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An Abstract of the Thesis of

Mostafa Mohammed Hammoud for PhD of Physics
Major: Astrophysics

Title: Effects of Fluctuations on Magnetic Reconnection and Heating in the
and Solar Corona

The solar corona exhibits unusually high temperatures (∼ 106 K) compared to
the temperature in the Sun’s photosphere (∼ 5800 K). This coronal heating is one
of the fundamental problems in solar physics that is yet to be resolved. Magnetic
reconnection is thought to play a critical role in driving this enigmatic heating
process. In this work, we present a newly-developed resistive magnetohydrody-
namic (MHD) numerical model in which we investigate the effects of magnetic
fluctuations, generated by the photospheric motion of footpoints at which the
coronal field lines are anchored, on the reconnection rate and the heating process
in the solar corona. The treatment of magnetic reconnection is done using Open-
FOAM for numerically solving the resistive MHD equations, which are modified
by implementing the fluctuations as source or sink terms. Our results show that
the use of the uniform resistivity model in the framework of resistive MHD leads
to slow reconnection process even if fluctuations are added. Moreover, compared
to the case of no fluctuations using the Spitzer resistivity model and starting
with a zero initial velocity, it is noticed when sinusoidal fluctuations are added
that: (1) the reconnection process is enhanced since the reconnection rate ηJz
is almost 10 times higher, and (2) the magnetic energy is diffused fast and ex-
tra amount of heat and high values of particle acceleration (jets) are generated.
Furthermore, the results show also that sinusoidal fluctuations of shorter wave-
length promote a faster formation of X-points through plasmoid restructuring of
the magnetic field lines. The reconnection rate is thus enhanced leading to a
rapid heating process by pumping extra thermal energy in the coronal regions
surrounding the reconnection site. Therefore, the magnetic reconnection process
influenced by magnetic fluctuations can be considered as an effective candidate
which contributes in the solar coronal heating.
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Chapter 1

Introduction

1.1 Introduction

Plasma is pervasive in the universe. Tremendous amount of nuclear energy is

continuously released by the stars in our galaxy. Due to this energy, particles

escape stellar surfaces, forming plasma that streams into space. For example,

the plasma streaming from the Sun, the solar wind, interacts with the Earth’s

magnetosphere leading to geomagnetic storms, and to the formation of the auro-

ras [4, 5]. An important candidate is believed to be behind all these phenomena

is the magnetic reconnection.

Magnetic reconnection (MGR) is widespread in astrophysical plasma systems and

in laboratory plasma devices as well [6]. It is a topological rearrangement of field

line directions. Such rearrangement is initiated by diffusion, caused by turbulence

and other processes, which in turn breaks down the frozen-in condition between

field lines and plasma particles.

MGR is an active area of theoretical research in astrophysical plasma physics.

It is believed to be the power source behind various phenomena, such as solar

flares. MGR also frequently controls transport of charged particles and heat in

interstellar and intergalactic media [7, 8]. As mentioned in [9], the temperature
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increase in the solar transition region is a response to MGR that takes place

between two magnetic flux tubes in the photosphere. Moreover, the temperature

of the solar corona is higher by two orders of magnitude compared to that of the

Sun’s photosphere. This anomalous temperature denotes a solar mystery known

as the “coronal heating problem”. Although it is still not clear whether waves

or reconnection play a dominant role in heating the solar corona [10], we believe

that the MGR process plays an important role in this heating.

In March of 2015, NASA launched a mission called “Magnetospheric Multiscale

Mission” or simply “MMS” aimed at obtaining information about the MGR be-

tween the plasma associated with the solar wind and the plasma of the Earth’s

magnetosphere. More recently, in August of 2018, NASA launched another mis-

sion titled the “Parker Solar Probe”, which aims at finding answers about many

mysterious issues in the solar atmosphere including the coronal heating problem.

1.2 NASA’s Latest Launch - Parker Solar Probe

NASA’s Parker Solar Probe launched, from Florida (USA), on the 12th of August,

2018. It began its journey to the Sun, where it would undertake a landmark

mission. The spacecraft, shown by Figure (1.1), expands our understanding of

the star that makes life on Earth possible.

The Parker Solar Probe (PSP) is a historic mission flying into the Sun’s corona

for the first time, exploring the last and most important region of the solar system

to be visited by spacecraft. The Sun is the only star we can study up close. By

studying our star we can learn more about stars throughout the universe. The Sun

is the source of the solar wind, a flow of ionized gases from the Sun that stream

past Earth at speeds of more than 500 km/sec. The spacecraft and instruments

of PSP are protected by a thermal protection system composed mainly of carbon

foam blocks. Because the carbon composite shield is such a poor conductor of

heat, the spacecraft and scientific instruments behind it will be at about room
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Figure 1.1: The Parker Solar Probe launched by NASA on the 12th of August,
2018. This NASA’s spacecraft will zoom close to the Sun 24 times between 2018
and 2025 gathering a variety of data about the Sun’s structure and magnetic and
electric fields.

temperature; protecting most of the spacecraft’s components from the brunt of

the heat encountered near the Sun.

The PSP flies through the Sun’s atmosphere as close as 6.2 million kilometers

from our star’s surface. It will zoom close to the Sun 24 times between 2018 and

2025, gathering a variety of data about the Sun’s structure as well as its magnetic

and electric fields. The probe will spend a total of 30 hours within the corona.

This helped scientists in understanding why the Sun’s outer atmosphere is more

than 200 times hotter than the Sun’s surface. It will fly close enough to watch

the solar wind speeds up from subsonic to supersonic. It allowed scientists to

achieve a better understanding of how and why this acceleration happens. For

more information, please visit [11].

1.3 Coronal Field Lines

The coronal field lines, open and closed, are always observed in the solar atmo-

sphere. They are actually magnetic field lines surrounded by plasma particles

ejected out from and below the solar surface. The continual existence of those
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field lines indicate that the solar magnetic field is always maintained. A possible

mechanism for maintaining the solar magnetic field was the dynamo process, first

suggested by Larmor since 1919 [12]. The basis of his theory is that the magnetic

field can be sustained by the motion of the highly ionized plasma in the Sun. So-

lar physicists have decomposed the solar magnetic field into poloidal and toroidal

parts. The toroidal part is believed to lead to sunspots, while the poloidal field

corresponds to the large-scale coronal field [13]. The solar field can be maintained

by the fluid flow if there is persistent conversion between its two components. To

understand such conversion, we need an equation relating the magnetic field to

the fluid velocity. This equation is the famous induction equation derived from

coupling between Maxwell’s equations and Ohm’s law,

∂ ~B

∂t
= ~∇× (~u× ~B) +

η

µ0

~∇2 ~B, (1.1)

where ~B is the magnetic field, ~u is the fluid velocity, η is the resistivity of the

conducting fluid, and µ0 is the permeability of vacuum. The parameter η
µ0

refers

to magnetic diffusivity. The induction equation shows that the evolution of the

magnetic field follows two processes given by the two terms on the right hand

side. The magnetic field gets enhanced by the first term (the convection term),

and, in contrast, it gets diffused by the second term (the diffusion term).

According to Equation (1.1), it is evident that any gradients in the fluid velocity

will induce toroidal field from poloidal field. These gradients of velocity are

believed to be due to the presence of shears or differential rotation in the interior

of the Sun. This is known as the ω-effect. Thus, the large-scale poloidal field

leads to toroidal field via the ω-effect. However, the generation of poloidal field

from toroidal field is not straightforward. Parker in 1955 [14] considered that the

interactions of small-scale magnetic field and turbulent fluid velocity will produce

large-scale poloidal field from a toroidal field. This is known as the α-effect.

Alternatively, another scenario was proposed by Babcock [15] and Leighton [16]
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Figure 1.2: Illustration of the ω-effect, the α-effect and the Babcock-Leighton
mechanism, which are proposed to model the evolution of the solar magnetic
field lines. (a) is the initial poloidal field. (b) and (c) represent the generation
of the toroidal field by differential rotation, the ω-effect. (d), (e), (f) and (g)
show the α-effect during which the toroidal field transforms into poloidal field.
(h) and (i) represent the beginning of the Babcock-Leighton mechanism: toroidal
flux tubes buoyantly rise to the surface forming sunspots and coronal loops. In
(j), the magnetic fields from the bipolar regions diffuse and reconnect with each
other and with the polar fields generating the final large-scale poloidal field in
(g).

explaining the poloidal field regeneration. Strong gradients of differential rotation

take place in the tachocline layer between the radiative and convective zones.

The tachocline is thus responsible for the generation of the strong toroidal field

leading to reduce the local density of the plasma. Regions of strong magnetic

fields are thus buoyant. Only a very strong magnetic field is buoyant enough to

rise from the tachocline to the solar surface and form sunspot pairs [17]. The

Babcock-Leighton mechanism suggested that the regeneration of poloidal field

from toroidal field is a result of the diffusion and reconnection processes of the

magnetic field of the sunspot pairs.

The ω-effect, the α-effect and the Babcock-Leighton mechanism are all illustrated

in Figure (1.2) [18]. In the photosphere, convection pushes material toward the

edge of the so called “supergranules”, which are very large conception cells. As

a result, vertical magnetic field lines pile up around the supergranules, creating
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large and wandering magnetic field lines. As illustrated in images (h) and (i) of

Figure (1.2), coronal loops thus form and linked to the photosphere at locations

called footpoints.

1.4 Fluid Approach of MGR

Plasma is more accurately modeled using kinetic theory where it is described by

distribution functions in phase space and time. Plasma dynamics is completely

described using Boltzmann equation coupled with Maxwell’s equations for elec-

tromagnetic fields [19]. Averaging over velocity space for each plasma species,

the resulting equations comprise the two-fluid plasma model. Using several ap-

proximations, the two-fluid equations are then combined to form the magneto-

hydrodynamics (MHD) model [20]. The main interest of a fluid model over the

kinetic model is the reduced dimensionality. Physics is lost in this reduction but

a huge amount of phenomena and mechanisms based on plasma physics are still

well described in the fluid model [21, 22]. In the present work, we are modeling

the MGR process in the framework of resistive MHD.

1.5 Early Models of MGR

MGR was first investigated by Sweet [23] and Parker [24] using incompressible

MHD. A drawback of their approach is the long time-scale of the energy release,

which is approximately about 0.3 years. This contradicts the observations which

indicate time-scales in the order of minutes to hours in the case of solar flares [25].

Another problem is related to the size of the diffusion region [26]. According to [8],

the typical length-scale of the coronal loop is L ∼ 107 m, and the thickness of

the diffusion region represented by a current sheet is ρi ∼ 10 m (ρi is the ion-

Larmor radius). It is emphasized that magnetic field lines break on microscopic

scales, but nonetheless the energy is stored and the plasma responds on global
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scales. This implies that the dynamics of large-scale motion is linked to the

behavior of the magnetic fields at small scales. In other words, it is challenging

to find out how the stored magnetic energy is released so fast. According to

the Petscheck modeling [27], the fast reconnection time was obtained through

introducing magneto-sonic shocks. This idea has been accepted for a relatively

long time. However, the formation of such shocks were questionable and it was

actually based purely on geometrical arguments [28, 29].

1.6 Link between Turbulence and MGR

A different approach [30], which was based on two-dimensional simulation of

resistive MHD reconnection, reproduced the Petscheck model’s results only if re-

sistivity is enhanced within the current sheet. Various works have applied the

high resistivity model including the Hall effect [31], electron pressure [32], am-

bipolar diffusion [33], and kinetic effect [34]. However, the question is how one

would understand the enhanced resistivity within the diffusion region. In the

work done by [35], turbulence caused by some fluctuations is invoked in order to

explain the enhanced resistivity. According to [36], the effect of turbulence may

be described by an effective resistivity, which should lead to fast energy release

by MGR.

The advantage of including turbulence is to bridge the gap between the short

dissipation scale and the large-scale of the MGR process [37]. The earliest in-

vestigation on how MGR is affected by turbulence was presented by [38], based

on two-dimensional numerical simulation. Their results showed multiple X-point

structures created simultaneously leading to fast reconnection rate. Later, Lazar-

ian and Vishniac [39] developed a scaling theory of turbulent MGR based on the

work done by [40] on strong Alfvénic turbulence. They discovered that the re-

connection speed becomes independent of the ohmic resistivity and is determined

by the magnetic field wandering induced by turbulence. The magnetic field wan-
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dering proposed by Lazarian and Vishniac has been confirmed by 3D numerical

simulation done by Kowal et al. [41]. Their basic results were as follows:

• The MGR rate is largely enhanced in the turbulent state, and the rate does

not depend on the magnetic diffusivity due to collisions.

• It was also shown that the larger the magnitude of fluctuation imposed and

the turbulence injection scale is, the larger the reconnection rate becomes.

• They suggested that several collisionless effects are irrelevant to the recon-

nection rate in the turbulent state.

The numerical simulation done by Servidio et al. [42] investigated turbulent re-

connection using MHD with a periodic boundary condition at a high Reynolds

number. They found that a large number of X-point structures with various

sizes and energies are generated, and a reconnection occurs at each X-point.

Again, using 2D direct numerical simulations with a periodic boundary con-

dition, Loureiro et al. [43] investigated how noise can affect the reconnection

process. They showed that the reconnection rate has a weak dependence on the

Lundquist number in highly turbulent systems. Another approach in treating

the turbulence is the plasmoid instability [44]. In such an approach, turbulent

reconnection is self-generated in the system without using any pre-existing tur-

bulence. The formation of multiple plasmoid effectively reduces the width of the

reconnection region, and consequently contribute to a fast reconnection [45, 46].

The effective transport caused by the turbulent magnetic diffusivity and the tur-

bulent viscosity affects the dynamics of the plasma. A different approach of

treating turbulence was done by the authors of [47] who developed a turbulence

model for MHD plasmas consisting of mean and turbulent field equations. The

main statistical quantities in MHD turbulence equations are the turbulent energy

and cross-helicity. Dynamics of mean field and turbulent quantities have to be si-

multaneously treated in a consistent manner [48]. The advantage of this approach
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is to find a relation between the fluctuations and the mean field inhomogeneities

in plasma systems of high Reynolds number [49].

1.7 Solar Coronal Heating

The very high-temperature of the solar corona was first observed using spec-

troscopical study in the late 19th century, the so-called coronal “green line” at

530.3 nm. None of the known elements on Earth has matched the observed

spectral line of the corona, and it was concluded that a new element, named

coronium, was discovered [50]. Later on, it was proved by Edlén in 1939 [51]

that the coronium line is found in the emission spectrum of highly ionized iron

at temperatures ≈ 1 MK. This was the moment of birth of the coronal heating

problem.

Various physical models have been come up shortly after the detection of the un-

expected hot plasma in the solar corona. The temperature of the core of the Sun,

about 15 Mk, is produced mainly by thermonuclear fusion. Cooling processes

start taking place as the solar energy flows outwardly from the core, passing

through radiation and convection zones, right to the solar surface. Minimum

temperature (≈ 4200 K) is observed at the top of the photosphere. However,

instead of decreasing, the temperature goes up slowly to around 2× 104 K in the

chromosphere. In the narrow transition region, the temperature shows an emi-

nent increase of its value (≈ 105 K) up to around 2 Mk in the corona (Figure 1.3).

Having preserved this high temperature, the corona must compromise some sort

of energy input. Otherwise, the corona would cool down on a minute-scale.

The corona loses each second a flux of energy of roughly 104 J/m2 in active re-

gions and 300 J/m2 in the Sun [52]. Hence, an energy source must be provided in

order to sustain these losses. It’s quite recognized that the mechanical motions in

the photosphere is the essential source of the energy [53]. Such motions allow the

footpoints of coronal magnetic field lines to displace. Compared to Alfvén dis-
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Figure 1.3: The variation of the temperature (on logarithmic scale) in the solar
atmosphere as a function of the height measured in km.

placement time, long time-scale motions stress quasi-statically the magnetic field,

whereas short time-scale motions generate waves. Dissipation of either magnetic

stresses or waves heats the corona up. Processes of magnetic stress dissipation are

referred to as direct current heating, and those of wave dissipation are referred

to as alternating current heating.

Illustrations of solar corona heating is realized based on a couple of models pro-

viding diverse mechanisms that result in feeding the corona by additional heating.

From an observational point of view, it is difficult to survey one heating mecha-

nism alone because several mechanisms may operate at the same time [54]. We

should rather predict the macroscopic outcome of a particular heating mecha-

nism [55, 56, 57, 58] and confirm these signatures by observations [59]. The heat-

ing mechanisms in the solar atmosphere can be classified whether they involve

magnetism or not. For magnetic-free regions (regions where plasma is weakly

affected by magnetic fields) such as chromosphere of quiet Sun, one may suggest

heating mechanisms in the framework of hydrodynamics (HD). Acoustic waves

are examples of HD heating which provide shock dissipation processes [60]. It is

accepted today that HD heating mechanisms still contribute but only at lower

layers of the solar atmosphere [61]. However, the plasma of most parts of the solar

atmosphere is strongly influenced by magnetic fields. In this case, the framework
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of MHD may be the more relevant approach. The interest of magnetic fields

is that they allow energy and magnetic stresses to channel from the inner solar

bulk and surface to the higher atmosphere [62]. Heating in the MHD framework

refers to MHD heating mechanisms [63, 64, 65, 66, 53]. Examples of the MHD

heating mechanisms are the slow and fast MHD waves, Alfvén waves, current

sheets, etc... . Joule heating plays an important role in the dissipation processes

of these MHD models [54].

Converting the magnetic stress energy or wave energy into heat is an essential

mechanism for coronal heating. Due to dissipation coefficients being highly small

in the corona, significant heating seeks sharp gradients and very small spatial

scales. Magnetic gradients and their associated electrical currents lead to heating

by reconnection and ohmic dissipation, while velocity gradients lead to heating

by viscous dissipation [53]. Compared to Alfvénic transit time, long characteris-

tic time-scales of magnetic footpoint motions, that take place in the photosphere,

will result in a magnetic tension along the field lines involving highly localized

current sheets. These current sheets may release their energy through MGR pro-

cess coupled with the fluctuations generated due to the photospheric footpoint

motions.

Microphysics plays an important role in heating mechanisms via reconnection.

In collisional plasma, resistivity would play a notable role in the reconnection

process. As debated by Parker in 1973 [67] and verified with numerical simula-

tions thereafter ( [68] and others), that enhancement of electrical resistivity by

3 or more orders of magnitude allows the MGR to proceed at the fast Petschek

rate. Moreover, as mentioned in [53], it was accepted by some modelers that arti-

ficial numerical resistivity of existing MHD codes captures the essential physical

effects of the corona. However, several studies pointed out that MGR process

needs plasma to be collisionless [31, 69]. The Hall term in the generalized Ohm’s

law forces ions to leave the magnetic field at a scale of the ion skin depth which

is ∼ 10 m in the corona [70]. The interplay between large and small scales is
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important for coronal heating and other interesting coronal problems. Thus, it

is helpful to associate microphysics with MHD codes for better results. One ex-

ample is to use the anomalous resistivity due to current-driven instability. This

anomalous condition allows resistivity to depend on the ratio of the drift velocity

of the electric current to the thermal velocity of the particles [71, 72, 73].

We have pointed out a little literature review about the solar coronal heating

problem, and it still remains one of the most unresolved problems in Astro-

physics. Small scales observations, improved numerical modeling and theoretical

approaches should be pursued for better understanding the solar atmosphere. In

the work done here, we are going to investigate the MGR with magnetic fluc-

tuations, thought to be generated by the photospheric footpoint motions, as an

effective process for the solar coronal heating.

1.8 Statement of the Problem

Extreme ultraviolet and X-ray observations of the Sun’s outer layer indicate a

sharp increase of the temperature from 104 K in the photosphere to more than

106 K in the corona (See Figure 1.3). Usually temperature gets reduced when

moving away from a heat source. This is why the anomalous temperature ob-

served in the corona denotes a major solar mystery namely the coronal heating

problem.

Several mechanisms have been suggested to understand the process of coronal

heating. All these mechanisms may operate simultaneously. For this sake, and

since high resolution data are needed to realize the contribution of each individual

mechanism in the solar coronal heating, NASA has launched the PSP which is

the first-ever mission to touch the Sun. In this thesis, we are going to investigate

the MGR process with magnetic fluctuations as one candidate which can enhance

heating in the solar corona.

The role of the MGR in establishing the high temperature observed in the solar
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corona is a fundamental question in astrophysical research. The solar layers, such

as the photosphere, are highly turbulent. The coronal field lines are thought to

be originated in the photosphere at sites called footpoints. The turbulent motion

of the photospheric footpoints can easily produce fluctuations in the coronal mag-

netic field. Consequently, one way incorporating the effect of the photospheric

turbulence is by adding fluctuations to the coronal magnetic field. Our approach

assumes sinusoidal behavior of such fluctuations, and they are treated in the

framework of resistive MHD using the Spitzer resistivity model. The contribu-

tion of the MGR process in the solar coronal heating is thus addressed in the

scope of magnetic fluctuations generated by the turbulent motion of the photo-

spheric footpoints, hence the thesis title: “Effects of Fluctuations on Magnetic

Reconnection and heating in the Solar Corona”.

1.9 Thesis Overview

This thesis is organized as follows:

• In Chapter 2, we discuss how the basic plasma equations are derived from

the Vlasov equation. Next, we present two sets of equations along with the

Maxwell’s equations for the two-fluid plasma model. Then, after applying

some useful assumptions, we conclude the one-fluid plasma approach, the

MHD model. Finally, we introduce the equations of our model using the

two-dimensional resistive MHD equations, modified by adding magnetic

field fluctuations and the z-components of velocity and magnetic field.

• In Chapter 3, we discuss the methodology of space discretization using the

finite volume approach. We present a proper way to discretize a conserva-

tion equation in one dimensional space. Then, we study the discretization

process of the temporal term, and discuss the difference among three time

schemes: explicit, implicit and Crank-Nicolson. Finally, the discretized
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equations are transformed into a system of linear equations of the form

Aφ = B, where φ’s are the unknowns we seek. Such a system is solved

using either direct or iterative methods.

• In Chapter 4, we present a brief literature about the numerical methods

that have been proposed for solving the compressible and incompressible

Euler and Navier-Stokes equations. We focus only on SIMPLE and PISO

algorithms, which are pressure based algorithms, and they are used to guar-

antee the continuity equation. We also present the BPISO algorithm which

uses the method of magnetic field projection, and it is used to reduce the

divergence of the magnetic field. Then follows a discussion about the fea-

tures of the openFOAM code, the code we use to solve our basic equations

with the help of PISO and BPISO methods.

• In Chapter 5, we check out the validity of our MHD code using three test

cases in the literature. Two cases are done to test the dynamics of the

MHD flow with and without magnetic field. The third case is performed to

test the ability of our code in handling the MGR process. The three test

cases show good agreement with the literature.

• In Chapter 6, we assume sinusoidal fluctuations whose angular frequency

and wavenumber are selected based on the observed time-scales of the pho-

tospheric footpoint motion. Then follows the simulation setup: the mesh

size, the initial and boundary conditions. Finally in this chapter, we present

and compare the results of three MGR cases, with and without fluctuations,

using the Spitzer resistivity model with a zero initial velocity. The results

show that the fluctuations contribute significantly to reconnection and heat

processes of the solar corona.

• In Chapter 7, we perform two runs of new MGR cases applying the uniform

resistivity model instead of the Spitzer one, with and without magnetic
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fluctuations, using the same initial and boundary conditions and the same

mesh as in Chapter 6. We find that the fast MGR process is not achieved

when using uniform resistivity in the framework of resistive MHD model.

• In Chapter 8, we do two runs simulating other MGR cases, with and without

fluctuations, using the same Spitzer-like resistivity form of Chapter 6 and

starting with a non-zero initial velocity along the outflow direction. We

present one part of the new results and remove the other part due to the

presence of numerical instabilities near the boundaries. Reducing these

numerical instabilities is related to the choice of the boundary conditions

that are convenient with those cases, and this is left for future work.

• In Chapter 9, we summarize all what has been done in this thesis and we

provide the conclusion of our work. Of course, this is not the end, a future

work is also presented showing that our work can address many applications

in astrophysical plasma systems and laboratory plasma devices as well.
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Chapter 2

Plasma Modeling - Basic

Equations

2.1 Introduction

A plasma is a complex system because the motion of the particles and the electro-

magnetic fields are interdependent. Understanding and modeling the dynamics of

such a system is a challenging task. There are different approaches modeling the

plasma behavior, but they can be broadly divided into two classes: microscopic

modeling and macroscopic modeling [74].

Microscopic modeling considers the plasma behavior on the length-scale of the

particles’ orbits around the magnetic field lines, defined as the Larmor radius.

For example, in tokamak plasma the ion Larmor radius is 10−3 m and the elec-

tron’s is 10−5 m, while the ion Larmor radius in the solar corona plasma is few

meters and that for electrons is few centimeters [8].

The other class is the macroscopic modeling, which considers the plasma behavior

on the length-scale of the total plasma size by averaging over the smaller-scale

behavior. The macroscopic models are used to further simplify the problem by

making some additional physical assumptions about the plasma’s behavior. In
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the two-fluid treatment, the ions and electrons in the plasma are modeled as

fluids, each described by a number of macroscopic parameters including density,

pressure and mean fluid velocity at each point in the plasma. The evolution of

these quantities is described by a set of equations obtained by averaging over

the equations that describe the kinetic model. Magnetohydrodynamics (MHD)

is a further simplification of the two-fluid model in which the ion and electron

fluids are combined as a single fluid. The main approximations made in the MHD

model is to neglect the mass of the electrons compared to the ion mass, and to

apply the quasi-neutrality condition namely ni ≈ ne. Those approximations are

satisfied for the plasmas used in contemporary tokamak fusion experiments as

well as in many solar activities such as solar flares and geomagnetic storms [5].

In what follows, we present the two-fluid plasma model in which electrons and

ions are considered as two separate fluids interacting together with the electro-

magnetic fields. The electron and ion equations are all derived from the famous

Vlasov equation. A little review of such equation is useful to understand where

the fundamental plasma equations are coming from. Since we are dealing with

charged species, the Maxwell’s equations for the electromagnetic fields ~E and ~B

are also introduced. Further, having applied some useful assumptions, we can

easily recover the MHD model from the two-fluid model. Finally, we present the

equations of our model using the two-dimensional resistive MHD equations.

2.2 The Vlasov Equation

The Vlasov equation is a differential equation describing time evolution of the

distribution function of plasma consisting of charged particles with long-range (for

example, Coulomb) interaction. In what follows, we want to show the derivation

of the Vlasov equation.

The phase space is a six-dimensional space whose a volume element is d3vd3x,

where v and x refer to speed and position respectively. The distribution function
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representing the number density of particles n found in the vicinity of a point

in the six-dimensional phase space is f(~x,~v, t), where ~x and ~v denote the three-

dimensional vectors of position and velocity respectively.

Having been averaged over the velocity space, the number density of particles in

physical space is given simply by

n(~x, t) =

∫
f(~x,~v, t)d3v.

The number of particles located within a volume element d3x in physical space

and having velocities lying within a volume element d3v in velocity space is defined

as dN = f(~x,~v, t)d3vd3x. Thus, the number of particles N in a volume of phase

space is given by:

N =

∫
f(~x,~v, t)d3vd3x.

Conservation of the number of particles requires that the total time derivative

of N must vanish, where the “total” time derivative means that we allow the

boundary surface to move with the particles that lie on it:

0 =
dN

dt
=

∫ (
∂f

∂t
+ ~∇.

(
f ~U
))

d3vd3x. (2.1)

Here, ~∇ denotes a six-component divergence operator, whose components are

( ~∇x, ~∇v) and ~U denotes a six-dimensional vector in phase space. Since Equa-

tion (2.1) must hold for every volume element in phase space, we must have

∂f

∂t
+ ~∇.

(
f ~U
)

= 0. (2.2)

It is necessary to keep in mind that the components of ~U are
(
~̇x, ~̇v
)

=
(
~v,

~F
m

)
.

The divergence of ~U is then written as

~∇.~U = ~∇x.~U + ~∇v.~U = ~∇x.~v + ~∇v.
( ~F
m

)
= 0,
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and this is true for ~F independent of ~v such as electric and gravitational forces.

Now we can rewrite Equation (2.2) as

∂f

∂t
+ ~v.~∇f +

~F

m
.
∂f

∂~v
= 0,

where ~∇ here represents our familiar gradient:

~∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ.

We may now give our final result, the Vlasov equation, for the case of plasma

whose particles are acted upon by electric and magnetic forces, the so-called the

Lorentz force

~F = q( ~E + ~v × ~B),

as
∂f

∂t
+ ~v.~∇f +

q

m
( ~E + ~v × ~B).

∂f

∂~v
= 0, (2.3)

where ~E and ~B represent the electromagnetic fields.

2.3 The Moments Equations

The full plasma equations are all derived from the Vlasov equation. They can

be obtained by integrating Equation (2.3) over velocity space [75]. If we consider

the entire plasma system as a single fluid medium, the following integrations are

useful in obtaining the one-fluid plasma equations.

•
∫

(Eq. 2.3)d3v yields the zeroth-order moment or the continuity equation.

•
∫
m~v(Eq. 2.3)d3v yields the first-order moment or the momentum balance

equation.

•
∫

1
2
mv2(Eq. 2.3)d3v yields the second-order moment or the energy equation.
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2.3.1 Zeroth-Order Moment: The Continuity Equation

In order to derive the continuity equation, we have to integrate the Vlasov equa-

tion, Equation (2.3), over the velocity space, i.e.

∫
∂f

∂t
d3v︸ ︷︷ ︸
©1

+

∫
~v.~∇fd3v︸ ︷︷ ︸
©2

+

∫
q

m
( ~E + ~v × ~B).

∂f

∂~v
d3v︸ ︷︷ ︸

©3

= 0. (2.4)

The first two terms are straightforwardly evaluated as follows:

©1 gives ∂
∂t

( ∫
fd3v

)
= ∂n

∂t
and ©2 gives ~∇.

( ∫
~vfd3v

)
= ~∇. < n~v >,

where the operator <> represents the average value over the velocity space.

Let us define the average velocity to be ~u, such that < ~v >= ~u. Thus, the second

term becomes

and ©2 = ~∇. < n~v > = ~∇.(n~u).

Concerning the last term we have to divide it into two sub-terms:©3 =⇒

∫
q

m
( ~E + ~v × ~B).

∂f

∂~v
d3v =

q

m

∫
~E.
∂f

∂~v
d3v︸ ︷︷ ︸

©3a

+
q

m

∫
(~v × ~B).

∂f

∂~v
d3v︸ ︷︷ ︸

©3b

. (2.5)

By using the Gauss’ divergence theorem in velocity space, we can write ©3a as

∫ +∞

−∞

~E.
∂f

∂~v
d3v =

∫ +∞

−∞

∂

∂~v
.(f ~E)d3v =

∫ +∞

−∞
(f ~E). ~dS = 0.

Note that the surface area S in velocity space goes as v2 and the distribution

function f goes as e−v
2

(we assume here a Maxwellian distribution), so as v −→

∞ ; f −→ 0 more quickly than S −→ ∞.
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Having used the Gauss’ divergence theorem in velocity space again and the fact

that the term ∂
∂~v
.(~v × ~B) vanishes, we can deduce the following

and ©3b =
∫ +∞
−∞

∂
∂~v
.[f(~v × ~B)]d3v −

∫ +∞
−∞ f ∂

∂~v
.(~v × ~B) = 0.

The summation of ©1 , ©2 and ©3 together gives the zeroth-order moment or

simply the continuity equation for particle density n, and it is written as

∂n

∂t
+ ~∇.(n~u) = 0. (2.6)

Let us define further the mass density ρ = mn for a single-fluid plasma. The

continuity equation for the mass density is thus determined by multiplying Equa-

tion (2.6) by the mass m and it is given as follows

∂ρ

∂t
+ ~∇.(ρ~u) = 0. (2.7)

2.3.2 First-Order Moment: The Momentum Balance Equa-

tion

The first-order moment or simply the momentum balance equation is obtained

by multiplying the Vlasov equation, Equation (2.3), by m~v and integrating over

the velocity space,

∫
m~v

∂f

∂t
d3v︸ ︷︷ ︸

©1

+

∫
m~v(~v.~∇f)d3v︸ ︷︷ ︸
©2

+ q

∫
~v( ~E + ~v × ~B).

∂f

∂~v
d3v︸ ︷︷ ︸

©3

= ~0. (2.8)

• Evaluating©1 :∫
m~v

∂f

∂t
d3v = m

∂

∂t

∫
(~vf)d3v = m

∂(n~u)

∂t
.

• Evaluating©2 :
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∫
m~v(~v.~∇f)d3v = m~∇.

∫
(f~v~v)d3v = m~∇.(< n~v~v >).

Let us now separate the velocity ~v into the average fluid velocity ~u and a thermal

velocity ~w, such that ~v = ~u+ ~w. So we can expand now < ~v~v > as

< ~v~v >=< ~u~u > + < ~w~w > + < ~u~w > + < ~w~u > .

Since < ~u >= ~u (average velocity) and < ~w >= 0 (thermal velocity), so we have

and < ~u~u >= ~u~u and < ~u~w >= ~u < ~w >=< ~w > ~u = 0.

Therefore, we can write

m~∇.(< n~v~v >) = m~∇.(n~u~u) +m~∇.(< n~w~w >).

Define the pressure or stress tensor to be:

P = m < n~w~w >,

thus we end up with:and ©2 = m~∇.(< n~v~v >) = m~∇.(n~u~u) + ~∇.P.

• Evaluating©3 :

It is easy to show that: ~v( ~E+~v× ~B).∂f
∂~v

= ∂
∂~v
.[f~v( ~E+~v× ~B)]−f [( ~E+~v× ~B)].

So ©3 = q
∫ +∞
−∞

∂
∂~v
.[f~v( ~E+~v× ~B)]d3v− q

∫ +∞
−∞ f ~Ed3v− q

∫ +∞
−∞ f(~v× ~B)d3v,

= q

∫ +∞

−∞
[f~v( ~E + ~v × ~B)]. ~dS − qn ~E − qn~u× ~B = ~0− qn( ~E + ~u× ~B).

The summation of ©1 , ©2 and ©3 together gives the first-order moment or

simply the momentum balance equation, and it is written as

∂(mn~u)

∂t
+ ~∇.(mn~u~u) = −~∇.P + nq( ~E + ~u× ~B). (2.9)
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Finally, the momentum balance equation in terms of the mass density ρ is thus

given as follows

∂(ρ~u)

∂t
+ ~∇.(ρ~u~u) = −~∇.P + nq( ~E + ~u× ~B). (2.10)

2.3.3 Second-Order Moment: The Energy Equation

In a similar way to the momentum equation, the energy equation is obtained by

multiplying the Vlasov equation by 1
2
mv2 (v2 = ~v.~v) and then integrating it over

the velocity space. The new equation is

∫
1

2
mv2∂f

∂t
d3v︸ ︷︷ ︸

©1

+

∫
1

2
mv2(~v.~∇f)d3v︸ ︷︷ ︸
©2

(2.11)

+ q

∫
1

2
v2( ~E + ~v × ~B).

∂f

∂~v
d3v︸ ︷︷ ︸

©3

= 0.

• Evaluating©1 :

∫
1

2
mv2∂f

∂t
d3v =

∂

∂t

∫
(
1

2
mv2f)d3v =

∂

∂t

(1

2
m < n~v2 >

)
.

Let us expand again the velocity ~v in terms of ~u and ~w, we thus have

~v2 = ~u2 + ~w2 + 2~u.~w.

Using the fact that < ~w >= ~0 and < ~w2 >= Trace(P ), the first term yields

and ©1 = ∂
∂t

(
1
2
mnu2 + 3

2
p
)

,

where p is the scalar thermal pressure considering the pressure tensor P to be

isotropic in all directions.
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• Evaluating©2 :

It is not straightforward to do the derivation of the second term. In what follows,

we show only a simplification, and if you are interested for more details, please

visit Section 7.1 of [76] and Chapter 3 of [77]. Anyway, the second term can be

expressed as

©2 =
∫

1
2
mv2(~v.~∇f)d3v = ~∇.

∫
(1

2
mv2~vf)d3v = ~∇.

(
1
2
mnu2 + 3

2
p
)
~u+ ~∇.

(
P~u
)
.

• Evaluating©3 :

It is easy to show that ©3 can be written as

∫
1

2
v2( ~E + ~v × ~B).

∂f

∂~v
d3v =

∫
1

2
v2 ∂

∂~v
.
[(
~E + ~v × ~B

)
f
]
d3v. (2.12)

There are 9 terms in the integration of Equation (2.12), in which six of them are

in the following form:

∫ ∫ ∫
1

2
v2
x

∂

∂vy

(
Eyf

)
d3v =

1

2

∫ ∫
v2
x

[ ∫ ∂

∂vy

(
Eyf

)
dvy

]
d2v (2.13)

=
1

2

∫ ∫
v2
xEy
[
f
]vy=+∞
vy=−∞d2v

= 0,

and the rest three terms of Equation (2.12) are in the following form:

∫ ∫ ∫
1

2
v2
x

∂

∂vx

(
Exf

)
d3v =

1

2

∫ ∫ [ ∫
v2
x

∂

∂vx

(
Exf

)
dvx

]
d2v (2.14)

=
1

2

∫ ∫
Ex
[
v2
xf
]vx=+∞
vx=−∞d2v − 1

2

∫ ∫ ∫
2Exvxfdvxd

2v

= 0− Exuxn.
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Therefore, and ©3 = −nq(Exux + Eyuy + Ezuz) = −nq
(
~E.~u
)
.

The summation of ©1 , ©2 and ©3 together gives the second-order mo-

ment or simply the energy equation

∂

∂t

(1

2
mnu2 +

3

2
p
)

+ ~∇.
(1

2
mnu2 +

3

2
p
)
~u = −~∇.

(
P~u
)

+ nq
(
~E.~u
)
. (2.15)

Note that Equation (2.15) represents the hydrodynamic (kinetic + internal) en-

ergy equation. The kinetic energy equation is obtained by making the scalar

product of ~u (the average fluid velocity) with the momentum equation, Equa-

tion (2.9). This equation is thus given as follows

∂

∂t

(1

2
mnu2

)
+ ~∇.

(1

2
mnu2

)
~u = −~u.

(
~∇.P

)
+ nq

(
~E.~u
)
. (2.16)

In order to get the internal energy equation alone, we have to subtract the kinetic

energy equation from the hydrodynamic energy equation, i.e. Equation (2.15) −

Equation (2.16), which yields

∂

∂t

(3

2
p
)

+ ~∇.
(3

2
p
)
~u = −P ~∇.~u. (2.17)

Let us further assume that the plasma gas is ideal and monoatomic, and the

pressure tensor P is reduced to the thermal pressure p, which is a scalar quantity.

The thermal pressure p is thus written in terms of the internal energy per unit

mass ε as

p =
2

3
mnε =

(5

3
− 1
)
mnε = (γ − 1)ρε, (2.18)

where γ (= 5/3) is the ratio of the specific heats, and ρ = mn is again the plasma

mass density. Equation (2.18) is known as the equation of state and it is needed

to close any system of fluid equations. Finally, the internal energy equation is
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thus written as
∂(ρε)

∂t
+ ~∇.

(
ρ~uε
)

= −p~∇.~u. (2.19)

2.4 The Two-Fluid Plasma Model

Equations. (2.7, 2.10, 2.19) are derived for one species-fluid. In the two-fluid

plasma approach, we have to take into consideration both electrons and ions

as two separate fluids. The evolution of the particle densities of the ions and

electrons are expressed by the continuity equations

∂ρi
∂t

+ ~∇.(ρi~ui) = 0, (2.20)

∂ρe
∂t

+ ~∇.(ρe ~ue) = 0, (2.21)

where ρi/ρe are the ion/electron mass densities and ~ui/~ue are the ion/electron

fluid velocities.

The Vlasov equation, Equation (2.3) also called the collisionless Boltzmann equa-

tion, was derived for collisionless particles. However, if collision between particles

takes place, extra terms should be added on the right hand side of Equation (2.3),

and the obtained equation is the famous Boltzmann equation. One important

term is the momentum transfer ~R between particles due to collisions. Thus, the

first moment of the Vlasov equation, including the effect of momentum transfer,

yields the momentum equation for each species

∂(ρi~ui)

∂t
+ ~∇.(ρi~ui~ui) = −~∇pi + nie( ~E + ~ui × ~B) + ~Ri, (2.22)

∂(ρe ~ue)

∂t
+ ~∇.(ρe ~ue ~ue) = −~∇pe − nee( ~E + ~ue × ~B) + ~Re, (2.23)

where pi/pe are the ion/electron thermal pressures, and e is the elementary charge.

~E is the electric field, and ~B is the magnetic field. ~Ri and ~Re are the momentum

transfers between electrons and ions, and for a good approximation it can be
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assumed that ~Ri = − ~Re.

The second moment of the Vlasov equation yields internal energy equations for

each species

∂(ρiεi)

∂t
+ ~∇.

(
ρi~uiεi

)
= −pi~∇.~ui +Qi, (2.24)

∂(ρeεe)

∂t
+ ~∇.

(
ρe ~ueεe

)
= −pe~∇. ~ue +Qe, (2.25)

where Qi/Qe are the ion/electron generated heat associated with resistivity, and

they are arisen from the collision terms on the right hand side of Equation (2.3).

In other words, Qi is the heat transferred to the ions due to collisions with the

electrons, and Qe is the heat transferred to the electrons due to collisions with

the ions.

2.5 The Maxwell’s Equations

As mentioned before, electrons and ions are also governed by the electromagnetic

fields ~E and ~B, since they are charged particles. By combining the electric field

~E and the magnetic field ~B to the fluid, we have to survey other equations which

describe their behavior. Those equations are the famous Maxwell’s equations [78],

and they are given as follows

1

c2

∂ ~E

∂t
+ µ0

~J = ~∇× ~B, (2.26)

∂ ~B

∂t
+ ~∇× ~E = ~0, (2.27)

~∇. ~E =
ρc
ε0

, (2.28)

~∇. ~B = 0, (2.29)

where c is the speed of light. ε0 and µ0 are respectively the permittivity and

the permeability of vacuum, such that ε0µ0 = 1/c2. ~J = e(ni~ui − ne ~ue) is the
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current density, where e is the elementary charge. ρc = e(ni − ne) is the charge

density. The first two equations, Equations (2.26) and (2.27), are respectively the

Ampère’s law and the Faraday’s law. The last two equations, Equations (2.28)

and (2.29), represent two constraints for the electromagnetic fields ~E and ~B.

2.6 MHD Model

2.6.1 The Fluid Equations

In order to derive the continuity, the momentum, and the energy equations of

the MHD model, we consider the simplest plasma of fully ionized hydrogen. The

mass of the electron is neglected relative to that of the ion (mi ≈ 1836me).

Usually quasi-neutrality condition is applied for such a plasma namely ne ≈ ni,

which in turn leads to vanish the charge density (ρc ≈ 0), and allows us to write

the current density as ~J ≈ nie(~ui − ~ue). We introduce the mass m, the particle

density n, the mass density ρ, the mean velocity ~u, and the thermal pressure pth

in the single-fluid (MHD) description as

• m = mi +me = mi(1 + me

mi
) ≈ mi,

• n = mini+mene

mi+me
≈ ni ≈ ne,

• ρ = ρi + ρe = mini +mene ≈ nmi(1 + me

mi
) ≈ nm,

• ~u = ρi ~ui+ρe ~ue
ρi+ρe

≈ ~ui,

• pth = pi + pe.

By summing up the two continuity equations, Equations (2.20) and (2.21), and

exploiting the definitions of ρ and ~u, we get the continuity equation for the MHD

model,
∂ρ

∂t
+ ~∇.(ρ~u) = 0. (2.30)
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Now, if we sum up the two momentum equations, Equations (2.22) and (2.23),

and exploit the definitions of ρ, ~u, the current density ~J and the thermal pressure

pth, we get the momentum equation for the MHD model,

∂(ρ~u)

∂t
+ ~∇.(ρ~u~u) = −~∇pth + ~J × ~B. (2.31)

Note that all terms that are proportional to the electron inertia are omitted.

Furthermore, before presenting the energy equation of the MHD model and to

close the full set of the MHD equations, an equation for the current density is

needed. For negligible displacement currents, we simply use the Ampère’s law in

the MHD limit (u << c) and ~B as a dynamic variable. In other words, we use

the Faraday’s law (Equation 2.27) as it is and get the current density from the

Ampère’s law (Equation 2.26) as

~J =
1

µ0

~∇× ~B. (2.32)

By using Equation (2.32), we can expand the last term on the right hand side of

Equation (2.31) as

~J × ~B = −~∇
( B2

2µ0

)
+

1

µ0

~∇.( ~B ~B)− 1

µ0

~B~∇. ~B. (2.33)

The momentum equation thus becomes

∂(ρ~u)

∂t
+ ~∇.(ρ~u~u) = −~∇

(
pth +

B2

2µ0

)
+

1

µ0

~∇.( ~B ~B)− 1

µ0

~B~∇. ~B. (2.34)

Similarly, following the same procedure by summing up the two energy equations,

Equations (2.24) and (2.25), we get the energy equation for the MHD model,

∂(ρε)

∂t
+ ~∇.

(
ρ~uε
)

= −pth~∇.~u+Qi +Qe. (2.35)
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For a good approximation as given in Chapter II of [79], we can express the

full generated heat due to collisions between electrons and ions in terms of the

resistivity η as

Qe +Qi ≈ η| ~J |2,

where η| ~J |2(= ηJ2) is also referred to as the Joule heating term. Thus, the final

form of the internal energy equation is

∂(ρε)

∂t
+ ~∇.

(
ρ~uε
)

= −pth~∇.~u+ ηJ2. (2.36)

2.6.2 The Ohm’s Law

To this stage, we still need an equation for the electric field ~E, and this can be

done using the Ohm’s law. The full derivation of Ohm’s law is not straightfor-

ward. However, the easiest way to derive it is to use the momentum balance

equation for electrons, Equation (2.23). By neglecting the left hand side due to

the electron inertia, Equation (2.23) becomes

~0 = −~∇pe − ne( ~E + ~ue × ~B) + ~R. (2.37)

If we solve for the electric field ~E, we get

~E = − 1

ne
~∇pe − ~ue × ~B +

1

ne
~R. (2.38)

Moreover, by using the quasi-neutrality condition, the electron velocity can be

written as ~ue = ~u − 1
ne
~J , and the fluid bulk velocity is ~ui = ~u. Additionally,

by considering plasma particles to be collisional, the ion-electron collision term

~R with frequency νei is assumed to be proportional to the velocity difference,

~R = menνei(~ui − ~ue) [80]. The resistivity for such a collisional plasma is defined
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as η = meνei
ne2

[80]. The collisional term ~R is thus written in terms of η as

~R = neη ~J. (2.39)

Finally, the generalized form of Ohm’s law is

~E + ~u× ~B = η ~J +
1

ne
~J × ~B − 1

ne
~∇pe, (2.40)

where the first term on the right hand side is the resistive term, the second is

the Hall term, and the third is the electron pressure term. The Hall and the

electron pressure terms introduce new physics into the system at short length-

scales. They enter in at the ion inertial length (ion skin depth) which is the

characteristic length-scale for ions to be accelerated by electromagnetic forces in

a plasma. In the solar corona for particle density 1015 m−3, the inertial length is

∼ 7 m [8]. Thus, for large length-scales such as a current sheet width of roughly

100 km, the resistive term dominates all other terms on the right hand side. We

then end up with the reduced Ohm’s law given by

~E + ~u× ~B = η ~J. (2.41)

2.6.3 The Induction Equation

Usually in MHD calculations, it is useful to make coupling among the Faraday’s

law (Equation 2.27), the reduced Ampère’s law (Equation 2.32) and the reduced

Ohm’s law (Equation 2.41). The resulted equation is the so called “induction”

equation, and it governs the time and space evolution of the magnetic field ~B

coupled with the plasma velocity ~u and the resistivity η. As a first step in deriving

this equation, by substituting the electric field of the reduced Ohm’s law in the
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Faraday’s law, we get the basic form of the induction equation which reads

∂ ~B

∂t
− ~∇× (~u× ~B)︸ ︷︷ ︸

©1
+ ~∇× (η ~J)︸ ︷︷ ︸
©2

= ~0. (2.42)

It is easy to show that ©1 = ~∇.( ~B~u)− ~∇.(~u ~B). Concerning©2 , we have to use

the reduced Ampère’s law and then do few calculation steps in order to get the

final form of the induction equation. Thus, by using Equation (2.32),©2 can be

written as

~∇× (η ~J) =
1

µ0

[
~∇( ~B.~∇η) + ~∇.(~∇η ~B − ~B~∇η)︸ ︷︷ ︸

©2a
− ~∇2(η ~B) + ~∇(η~∇. ~B)︸ ︷︷ ︸

©2b

]
. (2.43)

The second term of ©2a can be written as follows

~∇.(~∇η ~B − ~B~∇η) = ẑ × ~∇
[
(~∇η × ~B).ẑ

]
.

After doing some calculation steps, we find ©2a equals to

©2a = ~B~∇2η + ~∇η.~∇ ~B −
[
ẑ.(~∇η × ~∇By)

]
x̂+

[
ẑ.(~∇η × ~∇Bx)

]
ŷ, (2.44)

where the last two terms of Equation (2.44) can easily be shown to be vanished

according to the following

−
[
ẑ.(~∇η × ~∇By)

]
x̂+

[
ẑ.(~∇η × ~∇Bx)

]
ŷ = −ẑ.~∇×

[
η~∇( ~B × ẑ)

]
= −~∇×

[
η~∇
[
( ~B × ẑ).ẑ

]]
= ~0.
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Thus, the term ©2 of Equation (2.42) is now written as

~∇× (η ~J) =
1

µ0

[
~B~∇2η + ~∇η.~∇ ~B − ~∇2(η ~B) + ~∇(η~∇. ~B)

]
(2.45)

=
1

µ0

[
− ~∇.(η~∇ ~B) + ~∇(η~∇. ~B)

]
.

Finally, the induction equation can be written in its final form as

∂ ~B

∂t
+ ~∇.(~u ~B)− ~∇.

( η
µ0

~∇ ~B
)

= ~∇.( ~B~u)− ~∇
( η
µ0

~∇. ~B
)
. (2.46)

2.6.4 The Total Energy Equation

The total energy per unit mass is Etotal = ε + Ek + Emag, where ε, Ek and

Emag are respectively the internal, kinetic and magnetic energy per unit mass.

The equation for ε is given above by Equation (2.36). The equations for Ek

and Emag are obtained by making the scalar product of ~u and µ−1
0
~B respectively

with the momentum equation of the MHD model and the Faraday’s law, i.e.

Equation (2.31) and Equation (2.27), where the electric field ~E is determined

according to the reduced Ohm’s law, i.e. Equation (2.41). In what follows, we

derive the kinetic and the magnetic energy equations separately, and then we add

them up along with the internal energy equation in order to get the total energy

equation.

By making the dot product of ~u with Equation (2.31), we obtain the kinetic

energy equation,

∂(ρEk)

∂t
+ ~∇.(ρ~uEk) = −~u.~∇pth + ~u.( ~J × ~B), (2.47)

where ρEk = ρu2/2 is the kinetic energy density.

The magnetic energy equation is not straightforward, and it is obtained by doing

few calculation steps. Let us start by making the scalar product of µ−1
0
~B with
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Equation (2.27), and this yields the following equation

∂(ρEmag)

∂t
+

~B

µ0

.~∇× ~E = 0, (2.48)

where ρEmag = B2/2µ0 is the magnetic energy density. Using now the reduced

Ohm’s law, Equation (2.41), we can write Equation (2.48) as

∂(ρEmag)

∂t
+

1

µ0

~∇.(η ~J × ~B)︸ ︷︷ ︸
©1

− 1

µ0

~∇.
[
(~u× ~B)× ~B

]
︸ ︷︷ ︸

©2

= −ηJ2 − ~u.( ~J × ~B), (2.49)

where©1 gives
~B
µ0
.
[
~∇× (η ~J)

]
−ηJ2 and ©2 gives 1

µ0
~∇.
[
~B(~u. ~B)

]
− ~∇.

(
B2

µ0
~u
)
.

The magnetic energy equation is thus written now as

∂(ρEmag)

∂t
+ ~∇.(ρ~uEmag) = − ~∇.

(
~u
B2

2µ0

)
+

1

µ0

~∇.
[
~B(~u. ~B)

]
(2.50)

−
~B

µ0

.
[
~∇× (η ~J)

]
− ~u.( ~J × ~B).

The total energy equation is thus obtained by summing up Equation (2.36),

Equation (2.47) and Equation (2.50) together, and it is given in its conservative

form as

∂(ρEtotal)

∂t
+ ~∇.

(
ρ~uEtotal

)
= − ~∇.

[
~u
(
pth +

B2

2µ0

)]
+ ηJ2 (2.51)

+
1

µ0

~∇.
[
~B(~u. ~B)

]
−

~B

µ0

.
(
~∇× (η ~J)

)
− 1

µ0

(~u. ~B)~∇. ~B.
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Summarizing the above, Equations (2.30, 2.34, 2.46, 2.51) along with the reduced

Ampère’s law (Equation 2.32) and the ideal gas law (Equation 2.18) form the full

set of equations of the resistive MHD model namely

∂ρ

∂t
+ ~∇.(ρ~u) = 0 ,

∂(ρ~u)

∂t
+ ~∇.(ρ~u~u) = − ~∇

(
pth +

B2

2µ0

)
+

1

µ0

~∇.( ~B ~B)

− 1

µ0

~B~∇. ~B,

∂ ~B

∂t
+ ~∇.(~u ~B)− ~∇.

( η
µ0

~∇ ~B
)

= + ~∇.( ~B~u)− ~∇
( η
µ0

~∇. ~B
)
, (2.52)

∂(ρEtotal)

∂t
+ ~∇.

(
ρ~uEtotal

)
= − ~∇.

[
~u
(
pth +

B2

2µ0

)]
+ ηJ2

+
1

µ0

~∇.
[
~B(~u. ~B)

]
−

~B

µ0

.
(
~∇× (η ~J)

)
− 1

µ0

(~u. ~B)~∇. ~B.

2.7 The MHD Equations with Fluctuations

In this section, we first describe how the magnetic fluctuations are introduced for

the coronal magnetic field. Then, we list the resistive MHD equations including

the fluctuation terms.

As outlined in Chapter 1, our basic assumption is that the coronal magnetic

field can be affected by fluctuations, which thought to be originated from the

turbulent motion of the photospheric footpoints. We further assume that the

fluctuations are lying in two-dimensional space, the x − y plane. To implement

the fluctuations into the MHD equations, we consider the total magnetic field ~B

consisting of two parts ~BM and ~BF , such that

~B = ~BM + ~BF , (2.53)
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where ~BM is the mean magnetic field, and ~BF represents the magnetic field

fluctuations. Furthermore, in order to insure initially the momentum balance

with a uniform plasma pressure, the initial coronal magnetic field must have a z-

component Bz. As a consequence, the coronal magnetic field, including magnetic

field fluctuations, is now generalized as

~B = ~BM + ~BF︸ ︷︷ ︸
x−y plane

+Bz ẑ. (2.54)

Note that, in the present work, we refer to ~BM as the coronal magnetic field in

the x− y plane ( ~BM = Bxx̂+ Byŷ). Moreover, we use the resistive MHD model

in which we insert the magnetic field according to Equation (2.54). The basic

equations of our model, including the fluctuation part ~BF , are thus obtained as

follows

∂ρ

∂t
+ ~∇.(ρ~uxy) = 0, (2.55)

∂(ρ~uxy)

∂t
+ ~∇.(ρ~uxy~uxy) = − ~∇p+ µ−1

0
~∇.
(
~BM

~BM

)
(2.56)

− µ−1
0

(
~BM

~∇. ~BM

)
+ ~Suxy ,

∂(ρuz)

∂t
+ ~∇.(ρ~uxyuz) = + µ−1

0
~∇.( ~BMBz)− µ−1

0 Bz
~∇. ~BM (2.57)

+ Suz ,

∂ ~BM

∂t
+ ~∇.(~uxy ~BM)− µ−1

0
~∇.(η~∇ ~BM) = + ~∇.( ~BM~uxy)− µ−1

0
~∇(η~∇. ~BM) (2.58)

+ ~SBM
,

∂Bz

∂t
+ ~∇.(~uxyBz)− µ−1

0
~∇.(η~∇Bz) = + ~∇.( ~BMuz) + SBz , (2.59)

∂(ρEtotal)

∂t
+ ~∇.

(
ρ~uxyEtotal

)
= − ~∇.(~uxyp) + η ~J2 (2.60)

+µ−1
0
~∇.
[
~BM(~uxy. ~BM + uzBz)

]
− µ−1

0

(
~BM +Bz ẑ

)
.
(
~∇× (η ~J)

)
−µ−1

0 (~uxy. ~BM + uzBz)~∇. ~BM + SE.
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The various quantities mentioned in the above equations are defined below:

• The plasma density is ρ, the plasma bulk velocity in the x− y plane is ~uxy

(= uxx̂+uyŷ), and ~∇ is the gradient operator in the x−y plane. Moreover,

we consider that the flow is uniform in the z-direction which implies ∂z = 0.

• The total pressure is defined as p = pth + pmag, where pth and pmag are

respectively the thermal and the magnetic pressure. Considering a hydrogen

plasma in the corona as a monoatomic ideal gas, the thermal pressure can

be written as pth = (γ−1)ρε, where γ = 5/3 is the ratio of the specific heats

and ρ is the plasma density. The internal energy per unit mass ε is related

to the plasma temperature T by ε = (γ − 1)−1RMT , where RM (= 8250

SI units) is the ideal gas constant per molar mass. On the other hand, the

magnetic pressure is pmag = B2/2µ0, where µ0 is the permeability of free

space and B is the magnitude of the total coronal field ~B given previously

by Equation (2.54).

• The resistivity η used is either uniform or Spitzer-like. For reasons discussed

later in Chapter 6, we artificially enhance the value of η by a multiplication

factor in order to avoid small scales in our calculations at which the resistive

MHD description fails.

• Recall that the total energy per unit mass is Etotal = ε+Ek +Emag, where

Ek = (u2
x + u2

y + u2
z)/2 is the kinetic energy per unit mass, and Emag is the

magnetic energy per unit mass equals to pmag/ρ.

• The current density ~J is obtained from the Ampère’s law according to

~J = µ−1
0
~∇× ~B.

• The terms ~Suxy , Suz , ~SBM
, SBz , and SE are handled as sources and sinks

to the main plasma quantities due to fluctuations, and they are written in

terms of ~BF as follows:
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– ~Suxy = +µ−1
0

[
~∇.
(
~BM

~BF + ~BF
~BM + ~BF

~BF

)
− ~BF

~∇. ~BM

]
,

– Suz = +µ−1
0
~∇.
(
~BFBz

)
,

– ~SBM
= −∂ ~BF/∂t− ~∇.(~uxy ~BF ) + ~∇.

(
η
µ0
~∇ ~BF

)
+ ~∇.( ~BF~uxy),

– SBz = +~∇.
(
~BFuz

)
,

– SE = +µ−1
0

[
~∇.
[
( ~BM + ~BF )(~uxy. ~BF )

]
+ ~∇.

[
~BF (~uxy. ~BM + uzBz)

]
and − (~uxy. ~BF )~∇. ~BM − ~BF .~∇× (η ~J)

]
.

We treat the effects of turbulent motion of the photospheric footpoints as fluctu-

ations in the coronal magnetic fields. In other words, ~BF is an imposed quantity

in the Equations. (2.55)−(2.60) assumed coming from the photosphere. There-

fore, all the coronal quantities in the MHD equations will thus be changed due

to ~BF when exists. Finally, note that the traditional two-dimensional resistive

MHD equations, without fluctuations, are recovered by setting ~BF = ~0, Bz = 0,

uz = 0, and take ~B = ~BM and ~u = ~uxy.
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Chapter 3

Discretization processes and

Algorithms

3.1 Introduction

The study of partial differential equations (PDEs) in complete generality is a vast

undertaking. As almost all of them are not solved analytically, we must rely on

numerical methods. The most conservative one is the finite volume method. In

this chapter, we first discuss the methodology of the finite volume approach by

presenting a proper way to discretize a conservation equation in one dimensional

space. Second, we study the discretization process of the temporal term and use

the appropriate time scheme for our simulation. Third, the discretized equations

are then transformed into a system of linear algebraic equations of the form

Aφ = B. A and B are respectively the matrix and the vector of all known

quantities comprising the coefficients and the source/sink terms of the discretized

equations, and φ’s are the unknowns we seek. Finally, the obtained system of

linear equations is solved using either direct or iterative methods. The direct

methods solve the problem by a finite sequence of operations like solving a linear

system of equations by Gaussian elimination. The iterative methods solve the
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problem using an initial guess to generate a sequence of improving approximate

solutions.

3.2 Finite Volume Method

The finite volume method is based on the integral form of the governing equa-

tions. According to Patankar [81], the most attractive feature of the formulation

in finite volumes is that the conservation principle is satisfied exactly for any

control volume. It is easy to conclude that this principle holds for the entire

solution domain, which is no more than the sum of all control volumes.

As mentioned in the book of Moukalled et al. [82], the Finite Volume Method

(FVM) is a numerical technique that transforms partial differential equations

representing the conservation laws of differential volumes into discrete algebraic

equations over finite volumes (or elements or cells). Similar to the finite difference

or finite element method, the first step in the solution process is the discretization

of the geometric domain into non-overlapping elements or finite volumes. The

partial differential equations are then discretized or transformed into algebraic

equations by integrating them over each discrete element. The system of algebraic

equations is then solved to compute the values of the dependent variable for each

element. In the FVM, some terms of the conservative equation are transformed

into face fluxes and evaluated at the finite volume faces. As the flow entering a

given volume is identical to that coming out from the adjacent volume, the FVM

is strictly conservative. This conservation property inherent to the FVM is the

preferred method in Computational Fluid Dynamics (CFD). Another important

attribute of FVM is that it can be formulated in a physical space on unstruc-

tured polygonal meshes. Finally, in the FVM, it is very easy to implement a

variety of boundary conditions, because the unknown variables are evaluated at

the centroids of the volume elements and not at their boundary faces. These

features have made the FVM perfectly suitable for the numerical simulation of
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Figure 3.1: The discretization of the computational domain in one-dimensional
space.

various applications involving fluid flow, heat and mass transfer, etc... . From an

exclusive prospect limited to solving simple physical and geometric problems on

structured meshes, FVM is now able to handle all types of physics and complex

applications.

3.3 Space Discretization

In the finite volume discretization process, we integrate the governing equation

over the finite volumes of the computational domain, then we transform the vol-

ume integrals of the convection and diffusion terms into surface integrals using

Gauss’ theorem. After that, the surface and volume integrals are transformed into

discrete ones and integrated numerically through the use of integration points.

To clarify this approach, let’s take as an example the following steady-state con-

servation equation for a general scalar variable φ which can be expressed as

~∇.(ρ~vφ)︸ ︷︷ ︸
Convection Term

= ~∇.(Γ~∇φ)︸ ︷︷ ︸
Diffusion Term

+ Q︸︷︷︸
Source Term

. (3.1)

By integrating the above equation over the element P of one-dimensional domain
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shown in Figure (3.1), Equation (3.1) is transformed to

∫
VP

~∇.(ρ~vφ)dv =

∫
VP

~∇.(Γ~∇φ)dv +

∫
VP

Qdv. (3.2)

By using the divergence theorem, we replace the volume integrals of the convec-

tion and diffusion terms by surface integrals, the above equation becomes

∮
∂VP

(ρ~vφ).d~S =

∮
∂VP

(Γ~∇φ).d~S +

∫
VP

Qdv, (3.3)

where bold letters indicate vectors, (.) is the dot product operator, Q represents

the source term, ~S is the surface vector, ~v is the velocity vector, φ is the conserved

quantity, and
∮
∂VP

the surface integral over the volume VP . Let’s continue now in

one-dimensional space, the surface integral represents the sum of all the fluxes of

the variable φ over the faces e and w of the element (or control volume) P. Thus,

Equation (3.3) transforms to

∑
f

ṁfφf −
∑
f

Γf (~∇φ)f .~S =

∫ e

w

Qdx, (3.4)

where ṁ (= ρ~v.~S) represents the mass flow rate evaluated at the faces of the

elements, and the subscript f refers to faces e and w of the control volume P.

The convection and diffusion terms on the left hand side can be thus written as

∑
f

ṁfφf = (ρvφ)e − (ρvφ)w, (3.5)∑
f

Γf (~∇φ)f .~S = (Γ∇φ)e − (Γ∇φ)w.
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Figure 3.2: Linear profile applied to evaluate the variable φ and its derivative on
the faces e and w of the control volume of element P.

The terms v and ∇φ on the right hand sides of Equation (3.5) are respectively

v = ~v.~S and ∇φ = ~∇φ.~S. Thus, Equation (3.4) can be written now as

(ρvφ)e − (ρvφ)w − [(Γ∇φ)e − (Γ∇φ)w] =

∫ e

w

Qdx. (3.6)

Each term on the left hand side of Equation (3.6) should be evaluated using

an interpolation profile. For example, if we apply the linear profile, shown in

Figure (3.2), on the terms (ρvφ)e and (Γ∇φ)w, they can be expressed as

(ρvφ)e = (ρv)eφe = (ρv)e
(φE + φP )

2
, (3.7)

(Γ∇φ)w = Γw

(dφ

dx

)
w

= Γw
φP − φW

(δx)w
.

Having applied the linear profile to all terms, we write Equation (3.6) as

(ρv)e
(φE + φP )

2
− (ρv)w

(φW + φP )

2
+ Γw

φP − φW
(δx)w

− Γe
φE − φP

(δx)e
= QP (∆x)P .

(3.8)

Finally, we get the algebraic form of Eq.(3.8) which reads

apφP = aEφE + aWφW + b =
∑

NB=E,W

aNBφNB + b, (3.9)
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where

aE =
Γe

(δx)e
− (ρv)e

2
, aW =

Γw
(δx)w

+
(ρv)w

2
,

aP =
(ρv)e

2
− (ρv)w

2
+

Γw
(δx)w

+
Γe

(δx)e
, b = QP (∆x)P .

The subscript NB shown above represents the neighbor elements of the control

volume of element P.

3.4 Time Discretization

Time discretization involves the integration of every term in the differential equa-

tion over a time step ∆t. The evolution of the interior points could be done by an

explicit, an implicit scheme or by a hybrid one made of the two. These mentioned

schemes will be discussed in this section by using Equation (3.1) as an example.

Let us include the time contribution to Equation (3.1) which reads now

∂(ρφ)

∂t
+ ~∇.(ρ~vφ)− ~∇.(Γ~∇φ) = Q. (3.10)

The time discretization process of Equation (3.10) is performed in the equation

resulting from the spatial discretization treated in the previous section. The

implications of including the non-stationary term in the discretized equation are

given by:

∫ t+∆t

t

[(
∂(ρφ)

∂t

)
P

VP +
∑
f

ṁfφf−
∑
f

Γf (~∇φ)f .~S

]
dt =

∫ t+∆t

t

QPVPdt. (3.11)

Since time is a one-way coordinate, the calculation is done by time marching.

It starts from an initial value φn = φ(t), based on the previous time step, and

progresses in time in order to obtain a new value for the dependent variable,

φn+1 = φ(t+ ∆t)
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Assuming a linear variation,

φ(t+ ∆t) = φ(t) + ∆t

(
∂φ

∂t

)
t

, (3.12)

the temporal term and the integration in time can be calculated as

(
∂(ρφ)

∂t

)
P

=
ρn+1
P φn+1

P − ρnPφnP
∆t

, (3.13)∫ t+∆t

t

φ(t)dt =
(
gtφ

n+1
P + (1− gt)φnp

)
.

where gt is a temporal interpolation factor, which can range from 0 to 1. If gt = 0

the discretization results is a totally explicit scheme, since the value of φ of the

previous time step prevails (φn). If gt = 1 the scheme reverts to the fully implicit

one, since it is the new value of φ (φn+1) that remains in Equation (3.13).

Using a totally explicit scheme, and assuming that the density and the diffusion

coefficient do not change with time, the discretized equation, Equation (3.11), is

given by:

(
ρPVP
∆t

)
φn+1
P = −

∑
f

ṁfφ
n
f +

∑
f

Γf (~∇φ)nf .~S +Qn
PVP +

(
ρPVP
∆t

)
φnP . (3.14)

Thus, all terms in Equation (3.14) depend only on the values obtained in the

previous time step, and there is no relation to the other variables of the current

time step. This approach simplifies the resolution of the transport equation, since

the value of φn+1 can be calculated directly without the need to solve a system of

linear equations. Of course there is a snag, this is given by Courant’s criterion of

stability or number [83]. For a case of one-dimensional flow with variation along

the x-direction, the stability criterion is given by:

Co =
Ux∆t

∆x
. (3.15)
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Equation (3.15) represents the ratio between the time step ∆t and the charac-

teristic convection time ∆x
Ux

. It should be noted that the characteristic time of

convection, although it can vary spatially, is a fundamental parameter and de-

pends on the physics of the flow. In the specific case of compressible MHD flow, it

is in the interest of the formulation to consider not only the flow velocity but also

the fast-wave velocity, see [84]. In the explicit formulation, when the Courant

number is greater than unity, numerical instabilities occur which completely de-

stroy the results. On the other hand, in the fully implicit scheme the discretized

equation is identical to Equation (3.14), and there is only the need to replace the

upper indices n by n+ 1. The scheme is still of the first order in time, however,

in contrast to the explicit scheme, there is a need to solve a system of equations,

since the value of φn+1
p depends on the new values of the neighboring control

volumes of element P . As an advantage, this scheme allows a better coupling

between the variables and the system becomes more stable, even if the stability

criterion Co > 1.

There is also the possibility of assuming an interpolation factor equal to gt = 0.5,

which leads to the Crank-Nicolson scheme. Such a scheme calculates the new

value of φ based on the values of φ known in the previous time step, and the un-

known values of the current time step. So, by using the Crank-Nicolson scheme,

Equation (3.14) reads now

(
ρPVP
∆t

)
φn+1
P =

(
ρPVP
∆t

)
φnP +

1

2

[
−
∑
f

ṁfφ
n
f +

∑
f

Γf (~∇φ)nf .~S (3.16)

+
1

2
Qn
PVP

]
+

1

2

[
−
∑
f

ṁfφ
n+1
f +

∑
f

Γf (~∇φ)n+1
f .~S +

1

2
Qn+1
P VP

]
.

Unlike the two schemes presented earlier, the Crank-Nicolson scheme is a second

order scheme in time. However this scheme can also lead to oscillations if the

∆t is not small enough. The criterion of stability is again given by the Courant

number, but this criterion is not as restrictive as for the totally explicit case. So,
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we may able to have stability even if Co > 1.

3.5 Solving Algebraic Equations

The result, Equation (3.9), of the discretization process is a system of linear

equations of the form Aφ = B where the unknowns φ, located at the centroids of

the mesh elements, are the sought after values. In this system, the coefficients of

the unknown variables constituting the matrix A are the result of the lineariza-

tion procedure and the mesh geometry, while the vector B contains all sources,

constants, boundary conditions, and non-linearizable components [82].

The term aP of Equation (3.9) represents the coefficients present in the main

diagonal of the matrix A, and aNB represents the coefficients outside the main

diagonal. In transient state, when this system is solved it generates a new set of

φ’s for the current time. The coefficient aP includes all terms corresponding to

the current time step, namely: the time derivative; the diffusion term; the con-

vection term and the linear part of the source term. The coefficient aNB contains

the terms corresponding to the neighboring nodes of the point P. The term b, in

Equation (3.9), has all the terms that can be calculated without having to know

the values of φ of the current time step. Namely, the constant part of the source

term and the parts of the diffusion, convection and temporal terms corresponding

to the previous time step.

Techniques for solving linear systems of equations are generally grouped into di-

rect and iterative methods, with many sub-groups in each category. Since flow

problems are highly non-linear, the coefficients resulting from their linearization

process are generally dependent. For this reason and since an accurate solution is

not needed at each iteration, direct methods have been rarely used in CFD appli-

cations. Iterative methods, on the other hand, have been more popular because

they are more suited for this type of applications requiring lower computational

cost per iteration and lower memory.
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Chapter 4

Implementation and Simulation

4.1 Introduction

An overview of the literature reveals that there are plenty of methods handling

compressible flow problems at arbitrary Mach numbers. Those methods have

been proposed for solving the Euler and Navier-Stokes equations. However, the

development of similar methods for the analysis of MHD flow is practically rare

existent. In this chapter, a method of analysis of compressible MHD flow will

be described, which should be applicable to a wide range of Mach numbers.

Initially the method will be developed to solve the Euler equations, which can be

considered as a special case of the MHD equations when the magnetic field is zero.

We will focus here on the Pressure Based Algorithm (PBA) methods that were

deduced for the compressible flow analysis. There are several algorithms of this

type but we can identify two that clearly stand out, namely the SIMPLE (Semi-

Implicit Method for Pressure-Linked Equations) and the PISO (Pressure-Implicit

with Splitting Operators).
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4.2 Numerical Methods

4.2.1 Overview

The SIMPLE was initially proposed by Patankar and Spalding [85] for the model-

ing of incompressible flow at steady state. The PISO was introduced by Issa [86]

for the calculation of non-stationary flow, incompressible or compressible, of the

Navier-Stokes equations.

SIMPLE was the first algorithm of the PBA methods. However, numerous modi-

fications were introduced in order to improve its robustness and convergence rate.

As an example we can refer to SIMPLEC (SIMPLE Consistent) by Van Door-

maal and Raithby [87]; or the SIMPLEM of Acharya and Moukalled [88]. For

the PISO algorithm, some variants have also appeared in relation to the original

scheme, such as that introduced by Oliveira and Issa [89], in order to calculate

natural convection dominated flows.

In the modeling of plasma flow, there is sometimes a need to construct a system

of equations for each of the species involved (ions, electrons and neutral species).

Such systems are known as multi-species or multi-fluid MHD equations. Although

the basic algorithm that will be proposed is based on the MHD approximation

for a single fluid, it seems obvious to us that it must have the capacity to be

adapted to much more complex flow regimes. Darwish et al. [90] modified the

formulation of several algorithms of SIMPLE and PISO type so that they can

calculate multi-fluid flow where, depending on the adopted formulation, two new

concepts emerged. The first concept was based on Mass Conservation Based Al-

gorithm (MCBA) and the second concept was based on the so-called Geometric

Conservation Based Algorithm (GCBA). Following the MCBA model, the pres-

sure equation must be constructed on the basis of the mass conservation equation,

which is nothing more than the sum of all n continuity equations for n fluids.

On the other hand, in the deduction of the pressure equation with the GCBA
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formulation, a geometric conservation equation must be used, which is given by

the sum of all the volume fractions. Both algorithms were subsequently modified

and tested by Moukalled et al [91] and later by Moukalled and Darwish [92, 93]

for the calculation of flow to arbitrary Mach number.

A fundamental characteristic, which must be considered in the deduction of a nu-

merical method of solution, is the calculation time required to reach convergence.

The PISO algorithm, being a non-stationary solution method, allows us to obtain

time dependent solutions with relative precision. On the other hand, SIMPLE is

an adequate choice when accelerating the convergence rate for steady-state solu-

tions. Nevertheless, it is possible to use PISO in obtaining stationary solutions

with the disadvantage that it requires a very short time step in extremely refined

meshes. Darwish et al [94] developed a comparative study of the performance

of the various algorithms with regard to their convergence rate, in which they

implemented the multiple mesh technique. In algorithms of the segregated type,

for steady-state solutions, the multiple-mesh technique is expected to increase the

convergence rate considerably. A further discussion about the implementations

of SIMPLE and PISO methods is presented in the next subsection.

4.2.2 Implementations of SIMPLE and PISO Methods

SIMPLE and PISO are two proposed algorithms for solving the Navier-Stokes

equations. Both methods are used to guarantee the continuity equation. SIMPLE

is designed for steady cases (time derivatives are set to zero) and incompressible

flows, whereas PISO is used for unsteady cases and incompressible or compressible

flows. Thus, the main difference between the two algorithms is the time derivative

if it takes into account or not.

Let us now explain the implementation of the SIMPLE and PISO methods. The

two methods follow a segregated approach, which implies that the set of governing

equations is solved sequentially. That is, each equation is solved for the reference
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variable assuming that the other variables do not vary. The segregated method

is iterative in nature and, in the case of SIMPLE and PISO, involves prediction

and correction steps. In the prediction step, the velocity field is calculated by

solving the momentum equation in its implicit form. This is based on the pressure

values obtained in the previous time step, or estimated if we are in the initial time

step. In the correction step an implicit equation for the pressure is deduced and

solved, and subsequently the velocity field and the density are corrected through

algebraic expressions.

The table of Figure (4.1) presents the steps of SIMPLE and PISO methods. The

upper index n is relative to the values obtained in the previous time step, and

the upper indices *, **, *** represent the consecutive predictions and corrections

of the algorithm.

4.2.3 BPISO Method

Based on Gauss’s law for magnetism, the divergence of the magnetic field should

remain free at all times. However, numerical solutions may violate this divergence-

free constraint leading to nonphysical quantities and numerical instabilities. Sev-

eral methods were developed trying to enforce ~∇. ~B = 0. These methods are the

constraint transport method [95], the eight-wave solution [96], the projection and

the hyperbolic divergence cleaning methods [97]. For more details, see the book

of [98] and the references therein.

In our MHD calculations, we use the projection method for the magnetic field

divergence cleaning. We solve the Poisson’s equation in order to remove the ad-

ditional part of the magnetic field that leads to non-zero divergence [99]. Let ~B∗

be the magnetic field after a time-step ∆t with ~∇. ~B∗ 6= 0. The field ~B at the

next time-step should be corrected by subtracting the unphysical part, generated
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Figure 4.1: The steps of SIMPLE and PISO algorithms.
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by the numerical scheme, according to

~B = ~B∗ − ~∇φ. (4.1)

The scalar function φ is obtained using the Poisson’s equation

~∇2φ = ~∇. ~B∗. (4.2)

Consequently, the divergence of the magnetic field gets reduced to a minimum

value, but ~∇. ~B is still non-zero. In Chapter 6, we discuss a critical value in order

to assess the non-zero divergence of the magnetic field ~B. By using Equation (4.1),

we can verify that this correction does not change the current density ~J = ~∇× ~B =

~∇× ~B∗, where ~∇× ~∇φ = 0. This method does not need to be applied in all time

steps, but only to eliminate errors when they reach a predetermined value. Its

use becomes useful when the initial field ~B is not known, because this technique

allows to eliminate the divergence errors of the initial field ~B.

4.3 OpenFOAM Code

The OpenFOAM (Open source Field Operation And Manipulation) code is a

numerical simulation package of continuous media mechanics [82]. The source

code is written in C++ language and follows an object-oriented programming

line. The choice of this tool as a support for the development of the codes was

that it is completely open to the public and relatively easy to acquire.

I do not intend, in this section, to analyze this program in detail, just to give

the reader a certain notion of its capabilities. First of all, this code uses a space

discretization based on the finite volume method. The various operators of the

differential equations can be treated explicitly by the finite volume calculus (fvc)

method or implicitly through the finite volume method (fvm). The first method
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computes a field by solving the explicit derivatives, and the second method con-

verts the expression to matrix coefficients through the implicit derivatives. The

proposed idea is to look at each of the differential equations as the sum of the

several associated differential operators, which can be approximated separately

through the different discretization schemes.

Let us take for example the momentum equation for a viscous fluid written in its

vector form:
∂(ρ~U)

∂t
+ ~∇.(ρ~U ~U)− ~∇.(ν ~∇~U) = −~∇p. (4.3)

This equation can be easily implemented within the OpenFoam code through a

very intuitive language,

solve( fvm :: ddt(rho, U)

+fvm :: div(mdotf, U)

−fvm :: laplacian(nu, U) == −fvc :: grad(p) );

where mdotf (ṁf = ρ~U.~S) is the mass flux evaluated at the faces of the ele-

ments, and ν is the dynamic viscosity of the considered fluid.

Besides the ease of programming, there are other advantages that result from the

use of this tool, such as: parallel processing capacity; several algorithms for solv-

ing systems of algebraic equations; various high-resolution interpolation schemes;

various pre- and post-processing tools; and also the possibility of using unstruc-

tured meshes. These particularities, together with many others, make this an

ideal tool for the development of new numerical codes. Thus, this seems to be

the best choice to develop and test the algorithms proposed in this thesis. In this

way, the investigator can look at the physics of his problem, and can direct his

work plan for further research goals.
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Finally, remember that our goal in this thesis is to investigate the effect of

fluctuations on the MGR and the heating processes in the solar corona. For this

sake, we have derived our basic equations using the resistive MHD model, as dis-

cussed in Chapter 2, modified by including the fluctuation terms, Equation (2.55)

to Equation (2.60). We have already developed a code using the openfoam tool-

box simulating the MGR process, without fluctuations, based on the solar corona

conditions [100, 101]. The MHD code applied here, unlike [100], is improved using

PISO and BPISO, and it is done for both fluctuation and non-fluctuation cases.

The PISO is used to guarantee the conservation of mass (continuity), whereas

the BPISO is used to minimize the divergence of the magnetic field.
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Chapter 5

Test Cases

5.1 Introduction

Before presenting our results and to check out the validity of our MHD code when

handling the MGR process, we have recovered three cases in the literature. The

MHD equations mentioned in Chapter 2, Equation (2.55) to Equation (2.60),

can be divided into two parts, the fluid part and the MHD one. Numerical code

testing is done for these two parts using two test cases in the literature. The

fluid test case is the flow over a bump; it is a special case analyzing the gas

dynamics of the MHD flow when the magnetic field ~B = ~0. The MHD test case

is the Orszag-Tang vortex; it analyses the dynamics of an ideal MHD conductive

flow subject to a magnetic field ( ~B 6= ~0). Furthermore, and since our aim is to

investigate the MGR with and without fluctuations, a third case is needed to

test the MGR process. This MGR case is done for the Spitzer resistivity model

initiated by a localized resistivity around the origin.
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Figure 5.1: A 3D view of the mesh of the channel flow over a bump and its
corresponding boundary conditions.

5.2 Test Case for Fluid Dynamics: Transonic

Flow over a Bump

The equations for this test case are

∂ρ

∂t
+ ~∇.(ρ~u) = 0,

∂(ρ~u)

∂t
+ ~∇.(ρ~u~u) = −~∇p,

∂ρ(ε+ 1
2
u2)

∂t
+ ~∇.(ρ~u(ε+

1

2
u2)) = −~∇.(p~u),

where p is the thermal pressure, and remember that ε is the internal energy per

unit mass. The third equation in the above set denotes the hydrodynamic energy

equation, i.e. internal + kinetic.

This case is two-dimensional and refers to a transonic flow with a Mach number

at the input equal to Ma = 0.675. Figure (5.1) is a 3D view of the mesh used

to perform the computation and the corresponding boundary conditions. The

length of the bump is equal to the channel height, and its thickness is 10 percent

of the channel height. This type of flow is characterized by being subsonic in

the inlet and outlet regions. However, the increase in velocity will create a shock
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wave in the region downstream the top of the bump. For the pure gas dynamic
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Figure 5.2: Test case of transonic flow over a circular arc bump where inlet Mach
number is 0.675. (a) is the plot of Mach number values along the upper and lower
walls published by [1, 2]. (b) is the same plots using the fluid part of our code.
(c) is the Mach contours for the flow using our code. (d) is the same contours of
Mach number published by [1].
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problem, the following boundary conditions are considered: at inlet we impose

temperature and total pressure; at outlet we impose static pressure. All the

remaining variables are extrapolated from the domain.

In Figure (5.2), Mach number values are plotted along the upper and lower walls

of the domain. Panel (a) is the results of these two plots found in the literature.

Panel (b) shows the same plots using our code. Similarly, a distribution of the

isolines relative to the Mach number is shown for both literature (panel (d)) and

by using the data of our code (panel (c)). The results present good agreement

with those obtained by Darwish and Moukalled [1].

5.3 Test Case for MHD: Orszag-Tang Vortex

The equations for this test case are

∂ρ

∂t
+ ~∇.(ρ~u) = 0,

∂(ρ~u)

∂t
+ ~∇.(ρ~u~u) = −~∇

(
p+

B2

2µ0

)
+ ~∇.

( ~B ~B
µ0

)
,

∂ ~B

∂t
+ ~∇.(~u ~B) = ~∇.( ~B~u),

∂ρEtotal
∂t

+ ~∇.(ρ~uEtotal) = −~∇.
[(
p+

B2

2µ0

)
~u
]

+
1

µ0

~∇.
[
( ~B.~u) ~B

]
,

where Etotal = ε + 1
2
u2 + B2

2ρµ0
is the total energy per unit mass, i.e. internal +

kinetic + magnetic. The Orszag-Tang vortex is a standard two-dimensional test

case that is often used in the validation of high resolution numerical schemes

for ideal MHD flow. This problem is characterized by developing a very complex

interaction between the various MHD discontinuities generated by the evolution of

the vortex. This feature makes this test case suitable for evaluating the proposed

method in terms of accuracy and robustness. The purpose of the Orszag-Tang

vortex is to test how well the code handles MHD turbulence and shocks. The
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Figure 5.3: Numerical results obtained for the Orszag-Tang vortex at time t =
2 sec. Distribution of magnetic streamlines where double periodic condition is
applied. Panel (a) is the magnetic streamlines found in the literature [3]. Panel
(b) is the magnitude of the magnetic field (in T) at time t = 2 sec using our code.
The other panels are the magnetic streamlines of the Orszag-Tang vortex using
our MHD code.
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computational domain used is a square of sides Lx = Ly = 105 m, and all the

four boundaries are periodic. The initial conditions, which do not have any type

of discontinuity, being defined as:

ρ = 1.67× 10−11 kg/m3 ; T = 8× 104 K ; p = ρRT ;

Ux = −VAsin(2πy) ; Uy = VAsin(2πx) ; Bx = −B0sin(2πy) ; By = B0sin(4πx).

Figure (5.3) shows the stream lines of the magnetic field of the plasma at t = 2

sec. As the solution evolves in time, the initial vortex splits into two vortices as

shown in the figure. Sharp gradients accumulate and the vortex pattern becomes

increasingly complex due to highly non-linear interactions between multiple in-

termediate shock waves traveling at different speeds. The results compare well

with those given in the literature such as [3, 102, 103].

Let us now check out the robustness of the Bpiso method. Figure (5.4) shows

us the distribution of the magnetic field along with its divergence (~∇. ~B) of the

Orszag-Tang vortex at time t = 3.5 sec using our MHD code. Numerical instabil-

ities are noticed when BPISO method is not applied (panel (b)). Moreover, plots

of ~∇. ~B show 3 or 4 orders of magnitude less in the case where Bpiso method is

used (panels (c) and (d)).

5.4 Test Case for MGR

The treatment of MGR using the MHD approach is widespread in the literature.

The two test cases mentioned above show good agreement with the literature

concerning the dynamics of the MHD flow with and without magnetic field. Nev-

ertheless, before presenting the results of our model, we need to test our code

whether it can handle well the MGR process, using the Spitzer resistivity model,

or not. For this sake, we have selected one case which was done by Ugai [104]

for the Spitzer resistivity model. Ugai assumed a localized resistivity around the
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Figure 5.4: Distribution of magnetic field (in T) and its divergence (in T/m) of
the Orszag-Tang vortex at time t = 3.5 sec. Panels (a) and (b) are respectively
the magnitude of the magnetic field with and without the use of Bpiso method.
Panels (c) and (d) are respectively the plots, using Bpiso, of ~∇. ~B versus X (in
km) over the middle of the computational domain and over the bottom boundary.

Panels (e) and (f) are respectively the same plots of ~∇. ~B without using Bpiso.

origin (~r = ~0) for 0 < t < 4 (time is normalized by 0.5λ0/VA), which causes

MGR as an initial disturbance. Then, he investigated the evolution of the MGR

process by applying Spitzer-like resistivity for t > 4 using his 3D code. Following

his case, we did the same as Ugai, but using our 2D code including the effect of

the z-components of magnetic field and velocity. The equations for this test case
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Figure 5.5: Comparison between our results and Ugai’s for the case of Spitzer
resistivity initiated by localized resistivity around the origin. Ugai set the am-
plitude of the localized resistivity to 0.02 (normalized by 0.5µ0VAλ0), and that
of the Spitzer resistivity is set to 0.002. In our results, the amplitudes of the
localized and the Spitzer resistivities are respectively set to 0.145 and 0.0145. η,
JZ , EZ and time are all expressed in normalized units.

are thus our basic equations without fluctuations, i.e. Equation (2.55) to Equa-

tion (2.60) without the sources and sinks generated by the fluctuating magnetic

field ~BF (S = 0).

Figure (5.5) shows the time evolution of the resistivity η, the z-components of

current density JZ and electric field EZ at origin, all are expressed in normalized

units. Left panels were done by Ugai, and the right panels are the results we got

using the Ugai’s setup. Note that in Ugai’s calculations, JZ and EZ are pointed

in the negative z-direction. In our calculations, JZ and EZ are pointed in the

positive z-direction, this is why we plotted −JZ and −EZ instead of JZ and EZ .

It is evident, as Ugai found, that the MGR process does not grow since Spitzer

resistivity η and the reconnection rate |EZ | (= |ηJZ |) become reduced around the
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origin (~r = ~0) at later times. Thus, our results show good agreement with the

Ugai’s for the Spitzer resistivity model initiated by localized resistivity around

the origin. Therefore, we can apply our code for numerically investigating the

MGR process using the Spitzer resistivity model.

64



Chapter 6

Simulation of MGR using the

Spitzer Resistivity Model

6.1 Introduction

As outlined in Chapter 1, the coronal magnetic field lines are anchored to the

Sun’s photosphere at locations called footpoints. Thus, it can be assumed that the

solar corona could be affected by magnetic fluctuations initiated by the turbulent

motion of these footpoints. Consequently, as discussed in Chapter 2, we add

fluctuations to the coronal magnetic field in order to incorporate the effect of the

photospheric turbulence on the MGR and heating processes of the solar corona.

We start this chapter by describing the functional forms of both the initial coronal

magnetic field and the magnetic field fluctuations, which are used for all the runs.

Then, in Chapters 6, 7 and 8, we present our results of the MGR cases with and

without fluctuations described as follows:

• In Chapter 6 here, we use Spitzer-like form for resistivity η and all the cases

start with zero initial velocity.

• In Chapter 7, we present new MGR cases using a uniform resistivity instead

of the Spitzer-like one applying the same initial and boundary conditions
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as those of Chapter 6.

• In Chapter 8, we show other cases of the MGR process using the same

functional form of Spitzer resistivity as in Chapter 6, but we start with

initial velocity 6= 0 along the outflow direction (y-direction).

The Spitzer resistivity is defined as η = η̃kηT
−3/2 [105], where T is the temper-

ature, kη is ≈ 356 SI units determined using the plasma parameters of the solar

corona [106], and η̃ denotes a dimensionless amplification factor equals to 1 for

the measured values of resistivity in the solar corona. As justified below under

section 6.4.1, we enhance the resistivity by setting η̃ = 5.62×108 in order to keep

our calculations valid in the framework of resistive MHD. In other words, for this

value of η̃, the resistive term η ~J dominates the Hall and the inertial terms on the

right hand side of the generalized Ohm’s law presented before in Chapter 2 by

Equation (2.40).

6.2 Treatment of Magnetic Field Fluctuations

This section is an extension of Section 2.7 of Chapter 2. The modified MHD

equations, Equation (2.55) to Equation (2.60), represent the basic equations of

our model. Recall that the total magnetic field ~B of the corona can be split

into three parts, the coronal magnetic fields ( ~BM and Bz) and the magnetic field

fluctuations ( ~BF ), as given before by Equation (2.54). Additionally, we further

assume that the fluctuations are static and sinusoidal, and remember that both

~BM and ~BF are lying in two-dimensional space, the (x − y)−plane, as noted

previously in Chapter 2. In order to match the pattern of the anti-parallel coronal

field lines between two coronal loops near the photosphere, we choose hyperbolic

tangent as initial profile for ~BM . For the fluctuation component, ~BF , we consider
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Figure 6.1: Illustration of the space profiles of the coronal mean field ~BM , the
magnetic field fluctuations ~BF and the total field ~B in the (x− y)−plane. ~BM is

anti-parallel (hyperbolic tangent), ~BF is sinusoidal, and the profile of ~B is thus
deduced from Equation (2.53).

a time-independent sine wave of the form

~BF = B̃ sin(kyy)x̂, (6.1)

where B̃ and ky are respectively the amplitude and the wavenumber of the mag-

netic field fluctuations. Figure (6.1) illustrates ~BM , ~BF and ~B in the (x −

y)−plane. ~BM is x-dependent and pointing in the y-direction, whereas ~BF is

y-dependent and pointing in the x-direction. The initial profiles of ~BM and Bz

are given by the force-free Harris sheet [107, 108],

~BM(t=0) = B0 tanh(x/λ0)ŷ ; ~Bz(t=0) =
B0

cosh(x/λ0)
ẑ, (6.2)

where λ0 is the characteristic half-width of the Harris sheet, and B0 is the am-

plitude of the coronal magnetic fields.

We wish to link the wavenumber of BF to the footpoint motion to have an

order of magnitude of ky. The Alfvén speed, VA, is the characteristic speed for

the magnetic field to reach the solar corona initiated in the sun’s photosphere.

Moreover, we assume that the dispersion relation ω = kyVA holds, where ω is

the angular frequency of the fluctuations. Referring to [109], the average speed
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of the footpoint motion is observed to be ∼ 1 km/sec and the granular size is

∼ 1000 km. Accordingly, the time-scale of this motion is about 1000 sec. How-

ever, it is reasonable to assume that fluctuations would occur at a faster rate

and that the observed values are rather closer to the average values of the foot-

point motion. It is therefore plausible to have values about 100 or even 10 sec,

which yields wavelengths Λy = 10Ly and Ly respectively. Ly is the length of our

computational domain as shown in Figure (6.2).

6.3 Numerical Simulation

The equations, Equations (2.55)−(2.60) derived previously in Chapter 2, are

solved in two dimensional space, the (x − y)−plane, in order to simulate the

MGR process with and without magnetic fluctuations. We emphasize that, dur-

ing simulation, the continuity equation, Equation (2.55), is written in terms of

the thermal pressure pth using the equation of state ρ = pth/RMT . Moreover,

the total energy equation, Equation (2.60), is used to solve for the temperature

T , since Ek and Emag are calculated from the velocity and the magnetic field,

which are respectively obtained from the momentum and the induction equations,

Equations (2.56)−(2.59).

6.3.1 Initial and boundary conditions

The same initial conditions are applied for all the runs, with and without magnetic

fluctuations. At t = 0, we initiate our simulation by setting the fluctuating

magnetic field, ~BF , to zero. We use Equation (6.2) as initial conditions for the

coronal magnetic field components, ~BM and Bz, leading to have uniform magnetic

pressure at t = 0. The plasma fluid velocity is also set to 0. The initial thermal

pressure is uniform in the (x − y)−plane, and it is thus balanced by the initial

magnetic pressure. The initial plasma β is also uniform. By the adequate choice
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Figure 6.2: We present the mesh of our computational domain in which we
perform all the simulation cases. The mesh is two-dimensional lying in the (x−
y)−plane, where the vertical side is the x-axis and the horizontal side is the y-
axis. The gray part specified at the middle represents the initial Harris sheet of
width 2λ0 elongated along the y-direction, and it will be used after in this chapter
to present the magnetic field lines at different instants during the simulation.

of the magnetic field, we insure that the coronal plasma β < 1 initially. We set

the initial temperature to be uniform, and by using the equation of state, the

initial plasma density is constant.

All the boundaries of the four sides of our computational domain are open. This

is done by setting the gradient in the normal direction to be zero for all the

plasma quantities at the boundaries.

6.3.2 Numerical setup

The mesh used in our simulation is non-uniform grid spacing, and it has 256-by-

512 mesh points. As shown in Figure (6.2), the size of the computational domain

is Lx = 8λ0 in the x-direction and Ly = 32λ0 in the y-direction, where λ0(= 125

km) is the initial half-width of the current sheet. The mesh is refined around

its center (around which we expect to have an X-point), and the minimum grid

size is ∆x ≈ λ0/36 and ∆y ≈ λ0/18. The authors in [110] performed MHD

simulation using forced reconnection model to study the acceleration of particles

in solar flares, and they used uniform grid steps ∆x = ∆y = Lx/128 = λ0/16.

The typical background magnetic field of the corona, assuming quiet corona,

69



is chosen to be B0 ≈ 6 Gauss [111, 112]. Thus, the initial magnetic pressure

is pmag0 = 0.14 Pa. The initial plasma β is uniform equals to β0 = 0.15.

Referring to Equation (1) of [113], the author obtained the plasma β, defined

with scaled parameters, for the solar corona to be 0.2. The thermal pressure is

pth0 = β0pmag0 = 0.021 Pa. The particle density n of the coronal plasma is ∼ 1014

or 1015 m−3 [114, 98] and here we set it ≈ 2×1015/m3. The initial plasma density

is thus ρ0 = nmion ≈ 3.5× 10−12 kg/m3. The initial temperature is uniform and

calculated from the equation of state T0 = pth0/ρ0RM ≈ 7.3 × 105 K. As men-

tioned in Chapter 2 and discussed here in this chapter, the value of the resistivity

is initially enhanced and is set to η0 ≈ 7.26× 10−3µ0VAλ0 Ω.m. The Alfvén time

τA = Lx/2VA ≈ 1.8 seconds, and the time-step is set to ∆t = 0.05 sec ≈ τA/36.

We use the open source platform, “openFOAM” [82], to numerically solve the

basic equations of our model, Equations (2.55)−(2.60). From the initial con-

ditions described above, the current density ~J is then calculated according to

Ampère’s law. ~J , ~BM and Bz will generate plasma flows leading to ~uxy and uz

different from 0 according to momentum equations, Equation (2.56) and (2.57).

The plasma bulk velocities ~uxy and uz will affect the plasma density ρ and the

thermal pressure pth through the continuity equation and the equation of state.

At same time, ~uxy, uz, ~J and the plasma resistivity η will change ~BM and Bz

according to Equations (2.58) and (2.59). Finally, all the plasma quantities ρ,

pth, ~uxy, uz, ~BM , Bz, ~J , and η influence the temperature T according to Equa-

tion (2.60), which in turn leads to update the resistivity η when using the Spitzer

resistivity model.

6.3.3 Error of ~∇. ~B

As discussed in Section 4.2.3 of Chapter 4, we use the BPISO method to reduce

the divergence of ~B. However, ~∇. ~B is still non-zero leading to unphysical be-

haviors. What we need is a critical value for the error of ~∇. ~B below which the
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results are acceptable. The estimation of such error is given in [115, 116, 117] by

the relation

(~∇. ~B)error =

∑N
i=1

∫
CV
|(~∇. ~B)i|dV∑N

i=1

∫
CV

dV
. (6.3)

Equation (6.3) denotes the error measurement to assess the divergence-free con-

straint for the magnetic field, where N is the number of mesh nodes in the

computational domain, and CV is the control volume or mesh element. Equa-

tion (6.3) thus estimates the average of |~∇. ~B| over a spatial element CV .

The authors in [117] found that a value of 10−6 for (~∇. ~B)error (normalized to√
µ0ρ0a2

0/λ0, where a0 is a characteristic sound speed) was acceptable, because

no large error accumulation from |~∇. ~B| is noticed. In the present work, we con-

sider 10−6 (∼ 10−15 T/m) as a critical value. Thus, our results are acceptable if

(~∇. ~B)error does not exceed the order of 10−15 T/m.

Next section, we simulate three cases of the MGR process using the Spitzer-

Figure 6.3: We present the temporal evolution of (~∇. ~B)error calculated for the
three MGR cases using Equation (6.3). The dotted line is for the MGR case
without fluctuations (BF = 0). The solid and dashed-dotted lines are for the
MGR cases with fluctuations (BF 6= 0) Λy = Ly and Λy = 10Ly respectively.
Logarithmic scale is used for the two axes and the full process of the MGR is
completed within different simulation times for the three cases; 900 sec (∼ 500τA)
for BF = 0, 230 sec (∼ 128τA) and 140 sec (∼ 78τA) for Λy = 10Ly and Λy = Ly
respectively.
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like resistivity and starting with zero initial velocity. The first case is performed

without magnetic fluctuations, BF = 0. The other two cases are done by adding

static magnetic field fluctuations, BF 6= 0, where we set the wavelength of the

fluctuations to be Λy = 10Ly and Λy = Ly as mentioned previously in Section 6.2.

However, before discussing our results and comparing them to previous work, we

plot in Figure (6.3) the temporal variation of (~∇. ~B)error for the three cases. As

shown in the figure, the value of (~∇. ~B)error for BF = 0 increases slowly with

time up to 900 sec, then it increases rapidly and exceeds the critical value. Thus,

hereafter in the next section we consider the temporal evolution up to 900 sec

for the case of no fluctuations. Concerning the fluctuation cases, starting with

the same initial conditions as those for BF = 0, we also find that (~∇. ~B)error does

not exceed the order of 10−15 T/m during 230 sec for Λy = 10Ly and 140 sec

for Λy = Ly. As we will discover later in the results, the shorter times of the

fluctuation cases compared to BF = 0 are attributed to the enhanced process of

the MGR due to the addition of the magnetic fluctuations.

We note that the simulation times 900 sec (∼ 500τA), 230 sec (∼ 128τA) and

140 sec (∼ 78τA) are comparable to other numerical methods simulating MGR.

The shorter maximum times of the numerical simulation for the fluctuation cases

compared to BF = 0 is caused not only by the error on the magnetic field but

also by the validity of simulating resistive MHD. In fact, the fast MGR and the

consequent jets along with our open boundaries lead to a dramatic decrease in

the density, which makes the resistive MHD description inaccurate.

The present approach is illustrated in Figure (6.4) showing two procedures,

with fluctuations (on the right) and without fluctuations (on the left). As men-

tioned in Section 6.2 above, the wavelength of the fluctuations Λy is chosen to be

10Ly and Ly. Moreover, the amplitude of the fluctuations B̃ is set to 1% of B0.

By comparing the two procedures, we may realize how important the method is

based on the fluctuations of the magnetic field, and how they influence the MGR

process. It is, after all, intriguing to relate the coronal heating to the dynamics
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Figure 6.4: A flowchart showing the procedures we follow in treating the MGR
process with and without fluctuations.

of the Sun’s turbulent photosphere via MGR.

6.4 Results and Discussion

The contribution of the MGR to the heating mechanisms of the solar corona

is a fundamental question in solar physics. In what follows in this chapter, we

present the results of the MGR process, with and without fluctuations, using a

Spitzer-like form for resistivity η defined above under Section 1. The case without

fluctuations is compared to other contributions and forms the basis to assess the

effects of magnetic field fluctuations when added.

6.4.1 MGR without Magnetic Fluctuations

In this section, we present the results of the MGR process without magnetic

fluctuations. Often in the literature, a functional form of resistivity is used to
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initiate the MGR followed immediately by resetting it using different models that

could depend, or not, on the plasma parameters [73, 118, 104]. We do not follow

this path as we set the resistivity to be Spitzer-like and we do not change its

temperature dependence functional form in the course of the simulation.

According to the reduced form of Ohm’s law, Equation (2.41), we have ~E+~u× ~B =

η ~J . Reconnection thus takes place because the frozen-in condition is violated by

the term η ~J . For this reason, it is used to measure the reconnection rate [73] and

one can verify that its maximum occurs always in the current sheet. High values of

|ηJz|, > 0.01VAB0, is a benchmark of fast reconnection [119]. Another quantity

also used to measure the reconnection rate is the inflow Alfvén Mach number

MA = Ux/VA [24, 23, 120], where Ux is the inflow speed of plasma particles

(or field lines) just outside the diffusion region. Note that MA ∼ |ηJz|/VAB0

is a normalized quantity that describes the MGR evolution, and fast MGR is

characterized by MA > 0.01.

The generalized Ohm’s law normally includes the Hall and the electron pressure

terms, i.e. Equation (2.40), which are effective at small scales close to the ion

skin depth di. The latter is about 5 m in the solar corona for particle density

1015 m−3 [8]. On the other hand, the Spitzer resistivity in the solar corona is 5.74×

10−7 Ω.m [106] implying a width of the current sheet of about 2 m. Consequently,

the one-fluid MHD description fails at such small scales. To simulate the MGR

in the framework of resistive MHD, we artificially increase the Spitzer resistivity

by setting η̃kη = η0T
3/2
0 = 2 × 1011 SI units, where η0 and T0 are respectively

the initial values of resistivity and temperature given above under Section 6.3.2.

In this case, the width of the current sheet becomes about 10 km, which is

much greater than di, and the resistive term η ~J dominates the Hall and electron

pressure terms.

The width of the current sheet 2λ is determined from the simulation using the
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reduced Ampère’s law, Equation (2.32), as

2λ = 2BMy/µ0Jz, (6.4)

where BMy is the value of the magnetic field in the inflow region near the bound-

aries at x = ±Lx/2 and Jz is the average value of the current density Jz inside the

current sheet. As shown in Figure (6.5), the width of the current sheet 2λ of the

Figure 6.5: We present the current sheet width, calculated using Equation (6.4)
and normalized to its initial value 2λ0 = 250 km, of the three MGR cases with
and without BF . The black solid line is for the case of no fluctuations (BF = 0)
with a time step divided by 3 for better visual representation. The red dashed and
the blue dashed-dotted lines are for the fluctuation cases Λy = Ly and Λy = 10Ly
respectively.

three MGR cases is reduced at the end of the simulation time and reaches values

which are in the validation scale of the resistive MHD description, 0.38 ∼ 100 km

for BF = 0 and 0.075 ∼ 20 km for BF 6= 0. Hereafter, we stop the simulation as

we reach values where the resistive MHD description fails.
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Figure 6.6: The field lines of the coronal magnetic field ~BM for BF = 0 are
presented at different times indicated on the panels. The field lines are shown
in the gray part of our computational box of width 2λ0 specified previously in
Figure (6.2). The vertical side represents the x-direction of the mesh for −λ0 ≤
x ≤ λ0, where λ0 = 125 km. The horizontal side is the y-direction for −Ly/2 ≤
y ≤ Ly/2, where Ly = 32λ0. The arrows shown on the first panel (t = 200 sec)

indicate the directions of ~BM .

Temporal Behavior of Magnetic Field Lines

Figure (6.6) shows the magnetic field lines at different instants indicated in each

panel. The initial profile of the coronal field lines is ‘purely’ anti-parallel in the

y-direction. The reconnection effects start to be visible on the magnetic field

lines at 200 sec, then, they become well developed at 700 sec when we observe

the X-point almost at the mesh center. After 700 sec, one can notice that the
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Figure 6.7: The plasma inflow speed Ux for the MGR without magnetic field
fluctuations. The solid line represents the inflow speed using the maximum value
of ux just outside the current sheet at x ∼ λ and y = 0. The dotted line
is for the inflow speed calculated using Equation (6.5), where η is determined
using the spatial average of the Spitzer-like resistivity inside the current sheet for
−λ ≤ x ≤ λ.

field lines start to move away from each other indicating the onset of two outflow

jets along the y-direction. The current sheet becomes elongated and appears to

behave like the one predicted in the Sweet-Parker reconnection model. According

to the latter, the inflow of magnetic field lines in steady-state should balance the

diffusion of the field lines in the vicinity of the X-point [6]. The inflow speed is

thus related to resistivity η according to

Ux =
η/µ0

2λ
, (6.5)

where 2λ is the width of the diffusion region or the current sheet.

Let us assume that Equation (6.5) holds for Spitzer-like resistivity, and we wish

to investigate how close the MGR is to the Sweet-Parker model. Figure (6.7)

shows the temporal evolution of two inflow speeds, one is calculated using Equa-

tion (6.5) and the other is determined using the maximum value of ux just outside

the current sheet at x ∼ λ and y = 0. The width of the current sheet 2λ in Equa-

tion (6.5) is determined from the simulation using Equation (6.4). At t ' 0, the

two inflow speeds are different because η 6= 0 and all the speeds are set to zero.
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With increasing time, they tend rapidly to be close indicating an MGR process

similar to that described in the Sweet-Parker model even for Spitzer-like resis-

tivity. This result has already been obtained by [121] for a uniform resistivity.

They show that sheared magnetic fields undergo Sweet-Parker reconnection at

the scales of the resistive MHD. Moreover, as indicated in Figure (6.7), the inflow

speed in the simulation reaches ∼ 319 m/sec, which corresponds to a reconnec-

tion rate MA ∼ 10−3 < 0.01 indicating a slow reconnection rate in agreement

with the Sweet-Parker model.

Characterization of the MGR in the Absence of Magnetic Fluctuations

The MGR is an impulsive process, it takes place locally in the current sheet at

relatively small scales before spreading out and affecting the whole spatial sim-

ulation domain. In Figure (6.8), we show the time dependence of some of the

main physical quantities. The goal is to help us understand the MGR process as

it develops over time.

In Figure (6.8-a), we plot the x-component of BM taken at x = 0 and along the

current sheet for y ≥ 0 as a function of time. At t = 0, BMx is equal to zero as

the current sheet is only in the y-direction. It increases right after starting the

simulation at t ' 0. Consequently, although this was not evident in the mag-

netic field lines presented in Figure (6.6), the MGR process starts as early as the

numerical simulation caused by the plasma resistivity. The amplitude of BMx

remains rather small up to t = 600 sec, after which we detect a strong increase

reflecting the spatial expansion of the X-point in agreement with the behavior of

the magnetic field lines.

In Figure (6.8-b), we show a three-dimensional plot of the reconnection rate ηJz

taken at y = 0 as a function of x and time. Starting from t = 0, ηJz decreases

sharply leading to a more uniform variation, then it remains almost constant

between 200 and 600 sec. After this time, thus for t > 600 sec, we observe a
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Figure 6.8: We present 3D plots showing the temporal and spatial variation of
four physical quantities, which are (a) the x-component of the coronal magnetic
field BMx at x = 0 and y > 0, (b) the reconnection rate ηJz at y = 0 for all
values of x, (c) the Mach number associated with the velocity in the y-direction
at y = 16λ0 for all x values, and (d) the temperature T at y = 1 Mm for all x
values. The thick solid curves shown on the 3D plots represent the maximum
values of the quantities.

slight increase in its value and a regain of non-uniformity around the origin. At

t = 900 sec, the maximum of ηJz reaches a value of ∼ 0.75×10−3VAB0, indicating

a slow reconnection rate, which yields an Alfvén Mach number MA about 10−3

consistent with the result discussed above using the inflow speed.

In order to assess the plasma motion during the MGR, we determine the Mach

numbers associated with the velocities in the x and y-direction defined respec-

tively as Mx = ux/us and My = uy/us where us =
√
γRMT is the sound speed.

Along the current sheet, an outflow takes place because uy is positive (negative)
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for y > 0 (y < 0) leading to an ejection of the particles out from the computa-

tional domain along the y-direction. Not shown here, but we record a modest

inflow in the x-direction with a Mach number that is 40 times smaller than that

in the y-direction. In Figure (6.8-c), we show a three-dimensional plot of My

taken at the outflow boundary at y = 16λ0 = 2 Mm as a function of x and time.

At t = 0, My is equal to zero as the initial velocity is set to zero, and then it

remains small up to t = 600 sec after which it increases sharply. This quantifies

the convection of the plasma caused by the MGR jets in the y-direction. Con-

sequently, and because all the boundaries are set to be open, the density of the

plasma in our computational domain decreases sharply for t > 600 sec.

The behavior of the temperature measured at y = 8λ0 = 1 Mm as a function of

x and time is shown in Figure (6.8-d). The temperature increases as a result of

MGR going from the initial temperature of ∼ 7 × 105 K up to 4 × 106 K for t

about 600 sec. Then for t > 600 sec, T appears to decrease. This does not reflect

a cooling of the plasma inside the computational domain but rather the exit of

the hot particles that lie close to the current sheet outside the computational

domain by the jets in the y-direction. Consequently, one may safely deduce that

the dynamics for t > 600 sec is dominated by the jets that eject plasma outside

our domain. We note that the reconnection rate, shown in Figure (6.8-b), is con-

sistent with the behavior of temperature in Figure (6.8-d) because the resistivity

used is Spitzer-like. This causes the reconnection rate to remain low because of

the resistivity decrease in the vicinity of the X-point. This result is in agreement

with the work done by [118, 104], despite the difference in the initial conditions

as they use a higher amplitude resistivity perturbation to initiate reconnection.

Energy Budget without Magnetic Fluctuations

We now discuss how magnetic energy is distributed during the MGR as a function

of time. Initially only the current and the main magnetic field possess spatial
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Figure 6.9: The temporal variation of the spatial average of the total energy per
unit of mass 〈Etotal〉 (solid line), the magnetic energy 〈Emag〉 (dashed line), the
internal energy 〈ε〉 (dash-dotted line), the kinetic energy 〈Ek〉 (circle) multiplied
by 1000, and the heat energy 〈Eh〉 (dots).

variation. The spatial average of any form of energy E per unit mass is cal-

culated as 〈E〉 = 〈ρE〉/〈ρ〉. Figure (6.9) shows the temporal evolution of the

total energy 〈Etotal〉, and its components that are the kinetic energy 〈Ek〉, the

magnetic energy 〈Emag〉 and the internal energy 〈ε〉 per unit mass. Figure (6.9)

also shows the temporal variation of the ohmic heating energy per unit mass,

〈Eh〉 =
∫
〈ηJ2

z 〉dt/〈ρ〉. The total energy remains almost constant up to ∼ 600 sec

after which it decreases. We find that the kinetic energy is small when compared

to the other forms and for this reason in Figure (6.9) it is multiplied by a factor

of 1000. The magnetic energy decrease is monotonous indicating its persistent

conversion to other forms of energy during the MGR evolution. This causes the

heat and internal energy to increase almost at the same rate up to t ∼ 600 sec.

Starting from t ∼ 600 sec, the internal energy starts to decrease, while the heat

energy continues to increase but at a faster rate. This abrupt change of both

the heat and the internal energy right after t ∼ 600 sec is strongly related to
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the deficit of hot particles within the current sheet. For t > 600 sec, the plasma

dynamics are dominated by the jets that expel plasma particles and lead to a

decrease in both the plasma density and temperature. The decrease in the total,

as well as the internal energy, indicates that the ohmic heating is not enough to

compensate for the hot plasma expulsion by the jets. The plasma particles at

relatively low temperatures come into the current sheet as inflow. After they are

heated up by the MGR process, the particles leave the domain along with the jets

as an outflow. Thus, the plasma particles carry the heat generated by the MGR

to regions that are far from the X-point. Accordingly, the MGR jets generate

non-local heating along the magnetic field lines far from the X-point location.

In this section, we studied the MGR using Spitzer-like resistivity without start-

ing with a functional form of resistivity perturbation to initiate reconnection.

We found that the reconnection rate (ηJz) decreases with time and it has low

values indicating a slow MGR process. Thus, an additional ingredient is required

to speed up the MGR process. As outlined in the Introduction section, the fast

MGR process was investigated first by Petschek, and later on by other authors

using various approaches such as resistivity enhancement [122, 123], anomalous

resistivity [29, 72], Hall MHD [31]. Hereafter, we add time-independent magnetic

fluctuations with a small amplitude and long wavelength to the coronal magnetic

field to show that this is sufficient to trigger fast reconnection.

6.4.2 MGR with Time-Independent Magnetic Fluctua-

tions

In this section, we discuss the results of the numerical simulation of the MGR

with magnetic fluctuations using the same initial and boundary conditions as the

case with BF = 0. We recall that the magnetic field is composed of ~BM and Bz

that evolve as a function of time and space according to Equations (2.58) and

(2.59). The additional magnetic field ~BF that accounts for the footpoint motion
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is applied at t > 0 and retained unmodified during the simulation. Our approach

differs from that of the “forced reconnection model” in which a perturbation of

the initially stationary force-free Harris sheet is introduced, at an initial time

interval, via external boundary deformation [124, 125, 126, 127].

The basic idea is that the sources of ~BF = B̃ sin(2πy/Λy)x̂ (see Figure 6.1) lie

outside the simulation domain. Consequently, BF is imposed on the magnetic

field in the simulated region without being affected by its dynamics. We set the

amplitude of the fluctuations B̃ to be as low as 1% of B0. We emphasize that the

numerical simulation is not restricted to time-independent magnetic fluctuations.

The Magnetic Field Configuration with Fluctuations

In this section, we discuss the results of the MGR with magnetic fluctuations

obtained for two cases Λy = 10Ly and Λy = Ly. The values of Λy are chosen such

that Λy/VA is of the same order as the time-scales of the photospheric footpoint

motion. We use the same functional form of the Spitzer-like resistivity used above

for the MGR case without fluctuations.

Figure (6.10) displays the field lines of the coronal magnetic field ~BM at different

times for the two-fluctuation cases Λy = 10Ly in (a) and Λy = Ly in (b). It is

remarkable that the addition of static magnetic field fluctuations, even with an

amplitude of 1% of B0, has strong effects on the magnetic field evolution. In

Figure (6.10-a), we report the onset of a plasmoid, which exists in the region

between two X-points in the simulation domain, early in the simulation at t =

50 sec. At t = 120 sec, another X-point is formed around the origin causing

the formation of two plasmoids on both sides. Then, they move in the opposite

y-direction leading to a decrease of the current sheet width with time. Plasmoids

are not detected in the absence of magnetic fluctuations.

From the magnetic field configuration with Λy = Ly, as shown in Figure (6.10-

b), we note that the formation of plasmoids occurs at a faster rate than for
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Figure 6.10: On the left side (a) and right side (b), we show respectively the
magnetic field lines of BM for the two MGR cases with magnetic fluctuations,
Λy = 10Ly and Λy = Ly. The different times indicated on the panels show the
instants when these plots are calculated. The vertical axis (x-axis) is doubled
relative to the horizontal axis (y-axis) for visualization purposes.

Λy = 10Ly. The onset of the first plasmoid is detected at t = 20 sec (50 sec for

Λy = 10Ly) and is followed by an X-point around the origin. This leads to the

formation of two plasmoids at 70 sec similar to what is observed at t = 130 sec

for Λy = 10Ly. For t ≥ 80 sec, we witness the generation of a third plasmoid
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near the center, which is rapidly ejected in the positive y-direction leading to a

strong asymmetry in the plasma motion not detected in the two cases studied

above. For t > 110 sec, we report a rather complex magnetic configuration. The

formation of plasmoids followed by convection away from the X-point has been

also detected by [73] using anomalous resistivity. The formation and ejection of

the plasmoid in the current sheet would then be attributed to the nature of fast

magnetic reconnection [128].

The Onset of Jets

The convective motion of the plasma occurs mainly in the outflow directions

along the y-axis. For BF = 0, the onset of the jets is detected about 600 sec, after

reconnection takes place. With BF 6= 0, this process occurs at a much faster rate.

This issue and its consequences are investigated in this section. Figure (6.11-a)

shows the time evolution of the maximum of the Mach number in the y-direction

for the three MGR cases as a function of time. The dotted curve is the same solid

curve shown previously on the three-dimensional plot in Figure (6.8-c). We recall

that Max(My) starts to increase at t > 600 sec for BF = 0 and is accompanied

by an important density decrease caused by the open boundary conditions of our

simulation. The behavior of My for the two cases with magnetic fluctuations

indicates an early development of the jets where the strong increase is reported

at t = 110 and 50 sec for Λy = 10Ly and Λy = Ly respectively. Moreover, the

ejection of the plasma by the jets occurs not only earlier but also faster as it can

be deduced from the slope of Max(My) as a function of time. Moreover, adding

magnetic fluctuations leads to values of the Mach number that is 6 times the

maximum values reached at BF = 0.

The jets lead to a strong decrease of the plasma density as shown in Figure (6.11-

b) where we plot the time dependence of the spatial average of the density 〈ρ〉

for the three MGR cases with and without fluctuations. We recall that the three
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Figure 6.11: We show in (a) and (b) respectively the time dependence of the
maximum of the Mach number associated with the velocity in the y-direction
Max(My) and the mean plasma density 〈ρ〉 for the three MGR cases. The black
dotted line is for the case of no fluctuations (BF = 0) with a time step divided
by 3 for better visual representation. The dashed-dotted and solid lines are for
Λy = 10Ly and Λy = Ly respectively.

cases have the same initial conditions including the same 〈ρ〉. Initially, we record

a density increase similar to the results for BF = 0 caused by the influx of plasma

in the x-direction. But this rise occurs for a brief amount of time when including

the magnetic fluctuations, that is, about 20 sec. After this time, we report a

sharp decrease in the average density at the same time My increases. The rates

of this decrease are higher for Λy = Ly than for Λy = 10Ly also in agreement

with the Mach number behavior. We stop the simulation just before the resistive

MHD description starts to fail and other effects, such as Hall-MHD, need to be

included in the physical model.
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Effects on the Temperature and Reconnection Rate

The main goal of this section is to focus on characterizing the behavior of the

reconnection rate and temperature when the magnetic fluctuations are added.

In Figure (6.12), we show the temporal variation of the maxima of the magnetic

field x-component, Max(BMx), the reconnection rate, Max(ηJz), the Alfvén Mach

number, MA, and the plasma temperature, Max(T ), for the three MGR cases.

Note that for clarity, the time increment for the case with BF = 0 is 1/3 sec

and not 1 sec as it is the case for BF 6= 0. The maxima are taken along the

y-direction at x = 0 because the motion of the X-points and the plasmoids take

place in this direction. The dotted curves for BF = 0 in panels (a), (b), and (d)

are the same plots shown in Figure (6.8). Figure (6.12-a) shows the amplitude of

BMx as a function of time for the three cases. One can verify that at t ' 0 sec,

the values of BMx for the three cases are different from 0 reflecting the effect

of resistivity on the magnetic reconnection. For BF 6= 0 and Λy = 10Ly, BMx

reaches 6.4 × 10−6 Tesla, that is 6.4 times Max(BMx) for BF = 0, that scores

1×10−6 Tesla. Moreover, this increase is reached after only 150 sec, much earlier

than without fluctuations, which takes up to t = 800 sec to reach maximum value.

When Λy is decreased to become equals to Ly, the amplitude of BMx increases

even more up to 2 × 10−5 Tesla in only 65 sec. The variation in the amplitude

of BMx with time is caused by the existence of plasmoids with position changing

with time. We deduce that the addition of a static BF leads to a faster and

stronger increase in the x-component of the coronal magnetic field ~BM .

The maximum value of the reconnection rate ηJz is plotted in Figure (6.12-b)

as a function of time. In agreement with the behavior of Max(BMx), we note

the rapid increase of the reconnection rate to values about 1.1 V/m for BF 6= 0,

which is 10 times greater than for BF = 0. The time needed for the reconnection

rate to reach its maximum value is about t = 900 sec for BF = 0. This time

decreases to 150 sec for Λy = 10Ly and down to 100 sec for Λy = Ly. This also
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Figure 6.12: We show in (a), (b) and (d) the temporal variation of the maximum
value in the y-direction at x = 0 of BMx, ηJz and T respectively. We also show
in (c) the inflow Alfvén Mach number MA calculated using the maximum of ux
just outside the current sheet at x ∼ λ and y = 0. The black dotted lines are for
BF = 0 with a time step set to 1/3 sec for clarity. The blue triangles and red
circles correspond respectively to Λy = 10Ly and Λy = Ly.

clearly indicates that MGR occurs much faster. Another way to investigate the

reconnection rate is to show the behavior of the inflow Alfvén Mach number MA

as a function of time. Figure (6.12-c) shows the time dependence of MA for the

three MGR cases. In agreement with the evolution of Max(ηJz), with magnetic

fluctuations, MA increases to reach values greater than 0.01. The latter is often

taken to be the fast reconnection threshold [119]. Furthermore, fast reconnection

occurs in a period of about 150 sec for Λy = 10Ly and about 100 sec for Λy = Ly.

The two values are much smaller than the 900 sec obtained for BF = 0. The
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MGR process is therefore enhanced after including the static magnetic fluctua-

tions.

One of the motivations of this work is to help us understand the abnormally high

temperatures recorded in the solar corona. It is admitted that the conversion of

the magnetic energy to thermal is a mean to increase the plasma temperature in

this region. Here, we aim at investigating the effects of adding time-independent

magnetic field fluctuations on the temperature. The three simulations have the

same plasma initial conditions and namely the same initial temperature. Fig-

ure (6.12-d) shows that by adding magnetic fluctuations with an amplitude of

1%B0, Max(T ) reaches a value of ∼ 5.5 × 106 K, which is an increase of 40%

when compared to the case with BF = 0. The case of Λy = Ly shows further

a faster increase of Max(T ) compared to the case of Λy = 10Ly indicating the

rate of increase of the temperature increases with decreasing wavelength. The

increase in temperature is competing with the convection by the jets of plasma

particles outside the simulation domain. Once the jets start emptying the simula-

tion domain from primarily hot plasma, it causes the temperature to drop. This

is detected to occur at 150 and 100 sec for Λy = 10Ly and Λy = Ly respectively.

We conclude that by adding time-independent magnetic fluctuations, we showed

that the magnetic reconnection is faster and the temperatures are higher even

with a small amplitude of the fluctuations.

Energy Budget with Fluctuations

Before concluding, we turn into investigating the energy budget in the presence of

the time-independent magnetic fluctuations with an amplitude equals to 1%B0.

Figure (6.13) exhibits the time dependence of the average total energy, 〈Etotal〉,

the average magnetic energy, 〈Emag〉, the average internal energy, 〈ε〉, the average

kinetic energy, 〈Ek〉 and the ohmic heating average energy 〈Eh〉 for Λy = 10Ly.

The overall behavior of the different energies with fluctuations is similar to the
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Figure 6.13: The energy budget for the fluctuation case with amplitude B̃ =
1%B0 and wavelength Λy = 10Ly. The total energy 〈Etotal〉 is in solid line, the
magnetic energy 〈Emag〉 is in dashed line, the thermal energy 〈ε〉 is in dashed-
dotted line, the kinetic energy 〈Ek〉 multiplied by 100 is in black circles, and the
ohmic heating 〈Eh〉 is in dotted line.

no-fluctuation case for t > 600 sec. The main difference between the case with

and without fluctuations is the onset of jets much earlier in the simulation. Mag-

netic energy is still converted into internal energy but the effect of convection is

important from t = 0 and is reflected in the decrease in the total energy. Convec-

tion becomes more important for t > 150 sec where the kinetic energy increases

dramatically and the total energy decreases even further. The average kinetic

energy, 〈Ek〉, is approximately 14 times greater with BF than without. The in-

ternal and the heat energy, 〈ε〉 and 〈Eh〉, do not reach values as high as those

for BF = 0. This is because the amount of the heat generated rapidly leaves the

simulation domain with the expelled hot particles due to the early development

of high-speed jets in the current sheet.
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Chapter 7

Simulation of MGR using the

Uniform Resistivity Model

7.1 Introduction

Dissipation mechanisms due to plasma microscopic properties, such as Coulomb

collisions and micro-instabilities, may lead to an enhanced resistivity [129, 130],

which may be high enough to accelerate the MGR process. A basic question

for the reconnection problem may thus be to determine which microscopic effects

give rise to an effective resistivity in the diffusion region [129]. The plasma micro-

scopic behaviors should be fully examined in connection with the self-consistent

macroscopic reconnection flows. Thus, a resistivity may be given as a func-

tion of macroscopic quantities without referring to any detail of the microscopic

mechanisms causing effective resistivity [131]. For example, in the MHD formula-

tion which deals with macroscopic plasma behaviors, we use either a Spitzer-like

form for the resistivity η (relating resistivity to temperature T and other plasma

quantities) describing the Coulomb collisions, or a current-driven anomalous re-

sistivity (relating resistivity to current density J and other quantities) for the

micro-instabilities that would take place in the current sheet [132, 133, 134, 135].
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Actual plasma systems, such as space and laboratory, are characterized by high-

temperature plasmas leading to extremely small electrical resistivity due to Coulomb

collisions. This is why we used in Chapter 6 an enhanced form of Spitzer-like

resistivity to keep our calculations valid in the framework of MHD as discussed

before.

Most of the conventional theoretical studies have considered that MGR should

not be influenced by the effective resistivity form, so that the uniform resistivity

model has often been employed [119]. Although uniform resistivity is not realistic

in actual plasma systems [104], but it is important to (1) examine its effect on the

evolution of the MGR process and (2) to compare its results to those obtained

using the Spitzer resistivity model.

7.2 Results and Discussion

In this chapter, we simulate new cases of the MGR process with and without

fluctuations using the uniform resistivity model, where the resistivity η is assumed

to be uniform in space and constant in time. The value of this uniform resistivity

is chosen to be the same initial value of the Spitzer-like form used previously in

Chapter 6, i.e. η = η0 ≈ 7.26 × 10−3µ0VAλ0 Ω.m. We emphasize that the same

initial and boundary conditions, that are used in Chapter 6, are applied here for

the new MGR cases and we use the same mesh as before.

Before discussing the new results and comparing them to those of Chapter 6,

we plot in Figure (7.1) the temporal variation of (~∇. ~B)error for the two cases.

We find that (~∇. ~B)error for the two cases, with and without BF , does not exceed

the critical value for long simulation time of 1000 sec or 556τA. Thus, hereafter

in the next sections we consider the temporal evolution up to 1000 sec for both

cases.
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Figure 7.1: We present the temporal evolution of (~∇. ~B)error for the two new cases
of the MGR process. The black solid line is for the MGR case without fluctuations
(BF = 0). The red dashed line is for the MGR case with fluctuations (BF 6= 0)
for Λy = 10Ly. Logarithmic scale is also used for the two axes.

7.2.1 Temporal Behavior of Magnetic Field Lines

Figure (7.2) displays the field lines of the coronal magnetic field ~BM at different

times for the MGR cases using constant resistivity without BF (left panels) and

with BF for Λy = 10Ly (right panels). In the case without BF , we report the

onset of a large plasmoid at t > 200 sec, which exists between two X-points that

are outside the simulation box. Later, during the simulation time up to 1000 sec,

the plasmoid is enlarged in the x-direction indicating an increase in the current

sheet width, which was 2λ0 at t = 0. When fluctuations are added, we denote

similar evolution of the magnetic field lines as in the case without fluctuations

but at a faster rate. In other words, the behavior of the field lines observed at

t = 1000 sec for BF = 0 is similar to that observed for BF 6= 0 at t = 500 sec.

We emphasize that the case without BF does not show any X-point inside the

simulation box, and the case with BF does not lead to the formation of multiple

X-points and plasmoids as it was reported previously in the MGR cases using

the Spitzer resistivity model (Chapter 6).
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Figure 7.2: We present the magnetic field lines of BM for the new MGR cases
using the uniform resistivity model at different instants. Left panels (a), (c)
and (e) are for the case without BF , while right panels (b), (d) and (f) refer
to the case with BF for Λy = 10Ly. The horizontal side is the y-direction for
−Ly/2 ≤ y ≤ Ly/2 and the vertical side is the x-direction for −Lx/5 ≤ x ≤ Lx/5,
where Ly = 4Lx = 32λ0 = 4 Mm. The x-axis is doubled relative to the y-axis for
visualization purposes.

We show in Figure (7.3) the time evolution of the current sheet width 2λ,

calculated using Equation (6.4), for the MGR cases using either the Spitzer or

the uniform resistivity models with and without BF . Starting from its initial

value of 2λ0, the sheet width for both the MGR cases, with and without BF ,

using the uniform resistivity model increases then decreases but its value at t =

1000 sec is still high, which is greater than twice of 2λ0. This is in agreement

with the behaviors of the field lines observed in Figure (7.2) where X-points do

not exist because the sheet width becomes very thick at the center of the domain.

Moreover, as noted previously in Chapter 6 as well as in Figure (7.3) here, the

MGR cases using the Spitzer-like resistivity exhibit a decrease in the current

sheet width below 2λ0 indicating the formation of the X-point around the origin.
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Figure 7.3: We present time evolution of the current sheet width, normalized to
its initial value 2λ0 = 250 km, of the MGR cases for both the Spitzer and the
uniform resistivity models. The panel (a) is for BF = 0 and the panel (b) refers
to BF 6= 0 for Λy = 10Ly. The black solid line refers to Spitzer while the red
dashed line is for the uniform resistivity. The time step of the MGR case with
BF using uniform resistivity, i.e. the red dashed curve in panel (b), is set to 1/4
sec for clarity.

7.2.2 Characterization of the MGR using the Uniform

Resistivity Model

As discussed in Chapter 6, jets of plasma particles are detected in the outflow

directions along the y-axis, and the increase in the Mach number is accompanied

by a density decrease caused by the open boundary conditions of the simulation.

In what follows in this section, we want to (1) investigate the time dependence

of some of the main physical quantities for the MGR cases with and without

BF using the uniform resistivity model, and (2) to compare their behaviors to

those of the same quantities obtained by the MGR cases using the Spitzer-like

resistivity.

The panels (a) and (b) of Figure (7.4) show the time evolution of the maximum

of the Mach number in the y-direction for the MGR cases, with and without

BF , using the Spitzer and the uniform resistivity models. According to panel

(a) where BF = 0, the maximum of the Mach number starts showing relatively

higher values at t > 200 sec compared to those at t < 200 sec, whereas similar

behavior takes place for the Spitzer resistivity model starting at t > 600 sec.
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Figure 7.4: The left panels (a) and (c) present respectively the time dependence of
the maximum of the Mach number associated with the velocity in the y-direction
Max(My) and the mean plasma density 〈ρ〉 for the MGR cases without BF . The
right panels (b) and (d) presents respectively the time dependence of the same
quantities for the MGR cases with BF for Λy = 10Ly. The black solid and the red
dashed lines are for the MGR cases using the Spitzer and the uniform resistivity
models respectively. The time step of the MGR case with BF using uniform
resistivity, i.e. the red dashed curves in the right panels, is again set to 1/4 sec
for clarity.

However, when fluctuations are added, we observe in panel (b) an early increase

of Max(My) for the MGR case using the uniform resistivity, as in the case of

Spitzer, and later it decreases. At the end of the simulation time, t = 1000 sec, we

notice that Max(My) for both the MGR cases with BF 6= 0, using the Spitzer and

the uniform resistivity, reaches values that are greater by one order of magnitude

compared to the cases without BF .

We plot in the panels (c) and (d) of Figure (7.4) the time dependence of the spatial

average of the density 〈ρ〉 for the two MGR cases with and without fluctuations

using the Spitzer and the uniform resistivity models. As shown in (c) for the case

without BF using the uniform resistivity, 〈ρ〉 decreases at t > 200 sec, then it
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becomes constant starting at t > 400 sec. For the case shown in (d) using uniform

resistivity with BF 6= 0, we observe an early decrease in 〈ρ〉 to reach lower values

compared to BF = 0 as well as to the case using the Spitzer resistivity for BF 6= 0.

Thus, the decrease in 〈ρ〉 occurs when Max(My) increases even for small values.

Moreover, while the cases using the Spitzer resistivity with and without BF lead

to almost same value of 〈ρ〉 at the end of the simulation, we report more decrease

in 〈ρ〉 for the case using the uniform resistivity with BF than without.

In Figure (7.5), we show the time dependence of the maximum value in the

Figure 7.5: We show in the left panels (a), (c) and (e) respectively the temporal
variation of the maximum value in the y-direction at x = 0 of BMx, ηJz and
T for the MGR cases without fluctuations. We also show in the right panels
(b), (d) and (f) the temporal variation of the same quantities for the MGR cases
with fluctuations for Λy = 10Ly. The black solid and the red dashed lines are
respectively for the MGR cases using the Spitzer and the uniform resistivity
models. The red dashed curves in the right panels are also plotted with a time
step divided by 4 for better visualization the results.

y-direction at x = 0 of BMx, ηJz and T for the MGR cases, with and without

BF , using the Spitzer and the uniform resistivity models. In (a) and (b), the case

with BF using uniform resistivity shows higher values of Max(BMx) compared to
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the case without BF . However, we do not observe a peak like the one we have in

panel (b) for the Spitzer resistivity with fluctuations. The maximum value of the

reconnection rate ηJz is plotted in (c) and (d) as a function of time. While we

observe an increase in Max(ηJz) for the cases using the Spitzer resistivity with

and without BF , the cases using uniform resistivity always show a decrease in

Max(ηJz). Thus, the cases using uniform resistivity does not lead to fast MGR

process even if fluctuations are included. This is also in agreement with the

work done by [136, 137, 138, 139, 119, 140, 141, 104] who showed that the fast

reconnection mechanism can never be realized in the resistive MHD framework

when the resistivity is uniform. The behavior of Max(T ) as a function of time

is shown in the panels (e) and (f) of Figure (7.5). In the cases using uniform

resistivity with and without BF , Max(T ) increases to attain a maximum value

of ∼ 5 MK for BF = 0 and ∼ 4 MK for BF 6= 0, then it decreases to values

which are lower for BF 6= 0 compared to BF = 0. This is because the speed of

the plasma particles along the y-direction, which leads to a density decrease, is

greater with BF than without as shown in the panels (b) and (d) of Figure (7.4).

This also does not reflect a cooling of the plasma when T appears to decrease but

rather the exit of the hot particles outside the computational domain. Finally, it

is noticed that Max(T ) reaches higher values when using Spitzer resistivity with

fluctuations compared to the cases using uniform resistivity with and without

BF .

7.2.3 Energy Budget

We now discuss how the various forms of energy are distributed as a function

of time during the MGR cases using the uniform resistivity model. Figure (7.6)

presents the time evolution of the average total energy, 〈Etotal〉, the average mag-

netic energy, 〈Emag〉, the average internal energy, 〈ε〉, the average kinetic energy,

〈Ek〉 and the ohmic heating average energy 〈Eh〉 for BF = 0 and BF 6= 0 in panel
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(a) and in panel (b) respectively.

Figure 7.6: We present in (a) and (b) the energy budgets for the cases using the
uniform resistivity model without BF and with BF respectively. The total energy
〈Etotal〉 is in solid line, the magnetic energy 〈Emag〉 is in dashed line, the thermal
energy 〈ε〉 is in dashed-dotted line, the kinetic energy 〈Ek〉 multiplied by 1000
is in black circles, and the ohmic heating 〈Eh〉 is in dotted line. Note that the
dotted line in (b) for BF 6= 0 shows 〈Eh〉/10.

We start with panel (a). The total energy remains almost constant up to ∼

200 sec, then it drops to lower values which varies smoothly. The kinetic energy

is multiplied by a factor of 1000 because it is small when compared to the other

forms, and it shows little peak just after 200 sec. The magnetic energy decreases

up to 300 sec after which it remains constant to a lower value compared to the

initial one. This causes the heat and internal energy to increase up to t ∼ 300 sec

after which they show little variations in their values.

We observe in panel (b) for BF 6= 0, that the total and the magnetic energy

always decrease to reach lower values at t = 1000 sec compared to BF = 0. The

peak in the kinetic energy is observed almost 20 times larger and it occurs earlier

compared to BF = 0. The internal energy does not reach higher values as in

the case without fluctuations. The heat energy continues increasing during the

whole simulation time and it attains values at t = 1000 sec that are almost 7

times greater compared to BF = 0. This is because the density 〈ρ〉 decreases

more for BF 6= 0 compared to BF = 0 as noted previously in the panel (b) of

99



Figure (7.4).

The evolution of the MGR process is different using the uniform resistivity

model instead of the Spitzer one. While we observe X-points and plasmoids when

applying Spitzer-like resistivity, the MGR cases using uniform resistivity do not

lead to such structures and we report only one big plasmoid extended in the whole

computational box. However, adding fluctuations still accelerates the process so

that the same behavior of the magnetic field lines are observed at a shorter time

for BF 6= 0 compared to BF = 0. Nevertheless, we always witness slow MGR

process when using uniform resistivity, which is in agreement with the literature.
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Chapter 8

Simulation of MGR using the

Spitzer Resistivity Model and

Starting with Initial Velocity

~u 6= ~0

8.1 Introduction

All the cases of the MGR process done in Chapter 6 using the Spitzer resistivity

model start with initial velocity equals to zero. However, our calculations are

performed in a simulation box assumed to be a portion of the solar corona region

at which flows of plasma particles always exist. Thus, a flow of plasma particles

should be taken into consideration in order to make our simulation cases more

realistic. The aim of this chapter is to investigate the results obtained from new

MGR cases, with and without fluctuations, using the same functional form of the

Spitzer resistivity applied in Chapter 6 and starting initially with a steady flow

of particles along the outflow direction or the y-direction.
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8.2 Error of ~∇. ~B

In this chapter, we perform two runs of the MGR process following the same

simulation setup as in Chapter 6, same initial and boundary conditions and same

mesh, except that we start with non-zero initial velocity along the y-direction,

i.e. uy 6= 0 at t = 0. The first case is done without BF and the other case is done

with BF using only the longer wavelength of the fluctuations Λy = 10Ly.

Figure 8.1: We present the temporal evolution of (~∇. ~B)error for the two new cases
of the MGR process. The black solid line is for the MGR case without fluctuations
(BF = 0). The red dashed line is for the MGR case with fluctuations (BF 6= 0)
for Λy = 10Ly. Logarithmic scale is used for the two axes.

Following the same strategy, we start with the temporal variation of (~∇. ~B)error

presented by Figure (8.1). As shown in the figure, the value of (~∇. ~B)error forBF =

0 increases slowly with time up to 300 sec, then it increases rapidly and exceeds

the critical value in a short time. Thus, we consider the temporal evolution up

to 300 sec for the non-fluctuation case. Concerning the case with BF , we find

that (~∇. ~B)error starts increasing rapidly after t > 100 sec, and we present the

results of the fluctuation case up to about 120 sec at which (~∇. ~B)error is still in

the order of 10−15 T/m.
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8.3 Results and Discussion

We set the initial velocity to be ~u = 0.1usŷ, where us is the sound speed equals

to 100 km/sec at t = 0. Figure (8.2) shows the time evolution of Max(My),

calculated in the y-direction at x = 0, and the mean plasma density 〈ρ〉 with

and without fluctuations for initial velocity equal to and different from zero. The

overall behaviors of Max(My) and 〈ρ〉 of these new cases with non-zero initial

velocity are similar to those of Chapter 6 during 300 sec for BF = 0 and 120 sec

for BF 6= 0. The main difference between the cases with and without initial

velocity is the non-zero Mach number at t = 0.

Figure 8.2: The left panels (a) and (c) present respectively the time dependence
of Max(My) and the mean plasma density 〈ρ〉 for the MGR cases without BF .
The right panels (b) and (d) presents respectively the time dependence of the
same quantities for the MGR cases with BF for Λy = 10Ly. The black solid line
is for the case without initial velocity presented previously in Chapter 6, and the
red dashed line is for the case with initial velocity uy 6= 0.

We show in Figure (8.3) the time evolution of Max(BMx), Max(ηJz) and Max(T ),

calculated in the y-direction at x = 0, for the MGR cases using the Spitzer-like

resistivity with and without initial velocity for BF = 0 and BF 6= 0. It is observed
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that the behaviors of these quantities for the new cases with initial velocity and

for those without initial velocity are the same within 300 sec for BF = 0 and

120 sec for BF 6= 0.

Figure 8.3: We show the temporal variation of Max(BMx), Max(ηJz) and Max(T )
for the new cases using the Spitzer resistivity model with and without initial
velocity. The left panels (a), (c) and (e) are for BF = 0, whereas the right panels
(b), (d) and (f) are for BF 6= 0 using the fluctuation wavelength Λy = 10Ly. The
maximum values of the mentioned quantities are calculated in the y-direction
at x = 0. The black solid and the red dashed lines are respectively for the
cases without initial velocity (presented previously in Chapter 6) and with initial
velocity uy 6= 0.

Figure (8.4) presents the time evolution of 〈Etotal〉, 〈Emag〉, 〈ε〉, 〈Ek〉 and 〈Eh〉

for BF = 0 and BF 6= 0 in panels (a) and (b) respectively. It is also noticed

that the energy budgets for the new cases with initial velocity are similar to the

cases without initial velocity, presented previously in Chapter 6, and the only

difference is the non-zero kinetic energy at t = 0 as indicated by the figure.

In this chapter, we show part of the results of the new MGR cases using the

Spitzer-like resistivity with initial velocity different from zero. We present the

curves of the various quantities up to 300 sec for BF = 0 and 120 sec for BF 6= 0

104



Figure 8.4: We present in (a) and (b) the energy budgets for the new cases, using
the Spitzer resistivity model with and without initial velocity, for BF = 0 and
for BF 6= 0 respectively. The total energy 〈Etotal〉 is in solid line, the magnetic
energy 〈Emag〉 is in dashed line, the thermal energy 〈ε〉 is in dashed-dotted line,
the kinetic energy 〈Ek〉multiplied by 100 is in black circles, and the ohmic heating
〈Eh〉 is in dotted line.

during which (~∇. ~B)error does not exceed the critical value. After these two times,

the results show numerical instabilities near the boundaries, not shown in the

above results, which explains why (~∇. ~B)error exceeds the critical value at later

times. As a future work, we intend to choose another type of boundary conditions

that are more convenient with these MGR cases using a non-zero initial velocity

along the outflow direction. By doing this, we thus are able to exploit the results

for long simulation time with (~∇. ~B)error . 10−15 T/m.
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Chapter 9

Summary, Conclusion and Future

Work

9.1 Summary

Despite great advances in observations and modeling, the problem of solar coronal

heating remains one of the most challenging problems in astrophysics. Heating in

the solar corona is thought to be coming from many heating events [126]. This is

the basic of the nanoflare hypothesis proposed by Parker in 1988 [142]. According

to observations, it’s difficult to survey one heating mechanism alone because sev-

eral mechanisms may operate at the same time [54]. Recently, on August 2018,

NASA has launched the first-ever mission to touch the Sun namely the “Parker

Solar Probe” [143]. By capturing high resolution data, this spacecraft may find

out how each individual heating mechanism will contribute in the global heating

process of the solar corona.

MGR is modeled using many approaches, starting from the kinetic theory

and ending with the single-fluid or MHD formulation, depending on the time and

length scales of the plasma dynamics. For low frequency plasma compared to
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the ion-cyclotron frequency and length-scales larger than the ion skin depth, the

treatment of MGR can be done in the MHD framework. This reduces the plasma

equations to only four which are the continuity, the momentum, the energy and

the induction equations. These four equations form the so called: “resistive MHD

model” if the plasma resistivity η 6= 0.

In the present thesis, we have made a serious effort to link the MGR process

in the solar corona to the turbulent convective motion of the photospheric foot-

points. We have done this link by assuming sinusoidal fluctuations in the coronal

magnetic field, a sinusoidal behavior of footpoint motion is considered, and im-

plementing them into the resistive MHD equations as source and sink terms (See

Chapter 2). Thus, the fluctuations certainly lead to influence all the physical

plasma quantities, including heating and particle acceleration, of the solar corona.

This treatment of fluctuations differs from that of the “forced reconnec-

tion model” in which a perturbation of the initially stationary force-free Harris

sheet is introduced, in an initial time interval, via external boundary deforma-

tion [124, 125, 126, 127]. In our treatment, the fluctuations are applied for t > 0

over the whole mesh of our computational domain, and they are retained during

the whole simulation time. We use static magnetic field fluctuations and we select

typical values of their wavelengths based on the time-scales of the turbulent pho-

tospheric motion. The details of the calculations are summarized in Chapter 6.

The basic equations of our model are discretized into a system of linear al-

gebraic equations using the finite volume method. They are implemented and

solved using the openFoam code following two algorithms, PISO and BPISO.

The PISO is used to guarantee the conservation of mass (continuity), whereas

the BPISO is used to reduce the magnetic field divergence. Concerning ~∇. ~B, and

since it is difficult to have zero-divergence for the magnetic field numerically, we
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considered 10−15 T/m to be the order of (~∇. ~B)error below which the results are

acceptable.

We performed in Chapter 6 three simulation cases of the MGR process using

the Spitzer resistivity model without initial velocity. The first case is done with-

out adding magnetic field fluctuations. The other two cases are done with fluc-

tuations. The wavelengths of the fluctuations are respectively selected Λy = Ly

and Λy = 10Ly to match our predictions of the time-scales of the photospheric

footpoint motion. It is shown that the fluctuations contribute significantly to

reconnection and heat processes of the solar corona.

We did in Chapter 7 two new cases using a uniform resistivity instead of the

Spitzer-like one with and without fluctuations. We applied the same initial and

boundary conditions using the same mesh as in Chapter 6. In fact, real plasma

systems do not lead to a uniform resistivity, but it is important to see its ef-

fects on the evolution of the MGR process and to compare its results to those

obtained using the Spitzer resistivity model. It is shown that the use of a uni-

form resistivity in the framework of resistive MHD does not exhibit a fast MGR

process, which is well compared with the literature, even if fluctuations are added.

In Chapter 8 before concluding, we also did two other cases using the same

functional form of the Spitzer-like resistivity as in Chapter 6, but we start the sim-

ulations with a non-zero initial velocity along the outflow direction (y-direction).

The results behave similar to those obtained in Chapter 6 using zero initial veloc-

ity for short simulation time during which (~∇. ~B)error is below the critical value.

However, some numerical instabilities near the boundaries are noticed at later

times, which leads to have (~∇. ~B)error > 10−15 T/m. Thus, avoiding the numer-

ical instabilities, to keep (~∇. ~B)error below the critical value and to exploit the

results for long simulation time, is attributed to the best choice of the bound-
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ary conditions that are convenient with the MGR cases using a non-zero initial

velocity, and this is left for future work.

9.2 Conclusion

The results of the runs in the previous chapters are promising. The cases testing

the dynamics of the MHD flow, with and without magnetic field, are well com-

pared with the literature. In addition, the case of the Spitzer resistivity model,

initiated by localized resistivity around the origin, shows also good agreement

with the literature. All these test cases demonstrate that the MGR process is

well handled in the MHD approach using our code. The following is the main

results of the present work concluded for the cases of the MGR process with and

without fluctuations using the Spitzer resistivity model and starting with a zero

initial velocity (Chapter 6):

It is shown that for BF = 0 the MGR tends to behave as that of the Sweet-Parker

model, and the reconnection rate ηJz or MA (∼ 0.001) turns out to be slow and

is not supported by observations. Moreover, two jets of accelerated particles are

observed after relatively long simulation time of about 600 sec (∼ 333τA), which

leads to a dramatic decrease in the plasma density during a time range of about

300 sec (∼ 167τA) and affects all other plasma quantities. When low-amplitude

magnetic fluctuations of long wavelength, Λy = 10Ly, are added, the reconnec-

tion rate increases almost by a factor of 10 compared to BF = 0, surpassing the

threshold of the fast magnetic reconnection (= 0.01). We also find that the evo-

lution of the magnetic field is strongly affected by this low-amplitude fluctuations

that is 1% of B0, where multiple plasmoids and X-points are detected. This dif-

fers the case for BF = 0 where the formation of new plasmoids and X-points does

not exist at all. Additionally, an early development of high-speed jets is noticed,

which expel hot particles at a faster rate outside the simulation domain during

a time range of about 210 sec (∼ 116τA) compared to BF = 0. It is also noticed
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that the temperature amounts to higher values and the total energy decreases to

lower values compared to BF = 0. By decreasing the wavelength of the fluctu-

ations, it is remarkable that the magnetic field evolution becomes further more

complex where strong asymmetry is detected in the y-direction. Results show

that the formation and evolution of plasmoids and X-points dominate when us-

ing fluctuations of shorter wavelength (Λy = Ly), and the temporal variation of

the physical quantities takes place at shorter times compared to the fluctuations

of longer wavelength (Λy = 10Ly). The temperature and the reconnection rate

reach their maxima at about 80 sec (∼ 44τA), which are almost the same maxima

reached by those for Λy = 10Ly but at longer times. The formation of the jets

occurs even earlier compared to Λy = 10Ly, which leads to faster decrease of the

plasma density during a time range of about 120 sec (∼ 67τA). Consequently,

the heat energy does not reach values as high as that for BF = 0 because it is

rapidly ejected out along with the expelled hot particles.

The existence of multiple X-points and plasmoids due to the addition of magnetic

field fluctuations makes the MGR process faster. High-speed jets thus develop

at early time, which govern the fast expulsion of hot plasma particles outside the

simulation domain. Therefore, the heat generated by the MGR is convected out

along with the hot particles (carriers of thermal energy), which leads to enhance

heating of other coronal regions far from the reconnection site.

9.3 Future Work

Finally, we emphasize that our model is not restricted to static magnetic fluctu-

ations and can include other forms that are varying with time. Thus, the model

could be made more realistic when using space and time-dependent fluctuations,

which mimic the real plasma dynamics supported by observations. For example,

it is intriguing as future work to choose convenient functional forms for BF to

allow the field lines to oscillate in space and time. Temporal variation of the fluc-
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tuation amplitude can be also investigated. Influx of plasma particles through

the boundaries is a further example to simulate real coronal regions (Chapter 8),

etc... . Moreover, our model can be applied also to investigate the MGR process

in laboratory plasma devices, such as the plasma linear device (PLD) at AUB.
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Appendix A

Abbreviations

MGR Magnetic reconnection
MMS Magnetospheric Multiscale Mission
PSP Parker Solar Probe
MHD Magnetohydrodynamics
HD Hydrodynamics
PISO Pressure-Implicit with Splitting Operators
BISO Magnetic Pressure-Implicit with Splitting Operators
PDEs Partial Differential Equations
FVM Finite Volume Method
CFD Computational Fluid Dynamics
PBA Pressure Based Algorithm
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SIMPLEC SIMPLE Consistent
MCBA Mass Conservation Based Algorithm
GCBA Geometric Conservation Based Algorithm
OpenFOAM Open source Field Operation And Manipulation
fvc finite volume calculus
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Appendix B

List Of Publications

In what follows, I included the list of my papers, conference and journal, that
were done during the period it took to finalize this thesis. I only present the
abstract of each paper to let the reader know the main results of the published
work. The full text of those papers can be found online.

• Publication I: Effect of magnetic reconnection in stellar plasma.

This conference paper has been presented during the international con-
ference: “Frontiers in Theoretical and Applied Physics/UAE 2017 (FTAPS
2017)” that was held between 22nd and 25th of February 2017 at American
University of Sharjah (AUS), UAE.

Abstract :An important phenomenon in Astrophysics is the process of mag-
netic reconnection (MGR), which is envisaged to understand the solar flares,
coronal mass ejection, interaction of the solar wind with the Earth’s mag-
netic field (so called geomagnetic storm) and other phenomena. In addition,
it plays a role in the formation of stars. MGR involves topological change
of a set of magnetic field lines leading to a new equilibrium configuration of
lower magnetic energy. The MGR is basically described in the framework
of the Maxwell’s equations linked to Navier-Stockes equations. Neverthe-
less, many details are still not understood. In this paper, we investigate
the MGR process in the framework of the Magnetohydrodynamic (MHD)
model of a single conducting fluid using a modern powerful computational
tool (OpenFOAM). We will show that the MGR process takes place only
if resistivity exists. However, despite the high conductivity of the plasma,
resistivity becomes effective in a very thin layer generating sharp gradients
of the magnetic field, and thus accelerating the reconnection process. The
net effect of MGR is that magnetic energy is converted into thermal and
kinetic energies leading to heating and acceleration of charged particles.
The Sun’s coronal ejection is an example of the MGR process.
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• Publication II: Role of Magnetic Reconnection in Heating Astro-
physical Plasmas.

This conference paper has been presented during the international con-
ference: “The 2017 American Geophysical Union (AGU) Fall Meeting”
that was held between 11th and 16th of December 2017 in New Orleans,
Louisiana, USA.

Abstract :The description of plasma in the context of a fluid model re-
veals the important phenomenon of magnetic reconnection (MGR). This
process is thought to be the cause of particle heating and acceleration in
various astrophysical phenomena. Examples are geomagnetic storms, solar
flares, or heating the solar corona, which is the focus of the present con-
tribution. The magnetohydrodynamic approach (MHD) provides a basic
description of MGR. However, the simulation of this process is rather chal-
lenging. Although it is not yet established whether waves or reconnection
play the dominant role in heating the solar atmosphere, the present goal is
to examine the tremendous increase of the temperature between the solar
chromosphere and the corona in a very narrow transition region. Since we
are dealing with very-high temperature plasma, the modeling of such heat-
ing process seems to require a two-fluid description consisting of ions and
electrons. This treatment is an extension of the one-fluid model of resistive
MHD that has been recently developed by (Hammoud et al., 2017) [100]
using the modern numerical openfoam toolbox. In this work, we outline the
two-fluid approach using coronal conditions, show evidence of MGR in the
two-fluid description, and investigate the temperature increase as a result
of this MGR process.

• Publication III: Effects of Magnetic Perturbation on Reconnection
and Heating in the Solar Corona.

This journal paper has been submitted to the Astrophysical Journal (APJ)
since May, 2020. This paper was done based on the results of Chapter 6 in
this thesis.

Abstract :The solar corona exhibits unusually high temperatures (∼ 106

K) compared to the temperature in the Sun’s photosphere (∼ 5800 K).
This coronal heating is one of the fundamental problems in solar physics
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that is yet to be resolved. Magnetic reconnection is thought to play a criti-
cal role in driving this enigmatic heating process. In this work, we present a
newly-developed resistive magnetohydrodynamic (MHD) numerical model
in which we investigate the effects of magnetic perturbations on the recon-
nection rate and the heating process in the solar corona. The perturbations
are retained during the whole simulation time as they are assumed to be
generated by the photospheric motion of footpoints. We use OpenFOAM
to numerically solve the resistive MHD equations, which are modified by
implementing the perturbations as sources or sinks. Our results show that
including magnetic perturbations, even with a very small amplitude, leads
to (1) more complex formation and evolution of X-points and plasmoids,
(2) a transition from slow to fast reconnection rate, (3) a stronger increase
of the temperature, and (4) a quicker formation of high-speed jets driving
the hot plasma outside the simulation domain with a Mach number that is
6 times greater compared to the case without perturbations. Moreover, we
also find that a magnetic perturbation with shorter wavelength promotes
even a faster temporal evolution of the reconnection process than for the
longer wavelength. Therefore, magnetic reconnection taking into account
magnetic field perturbations leads to more effective heating of the solar
corona.
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[61] B. De Pontieu, R. Erdélyi, and S. P. James, “Solar chromospheric spicules
from the leakage of photospheric oscillations and flows,” Nature, vol. 430,
no. 6999, p. 536, 2004.

[62] N. Freij, E. Scullion, C. Nelson, S. Mumford, S. Wedemeyer, and R. Erdélyi,
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