

AMERICAN UNIVERSITY OF BEIRUT

BLOCKCHAIN DEVELOPMENT PLATFORMS:
PERFORMANCE COMPARISON

by
IMAN RABIE DERNAYKA

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
June 2020

v

ACKNOWLEDGMENTS

Without the constant help from my supervisor, Professor Ali Chehab, this work would
not been possible. I would like to thank him for always being supportive and cheerful
while mentoring me throughout this research work.
Also, I would like to thank Mher Kazandjian and the IT team at AUB for providing so
many hours of help concerning the experimentation on HPC and Azure.
Lastly, I would like to thank my family members and my dear husband for their nonstop
love and encouragement.

vi

AN ABSTRACT OF THE THESIS OF

Iman Rabie Dernayka for Master of Engineering
 Major: Electrical and Computer Engineering

Title: Blockchain Development Platforms: Performance Comparison

In this master’s thesis, two of the main Blockchain development platforms
Ethereum and EOS.IO were compared. In the aim of helping developers choose between
the platforms as the backend Blockchain for their apps, a decentralized application along
with a corresponding smart contract was implemented on each of the platforms triggering
basic operations and timing them. The simulation was tested on both AUB’s High
Performance Computing facility and Microsoft’s Azure, running up to 150 Blockchain
nodes while recording the user response time, the CPU utilization, and the totally used
memory megabytes. The results in this study show that although recognized as a major
competitor to Ethereum, EOS.IO fails to outperform the Ethereum platform, recording a
very high response time in comparison to Ethereum.

vii

CONTENTS

ACKNOWLEDGMENTS .. V

ABSTRACT .. VI

ILLUSTRATIONS .. IX

TABLES ... X

Chapter

1. INTRODUCTION .. 1
1.1 Motivation ... 1
1.2 Related Work .. 3
1.3 Aims & Objectives .. 5
1.4 Limitations & Challenges ... 6

2. TECHNICAL BACKGROUND .. 8
2.1 Bitcoin ... 10

2.1.1 Bitcoin Structure ... 10
2.1.2 Bitcoin Scripting System .. 11
2.1.3 Consensus Algorithm: Proof-of-Work ... 12
2.1.4 Economic Incentive .. 15
2.1.5 Turing Incompleteness ... 16

2.2 Ethereum ... 17
2.2.1 Consensus ... 17
2.2.2 Resources .. 19
2.2.3 Smart Contracts & Code Execution ... 20
2.2.4 Storage .. 22
2.2.5 Economic Incentive .. 24

2.3 EOS.IO .. 24
2.3.1 Consensus ... 25
2.3.2 Resources .. 27
2.3.3 Smart Contracts & Code Execution ... 28
2.3.4 Storage .. 31
2.3.5 Economic Incentive .. 32
2.3.6 Permissions ... 32

2.4 Other Platforms ... 33
2.4.1 Blockstack .. 33
2.4.2 Hyperledger Fabric ... 36

3. METHODOLOGY & SIMULATION 40
3.1 Testing Environment ... 41
3.2 Singularity Containers ... 41
3.3 AUB HPC OCTOPUS Cluster .. 42
3.4 Azure HB-Series ... 42
3.5 Network Structure ... 43
3.6 Bash Scripting ... 43

viii

3.7 Node.js promises and DApps .. 43
3.8 Samples ... 44
3.9 Performance Metrics ... 45
3.10 Testing Assumptions ... 47
3.11 Details of the Ethereum Setup ... 47
3.12 Details of the EOS Setup ... 49

4. RESULTS & ANALYSIS .. 52
More Analysis on Ethereum and EOS.IO Logs ... 66

5. CONCLUSION .. 70

6. BIBLIOGRAPHY .. 71

ix

ILLUSTRATIONS

Figure 2: Ethereum Dapps Statistics [2]. Screenshot By Author. ... 2
Figure 1 Eos Dapps Statistics [2]. Screenshot By Author. .. 2
Figure 3: Blockchain Data Structure ... 8
Figure 4: Merkle Tree .. 10
Figure 5: Unspent Transaction Output .. 11
Figure 6: Double Spending Problem ... 12
Figure 7: Mining (Proof-Of-Work) ... 13
Figure 8: Bitcoin Reward Halving. Screenshot By Author. .. 15
Figure 9: Ethash Steps ... 17
Figure 10: Gas Cost Example .. 19
Figure 11: Deploying An Ethereum Smart Contract Steps ... 20
Figure 12: Storing Two Words In The Same Trie (Ether & Ethereum), To The Left Is A Standard Trie

And To The Right Is A Patricia Trie ... 22
Figure 13: Smart Contract Storage Resources .. 23
Figure 14: Top Producers On The Main Eos Network. Screenshot By Author. ... 26
Figure 15: Eos Local Chain Example. Screenshot By Author. ... 29
Figure 16: Eos Blockchain Structure ... 31
Figure 17: Eos Inflation Distribution .. 32
Figure 18: Kafka Consensus .. 37
Figure 19: Singularity Containers ... 41
Figure 20: Singularity Run Script ... 44
Figure 21: Dapp Steps ... 46
Figure 22: General Steps Of The Performance Experiment .. 47
Figure 23: Eos Hpc Results ... 57
Figure 24: Eos Azure Results .. 57
Figure 25: Ethereum Hpc Results ... 58
Figure 26: Ethereum Azure Results .. 58
Figure 27: Azure - Eos Vs Ethereum (Network Of 50 Nodes) ... 59
Figure 28: Azure - Eos Vs Ethereum (Network Of 10 Nodes) ... 59
Figure 29: Azure - Eos Vs Ethereum (Network Of 150 Nodes) ... 60
Figure 30: Azure - Eos Vs Ethereum (Network Of 100 Nodes) ... 60
Figure 31: Hpc - Eos Vs Ethereum (Network Of 50 Nodes) .. 61
Figure 32: Hpc - Eos Vs Ethereum (Network Of 10 Nodes) .. 61
Figure 33: Hpc - Eos Vs Ethereum (Network Of 150 Nodes) .. 62
Figure 34: Hpc - Eos Vs Ethereum (Network Of 100 Nodes) .. 62
Figure 35: Ethereum 50 Transactions Submission Logs ... 66
Figure 36: Ethereum 10 Transactions Submission Logs ... 66
Figure 37: Ethereum 100 Transactions Submission Logs ... 67
Figure 39: Eos 10 Transactions Submission Logs .. 68
Figure 38: Eos 50 Transactions Submission Logs .. 68
Figure 41: Eos 100 Transactions Submission Logs - 2 ... 69
Figure 40: Eos 100 Transactions Submission Logs - 1 ... 69

x

TABLES

table 1: Eos.Io System Contracts And System Accounts .. 30
Table 2: Octopus Vs Azure Hb-Series Specs .. 42
Table 3: Summary Of Dapp Functions .. 51
Table 4: Eos Azure Summary ... 53
Table 5: Eos Hpc Summary ... 54
Table 6: Ethereum Azure Summary .. 55
Table 7: Ethereum Hpc Summary ... 56
Table 8: Low And High Values Of Eos On Hpc Vs Azure .. 63
Table 9: Low And High Values Of Ethereum On Hpc Vs Azure ... 64

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

The Blockchain is bringing big things to the world, much more than cryptocurrencies, it’s

building the path for everyone to decentralized computing. The Blockchain along with

open protocols, server-less applications and the right incentives are shaping the meaning

of decentralized computing altogether. Blockchains became very popular because they

made everyone discover the beauty of decentralization and transparency. It is now the

beginning of a new era, the era of decentralization.

Many platforms arose in this new era, all are very innovative and very crucial for

sculpting future coming Blockchains. Though the platforms are very competitive in the

market, one should not deny the importance of their variety. We should all acknowledge

that this technology is very new and appreciate the different paths to apply it. The first

Blockchain platform ever is Bitcoin (2008), it is the Godfather of all Blockchains. It

introduced us to this new era and forms till this day the most secure Blockchain.

In 2013, Ethereum was proposed as a programmable Blockchain, introducing smart

contracts to the Blockchain community. Smart contracts are programs that exist on the

blockchain and their state is part of the Blockchain state. One would invoke the operations

of these programs via an API now so called DApps (decentralized Apps).

2

Ethereum’s concept definitely revolutionized the concept of a cryptocurrency Blockchain

by adding on-chain computation. Nonetheless, many decentralized computing critics kept

demanding better performance from decentralized platforms in order for them to replace

centralized platforms. Another important platform that appeared as a competitor for

Ethereum was EOS (initially released in 2018). EOS promised better performance than

Ethereum. Till this day, Ethereum and EOS are the most popular decentralized computing

Figure 2 EOS DApps Statistics [2]. Screenshot by author.

Figure 1: Ethereum DApps Statistics [2]. Screenshot by author.

3

platforms. In the last decade, Bitcoin and its follow-ups were not just buzzwords, rather

they were important projects funded by the biggest investors who believed in their power.

A huge amount of money was spent for the sake of their growth. Ethereum for example

was crowdfunded in 2014 with 18 million dollars, whereas EOS’s ICO (Initial Coin

Offering on Ethereum platform) raised 4 billion dollars in 2018 [1]. Figures 1 and 2 [2]

show the Ethereum and EOS DApps statistics ranked by volume. The volume (7d) in the

figures represent the amounts of Ethereum and EOS tokens that have been traded in the

last seven days. Millions of dollars of cryptocurrencies are traded daily in thousands of

DApps of different categories varying from finance and exchanges to games and

gambling. This confirms the importance of understanding these platforms and their

characteristics before developing DApps on them which will transfer lots of valuable

assets.

Having this significant value, everyone is joining in on these platforms. From

decentralized healthcare to transparent supply chains and much more, everyone is eager

to implement their own decentralized version of the existing systems. Jumping into this

world so enthusiastically with fear of missing out means fast decisions and fast results.

One could not deny the importance of performance studies comparing the most well-

known Blockchain platforms and the benefit it could provide for new developers and

entrepreneurs.

1.2 Related Work

The tradeoffs between security and performance were studied in [3] regarding only PoW

Blockchains via a quantitative framework. The authors aimed to analyze the effect of

4

changing several Blockchain parameters (block interval, block size…) on the risks of

double-spending and selfish-mining attacks. The processes of double-spending and

selfish-mining were each modeled into Markov Decision Process (MDP). The authors

also built a Bitcoin Blockchain Simulator and changed its parameters in order to match

the other PoW Blockchains (block interval, mining power, …). In [4], the authors

compared the time to process transactions on two well-known Ethereum clients: Geth and

Parity. Each of the nodes was tested by itself only, not in a network with other nodes. The

time to execute up to 10000 transactions while varying the RAM was compared in this

paper. Others compared a single Ethereum Geth node and a Hyperledger Fabric network

[5]. The consensus mechanism is not included in the study. A simple money transfer

application was implemented on each platform. By varying the number of transactions

sent to each of the networks, the throughput, latency, and execution time where compared.

In [6], a comparative analysis was conducted between Ethereum, Hyperledger Fabric, and

Corda.

The author of the Master Thesis in [7] discussed techniques to improve the performance

and scalability in each of Bitcoin, Ethereum, and Hyperledger Fabric. Some tests have

been run on Hyperledger Fabric varying the block size and the number of nodes and

analyze the effect it has on the transaction throughput. Blockbench [8] is a framework to

analyze the performance of private blockchains. The authors compared two Ethereum

networks (Geth network and Parity network), and a Hyperledger Fabric network.

[9] provided a comparative analysis between Ethereum and Fabric. A smart contract was

implemented on each and the programming techniques were explained. [10] measured

5

the performance of the Ethereum Blockchain on the proposed Whiteblock Blockchain

testing platform. The study was done on a network of 10 Geth nodes, and several network

conditions were varied and several attack scenarios were conducted.

Concerning EOS, [11] detailed the architecture of the EOSIO platform, and also

conducted an EOS performance study on the Whiteblock testing framework. Various

network conditions were varied upon an EOS network and the effects of the transaction

throughput were analyzed.

The authors in [12] benchmarked the amount of computational resources needed per some

Ethereum opcodes on different hardware computers. In [13], the most commonly used

smart contracts on Ethereum were studied in order to compare the execution time in

proportion to the amount of gas used, and thus conclude if the profits of miners are fair.

Another Blockchain benchmarking tool is Hyperledger Caliper [14], it is still under

development at the time of writing this thesis. Also, OpBench [15] is a benchmarking

platform and it is utilized in order to measure the CPU time required to execute opcodes

in the Ethereum Virtual Machine.

Many have addressed Blockchain performance as seen. However, to the best of author’s

knowledge, there have been no direct comparison of Ethereum vs EOS under the same

testing environment. Comparing such popular platforms is a very important study that the

Blockchain community needs.

1.3 Aims & Objectives

The aim of this thesis is to compare the performance of the Ethereum and the EOSIO

platforms by implementing a decentralized application along with a corresponding smart

6

contract on each of the platforms, triggering specific operations and measuring the time

to complete these operations while varying some variables.

There are primary operations every DApp needs to perform. The research contribution of

this thesis is to show the difference in the timing of these primary operations, and

therefore help DApp developers choose between Ethereum and EOS as the backend

Blockchain.

The study will be conducted according to these objectives:

• The study will be conducted on a network of nodes

• The study will include the load of the consensus, even if minimized

• The study will be conducted on the DApp layer in order to abstract all the

differences and complexity of each platform

• The implementation of the two smart contracts and the two DApps should be as

close as possible in order to obtain a fair comparison

• The study will compare Ethereum and EOS platforms, which are two public

Blockchain platforms.

1.4 Limitations & Challenges

As the study is conducted on a single machine, we know that the study does not accurately

simulate real-life behaviors, and that the numbers obtained in this research do not indicate

real numbers if taken for each platform by itself. However, because the two platforms

were put under same testing environment, and the same conditions were applied, this will

give us a decent reflection of the relationships between the tested variables.

7

EOS’s permissioned network is not part of the study, the network is implemented in a

P2P fashion, similar to Ethereum.

One of the biggest challenges of this study is how fast the platforms evolve every day,

which makes it very hard to keep up. The software versions used in this study are 1.9.1-

stable for Geth (Go Ethereum Client), 0.4.25 for Solidity compiler (also the contract

successfully compile by the latest 0.6.0 solc version), 1.6.6 for EOSIO and 1.6.1 for

eosio.cdt (EOSIO Contract development kit).

8

CHAPTER 2

TECHNICAL BACKGROUND

Because of its popularity, a big number of people complicated the meaning of Blockchain

to the point it is intimidating. But the Blockchain itself is something very simple. The

Blockchain is a data structure that looks a lot like a linked list, but the bonds use

cryptographic hashes instead of just normal pointers (See Fig.3). The elements in this

structure are transactions holding digital assets; these transactions are grouped into blocks

and then added, in a single write, as part of the chain. It grows in one direction only,

meaning that data can be only appended to it. This data structure is synced between a

network of nodes based on an ordering algorithm that ensures all nodes have the same

data structure. The Blockchain’s main function is to provide an immutable log of

transactions. When in the context of financial transactions, the Blockchain is referred as

an immutable ledger. Every Blockchain system is composed of 3 main components: the

Blockchain by itself enforced by public-key cryptography (structure), the consensus

Figure 3: Blockchain Data Structure

9

protocol (ordering), and an incentive mechanism. The order of blocks matters a lot in the

Blockchain: The Blockchain is not maintained on a single computer, but a replica of it is

available on not just few, but maybe thousands of other nodes. As such, it is crucial to

have the same blocks in the same order on all nodes. This is where the role of the

consensus comes in. A consensus algorithm makes sure all nodes agree on the next block,

and if nodes agree every time on the next block, then they agree on the order of all blocks

and stay synchronized. Lastly, something is needed to incentivize nodes to behave in a

good way, this is where validators of the system gain some benefit. Some view the

Blockchain as an infinite state-machine [16], and the consensus as the managing

algorithm that validates every state-transition.

Centralization has always been the strategy in everything. This is how the human brain

thought for years. If two complete strangers wanted to exchange some money, a

middleman that both parties trust should be part of the transaction, like the bank. Even in

public key cryptography, we need a CA that issues certificates proving the validity of

public keys and identities. This middle man showed to be unreliable in several cases [17].

Some [18] proposed an interesting problem that represents the meaning of

decentralization. This problem is The Byzantine Generals Problem (BGP). The problem

states that a group of Byzantine Generals each along with their armies are waiting to

attack a city. All armies should attack at the same time or the attack will fail. The issue is

that amongst the generals, there are some traitors who want the attack to fail. So, the

traitors try to alter the messages spread between the generals to change the time of the

attack of some armies, and thus fail the attack.

10

A solution to this problem would be a method that guarantees reaching the agreement

between the good generals even though there are some traitors trying to mess everything

up. What we have been doing for years is put a general in the middle who everyone gets

information from, and if this general got compromised in any way, the whole system fails.

However, Bitcoin (2008) [19] has been the only real working solution to this problem

with its Proof-of-Work consensus algorithm. In this chapter, a detailed background on

Bitcoin, Ethereum, EOS.IO, and two other Blockchain platforms is presented.

2.1 Bitcoin

Bitcoin [19] is the first Blockchain ecosystem which introduced the best ever proposed

decentralized cash system till this day. Satoshi Nakamoto aimed to design a cash system

without a middleman, and with all the Blockchain components, proper consensus and

proper incentive, he succeeded in creating the largest digital ledger ever made.

2.1.1 Bitcoin Structure

Figure 4: Merkle Tree

11

Transactions are grouped together into a Block following Merkle Trees structure (also

known as a hash tree structure). The hash used in Bitcoin is SHA-256 which is considered

a secure cryptographic hash function till this day. All transactions are hashed together

until one hash is obtained at the end, the Merkle Root. Any bit change in any of the

transactions will result in a very different root due to the Avalanche effect of

cryptographic hash functions. Each block has a header and a payload. The transactions

are stored in the body of the block. In each block header, several fields are stored, mainly

the Merkle root, the timestamp, the SHA-256 hash of the previous block, and the Proof-

of-Work nonce (see Section 2.1.D). A chain of blocks, that is where the name

“Blockchain” came from. Blocks are chained together because each new block contains

the hash of the Block before it. By linking blocks together through hashing functions, the

integrity of all the blocks is safe-guarded. Changing a single bit in any block will result

in a totally different cryptographically linked chain of blocks.

2.1.2 Bitcoin Scripting System

Bitcoin users are assigned addresses for identification, it is basically the hash of the public

key. Using the different Bitcoin wallets, it might seem that Bitcoin transactions happen

Figure 5: Unspent Transaction Output

12

like normal bank transactions. However, the wallet processes Bitcoin transactions very

differently in the background. Bitcoin transactions are actually scripts written in Bitcoin’s

scripting language called Script [20]. In order to check the validity of the transaction, the

transaction script should exit with no error when executed by the validator. Bitcoin uses

the model of Unspent Transaction Output (UTXO) to manipulate state. The state of

Bitcoin is in specific the collection of all UTXOs, a full node has to have all UTXOs

synced. If A wants to transfer 9 Bitcoins to B, A does not necessarily own 9 Bitcoins

UTXO, it might own 3 UTXOs (2.5 Bitcoins, 5 Bitcoins, and 2 Bitcoins). To transfer the

money, the wallet assembles the transaction in the background using the 3 UTXOs

mentioned, and signs it with the private key of A (ECDSA) to make sure that only A

made this transaction. The public key of B is specified in the output, and if the remaining

0.5 BTC are not redeemed, it will be counted as transaction fee and gained by the miner

of the transaction. The model is called UTXO because it only uses the output of previous

transactions to be consumed in new transactions and generate new UTXOs to be

consumed later. All unconsumed UTXOs represent the state of the Bitcoin Blockchain.

2.1.3 Consensus Algorithm: Proof-of-Work

Figure 6: Double Spending Problem

13

To develop a digital currency, the biggest challenge is to make sure the double spending

problem is solved. In simple words, if user x has 1 coin and spends it, the user should not

be able to spend it again. This is not possible with normal physical currency, because

when you spend it, you do not have it physically. Things in the digital world are different,

a solution is needed to tell if a file of zeroes and ones representing an asset digitally is

real or just a fake copy. Figure 6 shows the double-spending problem. For a coin to be

spent once, the order of transactions is key. Ordering depends on the consensus

mechanism adopted. In Bitcoin, Satoshi selected Proof-of-Work (PoW). A subset of peers

(miners) deliberately choose to validate blocks. Miners are the ones who contribute the

most in the consensus. Miner ‘A’ groups transactions into a ‘block x’ according to the

timestamp of transactions and to the miner’s preference in transaction fees. Then, ‘A’

must compute a proof that involves a lot of processing (work) and compete with other

miners. The miner who computes the proof first sends it to all other nodes in the network.

The other nodes can quickly verify the correctness of the proof and add the block to their

own copy of the Blockchain. The proof is computed using these steps:

a) Check the latest difficulty value such as:

0x000000000003ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506)

Figure 7: Mining (Proof-of-Work)

14

b) Hash the current block concatenated with the potential new block, and a

random value (nonce), result OUTPUT

c) Compare the OUTPUT with the difficulty (is OUTPUT < difficulty?)

d) If yes, stop and broadcast the new block with the random value and add it to

the chain

e) If not, repeat b) with a new random value until d) or until f)

f) A broadcast received containing a new block with its nonce

The difficulty of the hash is adjusted according to the current hashing power of all nodes

in such a way that one block is generated every 10 minutes.

Proof-of-Work requires a big hashing power in order to find a valid proof. Miners usually

use GPUs and ASICs for mining Bitcoin. However, for non-miner nodes, verifying the

proof of a block can be done on a regular processor, requiring only one hash per proof.

Using cryptographic hashing as the work needed to validate a block is very powerful,

because finding the proof is very hard and resource expensive, while verifying the proof

is very easy and fast.

15

2.1.4 Economic Incentive

All miners are racing to compute the proof of the next block because there is an incentive

behind it. In Bitcoin, those who work for the good of the network get a mining reward

whenever they successfully mine a block and collect transaction fees for every transaction

in the mined block. (See Fig. 8 [21])

Bitcoin’s supply is fixed to target 21 million Bitcoins. New Bitcoins can only be generated

when mining a block. When Bitcoin first started in 2008, the reward was 50 Bitcoins per

block mined. Satoshi implemented the protocol to half every 4 years [22]. As seen in Fig.

8, in 2008 the reward was 50 Bitcoins. In 2012, it halved to 25. Then, it halved again in

2016 to 12.5 Bitcoins. The reward will keep on halving until almost zero. Then,

transaction fees would be the only incentive for miners. From here we understand why

the process is called mining; because of the controlled supply and the increasing demand,

Figure 8: Bitcoin Reward Halving. Screenshot by author.

16

Bitcoin is very scarce, and its price is very high. It is often referred as digital gold, so it

is logical that the name of the process by which one obtains digital gold is called mining.

These decentralized ecosystems and the game theory involved in incentivizing benign

participation have opened the doors to a new science of Cryptoeconomics. Indeed,

Cryptoeconomics is needed in order to choose the right incentive mechanism, and thus

motivate peers to cooperate and to ensure the truthfulness of the whole system. Damaging

the system would mean damaging your own money. In order to break the Proof-of-Work

system, a conspiracy between 51% of the mining power of the network is needed. This is

not feasible however in a truly decentralized network. But many concerns have been

raised about the centralization mining pools make as for hashing power [23]. This is why

the cryptocurrency community is constantly searching for solutions to minimize the risks

of such attacks or researching other consensus algorithms to completely replace Proof-

of-Work.

2.1.5 Turing Incompleteness

Bitcoin’s Scripting language is made non-turing complete [20] on purpose with no loops

to avoid any mistake or vulnerability that could cause a transaction to run forever. When

Bitcoin succeeded as the first functioning decentralized cash system, few proposals for

different useful applications that could be useful in a decentralized network got

implemented like Namecoin [24]. And because of the turing incompleteness of Script, all

these proposals either started a new Blockchain or were built on top of the Bitcoin

Blockchain without a good foundational layer.

17

2.2 Ethereum

Due to the Turing incompleteness issue, in late 2013 Vitalik Buterin proposed a new

Blockchain platform [25] with a more flexible programming language to be the

foundational layer of all new ideas. The ideas are implemented on this Blockchain as what

is known today as Smart Contracts. A new Gas system was proposed to limit the

processing on the network and put a bound on every transaction. The system was called

Ethereum, and till this day, it is one of the most important existing Blockchain platforms.

2.2.1 Consensus

The current Ethereum consensus algorithm is called Ethash. Ethash is a proof-of-work

algorithm as in Bitcoin, but it is made ASIC-resistant. This implies that mining with

Figure 9: Ethash Steps

18

ASICs will not add any extra benefit in Ethereum. Mining with ASICs on Bitcoin

however is much better than mining with GPUs.

Though Ethash is a PoW algorithm as the consensus algorithm of Bitcoin, but the hashing

process happens differently:

• First, compute the seed for the potential new block from all the previous block

headers

• Second, compute a 16 MB pseudorandom cache from the seed

• Third, generate a 1 GB dataset from the cache

• Start the mining process by hashing random slices of the dataset

The 1 GB dataset will be updated once every 30000 blocks, not generated for every block

mined. As in Bitcoin, the mining difficulty is adjusted according to the current hashing

power of all nodes, but a block is generated every 10-20 seconds instead of every 10

minutes. Because Ethereum’s consensus algorithm is a PoW algorithm, all transactions

have probabilistic finality. In other words, the probability of a transaction being

irreversible increases as the number of blocks chained after increases. Generally, a block

in Ethereum or in Bitcoin is considered irreversible if six more blocks were committed

after it. Ethereum 1.0 adopted Proof-of-Work for its consensus. However, very soon

phase 0 of Ethereum 2.0 will start with a Proof-of-Stake consensus algorithm.

19

2.2.2 Resources

Resources are protected from abuse on the Ethereum Blockchain through a Gas system

as previously mentioned. As the name implies, users need to pay for the fuel necessary

for their transactions to get verified by the miners. The amount of gas needed for the

verification of a transaction totally depends on the operations the transaction triggers.

Users need to specify two things in each transaction: startgas, and gasprice. startgas is

the maximum amount of gas (computation steps) the sender of the transaction is willing

to provide for the execution of his transaction. gasprice is the amount of Ethers (Ethereum

Cryptocurrency) the sender of the transaction is willing to pay per one computational step

(gas). The miner who validates the transaction gets a transaction fee equal to

ActualGasBurned * gasprice (See Fig.16). If for any reason the amount of Gas burned

gets above the startgas specified in the transaction, the execution stops, and everything

reverts back to its original state, and the miner still gets his transaction fee in order to

make any attack costly. Resources in Ethereum are all monetized through the gas system;

The amount of gas needed for the execution of a transaction varies according to the

Figure 10: Gas Cost Example

20

resources it uses. A storing transaction needs more fuel than that only needing processing.

Plus, for every byte in a transaction, there is a fee of 5 gas to also monetize bandwidth.

As one can see, Ethereum’s resource usage is somehow a rental mechanism. A user must

pay the fees to rent the resources of the miner in order to validate the transactions. More

info on Ethereum gas prices and price recommendations can be found here [26].

2.2.3 Smart Contracts & Code Execution

A Gas system cannot be implemented without a controlled environment with controlled

operations. In order to achieve this over all computers which will be running Ethereum

nodes and for better portability, a virtual machine implementation is a must. Ethereum

implements the Ethereum Virtual Machine (EVM) which abstracts the whole code

execution mechanism. The EVM language is stack-based, it has specific opcodes each

requiring different amount of resource usage. Every opcode has a gas cost relative to its

Figure 11: Deploying an Ethereum Smart Contract Steps

21

resource consumption. Opcodes are encoded in bytecode in order to achieve better storage

efficiency. The code running on EVM is completely isolated from the filesystem,

network, and all possible processes. In order to write a smart contract, one must write the

code in a high-level language (like Solidity and others). After that, the code should be

compiled into the lower level bytecode and integrated in the transaction. If there are no

compile errors, and the sender has enough Ether to reserve a place in the Blockchain for

the code, a new contract account is created, and the bytecode is uploaded to it (See

Fig.11). Solidity is a high-level language for developing Ethereum smart contracts, other

languages exists but Solidity seem to be the most established. Solidity has been partially

designed after ECMAScript, which makes it similar to Javascript [27]. It is also important

to note that in Ethereum, identification is done through accounts, and there are two types

of accounts: externally owned accounts and contract accounts. The former is the normal

user account; it is identified by a public-key address and it is used to sign transactions.

The second one is specific to smart contracts; it is also identified by a public-key address,

plus it has the code field which holds the code of the smart contract program. In Ethereum,

the term “transaction” is used when referencing signed data sent from an externally owned

account, and the term “message” is used when referencing a smart contract call to another

smart contract. If a transaction triggers the execution of smart contract A and A triggers

smart contract B, the startgas specified in the transaction should be enough to execute A

and everything A calls. Once a transaction is constructed from a local node, the node

broadcasts this transaction to the entire network. Mining nodes have a transaction pool

where a finite number of the broadcasted transactions get stored according to their

22

gasprice. Most miners assemble the highest paid transactions in a block and start solving

the PoW puzzle. Once a miner succeeds to compute the proof, it broadcasts the block

along with the proof to the whole network. Other nodes upon receiving this block execute

all the transactions in this block, and thus sync their Blockchain accordingly.

2.2.4 Storage

Though all blockchains are basically similar to Bitcoin’s Blockchain structure,

Ethereum’s Blockchain structure is a bit different. Ethereum utilizes Patricia Tries

(Practical Algorithm to Retrieve Information Coded in Alphanumeric) for its persistent

storage (See Fig. 12). In order to store the tries, the geth client uses Leveldb as its

database software. Leveldb is a high speed google key/value store.

Figure 12: Storing two words in the same trie (Ether & Ethereum), to the left is a standard
trie and to the right is a PATRICIA trie

23

There are four types of tries in Ethereum:

• Transaction Tries: every block contains a transaction trie storing its transactions.

• Transaction Receipt Tries: every block contains a transaction receipt trie which

store the outcome of the transactions.

• Storage Tries: every account has its data stored in its own storage trie.

• State Trie: One and only state trie in Ethereum. It has the address of each

account as a ‘path’ and the value is the RLP (Recursive Length Prefix) encoding

of these four fields: nonce, balance, storageRoot, codeHash.

In every block header, the root hashes of the block’s transaction trie, transaction

receipt’s trie, and state trie are included.

There are three storage resources utilized by every smart contract (See Fig. 13):

• Storage: Non-volatile memory storing the executable code of the contract, the

Ether balance, persistent state variables and local variables. It is expensive to use.

This is the storage used in the storage trie mentioned. The storage is a key/value

store that maps 256-bit words to 256-bit words.

• Memory: Temporary infinitely expandable array to hold temporary variables,

arrays, structures and function arguments. It gets reset after the execution ends.

Of course, the cost of expansion must be paid in gas.

Figure 13: Smart Contract Storage Resources

24

• Stack: Temporary non-modifiable call-stack where the EVM code execution

happens and can only hold 1024 256-bit words. It gets reset after the execution

ends.

2.2.5 Economic Incentive

Though Ethereum and Bitcoin have the same concept of mining rewards and transaction

fees, some prefer mining Ethereum over mining Bitcoin. One could mine ~60 Ethereum

blocks for every 1 Bitcoin block. This is due to the difficulty of mining which adapts in

a way a block is generated every 10-20 seconds in Ethereum and every 10 minutes in

Bitcoin. Also, because of the very easy to learn smart contract language, many people

are more drawn to Ethereum and believe in its bright future. In addition, Ethereum

incentivizes individual miners with not much hashing power to participate in the mining

process by giving rewards to uncle blocks miners. Uncle blocks are generated when two

valid blocks are mined simultaneously. One gets accepted as a valid block and the other

becomes an uncle block. The miner of the uncle block receives 75% of the block

reward. This not only incentivizes individual miners, but also increases the security of

the Ethereum Blockchain by increasing the amount of work done on the main chain.

2.3 EOS.IO

Ethereum have added big things to the Blockchain community. But, because of several

incidents, and scalability issues, many tried to start an alternative and more scalable

decentralized platform that can compete with centralized platforms already implemented.

EOS is the one of the most popular decentralized platforms and as mentioned before, it

25

received a funding of 18 million dollars. It was founded by Dan Larimer in 2018. EOS

promised vertical and horizontal scaling to the Blockchain community.

2.3.1 Consensus

EOS uses not the well-known proof-of-work consensus, rather it uses a variation of Proof-

of-stake algorithm known as Delegated Proof-of-Stake (DPoS). Plus, EOS adds another

layer to the consensus known as the Asynchronous Byzantine Fault Tolerance layer

(aBFT). Thus, the EOS consensus is composed of two layers: DPoS and aBFT [28]. The

DPoS layer regulates all the processes related to staking tokens, voting, vote decay, vote

recording, producer ranking, and inflation pay. On the other hand, the aBFT layer

determines the finality of each block.

DPoS

Unlike PoW, block generators in PoS are called validators. In order for a node to become

a validator, it has to stake a certain amount of coins. The more is the amount of coins

staked, the higher the chance is to be selected as the next block validator. If the validator

generates a faulty block, a part of its coin stake is lost. DPoS is a variation of PoS where

21 delegates are elected to be the block validators through a real-time voting process. The

block validators in EOS are called producers. Token holders have to stake their tokens in

order to vote for their preferred DPoS delegates. The more a user stakes, the more its vote

has more weight. Also, the voting weight is base-2 exponentially proportional to the date

January 1,2000. This makes the voting weight increase with time for the same number of

tokens staked. Every stakeholder can vote for up to 30 block producers in one voting

26

round. Every voting round, the top 21 producers are selected as active producers and the

others will be placed in a standby list (See Fig. 14 [29]). Votes are not recounted from

zero every round but rather they are increased with the new votes. So, old votes are kept,

but the weight of the vote is replaced by the new voting weight of each voter. If the voting

weight of a user increases, the votes of the user held by any producer are decayed, this is

done in order to encourage more users to join in and participate in the voting and to give

more weight for their newer choice of delegate. The order of the production order of the

21 producers is the alphabetical order of the elected producer names. Regardless of the

voting ranking, all 21 producers have equal producing power. The process of producing

blocks happens in rounds. Each round is 126 seconds composed of 21 time slots, where

each producer gets a time slot of 6 seconds. Every producer is meant to produce 12 blocks

in one time slot, so 2 blocks/second. If for any reason the producer did not produce during

the time slot, which results in a gap in the blockchain, the producer is placed in the standby

list. In order to prevent overloading the network with false transactions, all producing

nodes re-validate transactions upon receiving them, so a false transaction would get

dropped. From the very first block in a round, all producers receive the list of the

Figure 14: Top Producers on the main EOS network. Screenshot by author.

27

producers of the next scheduled round. When this block becomes irreversible (check

aBFT), the proposed schedule becomes active in the next round. In each round, blocks

pass through three phases: production, validation, and finality.

aBFT

This layer determines which blocks become final (irreversible) out of the ones synced

between all the elected producers. It consists of two stages: first a block is proposed as a

last irreversible block (LIB), and secondly the block is confirmed as final. The aBFT layer

ensures algorithmic finality by verifying that the super majority of producers authorized

for this scheduled session agree on this block. The super majority is considered to be 15

producers (2/3 + 1).

2.3.2 Resources

There are three system resources available on the EOSIO Blockchain:

• RAM: acts as the permanent space/storage of all data. It is a scarce resource

and needs to be purchased. Its price is set according to the Bancor Liquidity

algorithm [30].

• CPU: represents the processing time of actions available for a user to interact

with contracts, it is measured in microseconds. In order to obtain CPU

bandwidth on EOSIO, a user must stake tokens.

• NET: represents the amount in bytes of transactions that is available for a user

to interact with contracts. As the CPU resource, one must stake tokens in order

to obtain net bandwidth.

28

The resources in EOS are based on an ownership model unlike Ethereum. The user owns

the CPU, Net, RAM provided and does not need to pay transaction fees or rent the

resources as in the Ethereum’s gas system. The clients of a business running on the

Blockchain do not pay for the use of Blockchain because of the Receiver-pays model that

EOS uses. The owners of a website do not make customers pay for visiting their website

in order to cover hosting costs. In a similar way, developers pay for the best amount of

bandwidth, CPU, and storage their application needs. Users use the applications for free.

2.3.3 Smart Contracts & Code Execution

Smart contracts in EOS are written in C++ as an eosio::contract class. The smart contracts

are then compiled into lower level Web Assembly bytecode (Wasm) to run over the EOS

virtual machine. Wasm is not developed by EOS but rather it has its own community

improving it constantly. This removes the load of developing the virtual machine

language from scratch and leaves it to the experts of the well-known and robust Wasm

engines. Smart Contract functions are known in EOSIO as actions. A transaction could

carry not one but a group of actions in an EOSIO DApp, the success of all the actions is

a must for the success of the whole transaction. In case of a transaction failure, the

blockchain state is reverted back to its state prior to the transaction processing.

Participants in the EOSIO Blockchain and smart contracts are not identified by the public

key addresses but rather by alphanumeric names of 12 characters max. Beside the account

name, other variables are held for each participant in an account schema, such as RAM

usage, CPU/NET limits, voting information… There are two types of actions in EOSIO:

29

• Explicit Actions: the regular actions which are included in a transaction and are

synced throughout the network.

• Implicit (inline) Actions: the actions that happen implicitly and do not get

included in a transaction. Implicit actions are called by explicit actions.

The EOSIO smart contracts do not interact with transactions, transactions are only at the

application level. The incoming blocks and transactions are forwarded to the chain

controller module. The chain controller is responsible for the execution on the local chain.

The local chain contains both the irreversible (immutable) blocks, and the reversible

blocks. The reversible blocks are managed by the Fork Database (See Fig. 15 [31]). The

Fork database is an internal part of the chain controller. The Chain controller relays all

new blocks to the Fork Database which produces temporary mini forks until the LIB block

advances, after the LIB advances, the invalid forks are purged.

EOSIO System Contracts

The core Blockchain features of EOSIO are all implemented in the EOSIO system

contracts and thus can be easily modified depending on use case requirements.

At the genesis stage, the only account existing is a system account named eosio. Eosio

then creates other system accounts, where some belong to system contracts (such as

Figure 15: EOS Local Chain Example. Screenshot by author.

30

eosio.token, eosio.msig) and others are just regular system accounts (such as eosio.prods,

eosio.ramfee).

Account Description

eosio
It contains the eosio.system contract and is the main account

created at the genesis of the Blockchain

eosio.msig
It contains the eosio.msig contract which allows multi-sig

transactions

eosio.wrap
It contains the eosio.wrap contract which simplifies superuser

actions of block producers

eosio.token
It contains the eosio.token contract which creates, issues, and

manages all tokens on the EOSIO Blockchain

eosio.names It holds funds from namespace auctions

eosio.bpay It pays block producers which produced blocks

eosio.prods
It holds the union of all current active block producers’

permissions

eosio.ram It keeps track of all bought/sold SYS tokens of RAM

eosio.ramfee It holds the fees from trading RAM

eosio.saving It holds 4% of network inflation

eosio.stake It keeps track of all staked SYS tokens of CPU and NET

eosio.vpay It pays block producers according to their received votes

eosio.rex It keeps track of fees from REX related actions

Table 1: EOS.IO System Contracts and System Accounts

For transactions to get executed, a chain database session is started, and a snapshot is

taken in order to be able to revert back in case of failures. A transaction context is

generated in order to record the transaction state during execution. For every action, an

action receipt and an action trace objects are generated. The action trace allows the action

to be traced back to its actual transaction and block. After all the action receipts have been

generated, the transaction receipt is generated and pushed to the block.

31

2.3.4 Storage

As for Blockchain storage, the chain plugin is responsible for aggregating data into the

EOSIO Blockchain. The Blockchain structure in EOSIO is very close to the standard

Blockchain structure (See Fig. 16). As for smart contract storage, the user should

purchase RAM. EOS uses RAM as its storage (not disk) to achieve very fast

read/writes. The data in each smart contract can be organized by the developer into

multi-index tables and specifying the structure of each table. EOSIO developers wrote

their own version of the Boost Multi-Index [32]. It is basically a C++ struct with

multiple indexes. The approach of multi-indexing is very known in relational databases.

The Boost Multi-index library borrows this approach in order to make more complex

data structures similar to multiple indexed tables.

Figure 16: EOS Blockchain Structure

32

2.3.5 Economic Incentive

As in any Blockchain system, the block producers are incentivized by the token rewards.

In EOS, there is no supply limit as in Bitcoin. The DPOS EOS system is based on inflation

to incentivize block producers. Inflation refers to the issuance of new tokens into the

circulating supply. Because there are no transaction fees, producers get paid by the

internal inflation system which is 5% annually. A percentage of 4% of the newly minted

tokens goes to worker proposal funds. The 1% left goes to producer pay. Not only the

active producers get rewarded from the producer pay (25% of the producer pay), but also

standby producers get rewarded according to the percentage of votes received (75% of

the producer pay, see Fig. 17).

2.3.6 Permissions

The actions of an account in EOSIO must be authorized by each account’s permissions.

There is a permission structure that keeps record of the list of hierarchical named

permissions, and each named permission is linked to an authority table. The authority

table linked to each permission contains the factors that must be satisfied in order to

authorize the action. The highest permission in the permission structure of each account

Figure 17: EOS Inflation Distribution

33

is the owner permission, which is used for recovering in case a key with lower permission

has been compromised. The second highest permission is the active permission which is

used for actions. More custom permissions can be created for other purposes such as

friend’s permission.

2.4 Other Platforms

In this section, other Blockchain development platforms are briefly presented.

2.4.1 Blockstack

Blockstack [33] was co-founded by Muneeb Ali and Ryan Shea in 2013. It is a

decentralized computing platform totally different from Ethereum and forms a decent

competition with it. Blockstack is well-known for its virtualchain technology, server-less

applications, and decentralized naming system. Blockstack by itself is shaping the

meaning of decentralization in a totally different manner than any other Blockchain

system. It aims at re-decentralizing the Internet. The main reason behind the scalability

issues in the existing Blockchain systems according to Blockstack, is that there is too

much focus on the Blockchain by itself, the programs and their data are living on the

Blockchain, and not so much concern is given outside of the Blockchain. Blockstack’s

perspective is to remove everything heavy from the Blockchain and keep it only for its

key purpose, an immutable log of operations. Blockstack’s team had scalability in mind

since first started designing the system. Developers working with decentralized Apps on

Blockstack have the ability to easily make them server-less, scalable, and they do not

have to worry about authentication because it is built-in with the Blockstack Blockchain

naming system (BNS). Not only that, but also developers do not need to worry about

34

storing user data. With Blockstack’s decentralized Gaia Storage System, users bring their

own cloud storage, each App saves user data in the user’s cloud. Data can be stored

encrypted in the user’s cloud storage; their perspective is to treat the cloud as dumb hard

drives that only store user’s data.

Blockstack is composed of 4 layers [34]:

- Blockchain Layer

- Virtual chain Layer

- Discovery Layer

- Storage Layer

Control Plane

The lowest layer in their architecture is the Blockchain Layer. The Blockchain used in

Blockstack is Bitcoin [35]. The team first built their architecture over Namecoin [35] but

they faced some unusual and ambiguous behaviors. So, they migrated their system onto

the first and most fault-tolerant Blockchain ever: The Bitcoin’s Blockchain. This was the

first successful cross-chain migration of a system.

Blockstack layers only refer to the Blockchain for reading and writing totally-ordered

operations. Every other complex issue related to the Blockchain by itself is abstracted to

the other Blockstack layers like the mining process and others… Though interacting with

the Blockchain is abstracted, the Blockchain consists the basis of trust in this system, trust

is bootstrapped up from it to all other layers.

Migrating from one Blockchain to another is much facilitated with the existence of

Virtualchain layer. As virtual machines can run any operating system on top of any other

35

operating system or physical machine, virtualchains construct a somehow lighter chain

on top of an existing chain. The state machine’s new operations are introduced to the

original Blockchain without the need of changing it or forking it. The virtualchain is only

concerned with the transactions that carry BNS operations in their OP_RETURN field in

Bitcoin (a field for metadata). However, virtualchain can be configured to work on top of

any other Blockchain. Blockstack chose Bitcoin for their BNS (Blockchain Naming

System) after trying it over Namecoin because they noticed several weaknesses and

possible selfish-mining signs [35].

The biggest problem a chain could face is a fork, and the integrity of user’s data in

applications built on top of this chain need to be sustained. By building state machines on

top of the abstracted Blockchain and securing it with a more efficient hash (called

Conensus Hash), a higher-level consensus is achieved (called application-level consensus

by the Blockstack team).

Data Plane

The discovery layer in Blockstack is used to separate the routes to data from the storage

of data itself in order to allow the use of multiple storage services. The discovery layer in

Blockstack uses a peer-to-peer network to store routes to storage files in form of zone

files globally. Users do not need to trust the P2P network as they can verify the hash of

the data record in the Blockchain. Blockstack team implemented their own enhanced

peer-to-peer network called the Atlas network.

The storage layer consists of Blockstack’s decentralized storage system: Gaia.

36

The state of BNS is realized and agreed upon in the control plane, the route of the data

hashed in the state is present in the Atlas zone files, and the real data is stored signed and

encrypted by choice of the user in his/her preferred cloud storage provider. This data

represents data associated with a specific name.

Pricing functions are available to control the name registration process, and to start the

first namespace of BNS, the Blockstack team payed the fee according to their pricing

function (about 10 000$ at the time), enforcing their view that true decentralization is

achieved when also developers follow the rules of the Blockchain. This commitment to

fairness and transparency is not found in all Blockchain communities.

2.4.2 Hyperledger Fabric

The previous platforms mentioned are either public Blockchains or based on a public

Blockchain. Seeing the advantages of decentralized computing, several businesses were

interested in benefitting from this technology. In result of that, the Linux Foundation

started in 2015 the open-source Hyperledger projects [36], in aim of making Distributed

Ledger Technologies (DLT) for businesses. The Digital Asset and IBM were the main

contributors in one of their famous projects, the Hyperledger Fabric (HF). The

Hyperledger Fabric [37] is one of the most important permissioned Blockchains out there.

Permissioned Blockchains, in contrary to public Blockchains, not everyone can run the

node and become part of the network. Only a set of members are authenticated to

participate in a permissioned Blockchain network. Hyperledger fabric is based on

channels between organizations. It has no cryptocurrency, but a token or a currency can

be implemented. Every channel has a shared ledger, and it provides private, confidential

37

transactions between its members. The shared ledger is programmable through what is

called “chaincode”, the code of the chain. The Hyperledger community find this name

more meaningful than “smart contracts”. Authenticating the participation in the network

is managed by CAs (Fabric-CA or any CA of choice) and Membership Service Providers

(MSPs). MSPs are used to somehow abstract the process of obtaining cryptographic

certificates from CAs in the point of view of an organization’s employees. They grant the

users in an organization different roles and different access privileges depending on their

role. Because the Hyperledger Fabric is providing the Blockchain for businesses, assets

of organizations need to be defined in an HF channel as JSON files. The shared ledger

consists of two important databases: the chain of cryptographically linked blocks

(immutable transactional log), and the state database (representing all latest values and

versions of assets, it can be recovered from the chain at any time).

Clie
nt

SD
K

Transaction
T

T +
Endorsements

Endorsements =
simulations = R/W sets

Orderer

Organisation

Anchor Peer

Figure 18: Kafka Consensus

38

There are three types of nodes in HF:

- Client (end-user that connects to the channel through a peer)

- Peer (normal peer who replicates the ledger or endorsing peer who in addition to

his role endorses transactions)

- Orderer (ordering-service node OSN)

The consensus in HF is not composed of a single election-like algorithm (like PoW

mining), but it is achieved by a series of sub-processes. The transactions are first invoked

by clients and sent to a certain number of peers (based on the number of endorsers

requested by the endorsement rules specified in the chaincode). After that, the endorsing

peers simulate the transaction execution based on the current state of the ledger replica

they have and generate Read/Write sets (endorsements). The client receives the

endorsement of his/her transaction and sends it to the orderers. The transactions enter a

queue when received by the orderer. The total-ordering of transactions is the most

important goal of the consensus in a Blockchain. In HF, the orderers are responsible for

this step. The orderers agree on the transactions based on the endorsements of peers, all

endorsements must be the exact same set so that the orderers accept the transaction. If the

orderer accepts the transaction, it exchanges the transaction with other orderer nodes

through Apache Kafka. Apache Kafka [38] is a high-performance publish/subscribe

messaging system and it is highly used in distributed systems. Each channel has a separate

Kafka partition where orderers exchange transactions they accept. Here, two parameters

can be changed in this step that affect the block generation process, the BatchSize and

BatchTimeout. BatchSize consists the number of transactions in a Block, while

39

BatchTimeout is a timer that upon its expiration a Block should be generated. Finally, the

ordered block is broadcasted by OSNs to peers who commit the block to their ledger.

Both Blockstack and Hyperledger Fabric are undoubtedly very innovative Blockchain

systems. Both however have not been included in this study.

Hyperledger Fabric has not been included in this study as it is a permissioned

Blockchain. It was involved however to enforce the view of how different it is from

public Blockchains and thus, its performance should not be compared to the studied

Blockchains.

Blockstack was part of the comparison, but it then got excluded for the following reasons:

• The computing done on Blockstack is not on-chain but rather client-side. On-

chain computation is under development and their smart contracts language

named “Clarity” is still in its beta version.

• Running a Blockstack network would require running a Bitcoin network in

parallel, which is a big difference in the hierarchy of the implementation and

thus comparing Ethereum with EOS would make much more sense.

40

CHAPTER 3

METHODOLOGY & SIMULATION

In this chapter, we discuss our performance methodology and experimentation in detail.

Our main objective is to help developers get an idea of developing a DApp on Ethereum

vs Developing a DApp on EOS, by giving an insight of the timing of the basic operations

in each. Any performance comparison is meant to give an overview of the two compared

systems, test out some basic operations, and distinguish between them.

In an attempt to compare two platforms, the implementation of the two simulations must

be as similar as possible.

Note that in this experimentation, we do not consider block finality.

The Blockchain tools used in this study are:

• EOS.IO Tools:

o Nodeos: The EOSIO core node

o Cleos: The EOSIO command line interface that connects to a nodeos

daemon and manages wallets

o Keosd: The EOSIO keys storage

o EOSIO.CDT: The EOSIO Smart Contract Development Kit

o Eosjs: Nodejs library for DApp development

• Ethereum Tools:

o Geth: The Ethereum node written in go

o Solc: Solidity compiler

o Web3: Nodejs library for Ethereum DApp development

41

3.1 Testing Environment

The performance comparison was studied on both Azure cloud and AUB HPC Octopus

cluster. A portable and consistent testing environment was produced using Singularity

containers, making the whole migration process mess free.

Two singularity containers were created, one for Ethereum and the other for EOS. To run

the Ethereum or EOS experiment, start the run script of the corresponding singularity

container.

3.2 Singularity Containers

Singularity containers [39] give mobility of compute with its image file format, able to

move to any OS and run there as a lightweight container. It encapsulates all the software

stack. Singularity is very known in HPC world, because though its competitor docker is

very known and powerful, docker requires root access to run containers. And that is why

HPC administrators do not allow it, and instead allow singularity containers. Singularity

was developed by a collaboration of HPC admins and research scientist in aim to develop

lightweight, portable, and reproducible environments. In this study, Singularity version

3.5.2 was used.

Figure 19: Singularity Containers

42

3.3 AUB HPC OCTOPUS Cluster

The American University of Beirut offers for its student a High-Performance Computing

cluster named Octopus. Octopus is a mixed architecture Intel/AMD Beowulf virtualized

cluster. It has 472 virtual CPUs of which 328 are AMD EPYC 7551p vCPUs logical cores

and the others are Intel Xeon E5-2695 v4 vCPU logical cores. Octopus nodes operate on

a Centos 7 Linux Operating System with a subset of the OpenHPC software stack. Slurm

is the scheduler used in Octopus. The Octopus node used in this study belonged to the

large partition with 64 vcpus and 256 GB RAM. More information on Octopus can be

found here [40].

3.4 Azure HB-Series

In aim of checking if a cloud platform will influence the results, Azure HB-series has

been selected in order to compare with Octopus. The HB-series uses 60 physical

processor cores of type AMD EPYC 7551, which is the same type used in the Octopus

nodes which we tested. As for RAM, the HB-series offer 240 GB of RAM. As seen, the

HB-series VM was selected because of the closeness of its specs to the Octopus nodes in

CPU and RAM (See Table 2).

Table 2: Octopus vs Azure HB-series Specs

 Octopus Azure HB-series
Processor Type AMD EPYC 7551p AMD EPYC 7551

Type of Cores Virtual Physical

of Cores 64 60

RAM 256 GB 240 GB

43

3.5 Network Structure

Many samples were generated out of each Blockchain network, each was randomly

connected, but all were connected as a Minimum Spanning Tree with a maximum degree

of 6. The network algorithm was written in Nodejs. It starts by generating a random tree

of N nodes. Then, the MST of the random tree is calculated. Two Nodejs packages are

used: ‘random-tree’ [41] and ‘js-graph-algorithms’ [42]. After that, the nodes are

connected statically in bash according to the network structure generated from Node.js.

For Ethereum nodes to be connected statically, one must use the “enode format” of each

node. The enode of a node identifies it in a form of a URL. More information on the enode

format can be found here [43].

3.6 Bash Scripting

For long years, Bash has been used in various Linux distributions and in Apple’s macOS.

It is widely used amongst developers and it is a very powerful language. Many may argue

the need of replacing Bash with a more elegant language such as Python, but Bash is very

robust and can finish some things with a few lines of code compared to other languages.

Bash has been selected to be used in this study along with Node.js in order to develop the

experiments’ scripts. Most of the work was done in bash, except the DApps and the

network algorithm were written in Node.js.

3.7 Node.js promises and DApps

Though only 10 years old, Node.js has killed it with over a billion downloads [44]. It is a

very fast, lightweight, and cross-platform Javascript runtime environment, allowing

Javascript to run both client and server side. It surely deserves the attention it got, along

44

with its Node Package Manager (NPM) offering lots of ready-to-use tools and modules

to include in the developed applications. Mostly all Blockchain platforms offer their

DApp development tools and modules in Node.js, and that is why it was selected for the

Ethereum and EOS DApps in this study. Node.js is very known with its promise objects.

Promises are basically asynchronous structures that could get resolved or get rejected.

The functions in the Ethereum Node.js package ‘web3’ [45, p. 3] and in the EOS Node.js

package ‘eosjs’ [46] are all implemented as promises. In order to time the promises, the

‘timely’ package [47] was used with its method to time promises named ‘timely.promise’.

3.8 Samples

There are four testing networks: 10, 50, 100, 150. In each network, the nodes are

connected randomly 30 different times through the network algorithm, in order to have

30 samples of each network. On Octopus or on Azure each random sample is run

Figure 20: Singularity Run Script

45

individually, executing the DApp and recording the results before moving on to the next

sample.

We increased the number of samples to 30 to have a better generalization of the final

results. Fig. 20 shows what the Blockchain container in Fig 19 does when executed. Note

that for each sample in Fig. 20, a random network connectivity is achieved according to

the network algorithm.

3.9 Performance Metrics

While varying the number of transactions submitted simultaneously from the same node

and varying the number of nodes in the network, the user response time, the CPU usage

of each Blockchain node instance, and the totally used memory megabytes were

measured.

The study is mostly focused on the user response time of the basic smart contract

operations triggered from a DApp. The five operations that where studied on both

platforms are:

1. Depositing native tokens into the smart contract

2. Withdrawing native tokens from the smart contract

3. Reading the native token balance of the smart contract

4. Storing data in the contract (100 bytes)

5. Reading data from the contract (100 bytes)

These operations represent the basic kind of interaction with a Blockchain node.

On the other hand, the number of transactions submitted from the node running the DApp

(Node 5) was varied between 1, 10, 50, 100 and 150. The multiple transactions were all

46

submitted in batches at the same time. So, in the case of the 100 transactions, all 100

transactions were submitted at the same time, and when all transactions get a response,

the response time is recorded. This indicates the transaction throughput.

In addition, the CPU usage of each Blockchain node has been measured with ‘ps’ unix

command along with the totally used memory megabytes caught from ‘node-os-utils’

Node.js module in order to give an insight about cpu/memory usage of each platform.

The following flowchart summarizes the steps executed by each DApp:

Figure 21: DApp Steps

47

Both platforms experiments were implemented following the steps in the figure below.

Each of the 30 samples in Fig. 20 performs the steps in Fig. 22.

3.10 Testing Assumptions

• Mining/Producing Percentage: 25% of all nodes in the network (In EOS only a

maximum of 21 producers are chosen for the actual block producing process, but

votes are casted for 25%)

• Maximum number of peers: 6

3.11 Details of the Ethereum Setup

The Ethereum smart contract has been written in a few lines of solidity v0.4.25. The smart

contract is then compiled once and set aside for use after the network launch.

Figure 22: General Steps of the Performance Experiment

48

A script written in bash launched the testing network. The script steps are:

1. Clean any residue file or processes from previous sample

2. Generate the random network structure by running the Node.js file "generate-

mst.js”. It also generates a Graphviz file in order to visualize the network later.

3. Input generated random tree back into the bash script in the form of an

associative array where the keys are all the nodes and the value for each is a

string of connected nodes.

4. Generate the genesis file of the testing Blockchain and allocating Ethers for

all testing accounts

5. Prepare a directory for each of the N geth nodes and generate required testing

accounts on each of the nodes.

6. Launch all nodes according to the randomly generated array of 25% miners.

7. Connect nodes statically according to the associative array generated in step

3. To achieve that in Ethereum, the following method was chosen:

a. Run the written “getenode.js” file which connects the RPC of each

node and saves its enode in the corresponding geth node directoy as

“enode.txt”.

b. Kill all the geth nodes processes

c. Loop over the associative array from step 3.

d. For each key, get all the enodes of the connected geth nodes and insert

them in static-nodes.json file in the key geth directory.

e. Restart all geth nodes

49

8. Deploy the Ethereum smart contract from Node 1.

9. In order to call this smart contract from the DApp in the following steps, the

address of the deployed smart contract had to be saved in an environment

variable.

10. Run the DApp and save the results. The DApp steps are presented in Fig. 20.

11. Draw the graph of the network structure of this sample using the Graphviz

software [48].

3.12 Details of the EOS Setup

The script steps follows the BIOS Boot Sequence tutorial [49] steps to launch your own

EOS.IO Blockchain. The script does the following steps:

1. Clean any residue file or processes from previous sample

2. Generate the random network structure by running the Node.js file "generate-

mst.js”. It also generates a Graphviz file in order to visualize the network later.

3. Input generated random tree back into the bash script in the form of an

associative array where the keys are all the nodes and the value for each is a

string of connected nodes.

4. Start Cleos wallet and create public/private key pairs for all testing accounts

5. Generate the genesis file of the testing Blockchain

6. Prepare a directory for each of the N nodeos nodes which contains the start

command that connects each node to its peers according to the associative

array in step 3

7. Launch the genesis node “eosio”

50

8. Create system accounts and setup system contracts such as eosio.token and

eosio.msig

9. Create system token “SYS” and allocate tokens for eosio

10. Create all testing accounts and allocate for each one CPU, NET, and RAM.

More resources were allocated for all producers’ accounts.

11. Register producers according to the randomly generated array of 25%

producers and launch all nodes

12. Vote for producers

13. Publish the developed smart contract

14. Resign eosio and system accounts

15. Run the DApp and save the results. The DApp steps are presented in Fig. 20.

16. Draw the graph of the network structure of this sample using the Graphviz

software [48].

Note that according to this answer [50] on the official EOSIO github repository, the

purchased RAM should be 10 * wasm size. Way more RAM than the recommended

amount was allocated in the implementation.

Table 3 summarizes and explains the DApp functions’ notations and purposes which are

used in Chapter 4.

51

Table 3: Summary of DApp functions

Deposit Issue a transaction calling the Deposit function of the smart contract

Withdraw Issue a transaction calling the Withdraw function of the smart contract

ReadBalance Locally call the Blockchain node's database to return the balance of an account

StoreInContract Issue a transaction calling the Storing function of the smart contract to store 100
bytes

ReadFromContract Locally call the Blockchain node's database to read the data stored in the smart
contract (100 bytes)

Deposit10 The Deposit function of the smart contract is called 10 times for 10 different
accounts (batch of 10 transactions)

Withdraw10 The Withdraw function of the smart contract is called 10 times for 10 different
accounts (batch of 10 transactions)

ReadBalance10 The ReadBalance function of the smart contract is called 10 times for 10 different
accounts (batch of 10 local reads)

StoreInContract10 The StoreInContract function of the smart contract is called 10 times for 10
different accounts (batch of 10 transactions)

ReadFromContract10 The ReadFromContract function of the smart contract is called 10 times for 10
different accounts (batch of 10 local reads)

Deposit50 The Deposit function of the smart contract is called 50 times for 50 different
accounts (batch of 50 transactions)

Withdraw50 The Withdraw function of the smart contract is called 50 times for 50 different
accounts (batch of 50 transactions)

ReadBalance50 The ReadBalance function of the smart contract is called 50 times for 50 different
accounts (batch of 50 local reads)

StoreInContract50 The StoreInContract function of the smart contract is called 50 times for 50
different accounts (batch of 50 transactions)

ReadFromContract50 The ReadFromContract function of the smart contract is called 50 times for 50
different accounts (batch of 50 local reads)

Deposit100 The Deposit function of the smart contract is called 100 times for 100 different
accounts (batch of 100 transactions)

Withdraw100 The Withdraw function of the smart contract is called 100 times for 100 different
accounts (batch of 100 transactions)

ReadBalance100 The ReadBalance function of the smart contract is called 100 times for 100
different accounts (batch of 100 local reads)

StoreInContract100 The StoreInContract function of the smart contract is called 100 times for 100
different accounts (batch of 100 transactions)

ReadFromContract100 The ReadFromContract function of the smart contract is called 100 times for 100
different accounts (batch of 100 local reads)

Deposit150 The Deposit function of the smart contract is called 150 times for 150 different
accounts (batch of 150 transactions)

Withdraw150 The Withdraw function of the smart contract is called 150 times for 150 different
accounts (batch of 150 transactions)

ReadBalance150 The ReadBalance function of the smart contract is called 150 times for 150
different accounts (batch of 150 local reads)

StoreInContract150 The StoreInContract function of the smart contract is called 150 times for 150
different accounts (batch of 150 transactions)

ReadFromContract150 The ReadFromContract function of the smart contract is called 150 times for 150
different accounts (batch of 150 local reads)

52

CHAPTER 4

RESULTS & ANALYSIS

In this chapter, the results of the experimentations on both Azure and AUB’s HPC are

presented. After that, for better comprehension and detection of patterns, the results are

visualized using both Microsoft Excel and Python Matplotlib. Lastly, the study findings

and the analysis of the obtained results are concluded.

Note that all the information gathered from the running samples of EOS and Ethereum

on both Azure and AUB’s HPC were organized through a Python script into a Microsoft

Excel sheet. This is done in order to avoid any human errors while inputting data manually

into a Microsoft Excel document. The Python script uses NumPy and Pandas libraries.

Figures 28 to 35 were generated using Python Matplotlib. While figures 24, 25, 26, and

27 were generated using Microsoft Excel.

Tables 4 to 7 represent the average values of the 30 samples tried for each scenario.

53

Functions 10 50 100 150
Deposit (ms) 300.466667 306.133333 316.666667 311.033333

Withdraw (ms) 234.133333 202.2 216.2 205.666667

ReadBalance (ms) 1.86666667 2.03333333 2.1 2.1

StoreInContract (ms) 191.066667 222.7 218.966667 205.1

ReadFromContract (ms) 2.06666667 2.16666667 2.2 2.43333333

Deposit10 (ms) 1950.13333 1892.53333 1939.3 1873.03333

Withdraw10 (ms) 1914.23333 1958.2 1907.8 1904.06667

ReadBalance10 (ms) 10.1 10.1333333 10.3333333 10.1

StoreInContract10 (ms) 1935.23333 1949.73333 1890.6 1912.26667

ReadFromContract10 (ms) 7.46666667 7.33333333 7.43333333 7.46666667

Deposit50 (ms) 9204.36667 9345.9 9324.63333 9402.36667

Withdraw50 (ms) 9336.13333 9323.73333 9332.2 9425.73333

ReadBalance50 (ms) 27.3333333 27.3 27.2 27.9666667

StoreInContract50 (ms) 9512.53333 9513.06667 9532.96667 9435.3

ReadFromContract50 (ms) 29.6333333 30.3333333 30.5 31.4

Deposit100 (ms) 18559.1 18696.2333 18605.0333 18619.7667

Withdraw100 (ms) 18641.3333 18607.1667 18687.3667 18792.0333

ReadBalance100 (ms) 44.9333333 45.9 45.3333333 46.0666667

StoreInContract100 (ms) 19398.6333 19582.3 19681.4333 19525.3333

ReadFromContract100 (ms) 43.0333333 43.7666667 43.8666667 42.4333333

Deposit150 (ms) 27687.0667 27917.0667 27837.4667 27857.7333

Withdraw150 (ms) 27640.2333 27867.2667 27862.5333 27734.7

ReadBalance150 (ms) 55.9 54.7666667 54.4 54.7666667

StoreInContract150 (ms) 27839.1 28193.1 27946.5667 27995.5

ReadFromContract150 (ms) 54.8666667 55.1 54.8666667 54.5333333

mem_min_nodejs (MB) 4618.087 6090.98833 7971.95067 9791.063

mem_max_nodejs (MB) 4676.787 6194.349 8134.06367 10020.525

cpu_min_ps (%) 0.80666667 0.66 0.5 0.47

cpu_max_ps (%) 2.73333333 1.98 1.52333333 1.3

totalSeconds (s) 299.166667 429.233333 590.5 752.066667

Table 4: EOS Azure Summary

54

Functions 10 50 100 150
Deposit (ms) 417.033333 390.133333 334.166667 377.5

Withdraw (ms) 251.4 268.166667 250.566667 264.3

ReadBalance (ms) 3.96666667 3.4 3.76666667 6.9

StoreInContract (ms) 246.966667 226 236.833333 227.633333

ReadFromContract (ms) 4.06666667 3.33333333 2.4 3.23333333

Deposit10 (ms) 2323.3 2116.8 1965.03333 2198.03333

Withdraw10 (ms) 2153.66667 2106.96667 2035.43333 2121.86667

ReadBalance10 (ms) 17 13.8 15.3333333 11.6333333

StoreInContract10 (ms) 2357.03333 2083.26667 2181.76667 2067.4

ReadFromContract10 (ms) 19.5 15.5 14.3 12.8

Deposit50 (ms) 10568.8333 10586.4667 10063.9 10513.9

Withdraw50 (ms) 11875.2333 10480.6667 10070.6667 10348.5333

ReadBalance50 (ms) 36.6666667 35.2 55.2666667 43.8333333

StoreInContract50 (ms) 11782.3333 10197.1 10158.3 10318.2667

ReadFromContract50 (ms) 47.8666667 57.1666667 57.5333333 57.6

Deposit100 (ms) 22524.7 20474 20276.7667 19899.4

Withdraw100 (ms) 23277.0667 20732.9667 19929.8 20245.6667

ReadBalance100 (ms) 119.166667 84.3666667 87.3666667 79.2666667

StoreInContract100 (ms) 22592.2333 20508.4667 20514.2667 19934.7667

ReadFromContract100 (ms) 135.7 61.9 77 73.3333333

Deposit150 (ms) 32133.3 30574.8667 29546.2333 30350.4

Withdraw150 (ms) 33424.2667 30358.1 30421.9333 30957.7667

ReadBalance150 (ms) 205.766667 139.833333 66.3 183.333333

StoreInContract150 (ms) 32111.8333 30508.5333 29973.3333 30172.8

ReadFromContract150 (ms) 101 102.766667 82.9333333 218.833333

mem_min_nodejs (MB) 2922.12867 4478.92 6527.63267 8517.833

mem_max_nodejs (MB) 3000.211 4539.206 6629.63467 8643.53133

cpu_min_ps (%) 1.17 0.24333333 0.14666667 0.03

cpu_max_ps (%) 4.37 3.03666667 3.04666667 4.26333333

totalSeconds (s) 388.7 497.1 658.666667 855.233333

Table 5: EOS HPC Summary

55

Functions 10 50 100 150
Deposit (ms) 4423.66667 1789.36667 2262.4 2646.86667

Withdraw (ms) 4513.23333 1877.83333 5055.33333 1929.33333

ReadBalance (ms) 3.53333333 3.76666667 4.56666667 7.43333333

StoreInContract (ms) 4114.4 1780.06667 1587.3 1660.1

ReadFromContract (ms) 4.93333333 5.46666667 6.46666667 9.03333333

Deposit10 (ms) 3377.86667 1818.96667 1782.4 1681.3

Withdraw10 (ms) 3772.16667 1939.83333 1690.43333 1718.73333

ReadBalance10 (ms) 23.6333333 25.3 30.3666667 63.3

StoreInContract10 (ms) 3408.03333 1775.13333 1697.73333 1749

ReadFromContract10
(ms) 19.4333333 20.7333333 27.3 43.5333333

Deposit50 (ms) 3835.76667 2065.73333 1995.63333 2425

Withdraw50 (ms) 3649.73333 2104.76667 1700.06667 2409.03333

ReadBalance50 (ms) 47.6333333 50.2 63 145.066667

StoreInContract50 (ms) 3469.63333 1976.1 2247.76667 2281.46667

ReadFromContract50
(ms) 62.1333333 66.1666667 91.8333333 147.033333

Deposit100 (ms) 3790.7 2029.56667 2145.93333 2659.53333

Withdraw100 (ms) 3659.56667 2128.33333 2221.23333 2645.83333

ReadBalance100 (ms) 76.8 83.0666667 101.666667 190.033333

StoreInContract100 (ms) 4331.03333 2213.5 2397.23333 2965.33333

ReadFromContract100
(ms)

94.6333333 99.5 148.9 220.966667

Deposit150 (ms) 3577.26667 2381.2 2640.46667 2893.76667

Withdraw150 (ms) 4233.63333 2127.86667 2458.66667 2890.8

ReadBalance150 (ms) 85.6333333 102.3 145.966667 248.966667

StoreInContract150 (ms) 3822.46667 2615.23333 2934.13333 4104.2

ReadFromContract150
(ms) 133.266667 143.433333 168 302.233333

mem_min_nodejs (MB) 8364.30467 27328.994 45207.2547 83585.325

mem_max_nodejs (MB) 9978.60233 32701.552 59849.283 116119.207

cpu_min_ps (%) 4.2 1.28333333 5.22333333 18.4633333

cpu_max_ps (%) 105.27 138.533333 139.71 147.86

totalSeconds (s) 164.6 341.733333 566.733333 867.333333

 Table 6: Ethereum Azure Summary

56

Functions 10 50 100 150

Deposit (ms) 5996 2108.4 2025.6 1955.8

Withdraw (ms) 4565.7 1993.9 2133.53333 1850.56667

ReadBalance (ms) 7.26666667 5.33333333 14.3666667 18.0666667

StoreInContract (ms) 5169.06667 2061.06667 1865.2 1999.6

ReadFromContract (ms) 12.9666667 11.4 23.8333333 26.1333333

Deposit10 (ms) 4362.86667 2437.53333 2241.8 2713.16667

Withdraw10 (ms) 5898.3 2056 2367.83333 2557.2

ReadBalance10 (ms) 33.3333333 36.8 51.7333333 85.7333333

StoreInContract10 (ms) 4866.56667 2466.93333 2208.46667 2703.46667

ReadFromContract10 (ms) 36.9 41.9 60.5333333 117.8

Deposit50 (ms) 6311.26667 2974.93333 3312 4358.9

Withdraw50 (ms) 5542.76667 2518.56667 3261.43333 4397.7

ReadBalance50 (ms) 111.833333 107.233333 151.666667 322.8

StoreInContract50 (ms) 5073.36667 2775.96667 3427.6 4624

ReadFromContract50 (ms) 140.166667 111.233333 192.666667 435.166667

Deposit100 (ms) 5944.63333 3543.23333 4602.73333 6832.13333

Withdraw100 (ms) 5122.93333 3544.1 4106.13333 6482.63333

ReadBalance100 (ms) 156.566667 134.3 205.9 374.4

StoreInContract100 (ms) 5966.66667 3582.7 5667.7 8334.4

ReadFromContract100 (ms) 179.633333 210.133333 249.8 409.9

Deposit150 (ms) 5988.8 3674.76667 6182.3 9086.1

Withdraw150 (ms) 5894.73333 3801.23333 5951.23333 8930.06667

ReadBalance150 (ms) 177.633333 164.666667 245.733333 321.1

StoreInContract150 (ms) 6078 4391.76667 7690.73333 11655.8667

ReadFromContract150 (ms) 220.366667 214.166667 252.366667 486.666667

mem_min_nodejs (MB) 7227.28533 25766.8783 43305.8537 60634.8603

mem_max_nodejs (MB) 8424.83433 30294.0963 54490.758 78175.541

cpu_min_ps (%) 11.9766667 6.20333333 9.23 10.3266667

cpu_max_ps (%) 114.1 132.533333 157.466667 148.866667

totalSeconds (s) 220.4 402.7 709.866667 1049.03333

Table 7: Ethereum HPC Summary

57

Figure 23: EOS HPC Results

Figure 24: EOS Azure Results

58

Figure 25: Ethereum HPC Results

Figure 26: Ethereum Azure Results

59

Figure 28: Azure - EOS vs Ethereum (Network of 10 nodes)

Figure 27: Azure - EOS vs Ethereum (Network of 50 nodes)

60

Figure 30: Azure - EOS vs Ethereum (Network of 100 nodes)

Figure 29: Azure - EOS vs Ethereum (Network of 150 nodes)

61

Figure 32: HPC - EOS vs Ethereum (Network of 10 nodes)

Figure 31: HPC - EOS vs Ethereum (Network of 50 nodes)

62

Figure 34: HPC - EOS vs Ethereum (Network of 100 nodes)

Figure 33: HPC - EOS vs Ethereum (Network of 150 nodes)

63

From the simulation of each platform on both Azure and AUB’s HPC, we can evaluate

the following:

EOS HPC EOS Azure

Low High Low High

Deposit (ms) 334.17 417.03 300.47 316.67
Withdraw (ms) 250.57 268.17 202.20 234.13

ReadBalance (ms) 3.40 6.90 1.87 2.10
StoreInContract (ms) 226.00 246.97 191.07 222.70

ReadFromContract (ms) 2.40 4.07 2.07 2.43
Deposit10 (ms) 1965.03 2323.30 1873.03 1950.13

Withdraw10 (ms) 2035.43 2153.67 1904.07 1958.20
ReadBalance10 (ms) 11.63 17.00 10.10 10.33

StoreInContract10 (ms) 2067.40 2357.03 1890.60 1949.73
ReadFromContract10 (ms) 12.80 19.50 7.33 7.47

Deposit50 (ms) 10063.90 10586.47 9204.37 9402.37
Withdraw50 (ms) 10070.67 11875.23 9323.73 9425.73

ReadBalance50 (ms) 35.20 55.27 27.20 27.97
StoreInContract50 (ms) 10158.30 11782.33 9435.30 9532.97

ReadFromContract50 (ms) 47.87 57.60 29.63 31.40
Deposit100 (ms) 19899.40 22524.70 18559.10 18696.23

Withdraw100 (ms) 19929.80 23277.07 18607.17 18792.03
ReadBalance100 (ms) 79.27 119.17 44.93 46.07

StoreInContract100 (ms) 19934.77 22592.23 19398.63 19681.43
ReadFromContract100 (ms) 61.90 135.70 42.43 43.87

Deposit150 (ms) 29546.23 32133.30 27687.07 27917.07
Withdraw150 (ms) 30358.10 33424.27 27640.23 27867.27

ReadBalance150 (ms) 66.30 205.77 54.40 55.90
StoreInContract150 (ms) 29973.33 32111.83 27839.10 28193.10

ReadFromContract150 (ms) 82.93 218.83 54.53 55.10

Table 8: Low and High values of EOS on HPC vs Azure

64

ETH HPC ETH Azure

Low High Low High
Deposit (ms) 1955.80 5996.00 1789.37 4423.67

Withdraw (ms) 1850.57 4565.70 1877.83 5055.33
ReadBalance (ms) 5.33 18.07 3.53 7.43

StoreInContract (ms) 1865.20 5169.07 1587.30 4114.40
ReadFromContract (ms) 11.40 26.13 4.93 9.03

Deposit10 (ms) 2241.80 4362.87 1681.30 3377.87
Withdraw10 (ms) 2056.00 5898.30 1690.43 3772.17

ReadBalance10 (ms) 33.33 85.73 23.63 63.30
StoreInContract10 (ms) 2208.47 4866.57 1697.73 3408.03

ReadFromContract10 (ms) 36.90 117.80 19.43 43.53
Deposit50 (ms) 2974.93 6311.27 1995.63 3835.77

Withdraw50 (ms) 2518.57 5542.77 1700.07 3649.73
ReadBalance50 (ms) 107.23 322.80 47.63 145.07

StoreInContract50 (ms) 2775.97 5073.37 1976.10 3469.63
ReadFromContract50 (ms) 111.23 435.17 62.13 147.03

Deposit100 (ms) 3543.23 6832.13 2029.57 3790.70
Withdraw100 (ms) 3544.10 6482.63 2128.33 3659.57

ReadBalance100 (ms) 134.30 374.40 76.80 190.03
StoreInContract100 (ms) 3582.70 8334.40 2213.50 4331.03

ReadFromContract100 (ms) 179.63 409.90 94.63 220.97
Deposit150 (ms) 3674.77 9086.10 2381.20 3577.27

Withdraw150 (ms) 3801.23 8930.07 2127.87 4233.63
ReadBalance150 (ms) 164.67 321.10 85.63 248.97

StoreInContract150 (ms) 4391.77 11655.87 2615.23 4104.20
ReadFromContract150 (ms) 214.17 486.67 133.27 302.23

Table 9: Low and High values of Ethereum on HPC vs Azure

By examining each platform by itself on both Azure and AUB’s HPC (table 8-9), one can

notice that the user response time ranges are noticeably lower on Azure in both EOS and

Ethereum platforms. However, by looking at the visualized graphs in figures 24 to 27, we

can see that the pattern is the same for each platform on both Azure and AUB’s HPC.

In EOS’s case in Fig. 25, all the networks (10, 50, 100, 150) have a perfectly stacked line

graph. This shows more stable time ranges with the variation of the number of nodes in

the network and thus more stability on Azure.

65

In Ethereum’s case too in Fig. 27, all the networks except the network of 10 nodes are

closer to each other than the lines in Fig. 26. The network of 10 nodes in Ethereum takes

a longer time to respond than a network with more nodes because it has only two mining

nodes with each having one mining thread only. This makes the mining puzzle harder to

resolve and thus takes more time on both AUB’s HPC and on Azure.

Looking at all the visualized graphs (figures 24 to 35), it is very clear that:

• With a very low throughput and with the variation of the number of nodes in

the network, EOS’s numbers (~200ms) are way lower than Ethereum’s

numbers (~2s).

• With the increase of the number of transactions submitted, Ethereum keeps a

steady range in comparison to EOS. EOS’s response time augments rapidly

starting when the number of transactions submitted is 50 and keeps growing

up, while Ethereum’s time response takes 2 to 4 seconds on Azure at max. At

150 transactions submitted, EOS’s response time is almost 6 times Ethereum’s

response time.

• One can also notice that Ethereum’s storing function takes slightly more time

than deposit/withdraw transactions.

• Local call functions take less time on EOS

• CPU and RAM usage averages of Ethereum were way higher than those of

EOS due to the heaviness of Proof-of-Work

• The experimentation on Azure achieved shorter response time than that on

Octopus but guarding the same patterns.

66

More Analysis on Ethereum and EOS.IO Logs:

In this section, a small network is generated for each of Ethereum and EOS.IO in order

to analyze the logs.

Figure 36: Ethereum 10 Transactions Submission Logs

Figure 35: Ethereum 50 Transactions Submission Logs

67

After having a look at the Geth node logs (Fig. 35,36,37), we can clearly conclude that

Ethereum nodes are packing all the transactions in one block. This explains why the user

response time of 10, 50, 100, and 150 calls in Ethereum are very close to the single call

timing.

As for Nodeos logs (Fig. 38 -> 41), one can notice how EOS.IO transactions are spread

over multiple blocks. Even if it is the same producer (check signed by field in figures),

they still are parted in multiple blocks. Also, the number of empty blocks in between

multiple blocks is large.

Several reasons could result in the transaction grouping of a certain block. Latency to

process/broadcast transactions, or some kind of bottleneck in the network protocol could

Figure 37: Ethereum 100 Transactions Submission Logs

68

be the problem. EOS.IO need to resolve this issue in order to compete with Ethereum and

all other decentralized computing platforms.

Figure 38: EOS 10 Transactions Submission Logs

Figure 39: EOS 50 Transactions Submission Logs

69

Figure 41: EOS 100 Transactions Submission Logs - 1

Figure 40: EOS 100 Transactions Submission Logs - 2

70

CHAPTER 5

CONCLUSION

In conclusion, two of the main Blockchain development platforms were studied in this

masters’ thesis. Providing a detailed performance study is needed in order to guide

developers in this recently found technology. A decentralized application along with a

corresponding smart contract were written for each of the platforms. The DApps measure

the timing of the basic operations one could use when interacting with a Blockchain. Each

of the DApps was tested along with randomly generated networks on both Microsoft

Azure and the HPC cluster Octopus of the American University of Beirut. Though

Azure’s numbers are lower, the experimentation in both environments show that

Ethereum performs better than EOS with the increase of the number of transactions

submitted to the network.

In a time where the markets of cryptocurrencies are constantly fluctuating between bear

and bull markets, marketing plays a big role. Though EOS.IO has a huge potential in the

crypto community and is highly marketed, the results show that EOS.IO does not

outperform Ethereum.

Both platforms however contributed a lot to the innovation of Blockchain systems.

Decentralized Computing is quite a new field, and so many researches are still needed in

order to better assess performance and scalability in Blockchain systems.

71

BIBLIOGRAPHY

[1] “List of highest-funded crowdfunding projects - Wikipedia.”
https://en.m.wikipedia.org/wiki/List_of_highest-funded_crowdfunding_projects
(accessed Feb. 24, 2020).

[2] “State of the DApps — A list of 3,118 blockchain apps for Ethereum, Steem, Hive,
EOS, and more.” https://www.stateofthedapps.com/ (accessed Apr. 06, 2020).

[3] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun,
“On the Security and Performance of Proof of Work Blockchains,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, Oct. 2016, pp. 3–16, doi: 10.1145/2976749.2978341.

[4] S. Rouhani and R. Deters, “Performance analysis of ethereum transactions in private
blockchain,” in 2017 8th IEEE International Conference on Software Engineering
and Service Science (ICSESS), Nov. 2017, pp. 70–74, doi:
10.1109/ICSESS.2017.8342866.

[5] S. Pongnumkul, C. Siripanpornchana, and S. Thajchayapong, “Performance
Analysis of Private Blockchain Platforms in Varying Workloads,” in 2017 26th
International Conference on Computer Communication and Networks (ICCCN),
Jul. 2017, pp. 1–6, doi: 10.1109/ICCCN.2017.8038517.

[6] M. Valenta and P. Sandner, “comparison of ethereum hyperledger fabric and
corda,” 2017.

[7] M. Scherer, “Performance and Scalability of Blockchain Networks and Smart
Contracts,” p. 46.

[8] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan,
“BLOCKBENCH: A Framework for Analyzing Private Blockchains,” in
Proceedings of the 2017 ACM International Conference on Management of Data,
Chicago, Illinois, USA, May 2017, pp. 1085–1100, doi: 10.1145/3035918.3064033.

[9] K. Veskus and F. Milani, “Ethereum versus Fabric – A comparative analysis,”
2018.

[10] Q. T. Zhong and Z. Cole, “Analyzing the Effects of Network Latency on
Blockchain Performance and Security Using the Whiteblock Testing Platform.”

[11] B. Xu, D. Luthra, Z. Cole, and N. Blakely, Eos: An architectural, performance,
and economic analysis. Bitmex. Retrieved from https://www. whiteblock.
io/library/eos-test-report. pdf, 2018.

[12] A. Aldweesh, M. Alharby, and A. van Moorsel, “Performance Benchmarking
for Ethereum Opcodes,” in 2018 IEEE/ACS 15th International Conference on
Computer Systems and Applications (AICCSA), Oct. 2018, pp. 1–2, doi:
10.1109/AICCSA.2018.8612882.

[13] A. Aldweesh, M. Alharby, E. Solaiman, and A. van Moorsel, “Performance
Benchmarking of Smart Contracts to Assess Miner Incentives in Ethereum,” in
2018 14th European Dependable Computing Conference (EDCC), Sep. 2018, pp.
144–149, doi: 10.1109/EDCC.2018.00034.

[14] “Hyperledger Caliper – Hyperledger.”
https://www.hyperledger.org/projects/caliper (accessed Feb. 24, 2020).

72

[15] A. Aldweesh, M. Alharby, M. Mehrnezhad, and A. Van Moorsel, “OpBench: A
CPU Performance Benchmark for Ethereum Smart Contract Operation Code,” in
2019 IEEE International Conference on Blockchain (Blockchain), Jul. 2019, pp.
274–281, doi: 10.1109/Blockchain.2019.00043.

[16] “White Paper · ethereum/wiki Wiki · GitHub.”
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum (accessed Apr. 06,
2020).

[17] “Cert Spotter - Timeline of PKI Security Failures.”
https://sslmate.com/certspotter/failures (accessed Apr. 07, 2020).

[18] “The Byzantine Generals Problem | ACM Transactions on Programming
Languages and Systems.” https://dl.acm.org/doi/10.1145/357172.357176 (accessed
Apr. 07, 2020).

[19] “Nakamoto, Satoshi. ‘Bitcoin: A peer-to-peer electronic cash system.’ (2008). -
Google Search.”
https://www.google.com/search?q=Nakamoto%2C+Satoshi.+%22Bitcoin%3A+A+
peer-to-
peer+electronic+cash+system.%22+(2008).&oq=Nakamoto%2C+Satoshi.+%22Bitc
oin%3A+A+peer-to-
peer+electronic+cash+system.%22+(2008).&aqs=chrome..69i57.168j0j9&sourceid
=chrome&ie=UTF-8 (accessed Apr. 07, 2020).

[20] “Script - Bitcoin Wiki.” https://en.bitcoin.it/wiki/Script (accessed Apr. 11,
2020).

[21] “Chart of the Day: Bitcoin Reward Halving and Price History | Infographics |
ihodl.com.” https://ihodl.com/infographics/2018-04-09/chart-day-bitcoin-reward-
halving-and-price-history/ (accessed Apr. 11, 2020).

[22] “Controlled supply - Bitcoin Wiki.” https://en.bitcoin.it/wiki/Controlled_supply
(accessed Apr. 11, 2020).

[23] “The Dangers of Mining Pools: Centralization and Security Issues.”
https://cointelegraph.com/news/the-dangers-of-mining-pools-centralization-and-
security-issues (accessed May 02, 2020).

[24] “Namecoin.” https://www.namecoin.org/ (accessed Apr. 11, 2020).
[25] “Ethereum - Wikipedia.” https://en.wikipedia.org/wiki/Ethereum (accessed May

03, 2020).
[26] “ETH Gas Station | Consumer oriented metrics for the Ethereum gas market.”

https://ethgasstation.info/index.php (accessed Mar. 10, 2020).
[27] “Solidity - Wikipedia.” https://en.wikipedia.org/wiki/Solidity (accessed May 03,

2020).
[28] “Consensus Protocol | EOSIO Developer Docs.”

https://developers.eos.io/welcome/latest/protocol/consensus_protocol (accessed
Mar. 06, 2020).

[29] “EOS Tracker | Real time viewer for EOSIO Blockchains.”
https://eostracker.io/producers (accessed Mar. 06, 2020).

73

[30] “EOSIO RAM Market & Bancor Algorithm - Daniel Larimer - Medium.”
https://medium.com/@bytemaster/eosio-ram-market-bancor-algorithm-
b8e8d4e20c73 (accessed May 11, 2020).

[31] “Network Peer Protocol | EOSIO Developer Docs.”
https://developers.eos.io/welcome/latest/protocol/network_peer_protocol (accessed
Mar. 08, 2020).

[32] “Boost.MultiIndex Documentation - Index - 1.62.0.”
https://www.boost.org/doc/libs/1_62_0/libs/multi_index/doc/index.html (accessed
May 12, 2020).

[33] “Blockstack.” https://blockstack.org/ (accessed May 30, 2020).
[34] “https://muneebali.com/thesis.” https://muneebali.com/thesis.
[35] “Blockstack,” Ali, Muneeb, Jude C. Nelson, Ryan Shea, and Michael J.

Freedman. “Blockstack: A Global Naming and Storage System Secured by
Blockchains.” In USENIX Annual Technical Conference, pp. 181-194. 2016.

[36] “Hyperledger – Open Source Blockchain Technologies.”
https://www.hyperledger.org/ (accessed May 30, 2020).

[37] “A Blockchain Platform for the Enterprise — hyperledger-fabricdocs master
documentation.” https://hyperledger-fabric.readthedocs.io/en/release-1.3/ (accessed
May 30, 2020).

[38] “Apache Kafka.” https://kafka.apache.org/ (accessed May 30, 2020).
[39] “User Guide — Singularity container 3.5 documentation.”

https://sylabs.io/guides/3.5/user-guide/ (accessed May 18, 2020).
[40] “Octopus user guide (Mixed architecture virtualized Beowulf cluster) — hpc

user guide master documentation.” https://hpc-aub-users-
guide.readthedocs.io/en/latest/octopus/octopus_index.html (accessed May 15,
2020).

[41] “random-tree - npm.” https://www.npmjs.com/package/random-tree (accessed
May 18, 2020).

[42] “js-graph-algorithms - npm.” https://www.npmjs.com/package/js-graph-
algorithms (accessed May 18, 2020).

[43] “enode url format · ethereum/wiki Wiki · GitHub.”
https://github.com/ethereum/wiki/wiki/enode-url-format (accessed May 20, 2020).

[44] “More Than A Billion Downloads of Node.js 🎉 - Node.js - Medium.”
https://medium.com/@nodejs/more-than-a-billion-downloads-of-node-js-
952a8a98eb42 (accessed May 16, 2020).

[45] “web3 - npm.” https://www.npmjs.com/package/web3 (accessed May 18, 2020).
[46] “eosjs - npm.” https://www.npmjs.com/package/eosjs (accessed May 18, 2020).
[47] “timely - npm.” https://www.npmjs.com/package/timely (accessed May 18,

2020).
[48] “Graphviz - Graph Visualization Software.” https://www.graphviz.org/

(accessed May 20, 2020).
[49] “BIOS Boot Sequence | EOSIO Developer Docs.”

https://developers.eos.io/welcome/latest/tutorials/bios-boot-sequence/ (accessed
Mar. 02, 2020).

74

[50] “How do I know how much RAM I need to deploy a contract? · Issue #4979 ·
EOSIO/eos · GitHub.” https://github.com/EOSIO/eos/issues/4979 (accessed May
21, 2020).

