
AMERICAN UNIVERSITY OF BEIRUT

Models for the Assembly Line Balancing Problem

by

Antoinette Mouawad

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science in Business Analytics
of the Olayan School of Business

at the American University of Beirut

Beirut, Lebanon
June 2020

AMERICAN UNIVERSITY OF BEIRUT

Models for the Assembly Line Balancing Problem

by

Antoinette Mouawad

Approved by:

Dr. Krzysztof Fleszar, Professor Advisor

Olayan School of Business

Dr. Khalil S. Hindi, Professor Member of Committee

Olayan School of Business

Date of thesis defense: June 22, 2020

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name:
Last First Middle

�� �� �� �� �� ��Master’s Thesis Master’s Project Doctoral Dissertation

2 I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos-
itories of the University; and (c) make freely available such copies to third parties for research
or educational purposes.

2 I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One year from the date of submission ofmy thesis, dissertation or project.

Two years from the date of submission ofmy thesis , dissertation or project.
Three years from the date of submission ofmy thesis , dissertation or project.

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries

Mouawad Antoinette

2020-07-06

Acknowledgements

I am really grateful to submit this work that couldn’t have been possible with-
out the continuous guidance, help and patience of Professor Krzysztof Fleszar.
The opportunity of doing a Masters degree at a prestigious university like the
American University of Beirut is an honor for me and I remain forever grateful
for it.

v

An Abstract of the Thesis of

Antoinette Mouawad for Master of Business Analytics
Major: Business Analytics

Title: Models for the Assembly Line Balancing Problem

We review the literature models for the Assembly Line Balancing Problem
(ALBP), present multiple variants of models for ALBP, and propose a new mixed-
integer linear model that uses a network flow formulation to represent the load of
each station. We use the network compression algorithm proposed by Brandão
and Pedroso (2016) for bin packing to reduce the number of variables and con-
straints in the network flow formulation. We perform computational experiments
to test the models and compare their performance on standard benchmark prob-
lem instances.

vi

Contents

Acknowledgements v

Abstract vi

1 Introduction 1

2 Literature Review 3

3 Model Parameters 4

4 MILP Models 6
4.1 Decision Variables . 6
4.2 Occurrence constraints . 6
4.3 Cycle time constraints . 6
4.4 Precedence constraints . 7
4.5 Objective function . 10
4.6 Dynamic latest station reduction 14
4.7 Reduction of the number of precedence constraints 14
4.8 Precedence network reversion . 15

5 Our Model 16

6 Computational Experiments 21

7 Conclusion 27

A Abbreviations 28

vii

List of Figures

4.1 Visualization of stations on which tasks i and h can be scheduled,
where i is a predecessor of h and Ei = 3, Li = 8, Eh = 6, and
Lh = 12 . 13

4.2 Scanning algorithm . 15

5.1 Network flow formulation algorithm 18
5.2 Example of ALBP problem with n = 7 18
5.3 Station 1 represented as a set of nodes or states 19
5.4 Station 1 represented as a set of nodes or states 19

6.1 Count of optimal solutions in function of variants types 23
6.2 Performance comparison between models 26

viii

List of Tables

4.1 Precedence constraints expressions for lih = 0 11
4.2 Precedence constraints expressions for lih = 1 12

5.1 Earliest and latest stations of tasks 19

6.1 Precedence constraints recap . 22
6.2 Instances not solved by the MILP variants 23
6.3 Results of best performing model (Precedence type = 3) 24
6.4 Results of best performing model (Precedence type = 10) 25
6.5 Results of the network flow model (Precedence type = 3) 25
6.6 Results of the network flow model (Precedence type = 10) 26

ix

Chapter 1

Introduction

An Assembly Line is a mass production system that consists of a number of
workstations (station, hereafter) arranged along a linear transport mechanism
that is usually a conveyor. Work pieces are fed to the first station of the line at
a predetermined constant feed rate (time interval of cycle time), and are moved
from one station to the next. At each station, certain tasks (task, hereafter) are
repeatedly performed. By definition, a task cannot be divided between two or
more stations. In addition, tasks are subject to precedence constraints whereby
a given task cannot start before the processing of all its predecessors. A work
piece is completed when it leaves the last station, after all tasks required for its
production have been completed.

The Assembly Line Balancing Problem (ALBP) is to optimally partition the
tasks among the stations with respect to some objective. The two conflicting
objectives are minimizing the total cost of resources used by the assembly line
and maximizing the production rate achieved by the line. In the simplest case,
the former is achieved through minimizing the number of stations, given a fixed
cycle time (this is the case of Simple Assembly Line Balancing Problem - type 1
(SALBP-1)), while the latter is achieved through minimizing the cycle time, given
a fixed number of stations (this is the case of Simple Assembly Line Balancing
Problem - type 2 (SALBP-2)). SALBP-2 is equivalent to maximizing the work
time among all stations. We define the production rate as below:

Production rate =
One completed work piece

Cycle time
(1.1)

Our research focuses on the Simple Assembly Line Balancing Problem - type
1 (SALBP-1), where the objective is to minimize the total number of stations
needed to accomplish all tasks for a given production cycle time and precedence
constraints among tasks. While most of the literature for this problem focuses
on heuristics and meta-heuristics methods (see for example Sivasankaran and
Shahabudeen (2014)), we will focus our attention on mathematical models for
SALBP-1.

1

We will start with a review of Mixed Integer Linear Programming (MILP)
models proposed in the literature for SALBP-1 so far. Then we will conduct
experimental investigation of the performance of the different models, determine
the best performing ones, and try to determine the features that improve the
performance of the models. The performance will be measured in terms of speed
to convergence to optimality as well as in terms of computational efforts. Finally,
we will propose a new model for SALBP-1 that outperforms the existing models.

2

Chapter 2

Literature Review

In this chapter, we discuss briefly the literature where MILP models for ALBP
have been introduced, without presenting the models in detail. The following
chapters will present the various types of constraints and all possible resulting
models.

First MILP models were introduced by Bowman (1960) and later modified by
White (1961). They used binary variables xij = 1 if task i is assigned to station
j, 0 otherwise. No other variables were introduced. The objective was based on
the observation that the makespan can be between a lower bound mmin and an
upper bound mmax and that in order to minimize the makespan, it is sufficient
to penalize scheduling tasks without successors on stations from mmin to mmax.

Patterson and Albracht (1975) introduced a MILP with a different objective
function. They introduced a dummy finish task where all the tasks with no
successors were made to be predecessors of the dummy finish task. Then, their
objective minimized the station number where the dummy finish task is sched-
uled (in fact, their objective was a maximization, but effectively it worked as
minimizing the station number of the dummy finish task).

Moreover, Patterson and Albracht (1975) introduced the concept of earliest
Ei and latest Li stations for task i that can be used to limit the number of binary
variables. Furthermore, they used a different precedence constraint than Bowman
(1960) and White (1961) (discussed later).

Baybars (1986) presented a review of the above MILP models as well as other
exact methods for SALBP-1 and SALBP-2 and compared their computational
performance.

Mathematical models for ALBP with stronger precedence constraints were
proposed by Aghezzaf and Artiba (1995) and later by Ritt and Costa (2018).

3

Chapter 3

Model Parameters

Before we introduce any models, let us first define all necessary parameters:

• n = total number of tasks

• m∗ = optimal number of stations needed

• mmin = lower bound of stations needed (known)

• mmax = upper bound of stations needed (known)

• ti = process time of task i

• c = cycle time

• tmin = min{ti : i ∈ {1, . . . , n}}

• tmax = max{ti : i ∈ {1, . . . , n}}

• R = {(h, i) ∈ {1, . . . , n}2 : h is an immediate predecessor of i} = immedi-
ate precedence relationships

• P (i) = {h : (h, i) ∈ R} = immediate predecessors of task i

• Pa(i) = all predecessors of task i

• S(i) = {h : (i, h) ∈ R} = immediate successors of task i

• Sa(i) = all successors of task i

• F = {i : S(i) = ∅} = tasks with no successors

• Ei = earliest station of task i

• Li = latest station of task i

4

• lih = station lag between tasks i and h, i.e., the minimum difference between
station number for task i and station number for task h

Patterson and Albracht (1975) calculated earliest (resp., latest) stations for
all tasks based on the total time of an activity and all its predecessors (resp.,
successors):

Ei =


ti +

∑
h∈Pa(i)

th

 /c

 (3.1)

Li = mmax + 1−


ti +

∑
h∈Sa(i)

th

 /c

 (3.2)

In general, both Ei and Li are based on calculating lower bounds on a subset
of activities {i} ∪ Pa(i) and {i} ∪ Sa(i), respectively, so the above formulas can
be equivalently expressed as:

Ei = LB({i} ∪ Pa(i)) (3.3)

Li = mmax + 1− LB({i} ∪ Sa(i)) (3.4)

where LB(A) is a lower bound on the problem with a subset of tasks A. In the
above case, LB(A) = LB1(A), which is calculated as:

LB1(A) =

⌈(∑
i∈A

ti

)
/c

⌉
(3.5)

In addition to LB1(A), we can use other lower bounds for SALBP-1. Following
Sewell and Jacobson (2012) we will define LB(A) as the maximum of LB1(A),
LB2(A), and LB3(A), where the later two lower bounds are defined as follows:

LB2(A) =
∣∣∣{i ∈ A : ti >

c

2

}∣∣∣+

⌈
1

2

∣∣∣{i ∈ A : ti =
c

2

}∣∣∣⌉ (3.6)

LB3(A) =

∣∣∣∣{i ∈ A : ti >
2c

3

}∣∣∣∣+ (3.7)

+

⌈
2

3

∣∣∣∣{i ∈ A : ti =
2c

3

}∣∣∣∣+
1

2

∣∣∣∣{i ∈ A :
c

3
< ti <

2c

3

}∣∣∣∣+
1

3

∣∣∣{i ∈ A : ti =
c

3

}∣∣∣⌉

5

Chapter 4

MILP Models

4.1 Decision Variables

Our decision variables are all binary variables defined as below:

• xij = 1 if task i is assigned to station j, = 0 otherwise, for all i ∈ {1, . . . , n}
and j ∈ {Ei, . . . , Li}

• yj = 1 if station j is used, = 0 otherwise, for j ∈ {mmin + 1, . . . ,mmax}

4.2 Occurrence constraints

The occurrence constraint ensures that each task is assigned to exactly one sta-
tion:

Li∑
j=Ei

xij = 1 ∀i ∈ {1, . . . , n} (OCCUR)

The constraint was first used in the model of Bowman (1960) and White
(1961) with the summation over all stations, i.e., from 1 to mmax. Later, Patterson
and Albracht (1975) restricted indexing to only stations to which task i could be
assigned, i.e., from Ei to Li.

4.3 Cycle time constraints

The following constraints ensure the workload on each station does not exceed
the cycle time: ∑

i:j∈{Ei,...,Li}

tixij ≤ c ∀j ∈ {1, . . . ,mmax} (CYCLE)

6

4.4 Precedence constraints

Precedence constraints are defined for all pairs of tasks (i, h) ∈ R, where i is an
immediate predecessor of h. They must ensure that the station of i has an index
smaller than or equal to the index of the station of h. Note that if ti + th > c, i.e.,
if the two tasks cannot share a station, the station index of i must be less than
the station index of h by at least one. In general, for (i, h) ∈ R, we can define the
station lag lih = 1 if ti + th > c and 0 otherwise. Then, the precedence constraint
between tasks (i, h) ∈ R must ensure that the station index of i is less than the
station index of h by at least lih. Note that this constraint can also be used when
i is a transitive predecessor of h, in which case lih may be higher than 1.

If earliest station Ei and latest stations Li are provided for each task, observe
that we can assume that Ei + lih ≤ Eh and Li + lih ≤ Lh, for (i, h) ∈ R. If
these conditions are not satisfied, Eh can be increased and Li decreased until the
conditions are satisfied.

Patterson and Albracht (1975) observed that precedence constraint for (i, h) ∈
R needs to be defined only if Li ≥ Eh. We observe that this condition can be
strengthened to Li > Eh, because only in this case, task i could be scheduled
after task h, which the precedence constraint should forbid. With lag lih, the
condition is Li + lih > Eh. We assume lih = 1 if ti + th > c and lih = 0 otherwise.

We consider three different types of precedence constraints. The first, due to
Patterson and Albracht (1975), is:

Li∑
j=Ei

jxij ≤
Lh∑

j=Eh

jxhj ∀(i, h) ∈ R,Li > Eh (4.1)

The left side calculates the station number of task i and the right side the station
number of task h. A more general version with multipliers different than station
numbers j were earlier used by Thangavelu and Shetty (1971).

Taking into account the station lag lih, a stronger variant of the above con-
straint can be proposed:

Li∑
j=Ei

jxij + lih ≤
Lh∑

j=Eh

jxhj ∀(i, h) ∈ R,Li + lih > Eh (PREC0)

The constraint can be further strengthened by observing that the left side
value can be at most Li + lih, so the variable multipliers j on the right side
can be replaced by min{j, Li + lih}. Similarly, the right side value is at least
Eh, so adjusting for lih, the multipliers j on the left side can be replaced by
max{j, Eh − lih}. The resulting final variant of the constraint is:

Li∑
j=Ei

max{j, Eh− lih}xij + lih ≤
Lh∑

j=Eh

min{j, Li+ lih}xhj ∀(i, h) ∈ R,Li+ lih > Eh

(PREC1)

7

The second type of precedence constraint was introduced in the model of
Bowman (1960) and White (1961). Taking into account the earliest and latest
stations of tasks, this constraint can be expressed as follows:

xhk ≤
k∑

j=Ei

xij ∀(i, h) ∈ R,Li > Eh,∀k ∈ {Eh, . . . , Li − 1} (4.2)

The interpretation of this constraint is as follows: if task h is assigned to station
k (if the left side equals one), then task i that is a predecessor of h must be
assigned to station k or earlier (the right side must also equal one).

The third type of precedence constraint was first used in a model of Aghezzaf
and Artiba (1995) and later by Ritt and Costa (2018). Taking into account the
earliest and latest stations of tasks, this constraint can be expressed as follows:

k∑
j=Eh

xhj ≤
k∑

j=Ei

xij ∀(i, h) ∈ R,Li > Eh,∀k ∈ {Eh, . . . , Li − 1} (4.3)

The interpretation of this constraint is similar to the previous constraint: if task
h is assigned to station k or earlier, then task i that is a predecessor of h must
be assigned to station k or earlier.

Improved versions of the above two types of constraints that take into account
the station lag lih are:

xhk ≤
k−lih∑
j=Ei

xij ∀(i, h) ∈ R,Li+lih > Eh,∀k ∈ {Eh, . . . , Li−1+lih} (PREC2-E)

k∑
j=Eh

xhj ≤
k−lih∑
j=Ei

xij ∀(i, h) ∈ R,Li + lih > Eh,∀k ∈ {Eh, . . . , Li − 1 + lih}

(PREC3-E)
Exploiting the directional symmetry of the problem, we can introduce the

following two new types of precedence constraints. The first is:

xik ≤
Lh∑
j=k

xhj ∀(i, h) ∈ R,Li > Eh,∀k ∈ {Eh + 1, . . . , Li} (4.4)

The interpretation of this constraint is as follows: if task i is assigned to station k
(if left hand side equals one), then task h that is a successor of i must be assigned
to station k or later.

The second new type of precedence constraint is:

Li∑
j=k

xij ≤
Lh∑
j=k

xhj ∀(i, h) ∈ R,Li > Eh,∀k ∈ {Eh + 1, . . . , Li} (4.5)

8

The interpretation of this constraint is as follows: if task i is assigned to station
k or later, then task h that is a successor of i must be assigned to station k or
later.

Taking into account station lags lih, the constraints can be written as follows:

xik ≤
Lh∑

j=k+lih

xhj ∀(i, h) ∈ R,Li + lih > Eh,∀k ∈ {Eh + 1− lih, . . . , Li}

(PREC2-L)

Li∑
j=k

xij ≤
Lh∑

j=k+lih

xhj ∀(i, h) ∈ R,Li + lih > Eh,∀k ∈ {Eh + 1− lih, . . . , Li}

(PREC3-L)

The advantage of using precedence constraints (PREC0) or (PREC1) is that
they result in much fewer constraints. However, as pointed out by Ritt and
Costa (2018), constraints (PREC3-E) dominate constraints (PREC0), (PREC1),
and (PREC2-E) in terms of the strength of the linear relaxation. By symme-
try, constraints (PREC3-L) will dominate constraints (PREC0), (PREC1), and
(PREC2-L).

Although the constraints PREC3-E and PREC3-L dominate the constraints
PREC0, PREC1, PREC2-E and PREC2-L in terms of the strength of the linear
relaxation, however they will introduce more constraints compared to PREC0
and PREC1, and have more non-zero elements. This is why, we will be doing a
full factorial analysis to check what trade-off will have a greater impact on the
performances of the models.

Let precedence constraints PREC2-BETTER (resp, PREC3-BETTER) be
defined as follows: if Eh − Ei ≤ Lh − Li, then constraints (PREC2-E) (resp.,
(PREC3-E)) will have be chosen, otherwise constraints (PREC2-L) (resp., (PREC3-
L)) will be chosen. The criterion chooses the constraint type that results in fewer
non-zero elements in the constraint matrix. In case of a tie, the E variant is
chosen.

Additionally, let precedence constraints PREC2-BOTH (resp, PREC3-BOTH)
be equivalent to using both constraints (PREC2-E) and (PREC2-L) (resp., (PREC3-
E) and (PREC3-L)).

Using occurrence constraints (OCCUR), the right side of constraints (PREC3-
E) can be modified, so that the resulting constraint is:

k∑
j=Eh

xhj ≤ 1−
Li∑

j=k−lih+1

xij ∀(i, h) ∈ R,Li + lih > Eh,∀k ∈ {Eh, . . . , Li−1+ lih}

(4.6)
The interpretation of this constraint is: if task h is on station k or earlier, than
task i must not be on station k − lih + 1 or later. Taking all variables to the left

9

side gives:

k∑
j=Eh

xhj +

Li∑
j=k−lih+1

xij ≤ 1 ∀(i, h) ∈ R,Li + lih > Eh,∀k ∈ {Eh, . . . , Li−1+ lih}

(PREC3-NEW1)
The constraint will not allow task h to be on station k or earlier and at the same
time task i to be on station k − lih + 1 or later.

Alternatively, using occurrence constraints (OCCUR), the left side of con-
straints (PREC3-E) can be modified, so that the resulting constraint is:

1−
Lh∑

j=k+1

xhj ≤
k−lih∑
j=Ei

xij ∀(i, h) ∈ R,Li + lih > Eh,∀k ∈ {Eh, . . . , Li − 1 + lih}

(4.7)
The interpretation of this constraint is: if task h is not on station k + 1 or later,
than task i must be on station k − lih or earlier. Taking all variables to the left
side gives:

Lh∑
j=k+1

xhj +

k−lih∑
j=Ei

xij ≥ 1 ∀(i, h) ∈ R,Li + lih > Eh,∀k ∈ {Eh, . . . , Li − 1 + lih}

(PREC3-NEW2)

The two additional constraints added PREC3-NEW1 and PREC3-NEW2
might have an impact on the performance of the models in terms of creating
better cuts to help converge faster to an optimal solution.

To illustrate the difference between all above defined precedence constraints,
consider an example pair of tasks i and h, where i is a predecessor of h and
Ei = 3, Li = 8, Eh = 6, and Lh = 12. In this example, the precedence constraint
existence condition (Li + lih > Eh for lih = 0 or 1) is satisfied. Figure 4.1
illustrates visualizes the stations to which each of the two tasks can be assigned.
Tables 4.1 and 4.2 show the different precedence constraints for the pair of tasks.

4.5 Objective function

The objective of the problem is to find the minimum number of stations m∗, which
must be between mmin and mmax. If mmin = mmax, then the problem reduces to
a feasibility problem, checking if a solution with mmin = mmax exists, and no
objective needs to be defined. If mmin < mmax, one of the following objectives is
used.

The number of used stations can be minimized using objective:

min z (OBJ1)

10

Precedence type Precedence constraint expression for lih = 0
PREC0

8∑
j=3

jxij ≤
12∑
j=6

jxhj

PREC1
8∑

j=3

max{j, 6}xij ≤
12∑
j=6

min{j, 8}xhj

PREC2-E

xhk ≤
k∑

j=3

xij ∀k ∈ {6, 7}

PREC3-E
k∑

j=6

xhj ≤
k∑

j=3

xij ∀k ∈ {6, 7}

PREC2-L

xik ≤
12∑
j=k

xhj ∀k ∈ {7, 8}

PREC3-L
8∑

j=k

xij ≤
12∑
j=k

xhj ∀k ∈ {7, 8}

PREC3-NEW1
k∑

j=6

xhj +
8∑

j=k+1

xij ≤ 1 ∀k ∈ {6, 7}

PREC3-NEW2
12∑

j=k+1

xhj +
k∑

j=3

xij ≥ 1 ∀k ∈ {6, 7}

Table 4.1: Precedence constraints expressions for lih = 0

11

Precedence type Precedence constraint expression for lih = 1
PREC0

8∑
j=3

jxij ≤
12∑
j=6

jxhj

PREC1
8∑

j=3

max{j, 6}xij ≤
12∑
j=6

min{j, 8}xhj

PREC2-E

xhk ≤
k−1∑
j=3

xij ∀k ∈ {6, 7, 8}

PREC3-E
k∑

j=6

xhj ≤
k−1∑
j=3

xij ∀k ∈ {6, 7, 8}

PREC2-L

xik ≤
12∑

j=k+1

xhj ∀k ∈ {6, 7, 8}

PREC3-L
8∑

j=k

xij ≤
12∑

j=k+1

xhj ∀k ∈ {6, 7, 8}

PREC3-NEW1
k∑

j=6

xhj +
8∑

j=k

xij ≤ 1 ∀k ∈ {6, 7, 8}

PREC3-NEW2
12∑

j=k+1

xhj +
k−1∑
j=3

xij ≥ 1 ∀k ∈ {6, 7, 8}

Table 4.2: Precedence constraints expressions for lih = 1

12

Task i ...

Station 3

Ei = 3

...

Task h ...

Station 6

Eh = 6

...

...

Station 8

Li = 8

...

...

Station 12

Lh = 12

...

Figure 4.1: Visualization of stations on which tasks i and h can be scheduled,
where i is a predecessor of h and Ei = 3, Li = 8, Eh = 6, and Lh = 12

and additional constraints:
Li∑

j=Ei

jxij ≤ z ∀i ∈ F (OBJ1-AUX)

where z denotes the number of used stations and F = {i : S(i) = ∅} is the set
of finish tasks (without any successors). If the problem has only one finish task
F = {f}, the above objective can be implemented without introducing variable
z and additional constraints as follows:

min

Lf∑
j=Ef

jxfj (4.8)

Alternatively, the objective can be based on the yj variables, indicating whether
station j is used, defined for j ∈ {mmin + 1, . . . ,mmax}. Pastor and Ferrer (2009)
propose to link yj variables to xij variables by replacing the cycle time constraints
(CYCLE) for stations mmin + 1 to mmax with:∑

i:j∈{Ei,...,Li}

tixij ≤ cyj ∀j ∈ {mmin + 1, . . . ,mmax} (CYCLE-Y)

Then, they use the objective:

min
mmax∑

j=mmin+1

jyj (OBJ2)

13

This objective minimizes the number of used stations, but its value denotes the
total cost of using stations above station mmin. For symmetry breaking, the cost
of using stations increases as station index increases.

Another objective based of the yj variables which calculates the number of
stations used is:

minmmin +
mmax∑

j=mmin+1

yj (OBJ3)

However, in this case, symmetry-breaking constraints might be useful:

yj−1 ≥ yj ∀j ∈ {mmin + 2, . . . ,mmax} (OBJ3-AUX)

4.6 Dynamic latest station reduction

Pastor and Ferrer (2009) introduced the following constraints that strengthen the
MILP formulation:

xi,Li−q ≤ ymmax−q ∀i ∈ {1, . . . , n},∀q ∈ {0, . . . ,mmax −mmin − 1} (4.9)

The interpretation of this constraint is as follows: if the last station is not used,
then no task i can be assigned to its latest station Li (q = 0); if the second last
station is not used, then no task i can be assigned to its second latest station
Li − 1 (q = 1); and so on.

The effect of this constraint is that it dynamically reduces the latest stations
for all tasks during the solution process. When the incumbent solution in the
MILP solver is improved, the latest stations for all tasks are reduced.

Ritt and Costa (2018) propose a stronger version of the above constraint:

Li∑
j=Li−q

xij ≤ ymmax−q ∀i ∈ {1, . . . , n},∀q ∈ {0, . . . ,mmax −mmin − 1} (4.10)

4.7 Reduction of the number of precedence con-

straints

Following ideas of Dolgui and Gafarov (2017), we attempt to reduce the number
of precedence relationships by introducing dummy tasks with zero duration and
modifying the precedence network.

Suppose we have two disjoint subsets of tasks, A and B, A ∩ B = ∅, such
that for each i ∈ A and h ∈ B, i ∈ Pa(h), i.e., every task in A is an immediate
predecessor of every task in B. A dummy task d could be introduced such that
all tasks in A are immediate predecessors of d and all tasks in B are immediate
successors of d. In this case, immediate precedence relationships between all tasks

14

(i, h), i ∈ A and h ∈ B, can be removed. We define a score of introducing the
dummy task given sets A and B as the difference between the number of removed
precedence relationships and the number of added precedence relationships:

score(A,B) = |{(i, h) : i ∈ A, h ∈ B, i ∈ P (h)}| − (|A|+ |B|) (4.11)

The scanning algorithm shown in Figure 4.2 can be used to detect a pair (A∗, B∗)
with the largest score. If a pair (A∗, B∗) with a positive score is found, a dummy
task can be added and the precedence network updated as described above. The
algorithm can be called repeatedly until no pair of sets with a positive score can
be found.

Figure 4.2: Scanning algorithm

1 A∗ ← ∅, B∗ ← ∅, s∗ ← 0;
2 Scan(1, ∅, {1, . . . , n});
3 procedure Scan(i0, A, B)
4 if |B| < 2 then return;
5 s← score(A,B);
6 if s > s∗ then (A∗, B∗, s∗)← (A,B, s);
7 foreach i ∈ {i0, . . . , n} do
8 Scan(i + 1, A ∪ {i}, B ∩ S(i));
9 end

10 end

4.8 Precedence network reversion

If precedence relationships are reversed (set R is replaced by set R′ = {(h, i) :
(i, h) ∈ R} and sets P (i), S(i), Pa(i), and Sa(i) are updated accordingly), the
resulting problem is also SALBP-1. If it is solved and a solution with m∗ stations
is obtained, the solution of the original problem can be found by moving all tasks
from station j to m∗ − j + 1, for each j ∈ {1, . . . ,m∗}.

15

Chapter 5

Our Model

We propose a new mixed-integer linear model that uses the network flow formu-
lation to represent the load of each station. We use the network compression
algorithm proposed by Brandão and Pedroso (2016) for bin packing to reduce
the number of variables and constraints in the network flow formulation.

Our model has new sets of flow conservation constraints and demand con-
straints to ensure that each task i will be performed at a certain station j.

We replace the cycle time constraint CYCLE by the network flow formulation
for bin packing problems proposed by Brandão and Pedroso (2016), and we take
the below considerations:

• this a one-dimensional case, where the equivalent of the size/weight of an
item i in the bin packing problem is the time ti needed to perform the
task i,

• each station is equivalent to a bin with a constant capacity c,

• the demand for each item, or task in our case, will be equal to 1,

• each node in the network represents a state that can be reached by schedul-
ing a task i on the station j. One station is equivalent to a set of c + 1
nodes,

• a network compression algorithm is then applied on the network to reduce
the number of variables and constraints as we will describe in this section,

• all remaining constraints (precedence and occurrence) are kept in our final
model.

Let’s denote Aj the set of tasks i that can be scheduled on a station j. Aj is
defined as the group of tasks i ∈ {i|Ei ≤ j ≤ Li}. We introduce the below set of
variables and constraints:

16

• flow variables (u denotes the source node and u + ti the destination node):

fi,u,u+ti,j ∀i ∈ Aj, ∀j ∈ {1, . . . ,mmax}, ∀u ∈ {0, . . . , c− ti}

0 ≤ fi,u,u+ti,j ≤ 1

• flow conservation constraints:∑
i∈Aj :k+ti≤c

fi,k,k+ti,j ≤
∑

i∈Aj :k≥ti

fi,k−ti,k,j, ∀j ∈ {1, . . . ,mmax},∀k ∈ {1, . . . , c}

(FLOW CONSERV)
The interpretation of this constraint is that the outflows should not exceed
the inflows for each node except node 0.

∑
i∈Aj

fi,0,ti,j ≤ 1, ∀j ∈ {1, . . . ,mmax} (FLOW CONSERV0)

The interpretation of this constraint is that we can only take one unit of
outflow at node 0.

• occurrence constraints:

xij =
c∑

v=ti

fiuvj, ∀i ∈ Aj,∀j ∈ {1, . . . ,mmax} (OCCUR FLOW)

The interpretation of this constraint is to force having one flow equal to 1
on a station j where we schedule the task i.

The algorithm 5.1 shows how the network is built with the related constraints
explained.

We present the example of the figure 5.2 to illustrate our model and we define
the related flow variables and constraints for the first station j=1. We define the
tasks precedence network in the figure 5.2 where we take n = 7 for simplification.

Let’s consider c = 10 for this example, and mmax = 5. Using the equations
3.1 and 3.2 defined to calculate the earliest and latest stations for each task, we
present the values for the tasks in our example in the table 5.1.

For illustration purposes, we will build the network flow model on the first
station j=1. The station in our example is represented as a set of states as shown
in the figure 5.3. Based on the table 5.1, we could schedule the tasks 1, 2 and 3
on the first station. The 5.4 shows the network flow model constructed based on
the algorithm 5.1.

At station j=1, we write the different constraints as below:

• flow conservation at node 0: f3,0,6,1 + f1,0,4,1 + f2,0,3,1 − 1 ≤ 0

17

Figure 5.1: Network flow formulation algorithm

1 NetworkConstruction();
2 procedure NetworkConstruction()
3 foreach station j ∈ {1, . . . ,mmax} do
4 reachedCapacity ← 0; //we start with an empty station

5 Set supply = 1; //At level 0, the inflow or supply is 1

6 Find tasks set Aj = {i: Ei ≤j≤Li}; //tasks that can be scheduled on

the station j

7 Sort tasks in Aj by decreasing time;
8 foreach task i in Aj do
9 foreach reachable state of station j do

10 if reachedCapacity + ti ≤ c then
11 Add flow variable fi,reachedCapacity,reachedCapacity+ti,j; //flow

variable at level reachedCapacity

12 reachedCapacity = reachedCapacity + ti;
13 ;

14 end
15 Add occurrence constraint: xij =

∑c
v=ti

fiuvj
16 end
17 foreach reachable state in station j do
18 Set flow conservation constraint:

∑
u=k fiuvj −

∑
v=k fiuvj

19 end

20 end

21 end

1t1 = 4

2

t2 = 3

3

t3 = 6

4

t4 = 3

5

t5 = 5

6

t6 = 5

7

t7 = 10

Figure 5.2: Example of ALBP problem with n = 7

18

Task Earliest station Latest station
1 1 1
2 1 2
3 1 2
4 2 3
5 3 4
6 2 3
7 3 4

Table 5.1: Earliest and latest stations of tasks

0Supply = 1 1 2 3 4 5 6 7 8 9 10

Figure 5.3: Station 1 represented as a set of nodes or states

0Supply = 1 1 2 3 4 5 6 7 8 9 10

f3,0,6,1

f1,0,4,1

f2,0,3,1
f1,6,10,1

f2,6,9,1

f2,4,7,1

Figure 5.4: Station 1 represented as a set of nodes or states

19

• flow conservation at node 4: f2,4,7,1 − f1,0,4,1 ≤ 0

• flow conservation at node 6: f2,6,9,1 + f1,6,10,1 − f3,0,6,1 ≤ 0

• occurrence constraints: x3,1 = f3,0,6,1, x1,1 = f1,6,10,1 + f1,0,4,1 and x2,1 =
f2,0,3,1 + f2,4,7,1 + f2,6,9,1

20

Chapter 6

Computational Experiments

We performed our experiments on a virtual machine with Windows 10 64-bit
configured with 2 sockets, each with Intel Xeon E5-2643V2 3.50 GHz 6-core
processor capable of running 12 threads. The virtual machine was configured with
10 cores available for processing and without hyper-threading. Heuristics, lower
bounds, and procedures generating MILP models were programmed in Visual
Studio C++ 2017. We used two solvers to solve MILP models: CPLEX 12.9 and
Gurobi 8.1.

Before initiating a solver, we solved each instance with the Multi-Hoffmann
heuristic proposed by Fleszar and Hindi (2003). We also calculated a lower
bound as described in the above mentioned paper. If the heuristic solution was
not proven to be optimal, it was solved using a MILP solver.

Tests were performed on one set of benchmark problem instances. This set, de-
noted BWL, described by Scholl and Klein (1997) can be downloaded from https:

//assembly-line-balancing.de/salbp/benchmark-data-sets-1993/. It in-
cludes 269 instances with n = 7 to 297 tasks.

We started by performing the tests of the MILP models collected from the
literature, while we included many variants of these models. The aim from this
test is to identify the best performing combination in terms of convergence to the
optimal solution.

The full factorial test was based on every possible combination of the below:

1. The objective function (OBJ1, OBJ2, OBJ3),

2. The precedence constraint type, as shown in table 6.1

3. Whether we introduce the dynamic latest station reduction (4.10) or not,

4. Whether we introduce the lag constraint or not,

5. Whether we set the value mmax to the best known value from the heuristic
minus 1 or without decreasing by 1 as described in the section 4.6, denoted
as mLess1 the remainder of the document,

21

https://assembly-line-balancing.de/salbp/ benchmark-data-sets-1993/
https://assembly-line-balancing.de/salbp/ benchmark-data-sets-1993/

Precedence constraint ID Precedence constraint definition
0 PREC0
1 PREC1
2 PREC2-BETTER
3 PREC3-BETTER
4 PREC2-E
5 PREC3-E
6 PREC2-L
7 PREC3-L
8 PREC2-BOTH
9 PREC3-BOTH
10 PREC3-NEW1
11 PREC3-NEW2

Table 6.1: Precedence constraints recap

6. The type of optimizer used to solve the different instances (Cplex or Gurobi).

Based on the above, the combination of the different types of objectives and
constraints will generate 576 variants of MILP models. This results in 154,944
tests ran on the 269 BWL instances to measure the performance of these 576
variants.

Following the tests, we note that the different variants of the MILP models
show different performance, however none of them was able to solve all the BWL
instances, as show in the table 6.2. We show in the table 6.2 the percentage of
instances solved by the different variants we propose. Further statistical analysis,
involving linear regression analysis of the results, shows no significant difference
in terms of the models performances; we could only see few parameters that
impacted the overall performance of a model, as seen in the figure 6.1.

The figure 6.1 represents the different distribution of the runs with respect
to the different parameters that we changed. We see that precedence types 3
and 10 have higher impact than the other precedence types, the lag constraint
is introducing enhancements, as well as the dynamic reduction of latest station.
The usage of Cplex as optimizer has a higher impact than Gurobi. Finally, the
objective type does not seem to have a high impact.

When checking further the models’ performance, we notice that the below
variants have the best performance, as they could solve 57% of the instances
that were not solved by the heuristic. The models correspond to the below
combination:

1. Optimizer is Cplex

2. Precedence constraint is either 3 or 10

22

group cnt* n 0 1 2 3 4 5 6 7 8 9 10 11

Arcus2 17 111 88% 88% 88% 88% 88% 88% 88% 88% 88% 88% 88% 88%
Barthol2 27 148 22% 22% 22% 22% 22% 22% 22% 22% 22% 22% 22% 23%

Lutz2 11 89 61% 62% 63% 68% 66% 69% 60% 62% 62% 61% 66% 66%
Scholl 26 297 11% 10% 9% 10% 8% 9% 9% 10% 8% 8% 10% 9%
Tonge 16 70 60% 61% 65% 69% 67% 69% 61% 61% 67% 67% 69% 65%

Warnecke 16 58 61% 57% 62% 66% 55% 56% 71% 74% 66% 66% 69% 67%
Wee-Mag 24 75 75% 75% 73% 74% 72% 72% 75% 74% 67% 68% 75% 76%

Table 6.2: Instances not solved by the MILP variants

Precedence type Lag constraint

Optimizer Dynamic reduction

mLess1 Objective type

Figure 6.1: Count of optimal solutions in function of variants types

3. Lag constraint is introduced

4. Dynamic latest station is introduced (mLess1)

23

group cnt opt !opt gapm %gapa %gapm tavg tmax Constrs Bin Int Contin NZs Nodes LagConstr
Bowman 1 1 0 0 0 0 0.004 0.004
Mansoor 3 3 0 0 0 0 0.005 0.005
Mertens 6 6 0 0 0 0 0.003 0.003
Jaeschke 5 5 0 0 0 0 0.004 0.004
Jackson 6 6 0 0 0 0 0.005 0.005
Mitchell 6 6 0 0 0 0 0.025 0.055 45 50 0 0 162 0 5
Heskiaoff 6 6 0 0 0 0 0.025 0.036
Sawyer 9 9 0 0 0 0 0.107 0.308 170 161 0 0 1109 92 5

Kilbridge 10 10 0 0 0 0 0.042 0.047
Tonge 16 12 4 1 1.56 8.33 4.617 10.224 401 450 0 0 2873 16693 13
Arcus1 16 16 0 0 0 0 0.307 0.756 364 394 0 0 2312 0 2
Arcus2 17 15 2 1 0.75 7.69 2.327 11.251 971 1043 0 0 10585 7523 10
Roszieg 6 6 0 0 0 0 0.016 0.018
Buxey 7 7 0 0 0 0 0.067 0.124 134 126 0 0 739 0 6
Lutz1 6 6 0 0 0 0 0.042 0.088 55 64 0 0 165 0 1

Gunther 7 7 0 0 0 0 0.068 0.144 174 170 0 0 994 0 6
Hahn 5 5 0 0 0 0 0.129 0.215 62 72 0 0 152 0 0

Warnecke 16 13 3 1 0.69 3.85 4.614 10.206 700 612 0 0 7841 4457 15
Wee-Mag 24 19 5 4 1.29 11.76 4.032 10.640 2799 2335 0 0 86638 3156 34

Lutz2 11 8 3 4 1.65 8.7 4.362 10.327 1435 903 0 0 17026 1546 35
Lutz3 12 12 0 0 0 0 0.280 0.536 408 360 0 0 2855 493 6

Mukherje 13 13 0 0 0 0 0.193 0.217
Barthold 8 8 0 0 0 0 0.424 0.474
Barthol2 27 6 21 1 2.02 3.85 8.648 11.478 5441 4562 0 0 171034 2798 20

Scholl 26 3 23 1 2.4 3.7 14.081 16.089 5440 4797 0 0 105440 2351 6
All 269 208 61 4 0.8 11.76 3.529597 16.08892 2422 2088 0 0 57001 3785 14

Table 6.3: Results of best performing model (Precedence type = 3)

No clear impact of the objective function is observed. The tables 6.3 and 6.4
show the results for the top performing variants described above.

The same conditions of the best performing models were applied on our net-
work flow model to check if it could solve the instances that were not solved by
MILP top performing variants described above.

The different tests show a comparable result to the best MILP performing
models identified above, for the same time limit = 10 seconds. Our model is able
to solve 54% of the instances using the precedence type 3 or 10, as shown in the
tables 6.5 and 6.6.

We suspect that the time consuming part is on the network flow construction
and compression. When we increased the time limit, we could collect slightly
better results as shown in the figure 6.2.

As seen in the figure 6.2, our model does not outperform the best of the
existing variants we tested. However, we see that our model outperforms the
best of the MILP models for Wee-Mag instance only.

24

group cnt opt !opt gapm %gapa %gapm tavg tmax Constrs Bin Int Contin NZs Nodes LagConstr
Bowman 1 1 0 0 0 0 0.004 0.004
Mansoor 3 3 0 0 0 0 0.005 0.005
Mertens 6 6 0 0 0 0 0.003 0.003
Jaeschke 5 5 0 0 0 0 0.004 0.004
Jackson 6 6 0 0 0 0 0.005 0.005
Mitchell 6 6 0 0 0 0 0.026 0.057 45 50 0 0 162 0 5
Heskiaoff 6 6 0 0 0 0 0.025 0.036
Sawyer 9 9 0 0 0 0 0.101 0.170 170 161 0 0 1101 0 5

Kilbridge 10 10 0 0 0 0 0.042 0.047
Tonge 16 12 4 1 1.73 8.33 4.131 10.225 401 450 0 0 2848 16027 13
Arcus1 16 16 0 0 0 0 0.306 0.729 364 394 0 0 2300 0 2
Arcus2 17 15 2 1 0.75 7.69 2.350 11.268 971 1043 0 0 10485 8089 10
Roszieg 6 6 0 0 0 0 0.016 0.018
Buxey 7 7 0 0 0 0 0.073 0.136 134 126 0 0 730 0 6
Lutz1 6 6 0 0 0 0 0.042 0.087 55 64 0 0 165 0 1

Gunther 7 7 0 0 0 0 0.080 0.172 174 170 0 0 981 0 6
Hahn 5 5 0 0 0 0 0.130 0.216 62 72 0 0 152 0 0

Warnecke 16 13 3 1 0.71 4 3.808 10.205 700 612 0 0 7745 4223 15
Wee-Mag 24 19 5 4 1.16 11.76 3.302 10.666 2799 2335 0 0 85376 3034 34

Lutz2 11 8 3 4 1.91 8.7 4.142 10.319 1435 903 0 0 16799 1096 35
Lutz3 12 12 0 0 0 0 0.318 0.517 408 360 0 0 2838 283 6

Mukherje 13 13 0 0 0 0 0.192 0.217
Barthold 8 8 0 0 0 0 0.425 0.474
Barthol2 27 6 21 1 2.02 3.85 8.656 11.168 5441 4562 0 0 169541 2749 20

Scholl 26 2 24 1 2.48 3.7 14.244 16.078 5440 4797 0 0 104652 2979 6
All 269 207 62 4 0.82 11.76 3.39872 16.077859 2422 2088 0 0 56480 3781 14

Table 6.4: Results of best performing model (Precedence type = 10)

group cnt opt !opt gapm %gapa %gapm tavg tmax Constrs Bin Int Contin NZs Nodes LagConstr
Bowman 1 1 0 0 0 0 0.004 0.004
Mansoor 3 3 0 0 0 0 0.005 0.005
Mertens 6 6 0 0 0 0 0.003 0.003
Jaeschke 5 5 0 0 0 0 0.004 0.004
Jackson 6 6 0 0 0 0 0.005 0.005
Mitchell 6 6 0 0 0 0 0.037 0.106 158 50 0 249 863 0 5
Heskiaoff 6 6 0 0 0 0 0.025 0.036
Sawyer 9 9 0 0 0 0 1.170 4.961 602 161 0 2029 7066 892 5

Kilbridge 10 10 0 0 0 0 0.042 0.047
Tonge 16 4 12 1 4.76 9.09 9.925 13.835 4053 450 0 40646 123806 0 13
Arcus1 16 14 2 1 1.34 14.29 11.174 110.250 50162 394 0 1215695 3585889 0 2
Arcus2 17 9 8 1 2.91 7.69 121.571 300.124 143559 1043 0 3920624 11765891 0 10
Roszieg 6 6 0 0 0 0 0.016 0.018
Buxey 7 7 0 0 0 0 0.545 2.439 504 126 0 1776 5954 517 6
Lutz1 6 6 0 0 0 0 0.342 1.448 1583 64 0 3636 9888 0 1

Gunther 7 7 0 0 0 0 0.325 1.359 709 170 0 2362 7929 43 6
Hahn 5 4 1 1 4 20 2.867 13.902 6911 72 0 42674 126352 0 0

Warnecke 16 5 11 2 3.72 7.69 9.139 11.410 2352 612 0 9757 35100 0 15
Wee-Mag 24 20 4 1 0.53 3.33 4.268 13.569 6559 2335 0 16560 134352 0 34

Lutz2 11 4 7 5 4.02 10.87 7.409 11.882 2772 903 0 5184 32007 841 35
Lutz3 12 7 5 1 2.73 9.09 8.344 12.025 2208 360 0 19360 60532 6 6

Mukherje 13 13 0 0 0 0 0.192 0.221
Barthold 8 8 0 0 0 0 0.424 0.481
Barthol2 27 6 21 1 2.02 3.85 21.842 28.929 14026 4562 0 221900 832709 0 20

Scholl 26 2 24 1 2.48 3.7 290.898 363.402 75723 4797 0 5232967 15753892 0 6
All 269 174 95 5 1.62 20 40.994507 363.402476 27490 2088 0 1270484 3856516 121 14

Table 6.5: Results of the network flow model (Precedence type = 3)

25

group cnt opt !opt gapm %gapa %gapm tavg tmax Constrs Bin Int Contin NZs Nodes LagConstr
Bowman 1 1 0 0 0 0 0.004 0.004
Mansoor 3 3 0 0 0 0 0.005 0.005
Mertens 6 6 0 0 0 0 0.003 0.003
Jaeschke 5 5 0 0 0 0 0.004 0.004
Jackson 6 6 0 0 0 0 0.005 0.005
Mitchell 6 6 0 0 0 0 0.038 0.115 158 50 0 249 863 0 5
Heskiaoff 6 6 0 0 0 0 0.025 0.036
Sawyer 9 9 0 0 0 0 0.891 3.958 602 161 0 2029 7058 394 5

Kilbridge 10 10 0 0 0 0 0.042 0.047
Tonge 16 4 12 1 4.76 9.09 9.925 13.831 4053 450 0 40646 123781 0 13
Arcus1 16 14 2 1 1.34 14.29 11.188 110.350 50162 394 0 1215695 3585877 0 2
Arcus2 17 9 8 1 2.91 7.69 121.577 300.099 143559 1043 0 3920624 11765791 0 10
Roszieg 6 6 0 0 0 0 0.016 0.018
Buxey 7 7 0 0 0 0 0.424 1.627 504 126 0 1776 5944 119 6
Lutz1 6 6 0 0 0 0 0.350 1.485 1583 64 0 3636 9887 0 1

Gunther 7 7 0 0 0 0 0.357 1.570 709 170 0 2362 7915 49 6
Hahn 5 4 1 1 4 20 2.870 13.924 6911 72 0 42674 126352 0 0

Warnecke 16 6 10 3 4 11.54 9.061 11.420 2352 612 0 9757 35003 0 15
Wee-Mag 24 21 3 1 0.39 3.23 4.210 13.435 6559 2335 0 16560 133090 0 34

Lutz2 11 4 7 5 4.02 10.87 7.423 11.907 2772 903 0 5184 31779 559 35
Lutz3 12 5 7 1 3.86 9.09 8.636 11.954 2208 360 0 19360 60515 2 6

Mukherje 13 13 0 0 0 0 0.192 0.216
Barthold 8 8 0 0 0 0 0.422 0.471
Barthol2 27 6 21 1 2.02 3.85 21.984 29.004 14026 4562 0 221900 831216 0 20

Scholl 26 2 24 1 2.48 3.7 291.404 364.345 75723 4797 0 5232967 15753103 0 6
All 269 174 95 5 1.67 20 41.051 364.35 27490 2088 0 1270484 3855996 61 14

Table 6.6: Results of the network flow model (Precedence type = 10)

0 20 40 60 80 100 120
0

20

40

60

80

100

Time limit (s)

P
er

ce
n
ta

ge
of

in
st

an
ce

s
so

lv
ed MILP with precedence type 3

MILP with precedence type 7
Network flow with precedence type 3
Network flow with precedence type 7

Figure 6.2: Performance comparison between models

26

Chapter 7

Conclusion

In this thesis, we did full factorial tests of the existing MILP models, and we
introduced enhancements to the constraints as well as we proposed two new con-
straints (PREC3-NEW1 and PREC3-NEW2), and one of them turned out to
have an impact on the convergence to optimality for some instances. This can
be considered as an enrichment of the models that we enhanced from the lit-
erature. The network flow model we proposed to solve the SALBP-1 instances
used in our tests does not outperform the best MILP variant we got. Our algo-
rithm is taking time to build the network flow before it starts with solving the
model itself. Howeve, we saw that our model outperforms the existing MILP
models for one instance (Wee-Mag). Additional configurations we could try are
to implement the network compression propose by Brandão and Pedroso (2016),
as well as to test the model on a different set of data, denoted OTTO. This
set was systematically generated by Otto et al. (2013) and is avaiable online at
https://assembly-line-balancing.de/salbp/benchmark-data-sets-2013.

27

https://assembly-line-balancing.de/salbp/benchmark-data-sets-2013

Appendix A

Abbreviations

ALBP Assembly Line Balancing Problem
LP Linear Programming
MILP Mixed-Integer Linear Programming
CP Constraint Programming

28

Bibliography

E. H. Aghezzaf and A. Artiba. A Lagrangian relaxation technique for the general
assembly line balancing problem. Journal of Intelligent Manufacturing, 6(2):
123–131, 1995. ISSN 09565515. doi: 10.1007/BF00123684.

lker Baybars. A Survey of Exact Algorithms for the Simple Assembly Line
Balancing Problem. Management Science, 32(8):909–932, 1986. ISSN 0025-
1909. doi: 10.1287/mnsc.32.8.909. URL http://pubsonline.informs.org/

doi/abs/10.1287/mnsc.32.8.909.

E. H. Bowman. Assembly-Line Balancing by Linear Programming. Operations
Research, 8(3):385–389, 1960. ISSN 0030-364X. doi: 10.1287/opre.8.3.385.

Filipe Brandão and Joo Pedro Pedroso. Bin packing and related problems: Gen-
eral arc-flow formulation with graph compression. Computers and Operations
Research, 69:56–67, 2016. ISSN 03050548. doi: 10.1016/j.cor.2015.11.009.

Alexandre Dolgui and Evgeny Gafarov. Some new ideas for assembly line balanc-
ing research. IFAC-PapersOnLine, 50(1):2255–2259, 7 2017. ISSN 2405-8963.
doi: 10.1016/J.IFACOL.2017.08.189.

Krzysztof Fleszar and Khalil S. Hindi. An enumerative heuristic and reduc-
tion methods for the assembly line balancing problem. European Jour-
nal of Operational Research, 145(3):606–620, 2003. ISSN 03772217. doi:
10.1016/S0377-2217(02)00204-7.

Alena Otto, Christian Otto, and Armin Scholl. Systematic data generation and
test design for solution algorithms on the example of SALBPGen for assembly
line balancing. European Journal of Operational Research, 228(1):33–45, 2013.
ISSN 03772217. doi: 10.1016/j.ejor.2012.12.029. URL http://dx.doi.org/

10.1016/j.ejor.2012.12.029.

Rafael Pastor and Laia Ferrer. An improved mathematical program to solve
the simple assembly line balancing problem. International Journal of Pro-
duction Research, 47(11):2943–2959, 6 2009. ISSN 0020-7543. doi: 10.1080/
00207540701713832.

29

http://pubsonline.informs.org/doi/abs/10.1287/mnsc.32.8.909
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.32.8.909
http://dx.doi.org/10.1016/j.ejor.2012.12.029
http://dx.doi.org/10.1016/j.ejor.2012.12.029

James H. Patterson and Joseph J. Albracht. Technical NoteAssembly-Line Bal-
ancing: Zero-One Programming with Fibonacci Search. Operations Research,
23(1):166–172, 2 1975. ISSN 0030-364X. doi: 10.1287/opre.23.1.166.

Marcus Ritt and Alysson M. Costa. Improved integer programming models for
simple assembly line balancing and related problems. International Transac-
tions in Operational Research, 25(4):1345–1359, 7 2018. ISSN 09696016. doi:
10.1111/itor.12206. URL http://doi.wiley.com/10.1111/itor.12206.

Armin Scholl and Robert Klein. SALOME: A bidirectional branch-and-bound
procedure for assembly line balancing. INFORMS Journal on Computing, 9
(4):319–334, 1997. ISSN 10919856. doi: 10.1287/ijoc.9.4.319.

E. C. Sewell and S. H. Jacobson. A Branch , Bound , and Remember Algo-
rithm for the Simple Assembly Line Balancing Problem. INFORMS Journal
on Computing, 24(3):433–442, 2012.

P Sivasankaran and P Shahabudeen. Literature review of assembly line
balancing problems. International Journal of Advanced Manufacturing
Technology, 73(9-12):1665–1694, 2014. ISSN 14333015. doi: 10.1007/
s00170-014-5944-y. URL https://link.springer.com/content/pdf/10.

1007%2Fs00170-014-5944-y.pdf.

S. R. Thangavelu and C. M. Shetty. Assembly line balancing by zero-one integer
programming. AIIE Transactions, 3(1):61–68, 1971. ISSN 05695554. doi:
10.1080/05695557108974787.

William W White. Letter to the Editor: Comments on a Paper of Garg. Opera-
tions Research, 9(2):274–276, 1961. doi: 10.1023/b:scie.0000018533.22139.9c.

30

http://doi.wiley.com/10.1111/itor.12206
https://link.springer.com/content/pdf/10.1007%2Fs00170-014-5944-y.pdf
https://link.springer.com/content/pdf/10.1007%2Fs00170-014-5944-y.pdf

	Acknowledgements
	Abstract
	Introduction
	Literature Review
	Model Parameters
	MILP Models
	Decision Variables
	Occurrence constraints
	Cycle time constraints
	Precedence constraints
	Objective function
	Dynamic latest station reduction
	Reduction of the number of precedence constraints
	Precedence network reversion

	Our Model
	Computational Experiments
	Conclusion
	Abbreviations

