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An Abstract of the Thesis of

Mahdi Chehimi for Master of Engineering
Major: Electrical and Computer Engineering

Title: Physical Layer Security for Combating Jammers and Eavesdroppers

Wirelessly connected devices play a vital role in people’s daily life, especially
with the rapid increase in the number of devices connected to the internet and
the huge data being generated everyday. However, the open nature of the wireless
channels makes them vulnerable to several threats. Two major threats are: eaves-
dropping attacks in which an adversary side tries to capture the transmitted data
between two communicating parties, and jamming attacks in which an adversary
side tries to disrupt the reception of useful signals by a legitimate receiver. The
concept of physical layer security is gaining more and more attention from the
research community nowadays. It makes use of the open nature and randomness
of the wireless channel to achieve security in the communications system. In this
thesis, the problem of combating passive eavesdroppers and jammers is studied.
Multiple different scenarios are considered and security solutions based on the
physical layer are proposed. The proposed solutions are based on the usage of
massive planar antenna arrays. First, a solution for combating a single passive
eavesdropper at a known location is proposed. It is based on dedicating some
antenna sub-arrays for the communication link between the legitimate parties,
while simultaneously sending jamming signals towards the eavesdropper. Next, a
look-up table-based physical layer solution is proposed to perform anti-jamming
against a single jammer at a known location. The solution is based on perform-
ing beamforming by maximizing the receiver’s gain towards the transmitter, and
simultaneously placing a null in the direction of the jammer, thus, achieving
a high signal-to-interference-plus-noise-ratio (SINR). Finally, the proposed anti-
jamming technique is extended, and machine learning (ML) and deep learning
(DL) algorithms are deployed in order to build a robust, and cognitive anti-
jamming system. The dataset on which the models were trained and tested was
generated, and efficient anti-jamming performance was achieved. The proposed
models are scalable and can be extended to scenarios with multiple jammers. In-
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sights for an effective method for detecting the location of the jammer are drawn
from the proposed ML/DL models and left for future investigation.
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Chapter 1

Introduction

Wirelessly connected devices became an indispensable part of people’s daily
life. New Technologies are nowadays playing a vital role in our work environ-
ments, sport activities, health systems, transportation networks and vehicles,
navigation systems, and even in the education systems [1]. The number of physi-
cal devices connected to the Internet is rapidly increasing forming what is known
as the Internet-of-Things (IoT) which will converge to the Internet of Everything
(IoE) [2]. The IoT is creating a huge network of trillions of ”Things” or devices
that are communicating with each other [3]. It includes both human-to-machine
and machine-to machine (M2M) communications. M2M is a very promising trend
that is expected to transform various vertical sectors such as smart cities, smart
homes, and car networking because of its advantages which include low-cost, low
power consumption and narrow bandwidth [4]. Another technology that is gain-
ing more and more interest is Device-to-Device (D2D) communications which
is a key technology in 5G cellular communication networks. In D2D commu-
nications, two communication devices close to each other communicate directly
through spectrum sharing, without relying on a base station [5]. In addition to
the rapid development of smart self-driving cars and the usage of Unmanned-
Aerial-Vehicles and drones in delivering goods and in extending the coverage of
wireless networks. These technologies, among others such as large intelligent sur-
faces and edge Artificial Intelligence (AI), are expected to play a vital role in the
next generation of wireless communication networks (6G) [2].

According to [6], the number of IoT devices is expected to reach 20.8 billion
by 2020, and the number of M2M devices is expected to reach 50 billion by the
next decade. Thus, the market of IoT devices is expected to keep expanding in
the foreseen future. According to McKinsey’s report on disruptive technologies
and advances that will transform life, business, and the global economy [7], the
estimated potential economic impact of IoT in 2025 will range between 2.7$ and
6.2$ trillion.

With the massive amounts of data that is generated on a daily basis, de-
ploying artificial intelligence (AI) and big data handling algorithms become a
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necessity [8]. In fact, machine learning (ML) and deep learning (DL) algorithms
are attracting the attention of researchers in the wireless communications and
networking communities [2], since they have a huge potential in the future wire-
less networks. Further details on this issue will be given in section 2.5.

This increasing reliance on wirelessly connected devices comes along with
many security threats more than the traditional wired systems. The open nature
of the wireless channels makes them vulnerable to malicious threats and attacks.
In this thesis, we consider two types of attacks. First, eavesdropping, where the
adversary side tries to capture the legitimate transmitted information [9].The
second one is jamming attacks where the adversary side tries to disrupt the
reception of the legitimate transmitted signals [10] by sending jamming signals
towards the receiver. It is apparently a great challenge to keep the wireless
communication link safe and reliable.

In general, wireless communication networks adopt the OSI reference model
for their architecture [11]. This model divides the network into seven layers. Vul-
nerabilities and threats attack all the layers of the protocol. In general, security
solutions are proposed separately for each of these layers to meet its requirements
of security and confidentiality [10].

Traditionally, cryptographic algorithms and cipher schemes are the most em-
ployed techniques to achieve security and confidentiality in wireless communica-
tion links [12, 13]. These techniques are generally applied at the upper layers of
the protocol stack [14]. The performance of cryptographic encryption/decryption
security methods is efficient and, in many cases, they provide security to wireless
links. However, these methods suffer from serious vulnerabilities such as heavy
computation and key management costs. Thus, the system may suffer from high
complexity and resource consumption [15].

Recently, new techniques for securing wireless communication links were pro-
posed. An interesting new method, that is gaining more attention from the
research community, makes use of the open nature and the randomness of the
wireless channels to achieve information theoretic-based security. The method is
known as Physical Layer Security (PLS) [10]. PLS aims to clarify the fundamen-
tal ability of the physical layer to support secure wireless communications [13, 16].
The advantages of working on the physical layer are the small effect it has on
the system and the fact that it only needs one round of operation working on
its signals. Thus, it is the fastest layer among the others [17]. Also, because of
the features of the physical layer, PLS techniques are able to accommodate any
changes in the wireless channel by flexibly adjusting the transmission strategies
and parameters [14].

Developed from the early work of Wyner [18, 19], PLS is useful for improving
the performance of a huge variety of applications including but not limited to
5G networks, IoT applications, Device-to-Device communication, and military
applications [20]. Regarding 5G networks, employing PLS is advantageous over
cryptographic techniques at upper layers. This is because unlike cryptographic
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techniques which are computation-based, PLS techniques do not depend on com-
putational complexity. Thus, if the adversary side (e.g. eavesdropper) is equipped
with powerful computational tools, the PLS solution can keep the communica-
tion link reliable, while the security provided by cryptographic solutions becomes
questionable [21]. For IoT applications, appealing PLS solutions are the robust
methods supplementing lightweight cryptographic protocols [22, 23]. In general,
these methods try to improve the legitimate signal reception while degrading the
ability of illegitimate users to receive useful information. This is done by making
use of the differences between legitimate and illegitimate channel conditions [24].
Moreover, PLS is being an effective candidate for securing D2D communication
as shown in [25, 26].

In general, PLS techniques include both cryptographic and non-cryptographic
solutions. Non-cryptographic solutions include applying beamforming algorithms,
and Artificial Noise (AN)-aided techniques using antenna arrays, especially large
arrays like Massive MIMO [27, 28]. On the other hand, cryptographic solutions in-
clude data integrity, source authentication, and key generation techniques among
others [20, 29, 30, 31].

In this thesis, several PLS solutions for combating eavesdroppers and jam-
mers are proposed. Different scenarios are considered and solutions to secure the
legitimate communication link in each of them are proposed. Finally, ML and
DL algorithms are deployed in an anti-jamming system in order to secure the
system in an intelligent way.

The outline of this thesis is as follows: Chapter 2 presents a review of other
works done in the literature regarding the technologies and systems studied in
this thesis. In Chapter 3, an overview of planar antenna arrays and the wireless
channel model adopted in this thesis is given. Chapter 4 summarizes the proposed
solution for combating passive eavesdroppers. In Chapter 5, the proposed anti-
jamming techniques based on the physical layer are described. The conclusion
and future works are described in Chapter 6. Finally, the references are given.
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Chapter 2

Literature Review

The objective of this literature survey is to give a general overview about
some important concepts related to this thesis work and to discuss the existing
works in the literature. We start by giving an overview about the existing PLS
techniques for combating passive eavesdroppers. Then, we present some of the
anti-jamming techniques at the physical layer. Next, massive MIMO technology
and its rule in PLS is discussed. After that, we briefly discuss some cryptographic
security techniques at the physical layer. Finally, we discuss the role of machine
learning and deep learning in the future of wireless communications and focus on
their applications in PLS.

2.1 Combating Passive Eavesdroppers

Eavesdropping has always been an important problem that grabbed the at-
tention of the research community. It plays a vital role in battlefields since every
side tries to capture as much information as possible from its adversary. Thus,
several countermeasures for eavesdropping are proposed in the literature. As we
mentioned in the introduction, two types of eavesdropping attacks exist in reality.
Passive and active attacks. Passive attacks are more suitable for someone who
is hiding and does not want to expose his location to his enemy. Thus, he stays
passive trying to capture some of the transmitted data without sending any sig-
nal. He needs to be located close to the receiver or in the direction of a side-lobe
of the transmitter so that he gets some information. This type of eavesdropping
attacks keeps the eavesdropper safe, but can be combated using different tech-
niques. Among the important physical layer techniques proposed to enhance the
security of wireless networks is the use of multiple antenna technology since it is
powerful in terms of beamforming and achieving diversity gain [32]. The litera-
ture is rich with works on PLS for combating passive eavesdroppers using MIMO
and massive MIMO technologies. In fact, massive MIMO technology is believed
to be resilient against passive eavesdropping. This is considered true assuming
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that the eavesdropper’s channel and the uplink channel estimation of the receiver
are independent. Thus, the eavesdropper is motivated to launch active attacks on
the channel estimation process in order to affect the transmitter’s beamforming
design [9]. These active attacks are referred to as Pilot Contamination Attacks
(PCA). In this thesis, we will only focus on combating passive eavesdropping
attacks.

Among the famous techniques to achieve secret communications in the pres-
ence of passive eavesdroppers is employing friendly jammer nodes which interfere
with the eavesdroppers and confuse them [33]. The achievable secrecy rates in
multi-antenna wiretap channels depend on the rate of information received by the
eavesdroppers. Relays and jamming nodes are added to the wireless networks to
improve the system’s performance, achieve secrecy in data transmission, and min-
imize the amount of information the eavesdropper is able to obtain [34, 35]. The
authors in [36] study the power minimization and secrecy rate maximization op-
timization problems for a MIMO system, where a multi-antenna eavesdropper is
present in the system. Secret communication is improved by employing a multi-
antenna cooperative jammer. The authors deploy game-theoretic techniques to
improve the secrecy of the system.

An essential point in designing the PLS techniques for combating eavesdrop-
pers is the assumption taken regarding the knowledge of the channel state in-
formation (CSI) at the transmitter and the receiver. Many works take the sim-
plified assumption of perfect CSI of both the receiver and the eavesdropper at
the transmitter. In fact, the assumption that the transmitter has perfect CSI of
the receiver is somehow realistic, since it can be known by sending and receiving
pilots. However, the assumption of perfect CSI of the passive eavesdropper is not
very practical since it is very difficult for the transmitter to detect the presence of
a passive eavesdropper or to identify its location. However, in some special cases,
the assumption of knowing the location of the eavesdropper can be realistic. For
example, in a battlefield, if you know that your enemy has a military point at a
specific location, then it is most expected that the enemy will try to eavesdrop
from this point and try to capture any information transmitted in its vicinity.
In conclusion, the less information about CSI is assumed, the more practical
the proposed PLS solution is. An example of the practical assumptions regard-
ing CSI is the work of Mutangana and Tandon in [37] where they consider the
MIMO wiretap channel in the presence of a multi-antenna cooperative jammer
and study the secure degrees of freedom (SDoF) taking into consideration the
inter-symbol interference (ISI) in the channel. The authors assume no CSI at the
legitimate transmitter and the cooperative jammer and only statistical knowl-
edge of the channel is assumed. That is, the knowledge of the channel impulse
response lengths which is the effective number of ISI channel taps toward both
the eavesdropper and the legitimate receiver. It was shown that positive SDoF
can be achieved under special conditions with no knowledge of CST at the trans-
mitters and a secure scheme is proposed where the transmitter sends a mixture
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of useful data and artificial noise in addition to the specially designed jamming
signals sent by the cooperative jammer. The imperfect CSI is studied by Yang et
al. [38] considering a multi-user massive MIMO system where channel estimation
errors are considered, in addition to the delay during the data transmission and
processing phases which causes the CSI to be outdated. Moreover, the different
effects of the imperfect CSI on the system’s performance in terms of secrecy, in
addition to its effects on the ergodic secrecy capacity of the system are analyzed
and discussed in details. Also, the authors propose a scheme for predicting the
channel state trying to overcome the imperfections in the predicted CSI. Finally,
the harmful effect of the imperfect CSI on the system’s secrecy and the secrecy
improvements gained from using the proposed scheme for channel prediction are
validated by simulation results.

In order to further enhance the security of wireless systems, an artificial noise
(AN)-aided approach was introduced by Goel and Negi [39]. It is a well-known
technique to confuse eavesdroppers where the transmitter transmits confidential
messages and embeds noise in them. Liu et al. [40] studied the use of artificial
noise to achiebve secrecy in a MIMO system. The authors proposed the concept of
practical secrecy as a new criterion to evaluate the secrecy of the communication
system in the presence of an eavesdropper. This concept studies how the error
probability of the eavesdropper behaves as the SNR goes to infinity. The authors
show that practical secrecy can be achieved even in the case where the eavesdrop-
per is equipped with a larger number of antennas than the legitimate transmitter.
Hu et al. [41] consider a scenario of combating multiple passive eavesdroppers
by deploying a cooperative jammer in the wireless network. Perfect receiver CSI
is assumed available while only statistical CSIs of the eavesdroppers is available.
Also, the transmitter performs beamforming and embeds artificial noise in its
data transmission. First, an exact closed-form expression of the secrecy outage
probability was derived, conditions to achieve positive secrecy were established
and secrecy rate is maximized. The authors also studied the effects of the channel
quality and the number of passive eavesdroppers on the design of the transmis-
sion scheme and the system’s performance in terms of secrecy. It was noted that
the optimal ratio between the power of the useful information carrying signal
and the power of the artificial noise signal increases when the quality of the avail-
able wireless channel increases. Also, this ratio is degraded when the number of
eavesdroppers is increased. That is, a stronger AN signal is required when there
is a large number of eavesdroppers in order to mislead them. Simulation results
proved the secure system performance under the proposed scheme, in addition to
the importance of the cooperative jammer in securing the wireless network.

Another interesting idea for enhancing the security of wireless systems using
PLS solutions is the deployment of a full-duplex (FD) jamming receiver which
was proposed in [42]. It is shown that a better secrecy performance is achieved if
the AN signal is sent by the FD receiver instead of the legitimate transmitter. In
[43], a FD receiver is considered to combat passive eavesdropping. Enhancements
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in the secrecy performance of the system were noted compared to the case when
a half-duplex (HD) receiver was used. In [44], the FD receiver dedicates some of
its multiple antennas to send AN signals toward a multi-antenna eavesdropper.
In addition to the AN signals the transmitter sends. Ma et al. [45] consider a
scenario of multiple passive eavesdroppers that do not collude with each other. A
multi-antenna FD receiver and a multi-antenna cooperative jammer are consid-
ered in the system to improve the secrecy performance. Here too, perfect CSI of
the receiver is assumed available, while only statistical CSI of the eavesdropper’s
channels is considered. The proposed scheme proves secure in simulation results.

Finally, in order to improve the secrecy performance of the wireless systems
with multiple antennas against passive eavesdropping, transmit antenna selec-
tion is a well studied technique. In this method, the antenna elements in the
antenna array which experience the best channel conditions are considered for
data transmission, while the antennas with bad channel conditions are not used
for data transmission. In [46], transmit antenna selection is performed over α−µ
fading wireless channels and different assumptions regarding the knowledge of
the CSI of the receiver and the eavesdropper are considered. In many cases, the
optimization problem of antenna selection is combined with the power allocation
optimization problem in massive MIMO systems. An example is the work of Li et
al. [47] where joint antenna selection and power allocation is studied to achieve
an energy-efficient Massive MIMO system. An intelligent implementation of the
antenna selection problem in massive MIMO systems using Monte Carlo Tree
Search technique is proposed in [48]. Thus, antenna selection is an important
concept to be taken into consideration when designing a PLS solution based on
massive MIMO systems.

2.2 Anti-Jamming Techniques at The Physical

Layer

In electronic warfare, the attackers try to make use of any tool capable of dis-
rupting the communication links of their adversaries [49]. In this regard, jamming
attacks are considered the strongest Denial of Service (DNS) attacks in terms of
wireless communications disruption [50]. Generally speaking, jamming attacks
may be intentional from an adversary side that tries to prevent the legitimate
receiver from correctly receiving the actual transmitted signals from the legiti-
mate transmitter by sending noise signals towards the receiver [10, 50]. However,
jamming may be unintentional too. An example is radio frequency interference
(RFI) which comes from other telecommunication devices and may act like jam-
ming signals [51]. The victims of jamming attacks range from IoT devices and
e-health devices which help monitoring the health of humans [24], to satellite
based navigational systems like the Global Positioning System (GPS) and the
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Global Navigation Satellite System (GNSS) [52, 53]. In addition to smart cities
and smart homes [54], among many others like transportation networks, and po-
lice radars. These are some civil victims of jamming attacks. On top of that,
jamming attacks and their countermeasures known as anti-jamming techniques
play a very critical role in military applications and battlefields [55, 56]. Actually,
victory in modern wars is achieved by winning the electronic warfare. Defence
institutions all over the world are rushing to possess the most advanced elec-
tronic countermeasures to deceive, confuse and disable the defence systems of
their enemies while keeping their own communication infrastructure covert [56].

There is huge variety of jamming models and techniques. Among the effective
attacks which proved an efficient jamming performance are four famous jamming
models which were described in [57]:

• The constant jammer which continuously emits radio signals.

• The deceptive jammer which injects regular packets constantly and does not
send random bits. No gap is left between the transmitted packets in order
to deceive the legitimate receiver and make it believe that a real message
is being transmitted.

• The random jammer which alternates its state between jamming and sleep-
ing. So, it sends jamming signals for a specific period of time, then it turns
off and stops sending any signal for another specific time period. When
jamming, the jammer behaves like either a constant or a deceptive jammer.

• The three mentioned jammer models are considered to be active jammers
since they all try to block the channel and keep it busy without checking if
data packets are being sent or not. These types of jammers are considered
to be effective, however, they risk being easily detected. The fourth type of
jammers is not an active jammer, it is rather a reactive jammer that spies
on the channel to sense if data packets are being transmitted. Whenever
it detects data transmission on the channel, it sends jamming signals to
interfere with the legitimate data and disrupt its reception. This is one of
the most powerful jammers that is difficult to be detected.

There are several methods for combating jamming attacks, also known as anti-
jamming, which happen at different layers of the protocol stack depending on the
nature of the attack [50]. Conventional anti-jamming techniques include transmit
power control and frequency hopping [58]. Do et al. [59] considers a scenario
where a single-antenna jammer is jamming a legitimate user with single antenna
while communicating with a massive MIMO Base Station (BS). An anti-jamming
technique based on pilot re-transmission in the uplink is proposed. Both random
and deterministic jamming scenarios are studied and an efficient anti-jamming
performance is obtained.
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The physical layer plays a major role in the anti-jamming process, especially
with the use of antenna arrays. Anti-jamming techniques that are completely
performed at the physical layer [50] include the famous spread spectrum commu-
nications technique which is a signal processing based technique [60]. In addition
to the usage of directive antennas and beamforming algorithms to perform anti-
jamming [61], which is the method adopted in this thesis. In particular, in anti-
jamming beamforming using planar antenna arrays, the legitimate signal is added
constructively, while the jamming signal is added destructively in the same time.
Another famous anti-jamming strategy that is based on multi-antenna wireless
communication systems is the optimum joint design of both the transmit and
receive beamforming [62]. The literature is rich with anti-jamming techniques
using antenna arrays. For example, some anti-jamming methods apply for GNSS
systems such as inertial aiding, spatial filtering, time and frequency filtering, and
vector tracking [51]. An approach for chirp-style jamming signal suppression in
GNSS receivers using an adaptive-partitioned subspace projection is developed
in [63]. Also, adaptive antenna array systems are used to achieve reliable GNSS
signals quality where the antenna outputs are weighted and summed to perform
beamforming and null steering in specific directions. In order to maximise the ar-
ray output signal-to-interference-plus-noise-ratio (SINR), the minimum variance
distortionless response (MVDR) method [64] and minimum mean square error
(MMSE) method [65] have been proved to be optimum for GPS signals. The
performance of the MMSE method was improved in [66].

As mentioned previously, reactive jammers are very powerful and difficult to
be detected. Many of the existing techniques to combat reactive jammers re-
quire modifying the physical layer protocols, which is difficult to implement in
commercially available devices, or require specialized hardware, that is expen-
sive [67]. Lim et al. [68] exploit the decoy signal which means transmitting fake
information in order to deceive the enemy. By properly designing the beamform-
ing strategy at the transmitter and receiver, the proposed anti-jamming scheme
successfully deceives reactive jammers. Authors in [67] propose an anti-jamming
protocol, named “BitTransfer”, that preserves the legitimate communication link
in the presence of powerful reactive jamming attacks. In BitTransfer, information
bits are embedded in radio activity operations, the absence of any radio activity
is represented by a 0, and the reception of a corrupted packet at the receiver
is represented by a 1. The proposed protocol proved an efficient performance
in a wide class of commercial wireless devices. It is open-source, robust, and
has a superior performance compared with the existing jamming countermea-
sures. Finally, an important system that can play an effective role in launching
and mitigating jamming attacks is Software Defined Radio (SDR) and Cogni-
tive Radio (CR) networks. Baldini et al. [69] study and summarize the security
challenges including jamming attacks in SDR and CR.
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2.3 Massive MIMO Technology and Physical Layer

Security

Massive MIMO is considered to be the key enabler of the 5G technology be-
cause of its ability to provide high spectral efficiency in the coverage tier [70].
Massive MIMO ensures the serving of multiple user equipments (UEs) in the
same time-frequency resources and has a large number of antennas at the base
station than UEs per cell to suppress interference efficiently [71]. The BS needs to
perform beamforming efficiently in order to benefit from the large number of an-
tennas. Generally, MIMO communication systems use digital beamforming tech-
niques aiming to provide the full capacity of the communication systems. In order
to achieve beamforming using the multiple antennas of the system, simple pre-
coding is required at the transmitter. Then, decoding is applied by the receiver.
Several precoding techniques exist for digital beamforming such as zero forcing
beamforming (ZF) and maximum ratio transmission (MRT) [72]. However, when
massive MIMO is considered, deploying digital beamforming techniques becomes
highly expensive and is infeasible in lower frequency bands [73],[74]. This is why
millimeter wave (mmWave) frequencies were studied in the literature and consid-
ered as one of the promising technologies for the fifth generation 5G. To achieve
the high antenna gain needed to handle the required huge capacity of 5G, the
use of mmWave alone is not enough and we need to overcome the large cost
of massive MIMO beamforming. In order to overcome the problems of digital
beamforming, analog beamforming was introduced where low cost phase shifters
were deployed instead of the expensive analog to digital converters and frequency
converters [75]. Analog beamforming is also unable to give the full potential of
spacial multiplexing gain because of the constraints that phase shifters have on
their constant modulus in addition to their performance [76]. In order to achieve
a better performace in terms of throughput and spectral efficiency, in addition to
low cost of implementation that makes massive MIMO systems practically realiz-
able, hybrid beamfroming is introduced at both the analog and digital domains.
In fact, hybrid beamforming achieves a performance that is close to the digital
beamforming performance but with much lower complexity. The authors in [77]
studied hybrid beamforming for a downlink massive MIMO system. They com-
pared the performances of fully digital and fully analog beamforming with the
hybrid beamforming. Both uniform and nonuniform linear arrays were consid-
ered in the system. The non-uniform linear arrays considered are binomial and
Dolph-Chebyshev arrays which help reducing the side-lobe level and maximizing
the antenna directivity, respectively. Further details about non-uniform antenna
arrays will be given in chapter 3. Simulation results in [77] indicate that the per-
formances of hybrid beamforming and fully digital beamforming are very similar
to each other. Also, results show that deploying non-uniform antenna arrays with
hybrid beamforming significantly improves the performance and makes it closer
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to the performance of the fully digital beamforming system while it requires a
lower power complexity.

An important aspect of Massive MIMO that has yet only received limited
attention is PLS [78]. Massive MIMO provides robustness against passive eaves-
dropping which improves the physical layer security [9]. Researches have shown
the ability of Massive MIMO to provide a secure communication between the
transmitter and receiver in the presence of an eavesdropper. Having a large num-
ber of antennas at the transmitter facilitates beamforming of the transmitted
signals in the direction of the intended users while weakening the signals’ inten-
sities in other directions; thus, reducing the capability of eavesdroppers to detect
the secret key, encrypted messages or even unencrypted messages [70, 79]. In this
way, the main beam of the array will be directed toward the receiver, whereas
the eavesdropper would be placed at side-lobes or nulls.

Also, similar to the work [45] mentioned in section 2.1 that uses MIMO an-
tennas, massive MIMO antenna arrays can be used to provide transmission of
data to the receiver while jamming the eavesdropper simultaneously. This can be
achieved by dedicating part of the antenna elements at the transmitter for send-
ing jamming signals toward the eavesdropper while the other elements would be
used to transmit the useful signals to the legitimate destination [80]. In this way,
Massive MIMO limits the ability of eavesdroppers to detect useful signals [79].

The design of the antennas in massive MIMO systems is a major factor espe-
cially when the purpose of the system is to provide physical layer security. Several
aspects need to be taken into consideration such as the array configuration, type
and number of antenna elements, and mutual coupling, all of which play a role
in the system performance. Some antenna configurations in Massive MIMO for
physical layer security have been studied such as massive cylindrical antenna ar-
rays in [81]. In Chapter 3 of this thesis, we will describe a very important type
of massive MIMO antennas which is planar antenna arrays that will be used in
the proposed security solutions.

2.4 Cryptographic Security Techniques at The

Physical Layer

In the majority of work done in the literature, the proposed PLS solutions
generally focus on one of the aforementioned techniques to provide security. The
authors in [20] showed that it is not optimal to depend only on the randomness of
the wireless channel to secure wireless systems. Thus, combining cryptographic
and non-cryptographic PLS solutions should be adopted to provide further secu-
rity and robustness for wireless systems. In fact, developing a chain of security
mechanisms at different layers may make the communication system only as
strong as the weakest security mechanism at one layer [82]. However, combining
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cryptographic and non-cryptographic techniques at the physical layer strengthens
the system’s security at the physical layer.

Mucchi et al. [82] try to answer the question: ”How to measure the benefit
that PLS can bring to cryptography?” The authors investigate an eavesdrop-
ping attack where they combine PLS with traditional cryptography of wireless
systems. Simulation results show the advantages of combining both techniques
since PLS increases the detection error of the eavesdropper and, in the same
time, the data received by the eavesdropper is encrypted. In spatial modulation
massive MIMO systems, existing PLS techniques usually result in degradation
in the spectral efficiency and require a predefined secret key and perfect channel
state information. In order to enhance the security of spatial modulation mas-
sive MIMO systems and to overcome the problems in existing PLS techniques,
Wang et al. [83] propose an encryption approach at the physical layer, named
chaotic antenna-index three-dimensional modulation and constellation points ro-
tated (CATMCPR). The proposed approach exploits the chaotic theory and spa-
tial modulation techniques. It is proven that the CATMCPR scheme overcomes
the drawbacks in conventional PLS techniques and guarantees secure communi-
cation links.

Generally, wireless systems apply public key cryptography in order to generate
and exchange secret keys between the transmitter and the receiver so that the
communication link is secured. These public keys require complex computations
to achieve the specified secrecy level of the key bits. Usually, extracting the secret
keys depend on the reciprocity of the channel state between the transmitter and
the receiver. Taha and Alsusa [84] propose a key exchange technique that is based
on the physical layer. In this technique, the key bits are transmitted by encoding
them within some phase randomization sequences which are “privately indexed
to a specific channel criterion”. The authors tested the proposed technique on
an OFDM MIMO system. Simulation results demonstrate that the proposed
technique achieves superior key error rate performance at a lower computational
complexity with better secrecy performance.

Liu et al. [85] proposed the unshared secret key (USK) cryptosystem that
combines PLS with traditional cryptographic security solutions. In USK, the
injected AN is redesigned so that it is aligned within the null space between
the legitimate transmitter and the receiver. The proposed USK cryptosystem
is proven to guarantee Shannon’s perfect secrecy without requiring secret key
exchanging.
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2.5 Machine Learning and Deep Learning in Wire-

less Communications and Physical Layer Se-

curity

The future of wireless networks and wireless communications includes the de-
ployment of massive amounts of sensors and wearables where everything around
us will become connected transmitting data streams [86]. Thus, achieving ultra-
reliable low-latency communications is a must in order to handle the vast amount
of data being generated and to guarantee good performance of the different wire-
less services [5]. This rapid development of the IoT and the evolution of new
wireless services lead to the development of the 5G technologies like massive
MIMO, millimeter wave(mmW) communications, and device-to-device commu-
nications (D2D) which promise to handle the large amounts of data that is being
generated [86]. These technologies have been identified and some of them are
already implemented [87, 88]. However, intelligence is required in order to inte-
grate these technologies in a way that handles the IoT requirements and meets its
challenges. The intelligent functions are required at both the core and the edge
of the wireless network and they must be able to optimize its performance to
achieve the required Quality of Service (QoS) by the emerging IoT and wireless
services. This is achieved by properly exploiting the available wireless resources
and handling the generated data [86]. In order to achieve this intelligence, the
research community must focus on deploying the concepts and the fundamen-
tals of artificial intelligence (AI) [89] in wireless communications and networking
infrastructure and within consumer devices. The true potential of AI in wire-
less communications began with the recent developments in machine learning
(ML)[90] and neural networks (NN)[91]. In order to build wireless networks that
are based on AI, researchers must focus on exploiting the various ML techniques
and NN architectures. In fact, the most important task to be performed is to
choose the right ML and NN tools and tailor them so that they become com-
patible with the special characteristics of the wireless medium [92]. An example
of applying ML algorithms in IoT sensor networks is the work of AlHajri et al.
[93] which applied ML techniques for classifying the surrounding objects in the
indoor environment for IoT sensor networks. In fact, classifying the surroundings
brings large enhancements to the performance of positioning and tracking tasks,
in addition to optimizing power consumption. The ML classifier model is trained
on actual real-time measurements of RF signals. The authors studied multiple
classification algorithms including decision trees, support vector machine, and
k-nearest neighbors. Various RF features were considered in training and testing
the ML models. The obtained results indicate that k-nearest neighbors method
achieved the best performance with highest accuracy. This is achieved when the
chosen input features were the channel transfer function and frequency coherence
function. The required prediction time satisfies the requirements of real-time
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applications.
ML and DL algorithms have a huge potential in a wide area of applications

in wireless communications, antennas, and RF circuits. In fact, some of these
algorithms are already deployed in designing some RF components and circuits
[94, 95]. In [96], a hybrid beamforming mmWave communication system is con-
sidered and ML and DL are exploited in order to extract information about the
Angle of Arrival (AoA) to ease the process of beam selection in the uplink data
transmission.

In the field of Transmit Antenna Selection (TAS), the authors in [97] were
first to try utilizing machine learning technology into wireless communication.
They mapped the TAS in wireless communication into multi-class classifications,
and compared the effects of TAS on communication performance based on the k-
nearest neighbors and support vector machine algorithms. After that, in [98], the
authors discussed the optimal antenna selected by using support vector machine
and the naive Bayesian scheme to maximize privacy performance. Gecgel et al.
[99] consider large-scale MIMO systems where they deploy ML algorithms in a
proposed dynamic generalized spatial modulation framework. The authors adopt
the decision tree and multi-layer perceptron algorithms to perform the TAS task.
The proposed framework was tested in an SDR testbed and achieved superior
performance in terms of channel estimation errors. Hu et al. [100] considered
a MIMO wiretap channel with outdated CSI and propose a deep reinforcement
learning framework of Deep Q Network (DQN) to perform optimal TAS. The
legitimate receiver depends on the SNR of the received pilot signals transmitted
by each antenna at the legitimate transmitter. Then, the DQN is used to make
predictions regarding the optimal transmit antenna at the next moment. The
system showed effective performance in simulation results.

Due to the crowdedness of the electromagnetic spectrum, and in order to
secure the communication links, it is crucial to identify the different RF trans-
mitters both in terms of the content of their transmitted data and their physical
characteristics. Youssef et al. [101] deploys ML and DL algorithms to perform
this classification and identification of RF transmitters. The authors tested four
different models to perform the classification task. The model which achieved the
most accurate performance with 100% accuracy with 12 classes is Deep Neural
Network (DNN) with multi-stage training.

Wang et al. [102] studied signal demodulation techniques based on DL. They
also proposed the first open dataset for wireless communications consisting of
real modulated signals. In order to build the dataset, a flexible communication
prototype platform is proposed and the real modulated signals are measured.
Then, two demodulators are proposed. The first demodulator combines deep
belief network (DBN) and support vector machine (SVM) where DBN is used for
feature extraction and SVM is used for classification. The second demodulator is
based on adaptive boosting (AdaBoost) algorithm in which the k-nearest neighbor
algorithm is considered to be the week classifier. The two models are trained
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and tested on the generated dataset. Simulation results indicate the superiority
of the proposed demodulators when compared with demodulators that include
single classification algorithms like DBN, SVM, and maximum likelihood.

An interesting idea that will be integrated into the future wireless cellular
networks is cellular-connected Unmanned Aerial Vehicles (UAVs) since they will
play a vital rule in applications as delivery systems and online video streaming
among others. Challita et al. [103] study the challenges that must be addressed in
order to ensure reliable performance for the cellular-connected UAVs, in addition
to the security threats facing them. In order to tackle these challenges, several
solutions that make use of artificial intelligence, deep learning and Artificial Neu-
ral Networks (ANN) are proposed. Simulation results prove the effectiveness of
the proposed solutions. An important enabler for vehicular communications is
mmWave systems supporting high mobility. Implementing such systems is practi-
cally challenging especially in terms of the training overhead required for chosing
the optimal beamforming antenna vectors in large arrays. Alkhateeb et al. [104]
proposed a solution that integrates deep learning and coordinated beamform-
ing to overcome these challenges. Simulation results indicate that the proposed
scheme achieves lower training overhead and higher rates in high mobility sys-
tems when compared with the traditional beamforming techniques. Authors in
[105] provide a detailed survey of all proposed techniques in the literature where
ML is deployed in cellular UAV wireless networks in order to improve system’s
performance from several perspectives such as management of resources, wireless
security, and positioning.

With the increasing interest in the wireless community in applying machine
learning techniques in wireless communications and wireless networks, researchers
started studying the role that machine learning can play in security. This includes
both launching and mitigating physical layer security attacks. The type of ma-
chine learning that studies scenarios where an adversary is present is named:
adversarial machine learning [106].

An interesting area of applications for machine learning that has a huge poten-
tial is cognitive radios where it leads to effective performance of several tasks like
enemy detection, object classification, in addition to making predictions, channel
estimation, and spectrum sensing. This is done by making use of the received
information about the spectrum environment and adapting to it [107, 108]. Also,
software defined radio (SDR) is another technology where ML can play a vital
rule. Riyaz et al. [109] combines both the SDR sensing capabilities and DL
algorithms in order to uniquely detect a certain radio signal among similar sig-
nals from other devices. The adopted DL model is convolutional neural network
(CNN) and the dataset on which the model was trained was collected from a
testbed of SDRs. Deploying this model requires no high-level decoding, feature
engineering, or knowledge of protocols, since the DL model depends on signal
modifications of the transmitter that are induced by the hardware. This pro-
posed model showed effective performance when simulated and it enhanced the
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system’s security against spoofing attacks.
Erpek et al. [106] applied adversarial machine learning techniques in designing

a jamming technique and proposing an anti-jamming method. In the proposed
jamming technique, the transmitter depends on recent sensing data of the chan-
nel status and uses a pre-trained classification model to decide to transmit or not.
On the other hand, the jammer tries to predict the next successful transmission
of the transmitter by building a deep learning classifier based on the collected
data of channel state information and acknowledgment bits. In order to reduce
the time spent by the jammer collecting data to build its dataset for training the
model, a generative adversarial network is adopted where the collected dataset
is augmented with synthetic samples. The proposed anti-jamming scheme tech-
nique in order to secure the data transmission is that the transmitter takes some
wrong actions in terms of spectrum access, thus, preventing the jammer from
building a reliable deep learning classifier. This way, the jammer is mislead and
will make many wrong predictions wasting its power. Kumar et al. [110] con-
sidered a jamming system model in vehicular networks with a focus on vehicle’s
localization in environments where delimitated jamming is present. The authors
propose a Delimitated Anti-jamming protocol that is based on machine learning
and deployed in vehicular traffic environments. They make use of the open-source
ML algorithm named CatBoost which relies on decision trees in order to make
predictions about the locations of the jamming vehicle. This type of networks,
named Internet of vehicles (IoV), is a promising area of research that is receiv-
ing increasing interest from the research community since it promises to address
traffic incidences and supports green mobility.

2.6 Thesis Contributions

The main contributions of this thesis compared to the existing security solu-
tions in the literature are summarized next.

• Joint jamming-transmission solution against passive eavesdropping using
planar antenna arrays is investigated. Multiple scenarios are considered at
both the transmitter and receiver where the importance of sending jamming
signals toward the eavesdropper is confirmed and the number of required
antennas to perform this task is identified.

• A simple and fast look-up table-based anti-jamming technique is proposed
where the required antenna configuration of a planar antenna array is iden-
tified based on the location of the transmitter and jammer. Good SINR is
achieved and effective anti-jamming solution is achieved.

• A scalable and effective anti-jamming ML model is proposed. The dataset
is generated, including the locations of the transmitter and jammer as input
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features, in addition to the channel gain between the transmitter nad re-
ceiver. The outputs are the antenna excitation coefficients of the planar an-
tenna array. The model is different from any other ML-based anti-jamming
model existing in the literature and the dataset generated is unique.
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Chapter 3

Planar Antennas & Wireless
Channel Overview

In this chapter, an overview of planar antenna arrays is given, beamforming
using these antennas is introduced and the directivity of these arrays is investi-
gated. Then, three different types of linear arrays that will be used throughout
this thesis are discussed. Finally, the wireless channel model adopted in this
thesis is presented.

3.1 Planar Antenna Arrays

Figure 3.1: Planar antenna array in the x-y plane.
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The radiation patterns of planar antenna arrays (Figure.3.1) are control-
lable and can be shaped as required. These antennas can provide more symmet-
rical patterns with lower side-lobes. In addition, they are a perfect candidate for
beamforming since their beams can be directed to any specific direction while
directing the low side-lobes and nulls to other directions where it is undesired
to communicate. Planar arrays can play a great role in PLS. They can provide
very directive beams. Some of the radiating elements can be directed towards the
legitimate users while the rest of the antennas is used to send jamming signals
to eavesdroppers for example. The applications of planar arrays include tracking
radar, search radar, remote sensing, communications, and many others [111].

3.1.1 Array Factor

In planar antenna arrays, single antenna elements are positioned along a
rectangular grid to form a planar array. If M elements are initially placed along
the x-axis with spacing dx and progressive phase shift βx between the elements,
the array factor of this linear array of elements along the x-axis is shown in [111]
to be:

AFlinear,x(θ, φ) =
M∑
m=1

Im1e
j(m−1)(kdx sin θ cosφ+βx) (3.1)

Where Im1 is the excitation coefficient of element m. Moreover, if N such arrays
are placed above each other in the y-direction, a distance dy apart and with a
progressive phase shift βy, a rectangular array will be formed. The array factor
of the rectangular array is the product of the array factors of the arrays along
the x- and y-directions. The array factor of a linear array of N elements along
the y-axis is given by:

AFlinear,y(θ) =
N∑
n=1

I1ne
j(n−1)(kdy sin θ sinφ+βy) (3.2)

The planar antenna array (Figure 3.1) at the receiver is considered as a
combination of linear subarrays along the x- and y- axes. The array factor of the
planar array is the multiplication of the array factors of the corresponding linear
subarrays. Thus, a unique radiation pattern is produced from every combination
of linear subarrays. The array factor of the planar array is given by [111] to be:

AFplanar(θ, φ) = AFlinear,x(θ, φ)× AFlinear,y(θ) (3.3)

AF(θ, φ) =
N∑
n=1

I1n

[ M∑
m=1

Im1e
j(m−1)(kdx sin θ cosφ+βx)

]
ej(n−1)(kdy sin θ sinφ+βy) (3.4)
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For uniform planar arrays, all elements have the same excitation amplitudes,
i.e., Im1 = I1n = Io for all m and n. So, the array factor becomes:

AFlinear,x(θ, φ) = Io

M∑
m=1

ej(m−1)(kdx sin θ cosφ+βx) ×
N∑
n=1

ej(n−1)(kdy sin θ sinφ+βy) (3.5)

The normalized array factor can be obtained as:

AFn(θ, φ) =

{
1

M

sin(M ψx

2
)

sin(ψx

2
)

}{
1

N

sin(N ψy

2
)

sin(ψy

2
)

}
(3.6)

Where:

ψx = kdx sin θ cosφ+ βx (3.7)

ψy = kdy sin θ sinφ+ βy (3.8)

It is noticed from equation 3.4 that the array factor of planar arrays is a
function of the geometry of the array (number of antenna elements, the axes on
which they are distributed and the distances separating them), the excitation
amplitudes and the phases. In the previous equations, the antenna elements are
assumed to be isotropic. However, if the type of antennas used in the array is
changed so they are no longer isotropic, the total field of the array will be equal
to the product of the field of a single element usually at the origin, and the array
factor of that array. That is,

E(total) =
[
E(single element at reference point)

]
×
[
arrayfactor

]
(3.9)

3.1.2 Beamforming

To achieve beamforming, the major lobe (principal maximum) is located at
angles such that:

kdx sin θo cosφo + βx = 0 (3.10)

kdy sin θo sinφo + βy = 0 (3.11)

The main beam is in the direction: θ = θo and φ = φo.

And the progressive phases βxandβz must satisfy:

βx = −kdx sin θo cosφo (3.12)

βy = −kdy sin θo sinφo (3.13)
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3.1.3 Directivity

In general, since the relation between the antenna gain and directivity is
only a loss factor, that is the antenna efficiency, then we can use the directivity
instead of the gain to evaluate the antenna performance. The general expression
for calculating the directivity of the array factor AF(θ, φ) that has its main beam
directed towards θ = θo and φ = φo is given by [111]:

Do = 4π
| AF (θo, φo) |2∫ 2π

0

∫ π
0
| AF (θo, φo) |2 sin θdθdφ

(3.14)

3.2 Linear Antenna Arrays

The linear antenna arrays that form the planar arrays have different possi-
ble configurations. The first way to differentiate linear arrays is considering the
spacing between the antenna elements. The element spacing is either uniform
when all the elements are separated by the same distance, or non-uniform when
the separating distance between the elements is inconsistent. In this thesis, only
uniformly spaced linear arrays are considered. The second way to differentiate
linear arrays is the distribution of the array amplitude among the antenna ele-
ments. Each antenna configuration implies unique ratios between the excitation
coefficients of the linear array antenna elements. In this sense, three linear array
configurations are considered in this thesis and are described next [111]:

3.2.1 Uniform Amplitude Linear Arrays

In this type of linear arrays, all the radiating elements are excited with the
same amplitude, thus the name uniform amplitude. The phase shift for each
element is based on the direction toward which the main beam is directed using
equations 3.12 & 3.13. Uniform linear arrays usually possess the largest directiv-
ity and yield the smallest half-power beamwidth. However, the main drawback
of uniform linear arrays is that they generally have high side-lobe levels.

3.2.2 Non-uniform Amplitude Binomial Linear Arrays

The reason behind using non-uniform excitation coefficients is to estimate the
array’s beamwidth and to produce side-lobes with smaller power levels. In the
case of binomial linear arrays, the objective is to remove secondary side lobes.
In order to achieve this goal, different distribution function for the amplitudes of
the excitation currents of the antenna array elements are deployed [112].

The excitation coefficients of a binomial array are given based on the binomial
expansion:
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(1 + x)m−1 = 1 + (m− 1)x+
(m− 1)(m− 2)

2!
x2 +

(m− 1)(m− 2)(m− 3)

3!
x3 + ...

The positive coefficients obtained from the binomial series expansion for dif-
ferent values of m form the Pascal’s triangle. When the values of m are considered
to be the number of antenna array elements, then the coefficients resulting from
the expansion of the binomial series represent the relative amplitudes of the an-
tenna array elements. Since the obtained excitation coefficients resulted from a
binomial series expansion, then the array is known as a binomial array. Usually,
binomial arrays possess the smallest side-lobe levels.

3.2.3 Non-uniform Amplitude Dolph-Chebyshev Linear
Arrays

In Dolph-Chebyshev linear antenna arrays, the amplitudes of the excitation coef-
ficients for the antenna array radiating elements are found based on Chebyshev’s
polynomial. While the phase shift for each radiating element is based on the
direction towards which the main beam is directed based on equations 3.12 &
3.13. The main objective in this type of linear arrays is to maximize the gain of
secondary lobes to a certain fixed level [112].

The Chebyshev’s polynomials follow the following recursion formula:

Tm(z) = 2zTm−1(z)− Tm−2(z)

where z = cos(u) and T0(z) = T1(z) = 1.
In Dolph-Chebyshev linear arrays, the desired side-lobe level (SLL) is specified

during the design process. The SLL has a huge impact on the resulting excitation
coefficients amplitudes. The range of SLL is generally between -10 dB and -60
dB.

3.3 Wireless Channel Model

An important point to consider when proposing a PLS solution that is based
on multi-antenna technology is the adopted wireless channel model between an-
tenna elements. A common assumption made in the literature is that the channels
are independent. This assumption is considered realistic when the separating dis-
tance between the antenna elements is sufficient. However, from a practical point
of view, the antenna elements may be correlated because of the space constraints
[32]. However, when the far-field of the antenna array is considered, a valid as-
sumption that eases the computations is to look at the antenna array as a single
unit having a single wireless channel. This is a simplified model of the wireless
channel which simplifies the simulation process of the proposed security solutions
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and the analysis of the obtained results. The wireless channel model adopted in
this thesis is the uncorrelated Rayleigh fading channel model considered in the
far-field of the antenna array, which is described next.

3.3.1 Uncorrelated Rayleigh Fading

The wireless channel between two entities i and j that models the open nature of
the wireless channel and the various propagation and environmental conditions
is given by [113]:

Hi,j,dB = (κ− 10γ log10 di,j) + ψi,j + 10 log10 Fi,j (3.15)

Where κ is the pathloss constant, d(i, j) is the distance between the two entities
i and j, γ is the path loss exponent, ψi,j represents log-normal shadowing with
zero mean and a standard deviation σψ ,and Fi,j corresponds to Rayleigh fading
with a Rayleigh parameter b (usually selected such that E[b2] = 1).
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Chapter 4

Proposed Solutions for
Combating Passive
Eavesdroppers

In this chapter, we propose a physical layer security solution for combatting a
single passive eavesdropper at a known location. We study the effect of jam-
ming the eavesdropper and transmitting legitimate data simultaneously and we
investigate the effects of varying the number of antennas dedicated to each task.
Then, we extend our model and propose a physical layer security solution capable
of combating multiple passive eavesdroppers at unknown locations. Our solution
combines antenna arrays with secret key generation. The details of the proposed
solutions are discussed in the following sections.

4.1 Single Passive Eavesdropper at a Known Lo-

cation

This section considers the scenario of combating a single eavesdropper at a
known location. The work done in this scenario resulted in the conference paper
[114].

4.1.1 System Model

The system model presented in this scenario consists mainly of a source Alice
that aims to transmit messages to a target destination Bob in the presence of
an eavesdropper Eve with a known location. Alice is assumed to have a planar
antenna array whereas two cases are depicted for Bob. Case 1, as shown in Fig-
ure 4.1, assumes that the destination Bob, as well as the eavesdropper Eve, are
equipped with an omni-directional antenna. This case will be referred to as the
“”Source only” case since only the source Alice is equipped with a planar array
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Figure 4.1: System Model with planar antenna array at Alice only “Source Only
case”.

Figure 4.2: System model with planar antenna array at Alice and Bob with
“Common Configuration case”.

antenna. The planar array antenna used by Alice performs covert communication
without the help of relays. In specific, the planar array is considered as a set of
horizontal linear subarrays and can be split to handle two missions: first, to trans-
mit the useful signal to Bob, while the second is to transmit a jamming signal to
Eve. In the depicted cases, the main beam of the planar array transmitting the
useful signal is directed toward the destination with appropriate beamforming
leading to only very small sidelobes. Similarly, the main beam of the array trans-
mitting the jamming signal is directed toward the eavesdropper with very little
leakage of the jamming signal toward the destination through antenna’s sidelobes.
On the other hand, case 2 assumes that both Alice and Bob use planar antenna

array whereas an omni-directional antenna is used by Eve as shown in Figure
4.2. Moreover, Bob is assumed to be equipped with the appropriate circuitry to
transmit and receive simultaneously. In this way, Bob’s array is also split into
two parts: one used to receive the signal from Alice and the second can be used
to transmit an additional jamming signal to Eve; hence, increasing the secrecy
of the communication system. Furthermore, two configurations of the number
of linear antenna subarrays used for reception, transmission, and jamming are
going to be considered within case 2 to optimize the system performance. To
elaborate, let MA and MB be the number of linear horizontal subarrays forming
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Figure 4.3: System model with planar antenna arrays at Alice and Bob using the
“Complementary Configuration case”.

Figure 4.4: System model when Eve is equipped with a directive antenna steered
toward Alice.

the planar arrays of Alice and Bob, respectively, with MA = MB = M . The
numbers of subarrays used for transmission and jamming by Alice are MA,t and
MA,j, respectively. Moreover, MB,r and MB,j represent the number of subarrays
used by Bob for reception and jamming, respectively. The first configuration,
referred to as the “Common Configuration” and shown in Figure 4.2, depicts us-
ing the same number of linear subarrays for transmission and reception by Alice
and Bob, respectively, i.e., MA,t = MB,r and MA,j = MB,j. The second configu-
ration, referred to as the “Complementary Configuration” and shown in Figure
4.3, consists of setting MA,t + MB,r = M and MA,j + MB,j = M ; which means
that MA,t = MB,j and MA,j = MB,r . In the previous cases, the eavesdropper
is assumed to be equipped with an omni-directional antenna, having a unit gain
in all directions. However, the eavesdropper in actual cases has a strong desire
to capture the information sent from the source that may drive him to use a
directional antenna in the direction of the source to maximize the capacity of
the link. Therefore, the above cases (Source Only, Common Configuration and
Complementary Configuration) are going to be reconsidered taking into account
that Eve is equipped with a directional antenna steered in the direction of the
source, as depicted in Figure 4.4.
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Table 4.1: Definitions of Model Parameters for Combating Eavesdroppers
Variable Description
PA,B Power of signal transmitted from source Alice to

destination Bob
PA,E Power of jamming signal transmitted by Alice to

Eve
PB,E Power of jamming signal transmitted by Bob to

Eve
HA,B Channel gain between Alice and Bob
HA,E Channel gain between Alice and Eve
HB,E Channel gain between Bob and Eve
GA,B Gain of the transmission array of Alice in the direc-

tion of Bob (its main beam steered in the direction
of Bob (φB, θB)

GB,A Gain of the reception array of Bob, with its main
beam steered in the direction of Alice (φA, θA)

GA,E Gain of the jamming array of Alice in the direction
of Eve (with its main beam steered in the direction
of the Eve (φE, θE)

GB,E Gain of the jamming array of Bob in the direction
of Eve (with its main beam steered in the direction
of Eve (φE, θE)

GE,A Gain of Eve’s antenna in the direction of Alice (
main beam steerd to (φA, θA) and equal to 1 when
an omni-directional antenna is used)

σ2 Noise power

4.1.2 Capacity Calculations and System Parameters

The following part shows how to calculate the communication capacity between
Alice and Bob as well as between Alice and Eve in the presence of the jamming
signals in the above cases. The parameters used in the next equations are listed
in Table 4.1. The capacities calculated will indicate the efficiency of the proposed
model to achieve physical layer security.

The channel capacity, in bits per second per Hertz(bps/Hz), between the
source Alice and destination Bob is given by [81]:

CA,B = log2

(
1 +

PA,BHA,BGA,B(φB, θB)GB,A(φA, θA)

IA,B + σ2

)
(4.1)

With IA,B is the jamming signal power received by Bob due to the sidelobes of
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the planar antenna array. It is given by:

IA,B = PA,EHA,BGA,E(φB, θB)GB,A(φA, θA) (4.2)

In (4.1), GA,B is maximum in the direction of Bob, i.e. at (φB, θB) and GA,E is
maximum in the direction of Eve and minimum in the direction of the destination
Bob, which will fall under sidelobes of the jamming array directed toward Eve.
Moreover, in case of the planar array used by Bob, GB,A is maximum in the
direction of Alice (φA, θA) to enhance the received signal power, it will also boost
the received signal jamming power as shown in the equation of IA,B. Note that
when a single omni-directional antenna is used by Bob, GB,A is set to one in all
directions.

Similarly, the capacity between Alice and the eavesdropper Eve is given
by [16]:

CA,E = log2

(
1 +

PA,BHA,EGA,B(φE, θE)GE,A(φA, θA)

IA,E + IB,E + σ2

)
(4.3)

With IA,E is the jamming signal power received by Eve due to the main beam
of the planar antenna array used for jamming by Alice and IB,E is the jamming
signal power received by Eve due to the main beam of the planar antenna array
used for jamming by Bob in case 2. The signal powers are given by:

IA,E = PA,EHA,EGA,E(φE, θE)GE,A(φA, θA) (4.4)

IB,E = PB,EHB,EGB,E(φE, θE)GE,A(φB, θB) (4.5)

In (4.3), GA,B is minimum in the direction of the eavesdropper (φE, θE)) that
will fall under sidelobes of the useful array directed toward Bob (φB, θB). More-
over, GA,E is maximum in the direction of Eve (φE, θE) leading to high received
jamming power by the eavesdropper. Moreover, GE,A is maximum in the direc-
tion of Alice so that Eve can maximize the useful information from Alice while
Bob (φB, θB) may fall under sidelobes of the directional antenna directed toward
Alice. Note that in case of planar array used by Bob, GB,E is maximum in the
direction of the eavesdropper (φE, θE) and in case of a single omni-directional
antenna used by Eve, GE,A is set to one in all directions.

Secrecy Capacity

In the first scenario, the aim is to maintain a secure communication between
the source Alice and the destination Bob regardless of the presence of the eaves-
dropper; therefore, the secrecy capacity is used as an indication of the system
performance. As shown in [81], the secrecy capacity is given by:

Csec = CA,B − CA,E (4.6)

Equation (4.6) clearly demonstrates the fact that the channel between the source
and the destination is said to be secure if the capacity between Alice and Bob
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Figure 4.5: Capacity between Source (Alice) and Destination (Bob).

is high and the capacity between Alice and Eve has low values. The proposed
model aims to achieve a high secrecy capacity by using the planar antenna arrays
with a large number of elements leading to highly directive beams of the useful
array in the target destination and highly directive beams of the jamming array
toward the eavesdropper.

4.1.3 Simulation Results

To simulate the proposed method and system model, the eavesdropper is as-
sumed to be located in the same plane as the destination Bob in a suburban area.
Alice is communicating with Bob using the planar array that is steered toward
the location of Bob at θ = φ = 45 degrees. The communication is done over a
channel with zero-mean log-normal shadowing of standard deviation σψ = 8 dB
and Rayleigh fading with parameter b selected such that E[b2] = 1. The empiri-
cal path loss is also considered with a pathloss exponent γ = 3.5 and a pathloss
constant κ = −38.46dB. Furthermore, the planar antenna array used is made
up of eight horizontal antenna subarrays stacked above each other in the z-plane
separated by dz = 0.5λ (where λ is the wavelength). Each array consists of eight
isotropic antenna elements placed along the x-direction such that dx = 0.5λ.

The results of the simulation are averaged over 106 iterations. Figures 4.5,
4.6, and 4.7 demonstrate the capacity between Alice and Bob, CA,B, the capacity
between Alice and Eve, CA,E and the secrecy capacity, Csec, respectively, with
respect to the number of linear horizontal subarrays used for transmission by
Alice. These three figures consider all the cases of Eve, i.e, whether equipped
with omni-directional or directive antenna. The directive antenna is assumed
to be steered in the direction of the source Alice (Figure 4.4) with a maximum
directivity of 15dB. In this case, Bob is assumed to be located at a sidelobe of
the directive antenna used by Eve (at 5dB directivity).
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Figure 4.6: Capacity between Source (Alice) and Eavesdropper (Eve).

Figure 4.5 clearly shows that the capacity between the source and the destina-
tion increases as the number of antenna subarrays used for transmission increase
for all configurations. However, when the number of antenna arrays used for
transmission is M = 8, all arrays of Alice are used for transmission and none for
jamming. Bob is also assumed to be using all the antenna arrays for reception
but along with an omni-directional antenna used for jamming the eavesdropper
in the “Common Configuration” case. Whereas in the “Complementary Config-
uration”, when M = 8, Bob is assumed to be using an omni-directional antenna
for reception while sending jamming signals toward Eve using the planar antenna
array. In this case, when M = 8, the capacity between Alice and Bob is the same
for the “Source Only” and “Complementary Configuration” cases. This explains
the results of Figure 4.5 when M increases to 8. Because both Alice and Bob
are using planar antenna array for transmission and reception respectively, the
capacity of their link increases significantly; hence, the “Common Configuration”
case shows best performance for CA,B. As expected, CA,B does not change when
the Eavesdropper is equipped with a directive antenna since Eve is passive and
the antenna used does not affect the communication link between Alice and Bob.

On the other hand, the capacity between Alice and Eve records highest values
when jamming is done at the source only and decreases significantly when both
Alice and Bob send jamming signals as illustrated in Figure 4.6. In the “Source
only” case, jamming is performed by the source only. Hence, when the number
of transmit subarrays increases from 7 to 8, i.e., no jamming is performed, then
CA,E increases by more than an order of magnitude. This is explained by the fact
that no jamming signal is sent toward Eve while the latter is receiving part of the
useful signal from the sidelobes of the transmitter antenna subarrays, regardless
of the beamforming. It is noteworthy that when Bob performs jamming using an
omni-directional antenna in the “Common Configuration” case with M = 8, CA,E

decreases. This result proves the importance of jamming to combat the effect of
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Figure 4.7: Secrecy Capacity between Alice and Bob.

eavesdropping even when using only an omni-directional antenna for jamming.
Moreover, CA,E records even more reduction in the “Complementary Configura-
tion” case when Bob uses the planar antenna array for jamming when M = 8.
This means that the jamming signal power increases significantly to suppress the
reception of the useful signal by Eve. This is why the “Complementary Config-
uration” case has the lowest channel capacity between Alice and Eve in Figure
4.6. When the eavesdropper is equipped with a directive antenna, CA,E records
relatively higher values than when an omni-directional antenna was used by Eve.
This is because using a directive antenna increases the power of the useful signal
in the direction of the eavesdropper. However, the increase in the CA,E values
is not that significant since the jamming signal is also amplified by the gain of
the directive antenna. This means that, when the eavesdropper uses a directive
antenna, both the useful signal and the jamming signal received from the source
Alice are amplified.

The results of Figures 4.5 and 4.6 are used to generate the results of the
secrecy capacity shown next in Figure 4.7. The secrecy capacity between Alice
and Bob increases when the number of transmit antenna subarrays increases for
all configurationss but records highest values in the “Common Configuration”
case. Therefore, the “Common Configuration” has the best secrecy capacity per-
formance followed by the “Complementary Configuration”. However, the latter
configuration has the best performance if the main objective is to reduce the
useful signal leakage to Eve since in this case, CA,E records minimal values while
maintaining relatively good secrecy capacity. Moreover, the secrecy capacity
with “Source Only” case shows an important behavior in Figure 4.7 when all the
transmit antenna subarrays are used for transmission. In this case, Csec decreases
suddenly by more than 10 bits/s/Hz due to the rapid increase in CA,E by more
than an order of magnitude. This behavior confirms the importance of physical
layer security through simultaneous transmission and jamming to provide secured
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and confidential communication. When Eve uses a directive antenna, Csec records
relatively lower values for all configurations since CA,E has relatively increased,
as mentioned earlier. Furthermore, in the case of “Source Only ”, the secrecy
capacity decreases significantly when all the antennas are used for transmission
and no jamming is performed. In fact, Csec records a negative value which in-
dicates that the secrecy of the link between Alice and Bob is null and the link
between Alice and Eve is better than the link between Alice and Bob. Thus, Eve
can receive all the information from Alice. This shows that the joint jamming
and transmission can efficiently combat passive eavesdropping.

However, passive eavesdroppers are still able to capture the legitimate infor-
mation in two cases:

• 1- If the eavesdropper is present in the direction of the main beam of the
legitimate transmitter i.e. in close proximity to the legitimate receiver.

• 2- If the eavesdropper is present in the direction of a side lobe of the legit-
imate transmitter

A scenario where multiple passive eavesdroppers at unknown locations are
assumed to be present is considered as a future work of this thesis, where an idea
of a PLS solution that combines cryptographic and non-cryptographic techniques
is proposed.
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Chapter 5

Proposed Anti-jamming
Techniques at The Physical Layer

After proposing PLS solutions for combating eavesdroppers in the previous
chapter, this chapter tackles the problem of jamming attacks, where we propose
two anti-jamming techniques. The proposed systems discuss combating a single
jammer, and can be extended to scenarios with multiple jammers. The first
anti-jamming technique is based on creating a look-up table of possible antenna
configurations. Assuming the jammer is detected and its location is identified,
the receiver searches in the look-up table for the best antenna configuration in
order to mitigate the jamming effect and maintain a secure communication link
achieving a high Signal-to-Interference-plus-Noise-Ratio (SINR). Then, the idea
of having a look-up table of antenna configurations brought machine leaning into
our thoughts. In the second anti-jamming technique, we deploy ML algorithms
in order to combat jamming attacks, extending the look-up table solution and
creating a scalable anti-jamming model.

5.1 Look-up Table Based Anti-jamming Tech-

nique

A major objective of any receiver performing anti-jamming at the physical
layer is to perform beamforming to maximize the gain towards the legitimate
transmitter while steering a null in the direction of the jammer. Some array
pattern synthesis methods like Schelkunoff method are used to produce patterns
with nulls in desired directions [111]. However, using such methods does not give
perfect control on the location of the main beam. Instead, in this proposed anti-
jamming technique, a large database of possible antenna array configurations,
each with a certain radiation pattern, is generated. Anti-jamming is performed
by searching through the database for the best antenna array configuration that
produces a null towards the jammer’s location and simultaneously directs the
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main beam towards the legitimate transmitter, achieving a high SINR. The large
number of antenna elements allows dynamic adaptation of the antenna configura-
tion. The main novelty of this solution is in the proposed anti-jamming technique
which is easy to implement, does not require strong computational power, and
is completely based on the physical layer. The task of detecting and locating
jammers is left for further investigations in the future. Throughout this chapter,
the presence of jammers and their locations are assumed to be known. Various
methods for performing these tasks exist in the literature such as [115, 116, 117].
The work done in this scenario resulted in the accepted conference paper [118].

5.1.1 System Model

The studied system model is shown in Figure 5.1, where the transmitter
equipped with a directive antenna is communicating with a receiver equipped
with an 8x8 massive planar antenna array in the presence of a single jammer
equipped with a directive antenna similar to the one with the transmitter. The
receiver tries to maximize its gain toward the transmitter and place a null toward
the jammer simultaneously.

Figure 5.1: Proposed system model.

5.1.2 Generating The Database of Antenna Array Con-
figurations

The receiver is assumed to have an 8x8 massive MIMO planar antenna array as
described in section 3.1. All possible combinations of the different types of linear
antenna arrays, described in section 3.2, along the x- and y- axes were formed to
produce the different antenna array configurations used to generate the database.
Although the considered receiver has an 8x8 planar array, the linear sub-arrays
considered in the database have different numbers of antenna elements, i.e. not
necessarily 8 elements. In these sub-arrays, some of the radiating elements on
the sides were considered to be turned off, having zero excitation coefficients.
Reducing the number of elements in linear arrays widens their main beam which

34



is undesirable if the jammer is in close proximity to the legitimate transmitter.
However, if the jammer is far away from the transmitter, widening the main beam
may not be harmful. When Dolph-Tschebyscheff linear arrays were used, several
versions of them were formed each having a different value for the Side-Lobe-
Level (SLL) ranging between 10 and 60 dB. Thus, a large database of around
70,000 possible antenna array configurations was created.

5.1.3 Performance Metrics

Before discussing the two proposed searching methods through which the
best antenna configuration is chosen from the generated database, the perfor-
mance metrics used to evaluate the performance of the system are described in
this section. In both searching methods, the gain of the receiver’s antenna ar-
ray towards the transmitter and jammer needs to be evaluated as described in
section 3.1.3. The SINR is the adopted metric to effectively evaluate the perfor-
mance of the proposed searching methods when put into practice. Calculating
the SINR requires information about the antenna gains, the wireless channel gain,
the transmitted power, and the receiver’s noise. Table 5.1 lists the parameters
used in the upcoming equations.

Table 5.1: Definitions of Anti-jamming Model Parameters

Variable Description
PT,R Power of signal from legitimate transmitter towards the

receiver.
PJ Power of jamming signal transmitted by the jammer to-

wards the receiver.
HT,R Channel gain between legitimate transmitter and re-

ceiver.
HJ,R Channel gain between jammer and receiver.
GT,R Gain of the antenna of the legitimate transmitter with

its main beam steered in the direction of the receiver
(φR, θR)

GR,T Gain of the antenna array of the receiver in the direction
of the legitimate transmitter (φT , θT )

GJ,R Gain of the antenna of the jammer in the direction of
the receiver (φR, θR)

GR,J Gain of the antenna array of the receiver in the direction
of the jammer (φJ , θJ)

σ2 Noise power

The transmitter, receiver, and jammer are assumed to experience Rayleigh
fading independent wireless channels as described in section 3.3.
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The SINR, in bits per second per Hertz(bps/Hz), is given by [119]:

SINR =
PTHT,RGT,R(φR, θR)GR,T(φT , θT )

IJ + σ2
(5.1)

Where IJ is the jamming interfering signal sent by the jammer towards the re-
ceiver. It is given by:

IJ = PJHJ,RGJ,R(φR, θR)GR,J(φJ , θJ) (5.2)

In (5.1) and (5.2), when a single omni-directional antenna is used by the transmit-
ter and the jammer, GT,R AND GJ,R are set to one in all directions. Otherwise,
if the antenna used is directional, then its maximum will be directed towards the
location of the receiver.

5.1.4 Searching Methods

After building the database of the antenna array configurations, two searching
methods are proposed to search through the database to find the configuration
that achieves the best performance at every possible location of the jammer. A
look-up table covering the azimuth and elevation space is produced using both
methods. Each method has a different criterion for defining a good configuration,
as described next.

Deepest Null Searching Method

In the first searching method, searching is done for the array configuration
that produces the deepest null at the location of the jammer. After detecting
the presence of the jammer and identifying its location, this methods searches
through the receiver’s gains toward the jammer’s location in the database and
picks the configuration with the lowest gain value, i.e. deepest null as formulated
by:

arg min
i

Gi(θJ , φJ) (5.3)

where i ∈ {1, 2, ..., 70000} represents the index of the antenna configurations in
the database. Note that although the main-lobe of all configurations is directed
towards the transmitter, this method is not concerned with maximizing the gain
towards the transmitter, rather, it only focuses on nulling the jammer to receive
the minimum possible power from its direction.

Max-to-Null Ratio Searching Method

In the second searching method, searching is done for the array configuration
that produces the largest difference in dB between the receiver’s gain towards the
transmitter (i.e. its max) and its gain towards the jammer (i.e. its null). After
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the detection of the jammer and specifying its location, this methods searches
through the database and finds the difference in dB between the gain towards
the transmitter and the gain towards the jammer for every receiver antenna
configuration in the database. The configuration with the largest difference in
dB between the two gains is picked according to the following formulation:

arg max
i

Gi(θT , φT )−Gi(θJ , φJ) (5.4)

where i ∈ {1, 2, ..., 70000} represents the index of the antenna configuration in
the database.

5.1.5 Simulation Results

To simulate the proposed system model, the transmitter, receiver, and jam-
mer are assumed to be located in a suburban area. The wireless channel model
considered has an empirical path loss with a pathloss exponent γ = 3.5 and
κ = −38.46dB which is the pathloss constant. Rayleigh fading is considered with
parameter b such that E[b2] = 1. In addition to zero-mean log-normal shadow-
ing with standard deviation σψ = 8 dB. Both the transmitter and jammer are
equipped with a single directive antenna with 5dB gain directed towards the re-
ceiver. The location of the transmitter is known to the receiver. Thus, its main
beam is steered to the direction of the transmitter. The distances separating the
isotropic radiating elements along x- and y- axes in the planar antenna array
at the receiver are dy = 0.5λ and dx = 0.5λ where λ is the wavelength. The
operating frequency is chosen to be 2 GHz. The receiver’s thermal noise is set to
−174dBm/Hz [120].

The receiver is considered as if it is at the origin of the 3D space. Then, the
transmitter is located at (dTR,θTR,φTR) and the jammer is located at (dJR,θJR,φJR)
in spherical coordinates, where dJR & dTR represent the corresponding distances
of the transmitter and jammer from the receiver, respectively.

Jammer and Transmitter on Same Elevation ( θTR = θJR)

In Figure 5.2, the transmitter’s location is fixed at (θTR, φTR)=(90,45) degree.
And the distances from the receiver are assumed to be dTR = 800 m and dJR =
300 m. The jammer is assumed present in the same plane as the transmitter (i.e.
θTR = θJR) and it moves around a circle centered at the receiver, changing its
azimuth angle.

Figure 5.2 shows the resulting average SINR in dB from both searching meth-
ods versus the jammer’s location in the azimuth plane. The performance of
both methods is compared with the performance of a receiver equipped with an
omni-directional antenna having unity gain. Since the jammer keeps changing
its location by moving around a circle centered at the receiver, Monte-Carlo sim-
ulations with N = 105 are performed for the jammer’s wireless channel and the
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Figure 5.2: Average SINR in dB using both searching methods vs jammer’s
location in azimuth plane φJR, compared to omni-directional antenna receiver,
transmitter at (θTR, φTR)=(90,45)

average values for the SINR are calculated. The figure clearly shows the effective
anti-jamming performance of the system. The performance of the two searching
methods is shown to be very similar to each other and provides an excellent en-
hancement in the performance of the receiver equipped with an omni-directional
antenna. However, Max-to-Null Ratio searching method slightly outperforms
the Deepest Null searching method. Note that as long as the jammer is not in
close proximity to the transmitter, the achieved SINR of the system is very high,
achieving around 55dB, which means that the jammer is unable to disrupt the
communication link. While if the jammer moves closer to the transmitter (i.e.
within angles φJR = φTR± 18 degree, the SINR degrades and drops below 38dB.
We start having negative SINR values in the range where φJR = φTR±12 degree.

Figure 5.3 shows the achieved average SINR when the distance between the
jammer and the receiver is varied while the azimuth and elevation locations are
fixed for the transmitter at (θTR, φTR)=(90,45) degree and the jammer is close to
the transmitter at (θJR, φJR)=(90,65) degree. As expected, the achieved SINR
improves greatly as the distance between the receiver and the jammer increases.
Also, we notice that the performance of the two searching algorithms is almost
the same. This is expected based on the results found in Figure 5.2.

Jammer at a Different Elevation Angle Than Transmitter ( θTR 6= θJR)

In Figure 5.4, the jammer’s elevation angle is varied while fixing its distance
from the receiver. The transmitter is located at (θTR, φTR)=(45,45) degree. Fig-
ure 5.4 shows the achieved average SINR when the elevation angle of the jammer is
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Figure 5.3: Average SINR in dB using both searching methods vs jammer’s
distance from receiver, transmitter at (θTR, φTR)=(90,45) degree, jammer at
(θJR, φJR)=(90,65) degree

Figure 5.4: Average SINR in dB using both searching methods vs jammer’s
elevation angle θJR, transmitter at (θTR, φTR)=(45,45) degree, φJR = 45 & 145
degree

varied while fixing its azimuth angle. Two values of the azimuth angle of the jam-
mer are considered, φJR = φTR = 45 and φJR = 145 degree. The anti-jamming
performance is compared with the performance of a unity gain omni-directional
antenna receiver. The system is totally secure over all elevation planes when the
jammer is present at an azimuth angle which is far from the transmitter’s azimuth
angle. When the jammer and the transmitter are present at the same azimuth
angle, system’s security is confirmed when the jammer is at an elevation angle
of around θJR = θTR ± 25 degree. In both cases, the Max-to-Null Ratio search-
ing method outperforms the Deepest Null searching method and both methods
achieve an acceptable level of secrecy.

Finally, to guarantee accuracy in performance and to prove that the results
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Figure 5.5: Average SINR in dB using Max-to-Null Ratio searching method vs
jammer’s location in azimuth plane φJR, varying transmitter’s location

are not biased to the used transmitter’s location i.e. (θTR, φTR)=(90,45) degree,
two different random locations of the transmitter were chosen, and simulations
varying the jammer’s azimuth angle while it is located in the same elevation plane
as the transmitter were conducted. The studied locations for the transmitter are:
θTR = 60, φTR = 200 degree and θTR = 15, φTR = 310 degree. The performance
at these locations was compared with the performance when transmitter was at
θTR = 90, φTR = 45 degree. Simulations were conducted using the Max-to-Null
Ratio searching method alone, since it outperformed the Deepest Null searching
method in all previous simulations. The results of the simulations are presented
in Figure 5.5. When the transmitter is at θTR = 15, φTR = 310 degree, we note
that the jammer must be located at φJR ≥ φTR ± 50 degree so that the system
is secure. While when the transmitter is located at θTR = 60, φTR = 200 degree,
security is guaranteed if the jammer is located at around φJR ≥ φTR± 25 degree.
And as shown in Figure 5.2, when the transmitter is at θTR = 90, φTR = 45
degree, we note that the jammer must be located at φJR ≥ φTR ± 18 degree in
order to secure the communication link. We can conclude from the figure that the
proposed anti-jamming technique has a relatively good performance at different
locations of the transmitter. Conclusion and proposed future enhancements of
the system are described next.
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5.2 Machine Learning Based Anti-jamming Tech-

nique

5.2.1 Motivation

The proposed look-up table-based anti-jamming technique suffers from multi-
ple issues when it comes to scalability and generalization. In fact, the considered
single jammer scenario includes a large number of parameters that, if varied, re-
quire performing new computations to build new look-up tables or extend the
existing ones. These parameters include: the distance between the jammer and
the receiver, the distance between the transmitter and the receiver, the channel
gain between the transmitter and the receiver, the location of the transmitter
w.r.t. the receiver, the location of the jammer w.r.t. the receiver, and the an-
tenna gain of the transmitter and jammer toward the receiver. Relying on look-up
tables require having a stored strategy to combat jamming attacks for every pos-
sible value of each of the system’s parameters. Next is a quick computation of
the required storage space required to store a look-up table containing an anti-
jamming strategy for every possible combination of the system’s parameters (with
simplified assumptions). In fact, if a single jammer scenario is considered, the
following are realistic variations of each parameter of the system:

• θTR & θJR each takes 90 values (assuming planar antenna radiation is per-
formed only from the top of the array).

• φTR & φJR each takes 360 values to cover the azimuth space.

• dTR & dJR each taking 20 values (This choice is simplified since much more
distances could be considered).

• HTR could take 1000 values if Monte-Carlo simulations are considered since
this value is a random number resulting from the pathloss wireless channel
model including log-normal shadowing and Rayleigh fading.

• GTR & GJR each takes 5 values (simplified assumption).

If all these features are considered, the look-up table would be of size (1.04976×
1016)× 21

Storing this data would require more than 783 PB of storage capacity, which is
a very huge space. Searching through this dataset every time one of the system’s
parameters changes would require a long time. Spending a long time searching
through the look-up table for the right strategy to combat a jamming attack
is incompatible with the critical nature of the anti-jamming operation which
requires making quick decisions that are adaptive and vary according to the input
parameters from the field. Also, if scenarios of multiple jammers are considered,
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the storage space required for the look-up tables would become extremely large.
Thus, it can be concluded that the look-up table-based anti-jamming technique
is highly difficult to be generalized or scaled to larger systems.

Based on the previous facts, producing a more reliable anti-jamming solution
that does not require huge storing capacity or long run-time is a must. The
proposed solution must be scalable and must generalize well. With the large
amounts of data required, deploying ML and DL algorithms on the system be-
comes more attractive. Such algorithms do not require data about every possible
value of each system’s parameter. The only requirement is to have a dataset that
is varied enough to truely represent the possible values of each of the system’s
parameters. The ML/DL model is trained and tested on the dataset even if it
is large. After the model is generated, there is no need for the dataset to be
stored, and the model performs predictions on new input data instantaneously
in real-time and within a second. Thus, the storage space, required to store the
look-up tables, and the operation time, required to search through look-up tables
whenever a system’s parameter is varied, are saved when ML/DL algorithms are
deployed. These are the motivations behind using ML/DL algorithms to extend
the previous ant-jamming method based on look-up tables.

5.2.2 System Model

The studied scenario in the ML/DL anti-jamming solution is similar to the one
considered in the look-up table-based anti-jamming solution which was presented
in Figure 5.1. A more detailed drawing of the system model where the system’s
parameters are indicated is presented next in Figure 5.6.

Figure 5.6: Studied scenario with single jammer.

The overall system model of the receiver, where the anti-jamming process is
performed, is shown in Figure 5.7. Five out of the nine possible system’s pa-
rameters mentioned in section 5.2.1 were considered to build the model. The
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proposed model is a proof of concept that is compatible with the available com-
putational resources at AUB. Initially, the system model takes information about
the location of the transmitter and the jammer, in addition to information about
the quality of the channel between the transmitter and the receiver. Namely, the
input features to the system are:

• The location of the transmitter both in elevation and azimuth planes (θTR,φTR).

• The location of the jammer both in elevation and azimuth planes (θJR,φJR).

• The channel gain between the transmitter and the receiver (HTR).

Figure 5.7: System model showing inputs and outputs.

First, a dataset containing training and testing samples is generated. The
input data is pre-processed before being fed as inputs to the ML/DL model.
Next, the model architecture is trained on the dataset and its performance is
validated. Finally, the ML/DL model makes predictions regarding the values
of the antenna excitation coefficients of the planar array required to secure the
system and combat the jammer. The details of the dataset generation process
and the pre-processing operations performed on the dataset are presented in the
next sections.

5.2.3 Dataset Generation

The process of building the dataset for the ML/DL model starts by looping
over the locations of the transmitter and the jammer (by varying θTR,φTR,θJR,
and φJR). In every iteration, i.e. at each location of the transmitter and the jam-
mer, a table similar to the one generated in section 5.1.2 is generated. This table
includes the receiver’s gain towards both the transmitter (GRT ) and the jammer
(GRJ) resulting from all possible combinations of linear antenna array configura-
tions (Uniform, Binomial, & Dolph-Chebyshev) in an 8x8 massive MIMO planar
antenna array deployed at the receiver. In fact, the table consists of more than
70,000 configurations corresponding to the different combinations of linear an-
tenna arrays with different numbers of elements and different side-lobe levels in
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the case of Dolph-Chebyshev linear arrays. Also, the excitation coefficients of
the antenna elements resulting from each configuration of the planar antenna
array are included for every configuration in the table. Although the 8x8 planar
antenna array has 64 antenna elements, it is enough to have the values of the
excitation coefficients of a linear array of 8 elements along the x-axis, and another
one along the y-axis in order to be able to obtain the excitation coefficients of the
remaining antenna elements. Assuming m to be the number of elements along
the x-axis and n to be the number of elements along the y-axis, the excitation
coefficient for an antenna element at position (i, j) is called: Ii,j, and is found
according to the formula:

Ii,j = I1,i × Ij,1

where I1,i is the excitation coefficient of the antenna element at position i in the
linear array known along the x-axis. Similarly, Ij,1 is the excitation coefficient of
the antenna element at position j in the linear array known along the y-axis.

After this table is generated, a random value of the wireless channel gain
between the transmitter and the receiver (HTR) is generated according to the
pathloss wireless channel model including log-normal shadowing and Rayleigh
fading presented in equation (3.15). The distance between the transmitter and
the receiver (dTR) was fixed to 800m, while the distance between the jammer
and the receiver (dJR) was set to 300m. The transmitter and jammer were both
assumed to have a single directive antenna directed toward the receiver with
gain GTR = GJR = 1.7dB. Since the channel gain between the jammer and
the receiver is hard to be identified due to the jamming signals the jammer is
transmitting, a worst case scenario was considered assuming a good quality of
the wireless channel between the jammer and the receiver. 10,000,000 simulations
of the wireless channel model were run, and the best achieved channel gain was
assumed to be the value of HJR (HJR = 1.0797 × 10−10). The values of these
parameters, along with the receiver gains from the produced table, are plugged
into equation (5.1) to compute the SINR. Then, the SINR values resulting from
each antenna configuration are compared, and the antenna excitation coefficients
from the antenna configuration achieving the highest SINR are used as outputs
of the system model and put in the dataset. The dataset generated consists of
70,000 samples. Each sample includes five input features and sixteen outputs,
where the first eight elements, along the x-axis, were normalized w.r.t. their
maximum, and the same thing is applied for the other eight elements along the
y-axis.

5.2.4 Deployed Machine Learning Algorithms

Supervised learning algorithms are deployed and their performance on the
dataset is compared. The problem is a regression problem with 16 outputs, where
each output takes a continuous value. Next, a brief description of the deployed
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algorithms is given and the hypothesis model for each algorithm is described.

• Linear Regression:

Linear regression is the simplest regression model that could be used
to model the relation between certain inputs and outputs. In order for
it to achieve a good performance with low error, the inputs and outputs
must have some kind of a linear relation at some level. The hypothesis
function of linear regression is given in equation (5.5), where θ represents the
vector of model’s parameters corresponding to the input features, including
the bias term, and x represents the input sample. The model tries to
learn the model’s parameters θ by minimizing a cost function that accounts
for the error between predictions and true output values. The adopted
cost function is the mean squared error (MSE) function which is shown in
equation (5.6). The gradient descent algorithm is used to optimize the cost
function and learn the model’s parameters.

hθ(x) = θ0 + θ1.x (5.5)

J(θ0, θ1) =
1

2m

m∑
i=1

(hθ(x)(i) − y(i))2 (5.6)

• Polynomial Regression:

In order to account for any non-linearity in the relation between the
inputs and the outputs, and give a better modeling of the data, non-linear
regression models are studied rather than the simple linear regression model.
One of the simplest non-linear regression models is the polynomial regres-
sion model. The hypothesis of polynomial regression is given in equation
(5.7). The same cost function (equation 5.6) of linear regression is applied
to polynomial regression. And again, the model’s parameters are learned
by minimizing the cost function using the gradient descent algorithm.

hθ(x) = θ0 + θ1.x+ θ2.x
2 + θ3.x

3... (5.7)

• Decision Trees:

Decision Tree learning is a famous algorithm deployed in ML to per-
form both tasks of classification and regression. In the case of regression,
decision trees represent a non-linear regression algorithm in which the cre-
ated regression model is obtained by partitioning the dataset into smaller
subsets in a recursive manner. Then, a simple prediction model is fitted
within each partition [121]. This way, the resulting regression model takes
the structure of a tree.
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• Random Forests:

Random forests algorithm, proposed by Breiman [122], belong to the
class of ensemble learning algorithms which include two main methods:
Boosting [123] and Bagging [124]. In this type of learning algorithms,
many predictors, e.g. decision trees, are generated and their results are
aggregated. Finally, majority vote is taken in order to make predictions
in case of classification, and the predictions are averaged in the case of re-
gression. The difference between boosting and bagging is that in boosting
algorithms, successive trees depend on the predictions of previous trees and
modify their weighting accordingly. While in bagging algorithms, there is
no dependency on previous tress and all predictors (trees) are constructed
independently using different bootstrap samples of the dataset. Random
forests is a bagging algorithm [122] with an additional layer of randomness
since every node is split using the best among a subset of predictors, not all
of them. Also, these predictors are randomly chosen at that node. This al-
gorithm performs very well when compared to other well known algorithms
[125].

• Artificial Neural Networks:

The final algorithm tested on the generated dataset is neural networks (NN)
since it is one of the most powerful algorithms used to build accurate pre-
dictors. Since the dataset generated is of tabular form, the most suitable
structure of NN for this type of data is known as Artificial Neural Networks
(ANN).

The ANN fully connected structure consists of an input layer, an output
layer, and some hidden layers in between. Each layer consists of a number
of neurons. The model’s parameter are the weights (W) associated with the
neurons in the layers. The inputs are linearly multiplied with the weights
of the input layer resulting in z as follows:

z = Wx (5.8)

then non-linearity is added by applying an activation function to z as fol-
lows:

a = activation(z) = g(z) (5.9)

several activation functions exist such as the sigmoid function, tanh, ReLu,
among many others. The model’s parameters are learned through forward
and backward propagation algorithms. There are several optimizers used
in learning the parameters, such as the stochastic gradient descent (SGD)
optimizer, and the famous ADAM optimizer. The general hypothesis to
make predictions of Neural Networks can be found in equation (5.10).
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hθ(x) = g(θ(L−1)T a(L−1)) =
1

1 + e−(L−1)T a(L−1)
(5.10)

where L is the number of layers.

5.2.5 Data Pre-processing and Experimental Setup

The dataset was generated using Matlab. Then, the studied ML/DL models
were coded using Google Colab platform in Python programming language. The
ML models were based on Scikit Learn library, while the DL models were based
on Tensorflow (Keras). Multiple other libraries were used to manipulate the data
and present the results, such as pandas, numpy and matplotlib.

The outliers in the dataset were removed, and the cleaned dataset included
130,634 samples. The dataset was split into training and testing datasets with
a ratio of splitting equal to 0.8:0.2. The five different inputs were pre-processed
before being fed into the ML/DL models. The input features were all normalized
to have zero mean, and scaled to have unit variance.

As mentioned earlier, the measure of performance adopted in this regression
problem is the mean squared error (MSE) which is presented next in equation
(5.11).

error(MSE) =
m∑
t=1

(ypredicted − ytest)2

m
(5.11)

5.2.6 Experimental Results and Discussion

Models using the five discussed algorithms were built, trained, and tested
using the pre-processed dataset. The MSE was calculated for each model on
both the training and testing data in order to compare the performance of the
models and to check issues of overfitting or underfiting.

First, a simpel linear regression model was created. It achieved MSEtrain =
0.07066 and MSEtest = 0.07061 averaged over the 16 outputs. Generally, the
obtained results are acceptable, and since the performance on both training and
testing datasets is similar, then we can conclude that the model is generalizing
well. However, the performance is still poor and is expected to improve when
other models that account for non-linearities in the data are studied.

The second model tested was the polynomial regression model. The order
of the polynomial is the tuned hyper-parameter. The model achieved the best
performance with order of polynomial n = 3, the obtained results were: MSEtrain
= 0.06786 and MSEtest = 0.06792 averaged over the 16 outputs. Which is,
as expected, better than linear regression. If the order of the polynomial is
further increased, the model starts suffering from overfitting the training data.
For example, when the order of polynomial n = 4, the obtained results were
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MSEtrain = 0.0635 and MSEtest = 0.0722 averaged over the 16 outputs. And
when n = 5, the obtained results were MSEtrain = 0.0561 and MSEtest = 5.0815
averaged over the 16 outputs. These results clearly indicate that as the model
is getting more complex, it is overfitting the training data, which explains why
the performance on training data is improving while the performance on testing
data is becoming worse.

The next model tested was the regression decision tree model. The hyper-
parameter tuned in the decision tree model is the maximum depth of the tree.
The obtained MSE on both training and testing data was plotted versus the
depth of the tree. The results are shown in Figure 5.8.

Figure 5.8: MSE score of training and testing data of decision trees vs maximum
tree depth.

It is easily noted from Figure 5.8 that as the depth of the tree increases, the
gap between the MSE on training data and the MSE on testing data starts to
increase, resulting in an overfitting issue at large tree depths. In order to obtain
the value of the maximum depth of the tree optimizing the model performance
without overfitting the training data, the training data was split into training and
validation data using the concept of k-fold cross-validation. Five-fold and ten-fold
cross-validation were applied, and grid search was performed over the maximum
depth of the tree. The best performance of the decision tree was obtained when
the maximum depth of the tree = 13 where the results were: MSEtrain = 0.0362
and MSEtest = 0.0448 averaged over the 16 outputs.

In order to further enhance the obtained results from the decision tree, ran-
dom forest regressors with decision tree estimators were tested next. The hyper-
parameters tuned were the number of tree estimators and the maximum depth
of the trees. Grid search with five-fold cross-validation was done on these two
hyper-parameters in order to obtain the best combination of them without over-
fitting the training data. The optimal model performance was achieved when the
parameters were: maximum depth = 19, and number of estimators = 330. These
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values resulted in MSEtrain = 0.0107 and MSEtest = 0.035 averaged over the
16 outputs. This is the best achieved model performance. The achieved MSE
on testing data for every output out of the 16 outputs using the chosen random
forest regression model is shown in Figure 5.9 and the average value is indicated
by the orange line.

Figure 5.9: MSE score on testing data for every output using random forest
regressor

Finally, an ANN model was built. The hyper-parameters of the model that
were tuned are:

• The number of layers.

• The number of neurons in each layer.

• The number of epochs through the dataset.

• The optimizer used while training the model.

After performing grid search, tuning the hyper-parameters, with 5-fold cross-
validation, the architecture that achieved the lowest error on both training and
testing data consists of ten hidden layers, in addition to the input and output
layers. The activation function for all layers is the hyperbolic tangent function
(tanh). Detailed description of the adopted ANN architecture is given in Figure
5.10.

The performance of the model was evaluated using two optimizers, namely:
Stochastic Gradient Descent (SGD) and ADAM optimizers. Figure 5.11 shows
the MSE performance of the model with ADAM optimizer versus the number
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Figure 5.10: ANN adopted architecture

of training epochs. The MSE performance of the model using SGD optimizer is
shown in Figure 5.12 versus the number of training epochs. It can be noticed
that the SGD optimizer achieved a better performance than ADAM optimizer.
The obtained MSE averaged over the 16 output using the SGD optimizer was
MSEtrain = 0.0357 and MSEtest = 0.0362 which is very close to the performance
of the random forest. To conclude, the random forest regressor is the model which
achieved the best performance over the generated dataset, and almost a similar
performance is achieved by ANNs.
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Figure 5.11: MSE using ADAM optimizer vs number of training epochs.

Figure 5.12: MSE using SGD optimizer vs number of training epochs.
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Chapter 6

Conclusion and Future Work

This thesis proposes PLS solutions to combat passive eavesdroppers and jam-
mers. Several scenarios are considered and solutions based on the physical layer,
and using massive planar antenna arrays are proposed and simulated. Regarding
passive eavesdropping, a scenario of a single passive eavesdropper at a known
location is considered. The proposed security solution is based on dedicating
linear sub-arrays of the the planar array to sending jamming signals toward the
eavesdropper, while the rest of the sub-arrays are used for the legitimate commu-
nications. Multiple configurations are investigated, and the proposed solutions
achieve good secrecy capacity and secure the communication link. After that,
two anti-jamming techniques are proposed. The studied scenario consists of a
single jammer, at a known location, disrupting the legitimate communication
link. The first proposed anti-jamming technique is based on creating a look-
up table and searching through it, based on the locations of the transmitter
and jammer w.r.t. the receiver, for the antenna configuration that maximizes
the receiver’s gain toward the transmitter, and simultaneously places a null to-
ward the jammer, thus, achieving a high SINR. Simulation results prove effective
anti-jamming performance. However, the model is not scalable, and building a
cognitive scalable system model using look-up tables would require huge stor-
ing capacity, in addition to spending a long time searching through the table to
perform anti-jamming. Thus, the look-up table-based anti-jamming technique is
extended in order to overcome the scalability issue. Thus, in the second proposed
anti-jamming technique, ML and DL algorithms are deployed to build a scalable
anti-jamming model. The dataset on which the ML/DL models are trained and
tested was generated based on the look-up table technique. The input features
for the proposed models are the locations of the transmitter and the jammer in
both azimuth and elevation planes, in addition to the channel gain between the
transmitter and the receiver. Five different algorithms were trained and tested on
the dataset. The models make predictions of 16 outputs corresponding to the an-
tenna excitation coefficients. The optimal performance, achieving the minimum
MSE on the testing data without overfitting the training data, was achieved using
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the random forest regressor with decision tree estimators (MSE = 0.0351). Also,
a very similar performance was achieved using ANNs. Thus, a robust, cognitive,
scalable, and efficient anti-jamming system was built.

Because of the inersting results achieved by advanced DL models in fields like
computer vision and others, it is expected that a better anti-jamming performance
with lower MSE can be achieved by applying advanced DL models. This is
part of the future work on this model. Also, based on the proposed ML/DL
anti-jamming models, an idea for localizing the single jammer and perform ani-
jamming is proposed and left for further investigation in the future. The proposed
method is as follows: the receiver chooses a random location for the jammer,
and inputs it along with the location of the transmitter and the channel gain
between the transmitter and the receiver to the built ML model. The ML model
will predict the required antenna excitation coefficients in order to maximize the
gain toward the transmitter and to put a null toward the chosen location of the
jammer, achieving a high SINR. The receiver keeps track of the achieved SINR,
if it is not satisfying, the assumed location of the jammer is changed, and the
resulting SINR is checked. If a jammer is present in the system, at an unknown
location, the achieved SINR will degrade dramatically. In this case, the receiver
will start tuning the assumed location of the jammer, and keep checking the
achieved SINR. When the achieved SINR increases again, it means that either
the jammer stopped sending jamming signals, or that the assumed location of
the jammer is correct. Thus, the model becomes cognitive in terms of detecting
the jammer’s location, and performing anti-jamming to secure the communication
link. Further investigations in the future include increasing the size of the dataset,
building ML/DL models with a larger number of input features. Finally, scenarios
of multiple jammers will be investigated.

Regarding combating eavesdroppers, the case of multiple passive eavesdrop-
pers at unknown locations will be investigated in the future. An idea combining
both cryptographic and non-cryptographic physical layer solutions is proposed for
future work. The proposed approach is as follows: The transmitter applies beam-
forming techniques to maximize the gain toward the legitimate receiver. Each
antenna element is considered to have an independent wireless channel. Thus,
each single antenna element from the transmitter communicates with a single
antenna element from the receiver. Here comes the cryptographic security solu-
tion which is necessary in case the eavesdropper receives some of the legitimate
transmitted data. This solution is based on agreement between the transmitter
and the receiver on a dynamic secret key obtained from the wireless channels
since each antenna has its independent wireless channel. In fact, the transmitter
and receiver may specify a threshold to which the channel gain of each wireless
channel is compared. If the channel gain is greater than the threshold, then it is
encoded as a 1, while if it is below the threshold, then it is encoded as a 0. The
quality of the different wireless channels and their gains vary with time. Thus,
the obtained key is dynamic and provides security to the system since it will
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be difficult to the eavesdropper to decode the legitimate transmitted message.
This way, even if the passive eavesdropper is present in close proximity of the
legitimate receiver, it will be difficult to correctly understand the signals that it
is receiving. Further investigations of this solution are left for future work.
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