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An Abstract of the Thesis of

Carmen Ghassan Al Masri for Master of Science
Major: Physics

Title: Relaxational Dynamics and Compressional Properties of Polymer Brushes

We run molecular dynamics simulations to study the relaxation dynamics of
a single polydisperse brush in the short unentangled regime, and of a brush-
bilayer system of different polydispersity indices to study its equilibrium pressure
properties. We find an unexpected behaviour with the relaxation times, likely
due to the effects of frozen disorder. As for the pressure of the bilayer system, we
found that the characterization of the free energy by the number of interbrush
contacts is a valid one. However, we found that the pressure for the same densities
depended on the polydispersity index. Investigations led us to attribute this to
chain-end effects, which were completely unaccounted for in the context of the
mean field theory.
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Chapter 1

Introduction

Polymer brushes are formed when polymer chains are grafted to a surface at
a sufficiently high density. They have applications in a wide scope of fields
ranging from biomedicine (drug delivery, tissue engineering scaffolds, biomedi-
cal probes, etc. . . ), to antifouling surfaces, colloidal stabilization and tribology
(lubrication)[2, 3, 4]. With such a diverse range of applications, it became neces-
sary to understand both the equilibrium and dynamical properties of these poly-
meric structures, particularly that of the fundamental densely grafted monolayer.
While the equilibrium properties of these monolayers have been extensively stud-
ied both theoretically and experimentally[5, 6], the dynamical properties (and
particularly relaxation dynamics) remain to be fully explored.

It had been theorized that for long chains, the relaxation times in the direction
normal to the grafting surface scaled as τz ∼ ρ2/3N3 while in the lateral direc-
tion they scaled as τ‖ ∼ ρ−1/6N2, where N is the index of polymerization and ρ
the grafting density [7]. This scaling took into account the anomalous chain-end
fluctuations, due to the last monomers of each chain exploring the entire space
within the brush thickness [7]. However, after recently conducting molecular
dynamics and Monte Carlo simulations, it was apparent that for chains with a
large enough degree of polymerization (N >= 64), the relaxation times in the
lateral and normal directions strongly deviated from the theoretical predictions,
and were shown to both have the same N -dependence that scales as τ ∼ N3.7 [8].
The deviation in the normal direction from the N3 dependence was attributed to
the previously unaccounted-for entanglement effects. As for the lateral direction,
the high discrepancy was attributed to fluctuations of the z−component being
coupled with those of the xy components of the chains [8]. However, whether
this coupling in the fluctuations still exists in the regime of short, unentangled
chains remains an open question.
On the other hand, in the case of polydisperse chains, it was theoretically pre-
dicted that even for very small polydispersity, the anomalous chain-end fluctu-
ations become suppressed; the end of each chain exhibits gaussian fluctuations,
from which we can recover relaxation times that scale as τpolydisperse ∼ N2p−1/2,
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where p is the index of polydispersity [2]. However, this prediction has yet to
be tested by simulation. We therefore propose to conduct molecular dynamics
simulations to study the relaxation times of both monodisperse and polydisperse
brushes in the short, unentangled regime and compare their behaviors.

Another system that will be of interest to us is the polymer-brush bilayer,
which was shown to be the most effective coating to achieve low-friction forces
between surfaces, and therefore provides extraordinary lubrication properties and
plays an important role in colloidal stabilization [4]. Hence, understanding the
equilibrium properties of these bilayers is necessary. Of particular interest to us is
the compressive force felt by the chains when the individual brushes are brought
together and start interpenetrating. A sketch of the situation is shown in figure
1.1 [3].

Figure 1.1: Schematic of a compressed polymer-brush bilayer. The free energy in the
interpenetration zone of width l can be quantified through concentration blobs, each
bringing energy of the order kT to the system.

One approach to evaluate the pressure in this system involves evaluating its
total free energy, from which the pressure would be recovered by taking the
derivative of the free energy per unit area F with respect to the separation be-
tween the brushes (dF/dD = P ). A recent study [3] estimated the free energy
inside interpenetration zone only, and from it recovered the total free energy of
the system, thus relating the free energy (and hence the osmotic pressure) to the
depth of the interpenetration l. However, this study is based on an assumption
in which the free energy of the system was a function of the number of interbrush
contacts, which is a questionable assumption that we will attempt to verify in
this work.
Alternatively, one can simply express the pressure as a function of the local
number density through an equation of state. Recent studies [9] using the self-
consistent field (SCF) theory showed the equivalence between this characteriza-
tion of pressure and the pressure from the free energy. However, no systematic
study using MD simulations has been conducted yet. We therefore propose to
run molecular dynamics simulations on brush-bilayer systems of different poly-
dispersity indices to check the consistency of the pressure characterization as we
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currently understand it, which will serve to guide our theoretical understanding
of it.
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Chapter 2

Literature Review

2.1 Properties of Real and Ideal Polymer Chains

2.1.1 Ideal Chains

The starting point of most polymer chain models is that of a flexible, freely
jointed ideal chain. In this model, the interaction between monomers separated
by a sufficient number of bonds along the chain is neglected, and all bonds are
of the same length, with directions independent of each other. [10] We consider
a polymer chain with n monomers Ai, with 0 ≤ i < n (Figure 2.1).

Figure 2.1: An Ideal Chain

The end-to-end vector Rn connecting A0 to An is then given by

Rn =
n∑
1

ri (2.1)

Since there is no preferred orientation of the chain, the ensemble average of the
end-to-end vector is zero 〈R〉 = 0. The simplest quantity to describe the average
size of the polymer chain is then given by the mean-square end-to-end distance:
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〈Rn
2〉 =

n∑
1

〈ri2〉+ 2
∑∑
1≤i<j≤n

〈rirj〉

If all the bond vectors were independent of each other, there would be no cor-
relations between two different bond vectors, hence 〈rirj〉 = 0. However, in a
typical polymer chain the consecutive bonds are correlated. The correlation only
dies out when the bond vectors are distant enough, so that lim

|i−j|→∞
〈rirj〉 = 0[11].

We can thus renormalize the chain into N independent segments of length b, over
which there is no correlation between the bonds. We thus obtain an equivalent
freely jointed polymer brush of N effective monomers of length b, known as Kuhn
monomers (Figure 2.2) [11]. Keeping the maximum end-to-end distance and

Figure 2.2: Renormalized ideal chain, with effective monomers shown in blue.

mean-square end-to-end distance fixed, we obtain the following renormalization
conditions:

Rmax = Nb

〈Rn
2〉 =

N∑
1

〈ri2〉+ 2
∑∑
1≤i<j≤N

〈rirj〉 = Nb2

We find that the configurations of the freely jointed ideal chain can be mapped to
a random walk, with N steps the size of a Kuhn monomer. This property, along
with other properties that will be discussed in the following sections, is universal
to all flexible polymers, independent of their chemical constitution[10]. We now
turn to studying the free energy of such chains.

2.1.2 Free Energy of an Ideal Chain

We consider, as in the previous section, a flexible polymer chain with N equivalent
Kuhn monomers of length b. Since the chain follows a random walk configura-
tion, the probability distribution of its end-to-end distance will be a Gaussian
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centered about R = 0. Therefore, for N � 1, the three-dimensional probability
distribution function for the end-to-end vector R is given by[11]:

P3D(N,R) =

(
3

2πNb2

)3/2

exp

(
− 3R2

2Nb2

)
(2.2)

This probability distribution function, being proportional to the number of con-
figurations Ω of a freely jointed chain of N monomers with end-to-end distance R,
enables us to write the configurational entropy of a polymer chain as a function
of its end-to-end distance:

S(R) = klnΩ(R) = −3kR2

2Nb2
+ constant (2.3)

Where k is the Boltzmann constant. We can see that a stretching of the polymer
chain beyond its ideal length will lead to a decrease in the entropy, as there are
fewer possible configurations than when the chain is unperturbed.
The Helmholtz free energy with energy U and absolute temperature T is F (R) =
U(R)−TS(R). However, monomers of an ideal chain have no interaction energy,
so U is independent of the end-to-end vector R. We can thus write the free energy
as:

F (R) =
3kTR2

2Nb2
+ constant (2.4)

We find that stretching the chain results in an increase of the free energy quadratic
in R. This means that stretching a chain by a distance R results in a restoring
force linear in R [11]:

f = −∂F
∂R

= −3kT

Nb2
R (2.5)

The entropic elasticity of a chain therefore satisfies Hook’s law, with spring con-
stant 3kT/Nb2.
So far, we assumed that monomers could overlap, and that there is no energetic
cost to their interactions. However, in most cases, monomers of real chains do in-
teract, which would affect the properties of that chain. We study these properties
in the next section.
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2.1.3 Excluded Volume Interactions

So far, we have assumed that monomers in a chain cannot interact with each
other, which would make overlap possible. However, two monomers of a real
chain cannot occupy the same volume in space, as shown by figure 2.3); If we
represent the monomers as hard spheres, their center-to-center distance cannot
be less than D, the diameter of the monomer. The excluded volume v is then the
sphere of radius D, given by v =

∫
4πr2dr. [1]

Figure 2.3: The volume not available to the center of the sphere B is a sphere of radius
D

In addition to this hard-core repulsion, there is also an energy cost U(r) of
bringing two monomers within a distance r of each other. The excluded volume
would then relatively increase if the net interaction is repulsive and decrease if it
is negative [1].
The probability of finding two monomers within that distance r is weighted by
the Boltzmann factor exp[−U(r)/kT ]. We can then express the excluded volume
as [11]:

v =

∫
4πr2(1− exp[−U(r)/kT ])dr (2.6)

Note that in the case of a bad solvent, monomer-monomer attraction dominates
and v can take a negative value. For our purposes, we only consider the case of
a good solvent where v > 0.

The excluded volume will significantly affect the properties of the polymer
chains, as we will see in the next sections.

2.1.4 Flory Theory for Real Chains

We now study the properties of a real chain with N Kuhn monomers occupying
the effective volume v. Since monomer overlap is no longer possible, there will
be an entropic repulsion between the monomers that would lead to the swelling
of the real chain relative to the ideal chain; the real chains follow a self-avoiding
walk [10]. The simplest way to characterize the energy of such a chain is given
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by the Flory theory, which takes into account the interplay of the entropic and
interaction energies.
To estimate the repulsion energy of the real chain, we adopt a Mean-Field the-
ory approach where the monomers are distributed uniformly within the volume
occupied by the chain (V ≈ R3). The probability of a monomer being within the
excluded volume of another monomer is the product of v and the number density
of the monomers N/R3. The energetic cost of each exclusion is kT , so the total
energetic interaction for N monomers is given by:

Fint = kTv
N2

R3
(2.7)

The stretching of the chain, which reduces monomer-monomer contacts, is then
energetically favorable. However, as we saw in section 2.1.2, there is an entropic
loss associated with this stretching. The equilibrium configuration of the chain
is a balance between these two effects, captured by the Flory theory, in which
the free energy is a combination of the entropic and interaction free energies.
Combining eq 2.4 and 2.7, we obtain:

F =
3kTR2

2Nb2
+ kTv

N2

R3
(2.8)

Minimizing the free energy with respect to R gives the optimal size of the chain,
which scales as R ≈ v1/5b2/5N3/5.

This power law dependence of R on N is universal to all real chains under
good solvent conditions. In this work, we will be exclusively dealing with such
chains. In section 2.3, we turn to characterizing the free energy in our system of
interest, with 2.8 as a basis. In the next section, we give a brief explanation of
the osmotic pressure in relation to polymer solutions.
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2.2 Osmotic Pressure

2.2.1 Free Energy of Mixing

Suppose that we mix into a solvent polymer chains. We assume a homogeneous
distribution where the mean field assumption holds. A simple way to determine
the change in free energy due to mixing was developed by Flory and Hoggins [12].
We first consider a lattice with ns solvent molecules and np polymer chains of
length N (Figure 2.4). The total number of cites is then nt = ns+Nnp. Assuming
both monomers and solvents occupy sites of equal volume, the volume fraction
of the solvent is given by φs = ns/nt and that of the polymer by φp = Nnp/nt.
Before mixing, a single solvent molecule could occupy Ωs = ntφs states (possible
lattice positions). After mixing, the number of states becomes Ωs+p = nt. The
change of entropy for one solvent molecule is then ∆Ss = k ln Ωs+p − k ln Ωs =
−k lnφs. Adding the entropy contribution of each molecule, we finally obtain
[13]:

∆Smix/nt = φs lnφs +
φp
N

lnφp (2.9)

We find that mixing always increases the entropy of the system. One should note
that for very large chains (N →∞) the polymer contribution becomes negligible,
and the change in entropy is largely dominated by the solvent contribution.

Figure 2.4: Lattice model for a polymer chain in a solution. The sites occupied by the
monomers are shown in black, and those occupied by the solvent in blue.

Now we wish to find the energy of mixing Umix. We consider 3 interaction
energies: solvent-solvent interactions εss, polymer-polymer interactions εpp and
polymer-solvent interactions εps. If each site has z neighbouring sites, the energy
before mixing is given by U0 = z/2(φsεss + φpεpp). [14] After mixing, the energy
of interaction becomes Us+p = z/2(φ2

sεss + φ2
pεpp + 2φsφpεsp). Subtracting Us+p

from U0, and using φs + φp = 1, one finally obtains [14]

Umix = kTχφpφs (2.10)

Where χ = z/2kT (2εsp− εss− εpp) is called the ”interaction parameter”. It is a
measure of energy change when we exchange a solvent molecule for a monomer.
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In a good solvent, mixing is promoted by the fact that it is more energetically
favourable for monomers to interact with solvents than with each other (same
for solvents). In that case, χ < 0. For an ideal mixture, there is no difference in
energetic cost between the 3 difference interactions and χ = 0.
Combining eq. 2.10 and 2.9, the free energy change per site upon mixing ∆Fmix =
∆Umix − T∆Smix is finally given by:

∆Fmix = kT [φs lnφs +
φp
N

lnφp + kTχφpφs] (2.11)

One should note that since φ < 1, lnφ < 0, and for a good solvent χ < 0,
mixing will always be energetically favourable and will lower the free energy of
the system.

2.2.2 Application to Osmotic Pressure

We start by illustrating osmotic pressure with the system shown in figure 2.5:
an isothermal system with two compartments are separated by a semi-permeable
membrane, allowing the passage of solvent but blocking the passage of polymers.
The only requirement for thermodynamic equilibrium is that the chemical poten-
tial of the solvent molecules be equal across compartments. It is not necessary
for the chemical potential of polymers to be the same [15].

Figure 2.5: Direction of flow from compartment B (pure solvent) to compartment A
(polymers and solvent)

When a polymer chain is added in compartment A, we have shown (eq. 2.11)
that the resultant is a decrease in the free energy of the solvent, which translates
into a decrease in its chemical potential ∆µs(p, T ) = µs(p, T ) − µ0

s(p, T ), where
µ0
s(p, T ) is the chemical potential of the pure solvent. This change is given by

[16]:

∆µs =
∂∆Fmix
δns

|T,P,np = kT

[
lnφs +

(
1− 1

N

)
φp + χφ2

p

]
(2.12)
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Since the chemical potential of the pure solvent is higher than that with the
polymers, there will be a net flow of solvent until their chemical potentials are
equal. Alternatively, chemical potential can be raised if the pressure of the system
is increased. The pressure required to stop the solvent flow from B to A is called
the osmotic pressure of the system. We can re-write the equilibrium condition
as:

µ0
s(T, P ) = µs(T, P + Π) (2.13)

Where Π is the osmotic pressure. We Taylor expand to get a linear approximation
at equilibrium and obtain [16]:

µ0
s(T, P ) = µs(T, P ) + Π

∂µs
∂P
|T,ns +O(2)

From thermodynamics, we know that ∂µs/∂P = V , where V is the molar volume
of the solvent. We then get

µs(T, P ) = µ0
s(T, P )− VΠ (2.14)

Using eq. 2.12, we finally get an equation for the osmotic pressure:

VΠ = kT

[
lnφs +

(
1− 1

N

)
φp + χφ2

p

]
(2.15)

Using lnφs = ln(1− φp), and for small φp the approximation ln(1− φp) ≈ −φp−
1/2φ2

p + ..., we obtain:

VΠ = kT

[
φp
N

+

(
1

2
− χ

)
φ2
p + ...

]
(2.16)

There are two things to note: first, in the dilute limit, the second-order term is
negligible and we recover

Πφp→0 = kT
φp
N

= kTν (2.17)

Where ν = φp/N is the concentration of monomers (as opposed to polymer
chains). This is known as Van’t Hoff Law [11], which is analogous to the ideal
gas law and emerges out of purely entropic effects.
On the other hand, the φ2 term is a measure of the two-body interactions, with
its strength set by the coefficient A = 1/2 − χ, where A is known as the virial
coefficient [1].
Finally, as already mentioned in the previous section, for N → ∞ the entropic
term becomes negligible and it’s the two-body interaction effects that dominate,
which gives us

Π ∼ φ2
p (2.18)
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For long polymer chains within the mean-field theory.
In the case of a polymer brush, experimental studies have shown [17] that the
mean field theory gives the correct power law dependence of osmotic pressure
on polymer volume fraction in the range where chains are not very long and the
grafting densities moderate. For long chains in highly dense brushes, a better
estimate of the power low is given by the scaling approach, which gives:

Π ∼ φ9/4
p (2.19)

Alternatively, the pressure can be obtained from kinematic instead of ther-
modynamic considerations. As will be derived in section 2.6.3, one can compute
the local microscopic pressure tensor along the simulation box by taking both
contributions from the momenta of the monomers (ideal gas contribution) and
the forces due to the potentials acting on the monomers.
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2.3 Evaluating Pressure in a Brush Bilayer

There are two different approaches to evaluating the osmotic pressure of a brush
bilayer: the first is based on a global property of the system, the total free energy,
and the second is based on an equation of state where the osmotic pressure is
related to the minimum density in the brush profile. Both of these approaches
will be discussed here.

2.3.1 Normal Pressure from the Free Energy

The first approach to getting the normal pressure of a brush bilayer is to consider
the change in the total free energy as we’re bringing the surfaces together: the
isothermal work that goes into compressing the brushes results in an increase of
the free energy of the system, and hence the osmotic pressure is given by [9]:

Π =
∂F

∂V
=

1

A

∂F

∂D
(2.20)

where F is the free energy of the system, A the area of the surfaces, and D their
separation.
The earliest treatment of such a system is one where we consider two brushes
separated by a distance 2D with grafting density σ (Figure 2.6). To calculate the
free energy of this system, we consider a simplified model [5] where all the chains
have the same length N and the same height D. The volume per chain is then
V = D/σ. Setting kT ≡ 1 and b ≡ 1 and using eq. 2.8, the free energy per unit
area then becomes:

f = σ
3D2

2N
+ v

(σN)2

2D
(2.21)

As before, the first term represents the stretching energy and the second term the

Figure 2.6: A Brush Bilayer

energy associated with the two-body interactions. The normal pressure (which,

13



as explained above, is the derivative of the free energy per unit area with respect
to D) is then given by:

Π =
v

2

(
Nσ

H0

)2
[(

H0

D

)2

− D

H0

]
(2.22)

Where H0 = N(vσ/6)1/3 is the unperturbed brush height obtained after mini-
mizing the free energy with respect to D.

However, such an approach does not account for the parabolic density profile
of the brush due to the chain fluctuations of the chain ends along the height
of the brush. A theory was therefore developed by Milner, Witten and Cates
[18], in which they use the self-consistent field theory to obtain a free energy
expression within the mean field approximation. The pressure obtained from
that free energy is then given by:

Π =
v

2

(
Nσ

H0

)2
[(

H0

D

)2

− 2D

H0

+

(
D

H0

)4
]

(2.23)

With the prefactor and H0 being two adjustable parameters.
At strong enough compressions, the density profile along the normal direction to
the surfaces becomes constant, given by φ ≈ Nσ/D, which gives us an osmotic
pressure of the form

Π ≈ 1

2
v

(
σN

D

)2

(2.24)

It is important to note that this expression should be independent of polydisper-
sity index [9].

2.3.2 Normal Pressure from the Equation of State

The second approach to evaluate the pressure is through the local density of
the brush bilayer; since we’re dealing with a system at equilibrium, the pressure
along the normal direction must be uniform. Hence, it is enough to determine
the pressure at one point (the minimum density in this case) to know the total
normal pressure. In this system, there are two contributions to pressure: the
positive contribution of the monomer-monomer interactions, and the negative
contribution from the tension in the chains, due to their stretching away from
their surface (which maximizes entropy and minimizes the free energy). This
stretching can be characterized through the chemical potential µ(z) of the chain,
which must decrease as we move away from the surface (the farther we move away,
the lower the probability of contact with another chain, and hence the lower the
cost to place a chain at that point) [19]. Therefore, the grafted chains will tend
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to stretch away from the surface along the gradient of the chemical potential, and
at the minimum of the density where the gradient is zero, the stretching must
disappear. The chains around the minimum must then behave as chains in a
solvent, with the main contribution to pressure due to excluded volume effects
only. The equation of state will then take the form:

Π(D) =
1

2
vφ2(D) (2.25)

Where Π is the osmotic pressure of the system, v the virial coefficient (which
should be equivalent to the excluded volume), and φ(D) the density evaluated at
the minimum in the z profile of the brush.

It was shown using SCF simulations [9] that these two characterizations of
pressure were indeed equivalent, and that for strong enough compressions (when
the density is uniform along z) the pressure will depend on the local density only,
and not on polydispersity index.

2.3.3 Interaction free Energy from Interbrush Contacts

A problem with the previous characterizations of free energy (section 2.3.1) was
that they completely ignored the interpenetration of the two brushes upon com-
pression, which would make the compressive force of purely entropic origin. How-
ever, as illustrated in figure 2.7, MD simulations and experiments clearly showed
significant interpenetration [20]. This lead to a new understanding of the com-
pressive forces in a brush bilayer which helped develop a new approach to char-
acterize the free energy of interaction (defined as the volume integral over the
pressure due to compression [4]).
This approach is based on a line of reasoning whereby the contribution to the

free energy inside the interpenetration zone is taken to be equal to that outside
of it. The logic is as follows: if we compress the two brushes in a quasi-stationary
process, the chains of opposite brushes will eventually start interpenetrating, es-
tablishing an interpenetration zone. The monomers of the opposite brushes in
this zone will start repelling each other (interbrush interactions), which would
lead to the compression of the grafted chains (intrabrush interactions) to avoid
interpenetration. To maintain equilibrium, these two contributions must be bal-
anced. Otherwise, the width of the interpenetration would not remain constant.
Therefore, it is sufficient to compute the interaction free energy in the interpene-
tration zone to obtain the total interaction free energy (by multiplying by a factor
of 2) [3]. A schematic extracted from that study can be seen in figure 2.8
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Figure 2.7: density profile of the brush bilayer system for k = 1.05 at walls separation
D = 30. The inset shows the overlap region, given by Γ = φ1φ2 in which the brushes
interpenetrate

Figure 2.8: Schematic of a compressed polymer-brush bilayer. The free energy in the
interpenetration zone of width l can be quantified through concentration blobs, each
bringing energy of the order kT to the system.

This assumption was verified [3] by showing that the amount of interpenetra-
tion (quantified by the number of interbrush contacts) indeed followed the same
functional form as the total interaction free energy (shifted by an arbitrary fac-
tor). However, this approach seems questionable; there is no solid footing over
which we can claim that the number of interbrush contacts characterizes the total
free energy of the system. Therefore, in our work, we attempt verify the consis-
tency of this description by checking how the number of contacts relates to the
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free energy of interaction, and checking if this description would be consistent
over different polydispersity indices.
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2.4 Modelling Chain Dynamics

2.4.1 The Dumbbell Model

At equilibrium, fluctuations in the position of monomers eventually lead to a
change in the configuration of a polymer chain (figure 2.9). We can estimate
how fast the configuration changes by adopting a bead-spring model [21]. For
simplicity, we consider the Rouse model, where we ignore excluded volume and
hydrodynamic interactions.

Figure 2.9: Change in the conformation of the chain in bead-spring model [1].

As in section 2.1.2, we consider a renormalized chain such that the orientation
of each segment is independent of the other. Instead of considering these segments
as rigid rods of Kuhn length b, we take them to be springs with equilibrium length
b. The distance between two consecutive segments will then follow a Gaussian

distribution P (R) ∼ exp
(
−3R2

2b2

)
. Similarly to eq.2.5, the stretching of the spring

beyond its equilibrium length will lead to a restoring force with spring constant
k = 3kT/b2 [1]. The elastic energy of the chain will then be the sum of the
contributions from all subchains, which have the same form as eq.2.4. We can
then write:

F =
N−1∑
n=0

3kT

2b2
r2
n

Since each bead will feel a force from both its neighbors (figure 2.10), the corre-
sponding elastic force will be:

Figure 2.10: Spring force on bead n [1].
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fn = ∂F/∂rn =
3kT

2b2
(rn+1 − 2rn + rn+1) ≈ 3kT

2b2

∂2rn
∂n2

In addition to the elastic force, the beads will also be subject to random kicks
from the surrounding solvent. The motion of that bead will then be governed by
the Langevin equation [1]:

ξ
drn
dt

=
3kT

2b2

∂2rn
∂n2

+ fn(t) (2.26)

Where ξ is the drag coefficient and fn(t) the sum of random forces acting on the
bead due to solvent molecules which satisfies

〈fn(t)〉 = 0

〈fn(t)fn(t′)〉 = 6kTξδ(t− t′)
(2.27)

The Langevin equation can be easily solved if we represent the motion of the
beads using normal coordinates qi. The dynamics are then described as the
superposition of p independent normal modes. The solution obtained is then of
the form [21]

rn(t) =
∑
p

αp cos
(πpn
N

)
exp

(
− t

τp

)
(2.28)

The zeroth normal mode p = 0 represents the center-of-mass motion of the chain.
The higher p is, the more sensitive to the local conformation the mode becomes,
up to the Nth mode which represents the motion of every monomer with respect
to its neighbor. Each mode has its own relaxation time τp = τ1/p

2, which is
the characteristic time for N/p segments of the chain to diffuse through their
end-to-end distance [21].

2.4.2 Properties of the Rouse Chains

Using eq.2.28, we can now obtain the two main quantities of interest to us: the
diffusion coefficient for the polymer chain Dchain and the autocorrelation of the
end-to-end vector R(t) = rN(t)− r0(t). For our purposes, we will write the final
results without showing the calculations. The derivations can be found in ref.
[1].

Relaxation of the end-to-end vector We first look at the time autocorrela-
tion of the end-to-end vector. It can be shown that it’s expressed as [1] :

〈R(t)R(0)〉 =
8Nb2

π2

∑
p:odd

1

p2
exp(−tp2/τ1) (2.29)
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We can see that the longest relaxation time τ1 dominates the summation. Replac-
ing exp(−t/τp) with exp(−t/τi) and using

∑
p:odd 1/p2 = π2/8, we finally obtain

[1]
〈R(t)R(0)〉 u 〈R2〉 exp(−t/τ1) (2.30)

We find that in the Rouse model, the correlation of the end-to-end vector can
be approximated by a single exponential. However, as we will show in a later
section, this does not accurately describe the relaxation dynamics of a grafted
chain in a polymer brush.

Mean-square Displacement We now turn to the fluctuations of a single bead.
The diffusion coefficient of the chain can be obtained by considering its center-
of-mass motion(p = 0). A calculation of the mean-square displacement of the
center of mass rcm (ref.[1]) gives:

〈[rcm(t)− rcm(0)]2〉 = 6
kT

ξN
t (2.31)

We find that the displacement is similar to that of a Brownian particle 〈[r(t) −
r(0)]2〉 = 6Dt, with diffusion coefficient Dchain = kT

ξN
. We can see from this

expression that the effective friction ξeff = ξN is the sum of the N segment
friction coefficients.
On the other hand, the mean-square displacement of a bead is given by[1]:

〈[rn(t)− rn(0)]2〉 = 6
kT

ξN
t+

4Nb2

pi2

∑
p

cos2
(πpn
N

)[
1− exp

(
−tp

2

τ1

)]
If we take t to be larger than the longest relaxation time τ1, the first term in the
equation dominates and the rms displacement of the bead is equal to that of the
center-of-mass. At thermal equilibrium, one can take the reference r(0) to be the
average position 〈r〉. We can finally write:

〈δr2〉 = 6Dchaint (2.32)

Where δr = r(t)− 〈r〉.
From section 2.1.1, we know that δr2 scales as N . Using eq. 2.32, we can finally
obtain the scaling law of the Gaussian chain in the Rouse model, which is given
by:

τ ∼ N2 (2.33)

One should note that while the Rouse model can only apply for polymer chains
in the melt (where hydrodynamic interactions are screened), it was still used as
the base model to describe the relaxation process of a monodisperse brush, as
will be discussed in the next section.
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2.5 Relaxation Dynamics of a Monodisperse Brush

2.5.1 Initial Description for Chain Relaxation

We now turn to study the dynamics of a polymer chain in a grafted monolayer.
As we saw in the previous section (eq. 2.32), at thermal equilibrium, the motion
of the overall chain can be reduced to that of a Brownian particle with diffusion
coefficient Dchain = ξN . For our current purposes, only the z component, taken
to be perpendicular to the grafting surface is considered. The characteristic
relaxation time τ of its correlation function then goes as τ ∼ 〈δz2〉/Dchain.

In a grafted monolayer, analytical self-consistent field theory has shown that
the mean square fluctuations of the chain end scale as 〈δz2〉 ∼ N2 [18], where N
is the number of segments in a chain. We finally obtain the scaling law:

τ⊥ ∼ N3 (2.34)

These fluctuations along the height of the chain are anomalously large (δz ∼ N
instead of N1/2 as is the case of a Gaussian chain). This was shown to be evidence
of the polymer chains being near a coil-stretch phase transition (Figure 2.11)
which results in a critical slowing down in the relaxation times of the chains [5].

Figure 2.11: Brush in the coil regime (left) and in the stretched regime (right)

However, these anomalous fluctuations occur only along the z component of
the chain. Along the lateral components, it was found that the relaxation times
are compatible with the Rouse model [22]:

τ‖ ∼ N2 (2.35)

Finally, one should note that in this model, there are no entanglement effects
and the scaling of relaxation times withN was found to be independent of grafting
density and solvent quality [5].

2.5.2 Later Discoveries and Modifications

We now consider the normalized autocorrelation function of the end-to-end vector

φR(t) =
〈(R(t)− 〈R〉)(R(0)− 〈R〉)〉

〈R2〉 − 〈R〉2
(2.36)
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We already saw in the context of the Rouse model (eq.2.29) that the autocorre-
lation function decays in a spectrum of correlation times, but is dominated by
the slowest time τ1. The decay was then approximated by an exponential with
an effective characteristic time τeff ≈ τ1.

However, a more recent study showed that φR(t) is strongly curved at the
beginning, so this approximation was not in fact valid, except for small values of
the autocorrelation function (φR < 0.1) [8]. This problem only became obvious
after conducting Molecular Dynamics (MD) instead of Monte Carlo simulations
where the data was only available in the regime φR(t) > 0.2.
In this study, another surprising result was found: while the relaxation time of the
center of mass behaved as expected in the context of the Rouse model, (τ⊥ ∼ N3

and τ‖ ∼ N2), the relaxation of the end-to-end vector was not so obvious; it was
shown that the relaxation of the parallel and perpendicular components obeys an
empirical power law τ ∼ N∆, with ∆ having the same value for both the parallel
and perpendicular components [8] such that:

τ⊥ ∼ τ‖ ∼ N3 For N < 64

τ⊥ ∼ τ‖ ∼ N3.7 For N >= 64

(2.37)

A possible interpretation of this behavior was given by considering the anisotropy
in the Brownian motion of a chain. In previous models, it was assumed that the
fluctuations in this motion in the z−direction was independent of those in the
xy-directions. In that case, following eq.2.32, we could estimate the effective
friction coefficient from

ξeff = τi/N〈δr2
i 〉 (2.38)

Where i = x, y, z. Additionally, because we’re not in the completely stretched
regime, one would expect the friction coefficient to be isotropic (there is not
stretching effect on length scales smaller than the blob). We therefore expect
that ξeff would converge to a plateau value for all i.

It was shown, however, that these predictions were only valid in the earlier
stages of the relaxation (φ(t) > 0.2) [8]. In the later stages, the value of ξeff given
by the definition above significantly increases, and becomes strongly anisotropic
with large N , which makes this characterization of the friction coefficient invalid.
The authors then concluded that in the later stages of the relaxation, the fluctu-
ations in the lateral and perpendicular motion of the chain cannot be decoupled
as was assumed before. Instead, the relaxation becomes controlled by the slowest
relaxing component (in this case, the lateral components). Therefore, we can no
longer assume a proportional relation between the relaxation times and the mean
square fluctuations as in eq.2.32.

However, whether this coupling is present in the case of a polydisperse brush
(where chains are not of equal length) is still an open question; It was shown
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[2] that even in the case of small polydispersity, the end of the chains fluctuates
around its mean position, as opposed to fluctuating along the height of the brush
in the monodisperse case. The anomalous fluctuations are then suppressed with
increasing polydispersity.
In this work, we will therefore investigate the relaxation properties of such a
system and check for an apparent coupling in the fluctuations. In the next section,
we explain the model used to generate our polydisperse brush.
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2.6 Models and Methods

For our purposes, we conduct coarse-grained molecular dynamics (MD) simula-
tions using both C as a programming language and the python library HOOMD-
blue.
We model a flexible chain in a good solvent where monomers tend to repel each
other. We can then account for the solvent implicitly by setting the interac-
tions between monomers to be purely repulsive. Additionally, random collisions
with the solvent are accounted for by including both a friction term and a ran-
dom force. Therefore, the Langevin equations were the most appropriate for our
model (see section 2.6.1).

2.6.1 The Model

The setting up and initial equilibration of the brushes was done through the
python library HOOMD-blue, which runs the simulations on GPU. For simplicity,
the monomers are initially set up to be stretched upwards in a lattice positioning
and then left to equilibrate. The dimensions of the simulation box were taken
to be Lx = Ly = Nσd where N is the number of grafted monomers along the xy
directions and σd is the grafting distance. Repulsive grafting surfaces were placed
on Lz = 0 and Lz = 2Lmax, where Lmax is the length of the completely stretched
chains. Periodic boundary conditions were used in the lateral directions. To
model hardcore repulsion between two monomers, the WCA potential (truncated
and shifted Lennard-Jones potential) was used such that:

UWCA(r) =

{
4ε [(σ/r)12 − (σ/r)6] + ε r <= 21/6σ

0 otherwise
(2.39)

Where ε is the upward shift in the potential and the cut-off 21/6σ is the potential
minimum of the Lennard-Jones potential. As for the bonded monomer inter-
actions along the chain (nearest neighbours), the Kremer-Grest potential was
used. It is a bead-spring model where the repulsion between the neighbouring
monomers is modelled through the WCA potential, and the bonded interactions
modelled by the finite extensible nonlinear spring (FENE) potential given by:

UFENE(r) = −kR
2

2
ln

[
1−

(
r

R

2
)]

(2.40)

Where R = 1.5σ and k = 30εσ−2. The interactions with the wall were modelled
through a strongly repulsive potential given by:

UWALL(z) = ε
(σ
z

)12

+ Az +B (2.41)
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Where A and B where both chosen such that both the potential and its derivative
(force) vanish at z = σ/2.
The forward integration in time is driven by the Langevin equations such that:

m
dv

dt
= f c − γ.v + ζ(t) (2.42)

Where we take our units such that the mass of a monomer m = 1. f c is the net
force on the particle from all the potentials (WCA and FENE), v the particle
velocity, γ = 0.25 the drag coefficient and ζ(t) the random force due to the den-
sity fluctuations in the solvent (with magnitude consistent with the fluctuation-
dissipation theorem), with properties

〈ζ(t)〉 = 0

〈|ζ(t)|2〉 = 6kTγ/δt
(2.43)

Computing equilibrium properties (microscopic pressure tensor, energy of brush-
brush interactions, relaxation times...) was done through a MD program on
C that uses the same setup. The integration of the equations of motions was
done through the Verlet algorithm. The implementation of polydispersity and
the computation of the pressure are explained in detail in the next sections.
Computing the pressure tensor was implemented following the method described
in section 2.6.3.
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2.6.2 Model of a Polydisperse Brush

To implement polydispersity, we use the Schulz-Zimm (SZ) distribution for the
chain length distribution [23][24] given by

P (N) =
kkNk−1

Γ(k)Nk
n

(2.44)

Where the number-averaged chain length Nn, as well as the parameter k (re-
lated to the index of polydispersity) are free parameters. Γ(k) is the Gamma
function. The first-order moment is given by

∫∞
0
dNNP (N) = Nn , and the

higher order moments can be recovered from the recursion formula 〈Nm〉 =
〈Nm−1〉Nn

k+m−1
k

The distribution of polymer chains can be characterized by the weight distribu-
tion, given by

Pw(N) =
NPn(N)∑∞
0 NPN(N)

=
NPn(N)

〈N〉
The mean of this distribution is then the weight-averaged chain length, given by
[11]

Nw =
1

〈N〉

∞∑
0

NPw(N) =
1

〈N〉

∞∑
0

N2Pn(N) =
〈N2〉
〈N〉

= Nn
k + 1

k

We define the polydispersity index as the ratio between the weighted average
length and the average length:

Nw

Nn

= 1 +
1

k
(2.45)

As k →∞, Nw/Nn → 1 and the distribution is monodisperse. Figure 2.12 shows
the probability distribution of chain lengths for different polydispersity indices.
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Figure 2.12: Schulz-Zimm distribution for Nn = 100 and Nw/Nn = 1.02, 1.15, 3.
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2.6.3 Microscopic Pressure Tensor

Here we derive the expression and explain the model used to compute the micro-
scopic pressure tensor.
At the microscopic level, for a system of N point particles, the force is defined
as the rate of change of linear momentum within a volume V. The total linear
momentum is

P V (t) =

∫
V

d3R J(R, t) (2.46)

Where J(R, t) =
∑

i pi(t)δ[R − ri(t)] is the momentum density. Differentiating

with respect to time and using ∇β
ri
f(R− ri) = −∇β

Rf(R− ri), one obtains [25]

J̇α(R, t) = −∇β
R

∑
i

pαi ṙ
β
i δ(R− ri) +

∑
i

ṗαi δ(R− ri)

= −∇β
R

∑
i

pαi p
β
i

m
δ(R− ri)−

∑
i

∇α
i Φ({ri})δ(R− ri)

(2.47)

Where α, β = x, y, z, and Φ({ri}) is the total potential in the absence of external
fields.
The first term is the kinetic part of the pressure tensor, due to particles entering
and leaving the volume V. The second is the interaction part, which is comprised
of all pair interactions. Using the translational invariance of the inter-particle
potential, the potential could be re-expressed as the gradient of the line integral
starting at an arbitrary point R0 and ending at ri [25]

∇α
i Φ({ri})δ(R− ri) = −∇β

R

∑
i

[∇α
i Φ({ri})]

∮
C0i

dlβδ(R− l) (2.48)

Where C0i is any contour from an arbitrary point R0 to ri.
For pair interactions, the potential is of the form

Φ({ri}) =
∑
i,j

φ(rij) (2.49)

Where rij = rj − ri. It is convenient to simply take Coi to be the line between
ri and rj.
As illustrated in figure 2.13, the energy of interaction between ri and rj will
contribute a certain fraction λi of its total energy to each volume element in our
system. We then write:

l = ri + λ(rj − ri), λ ∈ [0, 1]

dl = dλ(rj − ri)
(2.50)

This is known as the Irving and Kirkwood choice of integration contour [26].

28



Figure 2.13: The Irving-Kirkwood contour. In each slice, the interaction force con-
tributes a fraction λi to the configurational part of the stress tensor

Using eq. 2.49 and eq. 2.50, we can write eq. 2.48 as

∇α
i Φ({ri})δ(R− ri) = −∇β

R

∑
i,j

φ
′
(rij)

rαij
rij

∮
Cij

dlβδ(R− l)

= −∇β
R

∑
i,j

φ
′
(rij)

rαij
rij
rβij

∫
Cij

dλδ(R− ri + λ(rij))

(2.51)

Substituting (2.7) in (2.3), the change in momentum density becomes

J̇α(R, t) = −∇β
R

[∑
i

pαi p
β
i

m
δ(R− ri) +

∑
i,j

φ
′
(rij)

rαij
rij
rβij

∫
Cij

dλδ(R− ri + λ(rij))

]
(2.52)

The quantity in brackets is the stress tensor σαβ, which, as mentioned, is the sum
of both kinetic and configurational contributions. We define the pressure tensor
as the ensemble average over all configurations of the stress tensor. Setting φ

′
=

−fij, where fij is the interaction force between particles i and j, the expression
for the pressure tensor becomes

P (R) =
1

V

∫ [∑
i

pαi p
β
i

m
δ(R− ri)−

∑
i,j

fij
rαij
rij
rβij

∫
Cij

dλδ(R− ri + λ(rij))

]
dR3

=
1

V

∑
i

pαi p
β
i

m
− 1

V

∑
i,j

fij
rαij
rij
rβij

∫
Cij

dλ

(2.53)
This equation will be implemented on the brush bilayer system to evaluate the
local pressure along the surface perpendicular to the grafting density.
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Chapter 3

Results

3.1 Relaxation times

3.1.1 Monodisperse Brush

As a check of our setup, we start by computing the relaxation times and fluc-
tuations in a monodisperse polymer brush. We consider a system of 25 chains
of N = 10, 15, 20, 25 monomers, grafted with a density of σg = 0.1 chains per
unit area, with our unit length being σ = 1. We initially set up the chains to
be completely stretched in the z direction, and let equilibrate for 1e6 MD steps.
Afterwards, we further run for 1e7 steps while recording the z and x components
of the end-to-end vector of each chain. The data was processed on Matlab using
the autocorr function. It is important to note that autocorr gives reliable results
only if the number of time intervals τ (over which the correlations decay) is less
than a fourth of the number of frames in our data (snapshots of the positions
of the end-to-end vectors). A sample of the correlation functions can be seen in
figure 3.1a. Figure 3.3 shows the density profile of a monodisperse brush, which
indeed has the predicted parabolic shape, except for the tail at the end due to
fluctuations and the ordering near z = 0 due to wall effects (these effects cannot
be accounted for in the context of the mean field theory).
To extract the relaxation times, we plot the correlation functions on a semilog
scale and fit the linear portion (disregarding the initial quick relaxation of the
higher modes) (see figure 3.1b). The relaxation time τ is then simply the inverse
of the slope obtained from the fit.
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Figure 3.2: 3.1a shows correlation functions in x and z vs the time intervals τ (in nat-
ural units). Figure 3.1c shows the fluctuations in x and z vs the number of monomers
per chain N on a loglog scale. The dashed lines represent the linear fits from which
a slope of 2.0 was extracted for the z component and 1.0 for the x component, in ac-
cordance with the Rouse model. The solid lines represent the theoretical curves for
the fluctuations in x and z. Figure 3.1d shows the relaxation times in x and z vs N ,
with linear fits (dashed lines) for the z−component from which a slope of 3.0± 0.1 was
obtained, and a slope of 2.3 ± 0.3 for the z−component. These power laws are also
consistent with those predicted by the Rouse model (τz ∼ N3 and τx ∼ N2)

Figure 3.3: Average density profile of a monodisperse brush with nc = 25 and Nn = 20
along z. The binning was done along slices of width 0.1σ. The fit is obtained from the
analytical form, where we set v = 3.6 and σ = 1/9

The obtained scaling laws are shown in figures 3.1c and 3.1d. We find that the
scaling law of both the correlations and the fluctuations followed our predictions
within the framework of the Rouse model: the relaxation time in z scaled as
τz ∼ N3 and in x as τx ∼ N2, while the fluctuations scaled as 〈δz2〉 ∼ N2 in z and
〈δx2〉 ∼ N in x (within the statistical uncertainty). Additionally, we compare
our data to theoretical curves, given by varx = N/3 and varz = 0.016 ∗ N2.
The form of varz was obtained from fitting the density profile (see figure 3.3)
into the analytical form ρ(z) = ρ0(1 − z2/H2

mono) [2]. The fluctuations are then
varz = (2/5 − (3pi/16)2)H2

mono. We find that our data matches fairly well with
the theoretical predictions.

These results are evidence that the late relaxation dynamics in long chains due to
the coupling between the lateral and normal degrees of freedom is not apparent
in the regime of short chains, which implies that there is little to no entanglement
in the regime we’re considering (for the polydisperse brushes as well).
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3.1.2 Polydisperse Brush

Figure 3.4: Average density profile of a monodisperse (blue) and polydisperse (red)
brush with nc = 25 and Nn = 15 along z. The binning was done along slices of width
0.1σ

We can now move on to study the effects of polydispersity on the relaxation
times. We set up a system of nc = 49 chains per brush. The length of each chain
is randomly sampled from the Schulz-Zimm distribution (see section 2.6.2), with
Nw/Nn = 1.15 and Nn = 10, 15, 20. This polydispersity index was chosen because
it results in an approximately linear density profile. The starting configuration
and equilibration were performed as with the monodisperse case, then trajectories
were run for 1e7 steps while recording the z and x components of the end-to-end
vector of each chain to generate the correlation functions. This procedure was
repeated with 20 different samples of brushes with randomly distributed chain
lengths, and our final correlation function is averaged over all the samples. As
was mentioned in section 2.5, we expected that in a polydisperse brush, the linear
density profile (figure 3.4) will generate a mean field that would stretch the chain
away from the grafting surface in such a way that the end monomers would
exhibit gaussian fluctuations (in contrast with the monodisperse brush with the
parabolic profile under which chain ends fluctuate along the entire height of the
brush). Unless there are some unknown late relaxation processes due to possible
entanglement effects, these thermal fluctuations are expected then to restore the
τz ∼ N2 power law dependence on N of the relaxation times. The results we
actually got were not only unexpected, but also very unclear with no obvious
interpretation;
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(a) chain end fluctuations in x and z vs chain length N for Nn = 10, 15, 20. The theoretical
curve for gaussian fluctuations are shown in red, and the theoretical curve for fluctuations in
the presence of a wall in blue.

(b) dependence of the mean z position of the chain end vs N . The theoretical prediction for
the mean positions in the presence of the wall is shown in green, and that of the SCF theory in
blue. Neither matched our predictions. Our fit (which gave a slope of 1 ± 0.2 is shown as the
dotted line.)

Figure 3.5: mean positions and fluctuations of chain ends

Indeed, looking at the fluctuations of the position of the end monomers (figure
3.5a), we find two unexpected behaviors: first of all, the fluctuations in x, which
were supposed to be Gaussian as in the monodisperse case, strongly deviate from
the predicted behavior (var = N/3). We find that the theoretical curve is shifted
upwards by a factor of at least 3, and that our fluctuations vary less strongly
with N . This remains yet to be explained, and requires further study are beyond
the scope of this thesis.
Second, we find that the fluctuations in z display two regimes: in the range
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N < 10, the fluctuations increase linearly with N , and do not change with number
average Nn. This behaviour can be attributed to wall effects, as we find that
the theoretical curve (var = (2/3 − π/6)N) does match with our data (besides
a small shift of about 0.8%). However, for N > 10, the fluctuations show a
systematic reduction and start depending on Nn. This behavior has no clear
interpretation. One idea might be that for the longer chains in our sample, the
field becomes inhomogeneous because of polydispersity. We cannot then expect
gaussian fluctuations, which can only happen in homogeneous fields. However,
to confirm this hypothesis, more studies should be conducted which will be left
for future work.
Moreover, looking at the mean positions of chain ends (figure 3.5b), we find that
its dependence on N does not match with any framework we know of, which
implies that the theory might not be representative of the actual behavior of the
polydisperse brush.
Moreover, we look at the dependence of the relaxation times on N (figure 3.6a),
and find the behavior consistent with that of the fluctuations: the relaxation times
in z are reduced for N > 10, and depend significantly on the number average.
As for the x component, we surprisingly find that although the fluctuations were
much smaller than in the monodisperse case, the relaxation times matched those
of the monodisperse brush, which also remains puzzling. As can be seen in figure
3.6b, the relaxation time in z is significantly smaller for a polydisperse brush
than that of a monodisperse (which makes sense, considering the fluctuations are
about 3 times smaller), but match very well in the x direction. Finally, it should
be noted that τ monodisperse in figure 3.6a, which was obtained from fitting our
data for τx in a monodisperse brush, was predicted to match not only our data
in x, but also in z (since we were supposed to recover gaussian fluctuations in all
directions). One possible explanation for these deviations from theory, as hinted
before, could be related to the anisotropy in the field a single chain is subject
to: due to the polydispersity in our system, a chain of the same length could be
subject to different potentials depending on the sample we’re considering, which
would most likely affect its dynamics and therefore its relaxation. This would
explain the discrepancies we see with different number averages: the fields are
likely uniform for short chains, but once the chain becomes long enough, the
configuration space it explores would start varying depending on the system.
As attempting to explore the entirety of the configuration space proved to be
too resource-demanding, we decided not to pursue things further and leaving the
matter for future studies. However, one thing we can extract from our data is
the time scale over which the chains in a brush relax: the highest relaxation
times obtained were of the order of 100 in natural units (around 200,000 MD
steps). This provided us with a scale over which to run our trajectories in our
brush-bilayer system in the next part of the thesis work, where we ran things for
trajectories of the order of 1e7 steps.
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N

(a) relaxation times vs chain length N for different number averages for Nw/Nn = 1.15. The
data previously obtained for the monodisperse case is also shown, along with a fit of this data
(solid black line).

(b) correlation functions on a semilog scale for Nw/Nn = 1 and Nw/Nn = 1.05

Figure 3.6: figure 3.1a shows the relaxation times for Nw/Nn = 1.15, Nn = 10, 15, 20
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3.2 Pressure and Interaction Free Energy

3.2.1 Equation of state of a WCA gas

As a first check to our pressure tensor algorithm (described in the methods sec-
tion), we start by reproducing the well-established equation of state of a gas
formed by purely repulsive monomers (interacting through a WCA potential)
[27]. The equation of state is given by:

P = nkBT + PWCA

Where P is the total pressure of the system, n the density of monomers, kB the
Boltzmann constant and T the temperature. We set kB = T = 1. PWCA is the
non-ideal contribution to the pressure, and is given by:

PWCA = nkBT

(
nBWCA

(1− veff )2
+ 2

(nveff )
2

(1− nveff )3

)
(3.1)

The virial coefficient BWCA ≈ 2.2 can be obtained by evaluating eq. 2.6 with
U(r) = UWCA(r), where UWCA is given by eq 2.39, and the temperature-
dependent effective volume is evaluated from veff (T ) = (π/6)d3

eff , where deff
is defined as the separation between monomers over which their interaction
potential is equal to kBT . For temperature T = 1, we obtain veff = 0.5.

To evaluate the pressure in our system, we run MD simulations (using the velocity
verlet algorithm described in the methods section). We set up a cubic simulation
box with side lengths L = Lx = Ly = Lz varying from L = 19 to L = 6. We
implement periodic boundary conditions in all directions. Our system consists of
N = 500 monomers interacting through the WCA potential. We initially place
these monomers in a lattice position, separated by a distance equal to σ = 1,
where our unit length σ is the finite distance at which the inter-particle Lennard-
Jones potential is zero. We let the system initially relax for 5e6 MD steps, with
integration step dt = 5e − 4. We then decrease the side lengths of the box
at increments of 0.1σ, and equilibrate for an additional 5e6 MD steps at each
increment. At each increment of 1, we run our simulations for an additional 5e6
steps, but this time while evaluating the density and the components the pressure
tensor every 500 steps. We therefore obtain 1e4 ”snapshots” to average over. The
final result can be shown in figure 3.7:
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Figure 3.7: log-log plot of the total pressure vs monomer density for a gas of N = 500
monomers interacting through a WCA potential

We find that our data extracted from the simulations fits perfectly with the
theoretical curve, from which we can conclude that our implementation of the
microscopic pressure tensor is reliable.

3.2.2 Compressing a Monodisperse Brush Bilayer

Next, we proceed to set up our brush bilayer, where we place two opposing graft-
ing surfaces separated by a distance D. We define the z−axis to be the direction
normal to these two surfaces. The lower surface is at z = 0 and the upper one
at z = D. Our system consists of nc = 25 chains of N = 20 monomers on each
grafting surface. The chains were grafted at a density σg = 0.5. The simulation
box dimensions were Lx = Ly = σd

√
nc and Lz = D. Periodic boundary con-

ditions were applied in the lateral directions (along the xy−axes). More details
can be found in the models and methods section.
For time efficiency, the setup, relaxation, and compression of the system was
conducted using the python library HOOMD-blue, which makes use of the GPU.
However, as it was not possible to directly calculate the local pressure tensor
(there were no such functions available), nor was it possible to resolve the indi-
vidual forces contributions on each monomer, the collection of data was conducted
using our implemented microscopic pressure tensor algorithm on C.
As with the WCA gas, we initially set up the monomers of each chain to be
stretched along z, separated by a distance equal to σ = 1. We let equilibrate for
1e5 steps, then keeping the surface at z = 0 fixed, we lower the upper surface at
an increment of size 0.1σ, equilibrating for an additional 1e5 MD steps at each in-
crement. Whenever an increment of 1 was reached, an additional equilibration of
1e7 MD steps was performed, and the final coordinates and velocities were saved
to be used as initial conditions in the microscopic pressure tensor algorithm on
C, where we ran the simulations for an additional 1e7 MD steps and collected
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data at every 100 steps, such that we obtained 1e5 simulations to average over.
A sample of the data obtained can be seen in figures 3.9 and 3.8.

Figure 3.8: different components of the pressure tensor along the z axis for a monodis-
perse brush before interpenetration. The ideal contribution can be recovered from the
momenta of the particles (top left), or equivalently from the density profile of the brush
(bottom left). The forces contribution (WCA and KG) can be seen on the top right,
and the total pressure due to both contributions on the bottom right.

Figure 3.9: normal and lateral components of pressure tensor after compression. An
interpenetration zone is established and the total pressure is positive.
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The graphs perfectly matched our predictions; first of all, the ideal contribution
to the pressure tensor was obtained using two approaches: the first by computing
the momenta of the monomers, and the second by evaluating the local monomer
density along the z direction. We find, as predicted, that the approaches are
equivalent, and that the ideal pressure is indeed Pideal = nkBT . Second, we
find that the force contribution along the z−axis is negative. This is to be
expected; if there is no interpenetration, the momenta of all the degrees of freedom
at equilibrium (minus that of the center of mass) must be cancelled out by a
negative restoring force, which is accounted for through the KG non-ideal spring
potential. By checking the numerical data, we find that these contributions are
cancelled out up to 4 significant figures, which is of the order of the accuracy of our
simulations.On the other hand, the forces (and total) contribution to pressure in
x−y are positive due to the periodic boundary conditions, which impose external
work on our system in these directions due to the image particles.
After compression (figure 3.8), the positive pressure is the osmotic pressure. We
can clearly see that near the midplane, the pressure is isotropic. This shows that
the system does behave like a polymer solution near this point.
As a final check, we also evaluate the pressure on the walls of the two grafting
surfaces by computing the net force the walls exert on the rest of the system and
dividing by the area of the surfaces (P = F/2A). The result is shown in figure
3.10

Figure 3.10: pressure computed from the microscopic pressure tensor (blue line), and
from computing the net force exerted by the walls and dividing by the area of the surfaces
(yellow points)

The same steps were repeated for brushes of polydispersity indices k = 1.05, 1.1, 2,
with the only difference being that we take a larger number of chains (nc = 100)
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in order to ensure a proper sampling of the chain lengths distribution.

Having ensured that both the algorithm and system behaved as was expected, we
then proceeded to verify the proposed theory that the free energy of a compressed
bilayer is proportional to the energy of interbrush contacts.

3.2.3 Interaction Free Energy

We first attempt to verify the validity of the model in section 2.3.3. We check for
two things: first of all, we investigate whether the number of interbrush contacts
would indeed provide a good characterization of the free energy (and pressure)
of the system. In that case, we expect a proportional relationship between these
two quantities. Second of all, we verify the consistency of this model by seeing if
things remain unchanged when we vary the polydispersity index.
For these purposes, we compress symmetric brush bilayers with different poly-
dispersity indices k = 1, 1.05, 1.1, 2. The equilibration and data collection was
conducted as described in the previous section. A ”contact” was recorded when-
ever the distance d between two monomers belonging to opposite brushes was
within the WCA potential range (0 < d 6 21/6). The interaction free energy
was evaluated by taking the average pressure along the normal direction at each
recorded separation. The data was then interpolated and fitted into a second
degree polynomial, and finally integrated with respect to separation by using the
trapezoidal method with integration step 0.5. The data for the number of con-
tacts was also interpolated then fitted into a second degree polynomial. Figure
3.11 shows the results obtained.
From figure 3.11, we see that the interaction free energy is clearly proportional
to the number of interbrush contacts. This shows that the assumption that the
interaction free energy can indeed be characterized by such a local quantity does
seem to be a valid one. However, although the assumed proportionality is con-
firmed, unexpected polydispersity effects appeared. To try and make sense of
these findings, we investigate how pressure evolves not with the number of inter-
brush contacts, but with the minimum density along z. As explained in section
2.3, there is no stretching of the chains at the minimum in the density profile,
and hence we expect the pressure to behave as it would in a semidilute solution.
The corresponding results can be shown in figure 3.12.
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Figure 3.11: total interaction free energy vs number of interbrush contacts for brushes
of polydispersity indices k = 1, 1.05, 1.1, 2. The maximum midplane density reached
was about 0.6.

Figure 3.12: log-log plot of the average pressure vs the minimum density along z

What we found was just as puzzling as before: in the semidilute regime (density
range between 0.1 and 0.4), the dependence of pressure on density increased with
polydispersity index. Additionally, the y− intercepts of these curves decreased
with polydispersity index k, which implied that excluded volume interactions
effectively depended on k. This relationship was not apparent in previous stud-
ies using numerical SCF and MC simulations [9], and had no clear explanation
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within our framework, where the pressure is assumed to depend only on the local
monomer density.
The natural next step was to check if this behaviour was due to some unaccounted-
for effects in the brush bilayer, or to some other general effect which would emerge
when we consider semidilute chain solutions.

3.2.4 Equation of State for Oligomers

We then consider a solution of oligomers in a cubic box with periodic boundary
conditions in all directions, similar to our setting for the WCA gas. We study
solutions of nc = 9 chains of lengths N = 2, 3, 5, 8, 10, 15, 20, 25, 100. As before,
we initially set up the monomers on a lattice with separation σ = 1, and let the
system relax for 5e6 steps. we then decrease the side lengths of the box by a step
of 0.1, letting it equilibrate for an additional 5e5 steps then saving the final state
of the system. We then use this data to run things for an additional 5e6 steps,
collecting data for the pressure every 100 steps. We focus on the narrow density
range of d = 0.1− 0.2 where we’re definitely in the semidilute regime and higher
order terms in the pressure are not significant. Finally, as we are interested
mainly in studying the non-ideal contributions to pressure, we subtract from our
total pressure (averaged over the z profile) the ideal contribution (which is due
to the COM motion of the chains, Pideal = kTnc/V ). The result for some of the
N studied is shown in figure 3.13.

We find that whatever effects were observed in the brush bilayer system were
still apparent in the oligomer solution: the pressure plotted against the average
density indeed follows a linear trend (with slope 2.3± 0.2) as would be expected,
but the curves were shifted by a constant, which again implies that the virial
coefficient somehow must depend on the chain length N .
A possible conjecture that comes to mind is that chain ends might play a role;

it is highly possible that those of the interior monomers in a chain, which are
constrained on both sides, have smaller effective excluded volume than those at
the end, which are constrained on only one. This effect should decrease with
increasing N , where the fraction of chain ends becomes smaller, until it becomes
negligible for long enough chains (which the mean field theory is based on). This
hypothesis was backed by a study [28] in which the effect of chain length on pres-
sure was studied at melt density. Linear chains were compared to ring polymers
(which don’t have ends). It was found that the pressure actually did depend on
the molecular weight (length N) in the case of a linear chain, but not in that
of ring polymers, and the relationship was of the form P (N) − P(N→∞) ∝ N−1,
where P(N→∞) is the pressure in the limit of very large N . This implied that the
effect was indeed that of chain ends (As N increases, their fraction 2/N decreases
and chain end effects become negligible) Although our study was conducted in
a different regime (semidilute as opposed to melt), this study motivated us to
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Figure 3.13: log-log plot of the pressure vs the average density along z for a solution
of nc = 9 chains of lengths N = 2, 5, 10, 15, 25

examine these effects more rigorously and attempt to relate our results to both
their data at melt densities and our polymer brush system.
For this purpose, we start by checking if our results are consistent with those of
the study. We gradually decrease the box size until we reach a density of φ = 0.8
and record the obtained pressure for different chain lengths. The results can be
found in figure 3.14. We find that we did obtain the results in the paper, but with
an downwards shift in pressure of about 0.2. The source of this small discrepancy
remains unclear, but it could be possibly attributed to finite size effects.

As this pressure dependence is apparent in all regimes, we attempt to find an

Figure 3.14: Pressure vs chain length at melt density φ = 0.8
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equation of state that would reproduce this behaviour for all densities. To make
this system easier to compare with a brush bilayer, we remove the ideal gas con-
tribution (by subtracting nc/V from the total pressure). We find that in the
regime we considered (φ = 0.1 − 0.8), the pressure has a linear dependence on
1/N , which we fit into the following expression:

P (N) = P(N→∞)(φ)(1 + α(φ)(1/N)) (3.2)

where α is a dimensionless parameter. Figure 3.15a shows such a fit at φ = 0.15.
We find here that α = 3.00± 0.02 and P(N→∞) = 0.0167± 0.0003.
We next try to see how α(φ) and P(N→∞) would depend on the density of the
system. The results can be summarized in figure 3.15b. We find that our data
can be fit fairly well into polynomials of the form:

P(N→∞) = 1.1φ2.3 + 5.4φ4 + 3.2φ6

α = 0.05 +
1

0.2 + 2.36φ1.5

(3.3)

(a) pressure vs 1/N for N = 2, 3, 5, 8, 10, 15, 20, 25, 100 at average monomer density φ = 0.15

(b) dependence of the limiting P(N→∞) and α on the density in P (N) = P(N→∞)(1 + α(1/N))

Having formulated this equation of state for polymer solutions, we attempt to
map it to the equation of state of brush bilayers.
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3.2.5 Chain End Effects in Brush Bilayers

Finally, we attempt to verify whether it was indeed the chain end effects that
were responsible for the unexpected behaviour of pressure in our brush bilayer
system. For this purpose, we run new simulations, this time for number average
Nn = 15 and number of chains nc = 100 for both brushes. The same equilibration
and compression procedure as before was conducted. As we want to estimate the
number of chain ends in the interpenetration zone, we extract the density profiles
at each separation. The overlap Γ between the two brushes is simply the product
of their respective density profiles (Γ = φ1(z)φ2(z)). The interpenetration width
can be extracted from fitting the overlap region with a good fitting model used
in a recent study [9], given by

Γ =

(
φ0

2

)2

cosh2

(
z − z0

l

)
(3.4)

Where φ0 is the central density along z, z0 the distance from the z = 0 surface
where the maximum is found, and l is what we define to be the interpenetration
length, which is equal to half the width of the fitted overlap region. A sample of
this fit can be seen in figure 3.16 for k = 1.05 and maximum density 0.0037 (note
that it’s the minimum density the overall profile). The fit wasn’t as accurate
around the edges, but this isn’t necessary for our purposes.

Figure 3.16: number density in the overlap region vs distance z from surface fitted

using Γ =
(
φ0
2

)2
cosh2

(
z−z0
l

)
, with φ0 = 0.12 and z0 = 14

After fitting the overlap regions over the density range we’re interested in (up to
0.3-0.4), we found that while the penetration length increased with polydispersity
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index (l = 0.5, 1, 1.5, 2.5 for respective polydispersity indices k = 1, 1.05, 1.1, 2), it
remained constant throughout the compression, which made it easy to account for
in the simulations (figure 3.17). We therefore ran our simulations again, this time
while counting the number of chain ends found within the width of penetration
(within the range [z0 − l; z0 + l]).

Figure 3.17: interpenetration length l vs minimum density in the brush profile.

Figure 3.18: fraction of chain ends in the interpenetration zone vs the minimum
density along z for k = 1, 1.05, 1.1, 2

Our results are shown in fig 3.18. We can clearly see that the fraction of chain
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ends actually drops with the polydispersity index, which is consistent with our
previous observation that the normal pressure decreases with increasing k. We
then see if the corresponding pressures would match those of the chain solutions
at the same fraction of chain ends. For this purpose, we fit the data in figure 3.18
into a straight line to extract the fraction at densities 0.1-0.4 in steps of 0.1. We
also fit the pressure vs density data into a second degree polynomial in this same
range and extract the corresponding pressure. The results are shown in figure
3.19. We see that the data points from the brush bilayer match reasonably well
with the equation of state from the polymer solutions, except in the monodisperse
case (data point of the largest fraction of chain ends), with a downwards shift of
about 10− 12%. The possible sources of these discrepancies are still unclear and
require more investigations in the future. Finally, we verify if our equation of state

Figure 3.19: pressure vs fraction of chain ends in polymer solutions (solid lines) and
brush bilayers (stars)

obtained from the polymer solutions would predict the dependence of pressure
on minimum density for brush bilayers. The result is shown in figure 3.20. We
find that while the points don’t match perfectly well with the equation of state
of polymer solutions, we do get the appropriate trend and a decent prediction
of the equation of state of brush bilayers. More studies should be conducted to
improve these results.
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Figure 3.20: pressure vs minimum density in polymer solutions (solid lines) and brush
bilayers (stars)
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3.3 Conclusions and Future Work

We have performed molecular dynamics simulations on the monodisperse brush
for different chain lengths and showed that there is no evidence of coupling of the
degrees of freedom in such a system, which is an indication that the entanglement
effects are not apparent in the regime of short (N < 30) chains grafted at low
grafting densities (σ = 0.11). While we did recover the predictions within the
framework of the Rouse model for a monodisperse brush, we were not so success-
ful in the polydisperse case. Part of the problem could be attributed to surface
effects, which become prominent when looking at short chains (N < 10). How-
ever, our data suggests that other artefacts might be coming into play: because
of polydispersity, chains of the same length would be subject to different fields,
thus affecting their dynamics. We would then be averaging over a system with
frozen disorder, and not exploring properly the entirety of the configuration space
available to the chain. Many checks could be done in future works to verify this
hypothesis: one could start with a sample at very low grafting density σ, such
that the individual chains do not feel their neighbours. The relaxation dynamics
should follow then the predictions of the Rouse model. We could then gradually
increase σ and see how the relaxation times are affected. Another check to do
would be to explore a larger range of polydispersity indices and see how things
change in the limits of very low (k = 1.01) and very high (k = 2) polydispersity
indices.
We have also performed molecular dynamics simulations on a brush bilayer sys-
tem to characterize its compressive pressure and interaction free energy. We have
found that both the pressure and the interaction free energy were proportional
to the number of interbrush contacts, although there doesn’t seem to be a solid
argument that explains why this relationship would exist. However, our studies
revealed an effect of polydispersity on pressure that was not accounted for in any
of the previous theories and models for brushes. This effect was also apparent
when looking at the pressure dependence on the minimum density. After inves-
tigating the relationship further, we discovered that these effects were due to the
energetic contributions of end monomers in a chain being different from those of
the middle monomers. Indeed, we found that the fraction of end monomers con-
sistently decreases with increasing polydispersity. We then systematically studied
the dependence of pressure on fractions of chain ends with solutions of oligomers,
and extrapolated our results to match those for melt densities found in the liter-
ature. We finally used the equations of state obtained from oligomer solutions to
predict the pressure dependence on polydispersity with reasonable success. This
work could be taken a step further both computationally by exploring how these
effects vary with average chain lengths and grafting densities (where we expect
them to be less significant), and theoretically, possibly by introducing the idea
of a virial coefficient for chain ends different from the virial coefficient of middle
monomers.
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