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An Abstract of the Dissertation of

Asmaa Walid Abdallah for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Interference Mitigation in 5G Network Densification Technologies:
Algorithms and Performance Limits

The advent of fifth generation (5G) wireless technology is expected to unleash
an unprecedented boost in network capacity, spectral and energy efficiencies,
and peak data rates, accompanied by a significant increase in the number of
connected devices via ultra-low latency connections. To achieve these aggressive
goals, network densification has emerged as a mainstream technology in 5G in
various manifestations to improve the capacity and spectral efficiency: increasing
the number of base stations, increasing the number of antennas per site (a.k.a.
massive multiple-input multiple-output (MIMO)), deploying distributed cell-free
massive MIMO, employing distributed device-to-device (D2D) communications,
and applying non-orthogonal multiple access (NOMA) communications, among
many others. However, interference, whether in the form of inter-user or inter-cell,
remains the major bottleneck as we densify the networks and reuse the spectral
resources, and cannot be eliminated if we rely on network-centric topologies.
While the spatial dimensions available at the centralized and distributed massive
MIMO base stations (BSs) can be leveraged to suppress interference at the
user equipment (UE), new approaches for interference mitigation that take into
consideration the underlying hardware constraints and impairments, as well as
signaling overhead are needed. In addition, by exploiting the physical proximity of
communicating devices, offloading traffic from network-centric entities to distribu-
ted D2D networks and increasing resource utilization via NOMA communications,
adequate user pairing criteria and power allocation policies become attractive
efficient interference mitigation schemes with affordable complexity and signaling
overhead.

In this dissertation, we investigate the problem of efficient interference mitigat-
ion schemes for emerging network densification technologies in 5G commun-
ications from four different perspectives. First, we propose and analyze channel
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allocation (CA) and power control (PC) schemes to mitigate interference in a
D2D underlaid cellular system modeled as a random network using stochastic
geometry. Second, we extend the proposed interference mitigation techniques
to consider NOMA MIMO systems. Third, in the context of massive MIMO
systems, we propose and analyze the performance of various baseband processing
schemes under low resolution analog-to-digital converters (ADCs). We analyze
the uplink achievable rate by a massive MIMO system when the base station is
equipped with a large number of low-resolution ADCs. We propose new techniq-
ues that account for the severe non-linearity effects of the coarse quantization
and incorporate a pilot-based channel estimation error. Fourth, in the context of
distributed massive MIMO systems, we study angle-domain processing techniq-
ues targeted for suppressing interference in frequency-division duplexing (FDD)
based cell-free massive MIMO systems. Most prior work on cell-free (distributed)
massive MIMO systems assume time-division duplexing mode, although FDD
systems dominate current wireless standards. Efficient power control schemes
are investigated for cell-free massive MIMO systems while considering the effect
of backhaul power consumption. This dissertation describes the research scope,
presents the completed work, and draws the future work.
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Chapter 1

Introduction

1.1 Network Densification Technologies

With the ever-increasing demand for better performance and higher throughput,

network operators are struggling to meet the requirements for fast mobile data

connectivity and more data traffic. From first generation (1G) to fourth generation

(4G), the massive traffic growth has been handled by a combination of wider

bandwidths, refined radio interfaces, and smaller cells [3–5]. As a result of

this development, current cellular networks have reached their capacity limits,

especially in highly populated metropolitan areas.

These escalating demands of mobile applications for massive network capacity

have shaped the design of the upcoming fifth generation (5G) of mobile networks,

which is expected to offer unprecedented levels of connectivity, quality of service

(QoS) and 10× more denser networks than 4G networks [5].

Moreover, early cell densification was achieved by deploying more macro

base stations (BSs) (i.e., macro cellular densification). The main motivation
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was to increase user capacity and achieve wider coverage. This approach was

later expanded to include the use of smaller size stations with reduced coverage

footprint. Micro, pico and small cells utilizing low transmission power and

supporting a smaller number of users are easier to install and provide improved

cost efficiency. A network incorporating these different cell sizes is known as

a Heterogeneous Network (HetNet). HetNets have become the trend in spatial

network densification allowing home users the ability to purchase small cell BSs

and install them in indoor environments where received signal is weak.

However, the higher number of randomly deployed cells in HetNets carries

with it many challenges such increased power consumption, overhead of transmitted

signals, interference and overhead on the backhaul. Despite these challenges,

the tremendous overall performance benefits obtained by network densification

suggest their use will continue to grow and expand in upcoming future wireless

networks. It is expected that network architectures employed in 5G will offer

solutions to many of the current challenges faced by network operators relative

to managing dense networks.

Therefore, network densification [5,6] has become as a key driver for enabling

5G through reusing spectral resources in device-to-device (D2D) communications

and non-orthogonal multiple access (NOMA) systems, increasing the number

of antennas per site in massive multiple-input and multiple-output (MIMO)

systems, and deploying smaller and smaller cells in cell-free massive MIMO

systems. Therefore, 5G densification can be accomplished in space, time and

frequency dimensions [5]. However, managing interference remains one of the

most challenging problems facing network densification. Problems intensify when

BSs of different coverage footprints, access schemes, and transmission powers

share the same licensed frequency spectrum. In addition, while network densification
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is seen as an effective method of increasing system capacity and coverage, such

gain comes at the expense of increased power consumption.

1.1.1 D2D Communication Technology

D2D communications is a network densification approach suggested to solve

high-density cellular network challenges. D2D communication underlying cellular

systems enables communication between devices in close vicinity with low latency

and low energy consumption while offloading the telecommunication network

from handling local traffic [7–11]. D2D is a promising approach to support

proximity-based services such as social networking and file sharing [10]. When

the devices are in close vicinity, D2D communication improves the spectral and

energy efficiency of cellular networks [11]. Despite the benefits of D2D commun-

ications in underlay mode, interference management and energy efficiency have

become fundamental requirements [12] in keeping the interference caused by the

D2D users under control, while simultaneously extending the battery lifetime

of the User Equipment (UE). For instance, cellular links experience cross-tier

interference from D2D transmissions, whereas D2D links not only deal with

the inter-D2D interference, but also with cross-tier interference from cellular

transmissions. Therefore, power control (PC) and channel allocation (CA) have

become necessary for managing interference levels, protecting the cellular UEs

(CUEs), and providing energy-efficient communications.

1.1.2 NOMA Communication Technology

While orthogonal multiple access (OMA) schemes have traditionally dominated

wireless communication standards [13–16], where wireless resources are allocated

3



for multiple users orthogonally in time, frequency, or code domains, the spectral

efficiency remains low especially when resources are allocated to users with poor

channel conditions.

NOMA [17–20] has been recently proposed as a network densification technology

that enables multiple users with significantly different channel conditions to share

resources simultaneously. This can be achieved through superposition coding

(SC) at the transmitter, that is followed by successive interference cancellation

(SIC) at the receiver. Proper user pairing criteria and power allocation policies

can guarantee user fairness as well as affordable complexity overheads and signaling

costs. NOMA is currently being celebrated as one of the main enabling technologies

of the upcoming 5G of wireless mobile communication standards, which promises

to connect billions of devices and achieve several gigabit-per-second data rates.

1.1.3 Massive MIMO Communication Technology

MIMO [21] technology is another popular approach to increase spectral effi-

ciency and network capacity, which exploits the spatial dimension by adding

more antennas. MIMO systems have been extensively studied over the past three

decades. However, conventional MIMO configurations fall short of providing the

requirements of 5G. Towards this end, massive MIMO has been introduced [22],

in which few hundred antennas serve tens of terminals over the same time and

frequency resources. However, equipping the base station (BS) with a large

number of antenna elements dramatically increases the associated hardware cost

and resulting power consumption of the radio-frequency (RF) circuits and data

converters. It is known that the power consumption of analog-to-digital converters

(ADCs) grows significantly with the number of quantization bits [23,24] and with

4



large sampling rates. One potential solution is the use low-resolution quantized

massive MIMO (e.g., 1-bit ADCs) as a means of reducing costs and power

consumption, and improving computational efficiency [24–30]. However, the main

drawback of reducing the ADC resolution is the need to compensate for the

severe non-linearity introduced by quantization, which might render traditional

detection schemes highly sub-optimal.

1.1.4 Cell-Free Massive MIMO Communication Technology

Cell-free massive MIMO has recently been considered as a practical and useful

embodiment of network MIMO that can potentially reduce inter-cell interference

through coherent cooperation between base stations [31–34]. In cell-free massive

MIMO, the serving antennas are distributed over a large area. Distributed

systems can potentially provide higher coverage probability than co-located massive

MIMO due to their ability to efficiently exploit diversity against shadow fading

effects, at the cost of increased backhaul requirements [35]. According to [34],

“cell-free” massive MIMO implies that, from a user perspective during data

transmission, all access points (APs) cooperate to jointly serve the end-users;

hence there are no cell boundaries and no inter-cell interference (ICI) in the data

transmission. The APs are connected to a central processing unit (CPU) via

a backhaul link. This approach, with simple signal processing, can effectively

control ICI, leading to significant improvements in spectral and energy efficiency

over the cellular systems [31–35]. The main challenge in deploying cell-free net-

works lies mainly in acquiring sufficiently accurate channel state information

(CSI) so that the APs can simultaneously transmit (receive) signals to (from) all

UEs and cancel interference in the spatial domain. The conventional approach
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of sending downlink (DL) pilots and letting the UEs feed back channel estimates

is unscalable since the feedback load is proportional to the number of APs.

Therefore, to reduce the signaling overhead [36, 37], channel reciprocity can be

exploited in time-division duplex (TDD) mode so that each AP only needs to

estimate the uplink CSI.

An attractive alternative to consider is frequency-division duplexing (FDD)

based cell-free massive MIMO systems for the following reasons: 1) channel

reciprocity in TDD mode might not be accurate due to calibration errors in

RF chains [38], 2) with the lack of downlink training symbols in TDD systems,

users may not be able to acquire instantaneous CSI, and thus system perform-

ance will deteriorate in detecting and decoding the intended signals, 3) while

TDD operation is preferable at sub-6 GHz massive MIMO, in millimeter wave

(mmWave) bands FDD may be equally good since the angular parameters of the

channel are reciprocal over a wide bandwidth [39], and 4) FDD systems dominate

current wireless communications and have many benefits such as lower cost and

greater coverage than TDD [40]. On the other hand, FDD-based cell-free massive

MIMO systems still suffer from CSI acquisition and feedback overhead since the

amount of downlink CSI feedback scales linearly with the number of antennas [41]

and the number of APs in cell-free massive MIMO system. However, we can still

benefit from 1) angle reciprocity, which holds true for FDD systems as long as the

uplink and downlink carrier frequencies are not too far from each other (less than

several GHz [42]), and 2) angle coherence time which is much longer than the

conventional channel coherence time [43] where the channel angle information

can be regarded as unchanged. Hence, angle information is essential in FDD-

based cell-free massive MIMO systems. Therefore, a low complexity estimation

approach that can efficiently estimate the angle information is required. In
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addition, array signal processing schemes based on the estimated angle informa-

tion are needed to enhance the overall spectral efficiency and energy efficiency.

1.2 Contributions and Outline

The purpose of this dissertation is to design efficient interference mitigation

schemes for the aforementioned network densification technologies. Using theore-

tical analysis and empirical simulations, the proposed algorithms are proven to be

high-performance and low-complexity solutions. The structure of this dissertation

is as follows:

Chapter 2 covers the existing work related to the aforementioned network

densification technologies in terms of power control and resource allocation schemes

for D2D communication, detection and power control schemes for NOMA systems,

low resolution detection for massive MIMO systems, and array signal processing

schemes for cell free massive MIMO.

Chapter 3 considers a random network model for a D2D underlaid cellular

system based on stochastic geometry. We propose a channel allocation scheme

together with a set of three power control schemes to mitigate interference in a

D2D underlaid cellular system modeled as a random network using the mathe-

matical tool of stochastic geometry. The novel aspect of the proposed CA scheme

is that it enables D2D links to share resources with multiple cellular users as

opposed to one as previously considered in the literature. The coverage probability

of D2D links and that of cellular links is studied and analyzed.

Chapter 4 considers the analysis of the proposed power control schemes for
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the D2D underlaid cellular system. Moreover, it is shown that the accompanying

distributed PC schemes further manage interference during link establishment

and maintenance. The first two PC schemes compensate for large-scale path-

loss effects and maximize the D2D sum rate by employing distance-dependent

path-loss parameters of the D2D link and the base station, including an error

estimation margin. The third scheme is an adaptive PC scheme based on a

variable target signal-to-interference-plus-noise ratio, which limits the interfer-

ence caused by D2D users and provides sufficient coverage probability for cellular

users. Closed-form expressions for the coverage probability of cellular links, D2D

links, and sum rate of D2D links are derived in terms of the allocated power,

density of D2D links, and path-loss exponent. The impact of these key system

parameters on network performance is analyzed and compared with previous

work. Simulation results demonstrate an enhancement in cellular and D2D

coverage probabilities, and an increase in spectral and power efficiency. This

work has been published in [44–46].

Chapter 5 extends the study in Chapter 3 to consider efficient interference

mitigation schemes for large MIMO-NOMA systems. We assume a large number

of antennas on both, transmitting and receiving sides, and we propose clustering

and power control schemes for a randomly distributed users in which users in each

cluster are served on the same time-frequency resources and allocated different

powers depending on their distance from a base station. Through special layer

ordering and power allocation, we show that successive interference cancellation

at stronger streams can be carried with minimal performance-complexity costs

at the receiver side using detectors previously proposed in [47]. Simulations

demonstrate that the proposed schemes are near-optimal compared to previous

work.
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Chapter 6 studies the uplink throughput achievable by a massive MIMO

system in which the base station is equipped with a large number of low resolution

analog-to-digital converters. We propose a new linear MMSE-based detector

which accounts for the severe non-linearity effect of the low resolution quantization

and incorporates a pilot-based channel estimation error. An analytical framework

that derives the achievable rate of a MMSE-based detector in a massive MIMO

configuration with the assumption that the front-end is limited to a 1-bit ADC

and the pilot-based channel estimation error is presented. We compare the

capacity of a massive MIMO system using a 1-bit ADC and a linear detector

against a conventional MIMO system with higher-order modulation and near

maximum likelihood (ML) detection. We show that in the low SNR regime with

channel estimation error, the quantized massive MIMO system can outperform

the conventional large MIMO system; however for high SNR, the conventional

MIMO system with a near ML detector can outperform the quantized massive

MIMO system. This work has been published in [48,49].

Chapter 7 considers FDD-based cell-free massive MIMO in which distributed

multi-antenna access points serve many single-antenna users simultaneously. Most

prior work on cell-free massive MIMO systems assume time-division duplexing

mode, although FDD systems dominate current wireless standards. The key

challenges in FDD massive MIMO systems are CSI acquisition and feedback

overhead. To address these challenges, we exploit the so-called angle reciprocity

of multipath components in the uplink and downlink, so that the required CSI

acquisition overhead scales only with the number of served users, and not the

number of AP antennas nor APs. We propose a low complexity multipath

component estimation technique and present linear angle-of-arrival (AoA)-based

beamforming/combining schemes for FDD-based cell-free massive MIMO systems.
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We analyze the performance of these schemes by deriving closed-form expressions

for the mean-square-error of the estimated multipath components, as well as

expressions for the uplink and downlink spectral efficiency.

Chapter 8 continues the work done in Chapter 7 and considers a max-

min power allocation problem that maximizes the minimum user rate under

per-user power constraints, using semi-definite programming. Furthermore, we

present a user-centric (UC) AP selection scheme in which each user chooses a

subset of APs to improve the overall energy efficiency of the system. Simulation

results demonstrate that the proposed multipath component estimation technique

outperforms conventional subspace-based and gradient-descent based techniques.

We also show that the proposed beamforming and combining techniques along

with the proposed power control scheme substantially enhance the spectral and

energy efficiencies with an adequate number of antennas at the APs. This work

has been published in [50,51].

Chapter 9 concludes the dissertation and specifies future directions.
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Chapter 2

Literature Review

The aim of this chapter is to review the state-of-the-art for the interference

mitigation techniques that are applied in D2D, NOMA, massive MIMO, and cell-

free massive MIMO systems. The related work covers power control and resource

allocation schemes for D2D communication, detection and power control schemes

for NOMA systems, low resolution detection for massive MIMO systems, and

array signal processing schemes for cell free massive MIMO.

2.1 Power Control and Resource Allocation in D2D

Communications

Power control and channel allocation schemes have been presented in the

literature as strategies to mitigate interference in D2D wireless networks [1,2,52–

66]. In [52], open loop PC (OLPC) and closed loop PC schemes (CLPC), used in

LTE [67], are compared with an optimization based approach aimed at increasing

spectrum usage efficiency and reducing total power consumption. However, such
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schemes require a large number of iterations to converge.

In [53–56], a power allocation scheme is presented based on a “soft dropping”

PC algorithm, in which the transmit power meets a variable target signal-to-

interference-plus-noise ratio (SINR). However, the system considered is not random,

and the D2D users in [54–56] are confined within a hotspot in a cellular region.

In [57], a D2D “mode” is selected in a device based on its proximity to other

devices and to its distance to the eNB. However, the inaccuracy of distance

derivation is a key aspect that is not addressed in [57]. In [59], a two-phase

auction-based algorithm is used to share uplink spectrum. The authors assume

that all the channel information is calculated at the eNB and broadcasted to users

in a timely manner, which will cause an excessive signaling overhead. In [60],

a heuristic delay-tolerant resource allocation is presented for D2D underlying

cellular networks; however, power control is ignored since D2D users always

transmit at maximum power.

In the above schemes, power control and channel allocation methods [52–

56, 59, 60, 65, 66] are developed and evaluated assuming deterministic D2D link

deployment scenarios. On the other hand, PC in [1] is presented for unicast D2D

communications by modeling a random network for a D2D underlaid cellular

system, using stochastic geometry. D2D users are distributed using a (2-dimensional)

spatial Poison point process (PPP) with density 𝜆. Stochastic geometry is a useful

mathematical tool to model irregular spatial structures of D2D locations, and to

quantify analytically the interference in D2D underlaid cellular networks using the

Laplace transform [68–70]. Two PC schemes are developed in [1]; a centralized PC

and a simple distributed on-off PC scheme. The former requires global channel

state information (CSI) possibly at a centralized controller, which may incur high

CSI feedback overhead, whereas the latter is based on a decision set and requires
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only direct link information. However, the authors assume a fixed distance bet-

ween the D2D pairs, and that the D2D devices for the distributed case operate

at maximum power leading to severe co-channel interference. Moreover, the

distributed PC scheme of [1] does not guarantee reliable cellular links, especially

at high SINR targets. In [2], similar PC algorithms to [1] are presented but

with channel uncertainty considered; the results in [1] are regarded as ideal best-

case scenarios with perfect channel knowledge. In [61,62], a framework based on

stochastic geometry to analyze the coverage probability and average rate with

different channel allocations in a D2D overlaid cellular systems is presented.

In [63], PC and resource allocation schemes are considered; however,

the interference between D2D pairs is ignored. In [64], a transmission cost

minimization problem using hypergraph model is investigated based on a content

encoding strategy to download a new content item or repair a lost content item in

D2D-based distributed storage systems. Moreover, [64] considers the one-to-one

matching case, in which only one D2D link shares resources with only one uplink

cellular user. In [65, 66], resource allocation is considered where one D2D link

shares resources with only one cellular user in the underlay case. Obviously, these

schemes in [63–66] are not spectrally efficient because D2D pairs are restricted to

use different resource allocations. In [71,72], power control is studied in random

ad hoc networks without taking into consideration the underlaid cellular network.

2.2 Detection and Power Control in MIMO-NOMA

systems

The combination of MIMO and NOMA (MIMO-NOMA) [73–82] is an inevitable

extension to both technologies, that has the potential to improve spectral effi-
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ciency and achieve high data rates, dense coverage, massive connectivity and low

latency, all of which are major requirements of 5G. MIMO-NOMA configurations

can be single-cluster or multi-cluster. In a single-cluster setting, all users, except

one, conduct SIC. In a multi-cluster setting, users are first partitioned into

different clusters to reduce interference, and SIC follows. The full potential of

MIMO-NOMA is achieved by the joint optimization of user clustering, beam-

forming, power allocation, and SIC. In [74], an ergodic capacity maximization

problem is studied for Rayleigh fading MIMO-NOMA with statistical channel

state information (CSI) at the transmitter. Both, optimal and low complexity

power allocation schemes were used to maximize the ergodic capacity, with total

transmit power constraint and minimum rate constraint over weak users. Whereas

in [75], fairness, weighted sum rate, sum rate with quality of service constraints,

and energy efficiency maximizations are considered, and the matching algorithm

is employed to jointly optimize channel assignment and power allocation.

Several MIMO-NOMA-specific digital signal processing designs have been

presented for precoding and detection. Joint clustering and precoding is achieved

in [76] by using eigenspaces of channel matrices, to eliminate inter-cluster interfer-

ence and enhance sum capacity. In [77, 78], user pairing and the design of

precoding and detection matrices for downlink transmissions are studied, where

the performance is analyzed in terms of outage probabilities and diversity orders.

In [79], downlink minimum Euclidean distance precoders are presented by combin-

ing methodologies previously developed for unicast and multicast MIMO scenarios.

In [80], minorization-maximization based hybrid precoding is presented, where

user clustering and power allocation pair two suitable users in a group. Furth-

ermore, an iterative linear minimum mean square error (MMSE) uplink detector

is proposed in [81], and a Gaussian message passing iterative detector is proposed
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in [82]. The latter converges faster when the number of users is greater than the

number of serving antennas.

MIMO performance is largely determined by the detection scheme at the

receiver side; various schemes provide different performance-complexity trade-

offs [83]. Linear detectors, such as zero forcing (ZF) and minimum mean square

error (MMSE), are the least-complex, but the least-optimal as well. On the other

hand, maximum likelihood (ML) detectors are optimal but most computationally

intensive. Several sub-optimal detectors fill the spectrum in between, including

sphere decoders (SD) and their variants [84,85]. While in massive MIMO systems

linear detectors achieve near-optimal performance by exploiting the channel harden-

ing effect [86], for large MIMO systems, the detection schemes in the literature are

grouped into several areas: detection based on local search [87]; detection based

on meta-heuristics [88]; detection via message passing on graphical models [89];

lattice reduction (LR) aided detection [90]; and detection using Monte Carlo

sampling [91]. However, for these schemes to achieve a near-ML performance

with high orders of antennas and modulation constellations, the entailed comp-

lexity would be prohibitive.

A popular family of MIMO detectors that achieves good performance-complexity

trade-offs employs non-linear subset-stream detection. The nulling-and-cancellation

(NC) detector [92] is a low-complexity member of this family; it consists of linear

nulling followed by back-substitution and slicing over layers. The chase detector

(CD) [93] is a more complex member of this family; it first creates a list of

candidate decision vectors, and then chooses the best candidate from this list as

a final decision. Furthermore, the layered orthogonal lattice detector (LORD) [94]

is an even more complex detector that consists of several iterations of CD. All

aforementioned subset-stream detectors make use of QR decomposition (QRD).
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Other popular subset-stream detectors exist (e.g., [95–97]), that decompose the

channel matrix into lower order sub-channels to reduce the number of jointly

detected streams. A less complex alternative [47, 98–100] is to decompose the

channel matrix via a punctured QRD, WR decomposition (WRD).

2.3 Low Resolution Detection in Massive MIMO

Prior work has studied the case of uplink quantized massive MIMO [24–27],

and analyzed the non-linearity effects of quantization. However, there has not

been any comparison of achievable rates of the 1-bit uplink massive MIMO with

that of a conventional MIMO system employing higher-order modulation (e.g.,

1024-QAM) schemes. In addition, linear detectors such as ZF, match filtering,

and maximal ratio combining (MRC) have been previously analyzed in [24] for

the uplink massive MIMO with 1-bit ADCs. However, linear MMSE detection,

that accounts for the non-linearity effect of the low resolution ADCs, has not

been analyzed in previous work. In [101,102] the gradient projection algorithm is

used to iteratively find a precoder that minimizes the mean square error (MSE)

between the transmitted and the received signal for the downlink case, but [101,

102] contain no mathematical analysis of the achievable rate.

2.4 Array Signal Processing in Cell Free Massive

MIMO

There has been considerable interest, in only TDD mode, cell-free massive

MIMO systems [31–35,103]. In [31], a cell-free system is considered and algorithms
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for power optimization and linear precoding are analyzed. Compared with the

conventional small-cell scheme, cell-free massive MIMO can yield more than ten-

fold improvement in terms of outage rate. While in [32], the APs perform

multiplexing/de-multiplexing through conjugate beamforming in the downlink

and matched filtering in the uplink.

In [33], a cell-free massive MIMO downlink is considered, wherein a large

number of distributed multiple-antenna APs serve many single-antenna users. A

distributed conjugate beamforming scheme is applied at each AP via the use of

local CSI. Spectral efficiency and energy efficiency are studied while considering

channel estimation error and power control.

In [103, 104], cell-free and user-centric architectures at mmWave frequencies

are considered. A multiuser clustered channel model is introduced, and an uplink

multiuser channel estimation scheme is described along with hybrid analog/digital

beamforming architectures. Moreover, in [104], the non-convex problem of power

allocation for downlink global energy efficiency maximization is addressed. In [105],

an uplink TDD-based cell-free massive MIMO system is considered. Geometric

programming GP is used to sub-optimally solve a quasi-linear max–min signal-

to-interference-and-noise ratio (SINR) problem.

Angle estimation has been studied in other wireless networks without considering

cell-free massive MIMO networks (see e.g. [106–115]). For instance, subspace-

based angle estimation algorithms, such as multiple signal classification (MUSIC),

estimation of signal parameters via rotational invariance technique (ESPRIT) and

their extensions have gained interest in the array processing community due to

their high resolution angle estimation capability [106–108]. Their applications

in massive MIMO systems and MIMO systems for angle estimation have been

presented in [109–112]. Unfortunately, the classical MUSIC and ESPRIT schemes
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are not suitable for mmWave communications due to the following main reasons:

1) They have high computational complexity mainly due to the singular value

decomposition (SVD) operation on channels with massive number of antennas;

2) They are considered as blind estimation techniques originally targeted for

radar applications, and do not make full use of training sequences in wireless

communication systems.

In [113–115], an angle-of-arrival (AoA) estimation scheme for mmWave massive

MIMO systems with a uniform planar array at the base station is presented.

The initial AoAs of each uplink path are estimated through the two dimens-

ional discrete Fourier transform (2D-DFT), and then the estimation accuracy is

further enhanced via an angle rotation technique. The AoA estimation scheme

in [113–115] does not consider the cell-free massive MIMO network and ignores

the large scale fading estimation. Moreover, in order to apply efficient beamform-

ing and combining techniques, large scale fading estimation is crucial in FDD-

based cell free massive MIMO system. Hence in this work, we further extend the

estimation scheme in [113–115] to consider FDD-based cell-free massive MIMO

system and estimate both AoA and large scale fading coefficients. In addition

using the estimated AoA and the large scale fading, we apply low complexity

angle-based beamforming/combining in downlink and uplink directions.

In [116], a multipath component estimation technique and base station coopera-

tion scheme based on the multipath components for the FDD-based cell-free

massive MIMO systems are presented. However, no closed form expression of the

MSE of the considered multipath estimation is presented.
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Chapter 3

Channel Allocation and Coverage

Probability Analysis for D2D

Underlaid Cellular Systems

In this chapter, we propose channel allocation and analyze the performance

assuming a random D2D underlaid cellular network model. A main shortcoming

in most papers in the literature is that unrealistic assumptions are considered. For

instance, in [1, 2] the authors rely on deterministic values such as fixed distance

between the D2D transmitter and receiver, fixed transmission power, and fixed

SINR targets and they only consider one cellular user sharing the resources with

the D2D links. These deterministic assumptions simplify the derivation of the

analytical models, but are in many cases unrealistic. In our work, we study

a general scenario by randomly modeling the distance between the D2D pairs,

assigning different transmission power to D2D links, varying the SINR targets,

and consider multiple cellular users sharing the resources with the D2D links.

Therefore, the presented analytical expressions in this work give more insight

into the performance of a D2D underlaid cellular system in a rather more realistic
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D2D user sharing resources with  c2 

Figure 3.1: A single-cell D2D underlaid cellular network. Two cellular users 𝑐1
and 𝑐2 establish a link with the eNB while several active D2D links are established
in a disk centered at the eNB with radius 𝑅C. For the case 𝑚 = 2, a subset of
active D2D links share resources with cellular UE 𝑐1 (F), while other D2D links
share resources with 𝑐2 (N).

approach. The corresponding results appeared in [44–46].

3.1 D2D System Model

In this section, the system model and the corresponding network parameters

are presented. As shown in Fig. 3.1, we study a D2D underlaid cellular network

in which a pool of 𝐾 active D2D users is divided into 𝑀 groups such that each

group shares distinct resources with one of 𝑀 cellular users, as opposed to the

assumption taken in [1, 2] where all the 𝐾 D2D users share the same resource

with one cellular user. The e-Node B (eNB) coverage region is modeled as a

circular disk 𝒞 with radius 𝑅C and centered at the eNB. We assume that two
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Figure 3.2: The system model shows the channel model for one of the cellular
users and a subset of active D2D links that share resources with 𝑐1. The active
D2D links outside the cell are considered as out-of-cell D2D interference, whereas
out-of-cell interference from cellular users belonging to cross-tier cells is ignored.

cellular users are uniformly distributed in this disk, while the D2D transmitters

are distributed in the whole R2 plane by the homogeneous PPP Φ with density 𝜆,

where P[Φ = 𝑛] = exp (−𝜆) 𝜆𝑛

𝑛!
. The PPP assumption corresponds to having the

expected number of nodes per unit area equal to 𝜆, and the nodes being uniformly

distributed in the area of interest. Hence, the number of D2D transmitters

in 𝒞 is a Poisson random variable 𝐾 with mean E[𝐾] = 𝜆𝜋𝑅2
C. In addition,

the associated D2D receiver is uniformly distributed in a disk centered at its

transmitter with radius 𝑅D.

We consider a particular realization of the PPP Φ and a transmission time

interval (TTI) 𝑡 to describe the system model. In the following, we use subscript

0 to refer to the uplink signal received by the eNB, 𝑐𝑚 to refer to the 𝑚th

transmitting cellular user, and 𝑘 ̸= 0 to refer to the 𝑘th D2D user. Denote
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by 𝑠
(𝑡)
0,𝑐𝑚 the signal transmitted by the 𝑚th cellular user in the uplink, and by

𝑠
(𝑡)
𝑘,𝑘 the signal transmitted by the 𝑘th D2D transmitter to its 𝑘th D2D receiver,

during the TTI 𝑡. We assume distance-independent Rayleigh fading channel

models between the eNB and the UEs, between the eNB and the D2D users,

and between the D2D users themselves. Let ℎ
(𝑡)
0,𝑐𝑚 denote the uplink channel gain

between the 𝑚th cellular user and eNB, ℎ
(𝑡)
𝑘,𝑘 the direct link channel gain between

the 𝑘th D2D transmitter (TX) and corresponding 𝑘th D2D receiver (RX), ℎ
(𝑡)
0,𝑘

the channel gain of the interfering link from the 𝑘th D2D TX to the eNB, ℎ
(𝑡)
𝑘,𝑐𝑚

the channel gain of the interfering link from the 𝑚th cellular UE to the 𝑘th D2D

RX, and ℎ
(𝑡)
𝑘,𝑙 the lateral channel gain of the interfering link from the 𝑙th D2D

TX to the 𝑘th D2D RX. Random variables 𝑛0 and 𝑛𝑘 denote additive noise at

the eNB and the 𝑘th D2D RX, and are distributed as 𝐶𝒩 (0, 𝜎2), where 𝜎2 is

the noise variance. We also assume a distance-dependent path-loss model, i.e.,

a factor of the form 𝑑−𝛼
𝑘,𝑙 that modulates the channel gains, where 𝑑𝑘,𝑙 represents

the distance between the 𝑙th TX and the 𝑘th RX, with 𝛼 being the path-loss

exponent.

Moreover, we assume that each cellular user and a subset 𝐾 ′ < 𝐾 of the D2D

transmitters share the same uplink physical resource block (PRB) during the

same TTI (𝑡) as depicted in Fig. 3.2. Furthermore, we assume that the channel

coherence bandwidth is larger than the bandwidth of a PRB, leading to a flat

fading channel over each PRB. Therefore, the received signals 𝑦
(𝑡)
𝑘,𝑘 at the 𝑘th

D2D receiver, and 𝑦
(𝑡)
0,𝑐𝑚 at the eNB can be expressed as

𝑦
(𝑡)
𝑘,𝑘 = ℎ

(𝑡)
𝑘,𝑘𝑑

(𝑡)
𝑘,𝑘

−𝛼/2
𝑠
(𝑡)
𝑘,𝑘 +

𝐾′∑︁
𝑙=1,𝑙 ̸=𝑘

ℎ
(𝑡)
𝑘,𝑙𝑑

(𝑡)
𝑘,𝑙

−𝛼/2
𝑠
(𝑡)
𝑘,𝑙 + 𝑛

(𝑡)
𝑘 , (3.1)
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𝑦
(𝑡)
0,𝑐𝑚 = ℎ

(𝑡)
0,𝑐𝑚𝑑

(𝑡)
0,𝑐𝑚

−𝛼/2
𝑠
(𝑡)
0,𝑐𝑚 +

𝐾′∑︁
𝑘=1

ℎ
(𝑡)
0,𝑘𝑑

(𝑡)
0,𝑘

−𝛼/2
𝑠
(𝑡)
𝑘,𝑘 + 𝑛

(𝑡)
0 . (3.2)

The transmit powers 𝜌0 and 𝜌𝑘 are conditioned to meet certain peak power

constraints, i.e. 𝜌0 , |𝑠0,𝑐𝑚|
2 ≤ 𝑃max,C and 𝜌𝑘 , |𝑠𝑘,𝑘|2 ≤ 𝑃max,D for all links.

The channel gains are estimated at each D2D receiver using the reference signal

received power (RSRP), and are fed back to the corresponding D2D transmitter.

In addition, it is worth noting that E[𝐾] represents the average number of D2D

links (or transmitters) before channel allocation, whereas E[𝐾 ′] represents the

number of D2D links (or transmitters) sharing resources with 𝑐𝑚.

The SINR of any typical link is defined as SINR ,
𝑊

𝐼 + 𝑁
, where𝑊 represents

the power of the intended transmitted signal, 𝐼 represents the power of the

interfering signals, and 𝑁 denotes the noise power. Therefore, the SINR at the

eNB and D2D receiver 𝑘 can be written as

SINR0(𝐾
′,𝜌) =

𝜌0|ℎ0,𝑐𝑚 |2𝑑−𝛼
0,𝑐𝑚∑︀𝐾′

𝑘=1 𝜌𝑘|ℎ0,𝑘|2𝑑−𝛼
0,𝑘 + 𝜎2

, (3.3)

SINR𝑘(𝐾 ′,𝜌) =
𝜌𝑘|ℎ𝑘,𝑘|2𝑑−𝛼

𝑘,𝑘∑︀𝐾′

𝑖 ̸=0,𝑘 𝜌𝑖|ℎ𝑘,𝑖|2𝑑−𝛼
𝑘,𝑖 + 𝜌0|ℎ𝑘,𝑐𝑚|2𝑑−𝛼

𝑘,𝑐𝑚
+ 𝜎2

, 𝑘 > 0 (3.4)

where 𝜌 = [𝜌0, 𝜌1, · · · , 𝜌𝑘]𝑇 represents the transmit power profile vector, with 𝜌𝑖

being the transmit power of the 𝑖th UE transmitter, and 𝐾 ′ is the number of

D2D transmitters. The super-subscript (𝑡) is suppressed for simplicity.

The proposed system model ignores the out-of-cell interference transmission

from other uplink users from cross-tier cells. However, the density of the D2D

links is a network parameter that captures the expected interference on cellular

and D2D links. Moreover, when the density of the D2D links is high, the proposed

system is able to capture the effect of the dominant interferer for both cellular
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(uplink) and D2D links, since there is a high probability that the nearest D2D

interferer would become the dominant interference of a D2D link and that of the

cellular link. Furthermore, when this network parameter is high, it can provide

an upper bound on the performance of a D2D underlaid cellular network with

out-of-cell interference. In addition, one can note that the radius of the disk 𝑅C

is large enough to encompass all the D2D pairs, since the dominant interference

is generated from the nearest D2D interferers.

Based on the above defined SINRs, we use the coverage probability and

achievable sum rate as metrics to evaluate system performance. Precisely, the

proposed CA and PC algorithms aim to maximize those quantities while maintaining

a minimum level of Quality-of-Service (SINR threshold 𝛽). The coverage probabilities

of both the cellular link and D2D links are derived in this work. The cellular

coverage probability 𝒫cov,C(𝛽0) is defined as

𝒫cov,C(𝛽0) = E[𝒫cov,C(𝜌, 𝛽0)] = E[P(SINR0(𝐾
′,𝜌) ≥ 𝛽0)], (3.5)

where 𝛽0 denotes the minimum SINR value for reliable uplink connection. Similarly,

the D2D coverage probability 𝒫cov,D(𝛽𝑘) is defined as

𝒫cov,D(𝛽𝑘) = E[𝒫cov,D(𝜌, 𝛽𝑘)] = E[P(SINR𝑘(𝐾 ′,𝜌) ≥ 𝛽𝑘)], (3.6)

where 𝛽𝑘 denotes the minimum SINR value for a reliable D2D link connection.

In addition, the ergodic sum rate of D2D links is defined as

ℛ(𝐷)
𝑠 = E

[︃
𝐾′∑︁
𝑘=1

log2 (1 + SINR𝑘(𝐾 ′,𝜌))

]︃
. (3.7)

The main system parameters are summarized in Table 3.1.
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Table 3.1: System Parameters
Cell radius 𝑅C

PPP of all D2D users in the cell Φ
PPP of all D2D users in the cell after channel allocation Φ′

Density of D2D links (D2D/𝑚2) 𝜆
Channel gain from the cellular UE 𝑐𝑚 to eNB ℎ0,𝑐𝑚
Channel gain from D2D TX 𝑘 to D2D RX 𝑘 ℎ𝑘,𝑘
Channel gain from D2D TX 𝑘 to eNB ℎ0,𝑘
Channel gain from the cellular UE 𝑐𝑚 to D2D RX 𝑘 ℎ𝑘,𝑐𝑚
Channel gain from D2D TX 𝑙 to D2D RX 𝑘 ℎ𝑘,𝑙
Distribution of channel fading (ℎ𝑥,𝑦) Rayleigh fading |ℎ𝑥,𝑦|2 ∼ exp (1)
Distance between D2D links (𝑑𝑘,𝑘) Uniformly distributed

Distance between uplink user and eNB (𝑑0,𝑐𝑚) Uniformly distributed

Distance between D2D TX 𝑘 and eNB (𝑑0,𝑘) Uniformly distributed

Expectation of an event E[·]
Probability of an event P[·]
Laplace transform of a variable 𝑋 ℒ𝑋
Coverage probability of link 𝐿 𝒫cov,L
Transmit probability 𝒫tx
Ergodic sum rate of D2D links ℛ(𝐷)

𝑠

Maximum transmit power for cellular user 𝑃max,C

Maximum transmit power for D2D user 𝑃max,D

Receiver sensitivity (dBm) 𝜚rx
Cumulative distribution function (cdf) of variable 𝑋 𝐹𝑋(·)
Probability density function (pdf) of variable 𝑋 𝑓𝑋(·)

3.2 Proposed Channel Allocation Scheme

In this section, we propose a channel allocation scheme that enables active

D2D users to share the same resource blocks used by 𝑀>1 (two or more) cellular

UEs (CUEs). Its main objective is to decrease the density of D2D users sharing

the same resource with a particular cellular user by dividing all active D2D pairs

into 𝑀 groups, such that each group shares resources with one of 𝑀 distinct

CUEs. By this, we further extend the system model in [1,2], where only the case

𝑀 =1 is considered and all the active D2D pairs are assumed to share resources

with only one CUE. However, we include in our study a new resource allocation

scheme for 𝑀 > 1.
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Initially, mode selection determines whether a D2D pair can transmit in D2D

mode or in cellular mode, and time and/or frequency resources are allocated

accordingly. For simplicity, we study the case of two CUEs (𝑀 = 2); the same

approach is also generalized for any 𝑀 . Using the independent thinning property

[117], we independently assign random binary marks {1, 2} to the subset of active

D2D users that can share resources with cellular users 𝑐1 and 𝑐2, respectively. The

assignment is based on the following criterion: when the distance between the

cellular UE 𝑐1 and the 𝑘th D2D RX is greater than the distance between cellular

𝑐2 and the 𝑘th D2D RX (𝑑𝑘,𝑐1 > 𝑑𝑘,𝑐2), the 𝑘th D2D TX at instant (𝑡) will be

assigned the value {1}; otherwise the D2D TX will be assigned {2}. Consequently,

all D2D users assigned with value {1} will share the same resources as 𝑐1, while

the rest will share the same resources as 𝑐2. Therefore, sharing resources with

the farthest cellular user reduces the interference at the eNB by decreasing the

density of the D2D TXs sharing the same resources, and reduces the interference

generated from the cellular user at the D2D RXs.

Remark 1. Independent thinning of a PPP alters the density of the point process.

If we independently assign random binary marks {1, 2} with P[𝑄𝑘 = 1] = 𝑞 and

P[𝑄𝑘 = 2] = 1−𝑞 to each point in a PPP and collect all the points which are

marked as 1, the new point process will be a PPP Φ′ but with density 𝑞𝜆, while

the remaining points marked as 2 will have a PPP Φ′′ with density (1− 𝑞)𝜆. In

our case, the arrival of D2D users such that 𝑑𝑘,𝑐1 > 𝑑𝑘,𝑐2 is independent of the

arrival of another pair of D2D users such that 𝑑𝑘,𝑐2 > 𝑑𝑘,𝑐1 . Hence the thinning

property applies.

Lemma 1. Using the above remark, half of the active D2D users will share the

same resources with one of the cellular users and the other half will share them

with the other cellular user.
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Proof. The proof relies on the pdf of the distance between two uniformly distributed

points, which is given by [118]:

𝑓𝑑𝑘,𝑐𝑚 (𝑟)=
2𝑟

𝑅2
C

(︃
2

𝜋
cos−1

(︂
𝑟

2𝑅C

)︂
− 𝑟

𝜋𝑅C

√︃
1− 𝑟2

4𝑅2
C

)︃
, 0≤𝑟≤2𝑅C. (3.8)

Using (3.8), we have P[𝑄𝑘 = 1] = 𝑞 = 1
2
. See detailed proof in Appendix A.1.

A similar approach can be applied for a more general case of 𝑀 CUEs. A D2D

UE shares resources with the CUE that is furthest away from it. For instance,

if resources are shared with 𝑀 CUEs, then after 𝑀 − 1 comparisons, P[𝑑𝑘,𝑐𝑚 ≥

max𝑛̸=𝑚{𝑑𝑘,𝑐𝑛 , · · · , 𝑑𝑘,𝑐𝑀}] = P[𝑄𝑘 = value assigned to 𝑐𝑚] = 𝑞𝑘 = 1
𝑀
, where∑︀𝑀

𝑖 𝑞𝑖 = 1.

We show in Section 3.3 that the coverage probabilities for cellular and D2D

links depend on the density of the D2D users sharing the same resource. With

the proposed CA scheme, the density of the D2D users is decreased by a factor

of 𝑞 < 1 to be 𝑞𝜆. Therefore, the interference at the eNB is further reduced

compared to the scenario considered in [1], because here a smaller number of

D2D users (E[𝐾 ′] = E[𝐾]
𝑀

= 1
𝑀
𝜆𝜋𝑅2

C) share the same resources with the each

CUE.

It should be noted that sharing resources with more than one CUE increases

the coverage probability, which is intuitive as the interference caused by the D2D

links is reduced. However, upon increasing 𝑀 (implying decreasing 𝐾 ′), the

spectral efficiency of the system will decrease according to (3.7), and hence we

would lose one of the main advantages of D2D communications that is increasing

the spectral efficiency of the cellular system. Therefore, a trade-off exists between

enhancing the link coverage probability and increasing the system throughput.

In addition, the complexity of the proposed channel allocation is 𝑂(𝑀𝐾)
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where 𝐾 is the total number of the D2D links that will share resources with

(𝑀 > 1) uplink cellular users. This is due to the fact that the base station will

compute, for each D2D link, the distance (𝑑𝑘,𝑐𝑚) from the 𝑘th D2D receiver to

the all 𝑀 cellular users (where 0 < 𝑘 ≤ 𝐾 and 1 < 𝑚 ≤ 𝑀). Therefore, the

base station computes a total of 𝑀𝐾 distance parameters (𝑑𝑘,𝑐𝑚) to perform the

comparisons (𝑑𝑘,𝑐𝑚 ≥ max𝑛̸=𝑚{𝑑𝑘,𝑐𝑛 , · · · , 𝑑𝑘,𝑐𝑀}) as discussed above.

3.3 Analysis of Coverage Probability

In this section, the cellular and D2D coverage probabilities are derived using

the tool of stochastic geometry. In order to analyze the coverage probabilities,

the transmit powers 𝜌𝑘 of the D2D transmitters are assumed to be i.i.d. with cdf

𝐹𝜌𝑘(·), 𝑘 = 1, · · · , 𝐾 ′, and the transmit power 𝜌0 of the uplink cellular user is

independent having distribution 𝐹𝜌0(·).

3.3.1 Cellular Link Coverage Probability

Based on the system model and assuming that the eNB is located at the origin,

the SINR of the uplink is given by (3.3). We are interested in the cellular coverage

probability 𝒫cov,C(𝛽0), which is the probability that the SINR of cellular link is

greater than a minimum SINR 𝛽0 for a reliable uplink connection as defined (3.5).

Using Lemma 1, we derive an analytical expression for the coverage probability

of a cellular link.

Proposition 1. The cellular coverage probability is given by

𝒫cov,C(𝛽0) = E𝑋

[︁
𝑒−𝑎1𝑋−𝜃0𝑋2/𝛼

]︁
, (3.9)
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where 𝑎1 = 𝛽0𝜎
2, 𝜃0 =

𝜋P[𝑄𝑘=1]𝜆𝛽
2/𝛼
0

sinc(2/𝛼)
E[𝜌

2/𝛼
𝑘 ], and𝑋 = 𝑑𝛼0,𝑐𝑚𝜌

−1
0 is a random variable

with cdf

𝐹𝑋(𝑥)=
∫︀
𝐹𝑑0,𝑐𝑚 (𝑥1/𝛼𝑝1/𝛼)𝑑𝐹𝜌0(𝑝).

Proof. See Appendix A.2.

One can note that the SINR of the uplink signal given in (3.3) is independent

of 𝑑𝑘,𝑐𝑚 ; however, it depends on 𝐾 ′, which is the number of D2D users sharing

the resource block with a particular uplink cellular user 𝑐𝑚. Therefore, the base

station depends on how far the D2D users are from it and not how far the D2D

users are from the cellular users; therefore, the joint probability distribution with

respect to the random location of 𝑐𝑚’s is not needed when deriving the cdf of the

SINR at the eNB.

The coverage probability depends on three D2D-related network parameters:

P[𝑄𝑘 = 1] = 𝑞, 𝜆, and E[𝜌
2/𝛼
𝑘 ]. As the density 𝑞𝜆 of D2D transmitters decreases,

𝒫cov,C(𝛽0) increases because a lower D2D link density causes less interference to

the cellular link. Moreover, the random D2D PC parameter 𝜌𝑘, affects 𝒫cov,C(𝛽0)

only through its (2/𝛼)th moment.

Since the cellular user is uniformly distributed in a circle with center eNB and

radius 𝑅 = 𝑅C, the cdf of the distance 𝑑 = 𝑑0,𝑐𝑚 of the uplink is given by

𝐹𝑑(𝑟) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if 𝑟 < 0;

𝑟2

𝑅2 if 0 ≤ 𝑟 ≤ 𝑅;

1 if 𝑟 ≥ 𝑅.

(3.10)

Using (3.10), we consider the case when the uplink user employs a constant

transmit power 𝜌0 = 𝑃max,C, and assume a noise variance of 𝜎2 = 0 (so SINR0

is reduced to SIR0 (signal-to-interference ratio)). For a given path-loss exponent
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value, the coverage probability in the interference-limited regime becomes

𝒫cov,C(𝛽0) =

∫︁ 𝑅C

0

exp
(︁
−𝜃0𝑟2𝜌−2/𝛼

0

)︁
2𝑟
𝑅2

C
𝑑𝑟 =

1−exp

(︃
−

E[𝐾′]𝛽
2/𝛼
0

sinc(2/𝛼)𝜌
2/𝛼
0

E
[︁
𝜌
2/𝛼
𝑘

]︁)︃
E[𝐾′]𝛽

2/𝛼
0

sinc(2/𝛼)𝜌
2/𝛼
0

E
[︁
𝜌
2/𝛼
𝑘

]︁ , (3.11)

where E[𝐾 ′] = P[𝑄𝑘 =1]𝜆𝜋𝑅2
C.

Expression (3.11) explicitly shows that the coverage probability of the cellular

link depends on: 1) the average number of active D2D transmitters E[𝐾 ′], 2)

certain moments of the power transmitted from the D2D transmitters, 3) the

power transmitted by the cellular user 𝜌0, 4) path-loss exponent 𝛼, and 5) the

target SINR threshold 𝛽0.

3.3.2 D2D Link Coverage Probability

Using the same approach in the previous subsection, the SINR of the 𝑘th D2D

link, based on the system model, is given in (3.4). Then:

Proposition 2. The D2D coverage probability is given by

𝒫cov,D(𝛽𝑘) = E𝑍

[︁
𝑒−𝑎2𝑍−𝜃𝑘𝑍

2/𝛼ℒ𝑌 (𝛽𝑘𝑍)
]︁
, (3.12)

where 𝛽𝑘 is the minimum SINR required for reliable transmission, 𝑎2 = 𝛽𝑘𝜎
2,

𝜃𝑘 =
𝜋P[𝑄𝑘=1]𝜆𝛽

2/𝛼
𝑘

sinc(2/𝛼)
E[𝜌

2/𝛼
𝑘 ], 𝑍 = 𝑑𝛼𝑘,𝑘𝜌

−1
𝑘 is a random variable with cdf

𝐹𝑍(𝑧) =
∫︀
𝐹𝑑𝑘,𝑘(𝑥1/𝛼𝑝1/𝛼)𝑑𝐹𝜌𝑘(𝑝), 𝑌 = |ℎ𝑘,𝑐𝑚|2𝑑−𝛼

𝑘,𝑐𝑚
𝜌0, and ℒ𝑌 (𝛽𝑘𝑍) = E𝑌 [𝑒−(𝛽𝑘𝑍)𝑌 ].

Proof. See Appendix A.2.1.

Using the fact that |ℎ𝑘,𝑐𝑚|2 ∼ exp (1), which implies P(|ℎ𝑘,𝑐𝑚|2 ≥ 𝑥) = 𝑒−𝑥,

and the expectation is over 𝑑𝑘,𝑐𝑚 in ℒ𝑌 (𝛽𝑘𝑍), we derive a closed form expression

for the D2D coverage probability (3.12) in an interference-limited regime (where
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noise variance 𝜎2 = 0, and SINR𝑘 reduces to SIR𝑘) as

𝒫cov,D(𝛽𝑘) = E𝑑𝛼𝑘,𝑘𝜌
−1
𝑘

[︁
exp

(︁
−𝜃𝑘

(︀
𝑑𝛼𝑘,𝑘𝜌

−1
𝑘

)︀2/𝛼)︁× E𝑑𝑘,𝑐𝑚

[︁
𝑒−𝛽𝑘(𝑑𝛼𝑘,𝑘𝜌

−1
𝑘 )|ℎ𝑘,𝑐𝑚 |2𝑑−𝛼

𝑘,𝑐𝑚
𝜌0
]︁]︁

= E𝑑𝛼𝑘,𝑘𝜌
−1
𝑘

[︁
exp

(︁
−𝜃𝑘

(︀
𝑑𝛼𝑘,𝑘𝜌

−1
𝑘

)︀2/𝛼)︁× E𝑑𝑘,𝑐𝑚

[︃
1

1 + 𝛽𝑘
𝜌0
𝜌𝑘
𝑑𝛼𝑘,𝑘𝑑

−𝛼
𝑘,𝑐𝑚

]︃]︃
.

(3.13)

We next simplify (3.13) by deriving expressions for the various expectations

involved.

Corollary 1. Using Lemma 1 and considering the proposed channel allocation

scheme for the case of 2 CUEs, then the first moment of the distance between two

uniformly distributed points can be approximated as E [𝑑𝑘,𝑐𝑚 ] ≈ 512𝑅C/(45𝜋2).

Proof. See Appendix A.3.

We next employ the following approximation E𝑑𝑘,𝑐𝑚

[︀
1

1+𝜅𝑑−𝛼
𝑘,𝑐𝑚

]︀
≈ 1

1+(𝜅)2/𝛼E[𝑑𝑘,𝑐𝑚 ]
−2

as in [1]. Using this approximation together with the result from corollary 1,

equation (3.13) reduces to

𝒫cov,D(𝛽𝑘) ≈ E𝑑𝛼𝑘,𝑘𝜌
−1
𝑘

⎡⎢⎣ exp

(︂
−𝜃𝑘(𝑑𝛼𝑘,𝑘𝜌

−1
𝑘 )

2/𝛼
)︂

1+

(︃
𝛽𝑘

𝜌0
𝜌𝑘𝑑

−𝛼
𝑘,𝑘

)︃2/𝛼

(512𝑅C/(45𝜋2))−2

⎤⎥⎦ . (3.14)

3.3.3 Discussion

The coverage probability depends on the following D2D-related network parameters:

density of the D2D links (𝜆), thinning probability 𝑞, target SINR (𝛽), the moments

of the power transmitted from the D2D transmitters, and the power transmitted

by the cellular user. This modeling approach allows us to analyze the coverage

probability and ergodic rate for a D2D underlaid cellular network with high
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accuracy. It also enables network designers/operators to optimize network perform-

ance by efficiently determining the optimal network parameters mentioned above.

The system can control the impact of D2D links on the cellular link through 1)

the proposed channel allocation scheme, which constrains the density of the D2D

links that uses the same resources with a particular cellular user, and 2) through

the proposed power control schemes, which control the transmit power of the

D2D users.
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Chapter 4

Proposed D2D Distributed Power

Control Schemes

In this chapter, we propose distributed power control schemes that only

require the CSI of the direct link in order to minimize the interference caused by

the D2D users. For link establishment, two static distributed PC are proposed,

and both rely on the distance-dependent path-loss parameters [45, 46]. On the

other hand, for link maintenance, a more adaptive distributed PC is proposed

that compensates the measured SINR at the receiver with a variable target SINR.

Simulation results are presented to demonstrate the effectiveness of the proposed

schemes related to D2D communication.

4.1 Proposed Distance-based Path-loss Power Control

(DPPC)

In this PC scheme, each D2D transmitter selects its transmit power based

on the channel conditions, namely the distance-based path-loss 𝑑−𝛼
𝑘,𝑘 , so as to

maximize its own D2D link rate. In order to realize our proposed scheme, we
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define D2D proximity as the area of a disk centered at the transmitting UE, with

radius 𝑅D =
(︁

𝑃max,D

𝜚rx

)︁1/𝛼
, where 𝑃max,D is the maximum transmit power of the

D2D UE, and 𝜚rx is the minimum power for the D2D RX to recover a signal

(sometimes referred to as receiver sensitivity).

The 𝑘th D2D TX can only use transmit power 𝜌𝑘 with transmit probability

𝒫tx, if the channel quality of the 𝑘th D2D link is favorable, in the sense that it

exceeds a known non-negative threshold Γmin:

𝒫tx , P
[︀
|ℎ𝑘,𝑘|2 𝑑−𝛼

𝑘,𝑘 ≥ Γmin

]︀
≈ exp

(︀
−Γmin E

[︀
𝑑𝛼𝑘,𝑘
]︀)︀
. (4.1)

Furthermore, an estimation error margin 𝜀 is introduced to compensate for the

error in estimating the distance between the D2D pairs. Hence, the proposed

power allocation, based on the channel inversion for the D2D link, is given by

𝜌𝑘 =

⎧⎪⎨⎪⎩ 𝜚rx𝑑
𝛼
𝑘,𝑘(1 + 𝜀) with 𝒫tx,

0 with 1− 𝒫tx,
(4.2)

where 𝑑𝑘,𝑘 is the distance between the 𝑘th D2D pair, 𝛼 is the path-loss exponent,

and 𝜀 is the estimation error margin of 𝑑𝛼𝑘,𝑘, such that 0 ≤ 𝜀 ≤ 1.

Each D2D transmitter decides its transmit power based on its own channel

gain and a known non-negative threshold Γmin. For a given distribution of

the channel gain, selecting a proper threshold Γmin plays an important role in

determining the sum rate performance of the D2D links. For instance, if a large

Γmin is chosen (implying a small 𝒫tx), the inter-D2D interference is reduced.

However, a larger Γmin (implying a smaller 𝒫tx) means a smaller number of active

D2D links within the cell. Thus, Γmin needs to be carefully chosen to balance

these two conflicting factors, while providing a high D2D sum rate. We optimize
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the choice Γmin so as to maximize the D2D sum rate as discussed in Section 4.1.3.

Moreover, the D2D transmitter checks if the link quality degrades ( i.e.,

|ℎ𝑘,𝑘|2 𝑑−𝛼
𝑘,𝑘 < Γmin), then the D2D communication is dropped. Also, the D2D

receiver checks if the estimated distance-based path-loss increases, and reports

it to the D2D transmitter, conditioned on the fact that the D2D communication

link remains active if this distance remains within 𝑅D.

Note here that channel inversion only compensates for the large-scale path-

loss effects and not for small-scale fading effects. For instance, instantaneous CSI

is not required at the transmitter, since the loss due to distance is compensated.

Moreover, the proposed scheme captures the randomness of the distance between

the D2D pairs, and if the D2D pairs are close to each other, they will allocate

less power than the case if they are further apart. However in [1], a fixed distance

between the pairs is assumed and maximum power 𝑃max,D is always allocated for

D2D transmission, which needlessly increases power consumption and generates

more interference.

Considering the proposed DPPC scheme along with the random locations

of D2D users, the transmit powers and the SINRs experienced by the receivers

become random as well. Therefore in what follows, we first characterize the

transmit power 𝜌𝑘 via its 𝛼/2th moment, and then characterize the cellular and

D2D coverage probabilities accordingly. Finally, we derive an expression for the

D2D sum rate and maximize in order to optimize the DPPC threshold Γmin.

4.1.1 Analysis of Power Moments

According to the system model, the D2D receivers are considered to be uniformly

distributed in a circle centered at the corresponding D2D transmitter with radius
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𝑅D; therefore, the cdf of the distance 𝑑𝑘,𝑘 of the D2D link is similar to that of

𝑑0,𝑐𝑚 in (3.10), where 𝑑 = 𝑑𝑘,𝑘 and 𝑅 = 𝑅D. Using (3.10), the moments of the

transmit power 𝜌𝑘 for the DPPC scheme, where 𝜌𝑘 = 𝜚rx𝑑𝑘,𝑘
𝛼(1 + 𝜀), can be

expressed as

E𝑑𝑘,𝑘

[︁
𝜌
2/𝛼
𝑘

]︁
=𝜚2/𝛼rx

∫︁ 𝑅D

0

𝑟2 2𝑟
𝑅2

D
(1+𝜀)2/𝛼𝑑𝑟=𝜚2/𝛼rx

𝑅2
D

2
(1 + 𝜀)2/𝛼. (4.3)

Cellular Coverage Probability for DPPC: By substituting (4.3) for E𝑑𝑘,𝑘

[︁
𝜌
2/𝛼
𝑘

]︁
into the derived expression (3.11), the cellular coverage probability for DPPC can

be obtained.

D2D Coverage Probability for DPPC: For 𝜌𝑘 = 𝜚rx𝑑𝑘,𝑘
𝛼(1 + 𝜀), and using the

moments of 𝜌𝑘 in (4.3), the D2D coverage probability in (3.13) becomes

𝒫cov,D(𝛽𝑘) = 𝑒−𝜃𝑘(𝜚rx(1+𝜀))−2/𝛼

× E𝑑𝑘,𝑐𝑚

[︃
1

1 + 𝛽𝑘
𝜌0

𝜚rx(1+𝜀)
𝑑−𝛼
𝑘,𝑐𝑚

]︃
, (4.4)

Following the same approach as in (3.14), the approximated expression for 𝒫cov,D(𝛽𝑘)

is given by

𝒫cov,D(𝛽𝑘) ≈ 𝑒−𝜃𝑘(𝜚rx(1+𝜀))−2/𝛼

1 +
(︁
𝛽𝑘

𝜌0
𝜚rx(1+𝜀)

)︁2/𝛼
(512𝑅C/(45𝜋2))−2

. (4.5)

4.1.2 Sum Rate of D2D Links

We analyze the sum rate of D2D links when the proposed DPPC scheme

is employed, and compute the optimal threshold Γmin of the proposed PC that

maximizes the sum rate of D2D links.

Let |𝐴D| denote the number of active links selected by the proposed PC and
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CA algorithms, i.e., |𝐴D| = P[𝑄𝑘 = 1]×P[|ℎ𝑘,𝑘|2𝑑−𝛼
𝑘,𝑘 ≥ Γmin]𝜆𝜋𝑅

2
C = 𝜆̃𝜋𝑅2

C, where

𝜆̃ = P[𝑄𝑘 = 1] × P[|ℎ𝑘,𝑘|2𝑑−𝛼
𝑘,𝑘 ≥ Γmin]𝜆 = 𝑞𝒫tx𝜆. As in [1], we assume Gaussian

signal transmissions on all links, and hence, the distribution of the interference

terms becomes Gaussian.

From the SIR distribution of the D2D link given in (4.5) with 𝜎2 = 0, the

ergodic rate of the typical D2D link is generally expressed as

𝑅̄𝐷2𝐷 =

∫︁ ∞

0

log2 (1 + 𝑥)
𝜕

𝜕𝑥
[P[SIR𝑘 ≥ 𝑥]] 𝑑𝑥 ≈

∫︁ ∞

0

1

1 + 𝑥
𝒫cov,D(𝑥) d𝑥

≈
∫︁ ∞

0

exp

(︂
− 𝜋𝜆̃𝑥2/𝛼

sinc(2/𝛼)E
[︁
𝜌
2/𝛼
𝑘

]︁ (︁
𝑑𝛼𝑘,𝑘𝜌

−1
𝑘

)︁2/𝛼)︂
(1 + 𝑥)×

(︃
1 +

(︂
𝑥 𝜌0

𝑑−𝛼
𝑘,𝑘𝜌𝑘

)︂2/𝛼

E [𝑑𝑘,𝑐𝑚 ]
−2

)︃d𝑥. (4.6)

Note that the above general expression of the ergodic rate is valid for any distributed

power control scheme that allocates its own transmit power independently of the

transmit power used at other D2D transmitters.

Using (3.7) and (4.6), the new achievable sum rate of D2D links is given as

ℛ(𝐷)
𝑠 = E

[︃
𝐾′∑︁
𝑘=1

log2 (1 + SIR𝑘)

]︃
= |𝐴D| × 𝑅̄𝐷2𝐷 = 𝜆̃𝜋𝑅2

C × 𝑅̄𝐷2𝐷. (4.7)

4.1.3 D2D Power Control Threshold for DPPC

From the ergodic sum rate of D2D links, we optimize the D2D PC threshold

Γmin by maximizing the derived transmission capacity of D2D links, which is

given as

ℛ(𝐷)
𝑠 (𝛽𝑘) ≈ 𝑞𝜆𝒫tx𝜋𝑅

2
C log2(1+𝛽)

1+

(︃
𝛽𝑘

𝜌0
(𝜚rx(1 + 𝜀))

)︃2/𝛼(︂
512𝑅C

45𝜋2

)︂−2
× exp

(︂
− 𝜋𝜆̃𝛽

2/𝛼
𝑘

sinc(2/𝛼)E
[︁
𝜌
2/𝛼
𝑘

]︁
(𝜚rx(1 + 𝜀))

−2/𝛼

)︂

≈ 𝜆̃𝜋𝑅2
C log2(1+𝛽𝑘)

1+𝜅𝛽
2/𝛼
𝑘

exp

(︃
−

𝜋𝜆̃𝛽
2/𝛼
𝑘

sinc(2/𝛼)
𝑅2

D

2

)︃
,

(4.8)
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where 𝜅 =
(︁

𝜌0
(𝜚rx(1+𝜀))

)︁2/𝛼 (︀
512𝑅
45𝜋2

)︀−2
and 𝜆̃ = 𝑞𝜆𝒫tx. By solving the following

optimization problem, we can compute the new optimal transmission probability:

maximize ℛ(𝐷)
𝑠 (𝛽)

subject to 0 ≥ 𝒫tx ≥ 1

The optimal solution of 𝒫tx can be obtained by the 1𝑠𝑡 order optimality solution,

since the objective function has one optimum point. The first order derivative

yields:

𝑑ℛ(𝐷)
𝑠 (𝛽𝑘)
𝑑𝒫tx

= 1− 𝜋𝑞𝜆𝛽
2/𝛼
𝑘

𝑅2
D

2
sinc(2/𝛼)

𝒫tx = 0. (4.9)

The second derivative of ℛ(𝐷)
𝑠 (𝛽𝑘) is applied to test the concavity at 𝒫tx, which

is given as

𝑑2ℛ(𝐷)
𝑠 (𝛽𝑘)

𝑑𝒫tx
2 = −𝜋𝑞𝜆𝛽

2/𝛼
𝑘

𝑅2
D

2
sinc(2/𝛼)

< 0 for 𝛼 ≥ 2. (4.10)

Thus,ℛ(𝐷)
𝑠 (𝛽𝑘) is maximum at 𝒫tx = 2sinc(2/𝛼)

𝜋𝑞𝜆𝛽
2/𝛼
𝑘 𝑅2

D

. However, to satisfy the conditions

of 𝒫tx ∈ {0, 1}, we have 𝒫⋆
tx = min

{︁
2sinc(2/𝛼)

𝜋𝑞𝜆𝛽
2/𝛼
𝑘 𝑅2

D

, 1
}︁
. Using (4.2) where 𝒫tx =

exp (−Γmin E[𝑑𝛼𝑘,𝑘]), then the optimal threshold Γ⋆
min can be obtained as

Γ⋆
min = − ln (𝒫⋆

tx)
2 + 𝛼

2
𝑅−𝛼

D (4.11)

Knowing the solution 𝒫⋆
tx, the approximated transmission capacity in (4.8)

can be rewritten as

ℛ(𝐷)
𝑠 (𝛽) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜆𝜋𝑅2

C log2(1 + 𝛽𝑘)

1 + 𝜅𝛽
2/𝛼
𝑘

exp

(︃
−
𝜋𝑞𝜆𝛽

2/𝛼
𝑘 𝑅2

D

2sinc(2/𝛼)

)︃
for 𝛽𝑘 ≤ 𝛽𝑘,

2sinc(2/𝛼)𝑅2
C log2(1 + 𝛽𝑘)

𝛽
2/𝛼
𝑘 𝑅2

D(1 + 𝜅𝛽2/𝛼) exp (1)
for 𝛽𝑘 > 𝛽𝑘,

(4.12)

where 𝛽𝑘 =
[︁
2sinc(2/𝛼)

𝜋𝑞𝜆𝑅2
D

]︁𝛼/2
.

The transmission capacity of the D2D links depends on the relationship
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between the minimum SINR value 𝛽𝑘 and the network parameters: path-loss

exponent 𝛼, the density of the D2D links 𝑞𝜆, and the maximum allowable distance

between the D2D pairs 𝑅D. When 𝛽𝑘 < 𝛽𝑘, all D2D transmitters are scheduled;

therefore no admission control is applied. However, when 𝛽𝑘 ≥ 𝛽𝑘, the D2D

links are scheduled with transmit probability 𝒫⋆
tx, which mitigates the inter-D2D

interference since the transmission capacity no longer depends on the density of

the nodes 𝜆.

By integrating the transmission capacity in (4.12) with respect to 𝛽, the sum

rate of D2D links is expressed as follows

ℛ(𝐷)
𝑠 ≈

∫︁ 𝛽𝑘

0

𝑞𝜆𝜋𝑅2
C

(1 + 𝑥)(1 + 𝜅𝑥2/𝛼)
exp

(︂
−𝜋𝑞𝜆𝑥2/𝛼𝑅2

D

2sinc(2/𝛼)

)︂
d𝑥

+

∫︁ ∞

𝛽𝑘

2sinc(2/𝛼)𝑅2
C

(𝑥2/𝛼𝑅2
D)(1 + 𝑥)(1 + 𝜅𝑥2/𝛼)

exp (−1)d𝑥.
(4.13)

The DPPC scheme is summarized in the first part of the pseudo-code in Algorithm 1.

Algorithm 1 Static Distributed Power Control
1: if D2D TX 𝑘 is unable to acquire 𝑑0,𝑘 then

2: ◁ Apply DPPC scheme

3: Calculate Γmin that maximizes the D2D sum rate ℛ(𝐷)
𝑠 (𝛽) according to (4.11)

4: if |ℎ𝑘,𝑘|2𝑑−𝛼
𝑘,𝑘 ≥ Γmin and 𝑑𝑘,𝑘 ≤ 𝑅D then

5: D2D candidates transmit in D2D mode

6: 𝜌𝑘 ← 𝜚rx𝑑
𝛼
𝑘,𝑘(1 + 𝜀) .

7: else 𝜌𝑘 ← 0

8: else

9: ◁ Apply EDPPC scheme

10: Set Γmin = 𝐺min

11: if |ℎ𝑘,𝑘|2𝑑−𝛼
𝑘,𝑘 ≥ Γmin and 𝑑𝑘,𝑘 ≤ 𝑅D then

12: D2D candidates transmit in D2D mode

13: 𝑈 ← 𝜚rx(1 + 𝜀), 𝑉 ← 𝜇𝜚rx(1 + 𝜀)
14: 𝜌𝑘 ← min{𝑈𝑑𝛼𝑘,𝑘, 𝑉 𝑑𝛼0,𝑘} .
15: else 𝜌𝑘 ← 0
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4.2 Proposed Extended Distance-based Path-loss

Power Control (EDPPC)

EDPPC is proposed as an extended DPPC scheme for link establishment

stage. We consider in this scheme an extra distance-based path-loss parameter

𝑑−𝛼
0,𝑘 , where 𝑑0,𝑘 is the distance between the eNB and the D2D 𝑘th TX, in order

to reduce the D2D interference at the eNB. This scheme works only if the D2D

users are able to obtain estimates of 𝑑0,𝑘 from the eNB.

We apply the same conditions as in DPPC in (4.1), where the 𝑘th D2D TX

can only use the transmit power 𝜌𝑘 with transmit probability 𝒫tx for favorable

channel conditions. However, in this PC scheme, Γmin = 𝐺min is a static value

that is chosen by the eNB and broadcasted to the D2D transmitters.

The EDPPC scheme works as follows: each D2D TX selects its transmit power

based on the distance-based path-loss parameters 𝑑−𝛼
𝑘,𝑘 and 𝑑−𝛼

0,𝑘 . The role of the

additional parameter 𝑑−𝛼
0,𝑘 is to suppress interference even more at the eNB. Let

𝑈 = 𝜚rx(1 + 𝜀) and 𝑉 = 𝜇𝜚rx(1 + 𝜀), where 𝜇 is a PC parameter with small value

chosen so that the D2D transmitter does not cause excessive interference to the

eNB and to other D2D UEs in the same cell, and 𝜀 is an estimation error margin

that offsets any inaccuracy in estimating the path-loss parameters 𝑑𝛼𝑘,𝑘 and 𝑑𝛼0,𝑘.

Then, the proposed power allocation for the D2D link is based on the following:

𝜌𝑘 =

⎧⎪⎨⎪⎩ min{𝑈𝑑𝛼𝑘,𝑘, 𝑉 𝑑𝛼0,𝑘} with 𝒫tx

0 with 1− 𝒫tx,
(4.14)

Due to the nature of the EDPPC scheme, along with the random locations

of D2D users, the transmit powers and the SINRs experienced by the receivers

become also random. Therefore, we derive 𝛼/2th moments of the transmit power
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𝜌𝑘 so that the cellular and D2D coverage probabilities can be characterized

accordingly.

4.2.1 Analysis of Power Moments

The D2D TX and the corresponding D2D RX are assumed to be uniformly

distributed; therefore, the distance 𝑑0,𝑘 of the D2D interfering link with the eNB

and the distance 𝑑𝑘,𝑘 of the direct D2D link are uniformly distributed in circles

with radii 𝑅C and 𝑅D, respectively.

Theorem 1. The expected value of the minimum of two random variables 𝐴,𝐵 ∈

Ω→ R is E[min(𝐴,𝐵)] = E[𝐴] + E[𝐵]− E[max(𝐴,𝐵)].

Proof. See Appendix A.4.

Lemma 2. The expected value of the maximum of two random variables 𝐴,𝐵 ∈

Ω→ R with pdfs 𝑓𝐴(𝑎), 𝑓𝐵(𝑏) and cdfs 𝐹𝐴(𝑎), 𝐹𝐵(𝑏), respectively, is

E[max(𝐴,𝐵)] =

∫︁ ∞

−∞
𝑎𝑓𝐴(𝑎)𝐹𝐵(𝑎)𝑑𝑎 +

∫︁ ∞

−∞
𝑏𝑓𝐵(𝑏)𝐹𝐴(𝑏)𝑑𝑏. (4.15)

Proof. See Appendix A.5.

Corollary 2. Using the distribution functions of 𝑑𝑘,𝑘 and 𝑑0,𝑘, the moments of

the transmit power 𝜌𝑘 are given by

E𝑑𝑘,𝑘

[︁
𝜌
2/𝛼
𝑘

]︁
=

⎧⎪⎨⎪⎩
𝑅2

C𝑉
2/𝛼

2
− 𝑅4

C𝑉
4/𝛼

6𝑅2
D𝑈2/𝛼 if𝑅2

D𝑈
2/𝛼 > 𝑅2

C𝑉
2/𝛼

𝑅2
D𝑈2/𝛼

2
− 𝑅4

D𝑈4/𝛼

6𝑅2
C𝑉

2/𝛼 if𝑅2
D𝑈

2/𝛼 ≤ 𝑅2
C𝑉

2/𝛼.
(4.16)

Proof. See Appendix A.6.

Under this power control scheme, it is noted that: 1) D2D UEs closer to the

serving eNB (where 𝑑0,𝑘 < 𝑑𝑘,𝑘) normally cause a stronger uplink interference and
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thus their transmit powers are reduced, 2) D2D UEs closer to the cell edge can

transmit at a higher power since their interference to the uplink cellular UE is

dropped due to path-loss, and 3) D2D pairs with close proximity will be allocated

less power than D2D pairs that are far apart.

The EDPPC scheme is summarized in the second part of Algorithm 1.

Cellular Coverage Probability for EDPPC: By substituting E𝑑𝑘,𝑘

[︁
𝜌
2/𝛼
𝑘

]︁
obtained

in (4.16) into the derived expressions (3.11), the cellular coverage probability for

EDPPC can be obtained.

D2D Coverage Probability for EDPPC: Using the same methodolgy as in

Theorem 1, for 𝜌𝑘 = min{𝑈𝑑𝛼𝑘,𝑘, 𝑉 𝑑𝛼0,𝑘}, and using the moments of 𝜌𝑘 in (4.16)

and the pdf of 𝑑𝑘,𝑘 and 𝑑0,𝑘, the D2D coverage probability in (3.14) becomes

𝒫cov,D(𝛽𝑘) ≈ 𝑒−𝜃𝑘(𝜚rx(1+𝜀))−2/𝛼

1+

(︂
𝛽𝑘

𝜌0
𝜚rx(1+𝜀)

)︂2/𝛼

(512𝑅C/(45𝜋2))−2

∫︁ 𝜇1/𝛼𝑅C

0

(︂∫︁ 𝑥

0

2𝑦
𝑅2

D
𝑑𝑦

)︂
2𝜇−2/𝛼𝑥

𝑅2
C

𝑑𝑥 +

∫︁ 𝑅D

0

⎛⎝∫︁ 𝑦

0

exp

(︂
−𝜃𝑘(𝑥−𝛼𝑦𝛼(𝜚rx(1+𝜀))−1)

2/𝛼
)︂

1+

(︂
𝛽𝑘

𝜌0
𝑥𝛼𝑦−𝛼(𝜚rx(1+𝜀))

)︂2/𝛼

(512𝑅C/(45𝜋2))−2

2𝜇−2/𝛼𝑥
𝑅2

C
𝑑𝑥

⎞⎠ 2𝑦
𝑅2

D
𝑑𝑦.

(4.17)

To validate our analysis for DPPC and EDPPC, we compare the derived

analytical expressions with their corresponding simulated results for 𝜆 ∈ {2 ×

10−5, 5× 10−5}, 𝜆̃ = 0.5𝜆, 𝑀 = 2, 𝜇 = 0.0005, 𝜀 = 0.5, and 𝛼 = 4. In Fig. 4.1(a)

and Fig. 4.1(b), we validate the correctness of the analytical expressions for the

cellular coverage probability of (3.11) and D2D coverage probability of (4.5)

and (4.17), while using the derived expressions of E[𝜌
2/𝛼
𝑘 ] for DPPC and EDPPC

in (4.3) and (4.16), respectively. As shown in the plots, the curves of the proposed

DPPC and EDPPC schemes match well with simulated results over the entire

range of 𝛽.
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Figure 4.1: Analytical vs. simulated coverage probability for cellular and D2D
users using (a) DPPC, and (b) EDPPC scheme.
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4.3 Proposed Soft Dropping Distance-based Power

Control (SDDPC)

The PC schemes proposed earlier provide a static power allocation where

varying channel quality during D2D transmissions is not taken into consideration.

An adaptive PC with variable target SINR would be an attractive approach to

guard cellular and D2D communications against mutual interference and maintain

good link quality. We propose a soft dropping distance-based PC (SDDPC)

scheme that gradually decreases the target SINR as the required transmit power

increases. This increases the probability of finding a feasible solution for the PC

problem in which the target SINR values for all co-channel links can be achieved.

Hence, links with bad quality, where the receiver is far from the transmitter and

requires higher power, would target lower SINR values. On the other hand, links

with better quality, where the receiver is near the transmitter and requires lower

power, would target higher SINR values.

In the SDDPC scheme, each UE iteratively varies its transmit power so that

a power vector 𝜌 for all UEs in the system is found such that the SINR𝑘 of the

𝑘th UE satisfies

SINR𝑘(𝐾 ′,𝜌) ≥ 𝛽𝑘(𝑑𝑘,𝑘),

where 𝛽𝑘(𝑑𝑘,𝑘) is the target SINR of the 𝑘th UE that varies according to the

distance between the D2D pairs 𝑑𝑘,𝑘. The SDDPC scheme uses a target SINR

that varies between a maximum value 𝛽max and a minimum 𝛽min as the distance

between the D2D pairs varies between 𝑅min,D and a maximum value 𝑅D, while

satisfying a power constraint of 𝑃min,D ≤ 𝜌𝑘 ≤ 𝑃max,D.
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The target SINR 𝛽𝑘(𝑑𝑘,𝑘) of the 𝑘th D2D UE at TTI (𝑡) is given according to

𝛽𝑘(𝑑𝑘,𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝛽max if 𝑑
(𝑡)
𝑘,𝑘 ≤ 𝑅min,D

𝛽max

(︃
𝑑
(𝑡)
𝑘,𝑘

𝑅min,D

)︃𝜐

if𝑅min,D < 𝑑
(𝑡)
𝑘,𝑘 < 𝑅D

𝛽min if 𝑑
(𝑡)
𝑘,𝑘 ≥ 𝑅D,

(4.18)

where 𝜐 = log10(𝛽min/𝛽max)
log10(𝑅D/𝑅min,D)

.

Furthermore, the power of each D2D transmitter is updated with every transmission

as

𝜌
(𝑡+1)
𝑘 = 𝜌

(𝑡)
𝑘

(︃
𝛽𝑘(𝑑

(𝑡)
𝑘,𝑘)

SINR𝑘(𝐾,𝜌(𝑡))

)︃𝜂

, (4.19)

where 𝜂 is a control parameter given by (1 − 𝜐)−1 [53]. Finally, the achieved

power 𝜌
(𝑡+1)
𝑘 is constrained as follows

𝜌
(𝑡+1)
𝑘 = min{𝑃max,D,max{𝜌(𝑡+1)

𝑘 , 𝑃min,D}}.

The SDDPC scheme is a distributed approach and the target SINR (𝛽𝑘(𝑑𝑘,𝑘))

depends on the distance between the D2D pair; therefore, decision making is

done by the D2D users themselves. In particular, the D2D receivers can use the

sidelink control channel (e.g., Physical Sidelink Control Channel (PSCCH)) as

per the LTE technical specification in 3GPP TS 36.331 [119] to report back to the

corresponding D2D transmitter the received SINR value and the distance based

path-loss 𝑑𝑘,𝑘 whenever the received SINR is below the target value.

The SDDPC scheme is summarized in Algorithm 2.
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Algorithm 2 Dynamic Distributed Power Control
procedure SDDPC

𝜌
(𝑡)
𝑘 ← 𝑃min,D = 𝜚rx𝑅

𝛼
min,D(1 + 𝜀)

Calculate 𝛽𝑘(𝑑𝑘,𝑘) according to (4.18)
if SINR𝑘(𝐾,𝜌) < 𝛽𝑘(𝑑𝑘,𝑘) then

LOOP: While SINR𝑘(𝐾,𝜌) < 𝛽𝑘(𝑑𝑘,𝑘) and 𝜌
(𝑡)
𝑘 ̸= 𝑃max,D do

𝜌
(𝑡+1)
𝑘 ← 𝜌

(𝑡)
𝑘

(︃
𝛽𝑘(𝑑

(𝑡)
𝑘,𝑘)

SINR𝑘(𝐾,𝜌(𝑡))

)︃𝜂

𝜌
(𝑡+1)
𝑘 ← min{𝑃max,D,max{𝜌(𝑡+1)

𝑘 , 𝑃min,D}}
goto LOOP

else 𝜌
(𝑡+1)
𝑘 ← 𝜌

(𝑡)
𝑘

end

4.4 Discussion

On complexity and convergence of Algorithms 1 and 2, we note that Algorithm 1

is a non-iterative, low complexity algorithm 𝑂(1), which requires around 4 simple

computations. Convergence is not an issue since it is non-iterative. For Algorithm 2,

the power allocated to the D2D users is chosen iteratively and in a non-decreasing

manner. At each iteration, 𝜌𝑘 is increasing which increases SINR𝑘 until SINR𝑘

approaches the target 𝛽𝑘. Since the D2D TX has finite available power, the

SINR𝑘 achieved by the proposed algorithm is also finite. For these reasons and

following the same methodology as [53,120], the proposed algorithm is guaranteed

to converge to a finite SINR𝑘. The proof is similar to Theorem 3 in [53, 120]

and hence is omitted for brevity. Furthermore, figure 4.2 shows the number of

iterations needed in this algorithm that are very low. For instance, as𝑀 increases,

the number of D2D links 𝐾 ′, sharing the resources with one of the cellular

users, decreases; therefore the interference level caused by the D2D users will

decrease and hence increasing the SINR𝑘. This will cause Algorithm 2 (SDDPC)

to converge faster (for 𝑀 = 3, it requires an average of 3 iterations to converge).

Moreover, Algorithms 1 and 2 may not necessarily converge to the global
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Figure 4.2: Number of iterations for the SDDPC scheme for 𝜆 = 5 × 10−5 and
different 𝑀 channel allocations.

optimal solutions. The development of global optimal power allocation is otherwise

done in a centralized manner at the base station. However, it would require

excessive signaling overhead in which the computational complexity grows exponentially

with 𝐾 [1, 2]. This excessive overhead is avoided in the distributed case, with

graceful degradation in performance.

Furthermore, we note that using the two proposed static distributed PC

schemes for link establishment, the allocated power remains constant over the

resource blocks since we apply equal power allocation to all the assigned resource

blocks. On the other hand, for link maintenance, SDDPC compensates the

measured SINR at the receiver with a variable target SINR. The power allocated

per PRB of each D2D UE is updated every transmission as per (4.19).
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In order to realize the proposed PC schemes, each D2D transmitter needs to

have knowledge of: 1) the distance based path-loss parameters 𝑑𝛼𝑘,𝑘 and 𝑑𝛼0,𝑘 in

order to allocate power, 2) the target SINR 𝛽, 3) the density of the D2D links 𝑞𝜆,

and (4) CSI of the direct link. Knowledge of distance based path-loss 𝑑𝛼𝑘,𝑘 and 𝛽

can be acquired through feedback from the corresponding D2D receiver. During

D2D link establishment [10], the density of the D2D links (which is the average

number of active D2D links per unit area) as well as 𝑑𝛼0,𝑘 can be estimated at the

eNB. The D2D transmitters acquire the density 𝑞𝜆 when the eNB broadcasts it

using the downlink control channel, and acquire 𝑑𝛼0,𝑘 through feedback from the

eNB.

All D2D pairs can use the sidelink channels (Physical Sidelink Broadcast

Channel (PSBCH) and PSCCH) [119] to transmit reference signals to enable

D2D receivers to perform measurements and report them back to the eNB or to

the corresponding D2D transmitter. Each D2D receiver can reliably estimate the

distance based path-loss parameters using these signals by averaging the effects

of fading over multiple resource blocks.

The eNB can also estimate distances through the location updates defined

in 3GPP TS 23.303 [121], and the path-loss exponent can be estimated as per

[122] through defining path-loss exponents based on the region of the D2D pairs

location. The UE’s location information exchanged is expressed in shapes as

defined in 3GPP TS 23.032 [123] as universal geographical area description (GAD).

4.5 Simulation Results

In this section, we provide numerical results for the D2D underlaid cellular

network. First, we show how the estimation error margin (𝜀) and the PC control

parameter (𝜇) for DPPC and EDPPC affect the coverage probability for the
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Table 4.1: Simulation Parameters
Parameter Value
Cell radius (𝑅C) 500 m
Max. D2D link range (𝑅D) 50 m
Min. D2D link range (𝑅min,D) 5 m
D2D link density (𝜆) 2× 10−5 and 5× 10−5

Average # D2D links (𝐾) E [𝐾] = 𝜋𝜆𝑅2
C ∈ {15, 39}

Path-loss exponent (𝛼) 4
Target SINR threshold (𝛽) varies from −18 dB to 18 dB
Max. TX power of cellular user [2] 𝑃max,C = 100 mW
Max. TX power of D2D user [1] 𝑃max,D = 0.1 mW
Min. TX power of D2D user 𝑃min,D = 0.2𝜇W
Estimation margin 𝜀 0.5
Channel quality threshold for EDPPC 𝐺min −40 dbm
PC parameter 𝜇 for EDPPC 0.0005
Receiver sensitivity 𝜚rx 𝜚rx = 𝑃max,D𝑅D

−𝛼

Noise variance (𝜎2) −112.4 dBm
Monte-Carlo Simulations 1000
TTI 1 ms

cellular and the D2D links. Then, we show the performance gains of using the

proposed CA and PC schemes (compared to the on/off PC in [1]) in terms of

coverage probability, spectral and energy efficiency.

4.5.1 Simulation Setup

Figure 4.5.1 shows a snap shot depicting the geometry of a typical cell. The

eNB is located at the center position (0, 0) and the uplink users are uniformly

located within a radius 𝑅C. The D2D transmitters are located according to a

PPP distribution with 𝜆 ∈ {2× 10−5, 5× 10−5} in a ball centered at the eNB and

radius 𝑅C + 250 m. The system parameters used throughout the experimental

simulations are summarized in Table 4.1. Moreover, the transmit power of the

cellular user is set as 𝜌0 = 𝑃max,C.
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4.5.2 Coverage Probability for DPPC and EDPPC with
Variable Parameters

In a dense D2D link deployment scenario, the average number of D2D links

in the cell is E [𝐾] = 39 and the average number of D2D links sharing resources

with one of the two cellular users is E [𝐾 ′] = 20. For the case of variable 𝜀 for

both DPPC and EDPPC, we plot the cellular and D2D coverage probability in

Figs. 4.4(a) and 4.4(b). As shown in the figures, as the error margin varies from

0.1 to 0.9 (𝜇 = 0.0005), the cellular coverage probability decreases while the D2D

coverage probability increases. D2D users allocate more power to enhance the

D2D link, thus causing more interference to the cellular users. In addition, it is

noted in Fig. 4.4(a) for DPPC that no D2D link is dropped when 𝛽 < 10 dB,

since the transmit probability 𝒫tx = min
{︁

2sinc( 2/𝛼 )

𝜋𝑞𝜆 𝛽2/𝛼 𝑅2
D
, 1
}︁

= 1. However, when

𝛽 > 10 dB, the transmit probability is activated where 𝒫tx ̸= 1, and some D2D

links are dropped thus reducing the D2D interference and enhancing the link

coverage for D2D and cellular transmitters.

In Fig. 4.4(c), we vary the control parameter 𝜇 for 𝜀 = 0.5 using the EDPPC

scheme. As 𝜇 decreases from 0.005 down to 0.0001, the cellular coverage probability

increases and D2D coverage probability decreases. Hence D2D links are dropped

according to 𝜇 so that they do not cause excessive interference to cellular users.

Furthermore, the remaining D2D users will allocate less power, thus the interfer-

ence at the cellular users and at the other D2D users will be even more diminished.

Therefore, the proposed scheme can effectively protect cellular users from interfer-

ence caused by the D2D users.
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4.5.3 Cellular Coverage Probability for all PC schemes

In Figs. 4.5(a) and 4.5(b), we plot the coverage probability of the cellular

links using our proposed schemes for two scenarios where the D2D links share

the resources with one and two cellular users in dense and sparse networks. We

also compare the results with that of 1) the on/off PC scheme in [1], which are

the same results as in [2] for the best case scenario with zero channel uncertainty,

and 2) the on/off PC scheme in [2] with channel uncertainty factor of 0.5. It

can be seen that all the proposed schemes outperform the scheme in [1, 2]. In

particular for the case of 2 CUEs, SDDPC increases the coverage probability

by more than 40% (45%) in dense (sparse) networks compared to [1, 2] for the

entire range of 𝛽0. The EDPPC scheme performs better than DPPC due to the

extra 𝑑−𝛼
0,𝑘 parameter that further reduces the interference at the eNB. However,

SDDPC outperforms the other PC schemes as it protects the cellular links using

the adaptive approach.

As expected, the cellular coverage probability increases when D2D users share

resources with multiple cellular users. The reason is that a smaller number of

D2D links share the same resources with a particular CUE, which results in a

reduction in the interference caused by the D2D transmissions.

In addition, one can note that the centralized power control [2] achieves nearly

perfect cellular user coverage probability performance in the low target SINR

values, at high cost of system complexity as discussed in Section. 4.4.

4.5.4 D2D Coverage Probability for all PC schemes

Figures 4.6(a) and 4.6(b) show the coverage probability of D2D links using the

proposed PC schemes in dense and sparse network deployments. As shown, all

proposed schemes outperform the schemes in [1, 2]. On one hand, the coverage
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probability for SDDPC increases by up to 60% (50%) for the dense (sparse)

scenario. On the other hand, DPPC and EDPPC have approximately similar

performance where the coverage probability increases by 40% (30%). However,

SDDPC outperforms the other PC schemes, since the D2D links set variable

target SINRs. For instance, links with good quality have high SINR target, while

links with low quality have low SINR target.

Moreover, when D2D users share resources with more than one cellular user,

the D2D coverage probability using our proposed PC schemes is significantly

enhanced as the interference caused by the D2D transmission on other D2D users

is reduced.

In general, the D2D coverage probability performance decreases in the dense

scenario; however, the total number of successful D2D transmissions is larger

than that of the sparse D2D link deployment scenario. For instance, when the

target SINR is 0 dB, the total number of successful D2D transmissions in both

sparse and dense scenarios is |𝐴D|sparse = E
[︀
𝐾𝒫cov,D(𝛽𝑘)

]︀
= 15 × 0.9 ≈ 13 and

|𝐴D|dense = 39× 0.88 ≈ 34, respectively, using the proposed SDDPC scheme and

resources are shared with 2 CUEs. The corresponding numbers of successful D2D

transmissions from [1] are |𝐴D|sparse = 15×0.58 ≈ 8 and |𝐴D|dense = 39×0.4 ≈ 15,

respectively. Therefore, a significant increase in the number of the D2D links is

attained using the proposed SDDPC scheme.

In addition, one can note that the centralized power control [2] (with high

signaling overhead and complexity) does not perfrom as well for the D2D case,

since this approach works on maximizing the SINR of the uplink user and allows

less D2D links to access the network through the admission control. However,

with less complexity, our proposed schemes outperform the centralized approach.
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4.5.5 Coverage Probability with Variable Channel Allocation
parameter (𝑀)

Figures 4.7(a) and 4.7(b) show the coverage probability of cellular and D2D

links using the proposed PC schemes in dense network while varying the channel

allocation parameter 𝑀 . Upon increasing 𝑀 , the coverage probability for the

D2D and cellular users is enhancing, since a smaller number of D2D users (which

share the same resources) will generate interference. Moreover, we have considered

the maximum allocation case where 𝑀 = 𝐾 in which one cellular uplink will

share the resources with only one D2D link and E[𝐾 ′] = E[𝐾]
𝑀

= 1. In this

case, the uplink signal will observe interfernce from only the farthest D2D user,

and the D2D link will observe the interference from only the farthest cellular

uplink user. Thus, the coverage probability for the D2D and the cellular link

is greatly enhanced. Furthermore, we compare our results with the case of no

power control applied at the D2D links where 𝜌𝑘 = 𝑃max,D and, as expected,

the coverage probabilities are drastically affected (decreased by more than 20%);

since the D2D-interference is overwhelming the receivers (Base station and the

D2D receivers). Therefore, our proposed channel allocation and power control

schemes are effective interference mitigation methods in order to guarantee the

QoS of the cellular uplinks and D2D links.

4.5.6 Spectral and Power Efficiency

Figure 4.8 shows the spectral and power efficiency of the D2D and cellular

system when applying the proposed PC schemes in a dense deployment scenario,

where resources are shared with one, two, and three cellular users. The spectral

and power efficiency are defined as follows: 1) Spectral efficiency (SE) is the

sum rate ℛ(𝐷)
𝑠 for all D2D links in bps/Hz/cell as defined in (3.7), and 2) Power
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efficiency (PE) is given by the ratio of the D2D spectral efficiency achieved over

the average transmit power of the D2D links in bps/Hz/cell/W. The figure

shows that SDDPC is spectrally and power efficient since more D2D links are

able to achieve higher SINR values and less power is allocated for the D2D links.

For the case of static PC schemes, DPPC is more spectrally efficient because it

maximizes the D2D sum rate. On the other hand EDPPC is more power efficient

than DPPC, since less power is allocated. In addition, as expected, when sharing

resources with more cellular users, the spectral efficiency of the system decreases

(by 15% as shown); however, the coverage probabilities (for cellular and D2D)

increase because the interference level is reduced, as shown in Fig. 4.5 and Fig. 4.7.

In addition, when considering 𝑀 =2 the performance is efficient in the sense

that it gives a compromise between coverage, spectral efficiency, and complexity.

The eNB performs only one comparison for each active D2D (𝑑𝑘,𝑐1 > 𝑑𝑘,𝑐2).

However, when 𝑀 is further increased, the spectral efficiency for the EDDPC

becomes lower than that in [1] and the complexity increases.

A trade-off exists between spectral efficiency, power efficiency, and coverage

prob-ability. If it is desired for the cellular and D2D link to be of high quality,

then CA should be applied with D2D users sharing resources with more than

one cellular user. However, if it is required that the D2D communications to be

power efficient and not cause too much interference on the uplink, then EDPPC

has an advantage over the DPPC. Otherwise, if spectral efficiency is a priority,

then DPPC performs best, particularly when D2D users share resources with one

cellular user. Finally, SDDPC proves most adequate for link maintenance since it

is both spectrally and power efficient, and it maintains the link quality for both

D2D and cellular users.

56



4.6 Conclusion

In this work, a random network model for a D2D underlaid cellular system

based on stochastic geometry has been proposed. Using this modeling approach,

it is possible to derive closed-form analytical expressions for the coverage probabilities

and ergodic sum-rates, which give insight into how the various network parameters

interact and affect link performance and quality. Unlike previous work, it is shown

that a channel allocation scheme that allows D2D links to share resources with

more than just one cellular user has merit. New power control schemes targeted

for D2D link establishment and link maintenance have been shown to adequately

control interference levels under various static and dynamic conditions, using

distance-based path-loss parameters (with error margin), varying target SINR,

and local CSI. It has been shown through experimental simulations that network

performance in terms of coverage probability and spectral efficiency is improved

by activating more underlaid D2D links while maintaining the quality of cellular

links, and at the same time enhancing power efficiency.
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Figure 4.3: A snapshot of link geometry for a D2D underlaid cellular network
assuming a sparse D2D link deployment scenario (i,e., 𝜆 = 2× 10−5). D2D links
in circles share resources with CUE 𝑐1, while D2D links in dashed circles share
resources with CUE 𝑐2.
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Figure 4.4: (a) Coverage probability for cellular and D2D users where resources
are shared with 2 CUEs, using the proposed DPPC with variable 𝜀. (b) Same
as (a) but using the proposed EDPPC scheme. (c) Using the proposed EDPPC
with variable 𝜇.
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Figure 4.5: Coverage probability for cellular using all the proposed PC schemes
in this work vs. that of [1, 2]: (a) For cellular users in dense network scenario,
(b) for cellular users in sparse network scenario.
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Figure 4.6: Coverage probability for D2D users using all the proposed PC schemes
in this work vs. that of [1, 2]: (a) for D2D users in dense network scenario, and
(b) for D2D users in sparse network scenario.
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Figure 4.7: Coverage probability for: (a) cellular, and (b) D2D users, for 𝑀 =
1,𝑀 = 2, and 𝑀 = 𝐾.
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Chapter 5

Clustering and Power Control for

NOMA-MIMO systems

In this Chapter, we study the downlink of large MIMO-NOMA systems when

the transmitters and receivers are assumed to have a large number of antennas.

Furthermore, we propose a joint clustering and power control mechanism in which

randomly distributed users in a cell are clustered and allocated different power

depending on their distance from a BS while users in each cluster get served on

the same time and frequency resources. While beamforming and SIC ordering

are typically coupled, due to the fact that effective channel gains depend on

beamforming designs, in this work, we assume uniform precoding and focus on

detection. A family of QRD-based and WRD-based detectors, tailored for large

MIMO-NOMA are considerd. These detectors are extensions to reference sub-

space detectors, that were previously proposed [47] in the context of regular large

MIMO systems. Simulations demonstrate that the proposed schemes are near-

optimal and enable significant complexity reductions.
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5.1 System Model

We consider a single-cell multiuser MIMO-NOMA setting, as shown in Fig.

5.1. The coverage region is modeled as a circular disk 𝐶 with radius 𝑅C, centered

at the BS. We assume that the cellular users are divided into two groups. Users

in the first group are uniformly distributed in the cell-center disk 𝐶1, of radius

𝑅N, centered at the BS, while users in the second group are uniformly distributed

in the cell-edge disk 𝐶2, from 𝑅N to 𝑅C.

We assume the number of users in each group to be distributed by the

homogeneous Poisson point process (PPP) Φ1 with density 𝜆1 in 𝐶1, and Φ2

with density 𝜆2 in 𝐶2, where P[Φ𝑖 = 𝑞] = exp (−𝜆𝑖)
𝜆𝑞
𝑖

𝑞!
. The PPP assumption

corresponds to having the expected number of nodes per unit area equal to 𝜆𝑖,

while the nodes are uniformly distributed over the area of interest. Moreover, the

same number of users is assumed in both disks, 𝐶1 and 𝐶2, which is a Poisson

random variable 𝐾, with mean E[𝐾] = 𝜆1𝜋𝑅
2
N = 𝜆2𝜋𝑅

2
C − 𝜆2𝜋𝑅

2
N. Hence, the

total number of users in 𝐶 is 2× E[𝐾].

A BS with 𝑁 transmit antennas simultaneously services two users; user 1 with

𝑀1 antennas in the inner disk (𝐶1), and user 2 with 𝑀2 antennas in the outer

disk (𝐶2), in the same frequency and time slot, via power-domain division (SC).

The equivalent baseband input-output system relations are

y1 = H1x1 + H1x2 + n1 (5.1)

y2 = H2x1 + H2x2 + n2, (5.2)

where y1 ∈ 𝒞𝑀1×1 and y2 ∈ 𝒞𝑀2×1 are the received vectors at user 1 and user 2,

x1∈𝒞𝑁×1 and x2∈𝒞𝑁×1 are the transmitted symbol vectors such that E
[︀
x1x

𝐻
1

]︀
=

𝑝1I𝑁 and E
[︀
x2x

𝐻
2

]︀
= 𝑝2I𝑁 (the total power is constrained by the maximum
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Figure 5.1: Multi-user MIMO NOMA system model

transmit power 𝜌1 +𝜌2 ≤ 𝑃max

𝑁
), and n1∈𝒞𝑀1×1 and n2∈𝒞𝑀2×1 are the 𝒞𝒩 (0, 𝜎2

1)

and the 𝒞𝒩 (0, 𝜎2
2) noise vectors

(︀
E[n𝑖n

*
𝑖 ] = 𝜎2

𝑖 I𝑀𝑖

)︀
, respectively. H1 ∈ 𝒞𝑀1×𝑁

and H2 ∈𝒞𝑀2×𝑁 are the corresponding channel matrices, which are modeled as

a combination of large-scale and small scale fading. In particular, the channel

matrix from the BS to 𝑘th user is

H𝑘 =
G𝑘√︀
𝑑𝛼𝑐𝑘

, (5.3)

where G𝑘 denotes an 𝑀𝑘×𝑁 matrix whose elements represent Rayleigh fading

channel gains, and 𝑑𝛼𝑐𝑘 denotes the distance-dependent path-loss, with 𝑑𝑐𝑘 being

the distance from the BS to the 𝑘th user in the 𝑐th disk, and 𝛼 is the path-

loss exponent. Hence, the elements of H1 and H2 are distributed as 𝒞𝒩 (0, 𝜎2
H1

)

and 𝒞𝒩 (0, 𝜎2
H2

), respectively, with 𝜎H1 and 𝜎H2 denoting the distance-dependent

large scale fading coefficients.

NOMA is achieved by clustering users from the inner disk 𝐶1, with users
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from the outer disk 𝐶2, and assigning different power levels to the multiplexed

transmitted symbol vectors.

5.2 Proposed Joint Clustering and Power Control

In this section, we first propose a joint clustering and power control mechanism.

In a multi-user MIMO-NOMA setting, SC results in intra-cluster interference

(ICI). Maintaining efficient user clustering, however, facilitates ICI cancellation

via SIC. The SIC process distinguishes same-cluster users by the difference in

their power, and users are allocated power levels based on their corresponding

channel vector norms. Hence, an efficient clustering approach is to select two

users with significantly different channel vector norms, i.e., to couple a far user

from the BS, with a near user, in a single cluster. Motivated by this realization,

we propose a joint distance-based path-loss clustering and power control scheme

(JDCP).

With multi-user NOMA, SIC decoding is only required at the receiver of

the strong user. In the clustering phase, user 1 with better channel conditions is

considered as the strong user, and user 2 as the weak user, i.e., we have 𝜎2
H1
≥ 𝜎2

H2
,

which indicates that user 1 is a central user and user 2 is at cell-edge. Hence,

the SNR at user 1 is higher than that at user 2. Consequently, user 2 will be

allocated more power. In this case, user 2 will decode its own symbol x2 directly,

by treating the interference caused by x1 as unknown interference, while user 1

will apply SIC to cancel out symbol x2 and then decode its own symbol x1.

The clustering approach works as follows: First, the farthest user in disk 𝐶1

is grouped with the farthest user in disk 𝐶2. Then, the second farthest user in

𝐶1 is grouped with the second farthest user in 𝐶2, and so on. Hence, SIC can be
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applied efficiently, since more power is allocated to the weak user.

Following clustering, we propose a low-complexity power control (PC) mechanism,

that exploits the CSI of the cellular link, to minimize the interference between

NOMA pairs. The NOMA pairs select their transmit power based on channel

conditions, namely, the distance-based path-loss 𝑑−𝛼
𝑐𝑘 . The allocated power for

the 𝑘th close user (in 𝐶1), based on channel inversion, is given by

𝜌
(𝑘)
1 = 𝜚rx𝑑

𝛼
1𝑘, (5.4)

where 𝑑1𝑘 is the distance between the BS and the 𝑘th user equipment (UE) in 𝐶1,

𝛼 is the path-loss exponent, and 𝜌rx is the minimum required power for the UE

to recover a signal (also referred to as receiver sensitivity). The power allocated

to the 𝑘th far user in 𝐶2 is thus given by

𝜌
(𝑘)
2 = min{𝜇𝜚rx𝑑𝛼2𝑘,

𝑃max

𝑁
− 𝜌

(𝑘)
1 }, (5.5)

where 𝜇 is a NOMA PC parameter, 𝑑2𝑘 is the distance between the BS and the

𝑘th UE in 𝐶2, and 𝑃max is the maximum transmit power.

Note here that channel inversion only compensates for the large-scale path-

loss effects, and not for small-scale fading effects. Consequently, it is not required

in our proposed PC scheme to establish instantaneous CSI at the transmitter.

Moreover, the BS can estimate distances through location updates, as defined in

the 3GPP TS 23.032 [123] universal geographical area description (GAD). Furth-

ermore, this scheme is particularly suitable for SIC decoding, since it guarantees

allocating much more power to far users and much less power for close users.

This guarantees alluding the worst-case scenario of allocating equal power for

both users, which must be avoided in NOMA. The JDCP scheme is summarized
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Algorithm 3 Joint Distance-based Path-loss Clustering and Power Control
1: procedure JDCP

2: ◁ BS has the distance vectors d𝐶1 = [𝑑11, 𝑑12, ..., 𝑑1,𝐾 ]
and d𝐶2 = [𝑑21, 𝑑22, ..., 𝑑2,𝐾 ] of the users in 𝐶1 and 𝐶2, respectively.

3: ◁ Initialize index vectors: 𝐼1 = {1, 2, ...,𝐾} for users in 𝐶1

and 𝐼2 = {1, 2, ...,𝐾} for users in 𝐶2

4: ◁ Initialize 𝑘 = 1, 𝑃max, and 𝐿 = ∅
5: LOOP: While 𝐼1 ̸= ∅ and 𝐼2 ̸= ∅ do
6: Clustering:

7: Choose 𝑖1 = argmax
𝑘

[d𝐶1 ]𝑘

8: Choose 𝑖2 = argmax
𝑘

[d𝐶2 ]𝑘

9: Fix 𝐿← 𝐿 ∪ [𝑖1, 𝑖2]
10: Power Allocation:

11: 𝜌
(𝑘)
1 ← 𝜚rx{[d𝐶1 ]𝑖1}

𝛼

12: 𝜌
(𝑘)
2 ← min{𝜇𝜚rx{[d𝐶2 ]𝑖2}

𝛼, 𝑃max
𝑁 − 𝜌

(𝑘)
1 }

13: Save 𝐼1 ← 𝐼1 ∖ 𝑖1
14: Save 𝐼2 ← 𝐼2 ∖ 𝑖2
15: 𝑘 = 𝑘 + 1.
16: goto LOOP

17: end

in Algorithm 3.

5.2.1 Multi-User MIMO-NOMA Detection

Following JDCP, user 2 decodes its symbol vector x2 directly, by treating the

interference caused by x1 as unknown interference. This can be achieved by using

any of the detectors presented in [47]. The considered detectors build on three

QRD-based MIMO detectors, NC, CD, and LORD, as well as three WRD-based

MIMO detectors [47], punctured NC (PNC), punctured CD (PCD), and the sub-

space detector (SSD). Hence, the resultant formulations per data stream are a

simple extension to those in [47]. This concludes the operations at user 2, where

no SIC is required. Hence, the detection routine at user 2 is in fact regular MIMO

detection.

Nevertheless, SIC-based detection applies for user 1. First, the symbol vector
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Figure 5.2: BER performance of proposed detectors in the multi-user scenario
(dotted lines refer to the reference optimal power allocation scheme).

x2 is detected, while treating x1 as unknown interference (note that this stage

is required since we assume no communication between users, where each user

decodes its own information independently). Then, user 1 cancels the part of the

received signal that is caused by x2, and decodes x1 from the remainder of the

received signal:

y2 = y2 −H2x2 = H2x1 + n2. (5.6)
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5.3 Preliminary Simulation Results and Discussions

Figure 5.2 then shows the BER plots for the multi-user setting of Sec. 5.1,

where two users are accommodated per cluster. The system parameters that

were used for multi-user MIMO-NOMA simulations are summarized in Table

5.1. Three different detectors were tested NC, LORD, and SSD (from [47]).

The detectors were applied directly at user 2, and successively to detect both

symbol vectors at user 1. Four different scenarios were simulated, all of which

assume an equal number of antennas at the BS, as well as at the two users

(𝑁 =𝑀1 =𝑀2). The proposed JDCP scheme (solid curves) was compared with a

reference optimal power control scheme (dotted curves) [74], which formulates the

power allocation problem as an ergodic capacity maximization problem. Note,

however, that this PC scheme is of high complexity and of slow convergence,

since it employs a bisection search method. To the contrary, our joint clustering

and power control scheme is of low complexity, and it only relies on the distance-

based path-loss parameter for channel inversion. Unlike the optimal approach,

our proposed JDCP scheme guarantees allocating more power to the far user in

a cluster, which is suitable for SIC. Furthermore, our proposed scheme results in

lower power consumption on average, as we have 𝜌1+𝜌2 ≤ 𝑃max

𝑁
, whereas in the

optimal scheme, the transmission power is always 𝑃max, where 𝜌1+𝜌2 = 𝑃max

𝑁
.

Figures 5.2(a) to 5.2(d) show the results for systems with 4, 8, 16, and 32

antennas, respectively. Both, optimal power control and channel-inversion-based

power control achieved similar BER performances. Furthermore, at lower antenna

orders, the gap between LORD and SSD was found to be negligible. However,

for 16 and 32 antenna systems, SSD clearly outperformed LORD at a lower

complexity.
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Table 5.1: Simulation Parameters
Parameter Value
Cell radius (𝑅C) 500m
Radius of cell-center disk 𝐶1 (𝑅N) 150m
NOMA pairs density (𝜆1, 𝜆2) 2.1× 10−4, 2.1× 10−5

Average # NOMA pairs (𝐾) E [𝐾] = 𝜋𝜆1𝑅
2
N ∈ {15}

Path-loss exponent (𝛼) 4
Max. transmit power 𝑃max = 100mW ×𝑁
NOMA PC parameter 𝜇 10
Receiver sensitivity 𝜌rx −100 dBm
Monte-Carlo Simulations 1000

5.4 Conclusion

In this work, a large MIMO-NOMA system has been considered. A low comp-

lexity joint clustering and power control scheme has been proposed, that exploits

the distance-based path-loss parameter, to guarantee efficient SIC demodulation.

An architectural design has been presented, by using the detectors of lower comp-

lexity as building blocks in their more complex extensions, and the proposed

schemes have been shown to achieve significant computational savings.
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Chapter 6

Low-Resolution Massive MIMO

In this Chapter, we consider a massive MIMO system with low resolution

ADCs on each receive antenna. We propose a new linear MMSE-based detector

that incorporates the effects of coarse quantization in the ADC and the pilot-

based channel estimation error. We analytically derive the achievable rate, and

compare it against the capacity of a conventional MIMO system with higher order

modulation and near ML detection. By using 1-bit ADCs in massive MIMO, the

same achievable rate obtained as the conventional MIMO system can be attained

but with significantly less power consumption even with channel estimation error.

The corresponding results appeared in [48,49].

6.1 SystemModel and Proposed Detection Scheme

We consider a single-cell uplink (UL) system as depicted in Figs. 6.2 and 6.1,

where 𝐾 single-antenna users are served by a BS that is equipped with an array

of 𝑁 ≫ 𝐾 antennas. The sub-channels between each transmit-receive antenna
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pair is modeled as a Rayleigh block-fading channel in which the channel stays

constant over the channel coherence time.

The discrete-time complex baseband received signal over all antennas prior to

quantization, is given as

y =
√
𝜌Hs+w, (6.1)

where y ∈ C𝑁 is the received vector, 𝜌 is the uplink SNR, H ∈ C𝑁×𝐾 is the

channel matrix between the 𝐾 users and the 𝑁 BS antennas, and s ∈ C𝐾 denotes

the channel input from all users. We assume that the channel gains [H]𝑛,𝑘 ∼

𝒞𝒩 (0, 1). Similarly, the entries [w]𝑛 of the additive white gaussian noise vector

w ∈ C𝑁 are 𝒞𝒩 (0, 1) distributed. Moreover, E
[︀
tr(ssH) ≤ 𝐾𝜌

]︀
in which the

average power constraint is satisfied, and tr{·} represents the trace of a matrix.

6.1.1 Quantization in the ADC

The in-phase and quadrature components of the received signal at each antenna

are quantized separately by an ADC of 𝑏-bit resolution. Following the notation

of [24], we define a set of 2𝑏+1 quantization thresholds 𝜁𝑏 ={𝜐0, · · · , 𝜐2𝑏} and a set

of 2𝑏 quantization labels ℒ𝑏 ={ℓ0, · · · , ℓ2𝑏−1} where ℓ𝑖∈(𝜐𝑖, 𝜐𝑖+1]. Let ℬ𝑏 =ℒ𝑏×ℒ𝑏.

The 𝑏-bit quantization is modeled by the function 𝑄𝑏(·) : C𝑁 → ℬ𝑁
𝑏 that maps

the received complex vector y with entries 𝑦𝑛 to the quantized output r with

entries 𝑟𝑛 = ℓ𝑘+𝑗ℓ𝑙 if and only if ℜ{𝑦𝑛}∈ [𝜐𝑘, 𝜐𝑘+1) and ℑ{𝑦𝑛}∈ [𝜐𝑙, 𝜐𝑙+1). ℜ{·}

and ℑ{·} denote the real and imaginary parts of a complex scalar, respectively.

For simplicity, we consider the ADCs as symmetric uniform quantizers with

step size ∆. We further assume that the output of the quantizer is scaled by

a constant 𝜗 ∈ R as in [24], to ensure that the variance of each entry of the

quantized output r is 𝐾𝜌 + 1. The entries ℓ𝑖 of the quantization labels ℒ are
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Figure 6.1: Uplink quantized massive MIMO system model

defined as

ℓ𝑖 = 𝜗∆

(︂
𝑖− 𝐿− 1

2

)︂
, 𝑖 = 0, . . . , 𝐿− 1. (6.2)

where 𝜗 =

⎯⎸⎸⎷ 𝐾𝜌+1

2
𝐿−1∑︀
𝑖=0

ℓ2𝑖

(︃
Φ

(︃√︂
2𝜐2

𝑖+1
𝐾𝜌+1

)︃
−Φ

(︃√︂
2𝜐2

𝑖
𝐾𝜌+1

)︃)︃and Φ(𝑥) is the CDF of a standard

normal random variable.

Considering uniform quantizers, the quantization thresholds are given by 𝜐𝑖 =

∆
(︀
𝑖− 𝐿

2

)︀
, 𝑖 = 1, . . . , 𝐿−1, where the step size ∆ of the quantizers is chosen to

minimize the distortion between the quantized and unquantized signal and can

be found numerically (see e.g., [124] for details).

The 𝑏-bit quantized received signal can then be written as

r , 𝑄𝑏 (y) = 𝑄𝑏(
√
𝜌Hs+w) . (6.3)

In the 1-bit case (i.e., 𝑏 = 1), we can write the quantized received signal 𝑟𝑛 at

the 𝑛th antenna as follows:

𝑄1(𝑦𝑛) =

√︁
𝐾𝜌+1

2 (sgn(ℜ{𝑦𝑛}) + 𝑗sgn(ℑ{𝑦𝑛})) , (6.4)

where sgn(·) is the signum function defined as sgn(𝑥) = −1 if 𝑥 < 0 and sgn =
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Figure 6.2: Uplink 1-bit quantized massive MIMO system model

1 if 𝑥 ≥ 0, and the quantized signal 𝑄1(𝑦𝑛) is scaled such that its variance is

𝐾𝜌 + 1.

Bussgang decomposition for Gaussian inputs : The crosscorrelation of a Gaussian

signal before and after applying a non-linear operation (quantization) are equal

up to a constant [125]. When the input to the quantizer is Gaussian, Bussgang’s

theorem [125] can be used to decompose the quantized signal into a convenient

form. Using Theorem 1 in [24] and assuming y ∼ 𝒞𝒩 (0𝑁 ,Cy) whereCy ∈ C𝑁×𝑁 ,

the quantized vector r is linearly related to y through some diagonal matrix G𝑏

r = G𝑏y + d, (6.5)

where the excess quantization distortion d ∈ C𝑁 and y are uncorrelated. The

entries of the diagonal matrix G𝑏 =𝐺𝑏I𝑁 are real and given by

𝐺𝑏=
2𝑏−1∑︁
𝑖=0

ℓ𝑖√
𝜋(𝐾𝜌+1)

(︃
𝑒
−

𝜐2
𝑖

𝐾𝜌+1 − 𝑒
−

𝜐2
𝑖+1

𝐾𝜌+1

)︃
, (6.6)

and the covariance matrix of y satisfies Cy = (𝐾𝜌 + 1)I𝑁 .
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Both the Gaussian assumption and the diagonal structure of Cy = (𝐾𝜌+1)I𝑁

are accurate at low SNR or when the number of UEs is large [24]. Moreover,

due to the power normalization in (6.4), the covariance matrix Cr of r becomes

Cr = (𝐾𝜌 + 1)I𝑁 , and hence, the covariance matrix of the distortion d is Cd =

Cr −𝐺2
𝑏Cy = (1−𝐺2

𝑏) (𝐾𝜌 + 1) I𝑁 .

For the infinite-resolution case (𝑏 =∞), it can be deduced that 𝐺∞ = 1, and

that for the 1-bit-ADC case (𝑏 = 1), we have 𝐺1 =
√︀

2/𝜋, which is a well-known

result from [126] used to analyze the achievable rate with 1-bit ADCs.

6.1.2 Channel Estimation

In the channel estimation step, we assume that the coherence interval is

divided into two parts: one dedicated for training and the other for data transmission.

During the training phase, all 𝐾 users simultaneously transmit their (𝑃 ≥ 𝐾)

sized pilot sequences to the BS. All pilot sequences used by different users are

assumed to be pairwise orthogonal. Let Φ ∈ C𝐾×𝑃 denote the pilot matrix

transmitted from the 𝐾 users such that ΦΦH = 𝑃𝜌I𝐾 . Furthermore, let Y𝑝 =

HΦ + W𝑝 and R𝑏 = 𝑄𝑏(Yb), where Y𝑝,R𝑝 and W𝑝 ∈ C𝑁×𝑃 , denote the

unquantized pilot sequences, quantized pilots sequences received from the 𝐾

users at the BS during the training phase and the additive noise, respectively.

The linear MMSE channel estimator [24] is given by

Ĥ =
𝐺𝑏R𝑝Φ

H

𝐺2
𝑏𝑃𝜌+𝐺2

𝑏 + (1−𝐺2
𝑏)(𝐾𝜌+ 1)

. (6.7)

Let H = Ĥ + H̃ where H̃ represents the estimation error. The variance of the

channel estimate and of the estimation error are given by:
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𝜎̂2 =
𝐺2

𝑏𝑃𝜌

𝐺2
𝑏𝑃𝜌 + 𝐺2

𝑏 + (1−𝐺2
𝑏)(𝐾𝜌 + 1)

and

𝜎̃2 =
𝐺2

𝑏 + (1−𝐺2
𝑏)(𝐾𝜌 + 1)

𝐺2
𝑏𝑃𝜌 + 𝐺2

𝑏 + (1−𝐺2
𝑏)(𝐾𝜌 + 1)

.

.

For the unquantized case (𝑏 =∞, 𝐺∞ = 1), linear MMSE channel estimation

defaults back to its original form [127].

6.1.3 Data Detection

We consider the case when the BS employs an MMSE receiver. A soft estimate

𝑠𝑘 of the transmitted symbol 𝑠𝑘 from the 𝑘th user is obtained as 𝑠𝑘 = aH
𝑘 r, where

a𝑘 ∈ C𝑁 denotes the linear (MMSE) receive filter for the 𝑘th user. Using (6.5),

we obtain

𝑠𝑘 = aH
𝑘 (𝐺𝑏y + d) =

√
𝜌𝐺𝑏a

H
𝑘Hs + aH

𝑘n, (6.8)

where we have defined n = 𝐺𝑏w+d . Note that the noise n and the input vector

s are uncorrelated such that Cy = (𝐾𝜌 + 1)I𝑁 holds.

We employ an MMSE-based receiver while considering the 𝑏-quantization in

which the detector matrix A is given by

AH=
(︁
ĤHĤ+ 𝛽𝑏

𝐺2
𝑏𝜌
I𝐾

)︁−1
ĤH, (6.9)

where 𝛽𝑏 = 𝐺2
𝑏 + (1−𝐺2

𝑏)(𝐾𝜌 + 1) + 𝐾𝜌𝐺2
𝑏 𝜎̃

2 represents the variance of n that

accounts the additive noise, the quantization effect and the estimation error.
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Therefore, the 𝑘th column of A can be written as

a𝑘 =
(︁
ĤĤH + 𝛽𝑏

𝐺2
𝑏𝜌
I𝑁

)︁−1
ĥ𝑘 =

ϒ−1
𝑘 ĥ𝑘

ĥH
𝑘ϒ

−1
𝑘 ĥ𝑘 + 1

, (6.10)

where, as shown in [128] but with low resolution quantization,ϒ𝑘 ,
𝐾∑︀

𝑖=1,𝑖 ̸=𝑘

ĥ𝑖ĥ
H
𝑖 +

𝛽𝑏

𝐺2
𝑏𝜌
I𝑁 .

One can note that for the case of full resolution (𝑏 =∞, 𝐺∞ = 1), the detector

matrix A for the linear MMSE defaults back to its original form

AH=
(︁
ĤHĤ + 1

𝜌
I𝐾

)︁−1

ĤH. (6.11)

6.2 Analysis of Uplink Achievable Rate

We characterize the rate achievable in a quantized massive MIMO uplink

system for Gaussian inputs.

6.2.1 Sum-Rate Approximation for Gaussian Inputs

Furthermore, while the quantizer noise d is non-Gaussian, we can obtain a

lower bound on the achievable rate by making the worst-case assumption [24,28,

29,126,127,129,130] that in fact it is Gaussian with the same covariance matrix

in Cd = (1−𝐺2
𝑏) (𝐾𝜌 + 1) I𝑁 .

The paper [129] finds the worst additive noise for a communication channel

under a covariance constraint. As shown in [129], for low signal powers, the worst

additive noise is Gaussian with a covariance matrix in a convex set which depends

on the signal power. And as shown in [127], the worst uncorrelated additive noise,

wherein the noise is uncorrelated with the signal, is the Gaussian additive noise.
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Using the above findings and knowing that 𝑠𝑘 = a𝐻
𝑘 r =

√
𝜌𝐺𝑏a

𝐻
𝑘 Ĥs +

√
𝜌𝐺𝑏a

𝐻
𝑘 H̃s + a𝐻

𝑘 n, the achievable rate can be approximated by treating the

additive noise aH
𝑘n in (6.8) and the channel input as Gaussian random variables.

We then have the following general form for the achievable rate:

𝑅𝑘(𝜌) ≈ EĤ

⎡⎢⎢⎢⎣log2

⎛⎜⎜⎜⎝1 +
𝜌|aH

𝑘 ĥ𝑘|2

𝜌
𝐾∑︀
𝑗 ̸=𝑘

|aH
𝑘 ĥ𝑗|2 + 𝛽𝑏‖a𝑘‖2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (6.12)

where the terms in the denominator correspond to the interference, the estimation

error and the quantization distortion.

Achievable rate of the proposed MMSE-based detector

Using (6.10), the signal-to-interference-plus-noise ratio can be written SINRMMSE =

ĥH
𝑘ϒ

−1
𝑘 ĥ𝑘, and by applying some straight-forward linear algebraic calculations,

Ĥ𝐻
(︁

𝛽𝑏

𝐺2
𝑏𝜌
I𝑁 + ĤĤ𝐻

)︁−1

Ĥ =
(︁

𝛽𝑏

𝐺2
𝑏𝜌
I𝐾 + Ĥ𝐻Ĥ

)︁−1

Ĥ𝐻Ĥ

= I𝐾 −
(︂
I𝐾 +

𝐺2
𝑏𝜌

𝛽𝑏

Ĥ𝐻Ĥ

)︂−1

. (6.13)

We obtain the following approximation:

𝑅MMSE
𝑘 (𝜌) = EĤ

[︁
log2(1 + ĥ𝐻

𝑘 ϒ
−1
𝑘 ĥ𝑘)

]︁
= EĤ

⎡⎢⎣log2

⎛⎜⎝ 1

1−ĥ𝐻
𝑘

(︃
𝛽𝑏

𝐺2
𝑏𝜌

I𝑁+ĤĤ𝐻

)︃−1

ĥ𝑘

⎞⎟⎠
⎤⎥⎦

= EĤ

⎡⎢⎢⎣log2

⎛⎜⎜⎝ 1

1−

⎡⎣Ĥ𝐻

(︃
𝛽𝑏

𝐺2
𝑏𝜌

I𝑁+ĤĤ𝐻

)︃−1

Ĥ

⎤⎦
𝑘,𝑘

⎞⎟⎟⎠
⎤⎥⎥⎦
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= −EĤ

⎡⎣log2

[︃(︂
I𝐾 +

𝐺2
𝑏𝜌

𝛽𝑏

Ĥ𝐻Ĥ

)︂−1
]︃
𝑘,𝑘

⎤⎦ (6.14)

Using Jensen’s inequality, we obtain the following lower bound on the approximate

achievable uplink rate in (6.12):

𝑅MMSE
𝑘 (𝜌) ≥ 𝑅̃MMSE

𝑘 (𝜌) = log2

(︂
1 +

1

E[1/𝛾𝑘]

)︂
(6.15)

where 𝛾𝑘 = 1[︃(︂
I𝐾+

𝐺2
𝑏
𝜌

𝛽𝑏
ĤHĤ

)︂−1
]︃
𝑘,𝑘

− 1.

Using a similar methodology as in [131] while considering the 𝑏-bit quantization,

we approximate the exact distribution of 𝛾𝑘 with a Gamma distribution which

has an analytically tractable form. Hence, the PDF of 𝛾𝑘 is given by [132]:

𝑝𝛾𝑘(𝛾) =
𝛾𝛼𝑏−1𝑒−𝛾/𝜃𝑏

Γ(𝛼𝑏)𝜃𝑏
𝛼𝑏

(6.16)

where 𝛼𝑏 = (𝑁−𝐾+1+(𝐾−1)𝜇)2

𝑁−𝐾+1+(𝐾−1)𝜅 , 𝜃𝑏 = 𝑁−𝐾+1+(𝐾−1)𝜅
𝑁−𝐾+1+(𝐾−1)𝜇

𝐺2
𝑏𝜌𝜎̂

2

𝛽𝑏
, and Γ(·) is the Gamma

function. Moreover, 𝜇 and 𝜅 are obtained by solving following equations:

𝜇 = 1

𝑁
𝐺2
𝑏
𝜌𝜎̂2

𝛽𝑏
(1−𝐾−1

𝑁
+𝐾−1

𝑁
𝜇)+1

𝜅
(︁
1+

(𝐾−1)𝐺2
𝑏𝜌𝜎̂

2

𝛽𝑏
𝜇2
)︁

=
(𝐾−1)𝐺2

𝑏𝜌𝜎̂
2

𝛽𝑏
𝜇3 + (𝐾 − 1)𝜇2

Proposition 3. Using the approximate PDF of 𝛾𝑘 given by (6.16), and the

proposed linear MMSE-based detector, the lower bound on the achievable rate

for the 𝑘th user is

𝑅̃MMSE

𝑘 (𝜌) = log2(1 + (𝛼𝑏 − 1)𝜃𝑏). (6.17)

Proof. Substituting (6.16) into (6.15) and using the identity Γ(𝛼𝑏) = (𝛼𝑏 −

1)Γ(𝛼𝑏 − 1), the result follows.
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Figure 6.3: Downlink quantized massive MIMO system model

Remark: From (6.12), the achievable rate 𝑅𝑘(𝜌) can be rewritten as

𝑅𝑘(𝜌) = EĤ

[︁
log2

(︁
1 +

|aH
𝑘 ĥ𝑘|2

aH
𝑘ϒ𝑘a𝑘

)︁]︁
≤ EĤ

[︂
log2

(︂
1 +

‖aH
𝑘ϒ

1/2
𝑘 ‖2‖ϒ−1/2

𝑘 ĥ𝑘‖2

aH
𝑘ϒ𝑘a𝑘

)︂]︂
= EĤ

[︁
log2(1 + ĥH

𝑘ϒ
−1
𝑘 ĥ𝑘)

]︁
= 𝑅MMSE

𝑘 (𝜌). (6.18)

The inequality is obtained by using Cauchy-Schwarz’ inequality, which holds with

equality when using the proposed detector in (6.14) with a𝑘 = 𝛼ϒ−1
𝑘 ĥ𝑘, for any

𝛼 ∈ C. Therefore, the proposed MMSE-based linear detector is optimal in the

sense that it maximizes the achievable rate given by (6.12).

6.3 Extended study for downlink (DL) quantized

massive MIMO

We consider the downlink of a single-cell massive MIMO system as illustrated

in Fig. 6.3. The system consists of a BS with 𝑀 antennas that serves 𝐾
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single-antenna UEs simultaneously and in the same time-frequency resource. For

simplicity, we assume that all RF hardware (e.g., local oscillators, mixers, power

amplifiers, etc.) are ideal and that the ADCs at the UEs have infinite resolution.

However, the BS is equipped with low resolution digital-to-analog converters

(DACs). The input-output relation of the downlink channel can be modeled as

y = 𝜌Hx + n. (6.19)

The vector y = [𝑦1, . . ., 𝑦𝐾 ]𝑇 contains the received signals at all users, with

𝑦𝑘 ∈ C representing the signal received at the 𝑘th th UE. The channel matrix

H ∈ C𝐾×𝑁 models the downlink channel. We shall also assume that the entries

of H are independent circularly-symmetric complex Gaussian random variables

with unit variance, i.e., ℎ𝑘,𝑛 = [H]𝑘,𝑛 ∼ 𝒞𝒩 (0, 1) , for 𝑘 = 1, . . ., 𝐾 , and

𝑛 = 1, . . ., 𝑁 . The vector n ∈ C𝐾 in (6.19) models additive noise. We assume

the noise to be i.i.d. circularly-symmetric complex Gaussian with variance 𝜎2
𝑛

per complex entry, i.e., 𝑛𝑢 ∼ 𝒞𝒩 (0, 𝜎2
𝑛) , for 𝑘 = 1, . . ., 𝐾. We shall also assume

that the noise level is known perfectly at the BS.

For linear-quantized precoders, the precoded vector x ∈ 𝒳𝐵 is given by

x = 𝑄𝑏(Ps) = G𝑏Ps + d. (6.20)

Here, 𝑄𝑏(·) : C𝐵 → 𝒳𝐵 denotes the quantizer-mapping function, which is a

nonlinear function that describes the joint operation of the 2𝑁 DACs at the BS.

The precoded vector x must satisfy the average power constraint

Es

[︀
‖x‖22

]︀
≤ 𝜌. (6.21)
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We use the Wiener filter (WF) precoder [29,133]:

PWF =
1

𝛽WF
ĤH

(︂
ĤĤH +

𝐾𝜎2
𝑛

𝜌
I𝐾

)︂−1

(6.22)

where

𝛽WF =
1
√
𝜌

tr

(︃(︂
ĤĤH +

𝐾𝜎2
𝑛

𝜌
I𝐾

)︂−1

ĤĤH

(︂
ĤĤH +

𝐾𝜎2
𝑛

𝜌
I𝐾

)︂−1
)︃−1/2

. (6.23)

As shown in [29], coherent transmission of data using multiple BS antennas

leads to an array gain, which depends on the realization of the fading channel.

We shall assume that the 𝑘th UE is able to rescale the received signal 𝑦𝑘 by a

factor 𝛽𝑘 = (h𝑇
𝑘G𝑏p𝑘)−1 ∈ R to compute an estimate 𝑠𝑘 ∈ C of the transmitted

symbol 𝑠𝑘 as follows:

𝑠𝑘 = 𝛽𝑘𝑦𝑘 = 𝑠𝑘 + 𝛽𝑘(𝑒𝑘 + 𝑛𝑘). (6.24)

The nonlinearity introduced by the DACs prevents one to characterize the probability

distribution of the error term 𝑒𝑘 in closed form, which makes it difficult to

compute the achievable rates. One can, however, lower-bound the achievable rate

using the so-called “auxiliary-channel lower bound” [134]. As auxiliary channel,

we assume that [29]

𝑠𝑘 = 𝑠𝑘 + 𝛽𝑘(𝑒𝑘 + 𝑛𝑘), (6.25)

where 𝑒𝑘 ∼ 𝒞𝒩 (0,Es[|𝑒𝑘|2]) has the same variance as the actual error term 𝑒𝑘 but

is Gaussian distributed. Assuming Gaussian inputs, by standard manipulations

of the mutual information, we can bound the downlink achievable rate 𝑅DL
𝑘 for
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UE 𝑘 = 1, 2, . . ., 𝐾 while considering the imperfect channel estimation as follows:

𝑅DL
𝑘 = EĤ

[︁
ℐ
(︁
𝑠𝑘; 𝑠𝑘 | Ĥ

)︁]︁
(6.26)

= E𝑠𝑘,𝑠𝑘,Ĥ

[︃
log2

(︃
𝑓𝑠𝑘|𝑠𝑘,Ĥ(𝑠𝑘|𝑠𝑘, Ĥ)

𝑓𝑠𝑘 | Ĥ(𝑠𝑘 | Ĥ)

)︃]︃
(6.27)

≥ E𝑠𝑘,𝑠𝑘,Ĥ

[︃
log2

(︃
𝑓𝑠𝑘|𝑠𝑘,Ĥ(𝑠𝑘|𝑠𝑘, Ĥ)

𝑓𝑠𝑘 | Ĥ(𝑠𝑘 | Ĥ)

)︃]︃
(6.28)

= EĤ[log2(1 + 𝛾𝑘)], (6.29)

where

𝛾𝑘 =

⃒⃒⃒
ĥ𝑇
𝑘Gp𝑘

⃒⃒⃒2
∑︀

𝑣 ̸=𝑘

⃒⃒⃒
ĥ𝑇
𝑘Gp𝑣

⃒⃒⃒2
+ h𝑇

𝑘Cdh*
𝑘 + 𝜎̃2

∑︀𝐾
𝑘=1‖p𝑘‖2 + 𝜎2

𝑛

(6.30)

is the signal-to-interference-noise-and-distortion ratio (SINDR) at the 𝑘th UE,

and Cd = E
[︀
dd𝐻

]︀
denotes the covariance of the distortion d. Using (6.20), the

covariance of the distortion Cd is obtained:

Cd = Cx −GPP𝐻G𝐻 (6.31)

where Cx = Es

[︀
xx𝐻

]︀
is the covariance matrix of the quantized signal x = 𝑄𝑏(Ps),

and we obtain it through Monte Carlo simulations.

6.4 Experimental Simulation Results

6.4.1 Simulation Setup

For our simulation, we consider a single-cell 1-bit massive MIMO uplink with

𝐾 = {8, 16, 32} users and 𝑁 = {128, 256} BS antennas for QPSK and Gaussian
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inputs. We assume that the pilots are generated based on the Fast Fourier

transform (FFT) matrix which ensures orthogonality (i.e. ΦΦH = 𝑃𝜌I𝐾) where

𝑃 = 3𝐾.

1. In order to compute the achievable rate for the QPSK inputs, the achievable

rate is 𝑅𝑘(𝜌) = 𝐼(𝑠𝑘; 𝑠𝑘 | Ĥ) as shown in [135]. We expand the mutual

information 𝐼(𝑠𝑘; 𝑠𝑘 | Ĥ) as follows:

𝐼(𝑠𝑘; 𝑠𝑘 | Ĥ) = E𝑠𝑘,𝑠𝑘,Ĥ

[︃
log2

𝑃𝑠𝑘|𝑠𝑘,Ĥ(𝑠𝑘|𝑠𝑘, Ĥ)

𝑃𝑠𝑘|Ĥ(𝑠𝑘|Ĥ)

]︃
. (6.32)

Here, the conditional probability mass functions 𝑃𝑠𝑘|𝑠𝑘,Ĥ(𝑠𝑘|𝑠𝑘, Ĥ)

and 𝑃𝑠𝑘|Ĥ(𝑠𝑘|Ĥ) = 𝐸𝑠𝑘 [𝑃𝑠𝑘|𝑠𝑘,Ĥ(𝑠𝑘|𝑠𝑘, Ĥ)] are needed to compute (6.32).

We use Monte-Carlo simulations to estimate them since no closed-form

expressions are available for these quantities. In particular, we simulate

many noise and interference realizations, and map the resulting 𝑠𝑘 to points

over a rectangular grid in the complex plane.

2. A conventional MIMO system with higher-order modulation can be developed

that uses near ML detection and achieves capacity that is upper bounded

by [135]:

𝑅conventional(𝜌) = EH

[︀
log2(det{I𝑁 + 𝜌

𝐾
HHH})

]︀
, (6.33)

where det{·} corresponds to the determinant of a matrix.

6.4.2 Achievable Rates with perfect and imperfect CSI

Moreover, we evaluate the validity of our closed-form expression for the achievable

rate for the MMSE-based linear detector given in (6.17) for Gaussian inputs with
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perfect and imperfect CSI. In Fig. 6.4, we show the exactness of the proposed

closed form of the MMSE-based detector (6.17) with the simulated form (6.12).

One can notice that, the closed form achievable rate perfectly matches with the

simulated rates for perfect and imperfect CSI. This indicates that our derived

expression (6.17) is a valid predictor for the performance of 1-bit massive MIMO

system.

Furthermore, in Fig. 6.5, we show the accuracy of the proposed closed form

of the MMSE-based detector (6.17) with the simulated form (6.12) for low bit

resolution ADCs (𝑏 = {1, 2, 3}). One can notice that the closed form achievable

rate perfectly matches with Monte Carlo simulated rates for perfect and imperfect

CSI. This indicates that our derived expression (6.17) is a valid predictor for the

performance of 𝑏-bit massive MIMO system.

In addition, we compare the sum rate between the 1-bit massive MIMO with

linear detection and the conventional MIMO systems with near ML detection.

Figure 6.6 shows the sum rate versus the SNR for the two systems. It can be

seen that the proposed MMSE-based detector outperform the ZF detector as the

number of antennas at the BS decrease for both QPSK and Gaussian inputs.

The curves illustrate that the SNR regimes are bifurcated into two regions in

which for the low SNR regime the massive MIMO system can out perform the

conventional MIMO even with imperfect channel estimation; however for high

SNR the conventional MIMO system with a near ML detector can out perform

the massive MIMO system. For instance, to achieve a sum rate of 62 bits/channel

use for the one bit massive MIMO case with 𝑁 = 256 antennas at BS and

𝐾 = 32 users the needed SNR is −3 dB with just QPSK modulation; however,

for a classical large MIMO (e.g., 16 × 16) system with near ML detection the

needed SNR is 15 dB, and for an 8× 8 MIMO system the needed SNR is around
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25 dB. Therefore, Fig. 6.6 shows that the 1-bit massive MIMO achieves higher

rates than the conventional MIMO at low SNR values taking into account the

imperfect channel estimation.

Moreover, figure 6.7 compares the sum rate between the uplink 𝑏-bit quantized

massive MIMO with linear detection against the conventional MIMO systems

with near ML detection, assuming imperfect channel estimation. For the 𝑏 = 1

bit quantization case, the SNR regimes are bifurcated into two regions: for the low

SNR regime, the massive MIMO system can outperform the conventional MIMO

even with imperfect channel estimation; however, for high SNR, the conven-

tional MIMO system with a near-ML detector can outperform the massive MIMO

system. For instance, to achieve a sum rate of 62 bits/channel use for the one

bit massive MIMO case with 𝑁 = 256 antennas at BS and 𝐾 = 32 users the

needed SNR is −6 dB with just QPSK modulation; however, for a large MIMO

(e.g., 16× 16) system with near-ML detection the needed SNR is 15 dB, and for

an 8× 8 MIMO system the needed SNR is around 25 dB. Furthermore, it can be

seen that for few bits (i.e. 2 or 3 bits) of quantization, the proposed MMSE-based

detector with massive MIMO deployment outperforms the conventional MIMO.

Finally, to complete the comparison study, figure 6.8 compares the sum rate

between the downlink 𝑏-bit quantized massive MIMO with linear detection against

the conventional MIMO systems with near ML detection, assuming imperfect

channel estimation. The same conclusions are formed as the uplink case, wherein

similarly for the 𝑏 = 1 bit quantization case, the SNR regimes are bifurcated

into two regions: for the low SNR regime, the downlink massive MIMO system

can outperform the conventional MIMO even with imperfect channel estimation;

however, for high SNR, the conventional MIMO system with a near-ML detector

can outperform the massive MIMO system. Furthermore, it can be seen that
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Figure 6.4: Mutual information per user versus SNR for a 𝐾×𝑁 massive MIMO
system where 𝐾 = 8, 16, 32 users and 𝑁 = {128, 256} BS antennas.

for few bits (i.e. 2 or 3 bits) of quantization, the quantized massive MIMO

deployment outperforms the conventional MIMO.

6.5 Conclusion

In this work, a quantized massive MIMO system is considered. Using the

Bussgang decomposition, a newMMSE-based linear detection scheme, that incorp-

orates the non-linear effects of quantization and the pilot-based channel estimation,
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Figure 6.5: Mutual information per user versus SNR for a 𝐾×𝑁 massive MIMO
system where 𝐾 = 16 users and 𝑁 = 128 BS antennas and 𝑏 = {1, 2, 3}
quantization bits; analytical versus simulated for the proposed MMSE-based
detection with imperfect channel estimation.

has been derived for the uplink case. A closed form expression for the uplink

achievable rate has been derived, and used to analyze and compare the perform-

ance of 1-bit massive MIMO system with perfect and imperfect CSI against a

large MIMO system that employs higher-order modulation. In particular, it has

been shown the SNR is bifurcated into regions where, for low SNR regions, a

1-bit massive MIMO system with channel estimation error can achieve a higher

throughput compared to a large MIMO system, while for high SNR regions, a
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Figure 6.6: A comparison of the total system throughput for a 𝐾 ×𝑁 quantized
Massive MIMO where where 𝐾 = {8, 16, 32} users and 𝑁 = {128, 256} versus
Conventional MIMO (8× 8 and 16× 16) systems.

large MIMO system with a near-ML detector can outperform a massive MIMO

system. Moreover, it has been shown that for a few bits of quantization (e.g.,

2 or 3 bits), the quantized massive MIMO can still outperform the conventional

MIMO.

91



-30 -20 -10 0 10 20 30

SNR(dB)

0

50

100

150

200

250

T
o

ta
l 
T

h
ro

u
g

h
p

u
t 

(b
it
/c

h
a

n
n

e
l 
u

s
e

)

1-bit MMSE QPSK 32  256
1-bit MMSE QPSK 16  128
1-bit MMSE Gauss 32  256
1-bit MMSE Gauss 16  128
2-bit MMSE Gauss 32  256
2-bit MMSE Gauss 16  128
3-bit MMSE Gauss 32  256
3-bit MMSE Gauss 16  128
System Capacity 8x8 MIMO
System Capacity 16x16 MIMO

Figure 6.7: Comparison of total system throughput for a 𝐾×𝑁 quantized 𝑏-bit
UL massive MIMO with 𝐾 = {16, 32} users and 𝑁 = {128, 256} with imperfect
channel estimation, vs. two conventional 8× 8 and 16× 16 MIMO systems.
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Figure 6.8: Comparison of total system throughput for a 𝐾×𝑁 quantized 𝑏-
bit DL massive MIMO with 𝐾 = 16 users and 𝑁 = 128 with imperfect channel
estimation, vs. conventional 16× 16 MIMO systems.
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Chapter 7

Array Signal Processing For

FDD-based Cell Free Massive

MIMO

In this chapter, we consider a cell-free massive MIMO system with multiple

antennas at each AP operating in FDD mode that do not require any feedback

from the user. By exploiting the angle reciprocity and angle coherence time, we

propose a multipath component estimation for the AoA and large scale fading

coefficients based on DFT operation and log likelihood function with reduced

overhead. We further derive a closed form expression for the MSE of the AoA

estimation and large scale fading estimation. Both theoretical and numerical

results are provided to verify the effectiveness of the proposed methods. In

addition, we propose linear angle-based beamforming/combining techniques for

the downlink/uplink transmission that incorporate the estimated AoA and large-

scale fading components. Interestingly, the proposed schemes scale only with the

number of served users rather than the total number of serving antennas, and

need to be updated every angle coherence time. Therefore, the impact of signaling
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Figure 7.1: Cell-free massive MIMO system model

overhead is substantially reduced with the proposed schemes. The corresponding

results have been published in parts in [50,51].

7.1 System Model

As shown in Fig. 7.1, we consider an FDD-based cell-free massive MIMO

system having 𝑀 APs, each equipped with a uniform linear array (ULA) of

𝑁 antennas, serving 𝐾 users with single antennas. We assume a geometric

channel model with 𝐿 propagation paths [114, 116]. Moreover, AoAs (or angle-

of-departures (AoDs)), large-scale fading and small-scale fading coefficients are

called the multipath components of the channel. Due to angle reciprocity in FDD
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systems [114], and frequency in-dependency, we assume that 1) the uplink AoA

and downlink AoD are similar, and 2) the uplink and downlink large-scale fading

coefficients (slow fading and distant-dependent path loss components) are similar

[136, 137]. However, uplink and downlink small-scale fading coefficients in FDD

systems are distinct since they are frequency dependent [136,137]. Therefore, the

𝑁 × 1 channel vectors can be expressed as [114,116]

h =

√︂
1

𝐿

𝐿∑︁
𝑙=1

√︀
𝛽𝑙𝛼𝑙a(𝜑𝑙), (7.1)

where 𝛼𝑙 ∼ 𝒞𝒩 (0, 1) is the complex gain of the 𝑙th path that represents the small-

scale Rayleigh fading, and 𝛽𝑙 is the large-scale fading coefficient that accounts for

path-loss and shadowing effects. The variable 𝜑𝑙 ∈ [0, 2𝜋] is the angle of arrival

of the 𝑙th path. The array steering vector a (𝜑𝑙) is defined a

a (𝜑𝑙)= 1√
𝑁

[︀
1, 𝑒𝑗𝜂 sin(𝜑𝑙),. . . ,𝑒𝑗(𝑁−1)𝜂 sin(𝜑𝑙)

]︀T
, (7.2)

where 𝜂 = 2𝜋𝑢
𝜆
, 𝑢 is the antenna spacing, and 𝜆 is the channel wavelength (Note

that we also define 𝜐𝑙 = 𝜂 sin (𝜑𝑙)). Equivalently, the channel vector in (7.1) can

be expressed in matrix-vector form as

h =

√︂
1

𝐿
AB𝛼, (7.3)

where

A𝑁×𝐿 = [a (𝜑1) , . . . , a (𝜑𝐿)], (7.4)

B𝐿×𝐿 = diag(
√︀
𝛽1, . . . ,

√︀
𝛽𝐿), (7.5)

𝛼𝐿×1 = [𝛼1, . . . , 𝛼𝐿]T. (7.6)
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As mentioned previously, the quantities𝛼 are dependent on frequency; however

B andA are constant with respect to frequency over angle coherence time interval

(as discussed in subsection 7.2.4).

To model a realistic system where we have non-ideal angle reciprocity, we

assume that the differences between uplink and downlink multipath components,

𝜐
u/d
𝑙 and 𝛽

u/d
𝑙 , are i.i.d. random variables with zero mean and variance 𝜎2

𝜐, 𝜎
2
𝛽 ≪ 1

[138].

7.1.1 Uplink Training

Let p𝑘 ∈ C1×𝜏 be the uplink (UL) pilot signal sent by the 𝑘th user composed

of 𝜏 symbols with unit norm. All pilot sequences used by different users are

assumed to be pairwise orthogonal, since the angle coherence time is much longer

than the conventional channel coherence time [43]. Therefore, we can assign a

sufficiently large number to 𝜏 such that 𝜏 ≥ 𝐾 holds true.

Therefore, the received signal Y𝑚𝑘 ∈ C𝑁×𝜏 at the 𝑚th AP sent by the 𝑘th

user is given by

Y𝑚𝑘 =
√
𝜌h𝑚𝑘p𝑘 + N𝑚𝑘, (7.7)

where 𝜌 is the uplink transmit power and the entries [N𝑚𝑘]𝑛,𝑖 of the additive white

Gaussian noise matrix N𝑚𝑘 ∈ C𝑁×𝜏 are independent and identically distributed

(i.i.d.) 𝒞𝒩 (0, 𝜎2
𝑛) random variables. Multiplying (7.7) by pH

𝑘 and collecting 𝑇

samples, we have

Y𝑚𝑘(𝑡)pH
𝑘 =

√︂
𝜌

𝐿
A𝑚𝑘B𝑚𝑘𝛼𝑚𝑘(𝑡) + N𝑚𝑘p

H
𝑘

=
√
𝜌A𝑚𝑘d𝑚𝑘(𝑡) + n̄𝑚𝑘, 𝑡 = 1, . . . , 𝑇, (7.8)
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where d𝑚𝑘 = 1√
𝐿
B𝑚𝑘𝛼𝑚𝑘 and n̄𝑚𝑘 = N𝑚𝑘p

H
𝑘 ∼ 𝒞𝒩 (0𝑁×1, 𝜎

2
𝑛I𝑁). Then, the 𝑇

samples of (7.8) are collected in a matrix form as

Ȳ𝑚𝑘 =
√
𝜌H𝑚𝑘 + N̄𝑚𝑘 =

√
𝜌A𝑚𝑘D𝑚𝑘 + N̄𝑚𝑘, (7.9)

where Ȳ𝑚𝑘 = [Y𝑚𝑘(1)pH
𝑘 , . . . ,Y𝑚𝑘(𝑇 )pH

𝑘 ], H𝑚𝑘 = [h𝑚𝑘(1), . . . ,h𝑚𝑘(𝑇 )], D𝑚𝑘 =

[d𝑚𝑘(1), . . . ,d𝑚𝑘(𝑇 )], and N̄𝑚𝑘 = [n̄𝑚𝑘(1), . . . , n̄𝑚𝑘(𝑇 )].

The multipath components estimation is performed in a distributed fashion,

in which each AP independently estimates the multipath components to the 𝐾

users. The APs do not cooperate on the multipath components estimation, and

no estimates need to be shared among the APs.

7.1.2 Downlink Payload Data Transmission

The APs, based on the estimated multipath components, independently apply

𝑁 × 1 beamforming vector ŵ𝑚𝑘 to transmit signals to the 𝐾 users. Moreover,

APs do not cooperate on the beamforming vectors. The transmit DL signal from

the 𝑚th AP is given by

x𝑚 =
√︀

𝜌d
𝐾∑︁
𝑘=1

ŵ𝑚𝑘𝑠
d
𝑘, (7.10)

where 𝑠d𝑘 is the data symbol for the 𝑘th user satisfying E[|𝑠d𝑘|2] = 1, and 𝜌d is the

maximum transmit power satisfying, E[||x𝑚||22] ≤ 𝜌d. It can be noted here that

the multiplexing order is equal to 1.

Then, the received downlink signal at the 𝑘th user is given by

𝑟d𝑘 =
𝑀∑︁

𝑚=1

hH
𝑚𝑘x𝑚 + 𝑛d

𝑘
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=
√︀

𝜌d
𝑀∑︁

𝑚=1

hH
𝑚𝑘ŵ𝑚𝑘𝑠

d
𝑘⏟  ⏞  

𝑆

+
√︀
𝜌d

𝐾∑︁
𝑗 ̸=𝑘

𝑀∑︁
𝑚=1

hH
𝑚𝑘ŵ𝑚𝑗𝑠

d
𝑗⏟  ⏞  

𝐼

+𝑛d
𝑘, (7.11)

where 𝑛d
𝑘 ∼ 𝒞𝒩 (0, 𝜎𝑛) is the additive noise at the 𝑘th user. Note that the

received signal can be decomposed into three parts: 1) desired signal part (𝑆), 2)

interference part (𝐼), and 3) noise 𝑛d
𝑘. Moreover, the 𝑘th user can detect signal

𝑠d𝑘 from 𝑟d𝑘 .

7.1.3 Uplink Payload Data Transmission

In the uplink, all 𝐾 users simultaneously send their data symbols 𝑠u𝑘, where

E {|𝑠u𝑘|2} = 1, to the APs. It can be noted here that the multiplexing order is

equal to 1. The received UL signal at the 𝑚th AP is given by

yu
𝑚 =
√
𝜌u

𝐾∑︁
𝑘=1

h𝑚𝑘𝑠
u
𝑘 + nu

𝑚, (7.12)

where 𝜌u is the uplink transmit power and nu
𝑚 is additive noise at the 𝑚th AP.

The noise entries ([nu
𝑚]𝑖) are modeled as i.i.d. 𝒞𝒩 (0, 𝜎2

𝑛). The received signal is

multiplied by the 𝑁 × 1 combiner v̂𝑚𝑘 at each AP where the resulting signal is

sent to the CPU through a backhaul to detect the signal. The CPU will receive

𝑟u𝑘 =
𝑀∑︁

𝑚=1

v̂H
𝑚𝑘y

u
𝑚 =

𝐾∑︁
𝑘′=1

𝑀∑︁
𝑚=1

√
𝜌uv̂H

𝑚𝑘h𝑚𝑘′𝑠
u
𝑘′ +

𝑀∑︁
𝑚=1

v̂H
𝑚𝑘n

u
𝑚. (7.13)

Then, 𝑠𝑘 is detected from 𝑟u𝑘 .

The main system parameters are summarized in Table 7.1.
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Table 7.1: System Parameters
Number of APs, and number of antennas per AP 𝑀,𝑁
Total number of users 𝐾
Number of paths 𝐿
Channel gain for the 𝑚th AP and 𝑘th user h𝑚𝑘

Angular steering vector for the 𝑙th path a(𝜑𝑙)
Angular steering matrix for the 𝑚th AP and 𝑘th user A𝑚𝑘

Large scale fading matrix B𝑚𝑘

Small scale fading vector 𝛼𝑚𝑘

𝑁 ×𝑁 DFT matrix F𝑁

7.2 Proposed Angle information aided channel estimation

for FDD systems

In this section, we present the FDD-based cell-free massive MIMO systems

that directly acquire multipath components from the uplink pilot signal and use

them for the AP cooperation. Using array signal processing, we first present the

low complexity DFT-based AoA estimation, and then we propose the large scale

fading estimation based on the estimated angle information. Note that we need to

estimate both components (AoA, and large scale fading) for every angle coherence

interval, in order to apply low complexity beamforming/combining techniques.

7.2.1 AoA Estimation Algorithm

1. Initial AoA Estimation: Based on the classical DFT estimation approach,

we first define a normalized 𝑁 ×𝑁 DFT matrix F𝑁 whose (𝑛, 𝑞)th element

is given by [F𝑁 ]𝑛𝑞 = 1√
𝑁
𝑒−𝑗

2𝜋𝑛𝑞
𝑁 . In addition, we define the normalized

DFT of the channel matrix h𝑚𝑘 as hDFT𝑚𝑘 = F𝑁h𝑚𝑘 whose 𝑞th element is

computed as

[hDFT𝑚𝑘 ]𝑞 =
1√
𝑁

𝑁−1∑︁
𝑛=0

[h𝑚𝑘]𝑞𝑒
−𝑗( 2𝜋

𝑁
𝑛𝑞)
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= 1√
𝑁𝐿

𝐿−1∑︁
𝑙=0

𝑁−1∑︁
𝑛=0

√︀
𝛽𝑙,𝑚𝑘𝛼𝑙,𝑚𝑘𝑒

−𝑗( 2𝜋
𝑁

𝑛𝑞−𝑛𝜂 sin(𝜑𝑙,𝑚𝑘))

= 1√
𝑁𝐿

𝐿−1∑︁
𝑙=0

√︀
𝛽𝑙,𝑚𝑘𝛼𝑙,𝑚𝑘𝑒

−𝑗𝑁−1
2 [ 2𝜋𝑁 𝑞−𝜂 sin(𝜑𝑙,𝑚𝑘)] ·

sin
[︀(︀

2𝜋
𝑁
𝑞 − 𝜂 sin (𝜑𝑙,𝑚𝑘)

)︀
𝑁
2

]︀
sin
[︀(︀

2𝜋
𝑁
𝑞 − 𝜂 sin (𝜑𝑙,𝑚𝑘)

)︀
1
2

]︀ .
(7.14)

It is noted that with infinite number of antennas in the array, i.e., 𝑁 →

∞, there always exist integers 𝑞𝑙 =
𝑁𝜐𝑙,𝑚𝑘

2𝜋
(for 𝑙 = 1, . . . , 𝐿), such that

[hDFT𝑚𝑘 ]𝑞𝑙 =

√
𝛽𝑙,𝑚𝑘𝛼𝑙,𝑚𝑘√

𝑁𝐿
and 𝜐𝑙,𝑚𝑘 = 𝜂 sin (𝜑𝑙,𝑚𝑘), while the other elements of

hDFT𝑚𝑘 are all zero [113,115]. Hence, all powers are concentrated on the 𝑞𝑙th

elements.

However, in practical antenna design, the array aperture cannot be infinitely

large in cell-free massive MIMO communication systems. In this case,

𝑁𝜐𝑙,𝑚𝑘

2𝜋
will not be integer which will lead to channel power leakage from

the (⌊𝑁𝜐𝑙,𝑚𝑘

2𝜋
⌉th) element to its nearby elements. In fact, the leakage of

channel power is proportional to the deviation
𝑁𝜐𝑙,𝑚𝑘

2𝜋
− ⌊𝑁𝜐𝑙,𝑚𝑘

2𝜋
⌉, but is

inversely proportional to 𝑁 as shown in (7.14).

However, [hDFT𝑚𝑘 ] can still be approximated as a sparse vector with most

power concentrated around the (⌊𝑁𝜐𝑙,𝑚𝑘

2𝜋
⌉th) element [113,115]. Hence, it is

still useful to extract initial AoA information from the peak power position

of [hDFT𝑚𝑘 ].

Moreover, we can express the DFT of the estimated channel matrix ĥ𝑚𝑘

with its 𝑞th element

[ĥDFT𝑚𝑘 ]𝑞 = [hDFT𝑚𝑘 ]𝑞 + [nDFT𝑚𝑘 ]𝑞. (7.15)

We denote 𝐿 largest peaks in 𝐿 bins of [hDFT𝑘 ] as (𝑞ini1 , · · · , 𝑞ini𝐿 ). Then the
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initial AoA estimates for the 𝑘th user can be calculated from

𝜑ini𝑙,𝑚𝑘 = sin−1

(︂
𝜆𝑞ini𝑙

𝑁𝑑

)︂
. (7.16)

2. Fine-Grain Estimation: The resolution of (𝜑𝑖𝑛𝑖
𝑙,𝑚𝑘) via directly applying

DFT is still limited by half of the DFT interval, i.e., ( 1
2𝑁

). To improve

the AoA estimation accuracy, an angle rotation operation from [113,115] is

applied; however applying the estimation technique from [113, 115] is not

applicable as is, since we need to further consider and estimate large scale

fading coefficients, and apply the extended estimation technique on the

proposed FDD-based cell-free massive MIMO system. The angle rotation

of the original channel matrix is defined as

hr𝑙,𝑚𝑘 = Φ𝑁(△𝜑𝑙,𝑚𝑘)h𝑚𝑘, (7.17)

where the diagonal matrix Φ𝑁(△𝜑𝑙,𝑚𝑘) is given by

Φ(△𝜑𝑙,𝑚𝑘) = diag
{︀[︀
1, 𝑒𝑗△𝜑𝑙,𝑚𝑘 , . . . , 𝑒𝑗(𝑁−1)△𝜑𝑙,𝑚𝑘

]︀}︀
, (7.18)

with △𝜑𝑙 ∈ [−(𝜋/𝑁), 𝜋/𝑁 ] is the angle rotation parameter with search grid

defined as 𝐺. After angle rotation, the DFT of the rotated channel model

is given by

[hrDFT𝑚𝑘 ]𝑞

= 1√
𝑁𝐿

𝐿−1∑︁
𝑙=0

√︀
𝛽𝑙,𝑚𝑘𝛼𝑙,𝑚𝑘𝑒

−𝑗𝑁−1
2 [ 2𝜋𝑁 𝑞−𝜐𝑙,𝑚𝑘−△𝜑𝑙,𝑚𝑘] ·

sin
[︀(︀

2𝜋
𝑁
𝑞 − 𝜐𝑙,𝑚𝑘 −△𝜑𝑙,𝑚𝑘

)︀
𝑁
2

]︀
sin
[︀(︀

2𝜋
𝑁
𝑞 − 𝜐𝑙,𝑚𝑘 −△𝜑𝑙,𝑚𝑘

)︀
1
2

]︀ .
(7.19)
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It can be deduced that the entries of [hrDFT𝑚𝑘 ] have only 𝐿 non-zero elements

when the angle shifter satisfies

△𝜑𝑙,𝑚𝑘 = 2𝜋𝑞𝑙/𝑁 − 𝜐𝑙,𝑚𝑘 = 2𝜋𝑞𝑙/𝑁 − 𝜂 sin (𝜑𝑙,𝑚𝑘) , (7.20)

where △𝜑𝑙,𝑚𝑘 is the optimal phase shifter. Based on the derived phased

shifter, the estimated AoA of the 𝑙th path for the 𝑘th user is given by

𝜑𝑙,𝑚𝑘 = sin−1

(︂
2𝜋𝑞𝑙
𝑁𝜂
− △𝜑𝑙,𝑚𝑘

𝜂

)︂
. (7.21)

Therefore, the estimated AoA matrix is given by

Â𝑚𝑘 = [a
(︁
𝜑1,𝑚𝑘

)︁
, . . . , a

(︁
𝜑𝐿,𝑚𝑘

)︁
]. (7.22)

7.2.2 Large Scale Fading Estimation

Based on the AoA estimate and given that n̄𝑚𝑘∼𝒞𝒩 (0𝑁×1, 𝜎
2
𝑛I𝑁) in (7.9), the

probability density function of Ȳ𝑚𝑘 for given 𝜑𝑙,𝑚𝑘 and 𝛽𝑙,𝑚𝑘 over all 𝑙=1, · · · , 𝐿

can be expressed as

𝑓(Ȳ𝑚𝑘|𝜑𝑙,𝑚𝑘, 𝛽𝑙,𝑚𝑘) =
exp {− 1

𝜎2
𝑛
||Ȳ𝑚𝑘−

√
𝜌A𝑚𝑘D𝑚𝑘||2F}

(𝜋𝜎2
𝑛)𝑁

. (7.23)

The log-likelihood function can be applied to (7.23) to give

ℒ(D𝑚𝑘, 𝜎
2
𝑛)=−𝑁 ln𝜋 −𝑁 ln𝜎2

𝑛 −
||Ȳ𝑚𝑘−

√
𝜌A𝑚𝑘D𝑚𝑘||2F
𝜎2
𝑛

. (7.24)

Knowing that ℒ is a concave function of 𝜎2
𝑛 and D𝑚𝑘, the optimal estimates 𝜎𝑛

2
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Algorithm 4 Extended DFT and angle rotation based multipath component
estimation
1: Input: Ȳ ∈ C𝑁×𝑇 , 𝐿, 𝐺 and 𝜆
2: Output: 𝜑̂ ∈ R𝐿×1, 𝛽 ∈ C𝐿×1

3: // AoA Estimation
4: for 𝑙 = 1 : 𝐿 do
5: for 𝑡 = 1 : 𝑇 do
6: Find the central point (𝑞ini𝑙 ) of each bin in ĥDFT𝑚𝑘 = F𝑁 ȳ

p
𝑚𝑘(𝑡) where

(𝑞ini𝑙 ) = arg max(𝑞)∈bin(𝑙) ‖[ĥDFT𝑚𝑘 ]𝑞‖2, 𝑙 = 1, · · · 𝐿.
7: (△̂𝜑𝑙) = arg max△𝜑∈[−𝜋

𝑁
, 𝜋
𝑁
] ‖f𝑁𝑞ini𝑙

Φ(△𝜑𝑙)ȳ
p
𝑚𝑘(𝑡)‖2, where f𝑁𝑞ini𝑙

is the

𝑞ini𝑙 th column of F𝑁 .

8: 𝜃𝑙(𝑡) = 𝜃𝑙(𝑡− 1) + sin−1
(︁

2𝜋𝑞ini𝑙

𝑁𝜂
− △𝜑𝑙

𝜂

)︁
9: end
10: 𝜑𝑙,𝑚𝑘 = 1

𝑇
𝜃𝑙(𝑇 )

11: end
12: // Large scale fading Estimation

13: D̂𝑚𝑘 = 1√
𝜌

(︁
ÂH

𝑚𝑘Â𝑚𝑘

)︁−1

ÂH
𝑚𝑘Ȳ𝑚𝑘

where Â𝑚𝑘 = [a
(︁
𝜑1,𝑚𝑘

)︁
, . . . , a

(︁
𝜑𝐿,𝑚𝑘

)︁
]

14: R̂𝑑 = 𝐿
𝑇

[D̂𝑚𝑘D̂
H
𝑚𝑘]

15: 𝛽𝑚𝑘 = [𝛽1,𝑚𝑘, . . . , 𝛽𝐿,𝑚𝑘]T = diag(R̂𝑑)
16: end
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and D̂𝑚𝑘 can be obtained by taking a partial derivative with respect to 𝜎2
𝑛 and

D𝑚𝑘. Hence, 𝜎̂
2
𝑛 = 1

𝑁
||Ȳ𝑚𝑘 −

√
𝜌Â𝑚𝑘D̂𝑚𝑘||2F, and

D̂𝑚𝑘 =
1
√
𝜌

(︁
ÂH

𝑚𝑘Â𝑚𝑘

)︁−1

ÂH
𝑚𝑘Ȳ𝑚𝑘

= 1√
𝜌
Â†

𝑚𝑘Ȳ𝑚𝑘, (7.25)

where Â𝑚𝑘 = [a(𝜑1,𝑚𝑘), . . . , a(𝜑𝐿,𝑚𝑘)] is the estimate of A𝑚𝑘 which is obtained

using array signal processing (DFT operation with angle rotation). Once Â𝑚𝑘 is

obtained, we next estimate the large-scale fading coefficients 𝛽𝑙,𝑚𝑘. From (7.25),

we can estimate D𝑚𝑘 and the covariance matrix R̂𝑚𝑘,𝑑 = 𝐿
𝑇
E[D̂𝑚𝑘D̂

H
𝑚𝑘]. Note

that the original covariance matrix R𝑚𝑘,𝑑 is given by

R𝑚𝑘,𝑑 = 𝐿× E[d𝑚𝑘d𝑚𝑘
H] = B𝑚𝑘E[𝛼𝑚𝑘𝛼𝑚𝑘

H]BH
𝑚𝑘

= diag(𝛽1,𝑚𝑘, . . . , 𝛽𝐿,𝑚𝑘). (7.26)

Hence, we can obtain the estimates of the large-scale fading coefficients as

𝛽𝑚𝑘 = [𝛽1,𝑚𝑘, . . . , 𝛽𝐿,𝑚𝑘]𝑇 = diag(R̂𝑚𝑘,𝑑). (7.27)

The proposed multipath component estimation is shown in Algorithm 4, where

𝒢 is the search grid within [− 𝜋
𝑁
, 𝜋
𝑁

] needed for angle estimation.

Note that the search grid parameter 𝒢 determines the complexity and accuracy

of the algorithm. The complexity of the whole algorithm is of the order𝑂(𝑁 log𝑁+

𝒢𝑁𝐿) where the factor 𝑁 log𝑁 comes from the DFT operation and 𝒢𝑁𝐿 comes

from rotation operation over a search grid 𝒢 for all paths 𝐿 over 𝑁 antennas.

Moreover, the complexity of the proposed algorithm is less than that of the
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classical subspace ESPRIT algorithm of complexity 𝑂(𝑁3 + 𝑈𝑁2), with 𝑈 ≫ 𝒢

being the number of snapshots required during blind estimation [139].

7.2.3 Performance Analysis

Using the same methodology as in [113, 115] in addition to estimating the

large-scale fading parameter, we derive the theoretical MSE of the AoA estimates

and the large-scale fading coefficients for the cell-free massive MIMO system. In

general, a closed-form solution of the MSE for multiple AoA estimations is hard

to obtain [113]. An alternative approach is to consider the single user and single

propagation path and derive corresponding MSE of 𝜑 and 𝛽 as benchmark [113].

For a single propagation path according to (7.9), the received training signal at

the 𝑚th AP transmitted by the 𝑘th user is given by

ȳ𝑚𝑘 = Y𝑚𝑘p
H
𝑘

=
√
𝜌h𝑚𝑘 + n̄𝑚𝑘

=
√
𝜌a(𝜑)𝑑𝑚𝑘 + n̄𝑚𝑘

=
√
𝜌
√︀

𝛽𝑚𝑘𝛼𝑚𝑘a(𝜑) + n̄𝑚𝑘, (7.28)

where a(𝜑) is the 𝑁 × 1 steering vector with its 𝑞th entry given by [a(𝜑)]𝑞 =

1√
𝑁
𝑒(𝑞−1)𝜐𝑚𝑘 .

For brevity, we henceforth omit the subscript𝑚𝑘 representing the link between

the 𝑚th AP and the 𝑘th user. The proposed angle estimator can be expressed as

𝜐 = arg max
𝜐
‖ 1
‖a(𝜑)‖2a(𝜑)Hȳ‖2

= arg max
𝜐
‖a(𝜑)Hȳ‖2
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= arg max
𝜐

ȳHa(𝜑)a(𝜑)Hȳ, (7.29)

where a(𝜑) = Φ(△𝜑)f𝑁𝑞 , ‖a(𝜑)‖2 = 1, f𝑁𝑞 is the 𝑞th column of F𝑁 , and 𝑞 is the

nearest integer to 𝑁𝜐
2𝜋
.

Moreover, using (7.25), the ML estimate of 𝑑 is obtained as

𝑑ML = 1√
𝜌
(a(𝜑)

H
a(𝜑))−1a(𝜑)

H
ȳ

= 1√
𝜌‖a(𝜑)‖2a(𝜑)

H
ȳ

= 1√
𝜌‖a(𝜑)‖2a(𝜑)

H
a(𝜑)𝑑 + 1√

𝜌‖a(𝜑)‖2a(𝜑)
H
n̄

= 1√
𝜌‖a(𝜑)‖2a(𝜑)

H
a(𝜑)

√︀
𝛽𝛼 + 1√

𝜌‖a(𝜑)‖2a(𝜑)
H
n̄. (7.30)

The joint ML estimates of 𝜐 and 𝑑 can be obtained from

[𝜐ML𝑑ML] = arg min
𝜐,𝑑
‖ȳ − a(𝜑)𝑑‖2, (7.31)

where 𝜐ML, 𝑑ML are the optimizing variables.

Therefore, using (7.30), the ML estimate of 𝜐 is given by

𝜐ML = arg max
𝜐

ȳHPaȳ = arg max
𝜐

𝑔(𝜐), (7.32)

where 𝑔(𝜐) is the cost function of 𝜐. For the single-path case, Pa =a(𝜑)a(𝜑)H is

the projection matrix onto the subspace spanned by a(𝜑), and a(𝜑) represents the

steering vector given in (7.1). For the multi-path case, PA =AA† =A(AHA)−1AH

represents the projection matrix onto the subspace spanned by A, and A is the

steering matrix given in (7.4). As shown in [115] while including the large scale

path-loss parameter 𝛽, the MSE (7.29) of the considered DFT estimator coincides
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with that of the ML estimator (7.31). Using Lemma 1 in [115] while including

the large-scale fading parameter and p𝑘p
H
𝑘 =1, the MSE of 𝜐 is expressed as

E
[︀
△𝜐2

]︀
= E[(𝜐 − 𝜐)(𝜐 − 𝜐)H] =

𝜎2
𝑛

2𝜌𝛽a(𝜑)HEP⊥
aEa(𝜑)

, (7.33)

where E[△𝜐] = 0, P⊥
a = I−Pa is the projection matrix onto the orthogonal space

spanned by a(𝜑) and E is the diagonal matrix given by E = diag{0, · · · , (𝑁 − 1)}.

Based on the fact that 𝜐 = 𝜂 sin𝜑 and 𝜑 = sin−1(𝜐
𝜂
), we further examine the MSE

of 𝜑

E
[︀
△𝜑2

]︀
=

( 1
𝜂
)2

1− (𝜐
𝜂
)2
× 𝜎2

𝑛

2𝛽a(𝜑)HEPa
⊥Ea(𝜑)

. (7.34)

Using Taylor series expansion, a of first-order approximation of a(𝜑) is given

by

a(𝜑) = a(𝜑) + 𝑗Ea(𝜑)△𝜐. (7.35)

Substituting (7.35) into (7.30) and after collecting 𝑇 samples, we rewrite d̂ as

d̂ = [𝑑1, · · · , 𝑑𝑇 ]

= d + 𝑗 1

‖a(𝜑)‖2a(𝜑)
H
Ea(𝜑)△𝜐d + 1√

𝜌‖a(𝜑)‖2a(𝜑)
H
N̄, (7.36)

where N̄ = [n̄1, · · · , n̄𝑇 ].

Moreover,

𝛽 =
𝐿

𝑇
E[d̂d̂H] = 𝛽 + 𝛽E

[︀
(△𝜐)2

]︀
| 1

‖a(𝜑)‖2a(𝜑)
H
Ea(𝜑)|2+

1√
𝜌‖a(𝜑)‖2a(𝜑)

H
E
[︀
nnH

]︀
( 1√

𝜌‖a(𝜑)‖2a(𝜑)H)H

= 𝛽 +
𝜎2
𝑛|a(𝜑)

H
Ea(𝜑)|2

2𝜌a(𝜑)
H
EPa

⊥Ea(𝜑)
+

𝜎2
𝑛

𝜌
. (7.37)
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Therefore, the MSE of 𝛽 can be obtained

E
[︀
△𝛽2

]︀
= E

[︁
(𝛽 − 𝛽)(𝛽 − 𝛽)H

]︁
=

(︃
𝜎2
𝑛|a(𝜑)

H
Ea(𝜑)|2

2𝜌a(𝜑)HEPa
⊥Ea(𝜑)

+
𝜎2
𝑛

𝜌

)︃2

. (7.38)

Furthermore, the MSE expressions of the estimated AoA and large-scale

fading components derived in (7.33) and (7.38) give important insights when

assessing the impact of beamforming/combining techniques on the spectral effi-

ciency of the proposed FDD-based cell-free massive MIMO system.

7.2.4 Angle Coherence Time

Different from the conventional channel coherence time, the angle coherence

time is defined as typically an order of magnitude longer, during which the AoDs

can be regarded as static [43]. Specifically, the path AoD in (7.1) mainly depends

on the surrounding obstacles around the BS, which may not physically change

their positions often. On the contrary, the path gain of the 𝑘th user depends

on a number of unresolvable paths, each of which is generated by a scatter

surrounding the user. Therefore, path gains vary much faster than the path

AoDs [43]. Accordingly, the angle coherence time is much longer than the conven-

tional channel coherence time. Therefore, we can leverage from this fact and

perform multipath estimation in every angle coherence time instead of the much

shorter channel coherence time as the impact of the overhead is substantially

reduced.
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7.3 Proposed Beamforming and Combining Techniq-

ues

We next propose the angle-based matched-filtering, angle-based zero-forcing

and angle-based minimum-mean-square-error beamforming/combining that incor-

porate the estimated angle information, and the large-scale fading components.

The APs are connected via a backhaul network to a CPU, which sends to

the APs the data-symbols to be transmitted to the end-users and receives soft-

estimates of the received data-symbols from all the APs. Neither multipath

estimates nor beamforming/combining vectors are transmitted through the backhaul

network.

7.3.1 Angle-Based Beamforming

The angle-based beamforming (or precoding) vector ŵ𝑚𝑘 for the 𝑚th AP and

the 𝑘th user is defined as

ŵ𝑚𝑘 =
𝐿∑︁
𝑙=1

𝛾𝑚𝑘,𝑙ĝ𝑚𝑘,𝑙 =
Ĝ𝑚𝑘

||Ĝ𝑚𝑘||
𝛾𝑚𝑘, (7.39)

where ĝ𝑚𝑘,𝑙 is the 𝑙th column of Ĝ𝑚𝑘 = [ĝ𝑚𝑘,1, . . . , ĝ𝑚𝑘,𝐿] defined below for

the proposed angle-based beamforming techniques. In addition, 𝛾𝑚𝑘,𝑙 is the

normalized complex weight for the 𝑙th propagation path that satisfies
∑︀𝐿

𝑙=1 |𝛾𝑚𝑘,𝑙|2 =

1 and 𝛾𝑚𝑘 = [𝛾𝑚𝑘,1, . . . , 𝛾𝑚𝑘,𝐿]𝑇 . Moreover, using (7.10),

E[||x𝑚||2] = 𝜌𝑑

𝐾∑︁
𝑘=1

||Ĝ𝑚𝑘𝛾𝑚𝑘||2

||Ĝ𝑚𝑘||2
≤ 𝜌𝑑 (7.40)

will satisfy the maximum transmit power 𝜌𝑑.
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Angle-Based Matched-Filtering Beamforming (A-MF)

The precoder matrix based on the angle information is given by

ĜA-MF
𝑚𝑘 = Â𝑚𝑘B̂𝑚𝑘, (7.41)

where Â𝑚𝑘 =
[︁
a
(︁
𝜑1,𝑚𝑘

)︁
, . . . , a

(︁
𝜑𝐿,𝑚𝑘

)︁]︁
and B̂𝑚𝑘 = diag

(︂√︁
𝛽1,𝑚𝑘, . . . ,

√︁
𝛽𝐿,𝑚𝑘

)︂
are the estimated AoA and large-scale fading matrices according to (7.22) and (7.27).

Moreover, A-MF is a simple beamforming approach that only requires the channel

multipath components (AoA and large-scale fading) of the direct link between

the 𝑚th AP and the 𝑘th user. However, the inter user interference is ignored.

Angle-Based Zero-Forcing Beamforming (A-ZF)

We use A-ZF beamforming as a means to efficiently suppress interference. To

do so, the conventional ZF beamforming employs all the downlink CSI from the

users. However, the angle-based ZF beamforming used in this work is distinct

from the conventional ZF beamforming in the sense that only the angle informa-

tion and large-scale fading coefficients of the channel are required in the beam-

forming design. We collect the corresponding array steering vectors into Â𝑚 =

[Â𝑚1, . . . , Â𝑚𝐾 ] and similarly for B̂𝑚 = diag
(︁

[B̂𝑚1, . . . , B̂𝑚𝐾 ]T
)︁
. Then, the

precoder matrix is given by

ĜA-ZF
𝑚 = Â𝑚B̂𝑚

(︁
B̂H

𝑚Â
H
𝑚Â𝑚B̂𝑚

)︁−1

, (7.42)

where beamforming vector is ĝ𝑚𝑘,𝑙 defined as the ((𝑘 − 1)𝐿 + 𝑙)th column of

ĜA-ZF
𝑚 .

A key property of the angle-based ZF beamforming is that the beamforming
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vector is orthogonal to all other array steering vectors as given below:

ĥH
𝑚𝑘ŵ

A-ZF
𝑚𝑖 =

⎧⎪⎨⎪⎩ s𝑇𝑚𝑘𝛾𝑚𝑘 if 𝑖 = 𝑘;

0 if 𝑖 ̸= 𝑘.
(7.43)

The pseudo-inverse in A-ZF is more complex than A-MF, but the interference

is suppressed.

Angle-Based MMSE Beamforming (A-MMSE)

We use an angle-based MMSE beamforming design that can efficiently suppress

interference, noise and channel estimation error. The A-MMSE strikes a balance

between attaining the best signal amplification and reducing the interference.

The proposed angle-based MMSE beamforming matrix is given by

GA-MMSE
𝑚𝑘 =(︃
𝐾∑︁
𝑘=1

((Â𝑚𝑘B̂𝑚𝑘B̂
H
𝑚𝑘Â

H
𝑚𝑘 + Υ𝑚,𝑘) + 𝜎2

𝑛I𝑁

)︃−1

Â𝑚𝑘B̂𝑚𝑘, (7.44)

where Υ𝑚,𝑘 = 𝜎̃2
𝜐(EÂ𝑚𝑘B̂𝑚𝑘)(EÂ𝑚𝑘B̂𝑚𝑘)H+𝜎̃2

𝜐𝜎̃
2
𝛽(EÂ𝑚𝑘)(EÂ𝑚𝑘)H+𝜎̃2

𝛽Â𝑚𝑘Â
H
𝑚𝑘,

such that 𝜎̃2
𝜐 = 𝜎2

𝜐 +E[△𝜐2] and 𝜎̃2
𝛽 = 𝜎2

𝛽 +E[△𝛽2], where 𝜎2
𝜐 and 𝜎2

𝛽 account

for non-ideal DL angle reciprocity, and E[△𝜐2], E[△𝛽2] are the MSEs as defined

in (7.33) and (7.38), respectively.

Therefore, for A-ZF/A-MMSE, the only overhead for DL channel acquisition

at each AP comes from UL training, which only scales with the number of served

users. In addition, one can note that A-ZF is suitable for high signal-to-noise

ratio (SNR) conditions since it is expected that A-ZF and A-MMSE would have
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the same performance when the effect of noise is low.

7.3.2 Angle-Based Combining

Similarly, the combining vector v̂𝑚𝑘 for the𝑚th AP and the 𝑘th user is defined

as

v̂𝑚𝑘 =
𝐿∑︁
𝑙=1

𝛾𝑚𝑘,𝑙ĉ𝑚𝑘,𝑙 = Ĉ𝑚𝑘𝛾𝑚𝑘, (7.45)

where ĉ𝑚𝑘,𝑙 is the ((𝑘 − 1)𝐿 + 𝑙)th column of Ĉ𝑚 which corresponds to Ĉ𝑚𝑘 =

[ĉ𝑚𝑘,1, . . . , ĉ𝑚𝑘,𝐿], and 𝛾𝑚𝑘,𝑙 = 1
𝐿
and 𝛾𝑚𝑘 = [𝛾𝑚𝑘,1, . . . , 𝛾𝑚𝑘,𝐿]𝑇 .

Using UL-DL duality [140], the combining vectors of the uplink case for A-MF

combining, A-ZF combining and A-MMSE combining are also defined as

Ĉ𝑚𝑘 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
GA-MF

𝑚𝑘 for A-MF combining;

GA-ZF
𝑚𝑘 for A-ZF combining;

GA-MMSE
𝑚𝑘 for A-MMSE combining.

(7.46)

such that 𝜎̃2
𝜐 = E[△𝜐2] and 𝜎̃2

𝛽 = E[△𝛽2]. The corresponding combining matrices

were defined in (7.41), (7.42) and (7.44).

The benefits of relying on only the angle information and large-scale fading

are: (i) the need for downlink training is avoided; (ii) the beamforming/combining

matrices can be updated every angle coherence time, and (iii) a simple closed-

form expression for the spectral efficiency can be derived which enables us to

obtain important insights.
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Chapter 8

Power Control and AP selection For

FDD-based Cell Free Massive

MIMO

In this chapter, closed-form expressions are derived for the spectral efficiencies

for the FDD-based cell-free massive MIMO downlink and uplink with finite

numbers of APs and users.

Our analysis takes into account the proposed beamforming/combining techniq-

ues and the effect of multipath estimation errors. Finally, we propose a solution

to the max-min power control problem by formulating it as a standard semi-

definite programming (SDP) approach. The proposed max-min power control

maximizes the smallest rate of all users within the angle-coherence time-scale. In

addition, we present a user-centric AP selection scheme to further enhance the

energy efficiency of the system.

Simulation results are presented to demonstrate the effectiveness of the proposed

schemes. The corresponding results have been published in parts in [50,51].
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8.1 Spectral and Energy efficiency Analysis

In this section, we derive closed-form expressions for the spectral efficiencies

per user for DL and UL transmissions using the analysis technique from [32, 33,

116]. Then, we define the total energy efficiency of the system.

8.1.1 Spectral Efficiency

The downlink spectral efficiency per user using the proposed beamforming

schemes is given by

𝑅d
𝑘 = log2

(︀
1 + SINRd

k

)︀
≃ log2

(︃
1 +

𝜌d𝑆d
𝑘

𝜌d𝐼d𝑗𝑘 + 𝜌d𝐵𝑈d
𝑘 + 𝜎2

𝑛

)︃
, (8.1)

where

𝑆d
𝑘 =

𝑀∑︁
𝑚=1

E
[︁
||ĥH

𝑚𝑘ŵ𝑚𝑘||2
]︁
,

𝐼d𝑗𝑘 =
𝐾∑︁
𝑗 ̸=𝑘

𝑀∑︁
𝑚=1

E
[︁
||ĥH

𝑚𝑘ŵ𝑚𝑗||2
]︁
, and

𝐵𝑈d
𝑘 =

𝐾∑︁
𝑗=1

𝑀∑︁
𝑚=1

E
[︁
||h̃H

𝑚𝑘ŵ𝑚𝑗||2
]︁
,

represent the strength of the desired signal of the 𝑘th user (𝑆d
𝑘 ), the interference

generated by the 𝑗th user (𝐼d𝑗𝑘), and the beamforming gain uncertainty (𝐵𝑈d
𝑘 ),

respectively. The elements inside the norm of 𝑆d
𝑘 , 𝐼

d
𝑗𝑘 and 𝐵𝑈d

𝑘 are uncorrelated

zero mean random variables. In addition, ĥ𝑚𝑘 = h𝑚𝑘 − h̃𝑚𝑘 = Â𝑚𝑘B̂𝑚𝑘s𝑚𝑘 and

the channel uncertainty is h̃𝑚𝑘 = △𝜐(EÂ𝑚𝑘B̂𝑚𝑘)s𝑚𝑘+△𝛽Â𝑚𝑘s𝑚𝑘+△𝛽△𝜐EÂ𝑚𝑘s𝑚𝑘,

where △𝜐 and △𝛽 differ in the DL and UL directions due to un-ideal angle

reciprocity such that△𝜐d = 𝜐u−𝜐u−𝜐u/d, △𝛽d = 𝛽u−𝛽u−𝛽u/d, △𝜐u = 𝜐u−𝜐u,
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𝑅d
𝑘 ≃ log2

(︃
1 +

𝜌d
∑︀𝑀

𝑚=1 ||B̂H
𝑚𝑘Â

H
𝑚𝑘ŵ𝑚𝑘||2

𝜌d
∑︀𝐾

𝑗 ̸=𝑘

∑︀𝑀
𝑚=1 ||B̂H

𝑚𝑘Â
H
𝑚𝑘ŵ𝑚𝑗||2 + 𝜌d

∑︀𝐾
𝑗=1

∑︀𝑀
𝑚=1 Ω𝑚,𝑗 + 𝜎2

𝑛

)︃
,

(8.3)

where Ω𝑚,𝑗 = 𝜎̃2
𝜐‖(B̂H

𝑚𝑘Â
H
𝑚𝑘E)ŵ𝑚𝑗‖2 + 𝜎̃2

𝛽‖(ÂH
𝑚𝑘ŵ𝑚𝑗‖2 + 𝜎̃2

𝛽𝜎̃
2
𝜐‖(ÂH

𝑚𝑘Eŵ𝑚𝑗‖2.

𝑅u
𝑘 ≃

log2

(︃
1 +

𝜌u
∑︀𝑀

𝑚=1 ||B̂H
𝑚𝑘Â

H
𝑚𝑘v̂𝑚𝑘||2

𝜌u
∑︀𝐾

𝑗 ̸=𝑘

∑︀𝑀
𝑚=1 ||B̂H

𝑚𝑘Â
H
𝑚𝑘v̂𝑚𝑗||2 + 𝜌u

∑︀𝐾
𝑗=1

∑︀𝑀
𝑚=1 Λ𝑚,𝑗 + 𝜎2

𝑛

∑︀𝑀
𝑚=1 ||v̂𝑚𝑘||2

)︃
,

(8.4)

where Λ𝑚,𝑗 = 𝜎̃2
𝜐‖(B̂H

𝑚𝑘Â
H
𝑚𝑘E)v̂𝑚𝑗‖2 + 𝜎̃2

𝛽‖(ÂH
𝑚𝑘v̂𝑚𝑗‖2 + 𝜎̃2

𝛽𝜎̃
2
𝜐‖(ÂH

𝑚𝑘Ev̂𝑚𝑗‖2.

and △𝛽u = 𝛽u − 𝛽u.

Similarly for the uplink case, the uplink spectral efficiency per user using the

proposed combining schemes is given by

𝑅u
𝑘 ≃ log2

(︃
1 +

𝜌u𝑆u
𝑘

𝜌u𝐼u𝑗𝑘 + 𝜌u𝐵𝑈u
𝑘 + 𝜎2

𝑛

∑︀𝑀
𝑚=1 ||v̂𝑚𝑘||2

)︃
, (8.2)

where uplink desired signal power (𝑆𝑢
𝑘 ), the interference caused by the 𝑗th user

(𝐼𝑢𝑗𝑘), and the combining gain uncertainty (𝐵𝑈𝑢
𝑘 ) are defined similarly as the

downlink case but by substituting ŵ𝑚𝑗 with the combining vector v̂𝑚𝑗.

Using the fact that 𝛼𝑙 ∼ 𝒞𝒩 (0, 1) as well as the fact that angle of arrival and

the large-scale fading remain unchanged during the angle coherence time, we can

further reduce the DL and UL spectral efficiencies into closed forms as shown

in (8.3) and (8.4) at the top of the next page.
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8.1.2 Energy Efficiency

The total energy efficiency (bit/Joule) is defined as the sum throughput (bit/s)

divided by the total power consumption (Watt) in the network:

EE ,
𝐵·
∑︀𝐾

𝑘=1 𝜅𝑅𝑘

𝑃total

, (8.5)

where 𝑅𝑘 is the spectral efficiency (expressed in bit/s/Hz) for the 𝑘th user, 𝐵

is defined as the system bandwidth, 𝑃total is the total power consumption, 𝜅 =(︁
1− 𝜏

𝜏𝑐

)︁
, and 𝜏 = 𝐾 is length of pilot training sequence in samples, 𝜏𝑐 is the angle

coherence interval in samples. Furthermore, we consider the power consumption

model defined in [33]

𝑃total =
𝑀∑︁

𝑚=1

𝑃𝑚 +
𝑀∑︁

𝑚=1

𝑃bh,𝑚, (8.6)

where 𝑃𝑚 is the power consumed at the 𝑚th AP which includes the amplifier

and the circuit power consumption and the power consumption of the transceiver

chains and the power consumed for signal processing, and 𝑃bh,𝑚 represents the

power consumed by the backhaul link that transfers data between the CPU and

the 𝑚th AP. The power consumption term 𝑃𝑚 can be defined as

𝑃𝑚 =
1

𝜗𝑚

𝜌d𝜎2
𝑛

(︃
𝑁

𝐾∑︁
𝑘=1

||ŵ𝑚𝑘||2
)︃

+ 𝑁𝑃tc,𝑚, (8.7)

where 0 < 𝜗𝑚 ≤ 1 is the power amplifier efficiency, 𝜌d is the downlink SNR, 𝜎2
𝑛

is the noise power, ŵ𝑚𝑘 is the angle based beamforming vector for the 𝑚th AP

and the 𝑘th user (defined in (7.39)), 𝑁 is the number of antennas at the AP,

and 𝑃tc,𝑚 is the internal power required to operate the circuit components (e.g.,

converters, mixers, and filters) per antenna at the 𝑚th AP.

Moreover, the power consumption of the backhaul is proportional to the sum
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spectral efficiency and can be modeled as,

𝑃bh,𝑚 = 𝑃0,𝑚 + 𝐵 ·
𝐾∑︁
𝑘=1

𝜅𝑅𝑘 · 𝑃bt,𝑚, (8.8)

where 𝑃0,𝑚 is defined as a fixed power consumption of each backhaul (traffic-

independent power) which may depend on the distances between the APs and

the CPU and the system topology, and 𝑃bt,𝑚 is defined as the traffic-dependent

power (in Watt per bit/s).

8.2 Proposed Max-Min Power control

To obtain good system performance, the available power resources must be

efficiently managed. In this section, we propose a solution to the max-min

user-fairness problem in the proposed cell-free Massive MIMO system, where

the minimum rates of all users are maximized while satisfying a per-user power

constraint. We show that the FDD-based cell-free massive MIMO system can

provide uniformly good service to all users, regardless of their geographical location,

by adopting a max-min power/weight control strategy. The proposed power

control algorithm is done at the CPU, and importantly, is carried only at the

angle-coherence time-scale. Hence the impact of the signaling overhead is substantially

reduced. Moreover, we present a user centric AP selection approach to further

enhance the energy efficiency of the CF massive MIMO system.

8.2.1 Downlink Power Control

In the downlink, given realizations of the large-scale fading and the array

steering vectors, we find the power control coefficients 𝛾𝑚𝑘, 𝑚 = 1, . . . ,𝑀 , 𝑘 =
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1, . . . , 𝐾, that maximize the minimum of the downlink rates of all users, under

the power constraint (7.40). At the optimum point, all users attain the same

rate. Mathematically, this is formulated as:

max
{𝛾𝑚𝑘,𝑙}

min
𝑘=1,··· ,𝐾

𝑅d
𝑘

subject to
𝐾∑︁
𝑘=1

||Ĝ𝑚𝑘𝛾𝑚𝑘||2

||Ĝ𝑚𝑘||2
≤ 1, 𝑚 = 1, . . . ,𝑀

𝛾𝑚𝑘,𝑙 ≥ 0, ∀𝑘, ∀𝑚, ∀𝑙. (8.9)

Then, using (8.3), we can reformulate (8.9) into a max-min SINR problem as

follows:

max
{𝛾𝑚𝑘,𝑙}

min
𝑘=1,··· ,𝐾

𝜌d
∑︀𝑀

𝑚=1 ||B̂H
𝑚𝑘Â

H
𝑚𝑘ŵ𝑚𝑘||2

𝜌d
∑︀𝐾

𝑗 ̸=𝑘

∑︀𝑀
𝑚=1 ||B̂H

𝑚𝑘Â
H
𝑚𝑘ŵ𝑚𝑗 ||2+𝜌d

∑︀𝐾
𝑗=1

∑︀𝑀
𝑚=1 Ω𝑚,𝑗+𝜎2

𝑛

s.t.
𝐾∑︁
𝑘=1

||Ĝ𝑚𝑘𝛾𝑚𝑘||2

||Ĝ𝑚𝑘||2
≤ 1, ∀𝑚,

ŵ𝑚𝑘 =
Ĝ𝑚𝑘

||Ĝ𝑚𝑘||
𝛾𝑚𝑘, ∀𝑘, ∀𝑚, and

𝛾𝑚𝑘,𝑙 ≥ 0, ∀𝑘, ∀𝑚, ∀𝑙. (8.10)

One can note that (8.10) is a non-convex separable quadratically-constrained

quadratic program (QCQP) in terms of power allocation 𝛾𝑚𝑘, for all 𝑘,𝑚. Therefore,

this problem cannot be directly solved in an efficient manner using existing

convex optimization schemes. While the non-convex QCQP is NP-hard, it can be

relaxed into a convex semi-definite program (SDP) using semi-definite relaxation

(SDR) [141], in which the following property of a scalar is utilized: 𝛾H
𝑚𝑘Q𝛾𝑚𝑘 =

tr(𝛾H
𝑚𝑘Q𝛾𝑚𝑘) = tr(Q𝛾𝑚𝑘𝛾

H
𝑚𝑘), for any Q ∈ C𝐿×𝐿. Therefore, by introducing
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a new variable Γ𝑚𝑘 = 𝛾𝑚𝑘𝛾
H
𝑚𝑘, which is a rank-one symmetric positive semi-

definite (PSD) matrix, the quadratic constraints can be transformed into linear

constraints in the set of all real symmetric 𝐿 × 𝐿 matrices S𝐿. Using SDP,

problem (8.10) can be equivalently reformulated as

max
{Γ𝑚𝑘}

min
𝑘=1,··· ,𝐾

𝜌d
∑︀𝑀

𝑚=1 tr(Ξ𝑚𝑘𝑘Ξ
H
𝑚𝑘𝑘Γ𝑚𝑘)

𝜌d
∑︀𝐾

𝑗 ̸=𝑘

∑︀𝑀
𝑚=1 tr(Ξ𝑚𝑘𝑗Ξ

H
𝑚𝑘𝑗Γ𝑚𝑗)+𝜌d

∑︀𝐾
𝑗=1

∑︀𝑀
𝑚=1 Ω𝑚,𝑗+𝜎2

𝑛

s.t.
𝐾∑︁
𝑘=1

tr(ĜH
𝑚𝑘Ĝ𝑚𝑘Γ𝑚𝑘)
||Ĝ𝑚𝑘||2

≤ 1, ∀𝑚,

Γ𝑚𝑘 ⪰ 0, ∀𝑘, ∀𝑚,

rank (Γ𝑚𝑘) = 1, ∀𝑘, ∀𝑚, (8.11)

where Ξ𝑚𝑘𝑗 = B̂H
𝑚𝑘Â

H
𝑚𝑘

Ĝ𝑚𝑗

||Ĝ𝑚𝑗 ||
.

Since the rank constraint of Γ𝑚𝑘 is non-convex, we relax it to obtain the

feasible SDP formulation of (8.11) as

max
{Γ𝑚𝑘}

𝜇

s.t.

𝜌d
∑︀𝑀

𝑚=1 tr(Ξ𝑚𝑘𝑘Ξ
H
𝑚𝑘𝑘Γ𝑚𝑘)

𝜌d
∑︀𝐾

𝑗 ̸=𝑘

∑︀𝑀
𝑚=1 tr(Ξ𝑚𝑘𝑗Ξ

H
𝑚𝑘𝑗Γ𝑚𝑗)+𝜌d

∑︀𝐾
𝑗=1

∑︀𝑀
𝑚=1 Ω𝑚,𝑗+𝜎2

𝑛

≥ 𝜇,

𝐾∑︁
𝑘=1

tr(ĜH
𝑚𝑘Ĝ𝑚𝑘Γ𝑚𝑘)
||Ĝ𝑚𝑘||2

≤ 1,∀𝑚, and Γ𝑚𝑘 ⪰ 0, ∀𝑘, ∀𝑚. (8.12)

The relaxed problem (8.12) is a convex SDP and can be solved by standard

convex optimization tools such as CVX [142]. Once the optimal variables Γ̂𝑚𝑘

(∀𝑚, ∀𝑘) are obtained, we can find the rank-one approximations of Γ̂𝑚𝑘 which

are feasible for the original problem (8.10) by applying eigen-value decomposition
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Algorithm 5 SDR-based Bisection Algorithm for Solving (8.12)
1: Initialization: Define the initial values 𝜇max, 𝜇min that represent the range of

relevant values of the objective function in (8.12), and Choose a tolerance 𝜖 > 0
2: Set: 𝜇 = 𝜇max+𝜇min

2 ,

3: Solve the following convex SDP feasibility program:

4: ⎧⎪⎪⎨⎪⎪⎩
𝜌d
∑︀𝑀

𝑚=1 tr
(︀
Ξ𝑚𝑘𝑘Ξ

H
𝑚𝑘𝑘Γ𝑚𝑘

)︀
≥

𝜇
(︁
𝜌d
∑︀𝐾

𝑗 ̸=𝑘

∑︀𝑀
𝑚=1 tr

(︁
Ξ𝑚𝑘𝑗Ξ

H
𝑚𝑘𝑗Γ𝑚𝑗

)︁
+ 𝜌d

∑︀𝐾
𝑗=1

∑︀𝑀
𝑚=1Ω𝑚,𝑗 + 𝜎2

𝑛

)︁
, ∀𝑘,∑︀𝐾

𝑘=1

tr(ĜH
𝑚𝑘Ĝ𝑚𝑘Γ𝑚𝑘)
||Ĝ𝑚𝑘||2

≤ 1, ∀𝑚, and Γ𝑚𝑘 ⪰ 0, ∀𝑘, ∀𝑚,

(8.13)

5: if problem (8.13) is feasible, then

6: set 𝜇min = 𝜇
7: else set 𝜇max = 𝜇.

8: end if

9: Stop if 𝜇max − 𝜇min < 𝜖. Otherwise, go to Step 2.

10: [U𝑚𝑘,V𝑚𝑘] = EVD (Γ𝑚𝑘) , ∀𝑘, ∀𝑚, where V𝐿×𝐿 is the diagonal matrix of

eigenvalues, and U𝐿×𝐿 is a full matrix whose columns are the corresponding

eigenvectors (u).
11: 𝛾𝑚𝑘 =

√︀
max(V𝑚𝑘)u

max
𝑚,𝑘 , ∀𝑘, ∀𝑚, where umax is the corresponding eigenvector to

the maximum eigenvalue in V.

12: end

(EVD) on Γ̂𝑚𝑘, and extracting the largest eigen-value and the corresponding

eigen-vector to construct 𝛾̂𝑚𝑘. Consequently, (8.12) can be solved efficiently via

a bisection search, in which each step involves solving a sequence of convex SDP

feasibility sub problems [143]. The proposed max-min power control algorithm

is summarized in Algorithm 5.

Complexity Analysis: Here, we provide the computational complexity analysis

for the proposed Algorithm 5, which uses iterative bisection search to solve the

convex optimization problem (8.12) at each iteration. The complexity of (8.12) is

O((𝑀𝐾)4𝐿1/2) in each iteration [144]. Note that the total number of iterations to

solve the SDR Problem via a bisection search method is given by log(𝜇max−𝜇min

𝜖
),

where 𝜖 refers to a predetermined threshold [143]. Hence, the total complexity of

solving (8.12) is O((𝑀𝐾)4𝐿1/2) log(𝜇max−𝜇min

𝜖
).
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8.2.2 Uplink Weight Control

Similarly in the uplink, given realizations of the large-scale fading and the

array steering vectors, we find the weight control coefficients 𝛾𝑚𝑘, 𝑚 = 1, . . . ,𝑀 ,

𝑘 = 1, . . . , 𝐾, that maximize the minimum of the uplink rates of all users, under

the weight constraint. At the optimum point, all users attain the same rate. So,

max
{𝛾𝑚𝑘,𝑙}

min
𝑘=1,··· ,𝐾

𝑅u
𝑘

subject to
𝐾∑︁
𝑘=1

||Ĉ𝑚𝑘𝛾𝑚𝑘||2

||Ĉ𝑚𝑘||2
≤ 1, 𝑚 = 1, . . . ,𝑀,

𝛾𝑚𝑘,𝑙 ≥ 0, ∀𝑘, ∀𝑚, ∀𝑙. (8.14)

Moreover, (8.14) can be solved following the same steps as shown in subsection

(8.2.1) in the DL case.

8.2.3 User-Centric (UC) AP Selection Method

As noted from the last term in (8.6) that represents the total power consumption

of the backhaul, cell-free massive MIMO systems require more backhaul connections

to transfer data between the APs and the CPU when compared to the co-located

massive MIMO. Moreover, the second term of (8.8) has a significant effect on

the energy efficiency, especially when 𝑀 increases in (8.6). To improve the total

energy efficiency, we can further decrease the denominator of the energy efficiency

in (8.5). We present an AP selection for the user-centric case which can reduce

the backhaul power consumption, and hence, increase the energy efficiency. The

AP selection scheme is based on choosing for each user 𝑘 a subset of APs ℳ𝑘

that forms (𝛿%) of the total channel power. For a particular user, there are many
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APs which are located very far away. These APs will not impact the overall

spatial diversity gains. Hence, not all APs actually contribute in serving this

user. Furthermore,ℳ𝑘 is chosen based on the following:

ℳ𝑘∑︁
𝑚

||A⋆
𝑚𝑘B

⋆
𝑚𝑘||2∑︀𝑀

𝑚 ||A𝑚𝑘B𝑚𝑘||2
≥ 𝛿% (8.15)

where {||A⋆
1𝑘B

⋆
1𝑘||, · · · , ||A⋆

𝑀𝑘B
⋆
𝑀𝑘||} represents the sorted (in descending order)

set of the set {||A1𝑘B1𝑘||, · · · , ||A𝑀𝑘B𝑀𝑘||}. Therefore, by applying the presented

AP selection scheme, each access point 𝑚 serves a subset 𝒦𝑚 of 𝐾 users. Hence,

the power allocation schemes proposed in the preceding subsections will allocate

power 𝛾⋆
𝑚𝑘 = 𝛾𝑚𝑘 if 𝑘,𝑚 ∈ 𝒦𝑚,ℳ𝑘, respectively, and 𝛾⋆

𝑚𝑘 = 0𝐿×1 otherwise.

Therefore, Algorithm 5 can be directly applied where Γ𝑚𝑘 is replaced by 0𝐿×𝐿

when 𝑚 /∈ℳ𝑘 for 𝑘 ∈ 𝒦𝑚.

8.3 Experimental Simulation Results

In this section, we study the performance of the proposed multipath components

estimation compared to conventional schemes, and we provide numerical results

to quantitatively study the performance of FDD cell-free massive MIMO in terms

of downlink and uplink spectral efficiency for all the proposed beamforming and

combining techniques.

8.3.1 Experimental Setup and Parameters

The APs and the users are located within a square of 1× 1 km2. The square

is wrapped around at the edges to avoid boundary effects. Furthermore, for

simplicity, random pilot assignment is used. With random pilot assignment, each
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Table 8.1: Simulation Parameters
Parameter Value
Cell radius (𝐷) 1 km
System Bandwidth (𝐵) 100MHz
Uplink/Downlink Frequencies 49.8/50GHz
Uplink pilot training transmit power 𝜌 200mW
Uplink transmit power 𝜌u 200mW
Downlink transmit power 𝜌d 1000mW
Power amplifier parameter 𝜗 0.2
Internal power consumption/each backhaul, 𝑃tc,𝑚∀𝑚 [33] 0.2W
Fixed power consumption/each backhaul, 𝑃0,𝑚∀𝑚 [33] 0.825W
Traffic dependent backhaul power, 𝑃bt,𝑚∀𝑚 [33] 0.25W/(Gbits/s)
User Centric threshold (𝛿) 95%
Angle coherence interval (𝜏𝑐) 200 samples
Monte-Carlo Simulations 1000

user randomly chooses a pilot sequence from a predefined set of orthogonal pilot

sequences of length 𝜏 = 𝐾. The large-scale fading coefficient 𝛽𝑙,𝑚𝑘 is modeled as

the product of path loss and shadow fading as in [116]:

10 log10(𝛽𝑙,𝑚𝑘) =⎧⎪⎨⎪⎩ 𝑃 − 37.6 log10(𝑢𝑚𝑘) + 𝑧𝑚𝑘,𝑙 − 15 log10(𝑢1), if 𝑢𝑚𝑘 > 𝑢1;

𝑃 − 35 log10(𝑢𝑚𝑘) + 𝑧𝑚𝑘,𝑙, if 𝑢𝑚𝑘 ≤ 𝑢1.

where 𝑢𝑚𝑘 is the distance between the𝑚th AP and 𝑘th user in kilometers, 𝑧𝑚𝑘,𝑙 ∼

𝒩 (0, 𝜎2
𝑧) is the shadow fading variable with 𝜎𝑧 = 8 dB, 𝑢1 = 0.05 km and 𝑃 =

−148 dB for line-of-sight (LOS) and 𝑃 = −158 dB for non-line-of-sight (NLOS)

propagation.

Moreover, for the AP selection schemes, we choose 𝛿 = 95%. The system

parameters used throughout the experimental simulations are summarized in

Table 8.1.
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Figure 8.1: RMSE performance of the multipath component estimation versus
SNR for 𝑁 = 32 and 𝑇 = 16 compared with the gradient-descent based
estimation and subspace-based estimation.

8.3.2 Results and Discussions

Performance of Multipath Component Estimation

In Fig. 8.1, the root mean-square error (RMSE) of the presented multipath

component estimation technique is evaluated for 𝑁 = 32 and 𝑇 = 16. We

compare the performance of the presented method with that of MUSIC and

ESPRIT algorithms, which are subspace-based multipath component estimation

techniques that depend on the correlation matrix of the received data [106, 107]

and the gradient-descent-based algorithm [116]. The plots demonstrate that the

proposed DFT-based technique outperforms the conventional approaches in [106,

107] and [116]. Also, the normalized RMSE performance of the proposed large-

scale fading coefficient estimation outperforms that of conventional subspace-

based estimation [106, 107] and gradient-descent-based estimation [116]. The

large scale fading estimation in [106, 107, 116] cannot work well when number of
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samples (snapshots) 𝑇 is small.

Moreover, it can be seen that the presented AoA estimation and the large-

scale fading estimation method performs slightly worse than that of theoretical

bound in (7.33) since the search grid is large enough (𝒢 = 100).

Performance of Spectral Efficiency

We compare the performance of the proposed angle-based beamforming and

combining schemes (A-MF/A-ZF and A-MMSE) for the FDD-based cell-free

massive MIMO with the conventional ideal beamforming and combining schemes

(MF/ZF and MMSE) in terms of spectral efficiency for the case of 𝑀 = 10

APs with 𝑁 = 32 antennas and 𝐾 = 20 users. We consider the conventional

full-channel-based beamforming and combining schemes (MF/ZF and MMSE) as

benchmarks, but they are inapplicable in a realistic FDD cell-free massive MIMO

system since complete channel knowledge requires large amount of signaling

overhead and feedback.

For the downlink scenario in Fig. 8.2(a), and for the uplink scenario in Fig. 8.2(b),

the spectral efficiency of the proposed beamforming/combining schemes with

imperfect multipath component estimation is shown. As shown in the figures, the

A-MMSE beamforming/combining outperforms A-ZF and A-MF beamforming/

combining, due to their ability to suppress interference and noise. In addition,

at high SNR (low noise) the A-ZF matches A-MMSE in performance as both

of the schemes are able to suppress interference. Moreover at moderate to high

SNR values, A-MMSE, A-ZF, and A-MF lead to about 10 − 40% sum rate loss

compared to the conventional ideal beamforming/combining schemes (MF/ZF

and MMSE). However, with the proposed angle-based beamforming schemes, the

DL CSI signaling overhead is avoided.
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Finally, we evaluate the validity of our closed-form expression for the downlink

achievable rate for the proposed angle based beamformers given in (8.3) with

imperfect multipath component estimation. In Fig. 8.2(a), we show the accuracy

of the proposed closed form of the proposed angle based beamformers (8.3) with

the simulated form (8.16)

𝑅̃d =
𝐾∑︁
𝑘=1

E

[︃
log2

(︃
1 +

𝜌d
∑︀𝑀

𝑚=1 ||hH
𝑚𝑘ŵ𝑚𝑘||2

𝜌d
∑︀𝐾

𝑗 ̸=𝑘

∑︀𝑀
𝑚=1 ||hH

𝑚𝑘ŵ𝑚𝑗||2 + 𝜎2
𝑛

)︃]︃
. (8.16)

Moreover, (8.16) represents the achievable rate for genie-aided users that know

the instantaneous channel gain [32].

In Fig. 8.2(b), we also validate the closed-form expression for the uplink

achievable rate for the proposed angle based combining given in (8.4) for imperfect

multipath component estimation with simulated form (8.17)

𝑅̃u =
𝐾∑︁
𝑘=1

E

[︃
log2

(︃
1 +

𝜌u
∑︀𝑀

𝑚=1||hH
𝑚𝑘v̂𝑚𝑘||2

𝜌u
∑︀𝐾

𝑗 ̸=𝑘

∑︀𝑀
𝑚=1 ||hH

𝑚𝑘v̂𝑚𝑗||2 + Υ𝜎

)︃]︃
. (8.17)

where Υ𝜎 = 𝜎2
𝑛

∑︀𝑀
𝑚=1 ||v̂𝑚𝑘||2.

One can notice that the closed form achievable rate perfectly matches with

Monte Carlo simulated rates. This indicates that our derived expressions (8.3)

and (8.4) are valid performance predictors of the proposed FDD-based cell-free

massive MIMO system.

Effect of the Number of APs 𝑀 for a Fixed Total Number of Service
Antennas (𝑁𝑀)

Furthermore, we examine the performance of the proposed FDD-based cell-

free massive MIMO system with different numbers of APs for the downlink case.
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For fair comparison, the total transmit power in the network is the same, and the

number of total service antennas is fixed, i.e. 𝑁𝑀 = 320. Figure 8.3(a) shows

the average spectral efficiency (𝜅×
∑︀𝐾

𝑘 𝑅d
𝑘 where 𝜅 = 1− 𝜏

𝜏𝑐
, 𝜏 = 𝐾 corresponds

to the length of pilot training sequence in samples, and 𝜏𝑐 corresponds to the

angle coherence interval in samples) as a function of the number of APs. We

are able to compare the spectral efficiency of cell-free massive MIMO and co-

located massive MIMO where the co-located massive MIMO corresponds to the

case 𝑀 = 1. It can be seen that the spectral efficiency of the cell-free massive

MIMO (for 𝑀 = 10 and 𝑁 = 32) is better than that of the co-located massive

MIMO (𝑀 = 1 and 𝑁 = 320) due to spatial diversity gains. However, as the

number of APs increases while decreasing the number of antennas per AP, the

performance of the cell-free massive MIMO starts to decay. The main reasons for

this decay are: 1) for a particular user, there are many APs which are located

very far away. These APs will not add significantly to the overall spatial diversity

gains which implies that not all APs really participate in serving this user; and

2) angle-based beamforming performs better for higher number of antennas.

Effect of the Number of Antennas per AP

Finally, to support our findings in Fig. 8.3(a), we study the performance of

FDD-based cell-free massive MIMO system with different numbers of antennas

per AP for a fixed number of APs (𝑀 = 10) in Fig. 8.3(b). As the number of

antennas increases, the spectral efficiency increases due to the increased array

gain in addition to the applied angle-based beamforming. It can be seen that the

spectral efficiency saturates for 𝑁 ≥ 32 as no further gains are attained.
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Performance of the Proposed Power/Weight Control on DL/UL Spectral
Efficiency

We compare the DL/UL spectral efficiency performance of the proposed angle-

based beamforming and combining schemes (A-ZF and A-MMSE) for the FDD-

based cell-free massive MIMO with equal power allocation, water-filling power

allocation and the proposed max-min power/weight control for the CF case (AP

selection is not applied) and the UC case (AP selection is applied). One can note

that the water-filling PC approach is based only on the angle and large-scale

fading parameters in which the allocated power is

𝜌𝑚𝑘 = max{ 1
𝒦𝑚

(︃
𝜌tot +

∑︁
𝑘∈𝒦𝑚

𝜎2
𝑛(||A𝑚𝑘B𝑚𝑘||2)−1

)︃
− 𝜎2

𝑛(||A𝑚𝑘B𝑚𝑘||2)−1, 0},

where 𝜌tot = 𝒦𝑚𝜌
d is the total power, and 𝒦𝑚 = 𝐾 only if the UC AP selection

is not applied. Moreover, the water-filling PC approach is applicable in the

DL direction, since only the APs have the knowledge of the angle and large

scale fading parameters, whereas for the UL direction the users cannot have this

information due to the incurred high signaling overhead.

For the downlink scenario in Figs. 8.4(a) and 8.5(a), and for the uplink

scenario in Figs. 8.4(b) and 8.5(b), the spectral efficiency using the proposed

max-min power/weight control schemes is significantly enhanced compared to

the case of equal power control and water-filling power control, especially at

high SNR values. In particular, as shown in Fig. 8.4(a), the DL sum-rate of

the proposed A-MMSE and A-ZF beamforming using max-min power control is

increased by 12%-38% compared to the equal power allocation case. While, in

Fig. 8.4(b), the UL sum rate of the proposed A-MMSE and A-ZF combining

using max-min weight control is increased by 10%-25% due to the fact that the
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downlink uses more power (since 𝜌d > 𝜌u) and has more power control coefficients

to choose than the uplink does, hence the DL performance is better than the UL

performance. Moreover, as shown in Figs. 8.4, and 8.5, the UC approach has

better performance than that of the CF case since the UEs obtain very noisy

signals from the far APs, and not all APs actually participate in serving the

users.

In addition, the cumulative distribution function (CDF) curve for the proposed

max-min power control scheme is plotted in Fig. 8.6(a), and compared with the

equal PC and the water-filling PC schemes at SNR= 10 dB. As expected, the

max-min PC scheme was able to outperform the rest of the PC schemes and

improve the system fairness for both cases CF and UC, respectively.

Energy Efficiency versus Number of APs 𝑀 and a Fixed Total Number
of Service Antennas (𝑁𝑀)

Figure 8.6(b) examines the energy efficiency (8.5) as a function of the number

of AP for a fixed total number of service antennas, when the number of AP

increases, the number of antennas per AP decreases. As shown, the energy effi-

ciency while applying the proposed max-min power control significantly outperforms

that of equal power control by 40%-50%, especially when the UC AP selection

scheme is applied. Furthermore, we are able to compare the energy efficiency

of cell-free massive MIMO and co-located massive MIMO where the co-located

massive MIMO corresponds to the case 𝑀 = 1. It can be seen that the energy

efficiency of the cell-free massive MIMO (for 𝑀 = 10 and 𝑁 = 32) is better

than that of the co-located massive MIMO (𝑀 = 1 and 𝑁 = 320) due to spatial

diversity gains, and better spectral efficiency as shown in Fig. 8.3(a). Moreover,

the number of APs will affect the level of backhaul power consumption; therefore,
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as the number of APs increases while decreasing the number of antennas per

AP, the performance of the cell-free massive MIMO starts to decay due to the

increased backhaul power consumption as shown in (8.8).

Multi-antenna Users extension

In this subsection, we finally study the effect of having multi-antenna users on

the proposed FDD cell-free massive MIMO system where each user is equipped

with 𝑁 ′ antennas. First, the updated channel model is given by

H𝑁×𝑁 ′ =

√︂
1

𝐿
AAPBΛ𝛼(AUE)H, (8.18)

whereAAP
𝑁×𝐿 = [a

(︀
𝜑AP
1

)︀
, . . . , a

(︀
𝜑AP
𝐿

)︀
], B𝐿×𝐿 = diag(

√
𝛽1, . . . ,

√
𝛽𝐿), (Λ𝛼)𝐿×𝐿 =

diag(𝛼1, . . . , 𝛼𝐿), andAUE
𝑁 ′×𝐿 = [a

(︀
𝜑UE
1

)︀
, . . . , a

(︀
𝜑UE
𝐿

)︀
]. Moreover, the DL spectral

efficiency per user is given by

𝜅×𝑅̃d =
(︁

1− 𝜏
𝜏𝑐

)︁
×

𝐾∑︁
𝑘=1

E
[︂
log2

(︂
1 +

𝜌d
∑︀𝑀

𝑚=1 ||v̂H
𝑚⋆𝑘

HH
𝑚𝑘ŵ𝑚𝑘||2

𝜌d
∑︀𝐾

𝑗 ̸=𝑘

∑︀𝑀
𝑚=1 ||v̂H

𝑚⋆𝑘
HH

𝑚𝑘ŵ𝑚𝑗 ||2+𝜎2
𝑛

)︂]︂
, (8.19)

where v̂𝑚⋆𝑘 corresponds to the combining vector at the multi-antenna 𝑘th user

that is based on the estimated AoA of the user from the strongest AP 𝑚⋆.

Moreover, the combining vector v̂𝑚⋆𝑘 follows the same definition as the combining

vector defined in Section 7.3.2 eq. (7.45), but in this case Ĉ𝑚⋆ = ÂUE
𝑚⋆

(︁
(ÂUE

𝑚⋆)HÂUE
𝑚⋆

)︁−1

,

and the beamforming vector ŵ𝑚𝑘 follows the same definition as the A-ZF combin-

ing vector defined in Section 7.3.1. The strongest AP 𝑚⋆ is the AP that has

the best channel quality with 𝑘th user. One can note that only the 𝑚⋆th AP

will need to feed back the combining vector v̂𝑚⋆𝑘 to the 𝑘th user; hence, no

131



extensive signaling overhead is needed from all the APs to feed back the estimated

multipath components to the 𝑘th user. Finally, note that 𝜏 = 𝐾𝑁 ′ depends on

the number of users 𝐾 and scales linearly with the number of antennas at the

users 𝑁 ′. Therefore, the factor (1 − 𝜏
𝜏𝑐

) is an important limiting factor when

determining the achievable rates for multi-antenna users.

In Fig. 8.7, the performance of the simulated DL spectral efficiency is studied

assuming that RMSE ^𝜑AP = RMSE ^𝜑UE = RMSE𝛽 = −18 dB. As shown, the DL

spectral efficiency first increases when the number of antennas per user increases.

However, this spectral efficiency will reach a peak value and then decrease when

the number of antennas per user increases. This is due to the fact that although

the spatial diversity per user increases, the multipath channel estimation overhead

(the training duration relative to the angle coherence interval) also increases. This

channel estimation overhead becomes dominant when 𝑁 ′ and 𝐾 are large.

8.4 Conclusion

In this work, an FDD-based cell-free massive MIMO system that directly

acquires multipath components from the uplink pilot signal and processes them

for AP cooperation has been considered. It has been shown that an FDD-based

cell-free massive MIMO system is a viable alternative compared to a TDD-based

system in which angle reciprocity can be exploited to avoid DL CSI feedback and

overhead. A low complexity multipath component (AoA and large-scale fading)

estimation technique based on DFT operation, along with angle rotation with

very small amount of training overhead and feedback cost, has been presented.

To evaluate the benefits of the proposed methods, theoretical bounds on the

MSE have been derived and validated. In addition, angle-based beamformers

132



and combiners, which incur CSI overhead that scales only with the number

of served users rather than the total number of serving antennas, have been

proposed. Finally, a new max-min power/weight control algorithm and associated

AP selection scheme that significantly improve the downlink and uplink sum-rate

and energy efficiency compared to equal-power allocation and water-filling power

control have been proposed.

The spectral efficiency of the presented FDD-based cell-free massive MIMO

system has been shown to outperform that of cell-based systems for an adequate

number of antennas at the APs and a small number of APs. Furthermore, when

the number of active users in the system is small, the spectral efficiency also

improves upon equipping the users with an adequate number of antennas.
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Figure 8.2: Spectral efficiency of the proposed beamforming schemes versus SNR
for 𝑀 = 10 APs with 𝑁 = 32 antennas and 𝐾 = 20 users under imperfect
channel estimation: (a) for DL, and (b) UL.
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Figure 8.3: DL sum-rate of the proposed combining schemes versus (a) number
of APs at SNR=10 dB for 𝑀𝑁 = 320 and 𝐾 = {10, 20, 40} users, and (b) versus
number of antennas 𝑁 at various SNR values for 𝑀 = 10 APs and 𝐾 = 20 users.
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Figure 8.4: Spectral efficiency of the proposed combining schemes with equal
power control, water-filling power control and the proposed max-min power
control versus SNR for 𝑀 = 10 APs, and 𝐾 = 20 users for the Cell-Free (CF)
massive MIMO (AP selection is not applied): (a) DL and (b) UL.
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Figure 8.5: Same as Fig. 8.4 but applying the user centric (UC) AP selection
scheme: (a) DL and (b) UL.
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Figure 8.6: (a) Cumulative distribution of the spectral efficiency for all power
control schemes with/without applying the proposed AP selection (CF/UC), and
(b) DL energy efficiency of the proposed combining schemes with equal power
control and max-min power control versus number of APs. Here, SNR=10 dB for
𝑀 = 10, 𝑁 = 32, and 𝐾 = 20 users.
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users for 𝐾 = {10, 20, 40}, 𝑀 = 10, and 𝑁 = 32.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

The performance of network densification technologies in cellular commun-

ications greatly depends on efficient interference mitigation schemes to improve

the capacity and spectral efficiency. This dissertation has considered interfer-

ence mitigation schemes for emerging network densification technologies in 5G

communications by proposing and analyzing: 1) channel allocation and power

control schemes for D2D and NOMA MIMO systems, 2) baseband processing

schemes for quantized massive MIMO systems, 4) angle domain processing techniq-

ues for FDD-based cell-free massive MIMO systems, and 5) efficient power control

schemes for cell-free massive MIMO while considering the effect of backhaul power

consumption.

In the proposed underlaid D2D cellular systems, stochastic geometry has been

used to derive closed-form analytical expressions for the coverage probabilities

and ergodic sum-rates. These closed form expressions have provided insight into
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how the key network parameters such as power allocation, D2D link density,

SINR targets affect link performance and quality. It is shown that a channel

allocation scheme that allows D2D links to share resources with more than

just one cellular user has merit. New power control schemes targeted for D2D

link establishment and link maintenance have been shown to adequately control

interference levels under various static and dynamic conditions, using distance-

based path-loss parameters (with error margin), varying target SINR, and local

CSI. It has been shown through experimental simulations that network perform-

ance in terms of coverage probability and spectral efficiency is improved by

activating more underlaid D2D links while maintaining the quality of cellular

links, and at the same time enhancing power efficiency.

In the proposed large MIMO-NOMA system, a low complexity joint clustering

and power control scheme has been proposed, that exploits the distance-based

path-loss parameter, to guarantee efficient SIC demodulation. An architectural

design has been presented, by using the detectors of lower complexity as building

blocks in their more complex extensions, and the proposed schemes have been

shown to achieve significant computational savings.

Furthermore, using the Bussgang decomposition, a new MMSE-based linear

detection scheme that incorporates the non-linear effects of quantization has been

proposed. A closed form expression for the uplink achievable rate has been

derived, and used to analyze and compare the performance of a quantized massive

MIMO system against both a large MIMO system that employs higher-order

modulation. In particular, it has been shown that for a few bits of quantization

(e.g., 2 or 3 bits), the quantized massive MIMO for the uplink and downlink cases

can outperform the conventional MIMO.

And finally, it has been shown that an FDD-based cell-free massive MIMO
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system is a viable alternative compared to a TDD-based system in which angle

reciprocity can be exploited to avoid DL CSI feedback and overhead. A low comp-

lexity multipath component (AoA and large-scale fading) estimation technique

based on DFT operation, along with angle rotation with very small amount of

training overhead and feedback cost, has been presented. To evaluate the benefits

of the proposed methods, theoretical bounds on the MSE have been derived and

validated. In addition, angle-based beamformers and combiners, which incur

CSI overhead that scales only with the number of served users rather than the

total number of serving antennas, have been proposed. Moreover, a new max-

min power/weight control algorithm and associated AP selection scheme that

significantly improve the downlink and uplink sum-rate and energy efficiency

compared to equal-power allocation and water-filling power control have been

proposed. The spectral efficiency of the presented FDD-based cell-free massive

MIMO system has been shown to outperform that of cell-based systems for an

adequate number of antennas at the APs and a small number of APs.

9.2 Open Research Directions and Future work

Network infrastructure densification has been proposed as one of the leading

concepts to cope with the growing traffic trends. And, cell-free massive MIMO is

a relatively new topic where plenty of directions can be exploited for future work.

There is an endless road of possible improvements and extensions to the

results of this dissertation. Deep learning approaches and data-driven algorithm

approximation have recently received much attention as key enablers for future

wireless networks such as 5G and beyond [145–148]. Signal processing and

numerical optimization techniques have been heavily used in addressing wireless
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resource management problems such as resource allocation and channel estimation.

However, optimization algorithms often require considerable computational comp-

lexity and processing overhead, which creates a critical gap between theore-

tical design/analysis and real-time processing requirements. To overcome these

challenges, new learning-based approaches, in the context of channel estimation

and resource allocation, need to be studied. The central idea is to treat the input

and output of a channel estimation/resource allocation algorithm as an unknown

non-linear mapping and use a deep neural network (DNN) to approximate it.

Moreover, the deep neural network is trained offline in a time that is fully

affordable. Several extensions for future work have been conceived in the process

of writing this dissertation:

∙ Explore deep learning based super-resolution direction of arrivals (DoA)

estimation methods in cell-free massive MIMO with low resolution ADCs.

A custom-designed DNN can be employed to carry out offline learning and

online deployment procedures. This data-driven approximation mechanism

can learn the features of the wireless channel efficiently. Our previously

proposed channel multipath components estimation algorithm [50, 51] can

be used during the training stage to find the optimal training data sets for

the considered channel-angle estimation problem. This training procedure

can be done under offline setups wherein high complexity algorithms are

affordable to train the network. Once the neural network is trained, fewer

operations are left to be executed online, i.e., only a few operations need to

be repeated sporadically when the system channel realizations vary. This

is different from the conventional online channel estimation methods based

on the traditional use of optimization theory, which need to be updated

every time one or more system channel realizations have changed.
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∙ Investigate deep-learning-based power control approaches for quantized cell-

free massive MIMO system. Power control algorithms are needed to conserve

energy consumption and to allow scalable implementation in cell-free massive

MIMO system [51, 137]. Therefore, deep-learning based power control

schemes suitable for interference mitigation shall be studied. Compared

with co-located massive MIMO systems, cell-free massive MIMO systems

require more backhaul connections to transfer the data between the APs and

the CPU. Therefore, the total energy efficiency of the considered cell free

massive MIMO system should be studied taking into account the hardware

power consumption at the APs and the power consumption of the backhaul

links. One can build on our previously proposed optimization-based power

control scheme to generate the training data set and perform the offline

training of the neural network. The reduced complexity of our proposed

semi-definite programming based power control algorithm makes it practical

to generate offline large training sets with optimal power allocations.

∙ Explore beamforming/combining schemes while considering deep learning-

based quantized cell-free massive MIMO system. Cell-free massive MIMO

systems exhibit remarkably superior achievable rates compared with centra-

lized massive MIMO and conventional small cell systems, especially when

the appropriate power control strategy is applied [50,51,136,137]. However,

most prior work on distributed MIMO systems equip all nodes with high

resolution antennas, which incurs significant costs for distributed cell-free

massive MIMO systems, since the hardware cost grows significantly with

the quantization bits and sampling rate [106,107]. To mitigate the hardware

cost overhead, the use of low-resolution ADCs is an attractive solution to

save both the expenditure and energy at antennas [107–113,115].
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Furthermore, angle-based beamforming and combining schemes shall be

studied that incorporate the severity of coarse quantization on cell-free

massive MIMO systems. In particular, once the effect of low resolution

ADCs is taken into consideration during deep learning-based multipath

channel estimation, one can further investigate distributed quantized beam-

forming/combining schemes and explore performance-complexity tradeoffs.

Furthermore, the system performance shall be analyzed by studying the

achievable rate.
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Appendix A

Proofs

A.1 Proof of Lemma 1

For the case of two cellular users, we have using (3.8):

P[𝑄𝑘 = 1] =P[
𝑥⏞ ⏟ 

𝑑𝑘,𝑐1 ≥
𝑦⏞ ⏟ 

𝑑𝑘,𝑐2 ] =

∫︁∫︁
(𝑥,𝑦;𝑥≥𝑦)

𝑓𝑋,𝑌 (𝑥, 𝑦)𝑑𝑥 𝑑𝑦 =

∫︁ 2𝑅C

0

∫︁ 𝑥

0

𝑓𝑌 (𝑦)𝑑𝑦 𝑓𝑋(𝑥)𝑑𝑥

=

∫︁ 2𝑅C

0

∫︁ 𝑥

0

2𝑦
𝑅2
C

(︂
2
𝜋 cos−1

(︁
𝑦

2𝑅C

)︁
− 𝑦

𝜋𝑅C

√︂
1− 𝑦2

4𝑅2
C

)︂
𝑑𝑦⏟  ⏞  

𝒜(𝑥)

𝑓𝑋(𝑥)𝑑𝑥.

(A.1)

To solve (A.1), integral 𝒜(𝑥) can be directly computed as follows

𝒜(𝑥) = 1 + 2
𝜋

(︁
𝑥2

𝑅2
C

− 1
)︁

cos−1
(︁

𝑥
2𝑅C

)︁
− 𝑥

𝜋𝑅C

(︁
1 + 𝑥2

2𝑅C

)︁√︁
1− 𝑥2

4𝑅2
C

.

Now using this expression for 𝒜(𝑥), we solve (A.1)

P[𝑑𝑘,𝑐1 ≥ 𝑑𝑘,𝑐2 ] =

∫︁ 2𝑅C

0

𝒜(𝑥) 2𝑥
𝑅2
C

(︁
2
𝜋

cos−1
(︁

𝑥
2𝑅C

)︁
− 𝑥

𝜋𝑅C

√︁
1− 𝑥2

4𝑅2
C

)︁
𝑑𝑥 =

1

2
. (A.2)
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For the general case of 𝑀 cellular users, we have:

P[

𝑦1⏞ ⏟ 
𝑑𝑘,𝑐1 ≥ max{

𝑦2⏞ ⏟ 
𝑑𝑘,𝑐2 , · · · ,

𝑦𝑀⏞  ⏟  
𝑑𝑘,𝑐𝑀}] =

𝑀∫︁
· · ·
∫︁

(𝑦1,𝑦𝑖;𝑦1≥𝑦𝑖)

𝑓𝑌1,𝑌2(𝑦1, 𝑦2) · · · 𝑓𝑌1,𝑌𝑀
(𝑦1, 𝑦𝑀)𝑑𝑦1 . . . 𝑑𝑦𝑀

=
1

𝑀

A.2 Proof of Proposition 1

Using (3.5), the cellular coverage probability is given by

𝒫cov,C = E

[︃
P

(︃
|ℎ0,𝑐𝑚|2 ≥ 𝛽0𝑑

𝛼
0,𝑐𝑚𝜌

−1
0

(︃∑︁
𝑥𝑘∈Φ′

|ℎ0,𝑘|2𝑑−𝛼
0,𝑘𝜌𝑘 + 𝜎2

)︃)︃]︃

= E
[︁
𝑒−𝛽0𝑑𝛼0,𝑐𝑚𝜌−1

0 (
∑︀

𝑥𝑘∈Φ′ |ℎ0,𝑘|2𝑑−𝛼
0,𝑘𝜌𝑘+𝜎2)

]︁
= E

[︁
𝑒−𝛽0𝜎2𝑑𝛼0,𝑐𝑚𝜌−1

0

]︁
E
[︁
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0 (
∑︀

𝑥𝑘∈Φ′ |ℎ0,𝑘|2𝑑−𝛼
0,𝑘𝜌𝑘)

]︁

For the proposed channel allocation scheme, the Laplace transform ℒΦ′(𝑠) is given

as

ℒΦ′(𝑠) , E
[︁
𝑒−𝑠(

∑︀
𝑘∈Φ′ |ℎ0,𝑘|2𝑑−𝛼

0,𝑘𝜌𝑘)
]︁

= 𝑒
− 𝜋
sinc(2/𝛼)

E
[︁
𝜌
2/𝛼
𝑘

]︁
P[𝑄𝑘=1]𝜆𝑠2/𝛼

where 𝑠 = 𝛽0𝑑
𝛼
0,𝑐𝑚𝜌

−1
0 . The result follows. Furthermore, it turns out that the

Laplace transform is easier than determining the distribution functions, and it

completely characterizes the distribution of PPP [68,70].

A.2.1 Proof of Proposition 2

We first need to derive the expectation of the interference term from other

D2D users. Using Slivnyak’s theorem [70] and considering the proposed channel

allocation scheme, the reduced PPP excluding the 𝑘th point (Φ′ ∖ 𝑥𝑘) remains
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the same as the original PPP Φ′. Hence,

ℒΦ′∖{𝑥𝑘}(𝑠) = E
[︁
𝑒−𝑠

∑︀
𝑥𝑖∈Φ′∖{𝑥𝑘} 𝜌𝑖|ℎ𝑘,𝑖|2‖𝑥𝑖‖−𝛼

|𝑘 ∈ Φ′
]︁

= ℒΦ′(𝑠) = 𝑒
−𝜋P[𝑄𝑘=1]𝜆

sinc(2/𝛼)
E
[︁
𝜌
2/𝛼
𝑘

]︁
𝑠2/𝛼

.

Therefore, the coverage probability of the D2D links is given by

P(SINR𝑘 ≥ 𝛽𝑘) =P

⎛⎝|ℎ𝑘,𝑘|2≥
𝛽𝑘𝑑

𝛼
𝑘,𝑘

𝜌𝑘

⎛⎝ ∑︁
𝑥𝑖∈Φ′∖{𝑥𝑘}

𝜌𝑖|ℎ𝑘,𝑖|2

‖𝑥𝑖‖𝛼
+
𝜌0|ℎ𝑘,𝑐𝑚 |2

𝑑𝛼𝑘,𝑐𝑚
+ 𝜎2

⎞⎠⎞⎠
=E
[︁
𝑒−𝛽𝑘𝜌

−1
𝑘 𝑑𝛼𝑘,𝑘(

∑︀
𝑥𝑖∈Φ′∖{𝑥𝑘}𝜌𝑖|ℎ𝑘,𝑖|2‖𝑥𝑖‖−𝛼+𝜌0|ℎ𝑘,𝑐𝑚 |2𝑑−𝛼

𝑘,𝑐𝑚
+𝜎2)

]︁
= E𝑍

[︁
𝑒−𝜎2𝛽𝜌−1

𝑘 𝑑𝛼𝑘,𝑘ℒΦ′
(︀
𝛽𝑘𝜌

−1
𝑘 𝑑𝛼𝑘,𝑘

)︀
ℒ𝑌

(︀
𝛽𝑘𝜌

−1
𝑘 𝑑𝛼𝑘,𝑘

)︀]︁
,

where 𝑍 = 𝑑𝛼𝑘,𝑘𝜌
−1
𝑘 , 𝑌 = |ℎ𝑘,𝑐𝑚 |2𝑑−𝛼

𝑘,𝑐𝑚
𝜌0, and ℒ𝑌 (𝛽𝑘𝑍) = E𝑌 [𝑒−(𝛽𝑘𝑍)𝑌 ] .

A.3 Proof of Corollary 1

For simplicity, we derive the expressions for 𝑑𝑘,𝑐1 . The same approach can be

used for 𝑑𝑘,𝑐2 . We set 𝐷𝑐1 = 𝑑𝑘,𝑐1 as the distance from any 𝑘th D2D transmitter to

the cellular UE 𝑐1 such that 𝑑𝑘,𝑐1 ≥ 𝑑𝑘,𝑐2 ; in other words, 𝐷𝑐1 = 𝑑𝑘,𝑐11{𝑑𝑘,𝑐1≥𝑑𝑘,𝑐2},

where 1 is the indicator function.

Let 𝑋1 = 𝑑𝑘,𝑐1 , 𝑋2 = 𝑑𝑘,𝑐2 with pdfs 𝑓𝑋1(𝑥) and 𝑓𝑋2(𝑦) as given in (3.8). We

can then express the pdf of 𝐷𝑐1 as follows:

𝑓𝐷𝑐1
(𝑥) =

∫︁ 𝑥

0

𝑓𝑋1|𝑋2
(𝑥|𝑦)P[𝑋1≥𝑦]𝑓𝑋2

(𝑦)

P[𝑋1≥𝑋2]
𝑑𝑦 =

∫︁ 𝑥

0

𝑓𝑋1|𝑋2
(𝑥|𝑦)P[𝑋1≥𝑦]

2𝑦
𝑅2
C

(︃
2
𝜋
cos−1

(︁ 𝑦
2𝑅C

)︁
− 𝑦
𝜋𝑅C

√︃
1− 𝑦2

4𝑅2
C

)︃
P[{𝑑𝑘,𝑐1≥𝑑𝑘,𝑐2 ]

𝑑𝑦

= 1
P[{𝑑𝑘,𝑐1≥𝑑𝑘,𝑐2 ]

(︁
2𝑥
𝑅2
C

(︁
2
𝜋
cos−1

(︁
𝑥

2𝑅C

)︁
− 𝑥

𝜋𝑅C

√︁
1− 𝑥2

4𝑅2
C

)︁)︁
×
(︁

1 + 2
𝜋

(︁
𝑥2

𝑅2
C

− 1
)︁

cos−1
(︁

𝑥
2𝑅C

)︁
− 𝑥

𝜋𝑅C

(︁
1 + 𝑥2

2𝑅C

)︁√︁
1− 𝑥2

4𝑅2
C

)︁
.
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The 𝑛th moment of 𝑋1 is obtained by computing
∫︀ 2𝑅C

0
𝑥𝑛𝑓𝐷𝑐1

(𝑥), from which we

deduce that E [𝑑𝑘,𝑐1 ] ≈ 512𝑅C

45𝜋2 .

Remark : When no resource allocation is applied so that all active D2D users

share resources with one CUE, the first moment of the distance between two

uniformly distributed points is E [𝑑𝑘,𝑐1 ] = 128𝑅C/(45𝜋) [118].

A.4 Proof of Theorem 1

To calculate E
[︁
𝜌

2
𝛼
𝑘

]︁
= E

[︁
min(𝑈

2
𝛼𝑑2𝑘,𝑘, 𝑉

2
𝛼𝑑20,𝑘)

]︁
, we let 𝐴 = 𝑈

2
𝛼𝑑2𝑘,𝑘 and

𝐵 = 𝑉
2
𝛼𝑑20,𝑘. Using the Jacobian transformation [149], we have 𝑓𝐴(𝑎) = 1

𝑅2
D𝑈

2
𝛼
,

𝐹𝐴(𝑎) = 𝑎

𝑅2
D𝑈

2
𝛼
, 𝑓𝐵(𝑏) = 1

𝑅2
C𝑉

2
𝛼
and 𝐹𝐵(𝑏) = 𝑏

𝑅2
C𝑉

2
𝛼
. Then,

E
[︁
𝜌

2
𝛼
𝑘

]︁
=

∫︁ ∞

−∞

∫︁ ∞

−∞
min(𝑎, 𝑏)𝑓𝐴(𝑎)𝑓𝐵(𝑏)𝑑𝑎 𝑑𝑏

=

∫︁ ∞

−∞
𝑎𝑓𝐴(𝑎)

(︂∫︁ ∞

𝑎

𝑓𝐵(𝑏)𝑑𝑏

)︂
𝑑𝑎 +

∫︁ ∞

−∞
𝑏𝑓𝐵(𝑏)

(︂∫︁ ∞

𝑏

𝑓𝐴(𝑎)𝑑𝑎

)︂
𝑑𝑏

=

∫︁ ∞

−∞
𝑎𝑓𝐴(𝑎) (1− 𝐹𝐵(𝑎)) 𝑑𝑎 +

∫︁ ∞

−∞
𝑏𝑓𝐵(𝑏) (1− 𝐹𝐴(𝑏)) 𝑑𝑏

=

∫︁ ∞

−∞
𝑎𝑓𝐴(𝑎)𝑑𝑎 +

∫︁ ∞

−∞
𝑏𝑓𝐵(𝑏)𝑑𝑏−

(︂∫︁ ∞

−∞
𝑎𝑓𝐴(𝑎)𝐹𝐵(𝑎)𝑑𝑎 +

∫︁ ∞

−∞
𝑏𝑓𝐵(𝑏)𝐹𝐴(𝑏)𝑑𝑏

)︂
= E[𝐴] + E[𝐵]− E[max(𝐴,𝐵)].

A.5 Proof of Lemma 2

Let 𝐴 and 𝐵 be two random variables with pdfs 𝑓𝐴(𝑎) and 𝑓𝐵(𝑏), and cdfs

𝐹𝐴(𝑎) and 𝐹𝐵(𝑏), respectively. Then,

E[max(𝐴,𝐵)] =

∫︁ ∞

−∞

∫︁ ∞

−∞
max(𝑎, 𝑏)𝑓𝐴(𝑎)𝑓𝐵(𝑏)𝑑𝑎 𝑑𝑏
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=

∫︁ ∞

−∞
𝑎𝑓𝐴(𝑎)

(︂∫︁ 𝑎

−∞
𝑓𝐵(𝑏)𝑑𝑏

)︂
𝑑𝑎 +

∫︁ ∞

−∞
𝑏𝑓𝐵(𝑏)

(︂∫︁ 𝑏

−∞
𝑓𝐴(𝑎)𝑑𝑎

)︂
𝑑𝑏

from which the result follows.

A.6 Proof of Corollary 2

To calculate E[max(𝐴,𝐵)], we consider two cases.

Case 1 : If 𝑅2
D𝑈

2/𝛼 , 𝑎′ > 𝑏′ , 𝑅2
C𝑉

2/𝛼. Then, applying (4.15), we have

E[max(𝐴,𝐵)] =

∫︁ 𝑏′

0

𝑎𝑓𝐴(𝑎)𝐹𝐵(𝑎)𝑑𝑎 +

∫︁ 𝑎′

𝑏′
𝑎𝑓𝐴(𝑎)× 1𝑑𝑎 +

∫︁ 𝑏′

0

𝑏𝑓𝐵(𝑏)𝐹𝐴(𝑏)𝑑𝑏

=
𝑏′2

3𝑎′
+

𝑎′2 − 𝑏′2

2𝑎′
+

𝑏′2

3𝑎′
=

𝑏′2

6𝑎′
+

𝑎′

2

=
𝑅4

C𝑉
4/𝛼

6𝑅2
D𝑈

2/𝛼
+

𝑅2
D𝑈

2/𝛼

2

Case 2 : If 𝑎′ ≤ 𝑏′, then following the same approach, we obtain

E[max(𝐴,𝐵)] =
𝑎′2

6𝑏′
+

𝑏′

2
=

𝑅4
D𝑈

4/𝛼

6𝑅2
C𝑉

2/𝛼
+

𝑅2
C𝑉

2/𝛼

2

A similar expression for E[min(𝐴,𝐵)] can be easily derived by applying Theorem 1.
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Appendix B

Abbreviations

1G First generation

2D-DFT Two dimensional discrete Fourier transform

3GPP Third Generation Partnership Project

4G Fourth generation

5G Fifth generation

A-MF A-MF Angle based Matched Filter

A-MMSE Angle-Based MMSE Beamforming

A-ZF Angle-Based Zero-Forcing Beamforming

ADC Analog-to-digital converter

AoA Angle of Arrival

AoD Angle of Departure

AP Access points

BER Bit error rate

BS Base station

CA Channel allocation
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CD Chase detector

CDF Commulative distribution function

CF Cell-free

CLPC Closed loop PC

CPU Central processing unit

CSI Channel state information

CUE Cellular User Equipment

D2D Device-to-device

DAC Digital-to-analog converter

DFT Discrete Fourier transform

DL Downlink

DNN Deep neural network

DoA direction of arrivals

DPPC Distance-based Path-loss Power Control

EDPPC Extended Distance-based Path-loss Power Control

eNB E-Node B

ESPRIT Estimation of signal parameters via rotational invariance technique

FDD Frequency-division duplexing

FFT Fast Fourier transform

GAD Geographical area description

HetNet Heterogeneous Network

ICI Inter-cell interference

JDCP Joint distance-based path-loss clustering and power control scheme

LORD Layered orthogonal lattice detector

LOS Line-of-sight

LR Lattice reduction
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LTE Long Term Evolution

MIMO Multiple-input and multiple-output

ML Maximum likelihood

MMSE Minimum mean square error

mmWave Millimeter wave

MRC Maximal ratio combining

MSE Mean Square Error

MUSIC Multiple signal classification

NC Nulling-and-cancellation

NLOS Non-line-of-sight

NOMA Non-orthogonal multiple access

OLPC Open loop PC

OMA Orthogonal multiple access

PC Power control

PCD Punctured CD

PNC Punctured NC

PPP Poison point process

PRB Physical resource block

PSBCH Physical Sidelink Broadcast Channel

PSCCH Physical Sidelink Control Channel

PSD Positive semidefinite

QCQP Quadratically-constrained quadratic program

QoS Quality of service

QRD QR decomposition

RF Radio-frequency

RMSE Root mean-square error
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RSRP Reference signal received power

RX Receiver

SD Sphere decoders

SD Superposition coding

SDDPC Soft Dropping Distance-based Power Control

SDP Semi-definite program

SDR Semi-definite relaxation

SIC Successive interference cancellation

SINR Signal-tointerference-plus-noise ratio

SNR Signal-to-noise ratio

SSD Subspace detector

SVD Singular value decomposition

TDD Time-division duplex

TTI Transmission time interval

TX Transmitter

UC User-Centric

UE User Equipment

UL Uplink

ULA Uniform linear array

WRD WR decomposition

ZF Zero forcing
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Appendix C

Notations

E[·] Expectation of an event

P[·] Probability of an event

ℒ𝑋 Laplace transform of a variable 𝑋

𝒫cov,L Coverage probability of link 𝐿

𝐹𝑋(·) Cumulative distribution function (cdf) of variable 𝑋

𝑓𝑋(·) Probability density function (pdf) of variable 𝑋

𝑥 Scalar

x Vector

X Matrix

|·| Scalar norms

‖·‖ Vector L2 norm

‖·‖F Frobenius norms

(·)T Transpose of a vector or matrix

(·)* Complex conjugate

(·)H Hermitian
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P⊥ Orthogonal projection matrix

tr(·) Trace of a matrix

X† Pseudo-inverse (XHX)−1XH

X ⪰ 0 X is a positive semi-definite matrix

[x]𝑖 𝑖th element of a vector x

[X]𝑖𝑗 (𝑖, 𝑗)th element is given by X

𝒞𝒩 (0, 𝜎2) Circularly-symmetric complex Gaussian distribution with zero mean and variance 𝜎2

diag{X} Diagonal of a matrix X.

C𝑁×𝑀 The set of complex-valued 𝑁 ×𝑀 matrices

∀𝑥 Means that a statement holds for all x (in the set that 𝑥 belongs to)

ℜ{·} Real part of a complex scalar

ℑ{·} Imaginary part of a complex scalar
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