
AMERICAN UNIVERSITY OF BEIRUT

SECOND ORDER TRUST REGION
OPTIMIZATION METHODS FOR TRAINING
NEURAL NETWORKS: BEYOND INEXACT

NEWTON

by

KYLE LOMER

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science

of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
September 2020

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name:
Last First Middle

�� �� �� �� �� ��Master’s Thesis Master’s Project Doctoral Dissertation

2 I authorize the American University of Beirut to: (a) reproduce hard or electronic copies
of my thesis, dissertation, or project; (b) include such copies in the archives and digital repos-
itories of the University; and (c) make freely available such copies to third parties for research
or educational purposes.

2 I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One year from the date of submission ofmy thesis, dissertation or project.

Two years from the date of submission ofmy thesis , dissertation or project.
Three years from the date of submission ofmy thesis , dissertation or project.

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries

09/09/2020

Acknowledgements

With the greatest of thanks to my advisor Professor George Turkiyyah for

his help and his wisdom. The guidance and encouragement he provided were the

stick and carrot that made this thesis possible. Thanks also to the committee

members, Professor Shady Elbassuoni and Professor Izzat El Hajj, for everything

I learnt in their engaging lectures and for sharing their expertise.

On a personal note, thanks to my partner, Palika. For pretending to be in-

terested in saddle points, putting up with me during lockdown and making sure

I went outside after it. Thanks to my family for their love and support in this

chapter of my life, even from thousands of miles away.

Lastly a huge thanks to the Lebanese people. Lebanon has experienced so many

ups and downs in my two years here but I only experienced warmth, compassion

and companionship, both inside of AUB and out. My heart goes out to you all.

v

An Abstract of the Thesis of

Kyle Lomer for Master of Science
Major: Computer Science

Title: Second Order Trust Region Optimization Methods for Training
Neural Networks: Beyond Inexact Newton

Second order optimization methods have always been less widely used for
training neural networks than first order methods such as Stochastic Gradient
Descent. This is mainly due to the complexity and high costs in terms of both
processor and memory resources of second order methods. In recent years more
work has been done to adapt these methods to make them more suitable for
training neural networks. In this paper we demonstrate how trust region methods
can be used to improve the convergence and cost-effectiveness of second order
optimization. This is achieved by only using cheap first order information when
it is an appropriate approximation for the expensive second order information,
based on the relative size of the trust region. We also present techniques to
automatically tune the hyperparameters these methods introduce; including a
novel approach to adaptive regularization. These methods are demonstrated on
autoencoders and image classifiers in comparison to first order methods.

vi

Contents

Acknowledgements v

Abstract vi

1 Introduction 1

1.1 Thesis Structure . 1

1.2 Goals and Contributions . 2

1.3 Problem Definition . 3

1.3.1 Neural Networks . 3

1.3.2 Feed Forward Networks . 4

1.4 Challenges in Minimization . 4

2 Related Work 7

3 Methods 10

3.1 Inexact Newton . 11

3.2 Conjugate Gradient Method . 13

3.3 Hessian Free Vector Product . 13

3.4 Stochastic Hessian . 15

3.5 Preconditioning . 16

3.6 Trust Region Globalization . 17

vii

3.6.1 Inexact Newton Step . 18

3.6.2 Dogleg Method . 19

3.6.3 2D Subspace Minimization 20

3.6.4 Low-cost 2D Subspace Minimization 21

3.7 Regularization . 21

3.8 Momentum . 25

4 Costs of Proposed Methods 28

4.1 Proposed Algorithms . 28

4.2 Parallelization and Iteration Cost 28

4.2.1 Lanczos Regularization . 30

4.2.2 2D Subspace Method . 30

4.2.3 Low-cost 2D Subspace Method 30

4.2.4 Dogleg Method . 31

5 Results 32

5.1 Models . 33

5.2 Implementation . 34

5.3 Method Justification and Hyperparameter Values 34

5.3.1 CG Tolerance . 35

5.3.2 Regularization . 36

5.3.3 Momentum . 39

5.3.4 Minibatching and Subsampling Robustness 40

5.3.5 Trust Region, Step Size Robustness 44

5.4 Method Comparison . 45

5.4.1 Autoencoders . 46

5.4.2 Image Classification . 50

6 Conclusion 55

6.1 Summary . 55

6.2 Future Work . 56

A Abbreviations 57

List of Figures

3.1 The Hessian for an MNIST Autoencoder after 0 iterations (left)

and 200 iterations (right). Positive and negative values are repre-

sented by red and blue respectively. 15

3.2 The optimum path versus the dogleg path, with the dogleg point

on the TR boundary . 22

3.3 2D subspace in a 3D TR . 22

5.1 AEM for different CG tolerance routines with respect to iterations

and time . 35

5.2 L5M for different CG tolerance routines with respect to iterations

and time . 36

5.3 The number of iterations of CG performed at each iteration of the

minimization routine . 36

5.4 Convergence of Lanczos for each model 37

5.5 Magnitude of the smallest eigenvalue found after 10 iterations of

Lanczos . 38

5.6 Loss per iteration for different regularization reduction parameters 38

5.7 Loss by iteration and time for AEM and L5M with different mo-

mentum types . 39

5.8 Loss by iteration and time for AEM and L5M with CG warm start 40

x

5.9 Loss by iteration and time for AEM and L5M with different batch

sizes . 43

5.10 Loss by iteration and time for AEM and L5M with different sub-

sample sizes . 44

5.11 Performance of first order methods for different step sizes. This

shows the sensitivity of first order methods to step size, something

mitigated by trust regions . 45

5.12 The performance of the 2D subspace TR methods for different TR

initialization sizes . 45

5.13 AEM training loss by sweeps and time 47

5.14 Test loss by iteration, up to the minimum (left) and maximum

(right) number of iterations completed in 40000 sweeps 47

5.15 AEM test loss by sweeps and time 48

5.16 AEC training loss by sweeps and time 49

5.17 Test loss by iteration, up to the minimum (left) and maximum

(right) number of iterations completed by an optimizer in 40000

sweeps . 49

5.18 AEC test loss by sweeps and time 49

5.19 L5M training loss by sweeps and time 51

5.20 L5M test loss by iteration, up to the minimum (left) and maximum

(right) number of iterations completed in 40000 sweeps 51

5.21 L5M test loss by sweeps and time 51

5.22 L5M test accuracy by sweeps and time 52

5.23 R18C training loss by sweeps and time 53

5.24 R18C test loss by epoch, up to the minimum (left) and maximum

(right) number of epochs completed in 40000 sweeps 53

5.25 R18C test loss by sweeps and time 53

5.26 R18C test accuracy by sweeps and time 54

List of Tables

5.1 Details of each model used in testing 33

5.2 Memory usage (Gb) for first and second order methods. NA is

used when we couldn’t perform this run 42

5.3 GPU memory usage (Gb) for first and second order methods by

batch size. OOM is used when we exceeded the available GPU

memory . 42

5.4 Memory usage (Gb) with and without subsamplingsubsampling . 42

5.5 GPU memory usage (Gb) with and without subsampling 42

5.6 The tuned hyperparameter values of learning rate (LR) and batch

size for first order methods SGD and Adam 46

5.7 Train Loss (TrL) and Test Loss (TL) for AEM 47

5.8 Train Loss (TrL) and Test Loss (TL) for AEC 48

5.9 Train Loss (TrL), Test Loss (TL) and Test Accuracy (TA) for L5M 50

5.10 Train Loss (TrL), Test Loss (TL) and Test Accuracy (TA) for R18C 52

xiii

Chapter 1

Introduction

In this thesis we discuss the application of second order methods to train feed

forward neural networks, in particular convolutional neural networks for autoen-

coders and image classification. We focus on the Inexact Newton method used

in combination with a Trust Region for globalization.

1.1 Thesis Structure

We begin here in Chapter 1 defining the problem and analysing the challenges

for an optimization method training neural networks. In Chapter 2, we look at

related work, beginning with first order methods then reviewing a range second

order methods including Inexact Newton. We compare their strengths and weak-

nesses. In Chapter 3 we describe the components and techniques that make up

our methods before presenting the full algorithms in Chapter 4 and analysing

their costs. Chapter 5 shows the results from our experiments. We justify the

choices we made in building the methods and demonstrate that hyper parameter

tuning is unnecessary. Then we show the performance of the methods compared

1

to first order methods for a range of models. In Chapter 6 we conclude and

discuss extensions of the work in this paper.

1.2 Goals and Contributions

Many papers have demonstrated the potential of Inexact Newton for training

neural networks, but there are still no established second order methods used by

the machine learning community. We aim to build upon the previous work in

the fields of machine learning and optimization to create a sophisticated method

with two specific goals:

1. To reduce the per iteration computational cost of the Inexact Newton

method. The cheaper and faster the method runs, the better.

2. To reduce the amount of hyper parameter tuning required. Hyper parame-

ters are often tuned through grid or random search and this requires many

runs. A method which requires little or no tuning at all runs quicker overall

than one which only runs fast with well tuned hyper parameters.

This thesis makes the following contributions towards achieving these goals:

1. A novel approach to adaptive regularization for Trust Region methods.

2. New trust region methods which reduce the computation cost per itera-

tion by using first order information when the trust region is small and a

combination of first and second order information when the trust region is

large.

3. A detailed survey and analysis of techniques to speed up the Inexact Newton

method for neural networks.

2

4. An experimental comparison of these methods to first order methods on

several standard neural network models.

5. A software package to share these optimization techniques with the machine

learning community.

1.3 Problem Definition

1.3.1 Neural Networks

In theory [1] the problem of training a neural network is posed as:

min
w

E(x,y)vν [L(y, φ(w, x))] (1.1)

For trainable weights w ∈ Rp.

φ : Rp × Rn → Rd the model evaluation.

L : Rd × Rd → R the loss function.

This is the expected loss of the model with respect to x, y, data values distributed

to the probability distribution ν. Practically, ν is unknown and instead we have

N (possibly noisy) data points from the distribution. Thus, we must make do

with solving an approximate problem based on our available data points; xi ∈ Rn

the N training inputs and yi ∈ Rd the N training outputs.

Thus the problem becomes:

min
w
f(w) ≡ min

w

1

N

N∑
i=1

L(yi, φ(w, xi)) (1.2)

A first order optimization method uses the first derivative, the gradient∇f(w),

3

to update w and in turn reduce f(w). A second order method uses the second

derivative, the Hessian ∇2f(w) (or some approximation of ∇2f(w)), to update

w and in turn reduce f(w).

1.3.2 Feed Forward Networks

A feed forward network is a subclass of neural networks which can be expressed

as a finite sequence of l layers where the ith layer is a function φi. φ can thus be

written as

φ(w, x) = φl(wl, ...φ3(w3, φ2(w2, φ1(w1, x)))...) (1.3)

Each layer has its own unique weights wi which are some of the parameters

that make up w. The function φi computes linear weighted sums based on the

weight values wi and the output values of the previous layer. It then applies a

non-linear activation function (such as sigmoid, tanh or ReLu) to each of the

output values. In this paper we consider two types of feed forward networks,

autoencoders and image classifiers, both of which use convolutional layers. The

weights for these layers represent the kernel of a filter which is applied to the

input by the convolution operation.

1.4 Challenges in Minimization

There are many factors to consider when deciding which optimization method to

use to train a Neural Network. A practical approach requires us to consider the

trade-off between these methods. We consider the training time to reach a desired

level of loss (or accuracy) to be the most import factor. The training time itself

is determined by the convergence rate and the cost per iteration of the method.

4

Typically second order methods have a higher rate of convergence than first order

methods, however these steps have a greater computational cost and thus take

more time to perform each iteration. One way that training time can be reduced

is through parallelization. For large models, training is usually done on GPUs.

This can provide huge reductions in training time due to the massive parallel

processing power they offer. First order methods use lots of cheap consecutive

steps so have less potential for parallelization than second order methods.

Another serious challenge is ensuring the desired loss value is actually achiev-

able. The loss functions for deep neural networks tend to be ill-conditioned

non-convex functions. This can cause problems for optimizers in several ways. Ill-

conditioning is particularly problematic for first order methods as this means the

local gradient direction has little effect on the overall loss value. Ill-conditioning

is less of a problem for second order methods as the Hessian contains curvature

information, however it can still be a problem if the Hessian is close to singu-

lar. Non-convexity also introduces saddle points which attract some optimization

methods, stopping the methods from minimizing the loss function beyond this

point. Non-convexity also removes the guarantee of a positive semi-definite Hes-

sian which is a requirement for some second order methods to converge.

First order methods such as Stochastic Gradient Descent (SGD) are notori-

ously sensitive to the learning rate parameter. If the learning rate is set too high

they may never converge, whilst if the learning rate is set too low, convergence is

very slow. This typically means that for a given model, many runs are required

to tune the optimizer to reach the desired level of accuracy. More complex opti-

mization techniques introduce more parameters that can be tuned. This means

that more training attempts are required, particularly if using random or grid

search to tune the hyperparameters. Ideally we want methods which don’t re-

5

quire any tuning of hyperparameters. This could be achieved in a number of

ways: automatic hyperparameter tuning being part of the method; the method

performing consistently well for a given set of default values; or the method per-

forming consistently well regardless of the values of the hyperparameters.

A final practical consideration is the memory usage of the method. Due to the

large number of variables that are used in modern neural networks, these methods

can be very memory intensive. This is particularly a problem if the training takes

place on a GPU, where memory resources are more scarce. A naive second order

implementation would require storing the Hessian which increases the memory

requirements from O(n) to O(n2) and would be prohibitive.

6

Chapter 2

Related Work

Ever since back-propagation was introduced [2], first order optimization methods

have dominated as the technique to train neural network. Over the years there

have been many advances to improve the convergence of these methods including

the addition of momentum in methods such as Nesterov accelerated Gradient [3];

adaptive steps used in RMSProp [4] and AdaGrad [5]; and more sophisticated

combinations of these in methods such as Adam [6]. Regardless, all first order

methods work on the same premise: lots of very cheap small steps. Second order

methods are less widely used in machine learning. They were first considered in

theory some time ago [7], made feasible by the adjoint method of Hessian vector

products [8]. Since then, interest in second order methods has continued to grow

with a number of novel additions in recent years, which aim to reduce the cost

of these methods as much as possible whilst keeping them robust.

The simplest feasible second order method is the Hessian Free Inexact New-

ton method. This method is the basis of this paper. It makes training with a

large number of parameters (and a large Hessian) feasible. An excellent overview

7

of this method was put forward in 2010 [9], using the Gauss Newton approxi-

mation. Another detailed review of the Hessian Free method and its variants is

the more recent 2018 paper [10]. Several other papers have looked at tweaks on

the method such as changing the solver or the globalization technique [11, 12].

Interest in Inexact Newton has also increased as convergence has been proved

when subsampling the Hessian in comparison to the batch size, reducing the cost

of the operation [11, 13, 14, 15]. Over the last 10 years there has been a massive

increase in availability and power of GPUs as well the software tools which make

them easy to use. This is particularly helpful for second order methods, as the

expensive Hessian-vector product needs to be performed over sizeable batches for

stability even when using subsampling. Whilst these methods tend to perform

well on small networks, tests on larger networks have mixed results [16].

There are also a number of second order methods that use techniques different to

Inexact Newton. The K-FAC method [17] uses Kronecker-Factored Approximate

Curvature, an approximation of the Fisher Information Matrix to produce a low

cost and highly parallelizible second order method which has led to impressive

results such as Training ResNet-50 on ImageNet in 35 Epochs [18]. L-BFGS

(Limited Memory BFGS) is another method which has been proposed. This uses

curvature information from previous iterations in a limited number of directions

and performs BFGS updates. Variants on this include progressive batching [19]

and an adaptive version [20] inspired by Adamax and AdaGrad. Similarly, Lissa

creates a low order approximation of the inverse of the H [21]. The Curveball

method [22] builds on the work of [23] to present a Gauss-Newton method with

momentum while automatically tuning the hyperparameters. This method trains

modern deep Neural Networks with millions of parameters, with a wall clock time

8

comparable to Adam. Each of these methods offer an interesting approach which

could be expanded on, and we hope that some aspects of the methods we intro-

duce could also be applicable to these.

9

Chapter 3

Methods

Second order optimization methods derive from Newton’s method. At each iter-

ation they use the minimizer of the local quadratic approximation of a function

as the search direction p [24]. Let g = ∇f(w) and H = ∇2f(w) then for a given

w:

min
p
f(w) + gTp+

1

2
pTHp (3.1)

Assuming the Hessian H is symmetric semi-positive definite, this is solved by

taking the derivative with respect to p and equating to 0. Thus p = −H−1g.

This gives us an iterative optimization algorithm:

Algorithm 1 Newton’s Method

1: while f(w) > ε do
2: p← −H−1g
3: Compute step size α
4: w ← w + αp
5: end while

A common method for computing α is Backtracking Line Search. This takes

an initial step size (α = 1) and decreases it by a constant factor β ∈ (0, 1) until

w + αp sufficiently reduces f .

10

Algorithm 2 Backtracking Line Search
1: α← 1
2: while f(w + αp) > f(w) + cα∇f(w)Tp do
3: α← βα
4: end while

The Wolfe condition for sufficient descent is f(w+αp) > f(w)+cα∇f(w)Tp for

some c ∈ (0, 1) which implies convergence when met[24]. The cost of backtracking

line search is the forward pass through the network at each step to calculate f(w+

αp) which can become costly if the search direction is only a local minimization

direction. More than this, for a non-convex loss function if there is negative

curvature the line search loop may never terminate. This is once of the reasons we

use the trust region method as a globalization technique, detailed in section 3.6.

There are still several issues with Newton’s Method, the first being that it

requires the computation of H. This is very expense to store as it uses O(n2)

memory. Secondly, it requires the solution of Hp = −g. This is typically com-

puted through the LU factorization of H which is expensive to compute, O(n3).

Lastly for a complex non-convex function f(w) = L(y, φ(w, x)), H is not guaran-

teed to be semi-positive definite so the method may not even converge at all. For

these reasons we suggest the following adaptations to reduce the computational

cost and improve the stability of the method.

3.1 Inexact Newton

The most computationally expensive part of Newton’s Method is solving Hp =

−g. To reduce the cost we can instead approximately solve the equation to get

the value of p within some tolerance η.

To find a suitable value of p we use a Kylov-Subspace linear solver. There

11

Algorithm 3 Inexact Newton

1: while f(w) > ε do
2: find p s.t. ‖Hp+ g‖ ≤ η‖g‖
3: Compute step size α
4: w ← w + αp
5: end while

are several possible of these including the Conjugate Gradient method (CG),

the Minimal Residual method (MINRES) and the Generalized Minimal Residual

method (GMRES). A comparison of these [11] found that there was not a clear

preferred method between these when training neural networks. We chose CG

as it is the most widely used and referenced for Inexact Newton in numerical

optimization literature.

The forcing term η is the tolerance to which the CG method solves the linear

system. It is possible to set η to a fixed value. But we chose not to do this for

two reasons, because it introduces another hyperparameter to the method and

because intuitively the benefit of being close to the exact value of p will vary

depending on our progress. To begin with we expect to make sufficient progress

using a direction closer to the first derivative, but as we become closer to the

minimum additional curvature information will be useful. The Eisenstat-Walker

(EW) method (choice 2 from [25]) for choosing the forcing term does exactly

that, taking the following value at the kth iteration:

ηk = γ

(
‖∇f(wk)‖
‖∇f(wk−1)‖

)µ
(3.2)

We take the default values from the paper η0 = 0.1, γ = 1, µ = 1+
√

5
2

and use

the default maximum threshold ηmax = 0.9 but avoid using the safeguard (ηk =

max{ηk, γηµk−1} whenever γηµk−1 > 0.1) as we found it gave much larger tolerance

values. The safeguard made us stop prematurely, falling on the wrong side of the

12

trade-off between computational cost and minimization progress, and we didn’t

run into the problem of shrinking tolerances it was meant to stop. Similar to

[9], we found that in later stages the more CG runs are needed to reach useful

curvature information. For this reason we also tuned the maximum number of

CG iterations to be adaptive by max{10, 0.1k} where k is the current iteration

of the full minimization routine.

3.2 Conjugate Gradient Method

We chose CG as the solver for step 2 of Algorithm 3. This method solves a

linear system Ax = b to a desired tolerance η, by interpreting the system as the

minimization problem:

min
x

1

2
xTAx− bTx (3.3)

This has a solution when the gradient Ax − b = 0. In our case the linear

system is Hp = −g. The method works by iteratively reducing the residual

rk = Axk − b in orthogonal directions pk from the Krylov Subspace Kk(A, r0) =

span{r0, Ar0, A
2r0, . . . , A

kr0}. If we meet a direction of negative curvature we

terminate early and handle it as explained in section 3.7.

3.3 Hessian Free Vector Product

The most attractive thing about the CG-Inexact Newton method is that H is

never explicitly required, we just need to evaluate the action of H on a vector.

If the CG algorithm is implemented carefully it only needs to evaluate Hpk once

per iteration. This gives a huge computational advantage over traditional New-

ton particularly when H is very large or sparse. The method to evaluate the

13

Algorithm 4 Conjugate Gradient

1: r0 ← Ax0 − b; p0 ← −r0; k ← 0
2: while ‖rk‖‖b‖ > η do

3: if pTkApk < 0 then
4: Terminate early
5: end if
6: αk ←

rTk rk
pTkApk

7: xk+1 ← xk + αkpk
8: rk+1 ← rk + αkApk

9: βk+1 ←
rTk+1rk+1

rTk rk

10: pk+1 ← −rk+1 + βk+1pk
11: k ← k + 1
12: end while

the Hessian vector product is explained in [8]. In a similar way to Back Prop-

agation [2] performing a forward and backwards sweep of the Neural Network

to evaluate the gradient, the Hessian vector product must perform two forward

and backward sweeps, to compute Hv = ∇(∇f(w)Tv). It is worth mentioning

that a similar technique exists for calculating the action of the Gauss Newton

matrix on a vector [23]. Analysis shows this method to be cheaper than that of

the Hessian, although there is not currently a consensus as to which is preferred,

whether the saving in computation outweighs the reduction in curvature infor-

mation. Some argue that Gauss-Newton is better due to the increased stability

and guaranteed positive definiteness [9] but others say it is more prone to sticking

at saddle points and makes less progress in the same time [26, 12]. We view this

as beyond the scope of this paper, leaving it open to future work. Whilst using

a Hessian Free method reduces the cost when compared to traditional Newton,

the Hessian vector product is the most expensive operation in our method so it

is still important to minimize the number of evaluations.

14

Figure 3.1: The Hessian for an MNIST Autoencoder after 0 iterations (left) and
200 iterations (right). Positive and negative values are represented by red and
blue respectively.

3.4 Stochastic Hessian

One of the greatest improvements to gradient descent is the addition of mini-

batching used in SGD [27]. Mini-batching provides both a reduction in per

iteration cost and adds randomization which helps to avoid saddle points and

improving generalization of the model. It is natural to seek an equivalent way to

reduce the cost of the Hessian vector evaluations. Recent advances have proved

convergence of Inexact Newton with a subsampled Hessian, and with both a sub-

sampled Hessian and gradient [11, 13, 14, 15]. More than this, the subsample

size of the Hessian can be much smaller relative to that of the gradient, further

reducing the cost of evaluating the Hessian vector product. We use NX to refer

to the mini-batch size at each iteration and NS to refer to the Hessian subsample

size.

15

3.5 Preconditioning

Since the Hessian-vector product is the most expensive operation in the CG-

Inexact Newton method, we can significantly speed up the method by reducing

the number of times this operation is called. The convergence rate of CG is de-

pendent on the clustering of the eigenvalues of H. If many of the eigenvalues

are close in value to each other, the method converges much faster. Precondi-

tioning takes advantage of this by transforming our linear system to one with a

more favourable eigenvalue distribution, solving this system to the desired tol-

erance then transforming the solution back to the original linear system. This

transformation is based on some non-singular matrix C with x̂ = Cx. When CG

with preconditioning is implemented, we actually make use of a different matrix,

M = CTC.

Algorithm 5 Preconditioned Conjugate Gradient

1: r0 ← Ax0 − b; y0 ←M−1r0; p0 ← −y0; k ← 0
2: while ‖rk‖‖b‖ > η do

3: if pTkApk < 0 then . Stop on Negative Curvature
4: Return xk
5: end if
6: αk ←

rTk yk
pTkApk

7: xk+1 ← xk + αkpk
8: rk+1 ← rk + αkApk
9: yk+1 ←M−1rk+1

10: βk+1 ←
rTk+1yk+1

rTk yk

11: pk+1 ← −yk+1 + βk+1pk
12: k ← k + 1
13: end while

This is a great idea in theory but raises the question, what is a good precon-

ditioner for the Hessian of a neural network? We want a matrix which is cheap to

compute but is a good approximation for the Hessian. A few options to consider

include a regularized Fisher information matrix [9, 28], an approximation of the

16

Gauss Newton [29] and a Low rank L-BFGS matrix [30]. We chose the regu-

larized Fisher information preconditioner as it requires the least computation to

generate, assuming we already have computed the gradient ∇f(w).

M = (diag(∇f(w)�∇f(w)) + λI)α (3.4)

Where a typical value of α would be 0.75.

3.6 Trust Region Globalization

The biggest challenge we face when training neural networks is ensuring conver-

gence. The loss functions are non convex with many plateaus and saddle points

[1] which can attract second order methods or lead to poor second order approx-

imations. Trust regions [31] offer a more robust way to traverse the troublesome

loss function landscape than just taking fixed steps in the Newton direction or

using backtracking line search. As we will also see, they give us a way to reduce

the computation at each step and avoid the expensive computation of the CG

method when there is little to gain from it.

The fundamental idea behind a trust region (TR) is to approximately solve the

minimization problem for a fixed subregion, most commonly a ball around the

current position. The size of the ball changes at each iteration depending on how

well the TR subproblem approximates the objective function. This is computed

by the metric ρ. If the approximation is poor we reduce the size of the TR so

it will be easier to reduce the loss function at the next iteration. If on the other

hand the approximation is good, we expand the TR to allow us to make even

more progress at the next iteration.

17

Given a TR of radius ∆, the minimization problem we want to solve at each

iteration is:

min
p
m(p) = gTp+

1

2
pTBp s.t. ‖p‖ ≤ ∆ (3.5)

For g = ∇f(w) and B a matrix such as the Hessian, possibly with regulariza-

tion. This problem, known as the TR subproblem can be viewed as a bounded

quadratic approximation of f(w + p)− f(w). There are many methods that can

be used to approximately solve the subproblem which we will discuss here.

Algorithm 6 Trust Region

1: while f(w) > ε do
2: Find p by solving TR subproblem
3: ρ← f(w)−f(w+p)

−m(p)

4: if ρ < 0.25 then . Reduce radius and don’t update
5: ∆← 0.25‖p‖
6: else
7: if ρ > 0.75 and ‖p‖ = ∆ then . Increase radius
8: ∆← min{2∆,∆max}
9: end if
10: w ← w + p . Update
11: end if
12: end while

3.6.1 Inexact Newton Step

The simplest solution to the subproblem is to inexactly compute the Newton step

pN . This is an approximation of the minimizer of m(p) so if it is within the TR

we can use it, if not we can scale the step by ∆
‖pN‖ to give the point at which it

intersects the TR barrier. This simple approach doesn’t always work in practice.

When pN is far from the TR and there is high curvature using only the Newton

direction can give poor results, often worse than backtracking line search.

18

3.6.2 Dogleg Method

When the TR is very small, the negative gradient is a better minimization di-

rection than the Newton direction but as the TR increases in size the linear

approximation is no longer reliable and we should use the second order approxi-

mation. When the TR is between these two cases we would like to interpolate the

two directions, this is provided by the dogleg method. We use the Cauchy Point

pC = − gT g
gTHg

g, which is the unconstrained minimizer along the steepest descent

direction. Then we find the minimum value in the TR along two line segments,

first from our current position to the Cauchy Point, then from the Cauchy Point

to the quadratic minimizer. A 2D example of this is shown in fig. 3.2. Formally,

this is the problem of finding τ to give the optimum p(τ) defined as:

p(τ) =

τpC 0 ≤ τ ≤ 1

(2− τ)pC + (τ − 1)pN 1 ≤ τ ≤ 2

The optimum value of τ can be found by solving a quadratic equation. There are

a couple of tricks we can use with this method to decrease the computational cost

when using the dogleg method with Inexact Newton [32]. If the Cauchy Point is

outside of the TR, we do not need to compute pN at all. Before computing pN we

should also check if pC is within the tolerance for the Inexact Newton condition

‖HpC + g‖ ≤ η‖g‖. Note that this method does not work well if the matrix B is

not positive-semidefinite. We use a regularization term to try to enforce this but

to improve robustness in the case that both pC and pN lie in the TR, we should

set p to be whichever of them reduces the objective function the most.

19

Algorithm 7 Dogleg Minimization

1: Compute pC

2: if ‖pC‖ ≥ ∆ then
3: p← ∆

‖pC‖p
C

4: else if ‖HpC + g‖ ≤ η‖g‖ then
5: p← pC

6: else
7: Compute pN with CG method
8: if ‖pN‖ ≤ ∆ then
9: if f(w + pN) < f(w + pC) then
10: p← pN

11: else
12: p← pC

13: end if
14: else
15: Compute τ
16: p← p(τ)
17: end if
18: end if
19: Update w and TR with p

3.6.3 2D Subspace Minimization

Finding the optimum position on the dogleg path is relatively cheap but for

a small increase in computational cost we can do much better. 2D subspace

minimization searches for the best solution to the TR subspace problem on the

hyperplane span{pC , pN}. This hyperplane includes all of the points along the

dogleg path and many more. A 3D example of this is shown in fig. 3.3. The 2D

TR subspace problem is

min
α,β

m(α, β) = gTP

α
β

+
1

2

(
α, β

)
P THP

α
β

 s.t. ‖p‖ ≤ ∆ (3.6)

For P = [pCpN] we then set p = αpC + βpN . The main additional cost of this

method is computing P THP , which requires 3 Hessian-vector products. Fortu-

20

nately we already have computed gTHg when generating pC so can reuse this

value. All that remains to do then is solve a quartic equation to find α and β [33]

Algorithm 8 2D Subspace Minimization

1: Compute pC

2: Compute pN

3: Solve 2D Subspace subproblem to get α, β
4: p = αpC + βpN

5: Update w and TR with p

3.6.4 Low-cost 2D Subspace Minimization

We can reduce the cost of the 2D Subspace method using the same trick as with

the dogleg method. When the TR is small there is no need to perform the costly

operations generating pN , instead only use the gradient direction.

Algorithm 9 Low Cost 2D Subspace Minimization

1: Compute pC

2: if ‖pC‖ ≥ ∆ then
3: p← ∆

‖pC‖p
C

4: else if ‖HpC + g‖ ≤ η‖g‖ then
5: p← pC

6: else
7: Compute pN with CG method
8: Solve 2D Subspace subproblem to get α, β
9: p = αpC + βpN

10: end if
11: Update w and TR with p

3.7 Regularization

Regularization is the addition of a term to the problem:

min
w
f(w) ≡ min

w

1

N

N∑
i=1

L(yi, φ(w, xi)) +
1

2
λ‖w‖2 (3.7)

21

Figure 3.2: The optimum path ver-
sus the dogleg path, with the dogleg
point on the TR boundary

Figure 3.3: 2D subspace in a 3D TR

Regularization serves two purposes, to ensure a positive-semidefinite Hessian and

to limit the step size. By adding a regularization parameter 1
2
λ‖w‖2 the Hes-

sian increases by λI. This increases the value of the eigenvalues by λ. If the

unregularized Hessian has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and the regularization

parameter λ is chosen such that λ > min{0, λn} then the regularized Hessian,

H, is guaranteed to be positive-semidefinite. This has the effect of transforming

the landscape of the non-convex loss function to a function which is easier to

minimize.

We also use regularization to limit the size of the weights to stop them exploding

to extreme values. There are times when the second order approximation is not

particularly accurate and the newton direction is very large. Including the size

of the variable w as a term in the objective function stops the weights from get-

ting too large. This reason for regularizing is less of a motivation for us as it is

also achieved by the TR. In fact, this style of damping via regularization can be

viewed as a soft TR, as shown by the Levenberg-Marquardt method commonly

used with the Gauss-Newton, hence is less relevant to our method.

This leads us to the question, how to figure out the size of λ to use? We don’t

22

want to introduce another hyperparameter so need to tune it automatically. For

our purposes, the size needs to be relative to the largest negative eigenvalue. The

Lanczos method [34] is a Krylov Subspace method which estimates the largest

and smallest eigenvalues of a matrix A. Similar to CG, Lanczos creates a series

of orthogonal vectors from a Krylov subspace. These are used for a tridiagonal

approximation Tk of the factorization of A with diagonal values αk and off diago-

nal values βk. The Tk can be easily diagonalized to give an approximation of the

most dominant eigenvalues. After k iterations the method generates k approxi-

mate eigenvalues, λ′1 ≥ · · · ≥ λ′k with λ′1 ≤ λmax and λ′k ≥ λmin, respectively the

largest and smallest eigenvalues of A. Equality is only reached after n iterations,

however, experimentally we found that the method reaches a close approximation

within 10 iterations. We can then multiply by a factor slightly greater than 1 to

ensure positive semi-definiteness. Again, similar to CG, we can implement this in

a Hessian-free fashion. We do not explicitly need to compute the matrix A (H in

our case), only the product with a vector. The Lanczos method is still relatively

costly though, so we opt not to run it at every iteration; instead it runs once to

initialize the regularization before we begin the minimization loop. In the case

that Lanczos returns a positive value for the smallest eigenvalue we still suggest

using a small regularization parameter for its damping properties and improved

stability.

As we move closer to the optimum point the amount of regularization required

actually reduces and we notice the effect of the damping phenomenon. Our steps

become smaller and fall within the TR instead of beyond it. To deal with this we

must reduce the amount of damping. Using the TR as an indicator we multiply

the regularization by a constant factor 0 < ζ < 1 whenever we update the weights

with a step which falls within the TR.

23

Algorithm 10 Lanczos Algorithm

1: q0 ← 0; β0 ← 0
2: Initialize q1 to a random unit vector
3: for i← 1 to k do
4: z ← Aqi
5: αi ← zTi z
6: z ← z − αiqi − βi−1qi−1

7: Orthogonalize z with respect to previous qi
8: βi ← ‖z‖
9: qi+1 ← z/βi
10: end for
11: Create k × k tridiagonal matrix Tk from αk and βk values
12: Compute eigenvalues of Tk

Algorithm 11 TR Minimization with automatic regularization

1: Run Lanczos for 10 iterations to approximate λmin

2: λ← max (−1.2λmin, λ
′)

3: while f(w) > ε do
4: Find p by solving TR subproblem
5: Compute ρ and if large enough update w
6: if w was updated and ‖p‖ < ∆ then
7: λ← ζλ
8: end if
9: end while

Algorithm 11 for automatically tuning λ actually introduces two new param-

eters: λ′, the value to set λ to if the initial Hessian is positive-definite and ζ, the

reduction factor. We argue that their value is not too important as long as it is

reasonable. λ′ just needs to be positive. If it is too large it may reduce the rate

of convergence at the start but the reduction factor will take care of this. We

use 0.1 as a default. For the reduction factor, as long as ζ is less than 1 we will

reduce λ sufficiently. Section 5.3.2 gives the details of how we determined the

values for these parameters as well the 10 iterations and factor of 1.2.

Reducing the regularization may lead to directions of negative curvature, but

these can be used to our advantage and indeed give us better results [26, 35, 36].

24

Some methods, such as Saddle-Free Newton [37] and others [38, 11], actively seek

out directions of negative curvature to use. This can be expensive in practice, so

we take a more relaxed approach. When we find a direction of negative curvature

we stop the CG iterations early and make use of it in solving the TR subproblem.

This is easily done for the 2D subspace method, but more care must be taken

with the dogleg method [32], hence the additional checks.

3.8 Momentum

Momentum has become one of the key techniques for improving the convergence

of first order methods. Stochastic Gradient Descent with momentum, Nesterov

accelerated gradient and Adam all use their own version of momentum to give

iterative updates that use more than just the current local gradient information.

The idea is that by combining the step direction from the previous iteration with

the steepest descent direction at the current iteration, a direction of persistent

descent can be generated which is better at consistently minimizing the loss func-

tion. It also helps counter the noise that comes from using a stochastic method

and avoids sticking at saddle points. Momentum has been used far less with

second order methods but it is worth considering how it could be incorporated.

The general equation for the kth momentum step is:

wk+1 = wk + αkpk + βk(wk − wk−1) (3.8)

The simplest approach is to pick αk first using whatever TR method is preferred

and using a fixed value β for all βk. This is essentially stochastic gradient descent

using a second order step direction instead of the gradient. One clear issue with

25

this method is that it introduces the additional hyper parameter β which could

require tuning. A more robust technique is to apply 2D subspace minimization to

the two directions pk and mk = wk −wk−1. This is the suggested technique used

by Curveball [22] which comes at the cost of 3 additional Hessian vector products

to calculate the 2× 2 matrix involved. Whilst this cost can be reduced through

some clever reuse of previous values, some additional network sweeps will always

be required which make it less favourable.

A middle ground between the two is an adaptive method which requires no

tuning but equally isn’t computationally expensive [39]. The step is calculated

as follows:

yk = wk + pk (3.9)

βk = min{β, ‖∇f(yk)‖, ‖pk‖} (3.10)

vk = yk + βk(yk − yk−1) (3.11)

wk+1 = argmin
w∈{yk,vk}

f(w) (3.12)

The additional computation here is the calculation of ∇f(yk) and the evaluation

of f(yk) and f(vk) and due to the comparison we make at the end we ensure

the step taken is never worse than when we don’t use momentum. We make a

comparison between these in the results section.

One final technique to consider is CG warm start. This is a very different

style of momentum which is only applicable to Hessian Free methods. Here

we initialize the conjugate gradient routine with the step direction used at the

previous iteration. The idea of initializing to this value is that if the step direction

is similar to the previous iteration the number of inner CG iterations will be

vastly reduced. In practice this isn’t always the case, particularly when using

26

a stochastic Hessian and a poor initialization could lead to more CG iterations

rather than less.

A comparison of these techniques was performed in section 5.3.3 and based

on the results we decided to only use CG warm start as a momentum technique.

27

Chapter 4

Costs of Proposed Methods

4.1 Proposed Algorithms

We combine the techniques described in chapter 3 to define three Hessian-free, TR

methods: 2D subspace, low-cost 2D subspace and dogleg as shown in algorithms

12 and 13.

Algorithm 12 2D Subspace Method

1: Run Lanczos for 10 iterations to approximate λmin

2: λ← max (−1.2λmin, 0.1)
3: while f(w) > ε do
4: Compute EW tolerance η
5: Compute pN with CG to EW tolerance
6: Find p by solving 2D subspace subproblem with ∇f(w) and pN

7: Compute ρ and update w, ∆ and λ accordingly
8: end while

4.2 Parallelization and Iteration Cost

By running the code on a large enough GPU we are able to completely parallelize

the most expensive operations, that is sweeps of the network. Assuming we have

28

Algorithm 13 Low-cost 2D Subspace and Dogleg Methods

1: Run Lanczos for 10 iterations to approximate λmin

2: λ← max (−1.2λmin, 0.1)
3: while f(w) > ε do
4: Compute EW tolerance η
5: Compute pC

6: if ‖pC‖ ≥ ∆ then
7: p← ∆

‖pC‖p
C

8: else if ‖HpC + g‖ ≤ η‖g‖ then
9: p← pC

10: else
11: Compute pN with CG to EW tolerance
12: if ‖pN‖ ≤ ∆ then
13: if f(w + pN) < f(w + pC) then
14: p← pN

15: else
16: p← pC

17: end if
18: else
19: Find p by solving 2D subspace or dogleg subproblem with pC and

pN

20: end if
21: Compute ρ and update w, ∆ and λ accordingly
22: end if
23: end while

enough GPU resources to handle the entire mini-batch in parallel we can assess

the cost of a single iteration of each method by the number of sweeps the method

requires, not taking mini-batch size or subsampling into consideration. We count

the number of sweeps as follows:

• Evaluation of the model - 1 sweep

• Gradient - 2 sweeps

• Hessian vector product - 4 sweeps for the first call and 2 sweeps for all

successive calls in the same iteration (assuming reuse of inner sweeps)

We can now count the number of sweeps that each of our methods use per it-

29

eration. Note that these counts assume some caching is used so the gradient

evaluation is done once and the value is reused when needed.

4.2.1 Lanczos Regularization

If we perform 10 iterations of Lanczos at the start of the routine, first we evaluate

the Hessian inner loop (2 sweeps), then each iteration evaluates a Hessian-vector

product (2 sweeps).

Total sweeps = 22 (4.1)

4.2.2 2D Subspace Method

For this method we have 4 parts: initialization of gradient and Hessian inner

loop (4 sweeps), computation of pN (2(#CG iters + 1) sweeps), 2D subspace

minimization (4 sweeps) and finally perform the TR update (4 sweeps).

Total sweeps = 2(#CG iters + 1) + 12 (4.2)

4.2.3 Low-cost 2D Subspace Method

For this method we have a couple of different branches depending on whether we

use the low-cost or the full computation: first in all cases we have the initialization

of gradient and Hessian inner loop (4 loops) and computation of pC (2 sweeps).

If pC is beyond the boundary or pC satisfies the EW condition (0 sweeps) else

computation of pN (2(#CG iters + 1) sweeps) and 2D subspace minimization (4

sweeps). Finally in both cases perform the TR update (4 sweeps).

Total sweeps = 10 or 2(#CG iters + 1) + 14 (4.3)

30

4.2.4 Dogleg Method

Similar to the previous method, there are different branches depending on whether

we use the low-cost or the full computation: first in all cases we have the ini-

tialization of gradient and Hessian inner loop (4 sweeps) and computation of pC

(2 sweeps). If pC is beyond the boundary or pC satisfies the EW condition (0

sweeps) else computation of pN (2(#CG iters + 1) sweeps). If pN is beyond the

TR we compute the dogleg point (0 sweeps) else we compare the loss of pC and

pN (2 sweeps). Finally in all cases perform the TR update (4 sweeps).

Total sweeps = 10 or 2(#CG iters + 1) + 10 or 2(#CG iters + 1) + 12 (4.4)

31

Chapter 5

Results

We now analyse the experimental outcomes of our methods. We experimentally

justify the choices made in constructing the method and demonstrate the hyper

parameter robustness. Then we make comparisons of our method against first

order methods for a range of models.

Unless explicitly stated, all results we display are the average of five runs of

the test, using a different random initialization for each run. We seed the runs

to keep the random initializations and batch shuffling the same for each method.

We ran the tests on a virtual machine with a single 32GB NVidia V100 GPU and

8 AMD EPYC 7551p vCPUs.

We record the loss and accuracy against three different measurements: the num-

ber of iterations, number of network sweeps and time as each gives a different

insight. Plotting against the number of iterations gives a clear idea of the rate of

convergence of the method. This scale is particularly useful when analysing dif-

ferent versions of our methods and the parameters. Network sweeps gives a fairer

32

Name Model Data Set Input Size Parameters
AEM Autoencoder MNIST (28,28,1) 1037
AEC Autoencoder CIFAR-10 (32,32,3) 11299
L5M LeNet5 Classifier MNIST (32,32,1) 61706
R18C ResNet18 Classifier CIFAR-10 (32,32,3) 11190730

Table 5.1: Details of each model used in testing

theoretical comparison between different methods, counting the number of ex-

pensive operations that require full sweeps of the network. For SGD and Adam,

the two first order methods we consider, this is exactly two sweeps per itera-

tion. This is also an implementation agnostic metric so gives a better idea of the

theoretical performance without having to worry about implementation details.

Lastly, plotting against time gives a realistic indication of the performance.

5.1 Models

We test our methods on 4 different models, 2 autoencoders and two image classi-

fiers. The datasets used were the handwritten digits dataset MNIST[40] (60000

training and 10000 testing data points) and collection of 10 different image classes

CIFAR-10[41] (50000 training and 10000 testing data points) as provided by Ten-

sorflow. We used similar autoencoder models to [11]. For the MNIST dataset

we use [4,4,4,1] filters at each level, with respective sizes [8,4,4,8], for CIFAR-10

we use [4,4,4,8,4,4,3] filters at each level with sizes [16, 8, 8, 4, 4, 8, 8, 16]. The

step size is 2 in both cases. We used well established image classification models

LeNet5 [42] and the much larger ResNet18[43]. Due to the input dimensions

required by LeNet5 we pad the MNIST dataset from (28,28,1) to (32,32,1) for

this model. The input size and number of parameters of each model are shown

in table 5.1

33

5.2 Implementation

One of the contributions of this paper is the software package containing imple-

mentations of the methods and a test suite to reproduce our results. The code

is implemented in Tensorflow v2.1 which we picked for its flexibility, ease of use

on GPU and TPU and the large community. It also fully compatible with the

Keras module which makes testing possible on a large range of Neural Networks.

We chose to use eager execution for our testing, that is a real time execution

of the operations as opposed to a graph execution which fully defines the com-

putation graph before executing the operations. Although the graph execution

is marginally faster, Eager execution is the standard implementation method as

of Tensorflow v2.0 and it makes debugging and analysis of the methods easier.

For fairness, we implemented the first order methods ourselves as a composition

of tensorflow operations rather than using the predefined Tensorflow optimizers

which have their own well optimized GPU kernels.

5.3 Method Justification and Hyperparameter

Values

Our methods use many additional techniques when compared to the original

Inexact Newton method. Whilst this increases the complexity of our methods,

each of these additions helps us address our two goals for the method, reducing

the computational cost or reducing the need to tune hyper parameters. Here we

look at the experimental results with the method to justify their incorporation

and show how they work. Unless explicitly stated, here we use the 2D-Subspace

method with default parameters and an average of 5 runs.

34

5.3.1 CG Tolerance

Th CG tolerance determines how many CG iterations to perform. We can either

use a fixed tolerance or the EW method to set the value of η. Whilst the EW

method introduces several hyperparameters (γ, µ, ηmax, η0) we find that their de-

fault values (1, 1+
√

5
2

, 0.9, 0.1 respectively) are sufficient. Figure 5.1 shows that

for AEM we see that the EW method performs much better, reaching a lower loss

value and running much faster. This is because it mostly uses a small number

of iterations for CG at each stage. The fixed methods always use the maximum

number of iterations, except towards the end when the maximum number of it-

erations has increased so much that the tolerance of 0.1 is achievable. Figure 5.2

shows that for L5M we see slightly different behaviour. Initially the fixed meth-

ods reduce the loss much faster than EW, however the smallest tolerances overfit

the function and only the 0.1 tolerance stays low. The EW method closes the

gap between them eventually.

Figure 5.1: AEM for different CG tolerance routines with respect to iterations
and time

35

Figure 5.2: L5M for different CG tolerance routines with respect to iterations
and time

Figure 5.3: The number of iterations of CG performed at each iteration of the
minimization routine

5.3.2 Regularization

Our regularization parameter λ is tuned in two ways: we initialize it with Lanczos,

then we reduce it by a constant factor each time our step is within the TR. There

are four different parameters introduced by this method: the number of Lanczos

iterations; the factor to multiply the initial value by, a minimum initialization

regularization and the factor by which to reduce the regularization. Analysis of

the convergence of Lanczos on our models, as shown in fig. 5.4, demonstrates that

we reach a relative error of 0.1 within 10 iterations. The Lanczos method ap-

36

proaches the min eigenvalue from above, so if λmin is negative our approximation

λ′min is λmin < λ′min < 0.9λmin. Thus
λ′min

0.9
< λmin. So by performing 10 iterations

of Lanczos and multiplying by 1.2 (which is slightly larger than 1
0.9

to be safe) we

guarantee the regularization will make our Hessian positive definite.

Figure 5.4: Convergence of Lanczos for each model

As previously mentioned, the minimum value for regularization initialization

is fairly arbitrary. Even if a very large value is chosen the reduction factor takes

care of it. We found 0.1 was a suitable value. Lastly for the reduction factor,

fig. 5.5 shows the size of the minimum eigenvalue of the Hessian does indeed

reduce as we reduced the loss function. We tried a few different values for the

regularization reduction factor, but as seen in fig. 5.6 the results were relatively

similar for 0.99, 0.9 and 0.5. For this reason we chose 0.9 as our reduction factor.

37

Figure 5.5: Magnitude of the smallest eigenvalue found after 10 iterations of
Lanczos

Figure 5.6: Loss per iteration for different regularization reduction parameters

38

5.3.3 Momentum

There are two types of momentum we discussed. First we looked at possible

momentum schemes where the step is a linear combination of the previous and

the new step directions. Figure 5.7 shows that these methods have little effect

on the convergence of our functions; hence our decision to exclude them from

our final method. The second technique we tried was CG warm start, using the

previous step direction to initialise CG. Figure 5.8 shows CG warm start gave

substantially better performance for the autoencoder. Whilst it was a slower

start per iteration than without for the image classifier, the time saved due to

few CG iterations makes it a preferable technique.

Figure 5.7: Loss by iteration and time for AEM and L5M with different momen-
tum types

39

Figure 5.8: Loss by iteration and time for AEM and L5M with CG warm start

5.3.4 Minibatching and Subsampling Robustness

Two important hyperparameters to consider are NX the minibatch size at each

iteration and NS the number of subsamples from the minibatch used for the

Hessian. We performed two experiments to improve our understanding of the

effect of these parameters on convergence and memory consumption both for

RAM and GPU memory. We measured the maximum RAM usage of the methods

with the unix command /usr/bin/time. Currently the Tensorflow GPU profiler

does not include the exact GPU memory allocations and by default it reserves all

available memory. We configured Tensorflow to only allocate the necessary GPU

memory and measured the size of this allocation with nvidia-smi though this

40

should be considered an approximate upper limit on GPU memory.

First we looked at the effect of changing NX without subsampling (so NS = NX).

Table 5.2 and table 5.3show the RAM and GPU memory respectively. Minibatch

size had little effect on the convergence rate or the run time, however the memory

cost increases both on and off the GPU. Given the the greater increase in GPU

memory compared to RAM as batch size increases (and the relative prevalence

of available RAM over GPU memory) the GPU memory seems to be the limiting

factor in mini-batch size. Comparing the GPU memory usage to SGD we see

that for larger minibatch sizes the memory usage is lower, which demonstrates

the additional memory costs of second order methods. Figure 5.9 shows that the

batch size doesn’t drastically effect the convergence, but a larger batch size is

preferable if possible.

Next we looked at the effect of using sub-sample size NS < NX . For convergence

we tried at a fixed minibatch size of NX = 1000 with NS = 10, 100, 1000. In

fig. 5.10 we see similar convergence rates for NS = 1000 and NS = 100 but

poorer convergence for NS = 10. To compare the memory usage we used the

sub-sample size NS = 100 with batch sizes NX = 1000, 10000. Table 5.2 and

creftable:GPU-minibatch show sub-sampling gave memory consumption much

closer to SGD than Inexact Newton without sub-sampling.

Generally, we view these hyper-parameters as being hardware limited. There

seems to be no negative consequence of making the batch size and sub-sample

size as large as the GPU memory allows, however for larger models and input

data sizes there may be some tuning required to find optimal performance based

on a trade-off between the two and the memory available but we view it as beyond

the scope of this work. As we have ample GPU memory available and see little

effect on batch size for our test cases we will use a batch size of 1000 without

41

sub-sampling (NX = NS = 1000).

Inexact Newton SGD
Batch Batch

Model 100 1000 10000 Full 100 1000 10000 Full
AEM 3.10 3.09 3.67 4.37 3.10 3.10 3.56 3.99
AEC 4.73 4.73 6.32 7.84 4.73 4.74 6.12 7.24
L5M 2.89 2.89 3.22 3.83 2.89 2.89 3.21 3.83
R18C 3.85 3.94 5.15 NA 3.79 3.79 4.50 5.59

Table 5.2: Memory usage (Gb) for first and second order methods. NA is used
when we couldn’t perform this run

Inexact Newton SGD
Batch Batch

Model 100 1000 10000 Full 100 1000 10000 Full
AEM 3.98 3.98 6.98 20.98 3.98 3.98 3.98 8.98
AEC 5.35 5.35 11.35 30.93 5.35 5.35 5.35 11.35
L5M 4.98 4.98 6.98 18.98 4.98 4.98 6.98 18.98
R18C 11.35 11.35 30.93 OOM 11.35 11.35 11.35 30.93

Table 5.3: GPU memory usage (Gb) for first and second order methods by batch
size. OOM is used when we exceeded the available GPU memory

100 subsamples No subsampling
Batch Batch

Model 1000 10000 1000 10000
AEM 3.09 3.61 3.09 3.67
AEC 4.73 6.13 4.73 6.32
L5M 2.89 3.23 2.89 3.22
R18C 3.94 4.54 3.94 5.16

Table 5.4: Memory usage (Gb) with and without subsamplingsubsampling

100 subsamples No subsampling
Batch Batch

Model 1000 10000 1000 10000
AEM 3.98 3.98 3.98 6.98
AEC 5.35 5.35 5.35 11.35
L5M 4.98 6.98 4.98 6.98
R18C 11.35 11.35 11.35 30.93

Table 5.5: GPU memory usage (Gb) with and without subsampling

42

Figure 5.9: Loss by iteration and time for AEM and L5M with different batch
sizes

43

Figure 5.10: Loss by iteration and time for AEM and L5M with different sub-
sample sizes

5.3.5 Trust Region, Step Size Robustness

For first order methods, the learning rate must be tuned for each model, an

example of this is in fig. 5.11. On the other hand, our methods choose a step

size based on the TR which grows and shrinks automatically. The parameters we

use for growing and shrinking the TR are defaults which are widely used in the

optimization community. We find that a maximum TR size is also not needed

as the TR size doesn’t blow up, in all of our tests it stayed within reasonable

bounds. One parameter to consider is the TR radius initialization. This has far

less effect than the learning rate does for first order methods, but in general we

found that smaller initializations gave slightly better results, as seen in fig. 5.12.

44

In general it seems best to start with a small TR (0.001) and letting it naturally

grow as needed.

Figure 5.11: Performance of first order methods for different step sizes. This
shows the sensitivity of first order methods to step size, something mitigated by
trust regions

Figure 5.12: The performance of the 2D subspace TR methods for different TR
initialization sizes

5.4 Method Comparison

We tested our methods on the four models mentioned above, using the default

parameters and configurations for the three proposed TR methods 2D-subspace,

lowcost 2D-subspace and dogleg, as justified in the previous section. For compar-

45

ison we also tried the TR step method, which uses the Inexact Newton direction

at each step, scaled by the TR. We compared these to the SGD and Adam first

order methods which were hyperparameter tuned via a grid search for learning

rates (0.1, 0.01, 0.001 and 0.0001) and batch sizes (32, 64, 128 and 512). The

tuned values are shown in table 5.6. We ran each model for 40000 sweeps of the

network which we found was enough to compare the convergence behaviours of

the models.

SGD Adam
Model LR Batch LR Batch
AEM 0.1 32 0.01 128
AEC 0.01 32 0.01 64
L5M 0.1 512 0.001 512
R18C 0.01 512 0.0001 512

Table 5.6: The tuned hyperparameter values of learning rate (LR) and batch size
for first order methods SGD and Adam

5.4.1 Autoencoders

For the MNIST data set the results in table 5.7 show Adam performed the best,

closely followed by our methods, out of which the Dogleg method was slightly

better. The TR Step method performed similarly to our methods but became

unstable after 200 iterations (as seen in fig. 5.14) suggesting it is less robust to

the changes in regularization. Figure 5.15 shows that SGD progressed at a much

slower rate and was still decreasing when we stopped, making it unclear whether

or not it would reduce the loss as much as the other methods. Comparing by

iteration we see that the second order methods converge faster. This is very

promising as if we are able to reduce the cost per iteration (through a better

preconditioner) we could make the method more competitive when compared by

sweeps or time.

46

Optimizer Min TrL Min TL End TL Iters Time (s)
TR Step 0.0079 0.0078 0.017 783 799
TR Dogleg 0.0055 0.0054 0.0054 722 807
TR 2D Subspace 0.0067 0.0067 0.0067 731 808
TR LC 2D Subspace 0.0065 0.0065 0.0066 730 811
SGD 0.021 0.024 0.024 20000 434
Adam 0.0048 0.0051 0.0052 20000 630

Table 5.7: Train Loss (TrL) and Test Loss (TL) for AEM

Figure 5.13: AEM training loss by sweeps and time

Figure 5.14: Test loss by iteration, up to the minimum (left) and maximum
(right) number of iterations completed in 40000 sweeps

47

Figure 5.15: AEM test loss by sweeps and time

For the CIFAR-10 data set, table 5.8 shows that Adam performed the best,

followed by all of the TR methods which performed more or less identically,

although the step method was slightly less smooth. Figure 5.17 shows the TR

methods reached a plateau after just 25 iterations or 200 sweeps, suggesting there

is a saddle point they were unable to escape. The Adam method also was stuck

around this loss of 0.062 for around 100 iterations but managed to escape it

eventually. The SGD method was once again the slowest although it gradually

reduced the gap with the TR methods, as seen in fig. 5.18. The plots of the first

order methods have much more noise than that of the second order methods, we

expect this is partly due to the smaller batch sizes giving a higher variance in

the loss function at each iteration, but it also demonstrates the stability of our

methods.

Optimizer Min TrL Min TL End TL Iters Time (s)
TR Step 0.060 0.062 0.062 1000 1677
TR Dogleg 0.060 0.062 0.062 1046 1546
TR 2D Subspace 0.060 0.062 0.062 925 1688
TR LC 2D Subspace 0.060 0.062 0.062 1039 1528
SGD 0.052 0.065 0.065 20000 683
Adam 0.025 0.028 0.029 20000 1014

Table 5.8: Train Loss (TrL) and Test Loss (TL) for AEC

48

Figure 5.16: AEC training loss by sweeps and time

Figure 5.17: Test loss by iteration, up to the minimum (left) and maximum
(right) number of iterations completed by an optimizer in 40000 sweeps

Figure 5.18: AEC test loss by sweeps and time

49

5.4.2 Image Classification

For the Lenet5 model, the results in table 5.9 show that the Adam optimizer

performed the best, closely followed by SGD. For training loss fig. 5.19 shows that

first order methods continually reduced the loss, but this led to slight overfitting

of the training data as seen in fig. 5.21, something not exhibited by the second

order methods. The TR Step method progressed well, almost to the level of the

first order methods and didn’t overfit, despite some instabilities. Figure 5.22

shows that the other TR methods were unable to reach more than 95% accuracy.

On a per iteration basis, fig. 5.20 the second order methods converged faster

initially but were quickly overtaken by the first order methods as they plateaued.

The TR step method however matched Adam per iteration, although it was not

as stable.

Optimizer Min TrL Min TL End TL Max TA Iters Time (s)
TR Step 0.023 0.051 0.058 0.98 1007 747
TR Dogleg 0.11 0.16 0.17 0.95 978 711
TR 2D Subspace 0.11 0.16 0.18 0.95 865 707
TR LC 2D Subspace 0.12 0.16 0.18 0.95 967 706
SGD 5.4× 10−5 0.042 0.064 0.99 20000 347
Adam 3.5× 10−7 0.031 0.064 0.99 20000 573

Table 5.9: Train Loss (TrL), Test Loss (TL) and Test Accuracy (TA) for L5M

50

Figure 5.19: L5M training loss by sweeps and time

Figure 5.20: L5M test loss by iteration, up to the minimum (left) and maximum
(right) number of iterations completed in 40000 sweeps

Figure 5.21: L5M test loss by sweeps and time

51

Optimizer Min TrL Min TL End TL Max TA Iters Time (s)
TR Step 1.53 1.57 1.99 0.46 2060 3425
TR Dogleg 1.42 1.47 1.48 0.48 2500 2354
TR 2D Subspace 1.37 1.42 1.42 0.50 1800 4527
TR LC 2D Subspace 1.41 1.45 1.45 0.49 2840 2786
SGD 2.7× 10−3 1.12 2.67 0.65 19698 2049
Adam 9.5× 10−6 1.17 6.32 0.61 19698 3887

Table 5.10: Train Loss (TrL), Test Loss (TL) and Test Accuracy (TA) for R18C

Figure 5.22: L5M test accuracy by sweeps and time

For the ResNet18 model, the results in table 5.10 show that the SGD optimizer

performed the best, closely followed by Adam. But in fig. 5.25 we see that the

first order methods strongly overfitted the training data, hence the low loss levels

seen in fig. 5.25 are not useful. The proposed methods performed similarly, with

TR 2D Subspace reaching slightly lower loss values than the others, however the

TR Dogleg and Lowcost 2D Subspace methods were nearly twice as fast (seen in

fig. 5.25 and fig. 5.26). The TR Step method meanwhile was not stable and did

not perform as well.

52

Figure 5.23: R18C training loss by sweeps and time

Figure 5.24: R18C test loss by epoch, up to the minimum (left) and maximum
(right) number of epochs completed in 40000 sweeps

Figure 5.25: R18C test loss by sweeps and time

53

Figure 5.26: R18C test accuracy by sweeps and time

54

Chapter 6

Conclusion

6.1 Summary

In this thesis we proposed three second order optimization methods for training

neural networks based on using the Inexact Newton Method with a Trust Region.

We have analysed the effects of several additions to this method which either

reduce the cost of the method, improve the convergence or automatically tune

the hyperparameters the method introduces. We then compared our methods

against two of the most commonly used first order methods on autoencoder and

image classifiers. The performance was in some cases better than SGD and in

some cases comparable to Adam despite no hyperparameter tuning being applied

to our methods. This demonstrates that our methods produce robust results in

a feasible time without the need for hyperparameter tuning. The three methods

themselves perform similarly in terms of convergence on a per iteration basis.

However we begin to see a difference in runtime as the number of model variables

increase, showing the benefit of the low-cost implementation. In almost all tests

they outperformed the basic TR Step method in both convergence and stability

55

and they demonstrated no overfitting.

6.2 Future Work

Whilst we tried to be as thorough as possible in this thesis, there were several

important topics that we felt were beyond the scope of this work. We would

like to expand the testing to other types of models such as larger convolutional

neural networks and recurrent neural networks. It would also be interesting to

compare our results to other second order methods. We would like to investigate

the effect of different preconditioners on the number of CG iterations and con-

vergence rate. Whilst we have performed some eigenvalue analysis to increase

our understanding of the loss function landscape, we believe a detailed study of

the form of the Hessian could further this and guide preconditioner design for

different models. We would also be interested in comparing other trust region

methods, in particular the Steighaug-Toint method, which solves the subproblem

iteratively in a comparable way to CG. We would like to also try implementing

our methods for sparse networks. Lastly, we would like to see the performance

difference between implementing them directly in CUDA as opposed to using the

higher level TensorFlow operations.

56

Appendix A

Abbreviations

AEC Autoencoder with CIFAR-10 dataset

AEM Autoencoder with MNIST dataset

CG Conjugate Gradient

vCPU Virtual Central Processing Unit

EW Eisenstat-Walker

GPU Graphical Processing Unit

L5M LeNet5 with MNIST dataset

LC Low-cost

R18C ResNet18 with CIFAR-10 dataset

RAM Random Access Memory

SGD Stochastic Gradient Descent

TR Trust Region

57

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press,

2016.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Representa-

tions by Back-Propagating Errors, p. 696–699. Cambridge, MA, USA: MIT

Press, 1988.

[3] Y. Nesterov, “A method for solving the convex programming problem with

convergence rate o(1
k2

),” 1983.

[4] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide the gradient by

a running average of its recent magnitude.” COURSERA: Neural Networks

for Machine Learning, 2012.

[5] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online

learning and stochastic optimization,” The Journal of Machine Learning,

vol. 12, pp. 2121–2159, 2011.

[6] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” In-

ternational Conference on Learning Representations, 12 2014.

[7] S. Becker and Y. Lecun, “Improving the convergence of back-propagation

learning with second-order methods,” 01 1989.

58

[8] B. Pearlmutter, “Fast exact multiplication by the hessian,” Neural Compu-

tation, vol. 6, 02 1994.

[9] J. Martens, “Deep learning via hessian-free optimization,” in Proceedings of

the 27th International Conference on International Conference on Machine

Learning, ICML’10, (Madison, WI, USA), p. 735–742, Omnipress, 2010.

[10] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-

scale machine learning,” ArXiv, vol. abs/1606.04838, 2018.

[11] T. O’Leary-Roseberry, N. Alger, and O. Ghattas, “Inexact newton methods

for stochastic nonconvex optimization with applications to neural network

training,” 2019.

[12] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney, “Second-order optimiza-

tion for non-convex machine learning: An empirical study,” 2017.

[13] R. Bollapragada, R. Byrd, and J. Nocedal, “Exact and inexact subsampled

newton methods for optimization,” 2016.

[14] F. Roosta-Khorasani and M. W. Mahoney, “Sub-sampled newton methods

i: Globally convergent algorithms,” 2016.

[15] F. Roosta-Khorasani and M. W. Mahoney, “Sub-sampled newton methods

ii: Local convergence rates,” 2016.

[16] P. Chen and C.-J. Hsieh, “A comparison of second-order methods for deep

convolutional neural networks,” 2018.

[17] J. Martens and R. Grosse, “Optimizing neural networks with kronecker-

factored approximate curvature,” 2015.

59

[18] K. Osawa, Y. Tsuji, Y. Ueno, A. Naruse, R. Yokota, and S. Matsuoka,

“Large-scale distributed second-order optimization using kronecker-factored

approximate curvature for deep convolutional neural networks,” 2018.

[19] R. Bollapragada, D. Mudigere, J. Nocedal, H.-J. Shi, and P. Tang, “A pro-

gressive batching l-bfgs method for machine learning,” 02 2018.

[20] N. S. Keskar and A. S. Berahas, “adaqn: An adaptive quasi-newton algo-

rithm for training rnns,” 2015.

[21] N. Agarwal, B. Bullins, and E. Hazan, “Second-order stochastic optimiza-

tion for machine learning in linear time,” J. Mach. Learn. Res., vol. 18,

p. 4148–4187, Jan. 2017.

[22] J. F. Henriques, S. Ehrhardt, S. Albanie, and A. Vedaldi, “Small steps and

giant leaps: Minimal newton solvers for deep learning,” 2018.

[23] N. Schraudolph, “Fast curvature matrix-vector products for second-order

gradient descent,” Neural computation, vol. 14, pp. 1723–38, 08 2002.

[24] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA:

Springer, second ed., 2006.

[25] S. C. Eisenstat and H. F. Walker, “Choosing the forcing terms in an inexact

newton method,” SIAM Journal on Scientific Computing, vol. 17, no. 1,

pp. 16–32, 1996.

[26] E. Mizutani and S. E. Dreyfus, “Second-order stagewise backpropagation

for hessian-matrix analyses and investigation of negative curvature,” Neural

Networks, vol. 21, no. 2-3, pp. 193–203, 2008.

60

[27] H. Robbins and S. Monro, “A Stochastic Approximation Method,” Annals

of Mathematical Statistics, vol. 22, pp. 400–407, Sep 1951.

[28] J. Duchi, “Lecture 09 - Chapter 8: Fisher Information.” Stanford: Lecture

Notes for Statistics 311 / Electrical Engineering 377, 2014.

[29] O. Chapelle and D. Erhan, “Improved preconditioner for hessian free opti-

mization,” in In NIPS Workshop on Deep Learning and Unsupervised Fea-

ture Learning, 2011.

[30] T. N. Sainath, L. Horesh, B. Kingsbury, A. Y. Aravkin, and B. Ramab-

hadran, “Accelerating hessian-free optimization for deep neural networks by

implicit preconditioning and sampling,” 2013.

[31] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods. Society

for Industrial and Applied Mathematics, 2000.

[32] R. P. Pawlowski, J. P. Simonis, H. F. Walker, and J. N. Shadid, “Inexact

newton dogleg methods,” SIAM Journal on Numerical Analysis, vol. 46,

no. 4, pp. 2112–2132, 2008.

[33] N. Mayorov, “2D Subspace Trust-Region Method,” 2015.

[34] J. W. Demmel, Applied Numerical Linear Algebra. Society for Industrial and

Applied Mathematics, 1997.

[35] X. He, D. Mudigere, M. Smelyanskiy, and M. Takác, “Large scale

distributed hessian-free optimization for deep neural network,” CoRR,

vol. abs/1606.00511, 2016.

61

[36] A. Olivares, J. Moguerza, and F. Prieto, “Nonconvex optimization using

negative curvature within a modified linesearch,” European Journal of Op-

erational Research, vol. 189, pp. 706–722, 09 2008.

[37] Y. N. Dauphin, R. Pascanu, Ç. Gülçehre, K. Cho, S. Ganguli, and Y. Bengio,

“Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization,” CoRR, vol. abs/1406.2572, 2014.

[38] P. Xu, F. Roosta, and M. W. Mahoney, “Newton-type methods for non-

convex optimization under inexact hessian information,” 2017.

[39] Z. Wang, Y. Zhou, Y. Liang, and G. Lan, “Cubic regularization with mo-

mentum for nonconvex optimization,” 2018.

[40] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”

ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol. 2,

2010.

[41] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech.

rep., 2009.

[42] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” 2015.

62

