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AN ABSTRACT OF THE THESIS OF 

 

Marc Chammas     for  Master of Science 

     Major: Biomedical Engineering 

 

Title: Unveiling the neural network underlying the generation of neural sequences in the 

HVC through computational modeling 

 

 

Birdsong offers a unique model system to understand how a developing brain – 

once given a set of purely acoustic targets – teaches itself the vocal-tract gestures necessary 

to imitate those sounds. Like human infants, juvenile male zebra finches (Taeniopygia 

guttata) passes through the stages of learning the vocal-motor gestures of adult sounds. 

 

The HVC nucleus (avian brain region, used as a proper name) is a cortical nucleus 

in the forebrain that is responsible for the songbird’s singing as well as the learning process 

of his song. The HVC consists of three neural populations: basal-ganglia-projecting 

(HVCX) neurons, forebrain-projecting (HVCRA) neurons and interneurons (HVCINT). Each 

neuron population has its own cellular, electrophysiological and functional properties. In 

particular, HVCRA neurons emit a single 6-10 ms burst of action potentials at the same exact 

time during each rendition of song, HVCX neurons fire 1 to 3 bursts that are also time 

locked to vocalizations, while HVCINT neurons fire and burst randomly with high firing 

frequency throughout song with no significant pattern. As a population, these three classes 

of HVC neurons form an explicit representation of time and are responsible for 

orchestrating song learning and production; yet little is known about their functional 

connectivity within nucleus HVC and how they work cooperatively to control learning and 

singing. 

 

Very few mathematical models have been developed to describe HVC’s neural 

activity, and all of the generated models were either non-biological plausible or replicating 

in vitro data collected from brain slices. We developed a conductance-based Hodgkin 

Huxley model for the three classes of HVC neurons and connected them in several 

networks via different architecture patterning scenarios with the aim to replicate the in vivo 

firing patterning behaviors. We are able throughout these networks to reproduce the in vivo 

behavior of these neurons as shown by the experimental recordings. The study of the 

synaptic architecture of the HVC nucleus has given us insights on the nature of the 

physiological changes taking place inside the bird’s brain during learning and vocalization 

providing a large step towards biologically plausible descriptions of the underlying in vivo 

neural networks.   
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CHAPTER 1 

INTRODUCTION 

 

Complex behaviors are made possible due to the ability of the brain to move 

through well-defined sequences of neural states. Brain processes capable of generating 

propagating sequential activity are thought to underlie motor sequencing (Shima et al., 

2007), navigation (Mehta et al., 2002; Harvey et al., 2009), movement planning 

(Pastalkova et al., 2008) and cognitive tasks (Georgopoulos et al., 1989). Various brain 

regions have been associated with the control of temporal and ordinal structure of 

movement sequences (Lamendella, 1977; Bolhuis et al., 2010; Highnam & Bleile, 2011; 

Price, 2012; Flinker et al., 2015; Javed & Lui, 2019; Javed & Wroten, 2019). However, the 

underlying biophysical mechanisms through which neural circuits generate these sequences 

are very poorly understood.  

Complex learned behaviors need prior planning of individual movement elements 

into a proper spatial and temporal ordered sequence. This premotor planning is necessary 

for events anticipation, movement selection and an exact actions order. For instance, speech 

is a result of complex neural network connectivity that requires various processes, starting 

from putting thoughts into words, then arranging words in a comprehensible structure, and 

finally coordinating the activity of the muscles responsible for the physical generation of 

speech which are normally uttered in a sequential manner that is governed by the laws of 

grammar and syntax.  
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Songbirds have emerged as an excellent model system for investigating the neural 

mechanisms of sequence generation because songbirds learn to sequence their song 

elements, analogous, in many ways, to how humans learn to produce spoken sequences 

with syntactic structure. Thus, determining how spoken language evolved is more likely to 

become clearer with concerted efforts in researching songbirds. Our overall aim is to 

understand the neural mechanisms of sequence generation through vocal production and 

learning by providing a quantitative description of the physiological variables that control 

vocal performance in a particular species of songbirds, the zebra finch (Fig. 1).  

 

 

Figure 1: An adult male zebra finch 

 

We will start by summarizing the anatomical and physiological identifications of 

speech and language acquisition in the mammalian brain and then continue to list the 

analogies between speech and birdsong and describe why birdsong is an attractive and 

important model to study not only language acquisition and production but also other 

backbone topics in neuroscience like learning, memory, neural sequence generation and 

many more along with their pathologies.  
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1.1.  Speech and language processing in the human brain 

Human speech is primarily controlled by the largest part of the brain known as 

the cerebrum (Fig. 2). In recent years, language processing in the brain has been at the core 

of attention of research studies (Lieberman, 2009; Highnam & Bleile, 2011; Price, 2012). 

As of today, it has been accepted that the control of speech is a result of complex network 

connectivity in the brain. Speech formation requires various processes, starting from 

putting thoughts into words, then arranging words in a comprehensible structure, and 

finally moving the tongue and the mouth along with respiratory control to generate correct 

sentences that abide by the laws of grammar and syntax.  

 

Figure 2: Schematic view of the left side of the human brain, showing regions that are 

involved in speech and language. Broca’s area is particularly involved in speech production, 

whereas Wernicke’s area is involved in speech perception and recognition. The two regions 

are connected by the arcuate fasciculus (Bolhuis et al., 2010). 

 

https://www.healthline.com/human-body-maps/cerebrum-right-and-left
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Several areas of the brain interact cooperatively to control speech: the cerebrum, 

Broca’s area, Wernicke’s area, the arcuate fasciculus, the cerebellum, the motor cortex and 

elements of limbic system such as the cingulate cortex, the basal ganglia and the thalamus 

(Fig. 2). The frontal and the temporal lobes of the cerebrum, are primarily involved in 

speech formation and comprehension. Broca’s area is located in the left frontal lobe of the 

brain and has an important role in turning thoughts into spoken words. This specialized area 

has been found to be most active right before we speak. Furthermore, Broca’s area helps in 

passing information to the motor cortex, which controls the movements of the lips and the 

tongue (Price, 2012; Flinker et al., 2015). Another essential area involved in speech control 

is the Wernicke’s area. This area is mainly involved in the understanding and processing of 

speech and written language. Wernicke’s area is located in the temporal lobe, just behind 

the ears (Price, 2012; Javed & Wroten, 2019). In fact, the temporal lobe is where sound is 

processed. Moreover, the arcuate fasciculus is a bundle of nerves connecting Wernicke’s 

area to Broca’s area that helps in forming words, speaking clearly and understanding 

concepts in language form. The cerebellum, located at the lower back of the brain, is 

involved in coordinating voluntary muscle movements like opening and closing the mouth, 

moving the limbs, and maintaining balance and a straight posture. The cerebrum controls 

language processing as well. To be able to speak clearly, we must move the muscles of the 

mouth, the tongue, and the throat adequately (Highnam & Bleile, 2011; Javed & Lui, 2019) 

which is made possible by the motor cortex. Located in the frontal lobe, the motor cortex 

receives input information from Broca’s area and orders the muscles of the face, the mouth, 

the tongue, the lips, and the throat to move harmoniously to produce speech (Price, 2012; 

Javed & Lui, 2019).  

https://www.ncbi.nlm.nih.gov/pubmed/25730850
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The limbic system plays a key role in the speech control circuitry. This system 

combines primitive emotions and higher mental functions such as learning and memories 

formation. In terms of speech and language, the thalamus, the basal ganglia and the 

cingulate gyrus plays the most significant roles. The thalamus consists of nuclei that relay 

sensory inputs (i.e. auditory inputs) to other cortical areas. It entails as well higher order 

nuclei that propagate information from one cortical area to another. The thalamus main 

functions are the control of cortices connectivity and the filtering and routing of exchanged 

information. In terms of speech and language, this primarily refers to an exchange of lexical 

and semantic information during language perception and production (Klostermann, 2013). 

The cingulate gyrus has connections with speech and vocalization areas in the frontal lobes 

including Broca's area, which controls motor functions involved with speech production. 

Finally, the basal ganglia is a group of nuclei in the frontal lobe known to organize motor 

behavior and control, but mounting evidence suggests that this structure is involved in more 

cognitive domains such as language processing (Booth et al., 2007), and complements the 

cortico-thalamic language processing mechanisms. Interestingly, the basal ganglia serves as 

a gating mechanism for physical movements, inhibiting potential movements until they are 

fully appropriate for the circumstances in which they are to be executed. This important 

structure plays a role in coordinating the release of the language plan, provided by the 

cortico-thalamic connectivity, into speech. In a nutshell, the basal ganglia plays a role in 

motor planning, working memory and words sequencing into comprehensible sentences. 

(Lamendella, 1977; Highnam & Bleile, 2011; Klostermann, 2013). 
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Moreover, lesions, traumas or infections occurring within the speech control loop 

are associated with several severe disabilities such as aphasias and apraxias. Aphasia is a 

condition associated with speaking or speech understanding problems, whereas apraxia is 

associated with troubles in putting together the correct muscle movements necessary to 

produce speech. Both abnormalities are mostly caused by a stroke or trauma to the brain. 

Symptoms of aphasia and apraxia depend on the damage location and its severity. When 

Broca’s area is affected, the patient might find difficulties producing the sounds or may 

speak slowly or slur his words (Trost & Canter, 1974; Fridriksson et al., 2015). The person 

can only produce short sentences limited to a maximum of four words. In this case, the 

patient suffers from Broca’s aphasia or non-fluent aphasia. These symptoms may also 

appear in case of stroke or injuries damaging the areas of the brain responsible for 

controlling movements of the muscles of the mouth or the tongue. Damage to Wernicke’s 

area may cause the patient to make up nonsense words or speak in meaningless long 

sentences. In this case, the patient suffers from Wernicke’s aphasia or fluent aphasia. If the 

arcuate fasciculus is damaged, the patient shows inability repeating words he just heard; 

this happens in the case of conduction aphasia. Global aphasia might happen in case of 

widespread damage to the brain’s language centers. People with this condition have 

difficulties expressing and understanding language (Trost & Canter, 1974; Obler et al., 

1978; Helasvuo et al., 2001; Fridriksson et al., 2015). In case of Alzheimer’s disease, one 

of the most prevalent neurodegenerative diseases, the patient experiences gradual loss of 

speech over time. This is called primary progressive aphasia (PPA). This type of aphasia is 

a possible symptom of Alzheimer’s disease while it can be an isolated disorder 

independently of Alzheimer’s disease. Some people with primary progressive aphasia have 

https://www.healthline.com/health/stroke
https://www.healthline.com/health/brocas-aphasia
https://www.healthline.com/health/wernickes-aphasia
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normal memories and are able to continue leisure activities or work. Primary progressive 

aphasia results from slow deterioration of areas of the brain used in speech in contrary to 

aphasia resulting from stroke or brain trauma which consequences appear right after the 

damage occurrence (Marczinski & Kertesz, 2006; Ahmed et al., 2012). Usually, in case of 

aphasia or apraxia, speech-language therapy is prescribed. Whereas restoring full speech 

abilities following brain damage seem to be impossible, improvements could take place 

(Bragoni et al., 2000; Stark & Warburton, 2018).  

Collectively, this shows that speech generation and learning in the brain is a very 

complex mechanism that involves the coordination and control of various brain regions that 

works cooperatively to generate the sequential propagation of syllables and sounds. 

Pathologies in any of the associated areas of speech cause devastating effects on humans. 

Despite its importance, we know very little of the neurobiological underpinnings that 

control its underlying processes. While studying the speech circuitry in humans is more 

efficient in investigating these kind of pathologies, researching songbirds, that show 

remarkable similarities to humans in vocal learning and production, is still the most ethical 

and efficient way to investigate this circuitry. 

 

1.2. The song learning process in songbirds 

Both songbirds and humans learn vocalization at early stages of life. Vocal learning 

takes place in similar critical periods with a greater ability to learn during earlier life stages. 

Learning abilities may be decreased by biological factors or by the learning process itself 
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(Doupe & Kuhl, 1999). Human speech and bird songs learning show a strong dependence 

on hearing. To be able to learn and sing their song normally, birds should be able to hear 

their tutors as well as their own vocalizations via auditory feedback (Doupe & Kuhl, 1999). 

Similarly in humans, infants need to hear their parents speaking to learn how to speak. 

Deafening in either species have devastating effects on vocal learning and production. Not 

to mention that a delay in the auditory feedback, both in humans and songbirds, deteriorates 

the structure of the learned song (in adults) and prohibits its correct learning (in babies). 

This underlines the presence of similarities in the auditory pathways between these two 

species while emphasizing the important role of auditory feedback in maintaining 

vocalization throughout life (Doupe & Kuhl, 1999). 

Neither songbirds nor babies appear to learn their communicative signals well 

except at specific periods in their lives. Human infants learn to produce vocalizations 

rapidly in a process that appears to be simple. A few months after birth, children begin to 

babble and at 3-4 years of age they can produce meaningful sentences with the correct 

syntax. This developmental path is exactly the same regardless of language type or culture. 

It had been a mystery for linguists, psychologists and neuroscientists to explain how 

children do this. Songbirds pass through developmental paths in song learning that are 

extremely similar to the paths that humans pass through during language acquisition 

(Thorpe, 1958). Vocal imitation starts from the babbling stage (in humans) or the sub-song 

stage (in songbirds) which then evolves to the complete complex communication system.  

The song learning process entails several stages. In order to learn to sing, juvenile 

songbirds need to listen to and memorize the song of their father or a neighboring adult 

male conspecific or even from taped renditions of song. This is called the sensory learning 
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phase. Songbirds then conduct solo rehearsals of their own song using auditory feedback to 

match it to the memorized template. This is referred to as the sensorimotor learning 

phase. In zebra finches, as in many other species of songbirds, song learning can be divided 

into three stages: sub-song, plastic song and crystallized song. At the beginning birds 

produce a sub-song (earliest stage of singing). With practice, the sub-song evolves to a 

more structured song called plastic song. In this stage, the acoustic elements start to 

resemble those in the tutor song, but are still produced in a sequence that is variable 

(Margoliash & Schmidt, 2010). Finally, the song becomes crystallized where the young 

bird begins to produce a normal adult song exhibiting striking resemblance to the tutor song 

(Fee & Scharff, 2010). The adult songbird song is constituted of a repeated sequence of 

sounds, called a motif. Each motif, lasting for about a second, is composed of shorter bursts 

of sound called syllables (Fee & Scharff, 2010). Song learning phases have a different 

timing among songbirds. Zebra finches and white-crowned sparrows learn only during their 

first year of age; these birds are classified as age-limited learners. On the other hand, the 

canary and the European starling birds are open-ended learners; their song can be 

developed beyond the first year generally in a seasonal manner (Brenowitz et al., 1997). 

 

1.3.  Avian song system anatomy 

Songbirds have specialized, spatially distributed, compact and discrete brain nuclei 

that are interconnected through a series of pathways known as the “song system”. Very few 

of the neural circuits that are known to control behavior are anatomically as distinct as the 

song system (Brainard & Doupe, 2000) (Fig. 3).  

 



21 

 

 

Figure 3: Sagittal perspective schematic of an adult male zebra finch brain shows the 

position of HVC in the dorsocaudal nidopallium. The vocal motor pathway (shown in blue) 

controls the vocal organ, or syrinx. Lesioning this pathway in adult or in juvenile males have 

devastating effects on song. The anterior forebrain pathway (shown in red) controls song 

learning. Lesions to nuclei within this loop affect song development but not the production 

of adult song. DLM, medial dorsolateral nucleus of the thalamus; LMAN, lateral portion of 

the magnocellular nucleus of the anterior neostriatum; nXIIts, the tracheosyringeal division 

of the twelfth nucleus; RA, robust nucleus of arcopallium (Daou et al., 2013). 

  

Two major pathways are involved in song learning and song production: the 

descending vocal motor pathway (VMP) and the anterior forebrain pathway (AFP). The 

vocal motor pathway participates in song learning and controls song production. It includes 

the HVC nucleus, the robust nucleus of the arcopallium (RA) and the brain stem motor 

nucleus (Kozhevnikov & Fee, 2007). This pathway consists of projections from the 

thalamic nucleus and the neostriatal nucleus to the HVC. The HVC projects to the robust 

nucleus of the archistriatum (RA) providing it with premotor input. The RA at its turn 

projects to both the dorsomedial part of the intercollicular nucleus in the midbrain and to 

the tracheosyringeal part of the hypoglossal motor nucleus in the brain stem (nXIIts) that 
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innervates the bird’s syrinx. The nXIIts nerve controls the muscles responsible for 

generating the vocal output. HVCRA and RA neurons activity are in synchrony with song 

production in the syrinx. The RA projects to nuclei retroambigualis (RAm) and 

paraambigualis (PAm) that control the processes of respiration during singing. The AFP is 

a cortical basal ganglia loop; it includes a basal ganglia analogue known as the area X and 

the dorsolateral thalamic nucleus (DLM). The AFP plays a crucial role in song learning and 

recognition. The HVC projects to area X (basal ganglia) then to the medial nucleus of the 

DLM in the thalamus. Area X is responsible for song learning, recognition of the bird’s 

own song (BOS), and for the song syllable sequencing. Nucleus DLM in its turn projects to 

the magnocellular nucleus of the anterior neostriatum (LMAN). Then, LMAN nucleus 

projects to area X and to the RA nucleus providing it with auditory input. Nucleus LMAN 

is considered as the output nucleus of the AFP. Projection neurons from LMAN to the RA 

nucleus gives the RA nucleus its essential role in maintaining the song structure and 

correcting potential errors through auditory feedback. Thus, the RA nucleus receives 

glutamatergic synaptic projections from both the HVC and LMAN nuclei.  Finally, the 

HVC nucleus receives afferents from the uvaeform (Uva) nucleus located in the thalamus 

(Brenowitz et al., 1997; Fee & Scharff, 2010). 

 

1.4. Vocal production analogy: humans and songbirds 

Regions of the songbird brain involved in vocal production and auditory perception 

are analogous, in many ways, to the human brain regions involved in producing and 

learning speech. The caudomedial nidopallium (NCM) of songbirds is thought to be the 

avian equivalent of the human auditory association cortex in the temporal lobe, including 
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Wernicke’s area (Bolhuis et al., 2010). In addition to its role in auditory perception, the 

NCM is involved as well in auditory memory (Chew et al., 1996). Nucleus HVC plays an 

important role in song production and sensorimotor learning (Hahnloser et al., 2003; Day et 

al., 2009), and it is thought to be the functional analogous to Broca’s area located in the 

human frontal lobe (Doupe & Kuhl, 1999; Bolhuis & Gahr, 2006). Similarly vocal 

production and auditory recognition are controlled by different regions in the songbird 

brain (Gobes & Bolhuis, 2007). Moreover, nuclei NCM and HVC, in zebra finches, has 

been found to be subject to left brain lateralization similarly to human brain regions 

associated with speech and language (Moorman et al., 2012). 

Similarities are observed in behavioral deficits following lesions to brain areas 

involved in vocal learning in songbirds and humans. Left hemispheric lesions of nuclei 

HVC and RA in canaries cause similar deficits to those found after damage to human’s left 

motor cortex; these lesions induce muteness for learned vocalizations or speech (Jürgens, 

1995). Nucleus RA which is involved in learning, vocal motor control and song production 

in songbirds is the analogue of the motor and cingulate cortices in humans. Lesions to avian 

nXIIts and DM, just like lesions to the mammalian PAG, induce muteness in songbirds and 

humans respectively (Esposito et al., 1999). Furthermore, lesions to songbird LMAN cause 

similar disabilities to those found after damage to anterior regions of the human premotor 

cortex, such as disruption of imitation or sequencing problems. Lesions to the songbird’s 

LMAN nucleus just as lesions to the human insula and Broca’s area induce poor imitation 

and syntax production difficulties. Similarly lesions to area X in songbirds just as lesions to 

the human anterior striatum result in disruption of vocal learning, poor imitation of sound 

(Kobayashi et al., 2001), and syllable abnormalities(Lieberman, 2009). Moreover, area X in 
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songbirds is comprised of two pallidal like cell types: the thalamus projecting neurons 

innervated by the striatal like neurons (analog to the direct (GPi) pathway neurons of the 

mammalian basal ganglia) and locally projecting pallidal neurons (analog to the classical 

indirect (GPe) neurons). Based on observations, the singing-related firing patterns of these 

two cell classes are similar to those of neurons observed in the internal and external pallidal 

segments (GPi and GPe) in humans (Goldberg & Fee, 2010). Finally, similar to previous 

reports on the songbird’s DLM nucleus (Halsema & Bottjer, 1991), damage to anterior 

parts of the human thalamus can lead to verbal aphasias (Graff-Radford et al., 1985). 

Therefore, diseases of the cortical circuitry that underlie vocal learning and production have 

devastating motor and cognitive consequences, highlighting the importance of 

understanding the biophysical and circuit mechanisms that underlie the learning and 

generation of complex behaviors. 
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CHAPTER 2 

  LITERATURE REVIEW 

 

Nucleus HVC plays a key role in the song system. It constitutes an essential pillar of 

the premotor pathway necessary for song production. Neurons in the HVC serve the role of 

the conductor of the song, having a pattern-generating role coding for syllable order and 

controlling the overall temporal structure of birdsong. The HVC serves as a primary source 

of input to the anterior forebrain pathway (AFP) essential in vocal learning. Due to its 

essential role, the HVC is one of the most studied structure in the song control system.  

Previous studies have suggested that the syllable order and tempo of the song are generated 

by HVC (Vu et al., 1994), and that an HVC neural code for syllables is transformed into a 

code for shorter acoustic elements through the projection of HVC onto RA (Albert & 

Margoliash, 1996; Troyer & Doupe, 2000).  

A very helpful way to decipher the HVC code and understand the neural mechanisms 

behind birds singing is to understand how HVC neurons respond in vivo during singing as 

well as in vitro when the neurons are stimulated with a patch pipette. We will be 

summarizing next the characteristic patterns of the three classes of HVC neurons. 

 

2.1.  Electrophysiological properties of HVC neurons in vitro 

There are three different neuronal populations in HVC: neurons that project to area 

X (HVCX) innervating a basal ganglia pathway necessary for vocal plasticity, neurons that 
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project to the RA (HVCRA) innervating song premotor areas and interneurons (HVCINT). 

Numerous in vivo and in vitro intracellular recording studies of HVC neurons have been 

carried out (Katz & Gurney, 1981; Kubota & Saito, 1991; Lewicki & Konishi, 1995; 

Lewicki, 1996; Dutar et al., 1998; Kubota & Taniguchi, 1998; Schmidt & Perkel, 1998; 

Mooney, 2000; Mooney et al., 2001; Mooney & Prather, 2005; Solis & Perkel, 2005; Wild 

et al., 2005; Long et al., 2010; Shea et al., 2010; Daou et al., 2013; Daou & Margoliash, 

2020) . These studies shed light on several neuronal and circuit mechanisms and unveiled a 

variety of physiological properties within the HVC. For example, the brain slice studies 

demonstrated that HVCRA, HVCX, and HVCINT neurons have distinct, categorical 

electrophysiological phenotypes (Kubota & Saito, 1991; Dutar et al., 1998; Kubota & 

Taniguchi, 1998; Mooney, 2000; Mooney et al., 2001; Mooney & Prather, 2005; Wild et 

al., 2005; Shea et al., 2010). The studies published this far have characterized HVC 

neurons according to their responses to depolarizing and hyperpolarizing current injections.  

HVCRA, HVCX and HVCINT neurons show different firing properties in vitro. In a 

nutshell, HVCX neurons show a regular firing pattern with spike-frequency adaptation in 

response to depolarizing stimuli (Fig. 4A); when the neuron is depolarized with a relatively 

weak pulse, it starts firing at high frequency then promptly switches to a lower frequency 

that gradually decreases over time. This frequency adaptation had been shown 

pharmacologically that is due to ISK and IKNa (Daou et al., 2013). In response to 

hyperpolarizing current pulses, HVCX neurons show a fast and time-dependent inward 

rectification where a moderate sag appears in response to negative pulses (Fig. 4B). The sag 

is mainly due to the hyperpolarization activated inward current (Ih) while the rebound firing 
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is mainly due to the cooperation between ICaTand Ih(Daou et al., 2013). Furthermore, 

HVCX neurons are silent in the absence of synaptic currents.  

HVCRA neurons on the other hand are known for their relative lack of excitability in 

response to depolarizing current pulses (Daou et al., 2013). Despite the increased 

magnitude of the depolarizing current pulses, the neuron usually fires one to several action 

potentials in response to the depolarizing pulse; this firing is usually accompanied by a long 

delay that’s shown to be orchestrated by the A-type K+ current (IA) (Fig. 4C, (Daou et al., 

2013)). Also, HVCRA generally have a much more negative hyperpolarized resting 

membrane potential compared to HVCX neurons and interneurons (Fig. 4). Another key 

property of HVCRA neurons is the absence of the sag and the rebound firing in response to 

hyperpolarizing current pulses (Fig. 4D). IA had been shown to be the main player in 

damping the excitability of the HVCRA neuron with the cooperation of ISK and IKNa (Daou 

et al., 2013). The after-hyperpolarization current (ISK) also contributes to maintaining the 

extremely negative resting membrane potential of these neurons. Some also suggested the 

presence of two physiologically distinct classes of HVCRA neurons that could fire phasically 

or tonically in response to a depolarizing current (Shea et al., 2010). 
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Figure 4: Firing properties of HVC neurons. A: A sample HVCX neuron recorded in vitro 

exhibiting spike frequency adaptation in response to a depolarizing current pulse (150 pA). 

B: The same neuron exhibits a weak sag followed by post-inhibitory rebound firing in 

response to a hyperpolarizing current pulse (-200 pA). C: An HVCRA neuron fires a single 

action potential, often with a long delay, in response to a relatively large depolarizing pulse 

(175 pA). D: The same HVCRA neuron exhibits no sag in response to hyperpolarizing current 

pulses (-160 to -20 pA, in steps of 20 pA). E: An HVC interneuron fires tonically at high 

frequencies in response to a depolarizing current pulse (75 pA). F: The same HVC 

interneuron exhibiting a prominent sag followed by post-inhibitory rebound firing in 

response to a hyperpolarizing current pulse (-120 pA). Figures adopted from (Daou et al., 

2013).  
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Finally, HVC interneurons are characterized by a high firing frequency in response 

to depolarizing currents (Fig. 4E). Interneurons exhibit tonic firing at a high frequency with 

almost no spike frequency adaptation (Daou et al., 2013). Moreover they display a very 

prominent sag much greater than that of HVCX neurons with a post-inhibitory rebound 

firing in response to hyperpolarizing current pulses (Fig. 4F). In general, HVCINT neurons 

exhibit a resting membrane potential around -60mV while this potential falls around -72mV 

for HVCX neurons and reaches its lowest value of -85mV for HVCRA neurons.  

Beside the classification of HVC neurons based on their ionic channels, HVC 

neurons have been stratified into four classes (I, IIa, IIb, III and IV) based on their different 

electrophysiological and morphological properties (Dutar et al., 1998; Kubota & Taniguchi, 

1998). Type I neurons were found to have large somata accompanied by spiny thick 

dendrites; most of them project to Area X. Type II neurons have been divided into two 

subclasses: neurons IIa have small somata and thin dendrites, while neurons IIb are 

characterized by their relatively large somata and thick dendrites. Type IIa neurons show 

similar electrical properties to HVCRA neurons. Furthermore, type III neurons have beaded 

dendrite sand exhibit tonic firing with almost no adaptation, reminiscent of HVC 

interneurons. Finally, type IV neurons exhibit very small somata, as well as thin, short and 

spiny dendrites. Some of these neurons project to RA (Kubota & Taniguchi, 1998).  

Various excitatory and inhibitory signals give rise to characteristic firing patterns in 

these neurons. Multiple lines of evidence indicates the presence of various classes of 

interneurons (Wild et al., 2005), with interneurons showing distinct expressions of calcium 

binding-proteins (parvalbumin, caldinbin, calretinin). While we know that there are 

multiple classes of interneurons based on the staining protocols (Wild et al., 2005), it 
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remains an open question to know to what extent there exists in reality three different 

classes of HVC interneurons that exhibit different electrophysiological properties as in 

other rat models (Gulyás et al., 1996; Gritti et al., 2003).  

In their recently published paper, Daou and Margoliash (2020) showed that HVCX 

neurons exhibit brief intense bursts of spikes during singing (Daou & Margoliash, 2020). 

Interestingly, HVCX neurons spiking pattern for a specific bird showed similar onsets, spike 

waveforms, timing of spikes, and number of spikes in response to depolarizing currents, 

with these properties being different across different birds. This suggests that each bird has 

uniform HVCX neuronal intrinsic properties with these features varying from a bird to 

another. Daou and Margoliash found direct correlation between the intrinsic ion currents 

properties of HVCX neurons and the acoustic features that the birds’ songs, relating for the 

first time the molecular properties of ion channels to behavioral measures. While it is 

known that adult zebra finches sensitivity to auditory feedback decreases with age, this 

decrease in sensitivity participates in the loss of intrinsic plasticity in adult songbirds. 

Within each adult zebra finch, HVCX neurons show intrinsic cellular properties changes 

when the auditory feedback was altered (Daou & Margoliash, 2020). This underlines the 

role of HVCX neurons in learning and memorization of the song (Daou & Margoliash, 

2020).  

 

2.2. Synaptic interactions within HVC 

One of the touchstone questions that neuroscientists and neurophysiologists 

studying songbirds are still grappling with are: how are the three classes of neurons in the 

HVC encode song sequence and phonology and what is the neural basis that’s responsible 
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for orchestrating song and the timing of its syllables? Unveiling what is happening during 

singing at the level of each population is key for the comprehension of the network 

operation of this nucleus and for understanding how vocal communication is learned and 

produced. The correlation among the different HVC neurons population affects the global 

electrical output of the network; differential activities in neurons could result in firing of 

action potentials or lack of activity depending on the order of firing of neurons and their 

connectivity. Therefore, understanding the synaptic connectivity among the three different 

classes is essential to dissect the network and then build it in biologically plausible ways. 

Previous studies have shown that both HVCRA and HVCX projecting neurons generate 

excitatory inputs to HVCINT neurons that are mediated by NMDA and AMPA currents 

(Mooney & Prather, 2005). In their turn HVCINT neurons inhibit both HVCRA and HVCX 

via GABAA and GABAB synaptic currents (Fig. 5).  

 

                    

Figure 5: Cartoon diagram showing the synaptic connectivity across the three classes of 

HVC neurons based on the results of Mooney and Prather (2005) and Kosche et al. (2005).  

Purple arrows represent excitation via AMPA and NMDA currents. Blue arrows represent 

inhibition via GABA currents.(Mooney & Prather, 2005). Few monosynaptic connections 

had been reported between HVCRA and HVCX (dashed arrow). 
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Mooney and Prather (2005) found only very few monosynaptic connections 

between HVCRA and HVCX, while mostly it’s a di-synaptic inhibition from HVCRA neurons 

to HVCX neurons via HVCINT neurons; in fact bidirectional synaptic interactions exist 

between these two categories of HVC neurons in specific reciprocal inhibitory interactions. 

The patterning activity in HVC is shaped by both inhibitory and excitatory synaptic inputs 

and the interplay between excitation and inhibition is what enables HVCRA, HVCX and 

HVCINT neurons to generate their characteristic bursts during singing. Most importantly, 

inhibitory interneurons is shown to play a major role in song production and are necessary 

for generating a physiological firing behavior in HVC neurons where absence of this 

GABA inhibition induces degradation in singing behavior (Kosche et al., 2015). While we 

know how these three classes of neurons are connected pharmacologically, it remains a 

blackbox to understand how the neural network within HVC is built to generate the in vivo 

behavior that will be discussed in the very next section. 

 

2.3. HVC neurons activity in vivo 

In addition to the work done in slice to unveil the pharmacology of the synaptic 

interactions, a ground breaking result came from the first experiment that was able to 

record from HVC neurons during singing (Hahnloser et al., 2003). In this study, they 

showed that HVCRA neurons burst exactly once and at the same exact time during each 

rendition of the song, HVCX neurons generate 1 to 3 bursts per song, and HVCINT burst 

densely during singing at a very high frequency (Fig. 6). Similar to HVCRA neurons, 

evidence showed that HVCX neurons display phase-locked patterns during singing 

(Fujimoto et al., 2011) although they do not exhibit the same level of stereotypy as HVCRA 
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neurons. This is the most temporally precise neural sequence known in nature to date 

(Kozhevnikov & Fee, 2007). This finding questions the reason behind this behavior: what 

is driving HVCRA and HVCX neurons to fire with this specific and characteristic patterns 

that are extremely precise temporally? (Hahnloser et al., 2003). To answer this question we 

have to understand how the three classes of HVC neurons are connected to generate this 

behavior. 

 

               

 

Figure 6: Spike raster plot of ten HVCRA neurons and two HVC interneurons recorded in one 

bird during singing (left) and call vocalizations (right). Each row of tick marks shows spikes 

generated during one rendition of the song or call; roughly ten renditions are shown for each 

neuron. Neural activity is aligned by the acoustic onset of the nearest syllable. HVCRA 

neurons burst reliably at a single precise time in the song or call; however, HVC interneurons 

spike or burst densely throughout the vocalizations (Hahnloser et al., 2003). 
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The extremely sparse and precise patterns of activity in HVCRA neurons could 

suggest the entire ensemble of HVCRA neurons is functioning to specify the timing of 

syllables, notes, and even the intervening silent “gaps” between syllables. Indeed, some 

HVCRA neurons burst during these silences, consistent with this idea (Fig. 6). If the output 

of the HVCRA ensemble provides a timing signal for song, what and where is the 

mechanism that determines and sets the song tempo? Based on the observations that RA-

projecting HVC neurons generate a single burst of spikes during the song motif and that 

different neurons appear to burst at many different times in the motif, it has been 

hypothesized that these neurons generate a continuous sequence of activity over time (Fee 

et al., 2004; Kozhevnikov & Fee, 2007; Long et al., 2010).  In fact, the axons of HVCRA 

neurons extend local collaterals before exiting HVC, forming excitatory synapses with 

other HVCRA cells, as well as interneurons and HVCX cells, providing a potential substrate 

for a synfire chain (Mooney, 2000; Mooney & Prather, 2005; Mooney, 2009a). In this case, 

song timing is orchestrated by the propagation of activity through the network like a chain 

of falling dominoes (Long et al., 2010).   

The HVC nucleus requires a relatively long integration time to process auditory 

feedback of the bird’s own vocalizations. Processing auditory information is affected by 

slow inhibitory mechanisms. In fact, slow hyperpolarizing events have been shown to 

participate in the necessary inhibition of HVC neurons such as long lasting IPSPs (i.e. 

GABA mediated) and slow after hyperpolarization requiring action potentials (calcium 

independent). These events could shape auditory feedback during song learning (Schmidt & 

Perkel, 1998). In short, despite the key role that HVC plays in the song system, precisely 

how the neurons in HVC are orchestrating the song sequence and phonology is very poorly 
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understood. On one level, the “internal anatomy” of HVC neurons and their biophysical 

properties remained largely undetermined until recently (Daou et al., 2013; Daou & 

Margoliash, 2020). Without a detailed explanation of the components of the ionic and 

synaptic currents of HVC neurons and their exact contributions on spike generation, the 

aim to decode the song is extremely challenging and the story remains incomplete.  

 

2.4. Mathematical modeling of HVC neurons 

Each HVC neuronal population has different functional properties and ion channels 

composition responsible for various responses to depolarizing and hyperpolarizing stimuli. 

Ionic channels for each neuron type were previously identified using chemical blockers 

(Daou et al., 2013). In their work, Daou et al (2013) also developed a biophysically realistic 

model that was tuned to fit the biological data they generated in vitro, incorporating the 

ionic currents that were identified pharmacologically. The Daou et al 2013 model 

incorporated the potassium (IK) and sodium (INa) currents as spike generating currents, a 

high threshold L-type calcium current (ICaL), a low threshold T-type calcium current (ICaT), 

a small conductance calcium activated potassium current (ISK), a persistent sodium current 

(INap), a sodium dependent potassium current (IKNa), an A type potassium current (IA), a 

hyperpolarization current (Ih) and a leak current (IL). These currents were shown to be the 

main players in orchestrating the HVC neuronal firing patterns (Daou et al., 2013). 

The membrane potential of every HVC neuron obeys the following equation: 

Cm 
dV

dt
=−IL − IK − INa − ICaL − ICaT − IA − ISK − IKNa − Ih − INap + Iapp 

where Cmis the membrane capacitance and Iappthe magnitude of the applied current.  
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While all model neurons share the same ionic currents, there are some differences 

however in the ionic currents’ magnitudes across the three classes of HVC neurons. For 

example, HVC interneurons that lack the adaptation feature have a very small ISK and IKNa 

currents, while in return they exhibit a much stronger IK and Ih currents than the other two 

classes of projecting neurons. RA-projecting neurons seem to be the only class of neurons 

that exhibit a strong A-type K+ conductance due to the delay to first spike feature that they 

exhibit solely. Moreover, X-projecting and interneurons are the only neurons that exhibit Ih 

and ICaT currents because they are the only neurons that exhibit a sag and rebound firing in 

response to negative current pulses. The model responses and fits are shown in Fig. 7. 
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Figure 7: Mathematical model simulations of HVC neurons. A: HVCX model neuron 

parameters were calibrated to match the voltage traces of a depolarizing pulse of 100 pA. B: 

Model HVCX neuron exhibiting a weak sag in response to negative current pulses (compare 

Fig. 7A-B to Fig. 7A-B). C: HVCRA model neuron parameters were calibrated to match the 

experimental recording (Iapp = 150 pA). The long delay to spiking is due to the A-type K 

current (IA). D: For the same parameter values used in C, the HVCRA model neuron has no 

sag but exhibits inward rectification in the spacing between voltage traces (compare Fig. 

7C-D to Fig. 7C-D). E: HVCINT model neuron exhibiting high firing frequency with no 

adaptation in response to 75 pA current pulse. F: The same model HVCINT neuron exhibiting 

prominent sag and strong rebound burst in response to negative current pulses (compare 

Fig. 7E-F to Fig. 7E-F). 
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Other models of how neurons, in the HVC nucleus, might be organized and 

interconnected have been proposed (Troyer & Doupe, 2000; Drew & Abbott, 2003; 

Abarbanel et al., 2004a; Abarbanel et al., 2004b; Mooney & Prather, 2005; Li & Greenside, 

2006; Jin et al., 2007; Katahira et al., 2007; Gibb et al., 2009a; b; Jin, 2009; Long et al., 

2010; Cannon et al., 2015). These models were designed in the aim to reproduce the 

observed sparse bursting of HVCRA neurons (Hahnloser et al., 2003). Some models invoked 

a feed-forward chain of excitation (Li & Greenside, 2006; Gibb et al., 2009b; Long et al., 

2010; Cannon et al., 2015). Gibb et al. 2009 was the first to develop a computational model 

of birdsong sequencing. Their model, though non-biologically realistic, hypothesized for 

the first time that different networks in HVC control different syllables production, that 

HVCINT provide mutual inhibition between networks controlling syllables, and that these 

syllable networks are sequentially excited by neural feedback via the brain stem or a similar 

feedback pathway (Gibb et al., 2009a). In a subsequent work, they showed that the sparse 

bursting seen in projecting neurons is generated in bistable groups of recurrently connected 

HVCRA neurons with the inhibitory interneurons terminating bursts in the HVCRA groups 

(Gibb et al., 2009a). In a nutshell, their model is based on the observation made by 

Hahnloser et al. 2002 that HVCRA neurons exhibit sparse bursting and that these neurons 

form a chainlike organization in which neurons burst in sequence at every moment of the 

song (Hahnloser et al., 2003; Gibb et al., 2009a).  

Armstrong and Abarbanel (Armstrong & Abarbanel, 2016; Armstrong, 2018) 

proposed an alternative to the HVC chain model. Their model was based on the biophysical 

process of mutual inhibition between interneurons. The HVC was modeled as several 

functional HVC units (FHU). In each FHU, three HVCINT neurons were connected all-to-
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all, and each interneuron synaptically inhibits two of three HVCRA. An HVC unit is capable 

of displaying multiple modes of activity, depending on the connection strengths among the 

HVCINT neurons. Plus, each syllable-gap pair was assigned a distinct FHU. Based on the 

identity of the neurons that are firing at a specific time, they suggested that a different set of 

RA neurons will be recruited; the group of RA neurons selected will then dictate the 

behavior of the brainstem regions controlling the driving forces of the song. Finally, the 

HVC FHUs activity is controlled by a recurrent feedback from the brainstem. Despite the 

fact that this model was able to replicate the sequential propagation within HVCRA neurons, 

their model disregarded principal ionic currents that were found to participate in HVC 

neurons activity. Not to mention that for the sake of simplicity, brainstem regions cross-

connectivity was omitted from this model adding a non-realistic assumption to their model 

(Armstrong & Abarbanel, 2016; Armstrong, 2018). 
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2.5. Aim of the study 

Despite the instructive nature of all the previously developed computational models, 

all of these models have failed to capture the intricate details of spike morphology, failed to 

incorporate the right ionic currents that exist biologically, or failed to generate the same 

patterns seen in vivo.  The aim of this study is to develop a computational neural network 

model of HVCRA, HVCX and HVC interneurons that could replicate the in vivo behavior of 

these neurons during bird singing while incorporating all ionic and synaptic currents that 

we know exist for the classes of HVC neurons and their network (Daou et al., 2013; Daou 

& Margoliash, 2020).  

In order to achieve this goal, we decided to do the following: 1) replicate the 

experimental results of the in vitro firing patterns of each HVC neurons population 

separately (Daou et al., 2013; Daou & Margoliash, 2020), then 2) replicate the 

experimental results of the in vitro study that unveiled the pharmacological nature of the 

synaptic connectivity across the three classes of HVC neurons (Mooney & Prather, 2005) 

and which explored the synaptic basis of the HVC microcircuit, and finally, 3) to design 

plausible neural networks incorporating all classes of HVC neurons that are able to 

replicate the in vivo firing patterns of HVC neurons during singing (Hahnloser et al., 2003; 

Fujimoto et al., 2011). 

In order to build the desired networks, we decided to create different scenarios of 

network architectures that could possibly generate the in vivo responses during singing. Our 

goal is not to isolate the best network architecture, but to explore different possible realistic 

scenarios in which the different types of HVC neurons can interact to produce the 

stereotyped HVCRA and HVCX sequences. 



41 

 

CHAPTER 3 

MATERIALS & METHODS 

 

Based on previous studies in neural computational modeling (Daou et al., 2013), a 

multiple compartment conductance based biophysical model of HVC neurons has been 

developed. Model simulations were performed using Matlab (Math-Works). For modeling 

HVC neurons, we used Hodgkin-Huxley models with additional synaptic currents added to 

reproduce biological features of the voltage traces observed in vivo. Every model neuron is 

represented by ten ordinary differential equations for the different state variables. The 

activation/inactivation functions and time constants were based on previous mathematical 

neural models (Hodgkin & Huxley, 1952; DestexheCA & Babloyantz, 1993; Terman et al., 

2002; Wang et al., 2003; Dunmyre et al., 2011; Daou et al., 2013). Synaptic currents are 

very essential in multi-compartment modeling to ensure interconnectivity between different 

neurons types. The synaptic currents and corresponding neurotransmitters are based on 

Mooney et al 2005 study in which they examined the interaction between HVCRA, HVCX 

and HVCINT neurons. The majority of our fitting parameters were maximum conductance 

and synaptic strengths which usually vary across neurons classes.  

The membrane potential of each HVC neuron obeys the following equation:   

Cm  
dV

dt
=  −IL − IK − INa − ICaL − ICaT − IA − ISK − IKNa − Ih − INap + Iapp 

where Cm is the membrane capacitance and Iapp the magnitude of the applied current.  The 

included ionic currents were pharmacologically identified by Daou et al. 2013 .While all 
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model neurons share the same ionic currents, the ionic currents’ magnitudes vary across the 

classes of HVC neurons. The voltage dependent ionic currents’ equations are modeled as 

follows:  

IK =  gK n
4 (V − VK)  

INa = gNam∞
3 (V)h(V − VNa)  

INap =  gNapmp∞(V)hp(V − VNa) 

IA =  gAa∞(V)e(V − VK) 

ICaL =  gCaLVs∞
2 (V)(

Caex

1 − e
2FV
RT

) 

ICaT =  gCaTV[aT]∞
3 (V)[bT]∞

3 (rT
A)(

Caex

1 − e
2FV
RT

) 

ISK =  gSKk∞([Ca2+]i)(V − VK) 

IKNa =  gKNaw∞([Na+]i)(V − VK) 

Ih = gh[krrf + (1 − kr)rs](V − Vh) 

IL = gL(V − VL) 

where n, m, h, e, hp, aT∞, bT∞, k∞, m∞, mp∞, a∞ and s∞ are the gating variables.  

While for the synaptic currents, the model equations are the following: 

IAMPA =  gAMPA̅̅ ̅̅ ̅̅ ̅̅ s(V − VAMPA) 

INMDA =  gNMDA̅̅ ̅̅ ̅̅ ̅̅ ̅s B(V)(V − VNMDA) 

IGABA−A = gGABA−A̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅s(V − VGABA−A)  

where s satisfies [T]pre =
Tmax

1+exp (−
(Vpre−VT)

Kp
)
 and 

ds

dt
= ar[T](1 − s) − ads 

and B(V) =  
1

1+
exp−0.062V[Mg2+]

3.57

  represents the magnesium block. 
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Parameter Value Parameter Value 

VK -90 mV  V 0 mV 

VCa 80 mV ar 1.1 mM-1.ms-1 

VNa 70 mV ad 0.19 ms-1 

Vh -30 mV  V -80 mV 

VL -70 mV ar 5 mM-1.ms-1 

Caex 2.5 mM ad 0.18 ms-1 

F

RT
 

26.7 mV-1  

    HVCRA 

kr 0.95 

Tmax 1 mM C 20 pF 

VT 2 mV  

HVCX 

kr 0.3 

Kp 15 mV C 100 pF 

   

HVCINT 

kr 0.01 

C 75 pF 

Table 1: Constant model parameters.  

 

We present four network architectures with the aim to replicate in vivo firing 

patterns of HVC neurons. AMPA and GABAA synaptic currents where used to connect 

neurons inside each architecture based on the pharmacological dual synaptic connections as 

described by Mooney & Prather (Mooney & Prather, 2005). The synaptic conductances 

values ranges are summarized in Table 2. 
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Synaptic conductance Values range (nS) 

gAMPA HVCRA to HVCRA 10 – 40 

HVCRA to HVCINT 80 – 300 

HVCX  to HVCRA    30 

gGABA-A HVCINT to HVCX 50 – 1500 

HVCINTA to HVCINTB 200 

HVCINTB to HVCRA 200 

Table 2: Dual synaptic conductances values.  

 

In the fourth network architecture (Fig. 21), a random assignment of HVCRA 

neurons was established as follows: a gap of 10 HVCRA neurons was sufficient to generate 

non overlapping bursts in a chosen interneuron. This assignment was based on the 

observation that HVCRA neurons propagate bursting activity very fast. This induces bursts 

overlapping in HVC interneurons which destroys their bursting pattern, for example, in 

case the interneuron receives two excitatory inputs within few milliseconds. Furthermore, if 

an HVCX neuron is inhibited from several consecutive HVCINT bursts that are very close in 

time, this ruins the HVCX bursts’ shape or delays its rebound bursting. Thus, we ensured 

that the random assignment of HCVRA neurons to each HVCINT will be able to generate 

realistic bursts that are fairly spaced in time, in both HVC interneurons and HVCX neurons. 

For instance, HVCINT
1  could be assigned randomly HVCRA

1 , HVCRA
11 , HVCRA

21 , HVCRA
31 , 

HVCRA
41 , HVCRA

51 , similarly for HVCINT
2  being assigned randomly another set of HVCRA 
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neurons distant of 10 neurons and so on. Thus, each HVCINT neuron receives between 3 to 

6 excitatory AMPA synapses from the group of HVCRA neurons that was assigned to it.  

To address the sparse firing of interneurons, making their activity more biologically 

realistic, we injected in the model neurons a stochastic input current. The stochastic input 

current was added in the differential equation dictating the membrane potential of the 

model neuron. The constant DC applied current Iapp was replaced by a random number that 

can take any integer value up to 150 pA. In other words, at each instant in time in the 

simulation, a random number for the applied current was applied to the model neuron. 

Injecting the stochastic input inside the differential equation implies that the value of the 

applied current varies at a millisecond timescale. For instance, for a simulation of 1 second 

or 1000 milliseconds (typical duration of a song motif), with a time step of 0.1, 10000 data 

points will be generated meaning that 10000 different values for the applied current will be 

applied to the neuron for the running simulation. The ability of the model architecture to 

reproduce the sequential propagation in presence of this stochastic input constitutes an 

indicator of the robustness of the model.  
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CHAPTER 4 

RESULTS 

 

Understanding the synaptic connectivity between the different classes of HVC 

neurons is key for building a more complex network of these neurons.  

 

4.1. Replicating the dual synaptic connectivity patterns.  

Using intracellular recordings from pairs of identified HVC neurons in brain slices, 

Mooney and Prather (2005) assessed the synaptic connections within the HVC microcircuit. 

They found extremely robust disynaptic feedforward inhibition from HVCRA to HVCX 

neurons (via HVCINT neurons), strong monosynaptic excitation from HVCRA and HVCX to 

HVCINT neurons (via NMDA and AMPA currents) as well as strong monosynaptic 

inhibition from HVCINT neurons to HVCRA and HVCX (via GABAA and GABAB currents). 

DC-evoked action potentials in the HVCRA neuron triggered an inhibitory 

postsynaptic potential (IPSP) in the HVCX neuron (Fig. 8A1, (Mooney & Prather, 2005)).  

Model HVC neurons were connected in a network to replicate the same responses. In 

particular, one HVCRA neuron was connected to excite one HVCINT neuron via NMDA and 

AMPA currents, with the interneuron in return inhibiting an HVCX neuron via GABAA and 

GABAB currents (Fig. 8A2). Similarly, DC- evoked action potentials in the HVCRA neuron 

evoked a fast depolarizing postsynaptic potential (dPSP) in the corresponding HVCINT 



47 

 

neuron (Fig. 8B1, (Mooney & Prather, 2005)). Model parameters were fit to replicate the 

same firing patterns in an HVCRA to HVCINT connection (Fig. 8B2).  

Similarly, DC-evoked action potentials in HVCINT neurons generate fast IPSPs in 

HVCX neurons (Figs. 9A1, B1). Model HVCINT and HVCRA neurons were connected and 

simulated to generate similar responses (Figs. 9A2, B2). Again, the difference between 

panels in A and B are the stimulus waveforms. Notice that both biological as well as model 

HVCX neurons in panels B1-B2 exhibit a ramp up in the voltage trace in response to the 

inhibition from HVCINT, primarily due to the Ih current. Finally, the HVCX to HVCINT 

excitatory PSPs (Fig. 9C1) was replicated (Fig. 9C2) similarly. 
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Figure 8: Model output compared to experimental results obtained by Mooney et al. 2005 

(Mooney & Prather, 2005). A1: HVCRA to HVCX connectivity as seen in experimental 

recordings. A2: HVCRA to HVCX model connectivity; a depolarizing current of 500 pA was 

applied to HVCRA for 500 ms. B1: HVCRA to HVCINT connectivity as seen in experimental 

recordings. B2: HVCRA to HVCINT model connectivity. A depolarizing current of 200 pA was 

applied to HVCRA for 500 ms.  

 

The fitting and calibration of the three model HVC neurons designed above gave us 

confidence to go further and start our neural networks design to generate the in vivo 

behavior because now our networks are based on biologically realistic parameters and data. 

In order to build the desired networks, we decided to create different scenarios of network 

architectures that could possibly generate the in vivo responses during singing. We believe 

that the simulation of different models is able to enlighten us about the biological model 

structure, which could perhaps be then tested and verified.     

 



49 

 

Figure 9: Model output compared to experimental results obtained by Mooney et al. 

2005(Mooney & Prather, 2005).  A1: HVCINT to HVCX connectivity as seen in experimental 

recordings. A2: HVCINT to HVCX model connectivity; a depolarizing current of 200 pA was 

applied to HVCINT. B1: HVCINT to HVCX connectivity as seen in experimental recordings.B2: 

HVCX to HVCINT model connectivity. A depolarizing current of 200 pA was applied to HVCINT 

for 500 ms. C1: HVCX to HVCINT connectivity as seen in experimental recordings. C2: HVCX 

to HVCINT model connectivity. A depolarizing current of 1000 pA was applied to HVCX. 
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CHAPTER 5 

NEURAL NETWORKS DESIGN  

 

Chromophore-targeted neuronal degeneration, a procedure that biophysically 

induces apoptotic death in specific neuron populations (Macklis, 1993; Madison & 

Macklis, 1993; McConnell, 1995), had been previously applied on HVC neurons to test 

whether the neuronal death of specific classes of HVC neurons have any effect on song 

generation (Scharff et al., 2000). The results of that study, which remains very 

controversial in the field till nowadays, showed that adult song production was not affected 

by the targeted elimination of HVCX neurons, but the elimination of HVCRA neurons 

induced song deterioration. Other studies nevertheless contradicted the Scharff et al (2000) 

results and showed that the HVCX neuronal population is an essential element for both song 

production and learning (Mooney, 2009; Bolhuis et al., 2012; Roberts et al., 2017; Daou & 

Margoliash, 2020). Given these different results in mind, we designed several neural 

networks incorporating different combinations of these classes of HVC neurons but that are 

able to generate the in vivo firing patterns seen during singing (Hahnloser et al., 2003; 

Fujimoto et al., 2011).  

In this study, we present network architectures that show how the sequential activity 

in the HVC projection neurons can propagate. The prototype networks are composed of 

chains of HVC microcircuits, each with its own intrinsic dynamics. Each mean field neuron 

in a microcircuit is representative of a neural population. We envision the HVC to be 
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composed of many copies of such microcircuit chains that are associated with syllables 

with roughly synchronized activity (Fee et al., 2004). 

 

5.1.  Network 1: RA-projecting neurons driven activity 

The first network architecture is the simplest architecture illustrated in Fig. 10. In 

this network, sequential activity propagates solely across HVCRA neurons in a synfire chain 

mode. In this chain model, burst timing is controlled by a synaptic input from a preceding 

group of HVCRA neurons connected via AMPA currents. The stable propagation of bursts 

requires precisely tuned synaptic strengths to avoid runaway excitation or decay. It has 

been proposed that sequential states of neural activity may be generated by synaptically 

connected chains of neurons (Amari, 1972; Abeles, 1991; Mauk & Buonomano, 2004). In 

this view, activity propagate through the HVC network - like a chain of falling dominoes - 

forming the basic clock that underlies song timing (Long et al., 2010). 

 

 

Figure 10: Network 1 design structure. Black arrows symbolize excitation via AMPA 

currents. The red arrow onto 𝐻𝑉𝐶𝑅𝐴
1 represents the excitatory drive (DC current) from 

outside the HVC. 
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The activity patterns that this network displays are shown in Fig. 11. Only HVCRA
1  

neuron receives a DC pulse to kick start the network mimicking the excitatory drive that 

HVCRA neurons receive from ascending auditory nuclei. The spiking in HVCRA
1  is amplified 

by the excitatory projection back onto HVCRA
1 . This positive feedback results in a burst of 

HVCRA
1  activity, which generates a burst of activity in HVCRA

2  due to excitatory 

AMPA/NMDA coupling. Intracellular Ca2+ accumulates during the burst. This result in a 

buildup of Ca2+-activated K+ current (ISK) that terminates the burst. The burst in HVCRA
2  

propagates to HVCRA
3  in a similar fashion and so on. In this and some other subsequent 

networks presented, the reason only one microcircuit receives DC pulse (instead of all other 

networks) from outside HVC is to have the sequential activity propagation solely dependent 

on HVC neurons themselves instead of extra-nucleus factors, thereby having HVC the sole 

orchestrator of the neural sequence. 
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Figure 11: HVCRA spiking patterns of network architecture one. Sequential bursting of 40 

different HVCRA neurons (labeled with numbers) showing the propagation of sequential 

activity independent of HVCX and HVCINT neurons. The neural traces are aligned by the 

acoustic elements of a spectrogram from a bird’s song illustrating the firing of HVCRA 

neurons with respect to ongoing song.  
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The duration between the burst of one HVCRA neuron and the burst in the next HVCRA 

neuron in the chain is ~ 5 ms (Fig. 12). This duration of time is solely dependent on the 

strength of the synaptic conductance that connects the two neurons in the chain. The 

strength of the burst and the number of spikes in the burst of any HVCRA neuron are 

dependent on the strength of the synaptic conductance from that HVCRA neuron onto itself, 

as well as the build-up of intracellular Ca2+ during the burst inside the HVCRA neuron that 

results in a stronger ISK conductance that truncates the burst shorter. 

 

 

Figure 12: Firing patterns of two sample HVCRA neurons (𝐻𝑉𝐶𝑅𝐴
2  and 𝐻𝑉𝐶𝑅𝐴

3 ) in the chain. 

The duration between the burst of one HVCRA neuron and the burst in the next HVCRA neuron 

in the chain is ~ 5 ms. This duration of time is solely dependent on the strength of the synaptic 

conductance that connects the two neurons in the chain.  
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Although this network produces the desired behavior of HVCRA neurons, one main 

drawback is that it disregards the HVCX and HVCINT neuronal populations. However, few 

research groups believe that the orchestration of HVCRA neurons in vivo is driven solely by 

HVCRA neurons themselves (Scharff et al., 2000; Fee et al., 2004; Long et al., 2010), and 

this network was designed to support this idea and show that sequence propagation can be 

generated with HVCRA neurons solely. 

 

5.2.  Network 2: Interneurons-HVCRA interaction to propagate activity 

We next consider architecture Fig. 13, which gives more complex network dynamics 

than the previous network incorporating HVC interneurons into the equation. Previous 

studies have showed that there exists two classes of HVC interneurons based on the 

straining protocols conducted (Wild et al., 2005) and that exhibit different 

electrophysiological features (Gulyás et al., 1996; Gritti et al., 2003). To this end, we 

designed a network that incorporates two classes of interneurons, classes A and B, as well 

as RA-projecting neurons. We assume that neurons of the HVC that are involved in the 

timing of syllables form microcircuits. Each microcircuit contains subpopulations of 

HVCRA and the two classes of HVCINT neurons. The many neurons within a subpopulation 

are assumed to be electrically active at the same time, so we represent this subpopulation by 

a single representative neuron. For example, the RA-projecting subpopulation in a 

microcircuit is represented by the model neuron HVCRA. The representative neurons are 

then synaptically coupled together to form a microcircuit, or to project to another 

microcircuit as a connecting link in the microcircuit chain. 
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Within each of the microcircuits in Fig. 13 (the first of which is enclosed by a dashed 

rectangle), there are excitatory projections from HVCRA back onto HVCRA, inhibitory 

projections from HVCINTA to HVCINTB as well as from HVCINTB to HVCRA. The 

microcircuits interact with each other via the projections from HVCRA from one 

microcircuit to HVCINTA in a following microcircuit.  

 

 

Figure 13: Arrangement of prototype network architecture two. Two classes of HVCINT 

neurons are presented (HVCINTA in red and HVCINTB in grey). Black arrows symbolize 

excitation via AMPA currents. Red arrows (with circle heads) symbolize inhibition via GABA 

currents. Blue arrows symbolize excitatory drive (DC inputs) from outside the HVC. The first 

microcircuit is enclosed by a dashed rectangle to represent its role as a leading microcircuit 

in the network.  

  

Each HVCINTA
i   neuron inhibits an HVCINTB

i  neuron via GABA currents, and 

HVCINTB
i  neuron in its turn inhibits HVCRA

i  via GABA currents as well. HVCRA
i  neurons 

excites HVCINTA
i+1  in the next microcircuit via AMPA and NMDA currents to ensure 



57 

 

propagation of the pulse through the subsequent microcircuit. We refer to each group of 

one HVCINTA, one HVCINTB and one HVCRA as a microcircuit. Each HVCRA neuron 

receives excitatory drive (DC current) from outside the HVC (upward blue arrows in 

diagram). 

The activity patterns that this network displays are shown in Fig. 14. Among class A 

interneurons, only HVCINTA
1  neuron receives a DC pulse to kick start the network, 

representing the incoming input from outside HVC. All class B interneurons however 

receive a DC pulse to be able to spike consistently during the song.  While for HVCRA 

neurons, bursting requires a DC input to each of them along with AMDA/NMDA excitation 

from HVCRA
i  to itself.  When HVCINTA

1  receives the driving input, it fires several spikes 

(Fig. 14A). This firing silences HVCINTB
1  due to GABA inhibitory coupling (Fig. 14B). 

Now, HVCRA
1  , that was prohibited from firing due to HVCINTB

1  continuous inhibition, 

escapes the inhibition and generate a burst of activity (Fig. 14C). The spiking in HVCRA
1  is 

amplified by the excitatory projection back onto HVCRA
1 . HVCRA

1  in its turn generate a burst 

in HVCINTA
2  in the second microcircuit due to excitatory AMPA/NMDA coupling. In 

particular, HVCRA
1  generates a burst of activity in HVCINTA

2  due to strong excitatory 

AMPA/NMDA drives, which then in its turn carries the chain of activity across HVCINTB
2  

and HVCRA
2  in a similar fashion to the first microcircuit.  
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Figure 14: HVC spiking patterns of network architecture two.  Class A and class B HVC 

interneurons firing pattern shown in panels A and B respectively. Class B interneurons fire 

continuously except at particular instances of time when they are inhibited by Class A 

interneurons. C: Sequential bursting of HVCRA neurons within the network.  

 

The strength and duration of the burst in HVCINTA neurons is controlled by the 

strength of the synaptic input from HVCRA
i  to HVCINTA

i+1 . The duration of HVCRA bursts is 

determined by two factors. The first is the rate of Ca2+ accumulation, which results in 

accumulation of the hyperpolarizing SK current. The second is the strength and duration of 

the inhibition HVCINTB
i  neurons received from HVCINTA

i  neurons (the longer/stronger the 

inhibition of HVCINTB
i , the longer the HVCRA

i  bursts). This activity propagates throughout 

the chain of microcircuits causing a sequence of HVCRA bursts (Fig. 14). 
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Spike raster plot of HVCRA neurons are shown in Fig. 15. Each row of tick marks 

shows the spikes generated during one rendition of the song with each rendition being 

modeled as starting the simulations from a different set of initial conditions for the state 

variables. Roughly ten renditions are shown for each neuron (zoomed stack of tick marks). 

Neural activity, aligned by the acoustic onset of the nearest syllable, shows how HVCRA 

neurons could burst reliably at a single precise time in the song (Fig. 15). Moreover, these 

activity patterns that this network exhibit show that it is a robust network because starting 

the simulations from different initial conditions for the state variables does little to no effect 

to the timing of spiking. 

 

 

Figure 15: Spike raster plot of HVCRA neurons showing the time locked firing of neurons 

relative to vocalizations. Each row of tick marks shows spikes generated during one rendition 

of the song or call; roughly ten renditions are shown for each neuron. HVCRA neurons burst 

at a single precise time during the song. 
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The activity patterns are shown on a shorter time scale in Fig. 16. The firing 

behavior of a sample class B interneuron (HVCINTB
2 ) is shown in Fig. 16 along with firing of 

HVCINTA
2  and HVCRA

2 . In this network, HVCINTB
2  (black trace) is continuously spiking until 

HVCINTA
2  (red trace) elicits a burst of activity inhibiting it. This inhibition allows HVCRA

2  

(blue trace) to escape and fire a burst of activity.  

 

 

Figure 16: Zoomed version of HVC spiking patterns of network architecture two: The burst 

in HVCINTA (red) inhibits HVCINTB (black) which allows HVCRA (blue) to escape inhibit and 

fire a burst of activity. 

 

Although this network produces the desired behavior of HVC neurons, one possible 

drawback is that class A interneurons fire only one burst in response to excitation from 

HVCRA bursts. Recordings of identified HVC neurons in singing birds have shown that 

HVCINT neurons can fire up 5-10 bursts per song motif (Hahnloser et al., 2003; Leonardo & 
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Fee, 2005; Hahnloser et al., 2006). Another possible drawback is that the sequence of 

activity in HVCRA neurons is driven primarily by the lack of excitation in HVCINTB neurons 

due to HVCINTA inhibition. While some studies have shown an important role for HVCINT – 

HVCINT interactions in the production of the song and the bird’s recognition of its own 

song (Kubota & Taniguchi, 1998; Mooney, 2000; Hahnloser et al., 2003; Rosen & 

Mooney, 2003), other studies showed that they don’t play a role (Scharff et al., 2000; Long 

et al., 2010). These factors also motivate the investigation of additional networks. 

 

5.3.  Network 3: Recruitment of all classes of HVC neurons 

The third network architecture, displayed in Fig. 17, incorporates the three HVC 

neuronal classes into the dynamics. We envisioned the HVC network as comprised of 

several microcircuits where each microcircuit contains neurons from all classes of HVC 

neurons. Each microcircuit has its own internal dynamics which then sends its output to the 

next microcircuit in the chain. Within each of the microcircuits (the first of which is 

enclosed by a dashed rectangle), there are excitatory projections from HVCRA back onto 

HVCRA and from HVCRA to HVCINT and inhibitory projections from HVCINT to HVCX. The 

microcircuits interact with each other via the projections from HVCX from one microcircuit 

to HVCRA in a following microcircuit. 
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Figure 17: Arrangement of prototype network architecture three. Black arrows symbolize 

excitation via AMPA currents. Red arrows (with circle heads) symbolize inhibition via GABA 

currents. The blue arrow symbolizes DC input. The first microcircuit is enclosed by a dashed 

rectangle to represent its role as a leading microcircuit in the network.  

 

In every microcircuit, each HVCRA
i   neuron excites an HVCINT

i  neuron via 

AMPA/NMDA currents; HVCINT
i  neuron in its turn inhibits HVCX

i  via GABA currents. 

Each HVCX
i  in microcircuit (i) excites HVCRA

i+1 in the next microcircuit (i+1) via 

AMPA/NMDA currents to ensure propagation of the pulse through the subsequent 

microcircuit. The first HVCRA neuron receives an excitatory drive (DC input) from outside 

the HVC (blue arrows in diagram) to quick start the network. 

The activity patterns that this network displays are shown in Fig. 18. HVCRA 

neurons bursting requires AMPA/NMDA excitation from each HVCRA
i  to itself.  When 
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HVCRA
1  receives the driving input, it elicits a burst of several spikes (Fig. 18A). This firing 

induces HVCINT
1  bursting due to AMPA excitatory coupling (Fig. 18B). Now, HVCX

1  , that 

was inhibited by HVCINT
1  due to GABA inhibitory coupling, generates a rebound burst of 

activity once the inhibiting input is removed (Fig. 18C). The spiking in HVCRA
1  is amplified 

by the excitatory projection back onto HVCRA
1 . HVCX

1  in its turn generate a burst in HVCRA
2  

in the second microcircuit due to excitatory AMPA coupling. In particular, HVCX
1  generates 

a burst of activity in HVCRA
2  due to strong excitatory AMPA drives, which then in its turn 

carries the chain of activity across HVCINT
2  and HVCX

2 in a similar fashion to the first 

microcircuit. This activity propagates throughout the chain of microcircuits causing a 

sequence of HVCX, HVCINT and HVCRA bursts (Fig. 18). 
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Figure 18: HVC spiking patterns of network architecture three.  All three classes of HVC 

neurons show a sequential propagation of bursts throughout the network.  

 

The effects of excitatory coupling between HVCRA and HVCINT, the inhibitory 

coupling between HVCINT and HVCX as well as the rebound bursting in HVCX are all 

illustrated in Fig.19. In this figure, the firing patterns of neurons from microcircuit two are 

shown. When HVCRA
2  (green trace, Fig. 19A-B) generates its burst of activity (due to 

excitatory synaptic drive from HVCRA
2  onto itself), a burst of activity is generated in HVCINT

2  

(red trace, Fig. 19A-B) at the same time due to fast AMPA currents. This burst in HVCINT
2  

inhibits HVCX
2 (black trace, Fig. 19A-B) due to GABA coupling (notice the sag due to 

inhibition in HVCX
2 at the same onset in time HVCINT

2  generates its burst, Fig. 19B). When 

HVCINT
2  finishes its burst, HVCX

2 is able to escape the inhibition and fires a post-inhibitory 

rebound burst due to the T-type Ca2+ (ICaT) and the hyperpolarization activated inward (Ih) 
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currents it exhibits. This burst in HVCX
2 is the key factor that transmits the activity to the 

next microcircuit via HVCX
2 - HVCRA

3  excitatory coupling.  

 

 

Figure 19: The patterns of the classes of HVC neurons in a sample microcircuit of Network 

3, here microcircuit two: A. The burst in 𝐻𝑉𝐶𝑅𝐴
2  (green) induces a burst in 𝐻𝑉𝐶𝐼𝑁𝑇

2  (red) due 

to excitatory NMDA/AMPA coupling. 𝐻𝑉𝐶𝐼𝑁𝑇
2  bursting elicits a strong inhibition in 𝐻𝑉𝐶𝑋

2 

(black) due to GABA coupling, which then escapes the inhibition and fires a post-inhibitory 

rebound burst of activity. B. The same traces in panel A overlaid. 

 



68 

 

As in the previous networks, the strength of the HVCRA bursts are dependent on the 

strength of the excitatory synapse from HVCRA onto itself as well as the speed of Ca2+-

build up that activates the SK-current which plays the role in truncating the burst. 

Furthermore, tuning of gKNa conductance was necessary to limit the bursting to one burst 

per neuron underlining the role of IKNa in damping the excitability of HVCRA neurons.  The 

strength and duration of the HVCINT burst is solely dependent on the strength of the 

excitatory synaptic conductance from HVCRA onto HVCINT. Interneurons do not exhibit 

ligand-gated inhibitory conductances (ISK or IKNa) like the other two classes of HVC 

neurons and are known to be very fast spikers; therefore, the only factor in this network that 

determines the strength and duration of HVCINT bursts are the synaptic conductances that 

couple them with their efferent inputs. And finally, the strength and the location of the 

HVCX post-inhibitory rebound burst is determined by two factors: 1- The degree of 

inhibition from HVCINT onto HVCX characterized by the GABA conductances, and 2- The 

magnitudes of the T-type Ca2+- and the H- conductances that work cooperatively to 

generate extra and strong excitatory drives when the neuron escape inhibition (Daou et al. 

2013). Not to mention that the ISK current plays a key role in damping the excitability of 

HVCX neurons. For smaller gSK conductances, higher number of bursts is observed in 

HVCX neurons. We also noticed that the increase in ICaT magnitude induces a 

depolarization plateau that hinder the neuron from returning to the resting membrane 

potential. In order to surpass this problem, tuning of the gCaT and gK conductances was 

necessary. 
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This network was designed with the aim to incorporate for the first time the three 

classes of HVC neurons in one network architecture. The ionic currents magnitudes and the 

synaptic strengths were calibrated to propagate sequential activity, but one of the 

drawbacks of this network is that both HVC interneurons and HVCX neurons generate a 

single burst throughout the song with HVC interneurons not firing sparsely as they are 

known to do in vivo. We can connect multiple HVCRA neurons onto a single HVCINT 

neuron, and hence each time any of the connected HVCRA neurons bursts, it’ll generate a 

burst in the interneuron thereby collectively creating multiple bursts in that HVCINT neuron 

at different times. The problem with this scenario is that multiple bursts in a single HVCINT 

will create equal number of post-inhibitory rebound bursts in the corresponding HVCX 

neuron in the same microcircuit. This is a problem because the sequential activity 

propagates to the subsequent microcircuits via HVCX-HVCRA connectivity, and multiple 

bursts in an HVCX will create multiple bursts in the HVCRA neuron its connected too, 

which will 1) break down the sequence propagation and 2) not realistic biologically as 

HVCRA neurons fire a single burst during singing. These factors will be addressed in the 

next network architecture. However, to address the sparse firing of HVCINT neurons, we 

injected to our model interneurons a stochastic input current instead of constant DC pulse 

with the aim to make these neurons spike densely throughout the song. 

The activity patterns that the stochastic version of this network incorporates are 

shown in Fig 20.  Sequential bursts propagation have been replicated similarly in the three 

classes of neurons like described earlier (Fig. 19). In particular, HVCRA neurons (Fig. 20A) 

elicit single bursts at one instance of time during the song. These bursts generate strong 

bursts of action potentials in the HVCINT neurons (Fig. 20B) of the same microcircuit, 
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which then trigger a post-inhibitory rebound bursts in HVCX neurons (Fig. 20C) The main 

difference here is the sparse firing that HVC interneurons now exhibit (Fig. 20B) which 

was not the case earlier (Fig, 18B). This makes the firing of this class of neurons more 

biologically realistic.  However, tuning of the model parameters was necessary to conserve 

the sequential propagation especially in HVCX neurons that are able to rebound burst after a 

series of weak inhibitory synaptic inputs coming from interneurons and not only as a result 

of a strong interneuron burst inhibiting HVCX. For example, notice the sag (inhibition) each 

HVCX
i  neuron exhibit when a spike is elicited by HVCINT

i  in the same microcircuit (Fig. 

20C). This small inhibition in HVCX
i  is able to generate a rebound spike or burst in the 

neuron; however, with the tuning that was applied, we were able to generate a rebound 

burst only when HVCINT
i  neuron generates its single burst. The success of this model 

manipulation is a strong indicator of the robustness of the model that is able to generate 

almost the same behavior in the presence of some random inputs. 
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Figure 20: HVC spiking patterns of network architecture three while incorporating a 

stochastic input to HVC interneurons. All three classes of HVC neurons show a sequential 

propagation of bursts throughout the network as shown previously (Fig. 18) with the 

exception that this time HVCINT neurons fire sparsely throughout the song.  

 

5.4. Network 4: Towards an in vivo realistic network 

The fourth architecture, displayed in Fig. 21, gives more complex and biologically 

realistic network dynamics than the previous networks as it incorporates all classes of HVC 

neurons similar to network three as well as replicate the firing patterns with more accuracy. 

Each microcircuit here is comprised of a random number of HVCRA neurons (to be 

described below) in addition to an interneuron and an X-projecting neuron. In this chain 

model, burst timing and propagation is controlled by a synaptic input from a preceding 

group of HVCRA neurons connected via AMPA currents. In other words, all of HVCRA 

neurons were connected in a synfire chain mode (similar to network one in this aspect). 

Each of N (= 55 in our simulation, but it could be any number) HVCRA neurons could 
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belong to one or more microcircuits, chosen randomly to belong to this microcircuit or the 

other. Each HVCINT in a microcircuit was assigned a random number of connections from 

HVCRA neurons (3 to 6 HVCRA neurons). Therefore, the number of HVCRA neurons to 

connect to the interneuron is random, as well as which HVCRA neurons are to synapse onto 

the interneuron was also random. Each HVCINT neuron in its turn inhibit a single HVCX 

neuron. The stable propagation of bursts requires fine tuning of synaptic strengths to avoid 

runaway excitation or decay.  

 

        

Figure 21: Arrangement of prototype network architecture four. Black arrows symbolize 

excitation via AMPA currents. Red arrows (with circle heads) symbolize inhibition via GABA 

currents. The yellow arrows symbolize DC inputs. Each blue box entails the number of 

HVCRA neurons that were recruited randomly to inhibit an HVC interneuron.  
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The activity patterns that this network displays are shown in Fig. 22. Only HVCRA
1  

neuron receives a DC pulse to kick start the network. The chain of bursts in HVCRA 

neurons was reproduced in a similar fashion as in Network 1 (Fig. 22A). Similar to the 

observed in vivo behavior, and due to the several connections they receive from the various 

HVCRA neurons randomly, HVC interneurons generate multiple bursts throughout the song 

(Fig. 22B) which is what’s seen in singing birds. Finally, HVCX model neurons fire 

between 1 and 3 bursts throughout song similar to the experimental results (Hahnloser et 

al., 2003). Furthermore, HVCX neurons differed in the number of bursts and the number of 

spikes per burst making the results more realistic.  
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Figure 22: HVC neurons spiking patterns of network architecture four. A: Sequential 

bursting of HVCRA neurons within the network. B: HVC interneurons activity displays dense 

spiking throughout the song while eliciting multiple bursts of activity at different times. C: 

HVCX neurons bursting activity throughout the song shows multiple bursts unlike networks 

1-3.  

 

The random connections from HVCRA neurons to HVCINT as well as the multiple 

bursts HVCINT and HVCX exhibit in this network are illustrated in Fig. 23. Here the firing 

pattern for HVCINT
5  is shown (black trace) along with the 4 HVCRA neurons (blue traces) 

that were chosen randomly to send their synpases onto the interneuron. Notice that each 

HVCRA neuron bursts only once as reported experimentally (Hahnloser et al., 2003). The 

time difference between the bursts of the 4 HVCRA neurons is due to the fact that there are 
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multiple other HVCRA neurons that burst in between in the chain of HVCRA neurons, but 

that are not shown here (only those that connect onto HVCINT
5  are shown). HVCINT

5  neuron 

generate here 4 bursts within the song as well as spike sparsely, as reported experimentally 

as well (Hahnloser et al., 2003). Each of the 4 bursts in HVCINT
5  is aligned with one of 4 

bursts in HVCRA neurons (blue traces) due to excitatory coupling. And finally, 

HVCX
5 neuron generates multiple postinhibitory rebound bursts due to the inhibitory 

coupling with HVCINT
5 . The number of bursts in HVCX neurons need not be necessarily the 

same number of bursts in its associated HVCINT neurons (for example in this case HVCX
5  

exhibit 3 bursts while HVCINT
5  exhibits 4 bursts), because if the HVCINT neuron generated 

multiple successive bursts of firing, HVCX neuron can not escape inhibition within the 

short time interval between bursts (Fig. 23), and need more time until the time interval 

between bursts is long enough for the Ih and ICaT currents to fully activate and generate a 

reboud burst. This all makes the firing of these three classes of neurons more realistic and 

adheres with the reported literature. 
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Figure 23: 𝐻𝑉𝐶𝑋
5, 𝐻𝑉𝐶𝐼𝑁𝑇

5  and their associated HVCRA neurons spiking patterns. Sequential 

bursting of HVCRA neurons induces sparse bursting in HVC interneurons resulting in 

multiple bursts of activity in HVCX neurons. 

 

Our simulations in this network chooses randomly the inputs from HVCRA to 

HVCINT neurons to reflect the biological reality that 1) we don’t know which of the HVCRA 

neurons connect to the interneuron and 2) to show that no matter which HVCRA neurons 

connect to the interneuron, the sequential propagation of activity is not altered and the 

firing patterns of the interneuron and the X-projecting neurons remains biologically 

realistic. However, in a biological network once the connections are made from one neuron 

to another, this synapse does not change its afferent input to another neuron during each 

rendition of behavior (like song in our case), and the number of connections into and from 

the neuron remains largely unaltered over short periods of time. Therefore, to simulate this 
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mechanism, for the same set of random inputs from HVCRA neurons onto HVCINT neurons, 

we observe that HVCX neurons exhibit time-locked firing patterns to vocalizations (Fig. 24) 

that remains unaltered even though the model network starts from different initial 

conditions. These results had been shown before for HVCX neurons in singing birds 

(Fujimoto et al., 2011).  

 

 

Figure 24: Spike raster plot of HVCX neurons showing the time locked firing of neurons 

relative to vocalizations. Each row of tick marks shows spikes generated during one rendition 

of the song or call, modeled as starting the simulation from different initial conditions; 

roughly ten renditions are shown for each neuron.  
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Finally, to make our model even more realistic, we injected each of our model 

HVCX and HVCINT neurons with stochastic input currents, representing the ascending 

auditory inputs these neurons receive, because it’s certainly unrealistic that biological 

neurons receive DC-like inputs.  

The activity patterns that the stochastic version of this network incorporates are 

shown in Fig 25.  Sequential bursts propagation have been replicated similarly in HVCRA 

neurons like described earlier (Fig. 22). In particular, HVCRA neurons (Fig. 25A) elicit 

single bursts at one instance of time during the song. These bursts generate strong bursts of 

activity in the associated HVC interneurons (Fig. 25B), which then trigger a post-inhibitory 

rebound bursts in HVCX neurons (Fig. 25C). The main difference here is the sparse firing 

that HVC interneurons now exhibit (Fig. 25B) that is a result of a stochastic input applied 

to these neurons instead of a DC pulse. This makes the firing of this class of neurons more 

biologically realistic.  However, delicate tuning of the model parameters was necessary to 

ensure a number of bursts in HVCX neurons limited to 1-3 bursts. Replicating the HVCX 

neurons firing pattern remains the most challenging part of the network since this class of 

neurons is able to rebound burst after a series of weak inhibitory synaptic inputs coming 

from interneurons and not only as a result of a strong interneuron burst inhibiting HVCX. 

The challenge here was to smartly tune the network parameters to be able to regenerate the 

in vivo behavior of the three classes of neurons while applying a stochastic input that varies 

from one simulation to the other. Here, the stochastic inputs ranges was chosen in a way to 

generate the desired pattern of activity in the three classes of HVC neurons while adding a 

more realistic component to the network and this is what makes the robustness of this 

model.  
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Figure 25: HVC spiking patterns of network architecture four. A stochastic input was 

incorporated to HVC interneurons and HVCX neurons while quick starting the network with 

a random DC input applied to 𝐻𝑉𝐶𝑅𝐴
1  . A:  HVCRA neurons show a sequential propagation 

of bursts throughout the network. B: HVCINT neurons fire sparsely throughout the song while 

exhibiting several bursts of activity. C: HVCX neurons fire different number of bursts (1-3 

bursts) similar to experimental results. 
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By far, this is the best network architecture that we generated that’s able to replicate 

with high accuracy the firing patterns of the three classes of HVC neurons in vivo. In other 

words, it’s able to 1) generate the temporally precise time-locked 5-10 ms bursts of HVCRA 

neurons and in a sequential syn-fire chain mode that’s seen in vivo (Hahnloser et al., 2003; 

Long et al., 2010), 2) generate the sparse bursting and spiking in HVC interneurons 

(Hahnloser et al., 2003), and 3) generate the time-locked and multiple bursts of HVCX 

neurons (Fujimoto et al., 2011) .  
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CHAPTER 6 

CONCLUSION  

 

We have presented computational models that describe how sequential activity in 

HVC projection neurons can be produced during singing. These microcircuit chains are 

envisioned to have many copies throughout the HVC, and the chain ensemble is envisioned 

to drive singing. The fitting and calibration of the HVC neurons architectures succeeded in 

regenerating the in vivo firing patterns of the three classes of HVC neurons, in particular, 

the sequential propagation of bursts in the HVCRA population, the sparse bursting of HVCX 

neurons and the high frequency bursting with dense spiking of HVC interneurons. The 

patterning activity in HVC is shaped by synaptic inputs and the interplay between 

excitation and inhibition, which enables HVCRA, HVCX and HVCINT neurons to generate 

their characteristic bursts during singing. At the network level, each neuron’s behavior 

affects the overall communication inside the neural network which makes biological neural 

networks one of the most challenging and complex systems to understand and replicate 

computationally. 

The different chain architectures that we described produce different activity 

patterns of HVC neurons, and lead to different predictions. For example, inhibitory 

projections are crucial for the sequential activity in the last three architectures, so 

antagonism of GABA receptors would terminate the activity pattern. The last three 

architectures predict a key role for post-inhibitory rebound of HVCX neurons. The different 

networks also predict a different number of bursts per motif of HVCINT and of HVCX 
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neurons. At present, there are insufficient data to determine which of the proposed 

architectures are best representative of the HVC circuitry. However, the model networks 

provide insight into how the different types of HVC neurons can be used for sequence 

generation.    

Chain models have previously been proposed for the HVC (Li & Greenside, 2006; 

Jin et al., 2007; Long et al., 2010). Although the HVC neurons in our model are segregated 

into a chain-like network of microcircuits, we have focused on the interactions among the 

three classes of HVC neurons. Unlike other models, our simulations and analysis propose 

that post-inhibitory rebound in most networks, particularly networks two through four, 

plays a key role in preserving precise timing information that enables reliable propagation 

of sequential activity throughout the HVC microcircuits. This mechanism is a characteristic 

of some invertebrate central pattern generators which use inhibition and recurrent excitation 

and which exhibit post-inhibitory rebound (Satterlie, 1985; Goaillard et al., 2010). 

Although our model includes chainlike networks, we have focused on the role of 

inhibition and rebound firing rather than chains. Unlike other chainlike models, our model 

postulates a central role for inhibitory interneurons and X-projecting neurons in sparsely 

bursting telencephalic premotor networks, HVC in particular. This mechanism is related to 

those of central pattern generators and cortical networks, which make use of inhibition and 

recurrent excitation (McCormick 2005; Shu et al., 2003; Yuste et al., 2005).  

The various networks that we have examined raise developmental questions. What 

developmental mechanism could generate the pattern of HVCINT  HVCRA connectivity 

in networks two, three and four? Little is known about the development of the inhibitory 

inputs from interneurons onto the projection neurons within the HVC. However, we suggest 
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a mechanism whereby the excitatory coupling between the projection neurons and the 

interneurons develops early in the bird’s life and interneuron connectivity develops later as 

the bird attempts to reproduce the song of its tutor. Thus, the interneurons inhibit specific 

projection neurons to move the brain circuitry in a direction that minimizes the error in 

vocal output relative to that of the tutor’s song. Moreover, this study of the architecture of 

the HVC nucleus is able to give us insights of the physiological changes taking place inside 

the bird’s brain while vocalizing. Our model will bring songbird research a step closer to 

understanding the network connectivity behind the spatio-temporal sequences generated by 

HVC neurons. Understanding how the HVC circuitry operates to generate this sequential 

propagation is a stepping stone towards deciphering how neural networks in the human 

brain communicate to execute complex motor skills that require as well prior planning into 

proper spatial and temporal ordered sequences.  

In closing, the work presented in this dissertation has the potential to make a 

considerable impact in the field of songbird research. The computational models developed 

provide a large step forward in describing the biophysics of HVC neurons. This work 

serves as step towards discussing realistic and plausible neural architectures that would 

reflect an accurate topography of the nucleus as well as produce the characteristic patterns 

of neural activity exhibited by the various HVC neurons during singing. Being able to 

explain the complete story of the neural code behind HVC’s sequential activity could open 

a new era to science.  
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