners, but also increases the security of
the Ethereum Blockchain by increasing the amount of work done on the main chain.

2.3 EOS.IO

Ethereum have added big things to the Blockchain community. But, because of several
incidents, and scalability issues, many tried to start an alternative and more scalable
decentralized platform that can compete with centralized platforms already implemented.

EOS is the one of the most popular decentralized platforms and as mentioned before, it

24

received a funding of 18 million dollars. It was founded by Dan Larimer in 2018. EOS
promised vertical and horizontal scaling to the Blockchain community.

2.3.1 Consensus

EOS uses not the well-known proof-of-work consensus, rather it uses a variation of Proof-
of-stake algorithm known as Delegated Proof-of-Stake (DPoS). Plus, EOS adds another
layer to the consensus known as the Asynchronous Byzantine Fault Tolerance layer
(aBFT). Thus, the EOS consensus is composed of two layers: DPoS and aBFT [28]. The
DPoS layer regulates all the processes related to staking tokens, voting, vote decay, vote
recording, producer ranking, and inflation pay. On the other hand, the aBFT layer
determines the finality of each block.

DPoS

Unlike PoW, block generators in PoS are called validators. In order for a node to become
a validator, it has to stake a certain amount of coins. The more is the amount of coins
staked, the higher the chance is to be selected as the next block validator. If the validator
generates a faulty block, a part of its coin stake is lost. DPoS is a variation of PoS where
21 delegates are elected to be the block validators through a real-time voting process. The
block validators in EOS are called producers. Token holders have to stake their tokens in
order to vote for their preferred DPoS delegates. The more a user stakes, the more its vote
has more weight. Also, the voting weight is base-2 exponentially proportional to the date
January 1,2000. This makes the voting weight increase with time for the same number of

tokens staked. Every stakeholder can vote for up to 30 block producers in one voting

25

round. Every voting round, the top 21 producers are selected as active producers and the
others will be placed in a standby list (See Fig. 14 [29]). Votes are not recounted from

zero every round but rather they are increased with the new votes. So, old votes are kept,
Name url Votes % Daily Reward
2m%

starteosiobp https://www.starteos.io 2.69%

Figure 14: Top Producers on the main EOS network. Screenshot by author.
but the weight of the vote is replaced by the new voting weight of each voter. If the voting
weight of a user increases, the votes of the user held by any producer are decayed, this is
done in order to encourage more users to join in and participate in the voting and to give
more weight for their newer choice of delegate. The order of the production order of the
21 producers is the alphabetical order of the elected producer names. Regardless of the
voting ranking, all 21 producers have equal producing power. The process of producing
blocks happens in rounds. Each round is 126 seconds composed of 21 time slots, where
each producer gets a time slot of 6 seconds. Every producer is meant to produce 12 blocks
in one time slot, so 2 blocks/second. If for any reason the producer did not produce during
the time slot, which results in a gap in the blockchain, the producer is placed in the standby
list. In order to prevent overloading the network with false transactions, all producing
nodes re-validate transactions upon receiving them, so a false transaction would get

dropped. From the very first block in a round, all producers receive the list of the
26

producers of the next scheduled round. When this block becomes irreversible (check
aBFT), the proposed schedule becomes active in the next round. In each round, blocks
pass through three phases: production, validation, and finality.

aBFT

This layer determines which blocks become final (irreversible) out of the ones synced
between all the elected producers. It consists of two stages: first a block is proposed as a
last irreversible block (LIB), and secondly the block is confirmed as final. The aBFT layer
ensures algorithmic finality by verifying that the super majority of producers authorized
for this scheduled session agree on this block. The super majority is considered to be 15
producers (2/3 + 1).

2.3.2 Resources

There are three system resources available on the EOSIO Blockchain:

e RAM: acts as the permanent space/storage of all data. It is a scarce resource
and needs to be purchased. Its price is set according to the Bancor Liquidity
algorithm [30].

e CPU: represents the processing time of actions available for a user to interact
with contracts, it is measured in microseconds. In order to obtain CPU
bandwidth on EOSIO, a user must stake tokens.

e NET: represents the amount in bytes of transactions that is available for a user
to interact with contracts. As the CPU resource, one must stake tokens in order

to obtain net bandwidth.

27

The resources in EOS are based on an ownership model unlike Ethereum. The user owns
the CPU, Net, RAM provided and does not need to pay transaction fees or rent the
resources as in the Ethereum’s gas system. The clients of a business running on the
Blockchain do not pay for the use of Blockchain because of the Receiver-pays model that
EOS uses. The owners of a website do not make customers pay for visiting their website
in order to cover hosting costs. In a similar way, developers pay for the best amount of

bandwidth, CPU, and storage their application needs. Users use the applications for free.

2.3.3 Smart Contracts & Code Execution

Smart contracts in EOS are written in C++ as an eosio::contract class. The smart contracts
are then compiled into lower level Web Assembly bytecode (Wasm) to run over the EOS
virtual machine. Wasm is not developed by EOS but rather it has its own community
improving it constantly. This removes the load of developing the virtual machine
language from scratch and leaves it to the experts of the well-known and robust Wasm
engines. Smart Contract functions are known in EOSIO as actions. A transaction could
carry not one but a group of actions in an EOSIO DApp, the success of all the actions is
a must for the success of the whole transaction. In case of a transaction failure, the
blockchain state is reverted back to its state prior to the transaction processing.
Participants in the EOSIO Blockchain and smart contracts are not identified by the public
key addresses but rather by alphanumeric names of 12 characters max. Beside the account
name, other variables are held for each participant in an account schema, such as RAM

usage, CPU/NET limits, voting information... There are two types of actions in EOSIO:

28

e Explicit Actions: the regular actions which are included in a transaction and are
synced throughout the network.
e Implicit (inline) Actions: the actions that happen implicitly and do not get
included in a transaction. Implicit actions are called by explicit actions.
The EOSIO smart contracts do not interact with transactions, transactions are only at the
application level. The incoming blocks and transactions are forwarded to the chain

controller module. The chain controller is responsible for the execution on the local chain.

irreversible blocks

Figure 15: EOS Local Chain Example. Screenshot by author.
The local chain contains both the irreversible (immutable) blocks, and the reversible
blocks. The reversible blocks are managed by the Fork Database (See Fig. 15 [31]). The
Fork database is an internal part of the chain controller. The Chain controller relays all
new blocks to the Fork Database which produces temporary mini forks until the LIB block
advances, after the LIB advances, the invalid forks are purged.

EOSIO System Contracts
The core Blockchain features of EOSIO are all implemented in the EOSIO system

contracts and thus can be easily modified depending on use case requirements.
At the genesis stage, the only account existing is a system account named eosio. Eosio

then creates other system accounts, where some belong to system contracts (such as
29

eosio.token, eosio.msig) and others are just regular system accounts (such as eosio.prods,

eosio.ramfee).

Account Description

. It contains the eosio.system contract and is the main account
eosio
created at the genesis of the Blockchain

. . It contains the eosio.msig contract which allows multi-sig
eosio.msig)
transactions

. It contains the eosio.wrap contract which simplifies superuser
eosio.wrap)
actions of block producers

. It contains the cosio.token contract which creates, issues, and
eosio.token)
manages all tokens on the EOSIO Blockchain

eosio.names | It holds funds from namespace auctions

eosio.bpay | It pays block producers which produced blocks

. It holds the union of all current active block producers’
eosio.prods o
permissions

eosio.ram

It keeps track of all bought/sold SYS tokens of RAM

eosio.ramfee

It holds the fees from trading RAM

eosio.saving

It holds 4% of network inflation

eosio.stake

It keeps track of all staked SYS tokens of CPU and NET

eosio.vpay

It pays block producers according to their received votes

eosio.rex

It keeps track of fees from REX related actions

Table 1: EOS.I0 System Contracts and System Accounts

For transactions to get executed, a chain database session is started, and a snapshot is
taken in order to be able to revert back in case of failures. A transaction context is
generated in order to record the transaction state during execution. For every action, an
action receipt and an action trace objects are generated. The action trace allows the action
to be traced back to its actual transaction and block. After all the action receipts have been

generated, the transaction receipt is generated and pushed to the block.

30

2.3.4 Storage

As for Blockchain storage, the chain plugin is responsible for aggregating data into the
EOSIO Blockchain. The Blockchain structure in EOSIO is very close to the standard
Blockchain structure (See Fig. 16). As for smart contract storage, the user should
purchase RAM. EOS uses RAM as its storage (not disk) to achieve very fast
read/writes. The data in each smart contract can be organized by the developer into
multi-index tables and specifying the structure of each table. EOSIO developers wrote
their own version of the Boost Multi-Index [32]. It is basically a C++ struct with
multiple indexes. The approach of multi-indexing is very known in relational databases.

The Boost Multi-index library borrows this approach in order to make more complex

transaction_mroot
action_mroot
producer
producer_signature

timestamp

transactions

T —

transaction_mroot
action_mroot
producer
producer_signature

timestamp

transactions

* transactions_mroot: MerkleRoot(transaction receipts)
* action_mroot: MercleRoot(all actions executed by the transactions)

Figure 16: EOS Blockchain Structure

data structures similar to multiple indexed tables.

31

2.3.5 Economic Incentive

——» 4% Worker Proposal Funds

5%

— 25% block pay

— 1% Producer Pay —|

— 75% vote pay

Figure 17: EOS Inflation Distribution

As in any Blockchain system, the block producers are incentivized by the token rewards.
In EOS, there is no supply limit as in Bitcoin. The DPOS EOS system is based on inflation
to incentivize block producers. Inflation refers to the issuance of new tokens into the
circulating supply. Because there are no transaction fees, producers get paid by the
internal inflation system which is 5% annually. A percentage of 4% of the newly minted
tokens goes to worker proposal funds. The 1% left goes to producer pay. Not only the
active producers get rewarded from the producer pay (25% of the producer pay), but also
standby producers get rewarded according to the percentage of votes received (75% of
the producer pay, see Fig. 17).

2.3.6 Permissions

The actions of an account in EOSIO must be authorized by each account’s permissions.
There is a permission structure that keeps record of the list of hierarchical named
permissions, and each named permission is linked to an authority table. The authority
table linked to each permission contains the factors that must be satisfied in order to
authorize the action. The highest permission in the permission structure of each account

32

is the owner permission, which is used for recovering in case a key with lower permission
has been compromised. The second highest permission is the active permission which is
used for actions. More custom permissions can be created for other purposes such as
friend’s permission.

2.4 Other Platforms

In this section, other Blockchain development platforms are briefly presented.

2.4.1 Blockstack

Blockstack [33] was co-founded by Muneeb Ali and Ryan Shea in 2013. It is a
decentralized computing platform totally different from Ethereum and forms a decent
competition with it. Blockstack is well-known for its virtualchain technology, server-less
applications, and decentralized naming system. Blockstack by itself is shaping the
meaning of decentralization in a totally different manner than any other Blockchain
system. It aims at re-decentralizing the Internet. The main reason behind the scalability
issues in the existing Blockchain systems according to Blockstack, is that there is too
much focus on the Blockchain by itself, the programs and their data are living on the
Blockchain, and not so much concern is given outside of the Blockchain. Blockstack’s
perspective is to remove everything heavy from the Blockchain and keep it only for its
key purpose, an immutable log of operations. Blockstack’s team had scalability in mind
since first started designing the system. Developers working with decentralized Apps on
Blockstack have the ability to easily make them server-less, scalable, and they do not
have to worry about authentication because it is built-in with the Blockstack Blockchain

naming system (BNS). Not only that, but also developers do not need to worry about

33

storing user data. With Blockstack’s decentralized Gaia Storage System, users bring their
own cloud storage, each App saves user data in the user’s cloud. Data can be stored
encrypted in the user’s cloud storage; their perspective is to treat the cloud as dumb hard

drives that only store user’s data.
Blockstack is composed of 4 layers [34]:

- Blockchain Layer

- Virtual chain Layer

- Discovery Layer

- Storage Layer
Control Plane
The lowest layer in their architecture is the Blockchain Layer. The Blockchain used in
Blockstack is Bitcoin [35]. The team first built their architecture over Namecoin [35] but
they faced some unusual and ambiguous behaviors. So, they migrated their system onto
the first and most fault-tolerant Blockchain ever: The Bitcoin’s Blockchain. This was the

first successful cross-chain migration of a system.

Blockstack layers only refer to the Blockchain for reading and writing totally-ordered
operations. Every other complex issue related to the Blockchain by itself is abstracted to
the other Blockstack layers like the mining process and others... Though interacting with
the Blockchain is abstracted, the Blockchain consists the basis of trust in this system, trust

is bootstrapped up from it to all other layers.

Migrating from one Blockchain to another is much facilitated with the existence of

Virtualchain layer. As virtual machines can run any operating system on top of any other

34

operating system or physical machine, virtualchains construct a somehow lighter chain
on top of an existing chain. The state machine’s new operations are introduced to the
original Blockchain without the need of changing it or forking it. The virtualchain is only
concerned with the transactions that carry BNS operations in their OP_ RETURN field in
Bitcoin (a field for metadata). However, virtualchain can be configured to work on top of
any other Blockchain. Blockstack chose Bitcoin for their BNS (Blockchain Naming
System) after trying it over Namecoin because they noticed several weaknesses and
possible selfish-mining signs [35].

The biggest problem a chain could face is a fork, and the integrity of user’s data in
applications built on top of this chain need to be sustained. By building state machines on
top of the abstracted Blockchain and securing it with a more efficient hash (called
Conensus Hash), a higher-level consensus is achieved (called application-level consensus

by the Blockstack team).

Data Plane

The discovery layer in Blockstack is used to separate the routes to data from the storage
of data itself in order to allow the use of multiple storage services. The discovery layer in
Blockstack uses a peer-to-peer network to store routes to storage files in form of zone
files globally. Users do not need to trust the P2P network as they can verify the hash of
the data record in the Blockchain. Blockstack team implemented their own enhanced

peer-to-peer network called the Atlas network.

The storage layer consists of Blockstack’s decentralized storage system: Gaia.

35

The state of BNS is realized and agreed upon in the control plane, the route of the data
hashed in the state is present in the Atlas zone files, and the real data is stored signed and
encrypted by choice of the user in his/her preferred cloud storage provider. This data

represents data associated with a specific name.

Pricing functions are available to control the name registration process, and to start the
first namespace of BNS, the Blockstack team payed the fee according to their pricing
function (about 10 000§ at the time), enforcing their view that true decentralization is
achieved when also developers follow the rules of the Blockchain. This commitment to

fairness and transparency is not found in all Blockchain communities.

2.4.2 Hyperledger Fabric

The previous platforms mentioned are either public Blockchains or based on a public
Blockchain. Seeing the advantages of decentralized computing, several businesses were
interested in benefitting from this technology. In result of that, the Linux Foundation
started in 2015 the open-source Hyperledger projects [36], in aim of making Distributed
Ledger Technologies (DLT) for businesses. The Digital Asset and IBM were the main
contributors in one of their famous projects, the Hyperledger Fabric (HF). The

Hyperledger Fabric [37] is one of the most important permissioned Blockchains out there.

Permissioned Blockchains, in contrary to public Blockchains, not everyone can run the
node and become part of the network. Only a set of members are authenticated to
participate in a permissioned Blockchain network. Hyperledger fabric is based on
channels between organizations. It has no cryptocurrency, but a token or a currency can

be implemented. Every channel has a shared ledger, and it provides private, confidential

36

transactions between its members. The shared ledger is programmable through what is
called “chaincode”, the code of the chain. The Hyperledger community find this name
more meaningful than “smart contracts”. Authenticating the participation in the network
is managed by CAs (Fabric-CA or any CA of choice) and Membership Service Providers
(MSPs). MSPs are used to somehow abstract the process of obtaining cryptographic
certificates from CAs in the point of view of an organization’s employees. They grant the

users in an organization different roles and different access privileges depending on their

ngge
[O
'] e

Rl
') @
i) go
T

i

(]

W .

i o ‘ﬁﬁf " Transaction » Clie

cimnlatinne = R/\W cotc

8 Orderer
ﬂ% Organisation
& Anchor P
chor Peer
aad

Figure 18: Kafka Consensus

role. Because the Hyperledger Fabric is providing the Blockchain for businesses, assets
of organizations need to be defined in an HF channel as JSON files. The shared ledger
consists of two important databases: the chain of cryptographically linked blocks
(immutable transactional log), and the state database (representing all latest values and

versions of assets, it can be recovered from the chain at any time).

37

There are three types of nodes in HF:

- Client (end-user that connects to the channel through a peer)
- Peer (normal peer who replicates the ledger or endorsing peer who in addition to
his role endorses transactions)

- Orderer (ordering-service node OSN)
The consensus in HF is not composed of a single election-like algorithm (like PoW
mining), but it is achieved by a series of sub-processes. The transactions are first invoked
by clients and sent to a certain number of peers (based on the number of endorsers
requested by the endorsement rules specified in the chaincode). After that, the endorsing
peers simulate the transaction execution based on the current state of the ledger replica
they have and generate Read/Write sets (endorsements). The client receives the
endorsement of his/her transaction and sends it to the orderers. The transactions enter a
queue when received by the orderer. The total-ordering of transactions is the most
important goal of the consensus in a Blockchain. In HF, the orderers are responsible for
this step. The orderers agree on the transactions based on the endorsements of peers, all
endorsements must be the exact same set so that the orderers accept the transaction. If the
orderer accepts the transaction, it exchanges the transaction with other orderer nodes
through Apache Kafka. Apache Katka [38] is a high-performance publish/subscribe
messaging system and it is highly used in distributed systems. Each channel has a separate
Kafka partition where orderers exchange transactions they accept. Here, two parameters
can be changed in this step that affect the block generation process, the BatchSize and

BatchTimeout. BatchSize consists the number of transactions in a Block, while

38

BatchTimeout is a timer that upon its expiration a Block should be generated. Finally, the

ordered block is broadcasted by OSNs to peers who commit the block to their ledger.

Both Blockstack and Hyperledger Fabric are undoubtedly very innovative Blockchain
systems. Both however have not been included in this study.
Hyperledger Fabric has not been included in this study as it is a permissioned
Blockchain. It was involved however to enforce the view of how different it is from
public Blockchains and thus, its performance should not be compared to the studied
Blockchains.
Blockstack was part of the comparison, but it then got excluded for the following reasons:
e The computing done on Blockstack is not on-chain but rather client-side. On-
chain computation is under development and their smart contracts language
named “Clarity” is still in its beta version.
e Running a Blockstack network would require running a Bitcoin network in
parallel, which is a big difference in the hierarchy of the implementation and

thus comparing Ethereum with EOS would make much more sense.

39

CHAPTER 3

METHODOLOGY & SIMULATION

In this chapter, we discuss our performance methodology and experimentation in detail.
Our main objective is to help developers get an idea of developing a DApp on Ethereum
vs Developing a DApp on EOS, by giving an insight of the timing of the basic operations
in each. Any performance comparison is meant to give an overview of the two compared
systems, test out some basic operations, and distinguish between them.
In an attempt to compare two platforms, the implementation of the two simulations must
be as similar as possible.
Note that in this experimentation, we do not consider block finality.
The Blockchain tools used in this study are:
e EOS.IO Tools:
o Nodeos: The EOSIO core node
o Cleos: The EOSIO command line interface that connects to a nodeos
daemon and manages wallets
o Keosd: The EOSIO keys storage
o EOSIO.CDT: The EOSIO Smart Contract Development Kit
o Eosjs: Nodejs library for DApp development
e Ethereum Tools:
o Geth: The Ethereum node written in go
o Solec: Solidity compiler

o Web3: Nodejs library for Ethereum DApp development
40

3.1 Testing Environment
The performance comparison was studied on both Azure cloud and AUB HPC Octopus
cluster. A portable and consistent testing environment was produced using Singularity

containers, making the whole migration process mess free.

Build Singularity
Container

Copy Container to either

Octopus or Azure

Run Container and Save
Results

Figure 19: Singularity Containers

Two singularity containers were created, one for Ethereum and the other for EOS. To run
the Ethereum or EOS experiment, start the run script of the corresponding singularity
container.

3.2 Singularity Containers

Singularity containers [39] give mobility of compute with its image file format, able to
move to any OS and run there as a lightweight container. It encapsulates all the software
stack. Singularity is very known in HPC world, because though its competitor docker is
very known and powerful, docker requires root access to run containers. And that is why
HPC administrators do not allow it, and instead allow singularity containers. Singularity
was developed by a collaboration of HPC admins and research scientist in aim to develop
lightweight, portable, and reproducible environments. In this study, Singularity version

3.5.2 was used.

41

3.3 AUB HPC OCTOPUS Cluster
The American University of Beirut offers for its student a High-Performance Computing
cluster named Octopus. Octopus is a mixed architecture Intel/AMD Beowulf virtualized

cluster. It has 472 virtual CPUs of which 328 are AMD EPYC 7551p vCPUs logical cores

and the others are Intel Xeon E5-2695 v4 vCPU logical cores. Octopus nodes operate on

a Centos 7 Linux Operating System with a subset of the OpenHPC software stack. Slurm
is the scheduler used in Octopus. The Octopus node used in this study belonged to the
large partition with 64 vepus and 256 GB RAM. More information on Octopus can be
found here [40].

3.4 Azure HB-Series

In aim of checking if a cloud platform will influence the results, Azure HB-series has
been selected in order to compare with Octopus. The HB-series uses 60 physical
processor cores of type AMD EPYC 7551, which is the same type used in the Octopus
nodes which we tested. As for RAM, the HB-series offer 240 GB of RAM. As seen, the
HB-series VM was selected because of the closeness of its specs to the Octopus nodes in

CPU and RAM (See Table 2).

Octopus Azure HB-series
Processor Type AMD EPYC 7551p AMD EPYC 7551
Type of Cores Virtual Physical
of Cores 64 60
RAM 256 GB 240 GB

Table 2: Octopus vs Azure HB-series Specs

42

3.5 Network Structure

Many samples were generated out of each Blockchain network, each was randomly
connected, but all were connected as a Minimum Spanning Tree with a maximum degree
of 6. The network algorithm was written in Nodejs. It starts by generating a random tree
of N nodes. Then, the MST of the random tree is calculated. Two Nodejs packages are
used: ‘random-tree’ [41] and ‘js-graph-algorithms’ [42]. After that, the nodes are
connected statically in bash according to the network structure generated from Node.js.
For Ethereum nodes to be connected statically, one must use the “enode format” of each
node. The enode of a node identifies it in a form of a URL. More information on the enode
format can be found here [43].

3.6 Bash Scripting

For long years, Bash has been used in various Linux distributions and in Apple’s macOS.
It is widely used amongst developers and it is a very powerful language. Many may argue
the need of replacing Bash with a more elegant language such as Python, but Bash is very
robust and can finish some things with a few lines of code compared to other languages.
Bash has been selected to be used in this study along with Node.js in order to develop the
experiments’ scripts. Most of the work was done in bash, except the DApps and the
network algorithm were written in Node.js.

3.7 Node.js promises and DApps

Though only 10 years old, Node.js has killed it with over a billion downloads [44]. It is a
very fast, lightweight, and cross-platform Javascript runtime environment, allowing

Javascript to run both client and server side. It surely deserves the attention it got, along

43

with its Node Package Manager (NPM) offering lots of ready-to-use tools and modules
to include in the developed applications. Mostly all Blockchain platforms offer their
DApp development tools and modules in Node.js, and that is why it was selected for the
Ethereum and EOS DApps in this study. Node.js is very known with its promise objects.
Promises are basically asynchronous structures that could get resolved or get rejected.
The functions in the Ethereum Node.js package ‘web3’ [45, p. 3] and in the EOS Node.js
package ‘eosjs’ [46] are all implemented as promises. In order to time the promises, the
‘timely’ package [47] was used with its method to time promises named ‘timely.promise’.
3.8 Samples

There are four testing networks: 10, 50, 100, 150. In each network, the nodes are
connected randomly 30 different times through the network algorithm, in order to have

30 samples of each network. On Octopus or on Azure each random sample is run

Network of 10 Nodes
/
/
/

Run 30 samples

Figure 20: Singularity Run Script

44

individually, executing the DApp and recording the results before moving on to the next
sample.
We increased the number of samples to 30 to have a better generalization of the final
results. Fig. 20 shows what the Blockchain container in Fig 19 does when executed. Note
that for each sample in Fig. 20, a random network connectivity is achieved according to
the network algorithm.
3.9 Performance Metrics
While varying the number of transactions submitted simultaneously from the same node
and varying the number of nodes in the network, the user response time, the CPU usage
of each Blockchain node instance, and the totally used memory megabytes were
measured.
The study is mostly focused on the user response time of the basic smart contract
operations triggered from a DApp. The five operations that where studied on both
platforms are:

1. Depositing native tokens into the smart contract

2. Withdrawing native tokens from the smart contract

3. Reading the native token balance of the smart contract

4. Storing data in the contract (100 bytes)

5. Reading data from the contract (100 bytes)
These operations represent the basic kind of interaction with a Blockchain node.
On the other hand, the number of transactions submitted from the node running the DApp

(Node 5) was varied between 1, 10, 50, 100 and 150. The multiple transactions were all

45

submitted in batches at the same time. So, in the case of the 100 transactions, all 100
transactions were submitted at the same time, and when all transactions get a response,
the response time is recorded. This indicates the transaction throughput.

In addition, the CPU usage of each Blockchain node has been measured with ‘ps’ unix
command along with the totally used memory megabytes caught from ‘node-os-utils’
Node.js module in order to give an insight about cpu/memory usage of each platform.

The following flowchart summarizes the steps executed by each DApp:

Start DApp

Connect to RPC (Node 5)

Call each Smart Contract
function once

Call each Smart Contract
function 10 times

Call each Smart Contract
function 50 times

Call each Smart Contract
function 100 times

Call each Smart Contract
function 150 times

Figure 21: DApp Steps

46

Both platforms experiments were implemented following the steps in the figure below.

Each of the 30 samples in Fig. 20 performs the steps in Fig. 22.

Prepare files for all Deploy / Publish the
N Blockchain nodes Smart Contract from Node 1

Generate Random Start DApp on Node 5

Network Structure

. Save all results in an
Generate Genesis File E
output file

Generate Random Array Kill all Blockchain
of Validators

processes

Launch all nodes and

: Repeat from either
connect them according to p .

with same N (different
sample) or with a different
N until all required samples
have been generated

Figure 22: General Steps of the Performance Experiment

3.10 Testing Assumptions
e Mining/Producing Percentage: 25% of all nodes in the network (In EOS only a
maximum of 21 producers are chosen for the actual block producing process, but
votes are casted for 25%)
e Maximum number of peers: 6
3.11 Details of the Ethereum Setup
The Ethereum smart contract has been written in a few lines of solidity v0.4.25. The smart

contract is then compiled once and set aside for use after the network launch.
47

A script written in bash launched the testing network. The script steps are:

1.

2.

Clean any residue file or processes from previous sample

Generate the random network structure by running the Node.js file "generate-
mst.js”. It also generates a Graphviz file in order to visualize the network later.
Input generated random tree back into the bash script in the form of an
associative array where the keys are all the nodes and the value for each is a
string of connected nodes.

Generate the genesis file of the testing Blockchain and allocating Ethers for
all testing accounts

Prepare a directory for each of the N geth nodes and generate required testing
accounts on each of the nodes.

Launch all nodes according to the randomly generated array of 25% miners.
Connect nodes statically according to the associative array generated in step
3. To achieve that in Ethereum, the following method was chosen:

a. Run the written “getenode.js” file which connects the RPC of each
node and saves its enode in the corresponding geth node directoy as
“enode.txt”.

b. Kill all the geth nodes processes

c. Loop over the associative array from step 3.

d. For each key, get all the enodes of the connected geth nodes and insert
them in static-nodes.json file in the key geth directory.

e. Restart all geth nodes

48

10.

11.

Deploy the Ethereum smart contract from Node 1.

In order to call this smart contract from the DApp in the following steps, the
address of the deployed smart contract had to be saved in an environment
variable.

Run the DApp and save the results. The DApp steps are presented in Fig. 20.
Draw the graph of the network structure of this sample using the Graphviz

software [48].

3.12 Details of the EOS Setup

The script steps follows the BIOS Boot Sequence tutorial [49] steps to launch your own

EOS.IO Blockchain. The script does the following steps:

1.

2.

Clean any residue file or processes from previous sample

Generate the random network structure by running the Node.js file "generate-
mst.js”. It also generates a Graphviz file in order to visualize the network later.
Input generated random tree back into the bash script in the form of an
associative array where the keys are all the nodes and the value for each is a
string of connected nodes.

Start Cleos wallet and create public/private key pairs for all testing accounts
Generate the genesis file of the testing Blockchain

Prepare a directory for each of the N nodeos nodes which contains the start
command that connects each node to its peers according to the associative
array in step 3

Launch the genesis node “eosio”

49

10.

11.

12.

13.

14.

15.

16.

Create system accounts and setup system contracts such as eosio.token and
€0s10.msig

Create system token “SYS” and allocate tokens for eosio

Create all testing accounts and allocate for each one CPU, NET, and RAM.
More resources were allocated for all producers’ accounts.

Register producers according to the randomly generated array of 25%
producers and launch all nodes

Vote for producers

Publish the developed smart contract

Resign eosio and system accounts

Run the DApp and save the results. The DApp steps are presented in Fig. 20.
Draw the graph of the network structure of this sample using the Graphviz

software [48].

Note that according to this answer [50] on the official EOSIO github repository, the

purchased RAM should be 10 * wasm size. Way more RAM than the recommended

amount was allocated in the implementation.

Table 3 summarizes and explains the DApp functions’ notations and purposes which are

used in Chapter 4.

50

Deposit
Withdraw
ReadBalance

StoreInContract
ReadFromContract
Depositl0
Withdraw10
ReadBalancel0
StoreInContract10
ReadFromContract10
Deposit50
Withdraw50
ReadBalance50

StoreInContract50

ReadFromContract50
Deposit100
Withdraw100
ReadBalancel00

StoreInContract100
ReadFromContract100
Depositl150
Withdraw150
ReadBalancel50
StoreInContract150

ReadFromContract150

Issue a transaction calling the Deposit function of the smart contract
Issue a transaction calling the Withdraw function of the smart contract

Locally call the Blockchain node's database to return the balance of an account

Issue a transaction calling the Storing function of the smart contract to store 100
bytes

Locally call the Blockchain node's database to read the data stored in the smart
contract (100 bytes)

The Deposit function of the smart contract is called 10 times for 10 different
accounts (batch of 10 transactions)

The Withdraw function of the smatt contract is called 10 times for 10 different
accounts (batch of 10 transactions)

The ReadBalance function of the smart contract is called 10 times for 10 different
accounts (batch of 10 local reads)

The StorelnContract function of the smart contract is called 10 times for 10
different accounts (batch of 10 transactions)

The ReadFromContract function of the smart contract is called 10 times for 10
different accounts (batch of 10 local reads)

The Deposit function of the smart contract is called 50 times for 50 different
accounts (batch of 50 transactions)

The Withdraw function of the smart contract is called 50 times for 50 different
accounts (batch of 50 transactions)

The ReadBalance function of the smart contract is called 50 times for 50 different
accounts (batch of 50 local reads)

The StoreInContract function of the smart contract is called 50 times for 50
different accounts (batch of 50 transactions)

The ReadFromContract function of the smart contract is called 50 times for 50
different accounts (batch of 50 local reads)

The Deposit function of the smart contract is called 100 times for 100 different
accounts (batch of 100 transactions)

The Withdraw function of the smart contract is called 100 times for 100 different
accounts (batch of 100 transactions)

The ReadBalance function of the smart contract is called 100 times for 100
different accounts (batch of 100 local reads)

The StorelnContract function of the smart contract is called 100 times for 100
different accounts (batch of 100 transactions)

The ReadFromContract function of the smart contract is called 100 times for 100
different accounts (batch of 100 local reads)

The Deposit function of the smart contract is called 150 times for 150 different
accounts (batch of 150 transactions)

The Withdraw function of the smart contract is called 150 times for 150 different
accounts (batch of 150 transactions)

The ReadBalance function of the smart contract is called 150 times for 150
different accounts (batch of 150 local reads)

The StorelnContract function of the smart contract is called 150 times for 150
different accounts (batch of 150 transactions)

The ReadFromContract function of the smart contract is called 150 times for 150
different accounts (batch of 150 local reads)

Table 3: Summary of DApp functions

51

CHAPTER 4

RESULTS & ANALYSIS

In this chapter, the results of the experimentations on both Azure and AUB’s HPC are
presented. After that, for better comprehension and detection of patterns, the results are
visualized using both Microsoft Excel and Python Matplotlib. Lastly, the study findings
and the analysis of the obtained results are concluded.

Note that all the information gathered from the running samples of EOS and Ethereum
on both Azure and AUB’s HPC were organized through a Python script into a Microsoft
Excel sheet. This is done in order to avoid any human errors while inputting data manually
into a Microsoft Excel document. The Python script uses NumPy and Pandas libraries.
Figures 28 to 35 were generated using Python Matplotlib. While figures 24, 25, 26, and
27 were generated using Microsoft Excel.

Tables 4 to 7 represent the average values of the 30 samples tried for each scenario.

52

Functions 10 50 100 150
Deposit (ms) 300466667 | 306.133333 | 316.666667 | 311.033333
Withdraw (ms) 234.133333 202.2 216.2 205.666667
ReadBalance (ms) 1.86666667 | 2.03333333 2.1 2.1
StoreInContract (ms) 191.066667 222.7 218.966667 205.1
ReadFromContract (ms) | 2.06666667 | 216666667 2.2 243333333
Depositl0 (ms) 1950.13333 | 1892.53333 1939.3 1873.03333
Withdraw10 (ms) 1914.23333 1958.2 1907.8 1904.06667
ReadBalancel((ms) 10.1 101333333 | 10.3333333 10.1
StoreInContractl0 (ms) 193523333 | 1949.73333 1890.6 1912.26667
ReadFromContractl0 (ms) | 746666667 | 7.33333333 | 7.43333333 | 746666667
Deposit50 (ms) 9204.36667 9345.9 9324.63333 | 9402.36667
Withdraw50 (ms) 9336.13333 | 932373333 9332.2 942573333
ReadBalance50 (ms) 27.3333333 27.3 27.2 27.9666667
StoreInContract50 (ms) | 951253333 | 9513.06667 | 953296667 9435.3
ReadFromContract50 (ms) | 29.6333333 | 30.3333333 30.5 31.4
Deposit100 (ms) 18559.1 18696.2333 | 18605.0333 | 18619.7667
Withdraw100 (ms) 18641.3333 | 18607.1667 | 18687.3667 | 18792.0333
ReadBalancel00 (ms) 449333333 45.9 453333333 | 46.0666667
StoreInContract100 (ms) | 19398.6333 19582.3 196814333 | 19525.3333
ReadFromContract100 (ms)| 43.0333333 | 437666667 | 43.8666667 | 424333333
Deposit150 (ms) 27687.0667 | 27917.0667 | 27837.4667 | 27857.7333
Withdraw150 (ms) 276402333 | 27867.2667 | 27862.5333 27734.7
ReadBalancel50 (ms) 55.9 54.7666667 54.4 54.7666667
StoreInContract150 (ms) 27839.1 28193.1 27946.5667 27995.5
ReadFromContractl50 (ms)| 54.8666667 55.1 54.8666667 | 54.5333333
mem_min_nodejs (MB) 4618.087 6090.98833 | 797195067 9791.063
mem_max_nodejs (MB) 4676.787 6194.349 8134.06367 | 10020.525
cpu_min_ps (%) 0.80666667 0.66 0.5 0.47
cpu_max_ps (%) 273333333 1.98 1.52333333 13
totalSeconds (s) 299.166667 | 429.233333 590.5 752.066667

Table 4: EOS Azure Summary

53

Functions 10 50 100 150
Deposit (ms) 417.033333 | 390.133333 | 334.166667 377.5
Withdraw (ms) 251.4 268166667 | 250.566667 264.3
ReadBalance (ms) 3.96666667 34 3.76666667 6.9
StoreInContract (ms) 246.966667 226 236.833333 | 227.633333
ReadFromContract (ms) | 4.06666667 | 333333333 2.4 323333333
Depositl0 (ms) 23233 2116.8 1965.03333 | 2198.03333
Withdraw10 (ms) 2153.66667 | 210696667 | 203543333 | 2121.86667
ReadBalancel((ms) 17 13.8 15.3333333 | 11.6333333
StoreInContractl0 (ms) 2357.03333 | 2083.26667 | 2181.76667 2067.4
ReadFromContractl0 (ms) 19.5 15,5 143 12.8
Deposit50 (ms) 10568.8333 | 10586.4667 10063.9 10513.9
Withdraw50 (ms) 118752333 | 10480.6667 | 10070.6667 | 10348.5333
ReadBalance50 (ms) 36.6666667 352 552666667 | 43.8333333
StoreInContract50 (ms) 11782.3333 10197.1 10158.3 10318.2667
ReadFromContract50 (ms)| 47.8666667 | 57.1666667 | 575333333 57.6
Deposit100 (ms) 225247 20474 20276.7667 19899.4
Withdraw100 (ms) 23277.0667 | 20732.9667 19929.8 20245.6667
ReadBalancel00 (ms) 119.166667 | 84.3666667 | 87.3666667 | 79.2666667
StoreInContract100 (ms) | 225922333 | 205084667 | 205142667 | 19934.7667
ReadFromContract100 (ms) 1357 61.9 77 73.3333333
Deposit150 (ms) 321333 30574.8667 | 29546.2333 30350.4
Withdraw150 (ms) 33424.2667 30358.1 304219333 | 30957.7667
ReadBalance150 (ms) 205.766667 | 139.833333 66.3 183333333
StoreInContract150 (ms) | 321118333 | 30508.5333 | 299733333 30172.8
ReadFromContract150 (ms) 101 102766667 | 829333333 | 218.833333
mem_min_nodejs (MB) | 292212867 4478.92 6527.63267 8517.833
mem_max_nodejs (MB) 3000.211 4539.206 6629.63467 | 8643.53133
cpu_min_ps (%) 1.17 024333333 | 0.14666667 0.03
cpu_max_ps (%) 437 3.03666667 | 3.04666667 | 4.26333333
totalSeconds (s) 388.7 497.1 658.666667 | 855.233333

Table 5: EOS HPC Summary

54

Functions 10 50 100 150
Deposit (ms) 4423.66667 | 1789.36667 2262.4 2646.86667
Withdraw (ms) 451323333 | 1877.83333 | 505533333 | 1929.33333
ReadBalance (ms) 353333333 | 3.76666667 | 456666667 | 7.43333333
StoreInContract (ms) 41144 1780.06667 1587.3 1660.1
ReadFromContract (ms) | 493333333 | 546666667 | 6.46666667 | 9.03333333
Depositl0 (ms) 3377.86667 | 1818.96667 1782.4 1681.3
Withdraw10 (ms) 377216667 | 1939.83333 | 1690.43333 | 1718.73333
ReadBalancel0 (ms) 23.6333333 253 30.3666667 63.3
StoreInContract10 (ms) | 340803333 | 1775.13333 | 1697.73333 1749
ReadFromContract10
(ms) 19.4333333 | 20.7333333 27.3 43.5333333
Deposit50 (ms) 383576667 | 2065.73333 | 1995.63333 2425
Withdraw50 (ms) 3649.73333 | 2104.76667 | 1700.06667 | 2409.03333
ReadBalance50 (ms) 47.6333333 50.2 63 145.066667
StoreInContract50 (ms) | 3469.63333 1976.1 224776667 | 228146667
ReadFromContract50
(ms) 621333333 | 66.1666667 | 91.8333333 | 147.033333
Depositl00 (ms) 3790.7 202956667 | 2145.93333 | 2659.53333
Withdraw100 (ms) 3659.56667 | 212833333 | 2221.23333 | 2645.83333
ReadBalancel00 (ms) 76.8 83.0666667 | 101.666667 | 190.033333
StoreInContract100 (ms) | 4331.03333 22135 2397.23333 | 296533333
ReadFror(nn?S(;mmCﬂOO 94.6333333 99.5 148.9 220.966667
Depositl50 (ms) 3577.26667 2381.2 264046667 | 2893.76667
Withdraw150 (ms) 4233.63333 | 2127.86667 | 2458.66667 2890.8
ReadBalancel50 (ms) 85.6333333 102.3 145.966667 | 248.966667
StoreInContract]150 (ms) | 382246667 | 261523333 | 2934.13333 4104.2
ReadFror(nn?S(;mmCﬂso 133.266667 | 143.433333 168 302.233333
mem_min_nodejs (MB) | 836430467 | 27328994 | 45207.2547 | 83585.325
mem_max_nodejs (MB) | 997860233 | 32701.552 59849.283 | 116119.207
cpu_min_ps (%) 42 1.28333333 | 522333333 | 18.4633333
cpu_max_ps (%) 105.27 138.533333 139.71 147.86
totalSeconds (s) 164.6 341733333 | 566.733333 | 867.333333

Table 6: Ethereum Azure Summary

55

Functions 10 50 100 150 |
Deposit (ms) 5996 2108.4 2025.6 1955.8
Withdraw (ms) 4565.7 1993.9 2133.53333 1850.56667
ReadBalance (ms) 7.26666667 5.33333333 14.3666667 18.0666667
StoreInContract (ms) 5169.06667 2061.06667 1865.2 1999.6
ReadFromContract (ms) 12.9666667 11.4 23.8333333 26.1333333
Depositl0 (ms) 4362.86667 243753333 2241.8 2713.16667
Withdraw10 (ms) 5898.3 2056 2367.83333 2557.2
ReadBalancel((ms) 33.3333333 36.8 51.7333333 85.7333333
StoreInContractl0 (ms) 4866.56667 2466.93333 2208.46667 2703.46667
ReadFromContract10 (ms) 36.9 419 60.5333333 117.8
Deposit50 (ms) 6311.26667 2974.93333 3312 4358.9
Withdraw50 (ms) 5542.76667 2518.56667 3261.43333 4397.7
ReadBalance50 (ms) 111.833333 107.233333 151.666667 322.8
StoreInContract50 (ms) 5073.36667 2775.96667 3427.6 4624
ReadFromContract50 (ms) | 140.166667 111.233333 192.666667 435.166667
Deposit100 (ms) 5944.63333 354323333 4602.73333 6832.13333
Withdraw100 (ms) 5122.93333 3544.1 4106.13333 6482.63333
ReadBalancel00 (ms) 156.566667 134.3 205.9 3744
StoreInContract100 (ms) 5966.66667 3582.7 5667.7 8334.4
ReadFromContract100 (ms) | 179.633333 210.133333 249.8 409.9
Depositl50 (ms) 5988.8 3674.76667 6182.3 9086.1
Withdraw150 (ms) 5894.73333 3801.23333 5951.23333 8930.06667
ReadBalancel50 (ms) 177.633333 164.666667 245.733333 321.1
StoreInContract150 (ms) 6078 4391.76667 7690.73333 11655.8667
ReadFromContract150 (ms)| 220.366667 214.166667 252366667 486.666667
mem_min_nodejs (MB) 722728533 25766.8783 43305.8537 60634.8603
mem_max_nodejs (MB) 8424.83433 30294.0963 54490.758 78175.541
cpu_min_ps (%) 11.9766667 6.20333333 9.23 10.3266667
cpu_max_ps (%) 114.1 132533333 157.466667 148.866667
totalSeconds (s) 220.4 402.7 709.866667 1049.03333

Table 7: Ethereum HPC Summary

56

EOS HPC Results

40,000 ms
35,000 ms
30,000 ms
25,000 ms
20,000 ms
15,000 ms
10,000 ms
5,000 ms
0ms
N S LS LA & LS LS & L O LS O e LS LS LS LS Lo LS LS O LS Lo L& Lo
FEEFEEEEEEEEEEEEEEEEEEEEEE
S S oINS BN) QQQ@@QQQQQQQQQQ
Py & & &,@ & O S \o‘,@ L EELE LS L &0
N &L IR R O ©
VEFSFL PRSP SFS LSS SS && PSS 8& TS
Q&‘b z\(‘ ‘O& Q & & é’o & Q & & é’o & N $‘§ &’b ‘Joo (JOQ N $‘§ &'b (Jo(\ (PQ
‘}9‘ X © éz\ « @ éz\ «d‘o Qg'o (¢\<‘ ¢ Q&'D &\o ‘00
@ & & & & © &
<& <& ® @
w10 =250 —2-100 —=-150
Figure 23: EOS HPC Results
EOS Azure Results
30,000 ms
25,000 ms
20,000 ms
15,000 ms
10,000 ms
5,000 ms
0ms
50 W W N> YR WO > WO W WL NN W W N Y YR W WO WO W W W W W W WA
T e & EEE
&L EE W E W E G 8 E 88
AT SN A Y SN IR SR S S I SR IR RN IR IR N S LI IR
FF LN ¢ & &S F SN e & N @
0°§g$9 S LE ,b'b‘\ S & L ,3,‘\ (\b(‘é & ° &8 & ° & &
& & £ Q\xi\'&& & 0 0@6‘& SIS IR S S R P & S
F & & & & & &S & & & & & &
& 8 AP NN & € @ & O ¢ & O
¢ & & & © &
& @ Q_z") &

1) —8eS50 —8—100 —=—-150

Figure 24: EOS Azure Results

57

Ethereum HPC Results

14,000 ms

12,000 ms

10,000 ms

8,000 ms

6,000 ms

4,000 ms

Figure 25: Ethereum HPC Results

Ethereum Azure Results
6,000 ms

5,000 ms
4,000 ms
3,000 ms
2,000 ms

1,000 ms

] —8e50 —8—100 —=—150

Figure 26: Ethereum Azure Results

58

ethazl0

eosazl0
eth std

(]
¢

eos std

§

d

i

o

i1

«—9

L)

.

<[osT3erU0 WO pESY

[osTIvRRUODUIRI0N

s

[0ST2duejegpeay

[~ 0STMelpyam

[0sTusodsq

s

[00T3es3UODWOIjpESY

[0oT3renuUOIUIRIOS

s

- ooTedueegpeay

[~ 00TMeipyIm

[ootusodsg

s

- 0g32eu0 WO pEaY

[0s3renu0IUlRIOS

rs

- 0ge>uejegpeay

[0SmespuIm

I osusodag

A

[oT32enu0oWoIspEaY

I or32enuodulei0ls

.

I oTesuejegpesy

[0TMespuIMm

[oTusodag

4 penuojwogpeay

[eRUOdUIRI0S

Py

[@ouejegpesy

[mespuym

- I usodsg

30000

25000 A

20000 A

15000 A

10000 -

5000 -

Figure 28: Azure - EOS vs Ethereum (Network of 10 nodes)

ethaz50

eosaz50
eth std
eos std

®
®

!

!

4- 0STIPR3UOWOIJpESY
[0STI2ERUODURION
;- 0gTeduEjEgPESY

- 0STMeIpPUIM

- osTusodsg

A- 00T32R23U0DWOIJpESY
- 00TI2ERUODURION
L| 00TeduEjEgPESY

- 00TMespuIM

I ooTusodag

+ 053RI3UOWOIIPERY

- 0g1enUOdUIBI0NS

-

- ogeduejegpesy

- osmespuym

I osusodag

+ 0T3PRI3UOJWOIpERY
[0T32ERUODURION
+ OTeduejEgpPEaY

- oTmespuIm

I otusedag

4 pesuoywosipesy
I 3RRUODUIBI0S
4 @>uejegpeay

| mespuam

- | usodsg

30000 -

25000 A

20000 A

15000 A

10000 -

5000 A

Figure 27: Azure - EOS vs Ethereum (Network of 50 nodes)

ethaz100
eosaz100

eth std

®
$

eos std

§

§

€I osTIERUO WO pESY

[0sT3rERUODUIRI0NS

vy

- ogTeduElEgpERY
[osTmespuIm

[ostsodsg

< ooraenuO WOl peYy
[00TIERUOIUIBIONS
< ootesuejegpeay

[ooTmespuIm

I ooTusodag

< ospenuosWoIpesy
I 0g¥enu0IUIBI0NS
4 ogeduejegpeay

- ogmespuim

[osusodsg

rs

- oT32euO WOl peRY

[0T32R;UO)UIRI0NS

s

[~ 0T®>uejegpeay

[~ OTMelpyIm

[otusodsq

Py

[3esuoyWoIjpesy

| Pdenuojupsios

FY

I @duejegpeay

[mespyum

«—@ [usodeg

30000 -

25000 -

20000 A

15000 A

10000 A

5000 A

Figure 30: Azure - EOS vs Ethereum (Network of 100 nodes)

ethazl150
eosaz150

eth std

®
®

eos std

B

!

B

€I osT3RUCWOIIPEaY
- osT3eRUODUIRI0N
< osteduejegpeay

- osTmespuIm

- osTusodag

€| oot3enucIWOIIpEaY
- ooT3enu0DUIRI0N
< oote>ueiegpesy

- ooTmespuIm

- ootusodag

<[ogpenuoywoIspesy
- 0s32eRUOUIRI0E
< ogeduejegpeay

- osmespuim

- ogusodag

4 orenU0 WOl pESy
- oT3venuUOUIRI0s
<[oreduejegpesy

- oTmespum

- otusodeg

4 penuojwoigpeay
I PenuUo)UlBIOS

4 @>uejegpesy

[mespyym

- [usodag

30000 -

25000 A

20000 A

15000 A

10000 A

5000 A

Figure 29: Azure - EOS vs Ethereum (Network of 150 nodes)

e ethoct10

eosoct10
$ ethstd

®

eos std

40000 -

35000 A

30000 A

25000 4

20000 4

15000 +

10000 +
5000 4
0

0STIRUODWOIIpESY

05TIERUOIUIRI0N

0STaduBjEgpERY

0STMEIPYIM

osTsodsq

00T32RA3UODWOIjpESY

00T3283U0)U|BI0IS

00T@>uEjEgpESY

00TMeIPYIM

00T¥sodsq

0G3eUOHWOI pESY

051ERUOIUIBI0S

ogeduejegpesy

0SMeIpyIm

osusodag

0T3eH3U0QWOIpEsY

oTRRUOIUIRINS

OT2duejegpesy

0TMeIPYIM

oTusedsq

PeuojwoIpey

Je[UOjURIOS

@>uejegpesy

usodag

Figure 32: HPC - EOS vs Ethereum (Network of 10 nodes)

i ethoct50

e0soct50
eth std

eos std

®
®

it

35000 A

30000 -

25000 A

20000 ~

15000 A

10000 -

5000 A

0 -

0STIEIUOHWOI pESY

0ST32RQUO)UIBI0S

0STaduRjEgpRaY

0STMEIPYIM

osTusodsg

00T3e;3U0)WoIjpeSy

00T32R3U0DU|BI0IS

00T2>uejegpeay

00TMEIPYIM

00T¥sodaq

og1eRuOIWOIpEaY

053rRRUODUIBI0NS

ogeduejegpesy

0SMEIPYIM

ogusodsq

0T32e13U0QWoOIjpeEsYy

oTERUOUIRIS

OT2duejegpesy

oTMEIPYRIM

oTusedsq

PesuodwoIpeay

JelUO)UIBI0S

MeIpyIMm

ysodsg

Figure 31: HPC - EOS vs Ethereum (Network of 50 nodes)

ethoct100

eosoct100
eth std

eos std

®
]

{

{

é

é

]

35000 A

30000 +

25000 A

20000 4

15000 +

10000 +

5000

0 -

0STIEUOIWOIIPERY

05TIRRUODUIRI0N

osTeduejegpesy

0STMEIPYIM

ostusodsg

00T32RUO WO pESY

00T32EUODUIBI0IS

00T@duejEgpEay

00TMEIPYIM

ootusodsg

0s¥ERUOdWOIIPEIY

053rRRUOIUIBI0N

ogeduejegpesy

osmelpyam

ogusodsg

oTIRRUOIWOIIPERY

oT3RRUOIUIBI0S

OTe>uejegpesy

0TMEIPYIM

oT¥sedsq

Penuojwolpeay

JPRQUODURI0S

@duejegpesy

MeIpYIM

wsodsq

Figure 34: HPC - EOS vs Ethereum (Network of 100 nodes)

ethoct150

eosoct150
eth std

(]
®

eos std

é

é

é

i. 0STIRI3UOWOIIPERY
[0ST3dERUOUIRI0S
Av 0STeduejEgPERY

[osTMespyIm

[ostusodag

i. 00T3213u0)Wo0IpEY
[00T32ERUOUIRI0s
i‘ 00T3>uEjEgPESY

[00TmespyIm

[ootusodsg

l. 0gPERUOOWOIIPERY

[0g3eRUO)URI0NS

0g@duejegpesy

0SmMeIpyIM

ogusodag

oTPRIUOIWOIIPERY

0TERUODUIBIOS

oTduejegpeay

0TMEIPYUUM

oTusodag

PenuoswoI ey

PeRuUo)URI0S

@duejegpesy

melpyum

ysodag

35000 A

30000 -

25000 A

20000 A

15000 A

10000 -
5000 -

Figure 33: HPC - EOS vs Ethereum (Network of 150 nodes)

From the simulation of each platform on both Azure and AUB’s HPC, we can evaluate

the following:
EOS HPC EOS Azure
Low High Low High
Deposit (ms) 334.17 417.03 300.47 316.67
Withdraw (ms) 250.57 268.17 202.20 234.13
ReadBalance (ms) 3.40 6.90 1.87 2.10
StoreInContract (ms) 226.00 246.97 191.07 222.70
ReadFromContract (ms) 2.40 4.07 2.07 2.43
Depositl0 (ms) 1965.03 2323.30 1873.03 1950.13
Withdraw10 (ms) 2035.43 2153.67 1904.07 1958.20
ReadBalancel0 (ms) 11.63 17.00 10.10 10.33
StoreInContract10 (ms) 2067.40 2357.03 1890.60 1949.73
ReadFromContract10 (ms) 12.80 19.50 7.33 7.47
Deposit50 (ms) 10063.90 10586.47 9204.37 9402.37
Withdraw50 (ms) 10070.67 11875.23 9323.73 9425.73
ReadBalance50 (ms) 35.20 55.27 27.20 27.97
StoreInContract50 (ms) 10158.30 11782.33 9435.30 9532.97
ReadFromContract50 (ms) 47.87 57.60 29.63 31.40
Deposit100 (ms) 19899.40 22524.70 | 18559.10 18696.23
Withdraw100 (ms) 19929.80 23277.07 18607.17 18792.03
ReadBalancel00 (ms) 79.27 119.17 44.93 46.07
StoreInContract100 (ms) 1993477 22592.23 19398.63 19681.43
ReadFromContract100 (ms) 61.90 135.70 42.43 43.87
Deposit150 (ms) 29546.23 3213330 | 27687.07 27917.07
Withdraw150 (ms) 30358.10 33424.27 | 2764023 27867.27
ReadBalance150 (ms) 66.30 205.77 54.40 55.90
StoreInContract150 (ms) 2997333 32111.83 | 27839.10 28193.10
ReadFromContract150 (ms) 82.93 218.83 54.53 55.10

Table 8: Low and High values of EOS on HPC vs Azure

63

ETH HPC \ ETH Azure

Low High | Low High |
Deposit (ms) 1955.80 5996.00 1789.37 4423.67
Withdraw (ms) ‘ 1850.57 4565.70 1877.83 5055.33
ReadBalance (ms) 5.33 18.07 3.53 7.43
StoreInContract (ms) 1865.20 5169.07 1587.30 4114.40
ReadFromContract (ms) 11.40 26.13 4.93 9.03
Depositl0 (ms) 2241.80 4362.87 1681.30 3377.87
Withdraw10 (ms) 2056.00 5898.30 169043 3772.17
ReadBalancel0 (ms) 33.33 85.73 23.63 63.30
StoreInContractl0 (ms) 2208.47 4866.57 1697.73 3408.03
ReadFromContractl0 (ms) 36.90 117.80 19.43 43.53
Deposit50 (ms) 2974.93 6311.27 1995.63 3835.77
Withdraw50 (ms) 2518.57 5542.77 1700.07 3649.73
ReadBalance50 (ms) 107.23 322.80 47.63 145.07
StoreInContract50 (ms) 277597 5073.37 1976.10 3469.63
ReadFromContract50 (ms) 111.23 435.17 62.13 147.03
Deposit100 (ms) 3543.23 6832.13 2029.57 3790.70
Withdraw100 (ms) 3544.10 6482.63 212833 3659.57
ReadBalancel00 (ms) 134.30 374.40 76.80 190.03
StoreInContract100 (ms) 3582.70 8334.40 221350 4331.03
ReadFromContract100 (ms) 179.63 409.90 94.63 220.97
Deposit150 (ms) 3674.77 9086.10 2381.20 3577.27
Withdraw150 (ms) 3801.23 8930.07 212787 4233.63
ReadBalance150 (ms) 164.67 321.10 85.63 248.97
StoreInContract150 (ms) 4391.77 11655.87 | 261523 4104.20
ReadFromContract150 (ms) 214.17 486.67 133.27 302.23

Table 9: Low and High values of Ethereum on HPC vs Azure
By examining each platform by itself on both Azure and AUB’s HPC (table 8-9), one can
notice that the user response time ranges are noticeably lower on Azure in both EOS and
Ethereum platforms. However, by looking at the visualized graphs in figures 24 to 27, we
can see that the pattern is the same for each platform on both Azure and AUB’s HPC.
In EOS’s case in Fig. 25, all the networks (10, 50, 100, 150) have a perfectly stacked line
graph. This shows more stable time ranges with the variation of the number of nodes in

the network and thus more stability on Azure.

64

In Ethereum’s case too in Fig. 27, all the networks except the network of 10 nodes are
closer to each other than the lines in Fig. 26. The network of 10 nodes in Ethereum takes
a longer time to respond than a network with more nodes because it has only two mining
nodes with each having one mining thread only. This makes the mining puzzle harder to
resolve and thus takes more time on both AUB’s HPC and on Azure.

Looking at all the visualized graphs (figures 24 to 35), it is very clear that:

e With a very low throughput and with the variation of the number of nodes in
the network, EOS’s numbers (~200ms) are way lower than Ethereum’s
numbers (~2s).

e With the increase of the number of transactions submitted, Ethereum keeps a
steady range in comparison to EOS. EOS’s response time augments rapidly
starting when the number of transactions submitted is 50 and keeps growing
up, while Ethereum’s time response takes 2 to 4 seconds on Azure at max. At
150 transactions submitted, EOS’s response time is almost 6 times Ethereum’s
response time.

e One can also notice that Ethereum’s storing function takes slightly more time
than deposit/withdraw transactions.

e Local call functions take less time on EOS

e CPU and RAM usage averages of Ethereum were way higher than those of
EOS due to the heaviness of Proof-of-Work

e The experimentation on Azure achieved shorter response time than that on

Octopus but guarding the same patterns.

65

More Analysis on Ethereum and EOS.IO Logs:

In this section, a small network is generated for each of Ethereum and EOS.IO in order

to analyze the logs.

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

Tura

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

[03-21]08:
[03-21]08:
[03-21]08:
[03-21|08:
[03-21]08:
[03-21|08:
[03-21|08:
[03-21|08:
[63-21|08:
[03-21]08:
[03-21]08:
[03-21|08:
[03-21]08:
[03-21|08:

rAmn Arinn.

Figure 36: Ethereum 10 Transactions Submission Logs

[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:
[03-21]08:

Figure 35: Ethereum 50 Transactions Submission Logs

05:
05:
05:
05:
05:
05:
05:
05:
05:
B5%
05:
05:
05:
05:

nc .

06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:
06:

37
43.
50
50
50.
50.
50.
50
50.
50.
50.
50.
51
D38

cn

08

09

09

21
23

08.
08.
08.
08.
08.
08.
08.
08.
08.
08.
08.
08.
08.
08.
Gl
09.
09.

09.
09.
09.
09.
09.
09.
09.

09.
09.

.601]

868]

.215]
.215]

218]
221]
222]

.225]

228]
229]
230]
231]

.760]

196]

LELR!

.949]
964]
965]
966]
977]
979]
985]
986]
988]
990]
992]
993]
994]
995]
996]
078]
090]
094]
.104]
117]
118]
119]
1561]
159]
160]
166]
.1671]
168]
169]
.883]
.961]

Imported new chain segment
Imported new chain segment
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
Imported new chain segment
Imported new chain segment

— O

Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted

Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted
Submitted

Imported new chain segment

Submitted

transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction
transaction

transaction

66

blocks=1 txs=1 mgas=0.155 el:
blocks=1 txs=0 mgas=0.000 el:
fullhash=0xdcea3c62243a7eabe!
fullhash=0xaf98be0c67f93ff50
fullhash=0x756304c77b09636e4:
fullhash=0x68df14d01c79322a6"
fullhash=0xb28be4da071f650de:
fullhash=0xb7601f25e9e2b1b9b
fullhash=0xcb71fb37c2298e069¢
fullhash=0x9a253d4a8b0fal62c!
fullhash=0x3a3039fa28352462e(
fullhash=0x1cfb38cfd0002T664¢

blocks=1 txs=0 mgas=0.000 el:
blocks= gas=0.271 el

£..0 T ke _ALRROATECAT AnAC ~dD At

fullhash=0xda591al32bfab2755
fullhash=0x3952bce840294df73
fullhash=0x3c4371c4ecaf40b51
fullhash=0xelcc6d23409cle2b6
fullhash=0xf2f08276b294e€1736
fullhash=0x5f95fbbc3f82b09d9
fullhash=0xe90a23bfalcb166b4
fullhash=0xab211ebb6cca66835
fullhash=0x55fa6210525e2a3ca
fullhash=0x59c1d2al6ecfd1lbde
fullhash=0x7allda63de2fec354
fullhash=0xa296a651db522e3cb
fullhash=0xd5d74de7f902d51af
fullhash=0xc233aa23916055ae2f
fullhash=0x773fe96d6e24f8c3c
fullhash=0x268ebbfec86bbbca2
fullhash=0x6cc25efc8502d5dfb
fullhash=0xcb6d0e50647627bd4
fullhash=0x1lea7e®b5765d373b2
fullhash=0x60d44ce99122199c1
fullhash=0x12236097acd60bda6
fullhash=0xf5c1843b78ee9583c
fullhash=0x9eb897a78850b226e
fullhash=0xf2a10341601c299d1
fullhash=0xc0c3780cb940a49b5
fullhash=0xa5e7cd6af3addefac
fullhash=0xe023664286abc640b
fullhash=0xdd70alc325f05ac34
fullhash=0x356a4defel05d38e7
b10cks=gas=1.354 e
fullhash=0xe662803fa4397ab84

INFO [03-21]|08:06:59.851] Submitted transaction fullhash=0x8ab08a9a23df9a04e0

INFO [03-21]|08:06:59.863] Submitted transaction fullhash=0x7f25d9625c7b29cadb
INFO [03-21|08:06:59.864] Submitted transaction fullhash=0x978a05214ee6c0c635
INFO [03-21|08:06:59.865] Submitted transaction fullhash=0xe8a837e5960a3a7459
INFO [03-21|08:06:59.866] Submitted transaction fullhash=0x8cafa8c3ccb3366013
INFO [03-21|08:06:59.871] Submitted transaction fullhash=0x9961132e7ca70af293
INFO [03-21|08:06:59.872] Submitted transaction fullhash=0x65700801c4f3b36d28
INFO [03-21|08:06:59.873] Submitted transaction fullhash=0xa8fb2adabe40e3e410
INFO [03-21|08:06:59.874] Submitted transaction fullhash=0xed4ed6adleacefbl032
INFO [03-21|08:06:59.875] Submitted transaction fullhash=0xba5fdf480555975b07
INFO [03-21|08:06:59.876] Submitted transaction fullhash=0xf6696cb2ce688ac437
INFO [03-21|08:06:59.891] Submitted transaction fullhash=0xcb72f95d55200bcfcc
INFO [03-21|08:06:59.892] Submitted transaction fullhash=0x067db9f5385e5c6d1f
INFO [03-21|08:06:59.893] Submitted transaction fullhash=0x6a86f6a02b7ea4972d
INFO [03-21|08:06:59.894] Submitted transaction fullhash=0x50b828e5fc383b87ac
INFO [03-21|08:06:59.895] Submitted transaction fullhash=0xbe37a76c7d992c1690
INFO [03-21|08:06:59.899] Submitted transaction fullhash=0x9d1f427eel30c95ee9
INFO [03-21|08:06:59.900] Submitted transaction fullhash=0x10c3539e8c9al292b6
INFO [03-21|08:06:59.901] Submitted transaction fullhash=0xd0a2589c6cf5cal203
INFO [03-21|08:06:59.901] Submitted transaction fullhash=0x664d0800329d7cllcc
INFO [03-21|08:06:59.902] Submitted transaction fullhash=0x5ad784c0cfe76c1801
INFO [03-21|08:06:59.963] Submitted transaction fullhash=0x202d4fe65873e0b958
INFO [03-21|08:06:59.987] Submitted transaction fullhash=0xe23a26d78b76465ech
INFO [03-21|08:07:00.002] Submitted transaction fullhash=0xcfb89f14c20a3efaec
INFO [03-21|08:07:00.003] Submitted transaction fullhash=0x3a50e695bdbbe6bedc
INFO [03-21|08:07:00.105] Submitted transaction fullhash=0x6e6001f978c73e54e6
INFO [03-21|08:07:00.106] Submitted transaction fullhash=0x198db073ec0a56038b
INFO [03-21|08:07:00.113] Submitted transaction fullhash=0x0f8dee2bc4e9a22048
INFO [03-21|08:07:00.116] Submitted transaction fullhash=0x51923f62e6733d7dcd
INFO [03-21|08:07:00.836] Imported new chain segment blocks=1 txs=0 mgas=0.000 el
INFO [03-21|08:07:07.220] Imported new chain segment blocks=lgas=2.707 e
INFO [03-21]|08:07:08.627] Submitted transaction fullhash=0x70a0baace7ddf6b6b2

Figure 37: Ethereum 100 Transactions Submission Logs

After having a look at the Geth node logs (Fig. 35,36,37), we can clearly conclude that
Ethereum nodes are packing all the transactions in one block. This explains why the user
response time of 10, 50, 100, and 150 calls in Ethereum are very close to the single call
timing.

As for Nodeos logs (Fig. 38 -> 41), one can notice how EOS.IO transactions are spread
over multiple blocks. Even if it is the same producer (check signed by field in figures),
they still are parted in multiple blocks. Also, the number of empty blocks in between
multiple blocks is large.

Several reasons could result in the transaction grouping of a certain block. Latency to

process/broadcast transactions, or some kind of bottleneck in the network protocol could

67

be the problem. EOS.IO need to resolve this issue in order to compete with Ethereum and

all other decentralized computing platforms.

accountc

File Edit View Search Terminal Help
<6>info 2020-03-21T06:37:35.508 thread-6 producer_plugin.cp| on_incoming_block Received block db2b136bab56c295.
95 @ 2020-03-21T06:37:35.500 signed by accountj [trxs: @, lib conf: 0, latency: 8 ms]
<6>info 2020-03-21T06:37:36. il in. on_incoming_block Received block 5d182875c0ad2b97..
96 @ 2020-03-21T06:37:36.000 signed by accounti [trxs: @, li conf: 12, latency: 6 ms]
<6>info 2020-03-21T06 6.509 thread-0 producer_plugin. <pi ncoming_block Received block 6aa5f88599fd2eof..
97 @ 2020-03-21T06:37:36.500 signed by accounti [trxs: ©, conf: 0, latency: 9 ms]
<6>info 2020-03-21T06:37:37.005 thread-e producer_plugin.cpp: on_incoming_block Received block 0e4c09c0d1c2c841. .
98 @ 2020-03-21T06:37:37.000 signed by accounti [trxs: O, conf: 0, latency: 5 ms]
<6>info 2020-03-21T06 .506 thread-6 producer_plugin.cp| on_incoming_block Received block 0515ce@4e119a565.
99 @ 2020-03-21T06:37:37.500 signed by accounti [trxs: ©, lib conf: 0, latency: 6 ms]
.005 thread-e producer_plugin.cp on_incoming_block Received block 8bae6as58asboazea.
.600 signed by accounti [trxs: 6, lib: conf: 0, latency: 5 ms]
.506 thread-o© producer_plugin. <p on_incoming_block Received block 71875e7d99283314..
01 @ 2020-03-21T06:37:38.500 signed by accounti [trxs: ib conf: 0, latency: 6 ms]
<6>info 2020-03-21T06 5 il in. on_incoming_block Received block dcfd4dobad766des. .
02 @ 2020-03-21T06:37: 33000 i 3 S a1 , conf: @, latency: 7 ms]
<6>info 2020-03-21T06 .50/ thread-0 producer_plLugtn on_incoming_block Received block df176c47bb6fb6c2.
signed by accounti [trxs: 1, [, conf: @, latency: 7 ms]
.046 thread-6 producer_plugin on_incoming_block Received block 7434b9e4636c6453.
signed by accounti [trxs: 3, [, conf: 0, latency: 46 ms]
.551 thread-© producer_plugin £ on_incoming_block Received block d9654f1322a65c18..
signed by accounti [trxs: 6, [conf: ©, latency: 51 ms]
i on_incoming_block Received block 39832c7ceed181bf..
" X conf: 0, latency: 4 ms]
.543 thread-6 producer_plugij on_incoming_block Received block 0499739b245a798d.
07 @ 2020-03-21T06:37: 4. signed by accounti [trxs 1 conf: 0, latency: 43 ms]
>info 2020-03- 21706 .006 thread-6 producer_ plugi on_incoming_block Received block ©a49628bb475cade.
signed by accountj [trxs: o, i conf: 12, latency: 6 ms]
.593 thread-0 producer_plugi £ on_incoming_block Received block b85ccbe61afaed7s..
signed by accountj [trxs: 6, [l conf: ©, latency: 93 ms]
= = on_incoming_block Received block 29c92a8952881cba. .
signed by accountj [trxs: @, li conf: 0, latency: 5 ms]
-566 thread-0 producer_plugin.cp on_incoming_block Received block 6c7f664c7e5de3ad.
signed by accountj [trxs: 1, conf: 0, latency: 6 ms]
.006 thread-e producer_plugin.cp on_incoming_block Received block 594de508a6e8df7e.
12 @ 2020-03-21T06:37:44.000 signed by accountj [trxs: @, lib conf: 0, latency: 6 ms]
<6>info 2020-03-21T06 .525 thread-6 producer_plugin.cp on_incoming_block Received block 1e8292c111b2e73b
i3 @ 2020-03-21T06:37:44.500 signed by accountj [trxs: 0, lib: conf: ©, latency: 25 ms]

Figure 38: EOS 10 Transactions Submission Logs

accountc

File Edit View Search Terminal Help
<6>info 2020-03-21T06:38:26.004 thread-® producer_plugin.cpp:345 on_incoming_block Received block 3e65cice25e657ab
96 @ 2020-03-21T06:38:26.000 signed by accounti [trxs: 0, lib: 279, conf: 0, latency: 4 ms]
<6>info 2020-03-21T06:38:26.504 thread-© producer_plugin.cpp:345 on_incoming_block Received block 2b2268719d32dfbb. .
97 @ 2020-03-21T06:38:26.500 signed by accounti [trxs: O, lib: 279, conf: 0, latency: 4 ms]
<6>info 2020-03-21T06:38:27.005 thread-® producer_plugin.cpp:345 on_incoming_block Received block 4c653fc66aa76697. .
98 @ 2020-03-21T06:38:27.000 signed by accounti [trxs: @, lib: 279, conf: 0, latency: 5 ms]
<6>info 2020-03-21T06:38:27.532 thread-0 producer_| plugin‘cpp:345 on_incoming_block Received block b79efafb3fbf4es6. .
— SeOWSNo, conf: 0, latency: 32 ms]
:38: 28 042 thread e produ(er plug\n cpp s on_incoming_block Received block 246ab®1b51371e3e...
8.000 signed by accounti [trxs: 4, lib: 289, conf: 0, latency: 42 ms]
:38:28.507 thread-0 producer_plugin.cpp:3§5 on_incoming_block Received block 583b5a2b5052e231...
8.500 signed by accounti [trxs: 0, lib: 289, conf: 0, latency: 7 ms]
:38:29.005 thread-0 producer_plugin. (pp 385 on_1incoming_block Received block 71ee78d596cda22e.
9.000 signed by accounti [trxs: 289, conf: 0, latency: 5 ms]
:38:29.508 thread-0 producer_plugin. cpp 385 on_1incoming_block Received block 197bd737279ab252..
9.500 signed by accounti [trxs: : 289, conf: 0, latency: 8 ms]
:38:30.005 thread-0 producer_plugin.cpp:3 on_1incoming_block Received block f3492eadb790cf7
B0.000 signed by accountj [trxs: ib: : 12, latency: 5 ms]
:38:30.507 thread-0 producer_plugin. cpp: 3 on_incoming_block Received block 130f8ag8e8a9f71
B0.500 signed by accountj [trxs: : 281, conf: 0, latency: 7 ms]
:38:31.090 thread-0 producer_plugin.cpp:3 on_incoming_block Received block 61fd734dff3371de..
B1.000 signed by accountj [trxs: 24, lib: 1, conf: 0, latency: 90 ms]
:38:31.510 thread-0 producer_plugin.cpp:3 on_incoming_block Received block b7564441496c0462. .
B1.500 signed by accountj [trxs: 0, lib: 2 0, latency: 10 ms]
:38:32.007 thread-0 producer_plugin.cpp:3 on_incoming_block Received block 7a7fe7e1d@61626c. ..
B2.000 signed by accountj [trxs: ©, lib: 281, conf: 0, latency: 7 ms]
2020-03-21TOfk38:32.509 thread-@ producer_plugin.cpp:3 on_incoming_block Received block fdbg84db9169ebé6e. . .
09 @ 2020-03-21T06:38MB2.500 signed by accountj [trxs: 0, lib: 2 : 0, latency: 9 ms]
<6>info 2020-03-21TOf:38:33.011 thread-0 producer_plugin.cpp:3 on_incoming_block Received block e4d27aab729dcfcs. .
10 @ 2020-63-21T06:38[#83.000 signed by accountj [trxs: 6, lib: 281, conf: 0, latency: 11 ms]
<6>info 2020-03-21TOff:38:33.548 thread-0 producer_plugin.cpp:3 on_incoming_block Received block 3fedesafas7abses. .
11 @ 2020-63-21T06:38[§83.500 signed by accountj [trxs: 22, lib: , conf: 0, latency: 48 ms]
<6>info 2020-03-21TOf:38:34.008 thread-© producer_plugin.cpp:3 on_1incoming_block Received block 37711268fa391084..
12 @ 2020-03-21T06:38[84.000 signed by accountj [trxs: ©, lib: 281, conf: 0, latency: 8 ms]
<6>info 2020-03-21TOR:38:34.509 thread-0 producer plugin.cpp:3§5 on_incoming_block Received block c189624c912a294f

Figure 39: EOS 50 Transactions Submission Logs

68

accountc

File Edit View Search Terminal Help
2020-03-21T06: 03.005 thread-@ producer_plugin.cpp:
signed by accounti [trxs: 0, lib:
507 thread-® producer_plugin.cpp
signed by accounti [trxs: 0, lib
007 thread-0 producer_plugin.cpp
signed by accounti [trxs: @, lib:
.521 thread-0 producer_plugin.cpp
signed by accounti [trxs: O, 11
008 thread-© producer_plugin.cpp
signed by accounti [trxs: 0, 11
.511 thread-0 producer_plugin.cpp
signed by accounti [trxs: @, lib:
.005 thread-e producer_plugin.cpp
signed by accountj [trxs: ©, lib:
6.505 thread-0 producer_plugin.cpp
signed by accountj [trxs: 0, 11
.024 thread-0 producer_plugin.cpp:
signed by accountj [trxs: 0, lib:
.505 thread-e6 producer_plugin.cpp
signed by accountj [trxs: 0, lib:
.005 thread-0 producer_plugin.cpp
signed by accountj [trxs: 0, 11
.505 thread-e0 producer_plugin.cpp

<6>info 345 Received block 26e058f901907025. ..
351,
345
ES
345
£
345
351,
345
351,
345
£
345
363,
345
363,
345
363,
345
363,
345
363,
345
363,
345
363,
345
363,
345
363,
345
363,
345
363,
345
363,
345
375,

on_1incoming_block

: 0, latency: 5 ms]
on_1incoming_block

: 0, latency: 7 ms]
on_1incoming_block

: 0, latency: 7 ms]
on_1incoming_block
0, latenc 21 ms]
on_1incoming_block

: 0, latency: 8 ms]
on_1incoming_block

: 0, latency: 11 ms]
on_1incoming_block
12, latency: 5 ms]
on_1incoming_block

: 0, latency: 5 ms]

2020-03-21T06: 39 03.
71 @ 2020-03-21T06:39:03.500
<6>info 2020-03-21TO 04.
72 @ 2020-03-21T06:39:
<6>info 2020-03-21TO
73 @ 2020-03-21T06:39:04.500
<6>info 2020-03-21T06:39:05.
74 @ 2020-03-21T06:39
<6>info 2020-03-21T0O
75 @ 2020-03-21T06:39:

2020-03-21T0

Received block 94a955a1267ef736...

Received block a7f42d81a0541e64. ..

Received block 5f7ec2ae4814e@ac...

Received block aed606c83e7ca003...

Received block dee347e76706aeac

Received block 6c511ea850ccb871. ..

Received block 9c1c782e02ba67c6. ..

Received block 650f784e87efb523

on_1incoming_block

con
Received block 6f5d28dedsdb1274...
79 @ 2020-03-21T06:39
<6>info 2020-03-21TO
80 @ 2020-03-21T06:39
<6>info 2020-03-21TO
81 @ 2020-03-21T06:39
<6>info 2020-03-21T0O
82 @ 2020-03-21T06:39:
<6>info 2020-03-21T0O
83 @ 2020-03-21T06:39:09.5
2020-03-21T06:39

conf:

on 1ncom1ng block Received block a55e65be88a86f1b. ..

conf: @, latency: 5 ms]

Received block 92b9846bf7d8as6a

.059 thread-0 producer_plugin.cp| Received block fb764503b77d5515...
signed by accountj [trxs: 1, lib
.664 thread-0 producer_plugin.cp
signed by accountj [trxs: 67, 1i

.027 thread 0

on_1incoming_block
conf: 0, latency: 59 ms]
on_1incoming_block
conf: O, latency: 164 ms]
on_1incoming_block
0, latenc 27 ms]
on_1incoming_block
conf: O, latency: 5 ms]
on_1incoming_block
conf: 0, latency: 4 ms]
on_1incoming_block
conf: 0, latency: 5 ms]
on_1incoming_block
12, latency: 6 ms]

Received block f5e41445a8e2684a...

Received block 1cc@b1f85a8606f3. ..

.505 thread-0 producer_plugin.cpp: Received block 6a16alaf58c836b3...
signed by accountj [trxs: @, lib:
.004 thread-0 producer_plugin.cpp:
signed by accountj [trxs: 0, lib:
505 thread-® producer_plugin.cpp
signed by accountj [trxs: 0, lib

006 thread-© producer_plugin.cpp

signed by accounti [trxs: @, lib:

Received block 1696f@d191dde6ac. ..
11.000

2020-03-21T06:39:11.

87 @ 2020-03-21T06:39:11.5600
<6>info 2020-03-21T0O 12.

88 @ 2020-03-21T06:39:12.000

Received block 902873c6ac8713fa...

Received block 0be19f42636735da. ..

conf:

Figure 41: EOS 100 Transactions Submission Logs - 1

accountc

File Edit View Search Terminal Help

<6>info 2020-03-21T06:39:28.525 thread-0 producer_plugin.cpp
21 @ 2020-03-21T06:39:28.500 signed by accounti [trxs: 0, lib
<6>info 2020-03-21T06:39:29.039 thread-0 producer_plugin.cp|
22 @ 2020-03-21T06:39:29.000 signed by accounti [trxs: 0, 1i
<6>info 2020-03-21T706:39:29.518 thread-0 producer_plugin.cp
23 @ 2020-03-21T06:39:29.500 signed by accounti [trxs: 0, 1i
<6>info 2020-03-21T06:39:30.022 thread-0 producer_plugin.cpp

345
399,
345
399,
345
399,
345

on_incoming_block Received block f28777e141883df4..
0, latency: 25 ms]
on_incoming_block
0, latency: 39 ms]
on_1incoming_block
0, latency: 18 ms]

on_incoming_block

conf:

Received block a7a26ac781771048...

conf:
Received block 9e9897637616ea7e. ..
conf:
block

Received ed4e9le7caaBadceb. . .

0, lib: conf:

24 @ 2020-03-21T06:39:30.000

<6>info
25 @ 2020-03-21T06: 3!

<6>info 2020-03-21T06
26 @ 2020-03-21T06:39:3]
<6>info 2020-03-21T06

27 @ 2020-03-21T06:39: 31
<6>info 2020-03-21T06

28 @ 2020-03-21T06:39:37
<6>info 2020-03-21T06:
29 @ 2020-03-21T06:39:32
<6>info 2020-03-21T06:3

30.

30 @ 2020-03-21T06:39:3

<6>info 2020-03-21T06
31 @ 2020-03-21T06:39:33
<6>info 2020-03-21T06
32 @ 2020-03-21T06:39:34
<6>info 2020-03-21T06:3
33 @ 2020-03-21T06:39:
<6>info 2020-03-21T06:]
34 @ 2020-03-21T06:3 3
<6>info 2020-03-21T06:3
35 @ 2020-03-21T06:3 3
<6>info 2020-03-21T06:3
36 @ 2020-03-21T06:3
<6>info

2020-03-21T06:39:30.

1
.517 thread-0 producer_plugin.cp

.019 thread-0 producer_plugin.cp

signed by accountj [trxs:
509 thread-0 producer_plugin. cpp:
signed by accountj [trx

slgned by account] [trxs 6,
signed by accountj [trxs: 0, lib

signed by accountj [trxs: @, lib

.508 thread-® producer_plugin.cp

.007 thread-0 producer_plugin.cp
.511 thread-0 producer_plugin.cp
.306 thread-0 producer_plugin.

.673 thread-0 producer_plugin.

signed by accountj [trxs: 0, lib

signed by accountj [trxs: 0, lib

signed by accountj [trxs: 0, lib
<pPi
1if
cpf
il

signed by accountj [trxs: 25,

signed by accountj [trxs: 51,

.082 thread-0 producer_plugin.

.506 thread-0 producer_plugin.
.006 thread-® producer_plugin.cp

2020-03-21T06:39:36.

37 @ 2020-03-21T06:39:36.500

<6>info
38 @ 2020-03-21T06:3
<6>info

2020-03-21T06:39:37.
37.000
2020-03-21T06:39:37.

39 @ 2020-03-21T06:39:37.500

signed by accountj [trxs: 18,

signed by accountj [trxs: 0, lib
AT IS ae e o e e
507 thread-0 producer_plugin.cpp
signed by accounti [trxs: @, lib:
007 thread-@ producer_plugin.cp
signed by accounti [trxs: @, 1i
510 thread-0 producer_plugin.cp
signed by accounti [trxs: @, lib:

411,
345
411,
345
411,

345

411,

345

411,
345
411,

345

411,

345

411,
345
411,

345

411,
345

! 411,
34

411,

345

423,
345
423,
345
423,
345
423,

12, latency: 22 ms]
on_incoming_block

0, latency: 9 ms]
on_incoming_block

0, latency: 41 ms]
on_incoming_block

0, latency: 17 ms]
on_1incoming_block

0, latency: 19 ms]
on_incoming_block

0, latency: 8 ms]
on_incoming_block

0, latency: 7 ms]
on_1incoming_block

0, latency: 11 ms]
on_incoming_block
conf: 0, latency:
on_incoming_block
: 0, latency:
on_incoming_block
conf: @, latency: 82 ms]
on_incoming_block

0, latency: 6 ms]
on_1incoming_block
12, latency: 6 ms]
on_incoming_block

0, latency: 7 ms]
on_incoming_block

0, latency: 7 ms]
on_1incoming_block
conf: @, latency: 10 ms]

conf:

conf:

conf:

conf:

conf:

conf:

conf:

con

conf:

conf:

conf:

conf:

Figure 40: EOS 100 Transactions Submission Logs - 2

69

306 ms]

173 ms]

]
]
]
]
]
]
]

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

Received

block
block
block
block
block
block
block
block
block
block
block
block
block
block

block

a166270fb19baesc. ..

f5e7de20fdee5c96

ab8a13a0f04d448s5. ..

abd68e315b56539c¢. ..

d9ecb280fobdeses. ..

3018f8b967497eb7. ..

de96b3cic2ee00bd

e2d647520ef2e048. ..

029b4d2856158267. ..

03f89bob3e5362d1. ..

a84e61305c490b35. . .

8ee66bbd98a2af19

cfs5ba6d6bsoe2cee. ..

1539ca2f6d5a25fa. . .

607b02c9f496f0cSs. ..

CHAPTER 5

CONCLUSION

In conclusion, two of the main Blockchain development platforms were studied in this
masters’ thesis. Providing a detailed performance study is needed in order to guide
developers in this recently found technology. A decentralized application along with a
corresponding smart contract were written for each of the platforms. The DApps measure
the timing of the basic operations one could use when interacting with a Blockchain. Each
of the DApps was tested along with randomly generated networks on both Microsoft
Azure and the HPC cluster Octopus of the American University of Beirut. Though
Azure’s numbers are lower, the experimentation in both environments show that
Ethereum performs better than EOS with the increase of the number of transactions
submitted to the network.

In a time where the markets of cryptocurrencies are constantly fluctuating between bear
and bull markets, marketing plays a big role. Though EOS.IO has a huge potential in the
crypto community and is highly marketed, the results show that EOS.IO does not
outperform Ethereum.

Both platforms however contributed a lot to the innovation of Blockchain systems.
Decentralized Computing is quite a new field, and so many researches are still needed in

order to better assess performance and scalability in Blockchain systems.

70

BIBLIOGRAPHY

[1] “List of highest-funded crowdfunding projects - Wikipedia.”
https://en.m.wikipedia.org/wiki/List of highest-funded crowdfunding projects
(accessed Feb. 24, 2020).

[2] “State of the DApps — A list of 3,118 blockchain apps for Ethereum, Steem, Hive,
EOS, and more.” https://www.stateofthedapps.com/ (accessed Apr. 06, 2020).

[3] A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis, H. Ritzdorf, and S. Capkun,
“On the Security and Performance of Proof of Work Blockchains,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, Oct. 2016, pp. 3—16, doi: 10.1145/2976749.2978341.

[4] S. Rouhani and R. Deters, “Performance analysis of ethereum transactions in private
blockchain,” in 2017 8th IEEE International Conference on Software Engineering
and Service Science (ICSESS), Nov. 2017, pp. 70-74, doi:
10.1109/ICSESS.2017.8342866.

[5] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, “Performance
Analysis of Private Blockchain Platforms in Varying Workloads,” in 2017 26th
International Conference on Computer Communication and Networks (ICCCN),
Jul. 2017, pp. 1-6, doi: 10.1109/ICCCN.2017.8038517.

[6] M. Valenta and P. Sandner, “comparison of ethereum hyperledger fabric and
corda,” 2017.

[7] M. Scherer, “Performance and Scalability of Blockchain Networks and Smart
Contracts,” p. 46.

[8] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“BLOCKBENCH: A Framework for Analyzing Private Blockchains,” in
Proceedings of the 2017 ACM International Conference on Management of Data,
Chicago, Illinois, USA, May 2017, pp. 1085-1100, doi: 10.1145/3035918.3064033.

[9] K. Veskus and F. Milani, “Ethereum versus Fabric — A comparative analysis,”
2018.

[10] Q.T.Zhong and Z. Cole, “Analyzing the Effects of Network Latency on
Blockchain Performance and Security Using the Whiteblock Testing Platform.”
[11] B. Xu, D. Luthra, Z. Cole, and N. Blakely, Fos: An architectural, performance,
and economic analysis. Bitmex. Retrieved from https://www. whiteblock.

io/library/eos-test-report. pdf, 2018.

[12] A. Aldweesh, M. Alharby, and A. van Moorsel, “Performance Benchmarking
for Ethereum Opcodes,” in 2018 IEEE/ACS 15th International Conference on
Computer Systems and Applications (AICCSA), Oct. 2018, pp. 1-2, doi:
10.1109/AICCSA.2018.8612882.

[13] A. Aldweesh, M. Alharby, E. Solaiman, and A. van Moorsel, “Performance
Benchmarking of Smart Contracts to Assess Miner Incentives in Ethereum,” in
2018 14th European Dependable Computing Conference (EDCC), Sep. 2018, pp.
144-149, doi: 10.1109/EDCC.2018.00034.

[14] “Hyperledger Caliper — Hyperledger.”
https://www.hyperledger.org/projects/caliper (accessed Feb. 24, 2020).

71

[15] A. Aldweesh, M. Alharby, M. Mehrnezhad, and A. Van Moorsel, “OpBench: A
CPU Performance Benchmark for Ethereum Smart Contract Operation Code,” in
2019 IEEE International Conference on Blockchain (Blockchain), Jul. 2019, pp.
274-281, doi: 10.1109/Blockchain.2019.00043.

[16] “White Paper - ethereum/wiki Wiki - GitHub.”
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum (accessed Apr. 06,
2020).

[17] “Cert Spotter - Timeline of PKI Security Failures.”
https://sslmate.com/certspotter/failures (accessed Apr. 07, 2020).

[18] “The Byzantine Generals Problem | ACM Transactions on Programming
Languages and Systems.” https://dl.acm.org/doi/10.1145/357172.357176 (accessed
Apr. 07, 2020).

[19] “Nakamoto, Satoshi. ‘Bitcoin: A peer-to-peer electronic cash system.’ (2008). -
Google Search.”
https://www.google.com/search?q=Nakamoto%?2C+Satoshi.+%22Bitcoin%3A+A+
peer-to-
peer+electronictcash+system.%22+(2008).&og=Nakamoto%2C+Satoshi.+%22Bitc
0in%3A+A+peer-to-
peer+electronictcash+system.%22+(2008).&ags=chrome..69157.168j0j9&sourceid
=chrome&ie=UTF-8 (accessed Apr. 07, 2020).

[20] “Script - Bitcoin Wiki.” https://en.bitcoin.it/wiki/Script (accessed Apr. 11,
2020).

[21] “Chart of the Day: Bitcoin Reward Halving and Price History | Infographics |
thodl.com.” https://ihodl.com/infographics/2018-04-09/chart-day-bitcoin-reward-
halving-and-price-history/ (accessed Apr. 11, 2020).

[22] “Controlled supply - Bitcoin Wiki.” https://en.bitcoin.it/wiki/Controlled_supply
(accessed Apr. 11, 2020).

[23] “The Dangers of Mining Pools: Centralization and Security Issues.”
https://cointelegraph.com/news/the-dangers-of-mining-pools-centralization-and-
security-issues (accessed May 02, 2020).

[24] “Namecoin.” https://www.namecoin.org/ (accessed Apr. 11, 2020).

[25] “Ethereum - Wikipedia.” https://en.wikipedia.org/wiki/Ethereum (accessed May
03, 2020).

[26] “ETH Gas Station | Consumer oriented metrics for the Ethereum gas market.”
https://ethgasstation.info/index.php (accessed Mar. 10, 2020).

[27] “Solidity - Wikipedia.” https://en.wikipedia.org/wiki/Solidity (accessed May 03,
2020).

[28] “Consensus Protocol | EOSIO Developer Docs.”
https://developers.eos.io/welcome/latest/protocol/consensus_protocol (accessed
Mar. 06, 2020).

[29] “EOS Tracker | Real time viewer for EOSIO Blockchains.”
https://eostracker.io/producers (accessed Mar. 06, 2020).

72

[30] “EOSIO RAM Market & Bancor Algorithm - Daniel Larimer - Medium.”
https://medium.com/@bytemaster/eosio-ram-market-bancor-algorithm-
b8e8d4e20c73 (accessed May 11, 2020).

[31] “Network Peer Protocol | EOSIO Developer Docs.”
https://developers.eos.io/welcome/latest/protocol/network peer protocol (accessed
Mar. 08, 2020).

[32] “Boost.Multilndex Documentation - Index - 1.62.0.”
https://www.boost.org/doc/libs/1 62 0/libs/multi _index/doc/index.html (accessed
May 12, 2020).

[33] “Blockstack.” https://blockstack.org/ (accessed May 30, 2020).

[34] “https://muneebali.com/thesis.” https://muneebali.com/thesis.

[35] “Blockstack,” Ali, Muneeb, Jude C. Nelson, Ryan Shea, and Michael J.
Freedman. “Blockstack: A Global Naming and Storage System Secured by
Blockchains.” In USENIX Annual Technical Conference, pp. 181-194. 2016.

[36] “Hyperledger — Open Source Blockchain Technologies.”
https://www.hyperledger.org/ (accessed May 30, 2020).

[37] “A Blockchain Platform for the Enterprise — hyperledger-fabricdocs master
documentation.” https://hyperledger-fabric.readthedocs.io/en/release-1.3/ (accessed
May 30, 2020).

[38] “Apache Kafka.” https://kafka.apache.org/ (accessed May 30, 2020).

[39] “User Guide — Singularity container 3.5 documentation.”
https://sylabs.io/guides/3.5/user-guide/ (accessed May 18, 2020).

[40] “Octopus user guide (Mixed architecture virtualized Beowulf cluster) — hpc
user guide master documentation.” https://hpc-aub-users-
guide.readthedocs.io/en/latest/octopus/octopus_index.html (accessed May 15,
2020).

[41] “random-tree - npm.” https://www.npmjs.com/package/random-tree (accessed
May 18, 2020).

[42] “js-graph-algorithms - npm.” https://www.npmjs.com/package/js-graph-
algorithms (accessed May 18, 2020).

[43] “enode url format - ethereum/wiki Wiki - GitHub.”
https://github.com/ethereum/wiki/wiki/enode-url-format (accessed May 20, 2020).

[44] “More Than A Billion Downloads of Node.js & - Node.js - Medium.”
https://medium.com/@nodejs/more-than-a-billion-downloads-of-node-js-
952a8a98eb42 (accessed May 16, 2020).

[45] “web3 - npm.” https://www.npmjs.com/package/web3 (accessed May 18, 2020).

[46] “eosjs - npm.” https://www.npmjs.com/package/eosjs (accessed May 18, 2020).

[47] “timely - npm.” https://www.npmjs.com/package/timely (accessed May 18,
2020).

[48] “Graphviz - Graph Visualization Software.” https://www.graphviz.org/
(accessed May 20, 2020).

[49] “BIOS Boot Sequence | EOSIO Developer Docs.”
https://developers.eos.io/welcome/latest/tutorials/bios-boot-sequence/ (accessed
Mar. 02, 2020).

73

[50] “How do I know how much RAM I need to deploy a contract? - Issue #4979 -
EOSIO/eos - GitHub.” https://github.com/EOSIO/eos/issues/4979 (accessed May
21, 2020).

74

