
 



 

AMERICAN UNIVERSITY OF BEIRUT 

 

 

 

MODEL-BASED DYNAMIC CONTROLLER OF 

PERSONALIZED VENTILATION FOR THERMAL 

COMFORT IN NATURALLY VENTILATED SPACES. 

 

 

 

 
by 

 

DALIA ALI GHADDAR 

 

 

 

 

 

 

 
A thesis 

submitted in partial fulfillment of the requirements 

for the degree of Master of Engineering 

to the Department of Mechanical Engineering 

of the Maroun Semaan Faculty of Engineering and Architecture 

at the American University of Beirut 

 

 

 

 

 
Beirut, Lebanon 

September 2020 



 

 
 

 

 





v 

 

 

 

ACKNOWLEDGMENTS 

The authors would like to acknowledge the financial support of the American 

University of Beirut – University Research Board – Grant award no. 103780. 

 



vi 

 

 

 

AN ABSTRACT OF THE THESIS OF 
 

 

 
Dalia Ali Ghaddar     for                Master of Engineering 

     Major: Mechanical Engineering 

 

 

 

 

Title: Model-based dynamic controller of personalized ventilation for thermal comfort in 

naturally ventilated spaces 

 

 

 

This work aims to develop an accurate correlation using a modeling methodology to 

predict thermal comfort (TC) as function of occupant physiological and environmental 

parameters for a space that relies on the hybrid natural ventilation (NV) and personalized 

ventilation (PV) cooling system. Multivariable linear regression was adopted to develop 

the TC correlation while retaining variables based on the significance and 

interdependency. The correlation was found to be dependent on indoor temperature 

(Tindoor), relative humidity (RH), facial temperature (Tfacial) and its rate of change 

(dTfacial/dt). Sample data from the observations used in developing the correlation and 

outside-data were utilized to compare actual and predicted TC results over a scale from -

4 (very uncomfortable) to +4 (very comfortable). The reported standard error in 

estimating TC was 0.4 with a maximum deviation of about 0.8. 

The TC correlation is then utilized in developing dynamic controllers for NV-PV 

systems. A PV unit, autonomously controlled, in a NV office space was developed to 

maintain acceptable TC at all times of operation. The NV-PV controller robustly adjusts 

the PV supply temperature (TSPV) at the occupant set flow rate based on the developed TC 

correlation. The target TC level that the controller should attain at all times is between 

0.5 and 1 based on Zhang’s TC scale (just comfortable to slightly comfortable). The 

developed controller was tested in a case study of an office space in Beirut’s climate (with 

indoor temperature ranging between 25 and 33 C, and RH between 60 and 80 %). It was 

shown that the NV-PV controller can dynamically adjust TSPV to maintain acceptable TC 

between 0.5 and 1 at all times. 
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NOMENCLATURE 

dTfacial/dt : rate of change of facial temperature, ℃/min 

dTindoor/dt : rate of change of indoor temperature, ℃/min 

dTwrist/dt  : rate of change of wrist temperature, ℃/min 

HVAC   : Heating, Ventilation and Air Conditioning area 

IES-VE  : Integrated Environmental Solutions-Virtual Environment 

NV   : Natural ventilation 

PID  : Proportional Integral Derivative  

PV   : personalized ventilation 

QSPV  : personalized ventilator supply flow rate, L/s 

RH   : relative humidity, % 

TC   : thermal comfort 

Tfacial  : facial temperature, ℃ 

Tindoor  : indoor temperature, ℃ 

TMY  : Typical Meteorological Year 

TSPV  : personalized ventilator supply temperature, ℃ 

TSPV-set  : personalized ventilator set supply temperature, ℃  

(TSPV)k  : feedback value of present TSPV, ℃ 

Twrist  : wrist temperature, ℃ 

Kp  : proportional gain 

Ki  : integral gain 

Kd  : derivative gain 



x 

 

 

 

N  : total number of iterations 

Ek  : temperature difference between (TSPV)k and TSPV-set of this iteration  

Ek-1                 : temperature difference between (TSPV)k and TSPV-set of previous 

iteration 

∑ 𝐸𝑡
𝑘
𝑡=0     : integral error 

 

Greek symbols 

α  : intercept of the line 

β  : linear slope coefficient 
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CHAPTER I 

                              INTRODUCTION 

 

 HVAC systems account for more than 40% of energy consumption in buildings 

to maintain acceptable indoor environments that provide thermal comfort (TC) and good 

air quality for occupants [2]. However, a recent study on TC showed that only 11% of 

215 studied office buildings in United States, Canada and Finland equipped with HVAC 

systems were able to ensure comfortable states of the occupants [70]. The key to 

generating a suitable and effective indoor thermal environment for occupants is to 

correctly predict their TC state so that ventilation systems can perform corresponding 

adjustments to maintain acceptable comfort levels at times of operation [71]. Besides 

comfort, conventional HVAC systems consume high amounts of energy as they tend to 

condition the whole volume of the indoor space [4,28]. Thus, there is a great potential for 

significant reductions in energy consumption of HVAC systems to attain sustainability 

goals in indoor environments [2,4].  

In moderate climates, natural ventilation (NV) is considered one of the most effective 

sustainable strategies for energy savings related to building usage while assuring the 

supply of adequate breathing air and acceptable ventilation of contaminants [11,12]. This 

makes NV a very attractive approach, nevertheless, the success of NV in providing TC 

for the occupants relies on the outdoor temperature and indoor loads. At the elevated 

indoor conditions above 26 C which is the limit in typical office for acceptable comfort 

[53], attaining TC using NV as the only means of cooling would not be possible. Thus, 
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an additional system is required to maintain the occupants’ TC, while consuming minimal 

energy. One of the most studied systems in the field of energy savings and comfort is 

personalized ventilation (PV) systems. PV units provide each occupant with the 

possibility to generate and control his/her own preferred microenvironment [7]. Several 

previous studies have integrated NV with PV and concluded that such integrated systems 

can save energy while still maintaining comfort levels of occupants [13, 14]. However, 

spaces conditioned by NV-PV systems are subjected to airflow and temperature transients 

causing variation in TC levels of the seated individual during hours of occupancy. Thus, 

the individual may have to perform recurrent and continuous changes to the operational 

settings of the PV (temperature and/or flow rate) to meet his/her comfort needs which is 

not practical as this affects working performance. For this reason, a dynamic NV-PV 

controller is needed to automatically adjust its settings whenever discomfort is detected 

while minimizing the intervention of the occupant.   

The design of the dynamic PV controller primarily requires identification of the 

control parameters of the PV unit. In most of the PV operations, the occupant controls the 

flow rate while maintaining a constant PV supply temperature (TSPV) [7,8,14,34]. Keeping 

TSPV constant might fail in providing TC at elevated indoor temperature (Tindoor) as well 

as transients in Tindoor and relative humidity (RH) originating from NV [18]. Thus, 

changing both TSPV and PV flow rate is important to avoid any possible discomfort 

condition. Moreover, TC should be maintained with transients that occur due to changes 

in the occupant’s metabolic rate (activity level) from walking for example, before sitting 

at his/her desk. Allowing the occupant to simultaneously control the two PV supply 

variables might not bring the needed TC at the same rate versus when the person is 
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controlling a single operational variable. In fact, the authors are not aware of literature 

studies where the occupant is allowed to change the settings of two operational variables. 

In addition, the effect of changing a single variable can be quickly noticed by the 

occupant, such as changing the flow rate up to 15 L/s as adopted in many previous studies 

[14,33,7]. For example, at low TSPV, the occupant might favor relatively low flow rate 

over the high flow rate while at high TSPV, the occupant preference would be reversed. 

This direct relation between changing the supply flow rate and occupant TC at fixed TSPV 

might become more complex and require from the occupant to juggle the PV operating 

conditions several times before a TC state is reached. Therefore, for NV spaces 

conditioned with PV, one variable, TSPV, will be varied using a dynamic controller, while 

still allowing the occupant to change flow rate, if needed. 

Estimating TC is critical for the success of the automated NV-PV system. Spaces 

conditioned by NV-PV systems bring failure of accurate TC prediction by means of 

conventional TC models such as PMV [1]. Thus, a model or correlation that can correctly 

predict TC in NV-PV spaces is needed. This correlation should predict TC when 

asymmetry, due to PV operation, in the environmental conditions surrounding the 

occupant exists. Since different individuals have different thermal sensations under the 

same environmental conditions [73], the correlation must rely on influential segmental 

physiological parameters to predict TC [71]. Physiological parameters, mainly segmental 

skin temperatures, were proven to be correlated with TC [74]. The body segments used 

in TC prediction should be of limited number and must not be covered to allow for the 

measurement of corresponding skin temperatures using non-invasive devices that do not 

affect the occupant’s daily activities. Recent studies utilized thermographic cameras as 
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means to measure skin temperatures and then used them in TC modeling [4]. In a 

preliminary study of Burzo et al., average facial temperature was manually extracted 

using hand-held thermographic cameras and was used to predict subject’s level of 

discomfort [19]. Pavlin et al. also used multiple forehead points, that showed minimum 

temperature deviation, as measure of TC. Ranjan et al. manually extracted head and hand 

temperatures from a thermographic camera to model the thermal needs of the space 

occupants [75]. These studies proved that average face temperature was highly correlated 

to TC and can be employed to predict the TC levels of occupants. Along with facial skin 

temperature, present research studies have suggested relating TC with indoor 

environmental parameters (Tindoor and RH) [72]. The TC correlation should be able to 

predict TC when transients in indoor conditions exist. Thus, combining environmental 

parameters as well as segmental skin temperatures of accessible body parts can help in 

developing a TC model that can correctly predict the comfort state of an occupant.  

The current work aims to propose a method for developing a TC correlation that 

considers not only steady state but also transient comfort in a NV office space with PV, 

where typical temperature drifts and changes in metabolic rate exist. This correlation is 

important since it allows for TC prediction without having to do extensive or invasive 

measurements. Based on existing studies for predicting TC using noninvasive 

measurements, the main variables that could be adopted to predict TC under NV-PV 

system are proposed. These variables are associated with the indoor environmental 

conditions, physiological parameters of segmental skin temperatures and PV supply 

conditions under steady and transient states. Since people are not always stationary during 
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a typical working day from 9:00 AM to 18:00 PM, changes in the metabolic rate between 

1 met (58 W/m2) and 2 met (116 W/m2) are considered.  

There is a trend to move towards NV office buildings assisted with PV units to 

enhance sustainable cooling solutions, however, the viability of this option depends 

whether their combination (NV-PV) can provide TC. The developed TC correlation, 

applicable to steady and transient situations, is then utilized in developing dynamic 

controllers for NV-PV systems to provide TC at all times without occupants’ intervention. 

Thus, a standalone PV unit, autonomously controlled to provide comfort, in a NV office 

space was developed, with Tindoor that ranges between 25 and 33 C, and RH between 60 

and 80%. The dynamic NV-PV controller is designed such that it robustly adjusts the 

TSPV, at the occupant set flow rate, whenever an uncomfortable thermal state is detected. 

The controller sets the TSPV based on the predicted TC from the developed regression 

equation. The proposed controller is implemented in a case study of an office space with 

moderate hot and humid indoor conditions that is within the constraints and applicability 

of the developed correlation. The transient profile of Tindoor and RH of the NV-office space 

[13] are determined using the building energy simulation software, IES-VE [41]. The 

developed dynamic controller is tested, and its performance is evaluated in terms of 

attaining TC by using direct simulations on the bioheat model of Al-Othmani et al. [44,39] 

and Zhang’s TC model [18] for the tested case. 
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CHAPTER II 

TC CORRELATION METHODOLOGY 

 

The methodology for developing a versatile TC correlation is presented in the coming 

subsections. A brief description is provided on the different physical models used in the 

development of the correlation that include the bioheat model [39,44] and TC model 

(Zhang [18]). The range of indoor conditions and metabolic rates are identified for a NV-

office space with local PV units during summer. The extensive simulated cases in these 

ranges for developing the correlation are presented including the correlation assessment 

method.  

A. Methodology for developing the TC correlation and its influential variables 

Fig. 1 shows a schematic of an office space that relies on NV, through open windows, 

and assisted with PV unit to provide TC for a seated occupant when NV indoor conditions 

are not sufficient to ensure occupants comfort. The occupant of NV-PV conditioned office 

experiences changes in thermal state due to transients induced by NV affected by changes 

in outdoor conditions and due to changes in occupant metabolic rate when activity level 

changes. This implies that environmental and space variables and physiological variables, 

along with their rate of change and PV operational settings need to be identified in order 

to develop a significant TC correlation. The proposed methodology for developing the 

correlation suitable for the NV-PV environment depends on several aspects summarized 

as follows: 
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Fig. 1.  Schematic of the NV-PV system in an office space 

1) The availability of noninvasive measurements of skin temperature of exposed 

body segments and its rate of change are critical for the TC correlation. The 

facial and wrist skin temperatures and their rate of change (Tfacial, Twrist, 

dTfacial/dt and dTwrist/dt) represent four possible physiological variables that 

can help in the development of the steady and unsteady comfort conditions. 

Since PV units supply treated fresh air towards the occupant’s breathing zone 

[43,65,6], the exposed face would be an influential segment that could reflect 

the state of TC. Zhang reported that the face contributes significantly to 

improve TC when locally cooled with a whole body that is warm (Zhang 

2003). Moreover, Twrist was adopted in some previous TC measurement 

studies [18,19,66,67]. The importance of wrist temperature is assessed in the 

current study for a space equipped with a NV-PV system. The Tfacial, Twrist, 

dTfacial/dt and dTwrist/dt can be easily measured using a noninvasive method 



8 

 

 

 

such as the thermal camera [20,57], and then can be related to the occupant 

TC. These variables are the most important data to be collected, independent 

of the location of the office space and the climatological data.  

2) In a NV-office space, the following environmental and space variables are 

needed: Tindoor, dTindoor/dt, and the indoor RH. Thus, the dependence of TC 

prediction on these parameters is examined under different indoor summer 

conditions. 

3) Typical PV supply conditions adopted in literature ranged between 22 C and 

26 C for TSPV, and between 0 and 15 L/s for QSPV [8,9,22]. The dependence 

of TC prediction for different PV operational settings (QSPV and TSPV) is 

studied, while assessing any interdependency that might be present with other 

variables such as Tfacial, Twrist, dTfacial/dt and dTwrist/dt. It should be noted that 

the cases where Tindoor is equal to TSPV are not considered. 

To collect the proposed data (Tfacial, Twrist, dTfacial/dt, dTwrist/dt, Tindoor, dTindoor/dt, RH, 

TSPV, and QSPV), the following models are used: 

i) IES-VE software applied for a NV office space [41] to predict Tindoor, 

dTindoor/dt, and the indoor RH. 

ii) the validated segmental bioheat model [39,44] integrated with PV to predict 

physiological responses with or without local cooling; and  

iii) the actual TC votes collected using Zhang’s comfort model [18], for the 

different indoor and PV supply conditions.  

Moreover, multivariable linear regression was adopted in order to provide a simple 

tool for predicting TC with a hybrid cooling system using noninvasive measurements. 
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This method was previously used in other studies that involve a correlation development 

with several variables [61,62]. The facial and wrist skin temperatures and their rate of 

change along with the indoor conditions (Tindoor and RH) and PV operating conditions 

(QSPV and TSPV) are the variables used in developing the TC correlation. The correlation 

is then evaluated with different case study scenarios, which included steady state 

conditions and realistic transient situations. The sources of transients are triggered by 

changes in the metabolic rate of the occupant that could be coming from a transition space 

at an elevated metabolic rate of 2 met and then sitting at his/her desk where the metabolic 

rate stabilizes at around 1 met. The proposed methodology for developing the TC 

correlation under NV-PV system is presented in Fig. 2. 

 

Fig. 2. Proposed methodology for developing a TC correlation under NV-PV system 
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B. The bioheat model 

The segmental skin temperatures and the rate of change of 13 body segments 

(forehead, cheeks, backhead, chest, back, abdomen, upper arm, lower arm, palm, fingers, 

thigh, calf and foot) are predicted by a robust and previously validated bioheat model of 

Al-Othmani et al. [39]. Fig. 3 shows a schematic of the multi-segmented human body 

with the main segments listed. The model has a relatively good accuracy when compared 

to published experimental data (maximum error in skin temperature prediction of ± 0.5 

C) [39,44,84]. Thus, this model can be used to predict Tfacial (average temperature of the 

forehead and cheeks) and Twrist, as the face and wrist are influential segments that can be 

targeted to predict TC [18]. The adopted bioheat model of Al-Othmani et al. [29] requires 

the following input data for conducting the simulations: 

 Indoor conditions (Tamb, RH and air velocity) and exposure duration 

 Metabolic rate that reflects the activity level  

 Local convective coefficients that are affected by QSPV. When the PV is turned on, 

the convective heat transfer coefficients near the face, chest, and upper arms were 

computed according to the correlation of De Dear et al. [40] following the 

methodology of Al Assaad et al. [25]. 

 Clothing insulation and vapor diffusion characteristics of each body segment 

 Physiological body data that include the basal metabolic rate, basal skin blood 

flow, minimum and maximum skin blood flow, sweating factor, cold shivering 

factor, surface area, and fat thickness of each body segment.  
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The outputs of the bioheat model that are relevant to the current study are basically 

the segmental skin temperatures corresponding to the 13 segments and their rate of change 

under transient conditions. 

 

Fig. 3.  Schematic of the multi-segmented human body as adopted in the bioheat model 

C. Zhang (2003) TC model 

The TC model of Zhang [18] was adopted in this study since it incorporates localized 

body cooling effects and effects of transients. The overall comfort model with localized 

cooling was based on experimental results of 109 human subjects involving 347 sets of 

data (skin and core temperatures and subjective votes) for steady state conditions and 

3,568 data sets for transient conditions. Zhang’s model (2003) predicts the local TC of 

the different body parts and then integrates the local TC in different proportion to form 
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the overall TC of the human body that varies on a scale ranging from −4 (very 

uncomfortable) to +4 (very comfortable) (Zhang 2003). Since the bioheat model 

[39,44] predicts the segmental core and skin temperatures and their rate of change, then 

local and overall TC could be easily evaluated using the model of Zhang (2003). 

Moreover, this model has been used in previous studies [25,36,26,27,13] since it can 

predict TC under transient and steady state thermal conditions as well as situations with 

individual control over the air supply conditions (2003).  

D. The IES-VE NV office space model 

The NV-office space adopted in this study has with medium weight concrete walls 

and is located in a moderately hot and humid climate as in Beirut, Lebanon [55, 85,13]. 

The space has typical internal loads during working hours and was calibrated by Khalil 

et al. [13]. It has a total area of 240 m2 and is located in Beirut. It has windows on the 

four façades to allow for cross ventilation with a glazing percentage of 12% in the 

southwest and northeast façades, and 20% in the southeast and northwest façades. The 

existing windows are side-hung and can be opened to the outdoors at a maximum angle 

of 70°. All the previous information is needed as input to the IES-VE building energy 

simulation software [41] to predict Tindoor, dTindoor/dt and RH. It should be noted that the 

cooling control strategy followed by Khalil et al. [13] is adjusted considering the windows 

to be fully opened during occupied hours without the aid of any mechanical cooling 

system. In addition, the adopted weather data are the Typical Meteorological Year 

estimated based on a period of 10 years extending from 2000 till 2009 [13]. Typical values 

of Tindoor range between 25 and 33 C and RH between 55 and 80% [13,55,85]. The 
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obtained transients of Tindoor and RH, during the four summer months (June to September) 

from 9:00 AM to 18:00 PM, are summarized in Table 1. 

Table 1: Typical Tindoor and RH during the four summer months  

 June July August September 

Time 

(hours) 

Tindoor 

(C) 

RH 

(%) 

Tindoor 

(C) 

RH 

(%) 

Tindoor 

(C) 

RH 

(%) 

Tindoor 

(C) 

RH 

(%) 

9:00 25.1 68.0 26.1 74.6 27.3 62.0 25.1 59.0 

10:00 26.9 65.5 28.1 69.4 29.2 60.8 27.1 56.2 

11:00 28.2 63.9 29.2 65.4 30.5 59.3 28.4 54.5 

12:00 29.0 63.1 30.0 62.7 31.3 57.4 29.2 53.8 

13:00 30.3 63.2 31.2 61.4 32.5 56.2 30.5 54.2 

14:00 30.8 64.1 31.8 61.3 33.0 56.4 31.1 55.5 

15:00 30.2 65.8 31.2 62.5 32.5 59.8 30.5 58.0 

16:00 29.4 68.3 30.5 65.0 31.5 63.0 29.4 61.4 

17:00 27.7 71.7 28.5 68.9 29.8 69.3 27.7 65.9 

18:00 27.1 75.9 28.1 74.0 29.5 70.3 27.4 71.4 

 

E. Simulated cases for development of TC correlation  

The proposed methodology for developing the TC correlation is applied to a NV-

office space in a moderately hot and humid climate. The correlation should be also 

applicable to steady and transient situations. Thus, a total of 256 simulations were 

conducted using the bioheat and TC models [18,39,44] to develop the correlation under 

various possible summer indoor settings with steady state and transient conditions of 

metabolic rate, and transient conditions of Tindoor and RH. The simulations were conducted 

at different typical TSPV and QSPV adopted in literature and reported as follows: 
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 TSPV  (℃) = [22, 24, 26]  

 QSPV (L/s) = [0, 7, 10, 15] 

It should be noted that at Tindoor = 26 °C, TSPV  at 26 °C is not considered in the 

simulation cases. The initial state of the human for the different simulations was found 

through the execution of the bioheat model for two hours to reach steady state in a 

preconditioned room. The clothing insulation adopted in the simulations is 0.57 clo 

(trousers, short-sleeve shirt, socks, shoes and underwear), which is typical in office spaces 

during summer [53]. In addition, the incorporation of the effect of PV was done through 

inputting the ambient temperature around the face to be equal to TSPV and changing the 

corresponding heat transfer coefficient depending on QSPV, as stated in section II-B.  

First, the steady simulations were conducted at typical average Tindoor and RH, during 

the morning (from 9:00 to 12:00 AM), mid-day (from 12:00 to 14:00 PM) and afternoon 

(from 14:00 to 18:00 PM) of the four summer months (June to September) [13,85] and 

summarized in Table 2. The steady simulations consider the occupant seated with a 

metabolic rate of 1 met. A total of 114 steady simulations were conducted:  

 12 simulations that consider an occupant seated at 1 met and at the 12 different 

morning, mid-day and afternoon indoor conditions of the four summer months 

listed in Table 2 with PV turned off;  

 36 simulations at TSPV = 22 °C at the 12 indoor conditions listed in Table 2 

and at the 3 different QSPV;  

 36 simulations at TSPV = 24 °C at the 12 indoor conditions listed in Table 2 

and at the 3 different QSPV; and  
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 30 simulations at TSPV = 26 °C at the 10 indoor conditions listed in Table 2 

(excluding Tindoor =26 °C) and at the 3 different QSPV. 

Table 2: Typical average Tindoor and RH during the morning, mid-day and afternoon 

of the four summer months [13,85] 

 Morning Mid-day Afternoon 

 Tindoor (°C) RH (%) Tindoor (°C) RH (%) Tindoor (°C) RH (%) 

June 26 65 30 63 27 71 

July  27 70 31 62 28 71 

August  29 60 33 59 31 68 

September 26 56 30 55 28 64 

 

Second, transient metabolic rate simulations (114 simulations) were conducted at the 

same indoor environmental conditions of Table 2 and PV settings. However, the 

simulations consider an occupant that comes from a transition space at the same steady 

Tindoor and RH, but at an elevated metabolic rate of 2 met (walking at a speed of 3.2 km 

per hour) and then enters the NV-office space and sits for one hour in front of the PV unit 

with a gradual drop in the metabolic rate stabilizing at 1 met, as adopted by Zhu et al. 

[51]. The drop in the metabolic rate was implemented based on the equation of the oxygen 

uptake proposed by Barstow et al. [68].  The transient metabolic rate simulations did not 

consider simultaneous transients in the indoor conditions. This is due to the fact that the 

effect of the metabolic rate change on physiological responses only takes about 10 to 15 

min to cease [51], while the effect of a typical change in Tindoor during this period of time 

is not as significant (see Table 1).  
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Finally, simulations considering transient conditions of Tindoor and RH were 

conducted, mimicking a NV office space with an occupant at fixed metabolic rate of 1 

met during the whole working day from 8:00 AM to 5:00 PM. The adopted transients in 

Tindoor and RH of the four summer months (June to September) are summarized in Table 

1. A total of 28 indoor transient simulations were conducted at the 4 summer indoor 

conditions listed in Table 1: 

 4 simulations with PV turned off;  

 12 simulations at TSPV = 22 °C and the 3 different QSPV; and 

 12 simulations at TSPV = 24 °C and the 3 different QSPV. It should be noted that 

TSPV = 26°C was not considered since Tindoor goes below 26 during some of the 

months (see Table 1). 

The values of instantaneous dTfacial/dt, dTwrist/dt, dTindoor/dt, and TC were found every 

minute for the transient metabolic rate and indoor simulations. Thus, the results of the 

conducted simulations are: 114 data points for the steady simulations, 114 simulations  

60 minutes = 6840 data points for the metabolic rate transient simulations, and 28 

simulations  9 working hours  60 minutes = 15120 data points for the transient indoor 

conditions simulations. 
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F. Development and assessment of TC correlation 

The correlation to predict TC was established as a function of noninvasively measured 

variables (Tfacial, Twrist, dTfacial/dt, dTwrist/dt, Tindoor, dTindoor/dt, RH, TSPV, and QSPV) based 

on a set of simulations (using 22074 observations or data points) that mimic different real 

indoor scenarios, using multivariable linear regression. Multivariable linear regression 

was adopted in order to provide a simple tool for predicting TC with a cooling system 

that is hybrid with several variables that affect the prediction of TC. Thus, the general 

form of the developed correlation is shown in Eq. (1) for steady and transient conditions.  

𝑇𝐶 =  𝛼 + 𝛽1 × 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 + 𝛽2 × 𝑅𝐻 + 𝛽3 × 𝑇𝑆𝑃𝑉 + 𝛽4 × 𝑄𝑆𝑃𝑉 + 𝛽5 × 𝑇𝑓𝑎𝑐𝑖𝑎𝑙 + 𝛽6 ×

𝑇𝑤𝑟𝑖𝑠𝑡 +  𝛽7 ×
𝑑𝑇𝑖𝑛𝑑𝑜𝑜𝑟

𝑑𝑡
+ 𝛽8 ×

𝑑𝑇𝑓𝑎𝑐𝑖𝑎𝑙

𝑑𝑡
+ 𝛽9 ×

𝑑𝑇𝑤𝑟𝑖𝑠𝑡

𝑑𝑡
                                                                           

(1) 

where 𝛼 is the intercept of the line and 𝛽1, 𝛽2, 𝛽3 , 𝛽4, 𝛽5, 𝛽6, 𝛽7, 𝛽8 and 𝛽9 are the 

linear slope coefficients. 

It is necessary to assess the developed correlation and to check the multicollinearity 

of the variables in order to establish a reliable and significant fitness function [59,60,61, 

62]. A high degree correlation between the dependent variable, TC, and the independent 

variables is desired, while a low degree correlation between the independent variables is 

needed. Moreover, results of the ANOVA test should yield a value of the significance F 

< Fcritical, in order to avoid having a high probability of a wrong regression equation. 

Finally, the significance of each one of the coefficients corresponding to the independent 

variables was tested and should yield a p-value < 0.05. 
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CHAPTER III 

NV-PV CONTROLLER METHODOLOGY 

 

The methodology for developing a dynamic NV-PV controller is presented in the 

following subsections. Since the PV controller depends primarily on changing TSPV to 

attain the target TC, there is a need to check whether the developed TC correlation is 

sensitive to any change in TSPV. The applicability of the correlation is checked by using 

the bioheat and Zhang’s TC models with a scenario of an initially uncomfortable seated 

person subjected to changes in TSPV. 

The developed control strategy for controlling TSPV is then presented adopting a 

typical temperature proportional-integral-derivative (PID) controller. The followed 

methodology is presented for the design of the PID controller in terms of selecting its 

control parameters. The developed controller with its design parameters is finally 

implemented in a test case of a naturally ventilated office space. The indoor conditions 

are predicted using IES-VE software with proper internal loads and external ambient 

conditions specified, as shown in the flowchart for the developed methodology in Fig. 4. 

These indoor conditions need to be in the range of applicability of the selected TC 

correlation. The PV flow rate that the occupant can control varies between 7 L/s and 15 

L/s, as commonly used in previous studies [8,9,22], while the range of TSPV that can be 

set by the controller is between 22 °C and 26 °C [22,52]. To make sure that the NV-PV 

controller is working well, the bioheat and Zhang’s TC models are needed to compare 

actual TC values with those predicted.   
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Fig. 4.  Flow chart of the developed methodology 

 

A. Applicability of the developed TC correlation 

The success of the NV-PV controller depends on the ability of the TC correlation to 

predict the transient TC triggered by changing the TSPV. There is a need to check for the 

sensitivity of the developed TC correlation [76] to changes in TSPV. To this end, the 

accuracy of the TC correlation will be compared with the Bioheat-comfort predictor. A 

situation is considered of a person with a metabolic rate of 1 met in indoor conditions of 

Tindoor = 30 ℃ and RH = 65 % (within the applicability range of the TC correlation). The 

resultant TC status is not comfortable. In order to attain TC, the PV needs to be operated 

at TSPV of 24 ℃ with a flow rate of 10 L/s. For a fixed flow rate, the PV is initiated at its 
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minimum allowed temperature of 22 ℃ to cause a significant improvement in TC. Then, 

TSPV is increased gradually with an increment of 1 ℃ every 10 minutes, reaching its target 

value of 24 ℃ after which it is maintained constant for 40 minutes, as shown Fig. 5.  

 

Fig. 5. Transient TSPV profile under uniform indoor conditions 

 

B. NV-PV dynamic controller  

The temperature PID controller adopted in this study and the methodology followed 

for its parameter adjustments is described in subsection I. The NV-PV dynamic control 

strategy which utilizes the developed TC correlation in controlling TSPV is then presented 

in subsection II. 

I. PID controller and its parameter adjustment  

In this work, a robust and high accuracy temperature controller is needed to first 

compare the current TSPV with the required control set-point and then to provide the output 

to a control element. Since proportional-integral-derivative (PID) controllers employ 
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closed-loop feedback to keep the output as close as possible to a target or set-point value, 

it can be utilized in controlling TSPV. Moreover, PID controllers react quickly to 

disturbances and give accurate set point temperature control [69,79]. In fact, PID 

controllers have been extensively used for temperature regulation and control due to its 

simple structure, easy implementation and strong robustness [79].   

The PID controller runs for a total number of iterations, N. At each iteration of the 

algorithm 𝑘 ∈ [0, … , 𝑁], the PID reads the feedback value of present TSPV, (TSPV)k, and 

computes the difference between (TSPV)k and set PV temperature ,TSPV-set, as shown in Fig. 

6. This difference is called the proportional error, 𝐸𝑘. The PID also computes the 

derivative error which is the difference between the proportional errors at iterations 𝑘 and 

𝑘 − 1, notably (𝐸𝑘 −  𝐸𝑘−1). The last error computed by the PID is the integral error 

which is the sum of all temperature difference from the first iteration of the algorithm 

until the 𝑘𝑡ℎ iteration, i.e. ∑ 𝐸𝑡
𝑘
𝑡=0 . Each of the aforementioned errors is weighted by a 

gain, denoted by 𝐾𝑝, 𝐾𝑑 and 𝐾𝑖 for proportional, derivative and integral gain respectively. 

The weighted sum of these errors is then used by the PID and the PV system process to 

adjust TSPV for the following iteration, (TSPV)k+1. The PID algorithm keeps on reading the 

feedback value (TSPV)k and adjusting (TSPV)k+1 as long as the difference between TSPV-set 

and (TSPV)k is higher than a given tolerance. The present temperature TSPV can rapidly 

reach TSPV-set and be steadily kept constant as long as TC is not violated.  

 Kp, Ki, and Kd are the main control parameters of the PID controller and the correct 

determination of their values is the key design of temperature control systems. Since such 

are usually typical lag inertial systems, the manual trial and error method can be employed 

to determine the design control parameters [69]. To determine the proportional factor Kp. 
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Ki and Kd are first set to zero. Kp is recorded once system oscillation is observed followed 

by a steady state convergence to TSPV-set. In the practical application of PID, Kp should be 

60 %-70 % of this recorded value [69]. After that, ki is increased until any offset is 

corrected in enough time for the process and is recorded. However, ki should be decreased 

slightly to avoid instability. Finally, Kd is increased until the loop is acceptably quick to 

reach its reference after a load disturbance with a notable decrease in overshoot. This 

tuning procedure is performed on a certain case under specific indoor and PV conditions 

presented in chapter V. The resulting gains of this case were then tested on several other 

cases, considering steady and transient indoor conditions, within the range of application 

and induced the best performance. 

 

Fig. 6.  NV-PV dynamic PID controller  

II. NV-PV control strategy  

The automated NV-PV dynamic controller changes TSPV to meet target TC level. The 

PV can operate at a range of supply flow rates between 7 L/s and 15 L/s and supply 

temperatures between 22 C and 26 C [8,9,22]. The controller computes TC each minute 
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according to the developed TC correlation [79] and adjusts TSPV, at the set flow rate, 

whenever an uncomfortable state is detected as shown in Fig. 7. A detailed control 

strategy of the PV controller is represented as follows: 

 Four input parameters are measured each minute: Tfacial, dTfacial/dt, Tindoor, and 

indoor RH. 

 TC is predicted using the developed mathematical correlation  

 If the predicted TC falls between the acceptable range of 0.5 and 1, TSPV is not to 

change, otherwise a target Tfacial, Tfacial-set, that ensures a TC of 1 is calculated 

using the developed TC correlation  

 The controller initiates the PV operation at a TSPV of 22 C and then adjusts it as 

desired according to the difference between the present Tfacial and the target one, 

Tfacial-set.  

 If the difference is positive, Tfacial should be decreased to reach the target value 

and thus TSPV should be decreased too, otherwise TSPV should be increased, given 

that TSPV is bounded between 22 C and 26 C.  

 The rate of change of TSPV is deduced from bioheat simulations that show the 

effect of a one-degree Celsius change in TSPV on Tfacial. The rate of change of TSPV 

was approximated to be proportional to the difference between required Tfacial 

and present one. Thus, for every 0.3 C facial temperature difference there should 

be a 1 C change in TSPV. The success of the adopted rate of TSPV change was 

tested and validated with two cases shown in Appendix A. 
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 Conducted simulations on the bioheat model showed that a minimum change of 

1 C in TSPV is needed to induce a significant change in TC. Thus, the PID 

controller computes TSPV and takes action once the increment/decrement in TSPV 

is not less than 1 C. The TSPV can be varied every minute assuming a system 

response similar to that reported in previous studies [82,83].  

  

 

 

Fig. 7.  NV-PV dynamic controller flowchart 
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CHAPTER IV 

TC CORRELATION RESULTS 

  

A sample of the actual data collected for developing the TC correlation is first 

presented. Then, the developed correlation for predicting TC is discussed, followed by its 

evaluation through comparison of predicted and actual TC applied to different cases 

studies. Finally, benchmarking with some experimental data was done and the main 

applications and limitations of the developed correlation are presented. 

A. Sample of actual data collected for TC correlation development 

Results of the 256 conducted simulations (Tfacial, Twrist, Tindoor, RH, dTfacial/dt, dTwrist/dt, 

dTindoor/dt and actual TC) were collected in order to develop the TC correlation. A sample 

of these data for a case that considers an occupant seated at a constant metabolic rate of 

1 met during the working hours of August (variable indoor conditions shown in Table 1) 

with TSPV = 22 °C and QSPV = 10 L/s turned on at the start of the working day, is presented 

in Fig. 8. Transient variation of Tfacial, Twrist, Tindoor, and TC are presented in Fig. 8(a), 

while Fig. 8(b) shows the transient variation of dTfacial/dt, dTwrist/dt, and dTindoor/dt. 

Initially, Tfacial and Twrist start decreasing with a more significant drop in Tfacial from 35.6 

°C to 33.8 °C in the first 40 min due to the direct effect of the PV on the face. Thus, 

dTfacial/dt and dTwrist/dt became negative with dTfacial/dt reaching a significant value of -

0.23 °C/min, as shown in Fig. 8(b). Meanwhile, Tindoor is increasing as shown in Fig. 8(a), 

which means that dTindoor/dt is a positive value during this time, as shown in Fig. 8(b). 

During this time, TC was around 0.7 indicating a just comfortable state. After about 40 
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min, the effect of having the PV turned on was not enough to maintain the same TC state 

(dropped to 0.49 as shown in Fig. 8(a)) as Tindoor increased reaching 33.1 °C after 300 

working minutes. Accordingly, Tfacial and Twrist had increasing trends but with low rates 

of change, as shown in Fig. 8(b). After 300 min, Tindoor started decreasing reaching 29.5 

°C at the end of the working day, which caused slight drops in Tfacial and Twrist, and 

consequently improvement in TC, as shown in Fig. 8(a). 

The actual data for another case are similarly presented in Fig. 9. This case considers 

an occupant, initially at a relatively high metabolic rate of 2 met, at Tindoor = 29 °C, and 

RH = 60% with the PV turned off, that sits in front of a PV unit with TSPV = 22 °C and 

QSPV = 15 L/s for one hour and same indoor conditions, while the metabolic rate gradually 

drops to 1 met [68]. Initially, Tfacial and Twrist start decreasing with a more significant drop 

in Tfacial from 35.7 °C to 33.6 °C in the first 25 min (see Fig. 9(a)), due to the direct effect 

of the PV on the face while the metabolic rate decreases from 2 met. Accordingly, 

dTfacial/dt and dTwrist/dt were negative with dTfacial/dt reaching a significant value of -0.28 

°C/min, as shown in Fig. 9(b). As for TC, an overshoot was noticed in the first 2 min, as 

shown in Fig. 9(a), followed by a gradual increase in TC as the metabolic rate decreased 

and PV kept on. After about 25 min, the transient variations of the different variables 

started reducing until steady values were reached in the last 20 min. TC, Tfacial and Twrist 

stabilized at 1.9 (comfortable), 33.55 °C, and 35.8°C, respectively, while dTfacial/dt and 

dTwrist/dt became 0, as shown in Fig. 9. 



27 

 

 

 

 

Fig. 8. Sample of collected data of skin temperatures, indoor conditions and their 

rate of change under August indoor condition transients  
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Fig. 9. Sample of collected data of skin temperatures, indoor conditions and their 

rate of change under metabolic rate transients  

B. Multivariable linear regression analysis 

After collecting all the data from the conducted simulations, assessment of the 

developed correlation was done through checking for any multicollinearity in the 

different variables (TC, Tfacial, Twrist, dTfacial/dt, dTwrist/dt, Tindoor, dTindoor/dt, RH, TSPV, and 
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QSPV). In addition, the significance of each one of the coefficients corresponding to the 

independent variables was tested to eliminate variables with a p-value > 0.05.  

It was found that not all the variables were significantly correlated with TC. Mainly 

Twrist, dTwrist/dt, and dTindoor/dt, were poorly correlated with TC (correlation < 0.2 and p-

value > 0.05). As shown in Fig. 8 and Fig. 9, Twrist and dTwrist/dt did not vary significantly 

to trigger a change in TC, either with indoor or metabolic rate transients and with PV 

operation. This could be attributed to the fact that with NV-PV system, the face is the 

main segment affected by the local cooling applied using the PV unit, and thus it is the 

major segment affecting TC and its transients. In addition, the transients in Tindoor were 

not significant (average maximum dTindoor/dt of 1.2 ºC per hour) to cause a substantial 

change in TC from the steady state value at the same Tindoor. Finally, the variables TSPV 

and QSPV showed a high degree of correlation (correlation > 0.6) with the variable Tfacial. 

This is a reasonable result, since any change in TSPV and QSPV would directly affect the 

face skin temperature. Consequently, a regression equation that describes the relationship 

between the remaining independent variables, Tindoor, RH, Tfacial and dTfacial/dt, and the 

dependent variable, TC, was obtained for NV-PV system and is defined in Eq. (2).  

𝑇𝐶 =  −0.1365 × 𝑇𝑖𝑛𝑑𝑜𝑜𝑟(℃) − 0.0012 × 𝑅𝐻(%) − 1.0804 × 𝑇𝑓𝑎𝑐𝑖𝑎𝑙(℃) +

            6.0248 ×
𝑑𝑇𝑓𝑎𝑐𝑖𝑎𝑙

𝑑𝑡
(℃/𝑚𝑖𝑛) + 41.9906                                                                        (2) 

Regression coefficients, also known as slope coefficients, represent the mean change 

in TC for one-unit change in the considered variable while maintaining other variables 

constant. The equation shows that the coefficients for Tindoor and RH are -0.1365 and – 

0.0012, respectively, meaning that for every additional degree Celsius in Tindoor or 1% in 
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RH, TC is expected to decrease by 0.1365 and 0.0012, respectively. This is anticipated 

since hotter and more humid conditions would decrease TC. In addition, Tfacial has a 

significant impact on TC, as for each additional degree Celsius in Tfacial a decrease in TC 

by 1.0804 is expected.  

For transient situations, dTfacial/dt is considered very critical for TC evaluation. So, for 

every additional degree Celsius per minute in dTfacial/dt, TC is expected to increase by 

6.0248. In other words, for an increase of 1 unit on the TC scale, dTfacial/dt has to change 

by 0.166 degree Celsius per minute. In fact, in the presence of PV, Tfacial is decreasing 

and thus dTfacial/dt is negative but decreasing as well, while TC improves as desired. 

Regression statistics and ANOVA test of the final TC correlation variables have been 

conducted and the results are summarized in Table 3. The multivariable linear regression 

model demonstrated that the correlation was significant, with an adjusted R2 value of 

0.81. All the statistical results support that the developed correlation has good prediction 

capacity given that no multicollinearity was observed between the final variables in the 

correlation test.  

Table 3: Regression Statistics and ANOVA  

R2 0.81 

Adjusted R2 0.81 

Significance F 0.00 

Fcritical 2.37 

p-value < 0.05 
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C. TC correlation evaluation results  

In this section, the evaluation results of the TC correlation are presented. The number 

of observations used as the training data for the linear regression equation was 22074, as 

discussed in section II-E. To check if the developed equation performs well, the predicted 

TC is compared against the actual TC as shown in Fig. 10. A strong linear relation 

between the actual and the predicted TC is depicted in Fig. 10 with an R2 value of 0.813, 

indicating that the developed equation can correctly predict TC. The regression analysis 

results showed that the standard error in predicting TC was 0.4 as shown in Fig. 10. 

 
Fig. 10. Scatter plot for predicted versus actual TC corresponding to all the 

observations under steady and transient conditions 

Data points, outside the data set or observations used in developing the correlation, 

were also used to evaluate the accuracy of the developed correlation under steady and 

transient conditions. These cases represent a seated occupant with a constant metabolic 

rate of 1 met in an office with constant Tindoor and RH. The results of the predicted versus 
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actual TC under steady state conditions are summarized in Table 4. For example, at Tindoor 

= 27.50 C, RH = 61%, and Tfacial = 34.71 C, the predicted TC was 0.66, which is in good 

agreement with the actual TC of 0.60. 

Table 4: Evaluation of the TC correlation using 6 outside-data points 

representing steady state situations 

Data no. Tindoor (C) RH (%) Tfacial (C) TC actual TC predicted 

1 26.50 60 35.41 0.04 0.04 

2 27.50 61 34.71 0.60 0.66 

3 29.50 78 34.82 0.29 0.25 

4 30.50 72 34.47 0.49 0.50 

5 31.50 65 34.40 0.47 0.45 

6 32.50 68 34.66 0.08 0.03 
  

 

 

 

 

Under transient conditions of metabolic rate, three data sets from the observations 

used in developing the regression equation along with three data sets outside the 

observations were adopted to assess the accuracy of the TC equation. The observation 

cases were selected to show examples where the predicted TC was highly correlated with 

the actual one and an example with low correlation with actual. The transient cases 

considered a person who came from a transition space with a relatively high metabolic 

rate of 2 met and then entered an office space to sit for one hour, leading to a decrease in 

the metabolic rate reaching a final value of 1 met [68]. The three observation cases under 

consideration are: 

 Case A: Tindoor = 28 °C, RH = 64%, TSPV = 24 °C and 7 L/s. 

 Case B: Tindoor = 30 °C, RH = 63%, TSPV = 26 °C and 15 L/s.  

 Case C: Tindoor = 33 °C, RH = 59%, TSPV = 22 °C and 10 L/s. 
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The three outside-data set cases under consideration are: 

 Case 1: Tindoor = 27.5 °C, RH = 65%, TSPV = 23 °C and 12 L/s. 

 Case 2: Tindoor = 30.5 °C, RH = 68%, TSPV = 24 °C and 13 L/s.  

 Case 3: Tindoor = 30.5 °C, RH = 62%, TSPV = 25 °C and 8 L/s.  

Fig. 11 shows the predicted and actual values of TC under transient conditions for (a) 

Case A, (b) Case B, and (c) Case C which are the observation cases. In all the considered 

cases, the occupant enters the office space at a high metabolic rate of 2 met feeling 

generally uncomfortable and then sat with a decreasing metabolic rate that reached 1 met 

with the PV unit turned on. Due to local cooling and the decrease in metabolic rate with 

the drop in oxygen uptake [68], actual TC improved quickly with an overshoot at the very 

beginning and then decreased followed by a gradual increase reaching a steady TC value 

about 1.3, 1.4 and 1.0 for Case A, Case B and Case C, respectively. This overshoot in 

TC was similarly reported by Jin et al. [86]. Case A is an example where the predicted 

TC was not well correlated with the actual one, and the maximum deviation in TC 

prediction was about 0.8 in the first 2 min. The predicted TC followed a similar trend 

compared to the actual TC but with a deviation in the first 2 minutes for Case B and Case 

C. The overshoot in TC was predicted by the developed model to an acceptable degree of 

accuracy compared to the actual TC. After the first 5 minutes, the deviation between 

predicted and actual TC decreases with a maximum difference of about 0.3 at the end of 

exposure time for Case B and Case C, which showed a highly correlated TC prediction. 

Fig. 12 shows the predicted and actual values of TC under transient conditions for (a) 

Case 1, (b) Case 2, and (c) Case 3 which are outside-data cases. Similar to previous 

discussion made on Fig. 7, the predicted TC followed a similar trend compared to the 
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actual TC, with a maximum deviation of 0.5 in the first 5 minutes. After that, the deviation 

between predicted and actual TC decreased with a maximum difference of about 0.1 at 

the end of exposure time. The maximum deviation between predicted and actual TC for 

both the external data and the observation cases was about 0.5. In general, the results 

showed good agreement between the predicted and actual TC values. In addition, the TC 

regression equation was able to predict the transient variation in TC, as shown in the first 

few minutes with the drop in the metabolic rate and PV operation. 
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Fig. 11. Comparison between the predicted and actual TC values under transient 

conditions of metabolic rate for 3 observations: (a) Case A, (b) Case B, and (c) Case C 
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Fig. 12. Comparison between the predicted and actual TC values under transient 

conditions of metabolic rate for 3 outside-data sets: (a) Case 1, (b) Case 2, and (c) Case 

3 
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The literature studies that focused on predicting personal TC from noninvasive 

measurements of Tfacial and Tindoor did not report a simple TC correlation as they lacked 

enough experimental data on human subjects to be able to develop a generalized model. 

In addition, there is no standard method that could be used to perform the comparison 

between the different studies [1,71]. Consequently, benchmarking was conducted to 

compare the predicted TC using the developed correlation with experimental data 

reported in literature for steady conditions without local face cooling of Pavlin et al. [75] 

and for transient conditions with local face cooling of Zhang [18].  

Pavlin et al. [71] exposed human subjects to transient variation of Tindoor between 21C 

and 27C with RH = 50% and no local cooling applied, until steady state conditions were 

attained at 21 and 27C for forehead skin temperature, TC and thermal sensation. Table 

5 shows the comparison results between predicted and actual experimental data for TC. 

At Tindoor = 21 C, the reported thermal sensation was close to neutral with forehead 

temperature of 34.3 C, while at Tindoor = 27 C it was a slightly warm sensation with 

forehead temperature of 36 C. Accordingly, plugging these inputs into the developed TC 

correlation with dTfacial/dt = 0, predicted a TC of about 2 at 21 C (comfortable state) and 

a TC of about -0.66 at 27 C (slightly uncomfortable). The results show that the developed 

correlation can reflect the thermal state of the occupant when PV units are turned off at 

steady state conditions.  

Zhang [18] conducted a transient experiment that included face cooling with an air 

temperature of 23 C at Tindoor = 28 C and RH = 50% (assumed). The initial reported 

steady state Tfacial and TC were 36.0 C and -0.9 (slightly uncomfortable), respectively, 
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which improved to 32.0 and 1.3 (slightly comfortable), respectively, after applying face 

cooling with dTfacial/dt of -0.4 C/min (see Table 5). The initial predicted TC was -0.8 

(slightly uncomfortable), which improved to 1.1 (slightly comfortable) after applying the 

face cooling. Thus, the predicted TC is in good agreement with the experimental reported 

data.  

 

Table 5: Benchmark of results for the TC correlation  

Reference 
Tindoor 

(C) 

RH 

(%) 

Tfacial 

(C) 

dTfacial/dt 

(C/min) 

TC actual or thermal 

sensation 
TC predicted 

Pavlin et 

al. (2017) 
21 50 34.3 0.0 

thermal sensation 

close to neutral 

2.00 (comfortable 

state) 

Pavlin et 

al. (2017) 
27 50 36.0 0.0 

slightly warm 

sensation 

-0.66 (slightly 

uncomfortable). 

Zhang 

(2003) 
28 50 36.0 0.0 

-0.90 (slightly 

uncomfortable) 

-0.80 (slightly 

uncomfortable) 

Zhang 

(2003) 
28 50 32.0 -0.4 

1.30 (slightly 

comfortable) 

1.10 (slightly 

comfortable) 
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CHAPTER V 

NV-PV CONTROLLER RESULTS 

 

The applicability of the developed TC correlation to the NV-PV system is first 

examined by checking the effect of transient changes in TSPV on predicted TC. Then, the 

PID control parameters are selected based on the manual trial and error method. Finally, 

the performance of NV-PV controller is evaluated, in a case study scenario, based on its 

success in maintaining the target TC level.  

A. Effect of transient changes in TSPV on TC results  

 The applicability of the developed TC correlation to the design of the system is 

examined by analyzing the results of the scenario presented in section II-B. After 

collecting Tfacial from the conducted simulation, TC is predicted using the developed TC 

correlation and comapred to the actual comfort from Zhang’s TC model [18] as plotted in 

Fig. 13. Under the uniform indoor conditions of Tindoor = 30 ℃ and RH = 65 %, a seated 

occupant would generally feel uncomfortable with predicted TC of -1.2. During the first 

10 minutes, a TSPV of 22 ℃ caused a further drop in TC to -2.6 due to the overcooling 

effect after which TC starts to increase reaching -0.06. When TSPV is increased to 23 ℃, 

predicted TC had a slight overshoot as shown in Fig. 13, which is similar to what 

happened with the actual TC level. TSPV  remained at 23 ℃ for the next 10 minutes and 

TC improved reaching 0.6, which is an acceptable TC level. Finally, for the last 40 

minutes of operation, a TSPV of 24 ℃ succeeded in maintaing TC between 0.5 and 1. The 

predicted TC followed a similar trend compared to the actual TC with an average 



40 

 

 

 

deviation of 0.1. The results show that the developed TC correlation can be used in the 

design of the dynamic controller as TC is proven to be sensitive to changes in TSPV. 

 

Fig. 13.  Effects of transient changes in TSPV on Tfacial and TC.  

B. PID control parameters using trial and error 

The three main control parameters of the PID controller are the Kp, Ki, and Kd and are 

determined using the manual method of trial and error. This method was adopted for a 

specific case under the indoor and PV conditions presented in Table 6. At the considered 

conditions, TSPV of 22 ℃ caused an increase in predicted TC above the target range. 

Therefore, to maintain a TC between 0.5 and 1, Tfacial is to be slightly increased to a Tfacial-

set of 34.45 ℃. Accordingly, the target set value, TSPV-set, is computed to be 23℃. The PV 

system process should therefore increase TSPV from 22 ℃ to 23 ℃. Fig. 14 shows the 

output TSPV after 60 iterations. The PID with Kp, Ki, Kd set to 0.2, 0.2 and 0.5 respectively 

gave the fastest response with the least overshoot compared to the other 2 cases. However, 
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in the practical application of PID, Kp, Ki, Kd can be set to 0.12, 0.18 and 0.5 respectively 

to avoid instability as previously discussed in section III-B-I. 

Table 6: Indoor space and PV conditions to tune the PID controller  

Tindoor (℃) RH (%) TSPV (℃) Tfacial (℃) TC predicted Tfacial-set (℃) TSPV-set (℃) 

27 71 22 34.18 1.29 34.45 23 

 

 

Fig. 14. Tuning PID controller for a specific case 
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CHAPTER VI 

CASE STUDY 

 

A. Case study for real-time implementation and testing of NV-PV dynamic 

controller  

The space considered in this study is a typical office building with typical internal 

loads during the summer season. The calibrated office space developed by Khalil et al. 

[13], as shown in Fig. 15, was adopted in this study. The office space was located in 

Beirut, Lebanon, with a total area of 240 m2. The weather data are the Typical 

Meteorological Year (TMY) data estimated based on a period of 10 years extending from 

2000 till 2009 [13]. The cooling control strategy followed in Khalil et al.’s work [13] was 

adjusted considering the windows to be fully opened during the occupied hours without 

the aid of any mechanical cooling system.  
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Fig. 15.  Schematic showing the plan view of the simulated office space 

A simulation case study scenario that resemble real situation was conducted to test 

the dynamic response of the NV-PV controller and its ability to maintain TC at its target 

value on the bioheat model. The case study considers transients in indoor conditions over 

a typical working schedule, along with transients in the metabolic rate of a person arriving 

at 9 AM at the office and leaving for a one-hour break at noon, to return to the office and 

leave it at 6 PM. The adopted transient profile in the metabolic rate over the working 

hours is shown in Table 7. A simulation is done using IES-VE to find the transient indoor 

conditions (Tindoor and RH) for the representative day of August, which is a typical hot 

and humid summer month. These indoor conditions as well as the metabolic rate profile 

are needed as input to the bioheat model to predict the actual Tfacial and its rate of change. 

These variables (Tindoor and RH, Tfacial and its rate of change) are used as inputs to the 
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controller that would recommend TSPV over the simulated time. The target value of TC 

based on the recommended TSPV should be between 0.5 and 1 during all the simulation 

period to assure good testing results of the controller.  

 

Table 7: Metabolic rate profile over the working hours adopted in each of the case 

studies 

Time (hr) Metabolic rate profile 

9 A.M. 

Metabolic rate drops from 2 met at the end of the preconditioning 

period to stabilize at 1 met after occupant gets seated 

12 noon Occupant leaves the office to a break at metabolic rate of 1 met 

12-1 P.M. 

Occupant is exposed to the same transient Tindoor and RH but at 

elevated metabolic rate of 2 met 

1 P.M. 

Metabolic rate drops from 2 met at the end of the break period to 

stabilize at 1 met after occupant gets seated  

 

B. Case study evaluation results  

 Simulation of the study case scenario was conducted to test the dynamic response 

of the NV-PV controller and its success in maintaining a target TC between 0.5 and 1. 

The transient indoor conditions (Tindoor and RH) for the representative day of August are 

shown in Fig. 16 as outputted from the IES-VE software. The time variation in TSPV as 

recommended by the NV-PV controller and the corresponding Tfacial are presented for a 
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typical working day of the month of August in Fig 17(a). In addition, a comparison 

between the predicted and actual TC are illustrated in Fig. 17(b). 

 

Fig. 16. Indoor conditions (Tindoor and RH) over the working hours for the month of 

August 

In what follows, a discussion of the results for the considered case study is presented 

in detail. At 9:00 AM, the occupant enters the office space at a high metabolic rate of 2 

met feeling slightly uncomfortable at a relatively low Tindoor of 27.28 ℃ with elevated 

Tfacial of 35.54 ℃, as shown in Fig. 16 and Fig. 17(a). The dynamic controller then 

automatically sets TSPV to its minimum value of 22 ℃ causing a quick improvement in 

TC, as shown in Fig. 17(b). Meanwhile, the occupant being seated, the metabolic rate 

starts decreasing to 1 met, and a drop in Tfacial occurs to reach 34.30℃ within 13 minutes. 

After that, the controller increases TSPV with an increment of 1℃ per minute to reach TSPV-

set of 25℃ causing a slight overshoot in TC. During the first few minutes, the controller 
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was allowed to overshoot to avoid unfeasible fluctuations in TSPV, which explains why 

TC exceeded the limit of 1, as shown in Fig. 17(b). The PV controller maintains a TSPV of 

25 ℃ for 1 hour causing an increase in Tfacial to 34.53 ℃, while maintaining TC around 

0.7. Beyond 10:15 AM and with the increase in Tindoor, as shown in Fig. 16, TSPV starts to 

decrease gradually reaching first 24℃ then 23℃ when Tindoor reaches 30.85 ℃. At 12 

PM, the occupant leaves the office (metabolic rate increases to 2 met) and comes back at 

1 PM feeling very uncomfortable at Tindoor of 33.22 ℃ with an elevated Tfacial of 35.95 

℃. The PV automatically turns on at 22 ℃, keeping it constant for the next 3 hours, 

improving TC to almost 0.91 and decreasing Tfacial to 34.03 ℃. To preserve TC between 

0.5 and 1 for the remaining working hours with decreasing Tindoor, the PV controller 

gradually increases TSPV to 23℃ for the next 1 hour and to 24℃ for the last 12 minutes 

maintaining TC and Tfacial around 0.87 and 34.26℃, respectively, for Tindoor around 

29.55℃. 

Overall, the PV controller succeeded in attaining the target TC level between 0.5 and 

1 at operation time for a typical hot and humid summer month. The predicted TC had 

similar values compared to the actual TC levels throughout the working period with a 

maximum deviation of 0.1, as shown in Fig. 17(b). The recommended TSPV was mainly 

affected by the transients of indoor conditions, transients in metabolic rate and by changes 

in Tfacial. To this end, the designed controller responds properly under moderate hot and 

humid indoor conditions that are within the constraints and applicability of the developed 

TC correlation. The maximum TC level that the controller can attain under such 

conditions is 1, given that the range of TSPV operation is between 22 and 26℃. The 
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occupant can always adjust the PV flow rate, if needed, to reach improved comfort states 

beyond 1.   

 

Fig. 17. (a) The variation in TSPV as well as Tfacial and (b) the comparison between the 

predicted and the actual TC for a typical working day of August 



48 

 

 

 

CHAPTER VII 

CONCLUSION 

 

Real time access to an occupant’s dynamic TC allows PV system controllers to 

continuously adjust their operational settings, while maintaining acceptable TC levels. 

Infrared thermography can be used to provide real time information about individuals’ 

TC by constantly tracking Tfacial and its rate of change, which proved to be strong 

indicators for TC. In this paper, an autonomously controlled PV unit is developed in a NV 

office space to ensure an acceptable TC between 0.5 and 1 with Tindoor that ranges between 

25 and 33 C, and RH between 60 and 80%. Regression equation that estimate TC was 

used. The dynamic NV-PV controller adjusts TSPV based on predicted TC obtained from 

the adopted mathematical correlation. The developed controller is implemented in a case 

study scenario of an office space in Beirut’s moderate hot and humid climate, and its 

performance is evaluated in attaining TC using direct simulations of the bioheat model. 

The developed controller is shown to achieve its goals in dynamically adjusting TSPV and 

ensuring an acceptable TC of the occupant at all times of operation. The implementation 

of such autonomous PV units in office spaces is important for energy saving and ensuring 

TC for each occupant. The PV controller responds correctly only under a specific range 

of indoor temperatures and RH as well as metabolic rates. This means that at more 

elevated indoor conditions and metabolic rates, a new regression model should be 

established based on the new ranges. Future work may address the success of the system 

outside the considered range of this study along with experimental testing. Besides, 
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energy savings associated with the developed control over a full season of operation in 

comparison with conventional control methods of operation can be addressed. 
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APPENDIX A 

Testing of the NV-PV controller with the adopted TSPV rate of change 

The adopted rate of TSPV change of 1 C for every 0.3 C difference in facial 

temperature was tested using two extreme cases of Tindoor. The results should imply that 

the NV-PV controller can change TSPV to maintain TC in the acceptable range of 0.5 and 

1 in both cases. The cases consider a person with a metabolic rate of 2 met in indoor 

conditions of Tindoor = 33 ℃ for case 1 (Tindoor = 25 ℃ for case 2) and RH = 70 %. The 

resultant TC status is not comfortable. Then, the person enters a space at the same indoor 

conditions but gets seated with a metabolic rate of 1 met for one hour. In order to attain 

TC, the NV-PV controller should change TSPV according to the TC status, starting from 

an initial value of 22℃ for a one-hour period.  

Fig. 18 shows the transient TSPV and TC results of testing the rate of TSPV change at 

Tindoor of (a) 33 C and (b) 25 C. The difference in the response of the controller between 

the two extreme cases can be clearly seen. For case 1 with Tindoor = 33 ℃, Fig. 18 (a), the 

controller did not vary TSPV for the whole hour and kept it at its minimum of 22 ℃. This 

is in accordance with the corresponding TC level that started with a value of -4, which is 

a very uncomfortable state, and then increased due to PV operation. The TC improved as 

desired and reached a value of 0.53, which is close to the lower acceptable TC limit of 

0.5. On the other hand, for case 2 with Tindoor = 25 ℃, Fig. 18 (b), the controller kept TSPV 

at 22 ℃ for the first 6 minutes, due to the uncomfortable state with TC = - 0.9. 

Accordingly, TC improved to 0.59, after which the controller increased TSPV to 23 ℃ and 

then to 24 ℃ in the next 2 minutes. This happened since the metabolic rate is dropping 
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from 2 to 1 met, while Tindoor of 25 ℃ is relatively acceptable at typical office conditions. 

After 19 minutes, TC was about 0.6 and the controller increased TSPV to 25 ℃ for the 

remaining time, where TC stabilized at 0.57. Both cases showed how the NV-PV 

controller was able to react with the adopted rate of TSPV change to quickly attain TC, and 

change TSPV to maintain TC in the acceptable range. 

 

Fig. 18. Transient TSPV and TC results of testing the rate of TSPV change at 

Tindoor of (a) 33 C and (b) 25 C 




