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An Abstract of the Thesis of

Neam Mohammad Hassan Farroukh for Master of Science

Major: Computer Science

Title: Resource Management in Integrated Cloud-Fog Network

Fog computing extends the cloud services to the edge of the network by taking

advantage of edge devices that have sufficient IoT resources (i.e, storage, compute,

and bandwidth). ”A cloud closer to the edge” has been proved as a promising

solution for avoiding unbearable latency and network capacity saturation with

the proliferation of IoT end-devices. Lately, researchers have noticed the impact

of cloud-fog cooperation on the performance of the network in terms of latency,

network capacity and security. While the cloud could handle heavy-weight delay-

tolerant tasks, the fog becomes in charge of all light-weight delay-sensitive tasks.In

such integrated networks, resource management becomes a key challenge that

must be addressed effectively. Moreover, researchers have been preferring the

clustered network topology for the fog layer over the flat one. In this thesis

we aim to design and study two different resource management variations for

fog network: flat and a clustered variations respectively. Both variations are

formalized as an optimization problem in order to maximize the IoT tasks to

fog assignments while satisfying not only the resources requirements of the issued

tasks, but its QoS requirements as well. The comparison of both variations shows
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that the flat approach gives better results in terms of overall and fog delay when

increasing the number of clusters in the topology, while the clustered approach

results in lower number of tasks being rejected. Moreover, a baseline approach is

presented as well to evaluate our proposed approaches.
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Chapter 1

Introduction

In this Chapter we present a brief background of cloud computing and the reason

behind deploying fog computing in real world’s application. We describe the

motivation and the problem that we aim to address. We then state our objectives

and end with thesis plan.

1.1 Background

Computing in general is an on-demand model that allows users to benefit from

services without worrying about how they will be delivered or where such ser-

vices are hosted. In this context, cloud computing is an emerging technology

defined as a tool that provides resources like CPU, I/O, and memory as a utility

service based on the users’ demands. Cloud computing (CC) has been widely

deployed due to its benefits such as cost reduction due to its pay-as-you-go strat-

egy, flexibility in capacity which allows scaling up and down the cloud capacity

for end-users, and disaster management where backups are present to save the

day in case of a crash or failure.

Lately, the number of smart end-devices, notable by the Internet of things (IoT),
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has been proliferating in a way where it is predicted to reach 50 billion devices

by the year 2020. Consequently, such a number of devices is going to produce

not less than 43 trillion gigabytes of data [2]. This huge amount of data, when

sent to a far located cloud, causes network saturation and eventually degradation

in users’ experience. Thus, the bliss of cloud computing turns into an issue for

latency-sensitive applications that require resources in the vicinity. To address

this issue and to meet the delay and mobility requirements of various IoT appli-

cations, it was necessary to build a new control layer that resides between the

end-devices and the far located cloud. This shifting from the core to the edge of

the network is termed as edge computing. Based on this new research interest,

Cisco proposed fog computing (FC) in 2012 [3]. According to Cisco, the Fog is

a cloud closer to the IoT devices, where it extends the assets of the cloud as

storage, computing and networking services to the edge of the network by taking

advantage of devices, e.g access points, routers, rich in IoT resources located near

end-devices, and thus resulting in lower latency and better users’ experience.

1.2 Motivation

The network topology of the fog layer, as described in chapter 2, could be ei-

ther flat where the fog layer consists of several fog nodes, or a clustered topology

meaning that the fog layer consists of fogs (the clusters) each made up of several

fog nodes. The main difference between both architectures is the number of fog

controllers that are responsible for taking the task allocation decisions. The first

type of topology has a single controller taking the decisions on behalf of every

fog node present, while in the second type of topology, every fog has its own

controller which is responsible for taking the decision for such a specific group

of fog nodes belonging to a fog (cluster). Obviously, having several controllers
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would results in lower overall latency and network saturation and thus better

performance measure. For that, recent research works in the fog field; such as in

[1], [4],[5],[6],[7], have been interested in adopting the clustered architecture to

apply their resource management approaches.

Resource management in fog computing is still considered as a key challenge

due to the limited computational resources as edge devices have smaller proces-

sors and lower battery life than the cloud. Moreover, edge or fog devices are

heterogeneous where each device has its processor and architecture. IoT applica-

tions are becoming more heterogenous and elastic as well, which means that each

task issued has its QoS requirements, and its performance metrics differs based

on the node (cloud or fog) it is assigned to.

1.3 Problem Definition

As the clustered architecture proposed, has its ability in optimizing the power of

both the cloud and fogs in order to support the proliferation of IoT applications,

it is essential to have a dynamic and effective resource management approach.

Meaning that this challenge must be addressed in a way that optimizes the IoT

resources while satisfying the QoS requirements of the issued IoT tasks.

Thus, the main problem that must be addressed is to find a secure resource

management approach that has its ability in assigning IoT tasks, which require

different resources such as CPU and storage and different QoS requirements such

as allowed delay, to fog nodes which are capable of handling and satisfying such

requirements.
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1.4 Objective and Contribution Summary

In this thesis we propose a QoS and seucrity-aware resource management (QSRM)

approach for a clustered integrated cloud-fog networks using two different varia-

tions. Both variations formalize the problem as a mixed-integer linear program-

ming model (MILP). The first variations aims on examining all fog nodes that

are reachable for the IoT device issuing the task in order to find the best node for

task execution. While the second variation first finds the best reachable cluster

and then works on selecting the best fog node among the nodes belonging to

the selected cluster. The goal of both variations is to find the best fog node to

execute any arriving IoT task based on the task’s requirements and the node’s

capabilities in order to satisfy the QoS and security requirements while maximiz-

ing the limited resources utilization. Both variations will be able to evaluate the

clustered architecture and the effect of scaling the topology up and down based

on the average overall delay, average delay at the fog, the number of rejected

tasks, and the number of tasks being offloaded to the cloud.

Briefly, our contribution can be summarized as follow:

• Present a clustered fog network topology.

• Formalize two different resource allocation variations for such a clustered

topology, a flat and clustered based fog selection variations.

• Define the impact of adding the security and privacy metrics to our varia-

tions on the resource allocation efficiency

• Evaluate our variations by comparing them to a baseline approach based

on the average overall delay, average delay at the fog layer, the number of

rejected tasks, and the number of tasks being offloaded to the cloud.

4



1.5 Thesis Plan

In chapter 2, we describe cloud computing, fog computing, IoT definition and

its applications, and clustered network topology. Moreover we will review work

related to resource management in fog computing by stating their limitations

and how their work differs from ours. In chapter 3, we describe the network

architecture in addition to the profile vectors that define the tasks and the fog

nodes. The possible scenarios, the proposed variations of our approach, and

the methodology of calculating delay will be introduced as well in chapter 3.

While in chapter 4 we define the simulator that has been used to implement our

approach and present the obtained results for every variation. Both variations

are compared against each other, and against a baseline approach. We conclude

in chapter 5.
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Chapter 2

Background and Related work

In this chapter we describe some basic concepts, such as introduction to cloud

and fog computing, introduction to IoT, its applications and tasks’ description,

and clustered network topology. Moreover, we survey several related recent work

found in the literature.

2.1 Introduction to Cloud Computing

Cloud computing is the replacement of local storage and servers. It enables

customers and users to employ compute resources like applications, storage and

virtual machines as a utility through the Internet without worrying about man-

aging and maintaining them [8].

Cloud computing follows the Pay-as-You-Go usage model, which facilitates the

scaling and customization of computing resources.

Clients, Data centers and Distributed Servers are the three main components

that make up the cloud computing solution.

As virtualization is a process of manipulating the hardware, cloud computing

refers to the service resulting from this manipulation. Virtualization is the foun-

dation of cloud computing since it enforces scalability and flexibility.
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The architecture of Cloud Computing is made up of four layers. The first layer

is the hardware layer which deals with the physical assets of the cloud such as

router, switches, servers cooling system and power. Second comes the the in-

frastructure layer, also known as the virtualization layer, which makes a pool of

storage capacity and computing resources. The third layer will be the platform

layer that comprises of operating systems and requisition structures. The last

layer is the application layer which is made up of the actual cloud provisions.

Figure 2.1: Cloud Computing Service Models

Cloud Computing has three different service models as shown in Figure 2.1 :

• Software as a Service (SaaS): Also known as on-demand software. SaaS re-

places the traditional software installation, maintenance and management.

It is a model where applications are hosted as a service to end-users that

can access it through the internet.

• Platform as a Service (PaaS): It is a model that provides developers with all

needed hardware and software tools to develop their applications directly

on the cloud. This service model provides the cloud consumer with a devel-

opment platform where they can focus on creating and running their appli-
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cations instead of constructing and maintaining the infrastructure. Using

this model the development team can collaborate and work together despite

of their physical locations.

• Infrastructure as a Service (IaaS): Instead of offering applications as the

previous two models, this model provides the consumer with the hardware

that the organization can use to store whatever they want in it. Rather

than having the organizations purchasing servers and having to pay for the

datacenter space for them they can just rent these resources on the cloud.

The model is scalable and supports multi-tenancy.

Figure 2.2: Fog Computing General Architecture
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2.2 Introduction to Fog Computing

2.2.1 Fog Computing Definition

Fog computing is allowing the computing to take place at edge of network on

behalf of the cloud and IoT services. The edge is any computing and network

resource that resides between the end-users and the cloud data centers as shown

in Figure 2.2. The main purpose behind fog computing is to perform all the com-

puting at the proximity of the data sources. Besides the computing performance,

fog computing performs data storage, caching and processing. Moreover, it can

distribute requests and deliver services from the cloud to users.

2.2.2 Aim behind Fog Computing

As the amount of data being generated at the edge of the network is growing fast

due to the proliferation of IoT devices, response time will massively increase if

data processing takes place at the cloud due to the current bandwidth capabilities

and network saturation [9]. The aim behind fog computing, is to perform all the

processing and computing at the proximity of data resources and thus minimizing

the latency. Fog nodes i.e routers, switches, and access points are also able to

support mobility due to their dense geographical distribution. As the fog extends

the cloud to the edge of the network, it depends on the existence of the cloud and

can not operate in a standalone manner. Starting from this, the idea of integrated

cloud-fog networks emerged which allows applications to span over the cloud and

the edge.
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2.3 IoT Definition and Applications

2.3.1 IoT Definition

Any device that is able to transmit and receive data, or has a sensor attached

to it is known as an IoT device. IoT devices include computer devices and wire-

less sensors. Inter connectivity, heterogeneity, dynamic changes, enormous scale,

sensing, and intelligence are the most important characteristics of IoT devices.

These devices have specific requirements such as performance, availability, scal-

ability, and serviceability.

2.3.2 IoT Applications and Tasks Examples

IoT devices are becoming part of every aspect of our lives since they give more

control on routine life work and personal tasks. For that, IoT applications have

been deployed in various areas such as smart homes, smart cities, transporta-

tion, and healthcare . To start with smart homes, IoT applications are used to

have more control over simple tasks in our homes. Examples of such applications

are door locks, smart heating, smart gardening and personal assistants. As for

the healthcare area, IoT devices can be used to save lives. For example IoT de-

vices can be used to continuously monitor glucose and insulin pens for diabetic

patients. Moreover, new devices are introduced for coagulation testing. These

devices help patients to detect how quickly their blood clots in order to avoid

strokes or bleeding. For the smart cities area, IoT applications can be used to

provide an innovative solution for traffic congestion. For example, smart traffic

signals can adjust their timing in peak hours to keep cars moving, or city officials

can collect data from traffic cameras and road sensors to monitor traffic incidents

in real-time like alerting drivers in a way to direct them to less congested routes.

To go deep into describing IoT tasks in a more technical way, in smart traffic
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signals, the sensors on the road (acting as the IoT devices) collect data such as

the number of vehicles present and send it to the fog nodes or the cloud. The

latter will analyze this information and return its response back to the traffic sig-

nals which have to adjust their timing in a way to keep the cars moving. Another

example will be the asthma monitoring device that detects several symptoms

as heart beats, cough rate, respiration pattern and send them to the fog node

for analysis to be able to notify the patient in case of deviation from individual

norm. Thus, any IoT task will be represented by data collected from IoT devices

having specific resources and QoS requirements for execution. It is then sent to

the fog node; which must be selected by applying a task allocation algorithm, for

execution and analysis to return the desired output back to the device issuing

the task.

2.4 Clustered Fog Network Topology

The aim behind a clustered fog network topology is to decrease the network sat-

uration and overall latency. Many research work proposed such an architecture

in order to tackle the resource management challenge. For example in [4], the

authors mentioned that CC and FC are not mutually exclusive, rather they are

interdependent. Meaning that the cloud can manage the fog and handle the

heavy-weight delay-tolerant IoT tasks, while the fog can be responsible for han-

dling the light-weight delay-sensitive IoT tasks. They proposed the iCloudFog,

an integrated Cloud-Fog architecture which is meant to provision resources of the

cloud or the fog to the IoT requests based on their availability and the requests’

requirements. This proposed architecture is a clustered one, where the fog layer

consists of fogs each made up of a fog controller and fog nodes. The authors

pointed out the challenges that must be addressed while constructing such an

integrated architecture which are network dimensioning which decides the size of

each fog, Qos security-aware resource management, and localization.
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Similar to [4],in [1, 6, 7] the authors adopted the same clustered fog layer for

applying their proposed resource management approach. The fog layer in the

all mentioned papers, consist of fogs. Each fog contains micro data centers, base

stations and/or routers acting as fog nodes to execute tasks issued by IoT devices.

2.5 Related Work

In this section we review the contributions of several authors in addressing the

resource management challenge in a fog computing environment.

To improve the performance of fog networks in terms of throughput and cost,

an offline priority-based task-scheduling algorithm was proposed in [10]. In this

algorithm the resource allocation for task execution is a two steps process. In

the first step, requests will be marked as accepted or rejected by the nearest fog

node’s manager. When a request is accepted, meaning that the time it will spend

in the fog layer is less than its maximum allowed delay, it has to be prioritized

first before assigning it to any fog node. The request will be added to one of the

three priority queues, high, medium, or low based on three factors, its maximum

allowed delay, estimated service time and original labeled priority queue. As the

prioritizing step is over, the second step which is the resource allocation process

starts. The requests will be assigned to fog nodes and processed based on the

priority queues they belong to. The proposed network allows a fog node to either

execute the arriving tasks locally if its resources are sufficient, reallocate the task

to another fog node in case there are sufficient resources in the fog layer following

step one again, or send the task to the cloud for execution when all the resources

in fog layer are saturated. Although the authors took into consideration the delay

constraints and resources availability while assigning requests to fog nodes, this

offline approach cannot cope with the elasticity of requests where each task to

node assignment would result in a different performance and thus it is becoming
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infeasible to have a prior knowledge of the applications.

A service oriented resource management approach, which depends on service

cost optimization, was proposed in [11]. In this architecture, the fog node, which

is responsible for providing on-demand services to end-users, is also capable of

predicting their consumption of resources. To allocate and consume resources in

a fair and effective way, the proposed predictive model is set based on the users’

behavior and their probability of relinquishing or giving up on resources they just

requested. The fog layer keeps track of historical records for all existing customers

which includes their service relinquish probability for every service they have re-

quested and the average overall relinquish probability that describes the overall

users’ behavior and loyalty on all the requested services. The resource allocation

process is for the three types of customers: a new customer, an existing customer,

and an existing customer requesting a service for the first time. This resource

allocation scheme assigns a virtual resource value to the customer based on its

type, and/or behavior, and the service cost, then this value in return is mapped

to the actual resource pool based on the type of service. This approach, which

treats end-users differently to optimize the resource utilization and service cost,

is able to resolve the task offloading challenge without taking into consideration

the complexity of the network, load balancing the latency constraint which will

result in degradation in users’ experience and QoS satisfaction.

Distributed earliest deadline first for fog (DEF) algorithm was proposed in [12]

to allocate resources in a cellular fog computing architecture. In this architec-

ture, each cell consists of a single fog service provider called an aggregator and

a set of edge devices all connected to the aggregator. The aggregator acts as

the controller that keeps track of all the service demands and resource capacities

of the devices and runs the real-time scheduler. The edge devices can act as a

service consumers or service providers. Due to its mobility and upon the arrival
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to the system, the service consumer, a client, should provide its arrival time,

task deadline, and its length as parameters to the aggregator while the service

providers, hosts, advertise their arrival time, departure time, and computation

power in million instructions per second to the aggregator. The aim of DEF

algorithm is to maximize the utilization of residual computation capacities of

end-devices. As clients arrive with tasks, the aggregator will prioritize the tasks

based on their deadline, where the highest priority is given to task with earliest

deadline. The tasks are mapped to computing devices under the same aggrega-

tor based on best fit method. A device is selected as a best fit for a task if it

has the least remaining computation capacity after executing the task within its

deadline. If the algorithm can’t find a best fit then the task is rejected. Thus

to find the best fit device, the computation capacity required by the task should

be less than or equal to the computation capacity available at the device within

the tasks deadline. This algorithm is extended in order to guarantee minimum

amount of profit to aggregator. The aim is to meet the constraints on task budget

and computation rate, which is a price charged by hosts for every task scheduled

on it. Here, a best fit device is selected if the computation capacity required by

the task is less than or equal to the computation capacity available at the device

within the tasks deadline and the task budget is greater than or equal to the

sum of the aggregator’s minimum profit and amount paid by task to device for

execution. Although this approach deals with delay constraint, the possibility for

a task to be rejected is high as the load balancing between aggregators, and the

offloading to the cloud are not taken into consideration.

The fog resource selection algorithm (FResS) was proposed in [5]. The algo-

rithm consists of three main modules which are: task scheduler, history analyzer,

and resource selector. The IoT requests are submitted to the task scheduler,

which acts as an interface for IoT devices, fog, and cloud layers. The task will

be sent to the history analyzer, which consists of artificial neural networks, to
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predict the resources that would be capable of handling the task and the possible

execution time. The predictions are then sent to the resource selector to find the

suitable fog node to execute the task. The resource selector discovers and tests

fog resources against the minimum criteria such as their availability, operating

system, cost and delay constraints. The task scheduler then submits the final

decision of the resources needed with the task to the fog layer for execution. The

predictions made are stored in a separate database to be used as training vectors

for future predictions. These three modules help improving the performance of

IoT devices that communicate directly with the fog layer and causing high delay

and network saturation. This approach suffers from a main limitation which is

the availability of previous observations in order to predict the resources needed

for future IoT requests.

Machine learning was proposed for resource allocation at the edge of network

in [13] as well. This solution assumed the tasks are elastic, meaning there are

no specific resource requirements, and that each task to node assignment would

result in a different performance measure that should be learned from previous

observations of the task to node assignments. Hence assigning a task to a node

is simply mapping a pair of task and node’s profile to a performance metric. The

assignment problem is viewed as a recommendation system. Multiple nodes can

be recommended for a task based on the performance of previous similar obser-

vations of assignments. The predictions are done using a collaborative filtering

(CF) network which takes as input the vectors describing the tasks requirements

and edge nodes capabilities and output the predictive performance vector which

could be mapped to a single value by a utility layer. This task to node assign-

ment architecture proposed consists of three components. The first component is

the resource and performance monitor (RPM) which measures the performance

profile of a task as it is assigned to a node. In addition to that, it monitors

the currently available resource profile of each node. The measured performance
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with the updated information about the node’s status is stored in a database and

then fed to the other two components. The second component is the predictive

performance modeler (PPM) which is responsible for building and re-building the

CF-based performance prediction model using the data provided by the RPM.

The model is updated periodically within fixed period of time or on the arrival

of n-th new vectors. The PPM then provides a recommended set of nodes for a

given task to the Task-Resource Scheduler which is the last component that is

responsible for assigning a task to one of the nodes in the recommended set while

taking into consideration the current resource profile of the nodes.

The sparsity of available observations of IoT tasks being executed on fog nodes

can be seen as a challenge that [5] and [13] suffer from. As these approaches need

the observation of nodes’ performance in order to predict the needed resources

for future tasks.

The load balancing challenge in software defined networking (SDN) based fog

networks was addressed in [14] using Q-learning from reinforcement learning to

achieve the minimum communication and task processing delays. The architec-

ture consists of an SDN-fog controller and serving SDN-fog nodes. The SDN-fog

controller is responsible for observing the environment by collecting information,

and taking the decision on behalf of every fog node. Whereas the fog nodes serve

the end-users and deliver the collected information to the controller. As any re-

inforcement learning algorithm, the problem is formulated as a Markov decision

process. The node having requests to be allocated, the number of tasks need to

be allocated, and the number of tasks currently in the queue, represent the state

vector. While the action vector is represented by the node the tasks will be of-

floaded to and the number of tasks to be offloaded. The main goal is to distribute

the incoming workload across a group of serving fog nodes to maximize the util-

ity while minimizing the processing time and the overall overloading probability.

16



For that, they designed their reward function in terms of the utility, immediate

delay, and overloading probability functions. This approach may cause network

saturation as the decision should be taken by only one controller.

Several reinforcement learning algorithms such as Q-learning, SARSA and E-

SARSA were used in [15] to address the resource allocation challenge in fog radio

access networks, in order to meet the QoS requirements as latency and through-

put of IoT tasks . The network architecture consists of three layers. The core

layer includes the cloud. The fog layer consists of fog nodes serving the IoT de-

vices in the IoT layer. Each user request has a utility value measured using a

function of the latency requirements, throughput requirement, and channel ca-

pacity. The authors defined the state of a fog node at any given time as a function

in terms of the utility value of the request and the number of available resource

blocks. The fog node can choose between two actions, either accept which means

execute the task locally, or reject meaning to offload the task to the cloud. Four

values represent the reward for every possible action. A threshold value for the

utility value is introduced to facilitate learning the expected future reward. This

approach does not take into consideration the latency of the task when offloaded

to the cloud which can be addressed through load balancing.

A conceptual framework for fog resource provisioning which aims at minimiz-

ing the delay and maximizing the resource utilization was introduces in [1] .The

architecture consists of three layers IoT, fog, and the cloud shown in Figure 2.3.

To allow the orchestration and resource provisioning in both cloud and fog

the framework introduced the cloud-fog control middleware that resides between

the fog and cloud layer. This control level is the central unit that manages the

execution of tasks in the cloud while supporting the underlying layers. Moreover,

as the fog applications can run without the cloud involvement, the framework

introduced another control level for the fog layer, which are fog orchestration
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Figure 2.3: Network topology in [1]

control nodes. These nodes are responsible for managing the fog colonies con-

nected to it. Each fog colony is made up of a single fog orchestration control node

and a number of fog cells. Each fog orchestration control node is responsible for

performing changes in a fog colony, creating resource provisioning plan for task

requests, and monitoring fog cells and IoT devices. The resource provisioning

plan generated by the orchestration node is formalized as an optimization prob-

lem. As mentioned previously, each fog colony consists of a control node and a

set of fog cells, each node and cell is represented by the CPU and RAM param-

eters. Moreover, every control node and cell has a type which indicates the set

of services that can run on this particular cell. The links between a control node

and a cell is characterized by the bandwidth and delay. The tasks arriving to
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a fog colony are represented by the CPU and RAM demands and its type. If a

particular fog colony can’t execute the arriving task due to lack of resources, this

task is then propagated to higher levels where it can be allocated to other fog

colonies or propagated to the cloud. In order to maximize resource utilization as

bandwidth and to minimize the delay caused by propagating tasks to cloud, the

aim of the proposed optimization problem is to maximize the number of task to

cells assignment while decreasing the propagation of tasks to higher level which

is formulated as follow:

maximize
M∑
i=1

(
N∑
j=1

(xji ) + xFi )

where N is the number of requests M is the number of fog nodes. The decision

variable xji is set to 1 if requesti is assigned to fog nodej and 0 otherwise.

The first constraint for this objective function is that the type of the request

should conform to the type of the fog cell. Moreover, as a second constraint,

each request can be assigned exactly to one fog cell. To minimize the delay, fog

cells are sorted according to the value of delays, which means prioritizing the fog

cells with lower delay and then selecting a fog node with minimum estimated

delay. Two more constraints were added to insure that the tasks do not exceed

the resources of fog cells. This approach is similar in concept to what we are

aiming to achieve yet the hierarchy and network topology differs. Moreover, this

approach is not a security aware one.

2.6 Discussion

In our work we aim on adopting the clustered fog network topology described in

section 2.4. Table 2.1 summarizes some of the surveyed related work. it shows

features such as privacy and security, latency and load balancing. It also shows
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the features we aim to address in our proposed work. As we can see, none of

the related work tackles the security problem, which means selecting a fog node

that satisfies the security and privacy required by the issued task. In our pro-

posed work we aim on providing a run time resource allocation approach for such

a complex and heterogeneous integrated network with sparsity of available ob-

servations as in [1], [14], and [15]. As mixed integer linear programming is an

applicable solution for real world applications in allocation and planning prob-

lems, we aim at applying it to formalize the QoS and security-aware resource

management approach for integrated cloud-fog networks. We will propose two

different variations of the same approach as follow:

• The first variation: The controller of the fog (cluster), have full knowledge

about the network and the fog nodes reachable for the devices connected to

it therefore the controller first will receive the task issued from the IoT de-

vice and then will examine all the reachable fog nodes using the formalized

optimization problem to select the best node to execute the task.

• The second variation: The controller of the fog (cluster) also having a full

knowledge about the network, after receiving the task, will first find the

best cluster for execution and then examines the nodes of that cluster to

select the best node for task execution

In order to evaluate the clustered topology, both approaches will be implemented

and then evaluated using different scales of; i.e, we will scale the topology down

by adding few clusters and up by increasing the number of clusters. We will mea-

sure the average overall delay, average delay at the fog, the average number of

rejected tasks and the number of tasks being offloaded to the cloud, the obtained

results will allow us to determine the best topology scale.

For that, the formalized optimization problems will be able to address the three
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issues delay, security, and load balancing, to point out which approach and topol-

ogy scale yields better results in terms of throughput, latency and security.

Table 2.1: Comparing several authors contributions and our proposed work

Addresses

Delay Load Balancing Security

[5] X X

[1] X X

[10] X X

[11]

[12] X

[13] X X

[14] X X

[15] X

QSRM X X X
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Chapter 3

System Model

In this chapter we present our proposed QoS and security aware resource man-

agement approach for an integrated cloud fog network and describe its network

architecture and possible deployment scenarios. We also formalize it as an opti-

mization problem.

3.1 Network Architecture

In this thesis, we aim on evaluating the clustered fog network architecture by tak-

ing into consideration two different task allocation variations for it. For that, we

adopt a network architecture similar to the one proposed in [4]. The architecture

consists of three layers: the cloud, the fog, and the IoT. The cloud layer consists

of the cloud data centers. The fog layer consists of fogs representing the clusters,

each made up of multiple fog nodes. The IoT layer is made up of all the IoT

devices requesting services from the upper layers. Four types of communications

could take place: cloud to fog (C2F), fog to fog (F2F), fog to thing (F2T), or

thing to cloud (T2C). It is essential to have small scale fogs in order to deal with

data locality while supporting mobility. The fog layer is heterogeneous in nature

as the fog nodes could be either wireless, wired or hybrid. In this integrated
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Table 3.1: Table of Notations

Notation Definition

fj fog node j

ti IoT task i

CPUj,Memoryj CPU and Memory capability of fog node respectively j

IPS Processor’s speed of of fog node j (instruction per second)

PMj Privacy Measure of fog node j

CPUi,Memoryi CPU and Memory required by IoT task respectively i

SLi Security level required by IoT task i

Bytes Size of IoT task i in Bytes

MAD Maximum allowed delay for IoT task i

SCi Scheduling class of IoT task i (high or low)

BWs,d Bandwidth between source s and destination d

PDs,d Propagation delay between source s and destination d

Xj
i ,Y

k
i Decision variables for optimization model

TotalDelayj
i , Total delay of executing task i on node j

SpareTimeji Difference between maximum allowed delay by task i and TotalDelayj
i

Privacyj
i Difference between security level required by task i and privacy measure of node j

TotalDelayk
i , Total delay of executing task i in cluster k

SpareTimeki Difference between maximum allowed delay by task i and TotalDelayk
i

Privacyj
i Difference between security level required by task i and average privacy measure of cluster k

AvgCPUk,AvgMemoryk Average CPU and Memory available at cluster k respectively

RDatCj
Request delay at controller of fog node j

Delayatfj Delay of executing task on fog node j

α Hyper-parameter

23



network, the fog nodes can be shared with the cloud to allow distributed storage

and CPU. Moreover, IoT devices can act as fog nodes as long as their resources

are sufficient to handle light-weight delay-sensitive tasks. A heavy-weight delay-

tolerant task will be offloaded to cloud for processing. Each fog node is associated

with a controller that keeps track of the fog nodes’ resources and handles the F2F

communications. The T2C communication could take place through the fog layer

where the fog nodes will act as routers.

In our proposed approach we assume that the network architecture consists of

three layers as shown in Figure 3.1: the the cloud layer holding the cloud servers,

IoT layer containing all the IoT devices issuing tasks, and the fog layer consisting

of a number of small scale fogs (clusters).

Cloud Server Cloud Server

Cloud Server

Controller

Controller

F2F

F2C

F2C

F2C

Fog
Nodes

Fog
NodesRe

qu
es

t

D
ecision

Cloud Layer

Fog Layer

IoT Layer

Figure 3.1: Network Architecture

The number of fog clusters might vary. Each fog cluster contains a number of

fog nodes with a single fog controller to take the task allocation decisions. Each
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fog cluster will have a number of IoT devices from the IoT layer directly con-

nected to it, meaning that the tasks issued from any IoT device will be directly

transmitted to the controller of the cluster it is connected to. Therefore, an IoT

device could reach one or more fog clusters, but it will be directly connected

to a single fog cluster. As mentioned in [4], fog controllers could communicate

through F2F communication in order to allow load distribution and the ability

to execute tasks not only in the fog clusters the device connected to, but in the

reachable fog clusters as well. Moreover, the fog nodes could act as routers to

propagate tasks to the cloud when having heavy weight delay-tolerant tasks.

3.2 Profile Vectors of Fog Nodes and Tasks

As mentioned previously, the aim of this thesis is to propose a QoS and security

aware resource management approach for an integrated cloud-fog network.Table

3.1 srates the definition for all notations used in this chapter. Each fog node

fj will be featured by a vector { CPUj, Memoryj, IPS, PMj } represented by

its available CPU, available storage, instructions per second, and its privacy

measure which is a trust value representing the security strength of fog nodes

[16], respectively. Each task ti arriving at the fog layer is featured by a profile

vector { CPUi, Memoryi, SLi, IC, Bytes, MAD, SCi } as well. This vector

consists of the required CPU, memory, security level, instructions count, its size

in bytes, its maximum allowed delay , and the scheduling class respectively. The

scheduling class for the task ti given in equation 3.1 is used to tell whether or not

it is delay sensitive,

SCi =

1, if Taski is delay tolerant

0, Otherwise

(3.1)

The security level attribute will help the controller to decide if a task can tolerate

the delay in case it is offloaded to the cloud.
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The privacy measure of the fog node is a trust value. Each task will have a

security level class which is mapped to a range of privacy measures. The fog

node must be able to satisfy the minimum privacy measure required by the task.

For example, assume we have a fog node fj having a privacy measure 0.8 and a

task i with security level class ’A’ which is mapped to a range between 0.6 and

0.9, then we can say that fj can satisfy the minimum security level required by

i which is 0.6 and thus it can be considered as an option for its execution from

the privacy perspective.

As for the memory and CPU, a fog node is considered as an option for a task

execution if the CPU and memory required by the task do not exceed the available

CPU and memory at the fog node.

The maximum allowed delay attribute is used to satisfy the latency requirement

of the task. Thus a node is applicable for execution if the total time it takes to

execute the task along with the total transmission and propagation delay do not

exceed the maximum allowed delay attribute of the task.

The link between any two network devices source s and destination d (as IoT

devices, fog nodes and cloud) is represented by the vector {BWs,d, PDs,d} stating

the bandwidth and propagation delay respectively. This vector represents the

communication and the network topology and states which devices are connected

to each others. Moreover, the vectors attributes of every link will be used to

calculate the propagation and transmission delay when taking the task allocation

decisions.

3.3 Possible Scenarios

The requests issued from the IoT devices will be submitted to the fog controller

of the nearest fog. The controller, who has the full knowledge about the profile

vectors of the devices connected to it, its fog nodes, and the reachable neighbor

fog nodes, will be able to decide which fog node is suitable to execute the sub-
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(a)Choosing a Local Fog Node

(b)Choosing a Local Node in another Fog

(c)Offloading Task to Cloud

Figure 3.2: Three Possible Scenarios
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mitted task.

The controller receives a request from an IoT device directly connected to it,

the controller’s job is to find the node which is able to handle the task repre-

sented by the request. The decision taken will be sent back to the IoT device

issuing the request in order to redirect it to the selected node to submit the task

directly. Thus, the controller has the ability to either select a local fog node as

in Figure 3.2 (a), a node in other reachable fogs as in Figure 3.2 (b), or offload

the task to the cloud as in Figure 3.2 (c). The controller can always reject the

task if none of the available resources can meet the required requirements.

Figure 3.2 shows that any IoT application in our proposed approaches is com-

posed of four messages. The first message represents the task request issued

from the IoT device to the controller of the fog. The second message holds the

controller’s decision regarding the message request, meaning that the controller

can either reply with the selected fog node which the IoT device has to submit

the task to, inform the IoT device that it has to offload its task to the cloud, or

inform it that its task was rejected. The third and fourth messages will be issued

in case a fog node was selected or the task is going to be offloaded to the cloud.

Thus, the third message will be the message used to submit the task from the

IoT device to the selected fog node or the cloud, while the fourth message will

be the reply from the node which executed the task back to the IoT device.

3.4 Two Variations of the Proposed Approach

In this section we propose two variations of our approach that the controller can

follow to be able to take a decision and select the best node; if applicable; to

execute an IoT task. In the first variation, the controller can select the best fog

while in the second variation the controller can select the best fog cluster.
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3.4.1 First Variation: Flat Based Fog Selection

In this variation the controller has the full knowledge about its fog nodes, the

devices connected to it, and the fog nodes these devices can reach. It has to ex-

amine all the fog nodes; which are considered as an option for selection, based on

an optimization formulation to come up with a final decision. The optimization

model is a mathematical model that aims on finding values for the decision vari-

ables that maximize or minimize an objective function without violating some

constraints.

Thus, an IoT device first issues a request of Task Ti which holds the resources

and QoS requirements of the task to the controller of the fog cluster it is directly

connected to. The controller has to either select the best node if found, choose

the cloud as an option if the task can tolerate a long delay based on its scheduling

class described in section 3.2, or reject the task if none of the previous two options

is applicable. The controller then has to notify the IoT device with its decision.

The Decision Variables

We define Xj
i as the decision variable for our optimization problem. If Xj

i is 1,

this means that Task Ti is assigned to fog node fj and 0 otherwise as given in

equation 3.2.

Xj
i =

1, if Task Ti is assigned to fj

0, Otherwise

(3.2)

When all the decision variables are zeros, it means that none of the reachable fog

nodes is suitable for executing the task. In such a case, based on the scheduling

class of the task, if it is set to 1, meaning that it is delay tolerant the decision

will be to offload the task to the cloud, otherwise the task will be rejected.

Thus, our optimization model has to find the described decision variable which
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indicates that our problem is a mixed-integer one, as the values that we aim to

find are binary ones.

Add to that, the controller has to take a decision that does not violate the

delay and privacy constraints of the task. As the controller knows the IoT device

requesting a task execution, it can know which fog nodes can be checked if are

suitable for the execution.

Delay Constraint

The whole task execution process starts first by the IoT device issuing the task

request to the controller, and then the controller replying with its decision. The

controller has to alert the IoT device about whether its task has been rejected due

to unavailable resources, or accepted and thus notifying it about the node (cloud

or fog) that has been selected for execution. As the IoT device is notified, if its

task request is accepted, it will submit the task to the selected node (cloud or fog)

and wait for the response and the result of the execution. As we mentioned in

section 3.2, each task has the maximum allowed delay attribute which describes

the maximum delay it can tolerate. Thus when a controller chooses a fog node as

the selected node for execution it has to make sure that the total end-to-end delay

between issuing the request of task Ti and performing the task on the selected

node fj (TotalDelayji in equation 3.3) should not exceed the maximum allowed

delay of the task. Meaning that the difference between both values in equation

3.3 should be greater than zero as in equation 3.4.

SpareT imeji = MaximumAllowedDelayi − TotalDelayji (3.3)

SpareT imeji≥ 0 (3.4)

In section 3.5 we will be describing how to calculate the TotalDelayji variable

mentioned in equation 3.3.
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In order to minimize the end-to-end delay we need to maximize the difference

between the allowed delay and the total delay described in equation 3.3.

Privacy Constraint

The controller must select a fog node that guarantees the minimum security level

required by the task and thus not violating the privacy constraint of the issued

task request. This means that the difference between the minimum required

security level of the task Ti and the privacy measure of the fog node fj as in

equation 3.5 should be greater than zero as in equation 3.6.

Privacyji = SLi − PMj (3.5)

Privacyji≥ 0 (3.6)

Similar to what have been discussed regarding the delay constraint, we need to

maximize the privacy difference as well to guarantee that the selected fog node

satisfies the security level required by the task

Objective Function

Putting all of this together, our aim is to either assign a task Ti to a fog node

fj if is suitable, offload it to the cloud if it is delay tolerant, or reject the task if

none of the previous options is applicable. For that, our objective function is to

check if there exit a node that maximizes the sum of the factors computed using

equations 3.3 and 3.5.

Our objective function is formulated as follow:
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maximize
M∑
j=1

(αSpareT imeji + (1− α)Privacyji ) ∗X
j
i ∀ i ∈ {1, . . . , N} (3.7)

The α in equation 3.7 is a hyper-parameter used to give a weight for one factor

over the other. This value will be set during simulation.

This objective function is subjected to several constraints listed below. As a first

constraint, each task can be assigned to exactly one fog node. This constraint is

formalized in equation 3.8:

M∑
j=1

Xj
i ≤ 1, ∀ i ∈ {1, . . . , N} (3.8)

Next, the selection should guarantee equations 3.4 and 3.6 as well. For that we

added the two constraints presented in equations 3.9 and 3.10 respectively:

M∑
j=1

(SpareT imeji ∗X
j
i ) ≥ 0 , ∀ i ∈ {1, . . . , N} (3.9)

M∑
j=1

(Privacyji ∗X
j
i ) ≥ 0 , ∀ i ∈ {1, . . . , N} (3.10)

Resources Constraints

Although our aim is to satisfy the delay and privacy constraints of the IoT tasks,

yet our variation needs also to meet the resources requirements as in CPU and

memory of the tasks. This means that when the controller selects a fog node to

perform a specific task, it has to make sure that the resources required by the

task do not exceed the resources available at the selected fog node.

For this purpose, equations 3.11 and 3.12 were added as constraints to assure that
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the resources requirements; which are the CPU and the memory, were satisfied

without exceeding the fog resources.

M∑
j=1

(CPUj − CPURi) ∗Xj
i ≥ 0 , ∀ i ∈ {1, . . . , N} (3.11)

M∑
j=1

(Memoryj −MemoryRi) ∗Xj
i ≥ 0 , ∀ i ∈ {1, . . . , N} (3.12)

Where CPUj and Memoryj represent the CPU and memory available at fog node

fj, while CPURi and MemoryRi represent the CPU and memory required by the

task Ti

3.4.2 Second Variation: Clustered Based Fog Selection

In the first variation we assumed that the controller having the full knowledge

about the fog nodes each of its IoT devices connected to, has to check if any of

those fog nodes is suitable to execute the task requested by the IoT device by ap-

plying the optimization model described in the previous section. In this section,

as a second variation, in order to take advantage of the clustered topology, we will

allow the controller to first select the best cluster instead of directly searching for

the best node.

For this purpose, we are going to add a new feature vector for each fog clus-

ter k { AvgCPUk, Avg Memoryk, AvgIPS, AvgPMk }. This vector specifies the

cluster’s average available CPU, average available memory, average instructions

per second, and average privacy measure respectively. These values are computed

based on the profile vectors of the fog nodes belonging to each cluster.

The process will be as follow, an IoT task Ti will arrive to the controller of

the fog node. The controller knows which fogs (clusters) are reachable for the
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IoT device issuing the task. The controller tries to find the best fog cluster which

meets the task’s requirements. In case a cluster is found, the controller searches

for the best node to execute the task among the nodes belonging to the selected

cluster using the optimization problem explained in previous section

This method, which is viewed as a filtering process, reduces the number of devices

subject to the selection process.

Next we will be describe the optimization problem (which is similar to the pre-

vious one) which will be used to find the best cluster.

The Decision Variables

We define Yk
i as the decision variable for the second optimization problem. If

Yk
i is 1, it means that cluster k is selected as the best cluster for handling the

task i and 0 otherwise as in equation 3.13. When all the decision variables are

zeros, it means that none of the reachable clusters are suitable for executing the

task. In such a case, based on the scheduling class of the task, if it is set to 1,

meaning that it is delay tolerant the decision will be to offload the task to the

cloud, otherwise the task will be rejected.

Thus our optimization model has to find the described decision variable which

indicates that our problem is a mixed-integer one, as the values that we aim to

find are binary ones.

Y j
i =

1, if cluster k is selected as best cluster for task i

0, Otherwise

(3.13)
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As our approach is a QoS and security-aware one, the controller has to find

the most suitable cluster, that has the ability to satisfy the delay and privacy

constraints of the task. As the controller knows the IoT device requesting a task

execution, it can know which clusters are suitable for accommodating the task.

Delay Constraint

The task execution process, which starts by issuing a task, finding the best node,

submitting the task to the selected node and getting a reply, does not differ from

the process described in the previous section. Yet in this part of the second vari-

ation we are not concerned with the whole task execution delay which includes

the transmission and propagation delay, rather we only care about the processing

delay at the selected cluster. Meaning, when we are selecting a cluster and not a

node directly we are not aware about the link bandwidth and distance to be able

to compute the whole task execution delay. But we still want to make sure that

the selected cluster can satisfy the delay constraint of the task, so the estimated

execution time in the selected cluster should not exceed the maximum allowed

delay, therefor, the difference between both values in equation 3.14 should be

greater than zero as in equation 3.15.

SpareT imeki = MaximumAllowedDelayi − ExecutionDelayki (3.14)

SpareT imeki≥ 0 (3.15)

ExecutionDelayki in equation 3.14 is calculated by dividing the instruction count

of the task by the average instructions per second of the cluster.

In order to minimize the end-to-end delay we need to maximize the difference
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between the allowed delay and the estimated processing delay as described in

equation 3.15

Privacy Constraint

The controller must select a cluster which should be secure enough to guarantee

the minimum security level required by the task and thus not violating the privacy

constraint of the issued task request. This means that the difference between the

minimum required security level of the task Ti and the average privacy measure

of the cluster k as in equation 3.16 should be greater than zero as in equation

3.17.

Privacyki = SLi − AvgPMk (3.16)

Privacyki≥ 0 (3.17)

Similar to what have been discussed regarding the delay constraint, we need to

maximize the privacy difference as well to guarantee that the selected cluster

satisfies the security level required by the task.

Objective Function

Putting all of this together, our aim is to find a cluster that might contain the

best fog node that is suitable to execute the requested task. For that, our ob-

jective function is to check if there exit a cluster that maximizes the sum of the

factors computed using equations 3.14 and 3.16.

Our objective function is formulated as follow:

maximize
K∑
k=1

(αSpareT imeki + (1− α)Privacyki ) ∗ Y k
i ∀ i ∈ {1, . . . , N} (3.18)
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The α in equation 3.18 is a hyper-parameter used to give a weight for one factor

over the other.

This objective function is subjected to several constraints listed below.

As a first constraint, a single cluster can be choosen. This constraint is formalized

in equation 3.19 as follow:

K∑
k=1

Y k
i ≤ 1, ∀ i ∈ {1, . . . , N} (3.19)

Next, the selection should guarantee equations 3.15 and 3.17 as well. For that

we added the two constraints presented in equations 3.20 and 3.21 respectively:

K∑
k=1

(SpareT imeki ∗ Y k
i ) ≥ 0 , ∀ i ∈ {1, . . . , N} (3.20)

K∑
k=1

(Privacyki ∗ Y k
i ) ≥ 0 , ∀ i ∈ {1, . . . , N} (3.21)

Resources Constraints

In addition to satisfying the delay and privacy constraints of the IoT tasks, the

selected cluster needs also to meet the resources requirements as CPU and mem-

ory of the tasks. This means that when the controller selects a cluster to choose

one of its fog node, it has to make sure that the resources required by the task

do not exceed the average resources available at that cluster.

For this purpose, equations 3.22 and 3.23 were added as constraints to assure

that the resources requirements; which are the CPU and the memory, were sat-

isfied without exceeding the average fog resources.

37



K∑
k=1

(AvgCPUk − CPUi) ∗ Y k
i ≥ 0 , ∀ i ∈ {1, . . . , N} (3.22)

K∑
j=1

(AvgMemoryk −Memoryi) ∗ Y k
i ≥ 0 , ∀ i ∈ {1, . . . , N} (3.23)

Where AvgCPUk and AvgMemoryk represent the average CPU and memory avail-

able at cluster k, while CPUi and Memoryi represent the CPU and memory re-

quired by the task Ti

The controller might or might not find a desired cluster. If a cluster was found,

the controller examines its fog nodes to either select a fog node, offload the task

to the cloud or reject the task using the method described in section 3.5.1. If the

controller can not find a suitable cluster, based on the scheduling class the task

could either be rejected or sent to the cloud.

3.5 Delay Calculation

In this section we will describe how the total delay TotalDelayji is calculated.

This factor is an important one as it helps the controller to check whether or not

the fog node being examined satisfies the delay constraint of the task requested

by the IoT device.

The end-to-end delay is the time difference between the moment the task has

been issued and the end of its execution. As mentioned previously, the controller

can examine all the fog nodes reachable for the IoT device or the fog nodes of

the selected cluster.

So the fog nodes being tested could either belong to the fog cluster the IoT
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device directly connected to or to a neighboring cluster. Thus the equation used

to calculate the delay depends on the location of the fog node being tested if

suitable.

Below we describe different delay calculation scenarios:

• The total delay between the IoT device issuing the Task ti and a fog node

fj belonging to fog k having the controller ’Ck’ , where fog k is the cluster

the IoT directly connected to, will be equal to:

TotalDelayji = RDatCj
+Delayatfj (3.24)

where RDatCk
is the request delay at the controller Ck

• The total delay between the IoT device issuing the Task ti and a fog node fj

belonging to fog k’ having the controller ’Ck′ ’ , where fog k’ is a reachable

fog to the IoT device, will be equal to:

TotalDelayji = RDatCk
+RDatCk′

+Delayatfj (3.25)

where RDatCk
is the request delay at the controller Ck which is the controller

of the fog the IoT device; issuing the task request, directly connected to,

while RDatCk′
is the request delay at the controller of the reachable cluster

k’.
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The delay at any controller k or fog node j will be represented by the the end-to-

end delay equation given in equation 3.26.

RDatCk
and Delayatfj = dtran + dprop + dproc + dqueue (3.26)

Transmission, propagation, processing and queuing delays represent the factors

making up equation 3.26. Each factor is computed based on the message ’m’

being transmitted, its characteristics and of course the source ’s ’ and the desti-

nation ’d ’.

The calculation of those factors will take place as follow:

Transmission Delay

dtran = Bytes/BWs,d (3.27)

Where Bytes is the size of data in the message m, while BWs,d is the bandwidth

between source s and destination d.

Propagation Delay

Propagation delay is simply dividing the distance between the source s and des-

tination d by the propagation speed of the medium as in equation 3.28.

dprop = distances,d/PDs,d (3.28)

Where distances,d is the distance between source s and destination d, while PSs,d

is the propagation delay between s and d.
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Processing delay

The processing delay for the task execution will be equal to the division of the

instruction count of the task over the instructions per second attribute of the

node (controller or a fog node) as in equation 3.29.

dproc = IC/IPS (3.29)

Where IC is the instruction count for task i, and IPS is the instruction per

second.

Queuing Delay

The queuing delay is the sum of the processing delays of all the tasks present at

the fog node or the controller. Where n in equation 3.30 is the number of tasks

present in the queue at the node.

dqueue =
n∑

i=1

dproc (3.30)
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Chapter 4

Performance Evaluation

In this chapter we describe the simulator used to evaluate the performance of

the proposed variations. In this context, we describe the simulator setup that

has been done in order to deploy the proposed approach. We also describe the

topology and messages creation along with all the parameters being set. Last

but not least, we describe the results obtained from the simulation.

4.1 Yet Another Fog Simulator (YAFS)

To implement and analyze our proposed variations, we used the Yet Another

Fog Simulator (YAFS) [17]. YAFS is a discrete event simulator designed to ana-

lyze the fog applications and the strategies used for their placement, scheduling.

Moreover, this simulator provides tools to analyze the routing strategies as well.

This simulator is built based on the Simpy library, which is a Python library

containing functions that define processes and shared resources.

YAFS is defined by its six main classes which are the core, topology, selection,

placement, population and the application class. The core is the class responsi-
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ble for managing simulation execution to control the life cycle of the processes

running.

The topology class, as its name says, it is used to create the fog nodes, cloud

servers, sensors and actuators. When defining those network modules, the node’s

RAM, cost and instruction per simulation time must be provided. Moreover,

each node will be represented by its id. This class is also used to define the links

between the network devices, which will be defined by the source, destination,

bandwidth and propagation delay. This class is accessed by other classes through

the core class, since the topology class is a main element of it.

The application class defines modules that run services and messages. Thus

using this class we can define the messages’ behaviour of any type of application.

The message is defined by the size of its data, and the number of instructions.

The selection, placement and population classes are the classes used and modified

by user to define the scheduling, routing, resource allocation, and application’s

deployment in the created topology.

In addition to those six classes, one important class is used which is the dis-

tribution class. This class is essential to allow customized distribution among

messages. Some of the distribution methods defined in this class are determin-

istic distribution, uniform distribution, and most importantly the exponential

distribution.

After defining the topology, the application with its messages and deployment,

and the messages distribution the simulation can start. The simulator issues two

excel files as output. The first excel file shows the name of the application, the

flow of messages and the processing time in details; through showing the time

emitted, reception time, time it went into the module for execution, and the time
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the execution was over. The second excel file is concerned with the routing, it

shows how the messages moves from the source to destination and which modules

are used as routers for the propagation.

We had to modify the simulator in order to adapt it to the environment needed

to deploy our approach and architecture. Indeed, our fog nodes are characterized

by the CPU, Memory (RAM), instructions per second and privacy measure. For

that, the topology class was changed by adding the new attributes which weren’t

present for creating a fog node.

As for IoT tasks, which will be represented by the messages from the application

class, we had to add the other needed variables as security level, scheduling class,

CPU, memory, and maximum allowed delay in addition to to the Bytes and in-

struction count variables which were already declared in the class.

Figure 3.2 shows the messages in our proposed approach. Each type of these

four messages must be treated differently, for that, the major changes were done

in the core class especially in the ”send message” function present in this class.

The selection class is implemented in a way that helps us customize our task

allocation algorithm and thus implement the two variation of our approach in

chapter 3. For that, different methods were added to allow the deployment of

different messages. For example, the first type of message must be sent to the

controller of the fog node the IoT device connected to, while the third message

must be sent to the fog node (if found) chosen by the controller.
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4.2 Simulation Setup

4.2.1 The Hyper-parameter α

In chapter 3 sections 3.4.1 and 3.4.2 we mentioned having the hyperparameter α

that is used to give weight for one factor over the other.

We decided to set the value for this parameter after performing several experi-

ments and then deciding which value permits better results.

For our problem, average delay can be used as the best judgment for the best α

value.

We created a small scale topology consisting of five clusters each containing a

small number of fog nodes. Each cluster has three IoT devices (termed as sensors

in the simulator) directly connected to it. Each device can reach either one or

two other clusters. The IoT devices are issuing tasks using an exponential distri-

bution where the rate of issuing tasks per time λ is set to 1.5. This value for λ

was noticed as the most suitable one after trying several values. This value allows

the generation of different types of messages, where lower values of λ causes the

repetition of same types of messages.

We run different simulation experiments using different values of α between 0.1

and 0.9 separately. The simulation was done 6 times for each value, where in each

iteration different number of types of messages were used with different simula-

tion time being set(as the number of types of messages is increasing we increased

the simulation time to allow higher distribution of various messages). The num-

ber of messages being generated in each iteration increased from 130 messages in

the first one to reach 400 in the last one. In every iteration and for every α we
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alpha 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

average delay 0.5278 0.5235 0.5189 0.5152 0.5154 0.5146 0.5144 0.5144 0.511

Table 4.1: The Variation of the Average delay with Respect to the Alpha Value

calculated the average delay; which is the difference between the time the final

reply reaches the IoT device and the time the IoT device issues the task request.

The average delay of all the iterations for all values of alphas were computed

and presented in Table 4.1. The table shows that as alpha is increasing the aver-

age delay is decreasing. Thus our best alpha will be the one that gives the lowest

average delay and that would be α = 0.9.

4.2.2 The Topology

To evaluate the performance of our approach, four types of topology were cre-

ated, each containing 5, 10, 15, and 20 clusters respectively. Figure 4.1 is an

example of a topology made up of five fog clusters, each fog cluster is consists

of a number of fog nodes, having a single controller and number of IoT devices

directly connected to it.

Each cluster in every type of topology has a small number of fog nodes, since

as mentioned in [4], small scale fogs would result in better performance metrics.

This number of fog nodes ranges between 4 and 8 in our work.

Each fog (cluster) has a range between 3 to 5 IoT devices directly connected

to it. Each of these devices could reach between 0 to 4 other fogs. Although

the number of IoT devices is not large, yet with respect to the topology being

created and the number of fogs in each cluster, this number of devices can issue
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Figure 4.1: Five Clusters Topology

enough tasks in order to be able to evaluate the overall performance. This is

due to the fact that the efficiency of the simulation depends on the number of

messages being generated and not only on the number of devices issuing the tasks.

To set the characteristics of the fog nodes, we used values from real servers like

IBM 7030, and Intel 4004 as stated in [18] and [19] respectively as mentioned in

Table 4.2. This was helpful to set a reasonable and synchronized values for the

instructions per second, CPU speed and RAM attributes for every fog node.

As for the privacy measure attribute, it was added using a uniform distribu-

tion. Meaning, we assumed that each cluster has a range of privacy measures
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and the privacy measure for every fog node belonging to the cluster is within

this range. For example, assume having fog cluster k with privacy measure range

between 0.3 and 0.5; where each value of this range is a trust value generated

based on a tool that assess the security strength of fog nodes as described in [16];

so the fog nodes of this cluster will have a privacy measure value in that range.

We assumed having one cloud server acting as the CLOUD. The instruction

per second parameter of the cloud must be higher than any value being set to

the fog nodes. This is due to the fact that the cloud has higher processing capa-

bilities than any fog node, and for that it’s responsible for handling heavy tasks

as described in [4].

As for the connections, the bandwidth between an IoT device and a fog node

could be either 54 Mbits/s as in wireless 802.11g networks or 100 Mbits/s as in

fast Ethernet. The bandwidth between the controllers; which act as routers for

IoT devices; and the cloud is set to 10 Gbits/s. While the bandwidth between

fog controllers is set to 100 Mbits/s. We adopted these values from the topology

created in [20].

4.2.3 The Tasks Creation

Before starting with the simulation we needed to create a large set of tasks. The

tasks’ requirements as CPU, memory and instruction count were generated using

the values set to the fog nodes. For example, the minimum value of cycles per

second (CPU) for a fog node in our topology is 740000 as in Intel 4004 [19], while

the maximum value is 8696000 as in IBM System/370 Model 158 [21], so the CPU

required by tasks will be a value within this range. As for the security level, it
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was generated uniformly between 0.2 and 0.9. Assuming that lowest trust value

being calculated; based on criteria in [16], for a fog node will be 0.2 while the

highest value is 0.9.

The scheduling class of every task was also uniformly generated to be either

0 or 1, yet we gave the preference for 0 over 1. We assumed that IoT tasks should

not always be delay tolerant; rather the tasks should require resources as fast as

possible.

4.3 Simulation Parameters and Values

Table 4.2 summarizes the simulation parameters and their values that were set

during the simulation.

Table 4.2: Simulation Parameters and Values

Parameter Value

Hyper-parameter α 0.9

Task issuing rate λ 1.5

Number of Fog Clusters in each run 5, 10, 15, and 20 respectively

Number of Fog nodes in a cluster Between 4 and 8

Number of IoT devices connected to a cluster Between 3 and 5

CPU, Memory and IPS of Fog nodes As in IBM 7030,Motorola 68000,Motorola 68020, and Intel 4004

Privacy Measure of fog cluster Randomly set between 0.2 and 0.9

Privacy Measure of fog nodes Uniformly distributed based on privacy measure of cluster the node belongs to

Bandwidth between fog node and IoT device Either 54 Mbits/s or 100 Mbits/s

Bandwidth between fog controllers and cloud 10 Gbit/s

Bandwidth between fog controllers 100 Mbits/s

4.4 Simulation Scenario

We created five sets each containing 100 different types of tasks. For every set

of tasks, the four experiments were performed for each type of topology (which
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differs by the number of clusters available). In each experiment, different simu-

lation time was set to allow higher number of tasks being generated as the time

increases.

This simulation scenario gives a total of 80 experiments. This scenario was ap-

plied for both variations described in chapter 3.

4.5 Results

In this section we first analyze the results for each variation separately for com-

parison. Moreover, we define the impact of the privacy and security factors on

the results by analyzing and comparing the results when including and excluding

these factor. Last but not least, both variations will be compared to a baseline

approach.

4.5.1 The Flat Based Fog Selection Results

.

Figure 4.2: The Variation of Values with Respect to Number of Messages

Below we explain the results obtained after deploying the flat based fog selec-

tion variation. In this variation, once the controller of the fog cluster receives an

IoT task request, it examines all the fog nodes that are reachable to the device
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Figure 4.3: Flat Based Fog Selection Results
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issuing the task using an optimization problem in order to select the best node

for execution.

To analyze the results we wrote a script to calculate the percentage of average

number of messages being rejected, the percentage of average number of messages

offloaded to the cloud, the average overall delay, and the average delay at the fog

layer.

Figure 4.2 shows the values obtained for a topology of 15 clusters as the number

of messages being generated increases. This figure justifies the slight difference

in the values obtained in the upcoming figures for every topology with a certain

number of clusters.

Each graph in Figure 4.3 is associated to a specific simulation time where

the average number of messages being generated differs. Meaning that in each

run of this variation, the simulation time has been increasing in a way to allow

the average number of generated messages in the network to increase from 138

messages in the first run to reach 816 messages in the fourth run. This was help-

ful to determine the impact of the number of messages being generated by IoT

devices on the performance of the variation, which shows that the variation be-

haves the same despite of the number of messages being generated in the network.

Graphs in Figures 4.3 (a) show that the average total delay decreases as the

number of clusters available in the network increases from 5 to 20.

Similarly, graphs of Figure 4.3 (b) show that the average fog delay; which is the

average delay of messages being executed in the fog layer, also decreases as the

number of clusters increases from 5 to 20 clusters.

When the number of clusters increases in the network, each controller will

have higher number of fog nodes to take as options into consideration when se-
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lecting a node for execution. In other words, when the number of fog nodes

available increases, any controller will be able to assign tasks to more fog nodes

and thus resulting in lower fog and total delay as shown in Figures 4.3 (a) and

(b). Thus, the performance of the variation in terms of fog and total delay hits

the objective of the optimization problem described in chapter 3 section 3.5 which

is minimizing the delay.

The four graphs in Figure 4.3 (c) show that as the number of clusters increases

the average number of messages being rejected and number of messages being of-

floaded to cloud slightly decreases. This can be justified by the increase in the

number of fog nodes that are able to execute the tasks. This increase will lead

to a higher probability of task to fog node assignment and thus lower possibility

of message rejection and offloading to cloud.

The flat based variation shows that a higher number of fog nodes in fog

layer leads to better performance in terms of fog and total delay. Moreover, this

increase in number of clusters increases the task to fog node assignments for light

weight tasks.

4.5.2 The Clustered Based Fog Selection Results

Below we explain the results obtained after deploying the clustered based fog

selection variation. As described in chapter 3 section 3.5.2, in this variation,

upon the arrival of a task request at the controller which has a full knowledge

about the network, first it has to find a best fog cluster for handling the task and

then selects the best fog node belonging to the selected cluster to execute the task.

The results were analyzed based on the calculated percentage of average num-

ber of messages being rejected, the percentage of average number of messages
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Figure 4.4: Clustered Based Fog Selection Results
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offloaded to the cloud, the average overall delay, and the average delay at the fog

layer.

The difference between the graphs of each sub-figure in Figure 4.4 is the

average total number of messages being generated. The four graphs of each

sub-figure represents the results of the four runs that were performed on this

variation. In each run the simulation time was increased to allow the IoT devices

to issue as much as possible task requests. The aim of performing four runs for the

same variation was to show that the variation permits the same results for every

performance metric(average total delay, average fog delay, number of rejected and

offloaded messages) even with the variation in the number of messages generated

in the network.

The graphs of Figure 4.4 (a) show that the total delay decreases as the number

of clusters increases to reach 15 clusters, then it sharply increases as the number

of clusters reaches 20.

Similarly, the graphs of Figure 4.4 (b) show that the average fog delay which

is the delay of tasks being executed in the fog layer, starts to decrease as the

number of clusters in the network increases to reach 15, then it increases when

the number of clusters increases to reach 20.

The decrease in the total and fog delay when the number of clusters in the network

is between 5 and 15 is justified by the increase in the number of fog nodes that

the task could be assigned to, which allows the distribution of arriving IoT tasks

on higher number of fog nodes. Yet the increase in the total delay as the number

of clusters reaches 20 is due to the increase in the number of clusters that the

controller takes into consideration as options to find the best fog clusters for

handling the arriving task request.

Graphs of Figure 4.4 (c) show that the percentage of number of tasks being

rejected and offloaded to the cloud decreases as the number of clusters available

in the network increases from 5 to 20. This is due to the increase of the possible

tasks to fog nodes assignments, as an increase in the number of clusters gives
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higher probability of finding a best fog cluster for handling a task request by the

controller.

The results show that the clustered variation permits better results in terms of

average fog and total delay when the number of clusters in the network do not

exceed 15 clusters. Meaning that this variation is applicable to minimize the

total and average delay when having an average scale fog layer.

4.5.3 Comparing Results of Flat and Clustered Variations

Below we compare the results of the flat and clustered base fog selection varia-

tions in terms of average fog and total delay and number of tasks being rejected

and offloaded to cloud.

The comparison was done on the first and fourth run of every variation since as

mentioned previously, the four runs show that both variations behaves similarly

despite the number of messages being generated in the network. Thus the com-

parison was done when having low average number of tasks(around 138 messages)

and high average number of tasks(around 816).

Graphs of Figure 4.5 (a) show that both variations permits the same results in

terms of average total delay when the number of clusters in the network is 15,

while the flat variation permits better results otherwise.

Graphs of Figure 4.5 (b) show that a flat based fog selection variation is better

in terms of fog delay than a clustered based fog selection variation as it gives

lower values as the number of clusters in the network increases. This difference is

due to the methodology followed to find the best node for execution, where in a

clustered based fog selection variation the controller will have higher number of

clusters to take into consideration when searching for a best cluster for handling

the task as the number of clusters increases. This increase will definitely leads to

a higher average fog and total delay.

Graphs of Figure 4.5 (c) show that both the flat and clustered variations lead to
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Figure 4.5: Flat Based vs Clustered Base
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a decrease in the number of rejected tasks as the number of clusters available in

the network increases, yet the clustered based variation gives lower values when

the number of clusters reaches 20.

Graphs of Figure 4.5 (d) show that in the flat based fog selection variation there

was lower number of tasks being offloaded to the cloud than in a clustered based

variation when the number of clusters available was 10 and 20. While both vari-

ation gives the same results when the number of clusters is 15. In the clustered

variation the selection process is based on the average values of the fog clusters

capabilities as explained in chapter 3 section 5.2, which means there is a higher

probability of not finding a suitable cluster for handling the tasks if none of the

available cluster can satisfy the tasks requirements. In such a case the controller

can either offload the task to the cloud if it can tolerate delay or reject it other-

wise. This explains the higher values of tasks to cloud offloading in the clustered

based variation.

As a conclusion for this comparison, the flat based variation is more applicable

when having a large scale fog topology consisting of 20 or more clusters, as this

variation gives lower values for the fog and total delay as desired and decreases

the number of tasks being propagated to higher layers(cloud). On the other

hand, when having an average scale topology of around 15 clusters both variation

behaves somehow the same and thus both are applicable.

4.5.4 Impact of Privacy and Security Factors

As mentioned previously, we aim on defining the impact of our security aware

approach by stating the effect of including and excluding the privacy and security

factors from the formalized optimization problem in both variations. In this

section we compare the results for each variation separately when the mentioned

factors were included and excluded respectively.
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Flat Based Fog Selection: Security Aware vs Non Security Aware

Graphs of Figure 4.6 (a) show that including the security and privacy factors

results in lower average total delay. Same goes to the average delay at the fog

layer, where lower values were obtained when the factors were included as shown

in Figure 4.6 (b).

Graphs of Figure 4.6 (c) show that excluding the security and privacy factors

from the formalized problem leads to lower number of messages being rejected.

Similarly, lower number of tasks were offloaded to the cloud when security and

privacy factors were excluded as well as shown in graphs of Figure 4.6 (d).

The results were expected since excluding these factors means that the fog node

selection process has lower number of constraints that need to be met, conse-

quently there will be higher number of tasks to node assignments which leads to

higher average total and fog delay.

Clustered Based Fog Selection: Security Aware vs Non Security Aware

Graphs of Figure 4.7 (a) show that excluding the security and privacy factors

leads to higher average total delay. Figure 4.7 (b) shows that there is a major

difference in the average fog delay when the security and privacy were included

and excluded respectively, where excluding the factors gives a much higher fog

delay. Graphs of Figure 4.7 (c) show that we obtain lower number of messages

being rejected when excluding the security and privacy factors from the formal-

ized problem.

While, excluding these factors is leading to a higher number of tasks being of-

floaded to the cloud as shown in graphs of Figure 4.7 (d).

This shows that excluding the factors increases the probability of offloading
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Figure 4.6: Flat Based Fog Selection: Security Aware vs Non Security Aware
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Figure 4.7: Clustered Based Fog Selection: Security Aware vs Non Security Aware
61



a task to the cloud which leads a decrease in the number of tasks being rejected

and thus higher delays.

The security and privacy factors leads to higher number of constraints that

needs to be met when selecting a node for executing an IoT task. If these con-

straints were not met during the fog node selection process, the controller could

either offload the task to cloud if it can tolerate such a propagation in terms of

the delay or reject the task otherwise. This explains the high number of tasks

being rejected or offloaded to the cloud in Figures 4.6 and 4.7 when the privacy

and security constraints were included in the selection process.

We can conclude that a security aware variation leads to a higher probability

of task rejection or task propagation to higher layers since it adds more con-

straints that need to be met. Yet this type of variation hits the objective which

is selecting a fog node that can satisfy the security required by the task request.

4.5.5 Both Variations Compared to a Baseline

In the baseline approach, when an IoT task arrives at the fog controller, the latter

has to find the first available(free) fog node which has sufficient resources as CPU

and memory to execute the task.

This approach does not take into consideration the delay and security require-

ments of the task.

Graphs of Figure 4.8 (a) show that the baseline approach results in lower

number of tasks being rejected compared to the flat and clustered based varia-

tions.

Same goes to the number of tasks being offloaded to the cloud, where the flat and

clustered variations results in higher values compared to the baseline approach

as shown in Figure 4.8 (b). This can be explained by the number of constraints

available in the baseline approach which are only the resources as in CPU and
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memory. Whereas in the other two variations of our proposed approach there

exists other constraints like delay and security which were excluded from the

baseline approach.

As for the fog and total delays, graphs of Figures 4.9 and 4.10 show that the

baseline approach results in a massive total and fog delay when compared to the

results obtained from the clustered and flat based variations. This is mainly due

to omitting the delay constraint from the baseline approach which does not take

into consideration the tasks tolerance for the delay.
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Figure 4.8: Baseline Vs Both Variations: Rejected and Offloaded Tasks
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Figure 4.9: Flat Based Variation vs Baseline
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Figure 4.10: Clustered Based Variation vs Baseline
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Chapter 5

Conclusion

In our work we proposed two run time resource allocation variations, a flat based

fog selection and a clustered based fog selection, which are meant to assign IoT

tasks to either fog nodes, cloud, or reject the task if none of its QoS require-

ment(delay and privacy) are going to be met. We adopted the clustered fog

topology as the network architecture for the fog layer where the layer consists

of fog clusters each containing a number of fog nodes. Each cluster has a single

controller which is responsible to take the task to fog node assignment decision.

The cluster will have a number of IoT devices connected to it, where these devices

submit their task request to the controller which has to notify the issuing device

with the node selection decision.

The main difference between both variations is the procedure that the controller

follows to take such a decision. In the flat based fog selection variation, the

controller, upon receiving a task request, examines all the fog nodes that are

reachable for the IoT device issuing the task in order to find the node that has

sufficient resources(as CPU and memory) and can satisfy the QoS requirements

of the task. If the controller can not find such a node, then it decides to either

offload the task to the cloud if the issued task can tolerate latency or reject it

otherwise.
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While in the clustered based fog selection variation, the controller, which has

the full knowledge about the network, first has to find the best fog cluster that

can handle the task based on the clusters’ capabilities in terms of resources and

whether it can satisfy the QoS requirements of the task or not. If a cluster is

found, then the controller next has to find the best node for task execution among

the fog nodes belonging to the selected cluster. Task rejection or task offloading

to the cloud decisions will take place if the controller was not able to find a node

for execution.

For evaluation, we used Yet Another Fog Simulator to implement our vari-

ations and perform the simulation. To asses the clustered fog layer topology,

our variations were implemented on different scales of such a topology; a topol-

ogy with either 5, 10, 15 or 20 clusters. The simulation for every variation on

every topology scale was performed four times, where in each run higher sim-

ulation time was set, which means higher number of tasks being generated in

the network. The evaluation was done based on the average total delay, average

fog delay, number of tasks being rejected, and number of tasks offloaded to the

cloud. The results show that the flat based variation permits better results as the

number of clusters in the network increases. While the clustered based variation

permits better results when having an average of 15 clusters in the network.

Moreover, we were able to asses the security feature by including and excluding

the security and privacy factors from the formalized problems. The results show

that including the factors leads to higher number of tasks being rejected since the

constraints that need to be met is higher, yet these factors guarantee satisfying

the security requirements of the tasks.

Last but not least, our variations were compared to a baseline approach. The

applied baseline approach aims on finding the first available fog node with suf-

ficient resources to execute the task without taking into consideration the delay

and security requirements of the task.

The results show that the baseline approach results in lower number of messages
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being rejected and offloaded to the cloud since the number of constraints, like

security and privacy, needed to be met are omitted. While the flat and clustered

based variations results in lower fog and total delay compared to the massive

delays resulting from the baseline approach.
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