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AN ABSTRACT OF THE THESIS OF 
 

 

 

Roya Ahmad Mourad     for Master of Science 

  Major: Irrigation 

 

Title: Assessment of LAI derived from HLS Landsat Sentinel-2, S2  

         THEIA, and SNAP for crops in Bekaa (Lebanon)  

 

 

Background: Leaf area index (LAI) is an essential indicator of crop development 

and growth. Proper satellite-based LAI estimates at the farm-level often require near-

daily imagery at medium to high spatial resolution. The combination of data from 

different ongoing satellite missions, Sentinel 2 (ESA) and Landsat 8 (NASA), provides 

this opportunity.  

Objectives: In this study, we evaluated the leaf area index generated from three 

products, namely: the harmonized surface reflectance produced by NASA, SNAP 

biophysical model, and L2A THEIA’s product from Sentinel-2 for the agricultural 

scheme in Bekaa (Lebanon).  

Methods: For this purpose, we used a broad set of in-field LAI measurements 

collected in a wide variety of canopy structures during the 2018 and 2019 growing 

seasons. The dynamics of LAI and crop height were monitored during the 2019 growing 

season. We further assessed the validity of existing LAI models and evaluated the 

relationship between the studied vegetation indices and the ground measured LAI. Also, 

crop-specific height – LAI and above-ground biomass– LAI equations were generated.  

Results: Results show when comparing the measured LAI to the LAI Models 

existing in Literature that LAI models, which were derived from EVI2 statistically 

performed better than other models for the combined crops. LAI derived from the 

artificial neural network through ESA’s SNAP biophysical processor is underestimated. 

Additionally, the red-edge bands used in the S2 SeLI LAI algorithm offers an improved 

LAI crop biophysical parameter retrieval with low errors following the HLS LAI 

Models. Also, our findings show that the LAI-VIs relationship is crop-specific. Among 

the examined indices, EVI2 outperformed other indices for the crops combined (R2:0.6, 

RMSE: 1.00, and p-value <0.0001), thus, EVI2 derived from the HLS product can be 

identified as a best suited for a unified algorithm. 
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CHAPTER I 

INTRODUCTION 

 

A. Background  

 

One of the most fundamental vegetation biophysical parameters is the Leaf Area 

Index (LAI), defined as a dimensionless measure of the one-sided leaf area (m2) per 

unit ground surface area (m2) (Asner et al. 2003; Chen et al. 1992). LAI has long been 

reported as a good indicator for several agronomic, ecological, and hydrological 

applications such as vegetation status (Reyes-González et al. 2019), atmospheric 

circulation models (Charbonnier 2013), photosynthesis and biomass accumulation (Viña 

et al. 2011b), evapotranspiration (Jung et al. 2010), hydrological models (Jung et al. 

2010), climate change (Fassnacht et al. 1997),  and rainfall interception (Taugourdeau et 

al. 2014). LAI is also crucial in several land surface models (Jarlan et al. 2008; van den 

Hurk et al. 2003), crop yield models, and yield estimation (Dente et al. 2008; Fang et al. 

2008). 

There are two major divisions in terms of LAI measurement methods: (1) direct 

measurement and (2) indirect measurement. The direct method involves destructively 

harvesting the canopy and measuring the area of the collected leaves samples through 

instruments such as LI-3000C Portable Leaf Area Meter (LI-COR, Lincoln, NE, USA). 

This method has relatively high precision, and it is often used to validate the indirect 

measurement methods; however, it is very labor-intensive, tedious, and is not suitable 

for large area measurement (Breda 2003; Feng et al. 2019). On the other hand, the 

indirect methods are based on light interception, hemispherical photography, or remote 
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sensing (Ariza-Carricondo et al. 2019). Both light interception and hemispherical 

techniques are referred to as optical approaches, which involve variables measurements 

such as gap fraction and light transmission. These variables are measured by 

commercial instruments and are related to LAI based on PAR inversion and Beer-

Lambert extinction law theories for both gap fraction and light transmission, 

respectively.  

Several researchers used different optical instruments to either assess these 

instruments against direct measurements or to validate the remotely sensed LAI. 

Although the indirect measurement of LAI using optical instruments is faster than direct 

measurements, it suffers from several limitations. First, indirect measurements do not 

measure the LAI but rather the light intercepted by the plant canopy that is then related 

to LAI. In other words, the optical instruments do not distinguish the leaves from the 

flowers or branches. Thus, they tend to either underestimate or overestimate the direct 

LAI depending on the method used and canopy studied. 

Moreover, each method has some sources of error. For example, the digital 

hemispherical photography (DHP) includes some subjectivity for factors such as 

variable clouds, shadows, and brightness, which makes it challenging to choose a 

threshold that allows distinguishing canopy from non-canopy. For this reason, the 

hemispherical photographs are recommended to be captured under uniformly diffuse or 

overcast conditions, while the leaf angle distribution can be a source of error if it is 

misestimated in instruments such as SS1 and AccuPAR. Finally, row spacing, crop 

height, time of measurement, and placement of the meter can affect the observed LAI 

values. 
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In this vein, remote sensing has proved to be a promising alternative tool for 

estimating crop LAI without damage, in a fast way, and with a large spatial variability 

(Hansen et al. 2003; He et al. 2016). Despite these advantages, remote sensing requires 

validation with ground truth data (Ariza-Carricondo et al. 2019). The retrieval of crop 

biophysical variables from remote sensing falls into two categories: the empirical and 

physical modeling approaches. The simplest yet the most effective method of estimating 

LAI from remote sensing is by establishing an empirical relationship between the 

remotely sensed vegetation indices (VIs) and measured LAI, referred to as the LAI-VI 

approach (Baret and Guyot 1991; Broge and Leblanc 2001). Vegetation indices are 

computed based on the reflectance of two or more bands, and it reflects the biophysical 

characteristics of the plant canopy such as greenness, biomass, and LAI (Baghzouz et al. 

2010; Huete et al. 1996). VIs have shown to correlate well with LAI such as Normalized 

Difference Vegetation Index (NDVI) (Deering 1978), Soil Adjusted Vegetation Index 

(SAVI) (Huete 1988), Enhanced Vegetation Index (EVI) (Huete et al. 1997), and 

Enhanced Vegetation Index 2 (EVI2) (Jiang et al. 2008). This correlation takes various 

mathematical forms, such as linear, logarithmic, polynomial, or exponential (Nguy-

Robertson et al. 2014; Viña et al. 2011b). 

On the other hand, the physical modeling approach involves the use of the 

radiative transfer models (RTMs) to simulate the canopy spectral reflectance, and the 

inversion of RTMs to obtain the required parameters (Campos-Taberner et al. 2016; 

Féret et al. 2017). One of the physical modeling techniques is the retrieval of LAI 

biophysical parameter based on neural networks, such as the algorithm implemented 

Sentinel Application Platform (SNAP) biophysical processor tool (Weiss and Baret 

2016), developed by the European Space Agency (ESA). However, the accuracy of the 
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LAI product using the SNAP software has been poorly assessed, generating primarily 

improvable results (Djamai and Fernandes 2018; Pasqualotto et al. 2019b). The LAI 

biophysical parameter retrieval of a wide range of crop varieties is yet to be evaluated 

with SNAP. 

Despite the advances in technology allowing remote sensing to play a vital role in 

LAI estimate, the trade-off between the temporal and spatial resolution (Strittholt et al. 

2007) has limited the ability of a single sensor to capture the crop LAI dynamics and its 

heterogeneity at the farm level. Several studies pointed out that medium spatial 

resolution products (e.g., Landsat 30 m spatial resolution) potentially miss the 

observations at critical growth stages due to their long revisit time (16 days) (Hansen 

and Loveland 2012; Hilker et al. 2009; Yang et al. 2015). Therefore, proper LAI 

monitoring, especially during fast-developing phenomena, requires daily or near-daily 

imagery at medium to high spatial resolution (10–30 m) (Claverie et al. 2012; Skakun et 

al. 2017). One of the techniques that aim to increase data resolution is the Spatio-

temporal image fusion (or sensor fusion). This approach generates finer spatial 

resolution images via synthesizing the high spatial-low temporal products (e.g., 

Landsat), with the coarse spatial and the high temporal resolution of the products (e.g., 

MODIS) while maintaining the frequency (Boschetti et al. 2015; Ma et al. 2018; Wang 

et al. 2017). However, this approach involves considerable uncertainty (Wang et al. 

2017) due to (1) the loss of the spectral signatures of small objects in the fused images 

(Behnia 2005), and (2) the low co-registration accuracy due to the significant difference 

in the sensors’ resolution (Dong et al. 2009). The proven compatibility between Landsat 

8 and Sentinel-2 bands enables the opportunity for LAI estimation at near-daily medium 

resolution by merging their observations (Barsi et al. 2018; Storey et al. 2016). In this 
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context, NASA has developed a new Harmonized Landsat and Sentinel-2 (HLS) 

product. HLS consists of surface reflectance (SR) data from the Operational Land 

Imager (OLI) and Multi-Spectral Instrument (MSI) onboard the Landsat 8 and Sentinel-

2 remote sensing satellites, respectively. The advantage of the HLS product is that it can 

provide a near-real-time agriculture monitoring at a moderate spatial resolution (<30 m) 

(Claverie et al. 2018).  

B. Problem Statement and Definition 

 

1. Problem Statement  

 

- Pre-existing LAI Models from the previous literature may only be 

applicable to the study areas, and land cover types to which the LAI Models have 

been applied  

- Based on the above, these LAI models require validation with ground 

truth data 

- Several researchers either rely solely on a daily but coarse resolution 

sensor or a long-term revisit time but high spatial resolution sensor, with a limitation 

of a single sensor to capture the LAI dynamics at critical crop growth stages. 

   

2. Research questions  

 

- Can the existing LAI models be applied to the study area? 

- Moreover, how accurate are they? 

- Can we produce new LAI models specific to our studied crops? 
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- Can we obtain near real-time LAI observations with medium to a high 

spatial resolution? 

 

3. Research objectives 

 

Therefore, the present work aims to: 

- Perform a comparative assessment of LAI models ( both physical and pre-

existing empirical LAI estimation methods) against the ground LAI 

measurements of the studied crop groups, particularly the newly embedded 

biophysical processor (based on the ANN method) in the Sentinel Application 

Platform (SNAP) software, the newly developed S2 LAI algorithm from SeLI 

index, and the empirical-based HLS-VIs models 

- Assess new LAI-VI fits specific to these crop groups 

- Establishing crop-specific LAI based biophysical parameters (biomass & crop 

height) equations, using the Harmonized Satellite data product which involves 

merging two sensors gridded to a joint pixel resolution, map projection and 

spatial extent 
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CHAPTER II 

LITERATURE REVIEW 
 

A. LAI Estimation Methods 

 

1. Ground-based LAI Estimation 

 

The indirect measurement of LAI with the optical instruments is based on two 

major theoretical approaches, namely: the gap fraction or PAR inversion methods. With 

the gap fraction approach, LAI is determined by solving for L as per the below (Eqs.1 

and 2): 

 
P(θ) =  e−G(θ,α)Ω

(θ)L
cos θ  

(1) 

 

 
L =  

−(ln P(θ) cos θ) 

G (θ) Ω (θ)
   

(2) 

 

Where P (θ) is the gap fraction, θ is the zenith angle of view, α is the leaf angle, G (θ, α) 

is the fraction of foliage projected on the plane normal to the zenith direction, and Ω (θ) 

is the clumping coefficient, When foliage is randomly distributed within the canopy, Ω 

(θ) = 1, but as the foliage becomes more clumped, Ω (θ) < 1, and L is the Leaf area 

index. Examples of instruments that use the above theory include the LAI–2200 Plant 

Canopy Analyzer, which compares above and below canopy light levels detected by 

five conical rings with zenith view angles ranging from nadir to 75⁰. Another example is 

digital hemispherical photography (DHP). DHP measures LAI by the inversion of the 

Poisson model (Eq.2), as described by Thimonier et al. (2010). DHP uses a fish-eye lens 
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inside the camera that images the canopy from the beneath in a hemisphere. The 

collected photographs are then processed by the user using the Can-Eye or other 

software. By process of thresholding, distinguishing pixels that are occupied by leaves 

from those that are occupied by the sky, the user can determine the LAI values. 

The second approach is based on Beer-Lambert extinction law, and it can be explained 

as follows: In a case of light absorption by the canopy, according to Beer’s law, a 

relationship between the incident (I0), transmitted light (I) and leaf area index (L) is 

given by the below (Eq.3): 

Where K is an extinction coefficient which depends on the direction of beam and leaf 

angle 

Distribution. K is calculated, according to Campbell (1986) as per (Eq.4): 

 

 

Where x is the Ellipsoidal Leaf Angle Distribution (ELADP), and θ is the zenith angle 

of the direct beam. Typical ELADP values used in this study are summarized in Table 1 

from Campbell and Van Evert (1994). A default value of 1 was used for random 

spherical distribution crops that are not mentioned in the below table 6. Zenith angels 

are calculated from longitude, latitude, and local timing.  

 

 

I = I0 × exp(−K . L) (3) 

K (×, θ) =
√×2+  tan(θ)2

× +1.72 (× +1.12)−0.708
) 

(4) 
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Table 1. Typical ELADP Values 

Crop  ELADP 

Maize 0.76-2.52 

Wheat 0.96 

Barley  1.2 

Cucumber 2.17 

Tobacco 1.29-2.47 

Potato 1.7-2.47 

 

 

Examples of instruments that use the above theory include SS1 SunScan Plant Canopy 

Analysis System. This instrument consists of 64 PAR sensors with an accuracy of 

±10%, embedded in a 1 m long portable probe. Combined with a calibrated BF3 

Sunshine Sensor, it measures the incident and transmitted PAR in the canopy to provide 

an estimate of LAI. A brief theoretical background of how the SunScan computes its 

reading of LAI can be found in the user’s manual. Another instrument is the Accu-PAR 

model Lp-80 PAR LAI Ceptometer (Decagon Devices, Inc. Pullman, WA, USA). The 

LAI measured by Accu-PAR and other PAR inversion instruments is dependent on 

several factors such as the solar zenith angle which is calculated using the time of day 

and the geographic location, the path length of the beam radiation, and the leaf angle 

distribution of the canopy as described by Beer’s law. 

We here present a review of the evaluation of the different LAI instruments. Casa et al. 

(2019) evaluated different commercial LAI instruments and compared them to direct 

LAI measurements of different crops. Of these instruments are the LAI-2000, the 

Sunscan Ceptometer, and the digital hemispherical photography. Casa et al. (2019)  

concluded that the digital hemispherical photograph provided best estimates of LAI for 
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alfalfa (RMSE=0.33 m2/m2), broad bean (RMSE=0.3 m2/m2), emmer (RMSE=0.31 

m2/m2), maize (RMSE=0.58 m2/m2), and wheat (RMSE=0.68 m2/m2). Ariza-Carricondo 

et al. (2019) assessed the LAI–2200 Plant Canopy Analyzer, the SS1 SunScan Canopy 

Analysis System, and Digital Hemispherical Photography (DHP) for four different 

canopy types, including maize. The results have shown that LAI-2200 overestimates 

LAI in a very low range of the directly measured LAI. The DHP only slightly 

overestimated the direct method, whereas the SS1 underestimated the direct 

measurements by about 25%; this is consistent with Gower et al. (1999), who showed 

that SunScan underestimated LAI compared with the destructive measurement. 

However,  the SunScan probe has provided reasonable estimates of leaf area index for 

corn (P= 0.0713) as reported by Wilhelm et al. (2000) and for rice cultivars (P<0.001) 

when restricting the range of LAI to < 4 m2/m-2  as reported by (Sone et al. 2009). 

Reyes-González et al. (2019) measured the Leaf area index of cornfields with Accu-

PAR model Lp-80 PAR LAI Ceptometer (Decagon Devices, Inc. Pullman, WA, USA). 

In their methodological approach, the LAI measurement was done during the time the 

satellite overpasses to assess the LAI estimated using the remote sensing-based 

METRIC model. The results of the comparison of the estimated LAI to the LAI 

obtained from AccuPAR have shown that LAI values measured in situ were higher than 

the LAI values estimated using the remote sensing-based METRIC model by about 

12%, with a good linear correlation (MBE of 0.61, and RMSE of 0.59). Pasqualotto et 

al. (2019a) and Anderson et al. (2004)  used LAI-2200 Plant Canopy. Pasqualotto et al. 

(2019a) compared LAI obtained from Sentinel-2 LAI Index SeLI (B8a-B5/ B8a+B5) 

with the in-situ measurements and found a good linear correlation between them (R2 of 

0.732, and RMSE of 0.69 m2/m2). Similar results were achieved by Anderson et al. 
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(2004), where the accuracy of LAI retrieval from Optimized Soil Adjusted Vegetation 

Index (OSAVI) and Normalized difference Water Index (NDWI) compared to the 

measured LAI was 0.6 as measured by the root-mean-square-deviation (RMSD). 

The previously mentioned stress factors directly affect the light use efficiency 

(LUE) of the crop, which is defined as the efficiency with which a plant can convert 

sunlight into dry matter. Both the LUE and stress factors are further described in the 

next sections.  

 

2.  Remote sensing-based LAI Estimation  

 

a. Definition of Remote sensing:  

Remote Sensing (RS) is defined as the science of acquiring information about an 

object from a distance without having direct contact with it (Lillesand 1994). Remote 

sensing has the potential to provide spatial information on a regional scale and on a real-

time basis. In the below subsections, we discuss the methods in which LAI estimation 

can be done from remote sensing.  

b. Multispectral satellites 

Multispectral satellites are composed of different bands, spatial and temporal 

resolution. The wavelength ranges of each band differ from one satellite to the other. A 

summary of spectral bands is shown in Table 2. 
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Table 2. Spectral bands and their corresponding wavelengths 

  Band  Wavelength (nm) 

Visible light Blue 450–495 
 Green 495–570 

  Red 620–750 

Infrared Near-Infrared (NIR) 750–900 
 Short Wave Infrared (SWIR) 900–3000 

  Thermal Infrared (TIR) 3000–14000  

 

 

i. Landsat 7  

 

Landsat 7 is the seventh satellite of the Landsat series with the enhanced 

thematic mapper plus (ETM+) sensor(NASA 2016). It was launched on April 15, 1999 

(USGS 2017). It has a 16-days temporal resolution. Landsat 7 images are composed of 

seven shortwave bands of 30 m spatial resolution, and one panchromatic band of 15 m 

spatial resolution.  

 

ii. Landsat 8  

 

Landsat 8 satellite is the eighth satellite of the Landsat series with the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) sensors. It was 

launched on February 11, 2013 (NASA 2013). It has the same temporal resolution as of 

the Landsat 7.  It is composed of nine shortwave spectral bands of 30 m spatial 

resolution and one panchromatic band of 15 m spatial resolution. 

 

iii. Sentinel-2 
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Sentinel-2 is a European satellite that provides high-resolution multispectral 

imagery Launched by the European Space Agency (ESA). Sentinel-2 is composed of 

two satellites that were launched on June 23, 2015, and March 7, 2017, respectively. 

Sentinel-2 scenes are composed of 13 shortwave spectral bands of 10, 20, and 60 m 

spatial resolution. 

c. LAI- Spectral Vegetation Indices Approach  

Several studies have shown that there is a high correlation between vegetation spectral 

indices extracted from satellite images and the Leaf Area Index. The plant primarily 

absorbs the blue and red light and reflects the near-infrared (NIR) and green, explaining 

the green color of plants (Fig.1). This characteristic is used to develop spectral 

vegetation indices in remote sensing 

Most of the produced indices are calculated from the multispectral satellite 

images using the red and near infra-red bands. We here present the commonly used 

vegetation indices:  

i. The Normalized difference vegetation index (NDVI) : 

 

Calculated using Eq.5 (Rouse et al. 1974):  

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅   −  𝜌𝑅

𝜌𝑁𝐼𝑅  +  𝜌𝑅
 

(5) 

 

ii. The soil adjusted vegetation index (SAVI): 

 

Calculated using Eq.6 (Huete 1988): 
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(1 +  𝐿)(𝜌𝑁𝐼𝑅 − 𝜌𝑅)

L +  ρNIR   +  ρR
 

(6) 

 

iii. The enhanced vegetation index (EVI2): 

 

Computed using Eq.7 (Kang et al. 2016): 

2.5 [
(𝜌𝑁𝐼𝑅  −  𝜌𝑅)

(𝜌𝑁𝐼𝑅 +  2.4 𝜌𝑅) + 1
] 

(7) 

 

 

 

Fig 1. Light interactions at the plant scale Light interactions at the plant scale 

 

The correlation between LAI and the VIs takes various mathematical forms, 

such as linear, logarithmic, polynomial, or exponential (Nguy-Robertson et al. 2014; 

Viña et al. 2011b). 



 
 
 
 

 
 

15 
 

d. Physical Modeling Approaches 

The physical Modeling approach involves radiation transfer models (RTMs). RTMs 

provides values of the biophysical variable through modeling the relation between 

canopy properties and its reflection behavior (Urrutia 2010). The advantages of these 

models are that they account for the various sources of variability, and LAI can be 

inverted in the high range, overcoming insensitivity of VI to higher LAI values 

(González-Sanpedro et al. 2008). The most validated RTMs models to estimate LAI 

include: the leaf reflectance model, PROSPECT (Jacquemoud and Baret 1990) and 

canopy reflectance model called SAIL (Verhoef 1985) Examples of the physical 

modeling technique involves the retrieval of LAI biophysical using biophysical 

processor tool (Weiss and Baret 2016), implemented ii the Sentinel Application 

Platform (SNAP), developed by the European Space Agency (ESA). 
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CHAPTER III 

MATERIALS AND METHODS 

 

A. Study area and surveyed crops 

 

The study area is located in the fertile semi-arid Bekaa valley of Lebanon (Fig.2). The 

climate in the study area is typically the Mediterranean with heavy rains in winter 

(which extends from December to May) while aridity prevails during the other months 

of the year (Comair 1998). The rainfall level ranges from 300 mm to 600 mm in the 

Bekaa Valley in Lebanon. The total agricultural area is 118,000 ha (Jaafar and Ahmad 

2020), which accounts for 42 % of the total cultivated area in Lebanon (FAO 2019; 

MOE 2001). The study area covers Baalbek in the 2019 growing season (characterized 

by semi-arid climate), and the North to West Bekaa (characterized by the Mediterranean 

climate) in the 2018 growing season. Field campaigns were conducted to the study area, 

to acquire ground LAI measurements on different crops. The total number of surveyed 

fields is 498, with a total area of 4356 ha. A summary statistic on the field campaign 

carried in the two growing seasons is shown in Fig 3.  
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Fig 2. Location of the study area, surveyed fields are outlined in green  
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Fig 3. Surveyed crop groups during the 2018-2019 growing seasons, the count of fields 

and their average area 

 

 

B. Biophysical Measurements 

 

1. Leaf Area Index Measurements  

 

The in-situ measurements of LAI were conducted using the SS1 SunScan 

Canopy Analysis System (Delta-T Devices) (Potter et al. 1996). SS1 requires input data, 

including the Ellipsoidal Leaf Angle Distribution (ELADP), longitude, latitude, and 

local timing. Typical ELADP values used in this study are summarized in Table 1 in the 

appendix. LAI measurements were taken during the same period of the satellite 

overpass to calibrate and validate the relationship between the LAI and vegetation 

indices. 
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Two different patterns for data collection were followed during both the growing 

seasons of 2018 and 2019. In 2018, Leaf Area Index measurements were collected all 

over the Bekaa Valley. To get around the spatial variability of LAI, we increased our 

sample size by collecting multiple LAI measurements within the study area. Five 

measurements were taken from each field, and the average value of the collected 

measurements was representative of the LAI of the whole field. All the LAI 

measurement dates coincided with the Landsat and Sentinel data acquisition dates, 

except for two dates. For each field, random distribution of five LAI measurements at 

five different locations was taken following an ~ a square grid spatial sampling, ~ 5 m 

apart (points A, B, C, D, and E) starting from the mid of the field. Measurements were 

taken away from the field edges to avoid errors that may result in the analysis of a pixel 

that may contain crop and non-crop signals. 
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Fig 4. LAI measurement approach for each visited field during 2018 growing season 

 

 

For the 2019 growing season, extending from April to July, three significant crops were 

considered including wheat, barley, and potato. The aim was to monitor the LAI 

dynamics of these crops. A total of 42 predefined sampling sites with GPS coordinates 

were chosen where LAI was collected from these same locations every time the satellite 

overpasses. The sampling sites include 21 locations in wheat fields, 12 locations in 

barley fields, and 9 locations in potato fields. At each sampling site, three LAI 

measurements were taken and averaged. The sampling locations are shown in Fig 5. 
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Fig 5. LAI, canopy height, and above-ground biomass sampling sites (labeled in green) 

for the 2019 growing season 

 

2. Canopy height and Above-ground biomass measurements 

 

Above-ground crop biomass and height measurements were collected from the LAI 

sampling sites in 2018 and 2019. A quadrate (0.5 m2 by 0.5 m2) was randomly thrown 

in the field, and the vegetation within the frame of the quadrate was clipped. Three 

samples of the biomass were taken from each field, and the obtained results were 

averaged. The above-ground plant component was oven-dried at 75 0C for 48 hours to a 

constant weight and weighed. Aboveground biomass measurements were conducted for 

the potato crop in 2019. The crop height was directly measured for the tobacco and 

cannabis crops in 2018, and potato crop in 2019 for the plant samples within the frame. 
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C. Surface reflectance data 

 

1. Satellite datasets 

 

A total of 17 HLS images (T36 SYC) were used for the growing season 

extending from May to September 2018, and a total of 7 images were used for the 

growing season extending from the end of April to July 2019. Our field visits were 

organized in a way to meet the time the satellite overpasses. In 2018, we aimed to get as 

many LAI measurements as possible on different varieties of crops to cover the whole 

Bekaa agricultural scheme; for this, several HLS scenes were downloaded and used. 

However, in 2019 we aimed to generate time series from the collected biophysical 

parameters on only two strategic crops: Potato and Wheat during a different time 

interval than that of 2018 covering the growing period (planting to harvest)  of the 

Potato crop, where we used fewer HLS scenes but enough to fulfill this aim. Addional 

2019 HLS scenes were downloaded and used to generate modeled crop biophysical 

variables time-series. Fig 6 represents a summary of the obtained satellite data. 

Atmospherically corrected Level 2- A surface reflectance sentinel-2 (S-2) images were 

downloaded from the THEIA website at the French Land Data Center 

(https://www.theia-land.fr/), and they were holding the same dates as S30 from HLS. S-

2 images were used to generate LAI using the Sentinel LAI index and SNAP software. 

We use and validate the newly released harmonized surface reflectance product (HLS, 

v1.4). HLS represents a synergy of Landsat-8 (L30) and Sentinel-2 (S30) data with 30 

meters resolution (Claverie et al. 2018).  

 

https://www.theia-land.fr/
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Fig 6. HLS scenes used in the study, Day of the year (DOY) (in bold) with the 

respective date of HLS products (Landsat 8 (L30) images blue boxes, Sentinel-2 (S30) 

red boxes) and S2 extracted from THEIA scenes red boxes), with the respective number 

of total images grey boxes, dashed boxes represent the HLS scenes used to validate 

LAI, whereas lined boxes are used to generate crop biophysical variable time-series 

during the 2019 growing season 

 

2. Cloud Masking  

 

Cloud masking is done for acquiring high-quality land surface reflectance values 

with low uncertainties. The HLS product contains, in addition to the surface reflectance 

bands, what is referred to as a Level-2-pixel quality assurance band. This band provides 
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information about the cloud status in each pixel (clear, shadow, low, medium, and high 

confidence), snow/ice, and water pixels. The Landsat-8 cloud mask is derived from both 

the mask in the USGS Landsat TOA data and the Land Collection 1 Surface Reflectance 

Code (LaSRC) atmospheric correction tool. However, the Sentinel-2 cloud mask is a  

union of the Fmask algorithm, which has been adapted from (Zhu et al. 2015) and the 

LaSRC mask. The quality assessment band (QA) bits of the HLS Landsat and Sentinel-

2 were decoded with a loop using simple integer arithmetic, and its output was used to 

mask cloud shadow, adjacent cloud, cloud, and cirrus from the processed images.  

As for the L2A THEIA’s product, it corrects for atmospheric effects and detects 

the clouds and their shadows using the Multi-sensor Atmospheric Correction and Cloud 

Screening (MACCS) processor (https://labo.obs-mip.fr/multitemp/?p=6203). The L2A 

10-meter cloud mask product was downloaded and used from the mask directory. 

https://labo.obs-mip.fr/multitemp/?p=6203
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3. Vegetation indices  

 

Vegetation indices (VIs) are necessary for the indication of the health and 

greenness of the vegetation canopy. Vegetation indices are widely used in the 

assessment of several biophysical parameters including the fraction of 

photosynthetically active radiation absorbed by the vegetation (FAPAR ) (Di Bella et al. 

2004), green vegetation fraction (Zeng et al. 2000), leaf area index (LAI) (Boegh et al. 

2002), and canopy chlorophyll (Gitelson et al. 2005). In this study, we selected several 

indices, including Soil adjusted vegetation index (SAVI), Normalized difference 

vegetation index (NDVI), Enhanced vegetation index 2 (EVI2), and Sentinel-2 LAI 

Index (SeLI) to be used for the evaluation of LAI. SAVI, NDVI, and EVI2 are a 

combination of visible and near-infrared bands. While SeLI is a combination of near-

infrared and red edge bands of the sentinel2 imagery. In literature, it is common that the 

vegetation indices are calculated from top-of-atmosphere reflectance. In our application, 

we calculate the VIs (NDVI, SAVI, and EVI2) using the HLS (Harmonized Landsat 

Sentinel-2) 30-m products consisting of surface reflectance derived from both Landsat-8 

L1T products and Sentinel-2 MSI L1C data. Furthermore, we calculated SeLI from the 

L2A THEIA surface reflectance product. SeLI is a new robust LAIgreen index developed 

by  Pasqualotto et al. (2019a) computed from near-infrared and red edge bands.  The 

red-edge region, between 690 and 750 nm, represents the region between the maximum 

absorption in the red wavelength and maximum reflection in the near-infrared 

wavelength, by the plant (Guyot et al. 1992; Liu et al. 2004). Several researchers 

emphasize the importance of the red edge band in the estimation of LAIgreen.  NDVI was 

selected as one of the simplest and earliest VI. Compared to NDVI, SAVI and EVI2 are 

less sensitive to soil background (Kang et al. 2016). However, the disadvantages of 
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SAVI, NDVI, and EVI2 is that they tend to saturate at moderately high LAI (~ 2.5-3). 

For SAVI, we use L=0.5 (USGS, 2017b). Equations of the used VIs, along with their 

references, are presented in Table 3.  

 

 

Table 3. References and equations of selected VIs to be evaluated in this study 

Index  Acronym Equation Reference 

Soil adjusted vegetation 

index  
SAVI 

(1 +  𝐿)(𝜌𝑁𝐼𝑅 − 𝜌𝑅)

L +  ρNIR   +  ρR
 

(Huete 

1988) 

Normalized difference 

vegetation index  
NDVI 

𝜌𝑁𝐼𝑅   −  𝜌𝑅

𝜌𝑁𝐼𝑅  +  𝜌𝑅
 

(Rouse Jr et 

al. 1974) 

Enhanced vegetation index 

2 
EVI2 2.5 [

(𝜌𝑁𝐼𝑅  −  𝜌𝑅)

(𝜌𝑁𝐼𝑅 +  2.4 𝜌𝑅) + 1
] 

 

(Kang et al. 

2016) 

Sentinel-2 LAI Index SeLI 
𝜌𝑁𝐼𝑅2   −  𝜌𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 1

𝜌𝑁𝐼𝑅2  +  𝜌𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 1
 (Pasqualotto 

et al. 2019a) 

 

 

D. LAI Models 

 

1. Existing VI-based LAI models 

 

We used existing LAI models to create spatial LAI layers of the study area. 

These models are evaluated and validated with the collected LAI measurements to 

determine the best fit model. We analyzed the LAI obtained from NDVI with linear, 

exponential, and polynomial of third-order fittings. We also analyzed LAI obtained 
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from SAVI with a polynomial of third order and logarithmic fittings, LAI obtained from 

EVI2 with square root fittings, and LAI obtained from SeLI with a linear fitting. To be 

able to compare the LAI derived from LAI models as they exist in literature against the 

ground-based LAI measurements, we used the zonal statistics tool for the 2018 growing 

season, and the extract multi-value to point tool for the 2019 growing season. The 

relationships between LAI and different studied vegetation indices, as presented in 

Literature, are summarized in Table 4.  

 

 

Table 4. References and equations of selected existing VI-based LAI models to be 

evaluated in this study 

Model 

# 
Relation Equation of LAI Studied Crop Satellite  Reference 

 1 

 LAI-

NDVI 

  

  

 4.9NDVI- 0.46 Vineyard 

Multi-spectral 

imagery obtained 

from IKONOS 

(Johnson et 

al., 2003) 

 2 
  
 0.0287 e5.081NDVI 

Wheat and 

Corn 

L5 TM  

(González 

Piqueras, 

2006) 

 3 

  
 9.519 × NDVI3

−  0.104 ×  NDVI2  
+  1.236 ×  NDVI
− 0.257 

Overall 

vegetation 

cover  

& crops 

(Myneni et 

al. 1997) 

 4 

 LAI-

SAVI 

  

  11 × SAVI3 
 

Overall 

vegetation 

cover, 

woody trees, 

&agricultural 

crops 

  

 

 

 

L5 TM & L7 

ETM+  

 

 

 

(Pôças et 

al., 2014)  
 5  

−ln (
 0.69− SAVI

0.59
 )

0.91
 

6 
 LAI-

EVI2 

  

  

  

(2.92√EVI2

− 0.43)
2
 

Overall 

crops 

 

 

 

 

Atmospherically 

corrected L5 TM 

& L7 ETM+ 

 

 

 

(Kang et al., 

2016a) 

 

  

 7 
(3.16 √EVI2

− 0.58)
2
 

Row crops 

 8 
 (5.3 √EVI2 −

1.66)
2/3

 
Maize 
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Model 

# 
Relation Equation of LAI Studied Crop Satellite  Reference 

 9    (5.47  EVI2
3

5 −
      1.03)4/3 

Wheat 
  

10 

SeLI 

(Sentinel-

2 LAI 

index) 

5.405 × SeLI-0.114 

Overall 

crops 

(potato, 

artichoke, 

squash,  

alfalfa, 

lettuce, 

wheat, 

pumpkin, & 

others) 

Atmospherically 

corrected 

Sentinel-2 

Surface 

reflectance 

(Pasqualotto 

et al. 2019a) 

 

2. SNAP Model 

 

In addition to the generation of LAI from the relationship with the vegetation 

indices, LAI was produced from S2 THEIA surface reflectance data using Sentinel 

Application Platform toolbox (SNAP) software. SNAP provides a scientific processor 

tool named “Biophysical Processor,” in the Thematic Land Processing pull-down menu, 

for the retrieval of several biophysical parameters including LAI. The principle is to 

retrieve LAI  from Sentinel-2 scenes using the algorithm implemented in the SNAP 

software, which is based on neural networks that are trained to estimate the canopy 

characteristics (Bochenek et al. 2017). LAI can be directly retrieved for each pixel based 

on a pre-trained neural net. The neural nets are trained using well known RTM ( 

PROSAIL: PROSPECT (Jacquemoud and Baret 1990) +SAIL (Féret et al. 2017)) as 

described in (Weiss and Baret 2016). The ANN algorithm hereby requires the input 

of eight S2 spectral wavebands (B3–B7, B8a, B11, and B12) which are all resampled to 

20 m, in order to preserve the red-edge region in the S-2 scenes. LAI, with the quality 

indicators of the used dataset, were thus automatically obtained with the finest possible 
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resolution. To reduce the processing time and image size, we extracted the area 

corresponding to the bounding box of the shapefile. 

Fig 7 represents a summary of the overall methodological approach that was 

followed in this study to generate LAI from the studied vegetation indices, L2A 

THEIA’s product, and SNAP software. 

 

 

 

Fig 7. Step-by-step flow chart for the validation of satellite-derived LAI against the 

ground measured LAI 

 

E. Accuracy Assessment  

 

Statistical analysis between ground measured LAI and remotely sensed LAI derived 

from S-2 and HLS product was performed for each crop group during the 2018-2019 
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growing seasons. This analysis aimed to evaluate the accuracy of each LAI model and 

to determine which indices are the best fit to remotely sensed LAI estimation. In 2018, 

the study was conducted on five crop groups, namely: Herbs (Cannabis: Cannabis 

sativa, Mint: Mentha, Onion: Allium cepa, Parsley: Petroselinum crispum), Grains 

(Barley:  Hordeum vulgare and Wheat: Triticum aestivum), Potato: Solanum tuberosum, 

Tobacco: Nicotiana tabacum, and Vegetables (Bean: Phaseolus vulgaris,  Cabbage: 

Brassica oleracea, Carrot: Daucus carota subsp. sativus, Chickpea: Cicer arietinum , 

Corn: Zea mays, Cucumber: Cucumis sativus, Lettuce: Lactuca sativa, Eggplant: 

Solanum melongena, Melon: Cucumis melo var. cantalupensis, and Pepper: Capsicum 

annuum). In 2019, the study was conducted on three major crops, namely: Wheat, 

Barley, and Potato. Statistical analysis was based on RMSE (Eq.8), MAE (Eq.9), and 

MAPE (Eq.10), RRMSE (Eq.11), Mean Bias Error (MBE) (Eq.12) and d (Eq.13) as 

follows: 

Root Mean Square Error (RMSE): 

RMSE = √
∑ (Estimated LAIi − Measured LAIi)2n

i=1

n
 

(8) 

 

Mean Absolute error (MAE): 

 

MAE =
∑ |Estimated LAIi − Measured LAIi|

n
i=1

n
 

(9) 

 

Mean absolute percentage error (MAPE): 

 

https://en.wikipedia.org/wiki/Cannabis_sativa
https://en.wikipedia.org/wiki/Cannabis_sativa
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MAPE =
1  

𝑛
∑

|(Measured LAIi − Estimated LAIi) |

Measured LAIi

𝑛

𝑖=1
 

(10) 

 

Relative RMSE: 

RRMSE =
RMSE

Measured LAI𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 × 100 
(11) 

 

Mean Bias Error (MBE): 

MBE =
∑ (Estimated LAIi − Measured LAIi)

n
i=1

n
 

(12) 

 

Index of agreement (d):  

d

= 1

−
∑ (Measured LAIi − Estimated LAIi)

n
i=1

2

∑ (|Estimated LAIi − Measured LAIi
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅| + |Measured LAIi − Measured LAIi

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|)2n
i=1

 

(13) 

 

We also investigate the relation between the measured LAI and the remotely sensed 

vegetation indices. For this purpose, we use Pearson’s r, which is the most used 

parametric correlation coefficient, and it is given by Eq. 14:  

r =  
∑ (xi − x)(yi − y)i

√∑ (xi − x)2√(yi − y)2
i

 
(14) 

 

The significance is computed using the two-tailed t-test with n-2 degrees of freedom  

t =  r√
n − 2

1 − r2
 

(15) 
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CHAPTER IV 

RESULTS  
 

The performance of the empirical and biophysical models was evaluated using the 

aforementioned statistical parameters when compared to field measurements. A table of 

the performed statistical analysis, along with a summary graphical representation, is 

shown in Fig 8&9 and table 5 &6, respectively. The conclusions that were drawn from 

our study are explained in the below sections. 

 

A. Evaluation of existing LAI Models
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Fig. 8. Comparison between modeled and observed LAI in the 2018-2019 growing seasons for the HLS-VI Models, the color bar 

represents  the measured LAI ranges, divided into low (0-2 m2/m2), medium (2-4 m2/m2), and high (>4 m2/m2) LAI range
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Fig 9. Comparison between modeled and observed LAI in the 2018-2019 growing 

seasons for the HLS-VI for the HLS VI best-performing Models derived from S30, 

Model 10 (SeLI, overall crops) and SNAP Model derived from S2 THEIA Product; the 

color bar represents  the measured LAI ranges, divided into low (0-2 m2/m2), medium 

(2-4 m2/m2), and high (>4 m2/m2) LAI range 
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Table 5. Statistical analysis summary for the studied crops in both 2018 and 2019 

growing seasons for the vegetation indices derived from the HLS product Models 

HLS VI Models 

LAI Model 
Statistical 

Parameter 

Herbs 

(n=178) 

Potato 

(n=140) 

Tobacco 

(n=30) 

Vegetables 

(n=66) 

Grains 

(n=37) 

Combined  

Crops 

(n=451) 

Model 1  

(NDVI, 

Vineyard) 

MAE 0.82 1.28 0.64 0.98 0.74 0.97 

RMSE 1.19 1.60 0.83 1.32 0.94 1.31 

RRMSE 55% 55% 54% 59% 37% 55% 

MAPE 39% 64% 52% 54% 66% 52% 

MBE -0.43 -0.09 -0.06 -0.11 -0.26 -0.24 

d 0.66 0.50 0.66 0.57 0.69 0.63 

Model 2 

(NDVI, 

Wheat  

& Corn) 

MAE 1.76 1.87 1.21 1.65 1.88 1.76 

RMSE 2.07 2.40 1.35 2.09 2.10 2.16 

RRMSE 97% 82% 88% 94% 82% 90% 

MAPE 80% 59% 76% 71% 72% 71% 

MBE -1.74 -1.81 -1.21 -1.60 -1.86 -1.72 

d 0.45 0.50 0.39 0.47 0.40 0.48 

Model 3  

(NDVI, 

Overall  

agricultural  

crops) 

MAE 1.01 1.56 1.03 1.25 1.41 1.25 

RMSE 1.35 1.95 1.26 1.67 1.77 1.64 

RRMSE 63% 67% 82% 75% 69% 68% 

MAPE 48% 95% 75% 75% 73% 70% 

MBE -0.66 1.99 -0.34 0.12 0.09 0.05 

d 0.74 0.70 0.75 0.59 0.51 0.71 

Model 4  

(SAVI, 

Overall 

 agricultural 

 crops) 

MAE 1.75 1.58 1.16 1.50 1.72 1.62 

RMSE 2.06 1.97 1.30 1.95 1.96 1.97 

RRMSE 96% 68% 84% 88% 76% 82% 

MAPE 80% 55% 75% 66% 70% 69% 

MBE -1.75 -1.39 -1.12 -1.41 -1.70 -1.54 

d 0.47 0.60 0.47 0.48 0.47 0.54 

Model 5 

(SAVI, 

Overall  

agricultural 

 crops) 

MAE 0.82 1.68 0.69 1.02 1.82 1.19 

RMSE 1.12 2.09 0.88 1.40 1.97 1.59 

RRMSE 52% 72% 57% 63% 77% 66% 

MAPE 43% 80% 80% 60% 117% 64% 

MBE -0.13 -0.05 0.34 0.09 -1.58 -0.16 

d 0.63 0.39 0.52 0.55 0.31 0.52 

Model 6 

(EVI2, 

Overall 

agricultural 

 crops) 

MAE 0.94 1.55 0.72 1.00 1.59 1.18 

RMSE 1.33 2.08 0.88 1.37 1.76 1.62 

RRMSE 62% 71% 57% 61% 68% 68% 

MAPE 39% 63% 53% 51% 81% 53% 

MBE -1.46 -0.61 -0.77 -0.38 -1.47 -0.71 

d 0.54 0.35 0.53 0.58 0.42 0.49 
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HLS VI Models 

LAI Model 
Statistical 

Parameter 

Herbs 

(n=178) 

Potato 

(n=140) 

Tobacco 

(n=30) 

Vegetables 

(n=66) 

Grains 

(n=37) 

Combined  

Crops 

(n=451) 

Model 7 

(EVI2, 

row  

crops) 

MAE 0.96 1.14 0.77 1.01 0.84 1.00 

RMSE 1.35 1.42 0.92 1.38 1.10 1.34 

RRMSE 63% 49% 60% 62% 43% 56% 

MAPE 41% 57% 55% 52% 52% 49% 

MBE -0.85 -0.12 -0.38 -0.37 -0.52 -0.5 

d 0.59 0.72 0.52 0.59 0.66 0.70 

Model 8 

(EVI2, 

Maize) 

MAE 0.94 1.15 0.80 1.02 0.85 1.00 

RMSE 1.31 1.41 0.99 1.38 1.08 1.32 

RRMSE 61% 48% 65% 62% 42% 55% 

MAPE 42% 64% 58% 57% 51% 53% 

MBE -0.78 0.16 -0.33 -0.21 -0.35 -0.34 

d 0.59 0.76 0.52 0.62 0.68 0.73 

Model 9 

(EVI2, 

Wheat) 

MAE 0.80 1.29 0.76 1.05 0.85 0.99 

RMSE 1.12 1.56 0.99 1.40 1.03 1.30 

RRMSE 52% 44% 65% 63% 40% 54% 

MAPE 40% 78% 63% 66% 67% 59% 

MBE -0.33 0.62 0.09 0.23 0.16 0.11 

d 0.66 0.72 0.60 0.64 0.69 0.74 

 

 

Table 6. Statistical analysis summary for the studied crops in both 2018 and 2019 

growing seasons for the HLS VI best-performing Models derived from S30, Model 10 

(SeLI, overall crops) and SNAP Model derived from S2 THEIA Product 

 

S2 Models 

 

 

LAI Model 

  
Statistical 

Parameter  

 

Herbs 

(n=129) 

 

Potato 

(n=68) 

 

Tobacco 

(n=24) 

 

Vegetables 

(n=57) 

 

Grains 

(n=17) 

 

Combined  

Crops 

(n=295) 

Model 10  

(SeLI, 

THEIA S2, 

Overall  

agricultural  

& row  

crops) 

MAE 0.82 1.44 0.69 1.01 0.70 0.98 

RMSE 1.21 1.85 0.86 1.40 0.89 1.38 

RRMSE 55% 56% 59% 59% 35% 59% 

MAPE 36% 52% 58% 55% 51% 46% 

MBE -0.49 -0.69 -0.11 -0.19 -0.36 -0.44 

d 0.56 0.43 0.42 0.51 0.73 0.58 

LAI-SNAP 

(THEIA S2) 

MAE 1.24 1.80 0.93 1.28 0.65 1.32 

RMSE 1.61 2.19 1.08 1.73 0.83 1.72 

RRMSE 73% 66% 73% 73% 33% 70% 
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S2 Models 

 

 

LAI Model 

  
Statistical 

Parameter  

 

Herbs 

(n=129) 

 

Potato 

(n=68) 

 

Tobacco 

(n=24) 

 

Vegetables 

(n=57) 

 

Grains 

(n=17) 

 

Combined  

Crops 

(n=295) 

MAPE 52% 63% 61% 59% 37% 56% 

MBE -1.21 -0.98 -0.75 -0.60 -0.27 -0.95 

d 0.54 0.50 0.37 0.52 0.78 0.59 

Model 7 

(EVI2, HLS 

VI, row 

crops) 

MAE 1.00 1.17 0.83 1.10 0.65 1.02 

RMSE 1.39 1.50 0.98 1.46 0.91 1.38 

RRMSE 63% 45% 66% 62% 36% 57% 

MAPE 41% 46% 62% 55% 31% 46% 

MBE -0.91 -0.43 -0.43 -0.37 -0.47 -0.63 

d 0.56 0.70 0.37 0.55 0.75 0.69 

Model 9 

(EVI2, HLS 

VI, Wheat) 

MAE 0.79 1.21 0.78 1.14 0.70 0.95 

RMSE 1.14 1.47 1.02 1.49 0.83 1.27 

RRMSE 52% 37% 69% 63% 33% 52% 

MAPE 36% 60% 70% 68% 44% 51% 

MBE -0.40 0.32 0.003 0.26 0.21 -0.04 

d 0.64 0.73 0.40 0.60 0.79 0.74 

Model 8 

(EVI2, HLS 

VI, Maize) 

MAE 0.97 1.12 0.86 1.11 0.64 1.01 

RMSE 1.35 1.40 1.04 1.47 0.87 1.34 

RRMSE 62% 42% 71% 62% 35% 55% 

MAPE 42% 50% 65% 60% 27% 48% 

MBE -0.85 -0.12 -0.41 -0.18 -0.30 -0.48 

d 0.60 0.76 0.37 0.57 0.79 0.73 

 

 

1. HLS VI Models 

Empirical LAI models that are developed in relation to the vegetation indices are 

considered as one of the most straightforward methods used for predicting LAI. We 

here evaluated the efficiency and robustness of LAI models developed from indices that 

are computed from red and near-infrared HLS surface reflectance bands using the 

Normalized Difference ratio: NDVI (Model 1, 2, and 3), Soil Adjusted Vegetation 

Index: SAVI ( Model 4 and 5 ), and Enhanced Vegetation index 2: EVI2 (Model 6, 7, 8, 
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and 9). Our analysis shows that Model 7 (EVI2, row crops), Model 9 (EVI2, wheat), 

and Model 8 (Maize, EVI2 ) outperformed other models for the crops combined. The 

accuracy results from the HLS VIs models were better than that derived from S2 SeLI 

and SNAP model, placing the recently available HLS product at an advantage over SeLi 

and SNAP Models. Also, LAI derived from EVI2 outperformed the LAI Models 

derived from the other studied vegetation indices. 

On the other hand, further conclusions on the models that performed worst can 

be deduced from the conducted analysis. Both Models 2 (NDVI, wheat, and corn) and 4 

(SAVI, overall agricultural crops) underestimated the LAI for all crops. 

Underestimation was also noticed in Models 5 (SAVI, overall agricultural crops) and 

Model 6 (EVI2, overall agricultural crops) for grains. Models 8 (EVI2, maize) and 3 

(NDVI, overall agricultural crops) overestimated the LAI for potato.  

2. S2 SeLI Model 

We here assess the performance of the newly developed LAI algorithm from 

SeLI. In their study, Pasqualotto et al. (2019a) showed that LAI derived SeLI could be 

used as a generic model for LAIgreen of different crop types. Our results agree with the 

conclusions obtained by Pasqualotto et al. (2019a) and  Sharma et al. (2015), who 

pointed out that the S2 bands located in the red-edge region are recognized as crucial 

bands for the estimation of the biophysical variables, principally the LAI.  Where, 

Model 10 (SeLI, overall agricultural crops) was one of the best performing models for 

the crops combined since it comes in the second step following the HLS-VI in terms of 

low errors. Thus, the red-edge bands used in the S2 SeLI LAI algorithm offers an 
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improved LAI crop biophysical parameter retrieval with approximately the same 

accuracy level of HLS-EVI2 Models 7 and 9.  

3. SNAP Model 

Our assessment shows that LAI derived from SNAP performed the best for 

grains crop group as compared to HLS VI and S2 SeLI Models. The results demonstrate 

the potential of using SNAP to derive accurate LAI estimations for both Wheat and 

Barley. A clear underestimation of the LAI SNAP product was noticed for herbs, potato, 

vegetables, and tobacco. Our results are consistent with those obtained by Bochenek et 

al. (2017), who showed that LAI estimation from SNAP software was generally 

underestimated. Also, Pasqualotto et al. (2019a) showed that LAI estimated from 

Sentinel-2 product using the SNAP software showed a clear underestimation in the 

studied crops, including potato, artichoke, squash, alfalfa, lettuce, wheat, pumpkin, & 

others. Our results indicate that SNAP provided less accurate estimations than HLS-VI 

and S2 SeLI Models.  

 

B. Empirical relationships between VIs and LAI observations in Bekaa 

The performance of the studied indices derived from the HLS product was evaluated 

using the multi-crop dataset collected over both 2018 and 2019 growing seasons. The 

semi-empirical relationships between the measured LAI and the vegetation indices for 

all combined crops and different crop groups are given in Tables A1 and A2 in the 

Appendix, respectively. The different types of fitting functions had an R2 ranging 

between 0.21 and 0.6, with a quadratic and crop group-specific LAI-VIs relationship. 
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The accuracies of each index obtained with different fittings were moderate except 

for the SeLI index. However, the p-value was <0.0001 in all cases. Results for Pearson’s 

r correlation shows a strong correlation between the measured LAI and EVI2 (r = 0.7), 

followed by SAVI (r = 0.67) and NDVI (r = 0.6) and SeLI (r=0.5) with the lowest 

correlation. Each index was represented as a function of the measured LAI for the 

different crop groups and the combined crops (Fig.10). However, the EVI2 index hereby 

can be identified as a best-suited index for a unified algorithm for the crops combined. 

More promising results were obtained when evaluating the performance of the 

vegetation indices for each crop group separated by the satellite type. An R2 ranging 

between 0.2 and 0.8 was obtained for the best performing index (EVI2) in each crop 

group, with the highest R2 was seen in HLS-L30.  

The major challenge of retrieving LAI from vegetation indices is the difficulty of 

finding one index with a general character that it can be used to estimate LAI for a wide 

variety of crop types. Where in this work, the established indices do not present this 

general character; each index performed differently in different crop types. The most 

robust relation between ground measured LAI and vegetation indices appears in SeLI 

for cannabis, SAVI, and EVI2 for potato, NDVI for tobacco, EVI2 for vegetables, but 

EVI2 performed best over most of the crop types. A drawback of the studied indices 

identified in this study is that they all presented a saturation problem at high LAI values 

in both grains and tobacco crop groups. 
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Fig. 10. Measured LAI as a function of vegetation indices (VI) derived from HLS 

product for the different studied crop groups and all crops combined 
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Table 7. Statistics obtained using regression equations of the form y= (a *VI + b) * (1+c 

* exp [d* VI]) for each of the studied index, for the studied crop groups.  

Crop Group VI 
Regression Coefficients 

P-value RMSE R2 
a b c d 

Grains 

EVI2 5.002 -0.6 14.9 -7.001 <.0001 0.54 0.63 

SAVI 1.7 4.0 -0.9 -1.7 <.0001 0.63 0.63 

NDVI 1.6 2.1 -0.4 -1.4 <.0001 0.68 0.60 

SeLI 1.7 3.1 -0.8 -1.2 0.003 0.84 0.60 

Potato 

EVI2 3.0 0.6 0.02 5.1 <.0001 1.29 0.57 

SAVI 3.5 0.4 0.01 6.5 <.0001 1.28 0.57 

NDVI -3.4 3.4 0.0002 12.8 <.0001 1.38 0.49 

SeLI 0.2 0.0 80.8 -1.9 0.046 1.59 0.06 

Herbs 

EVI2 -1.1 0.8 0.3 7.3 <.0001 0.69 0.34 

SAVI 1.1 0.2 1.6 1.3 <.0001 0.74 0.23 

NDVI 1.6 2.4 -0.9 -1.7 <.0001 0.73 0.29 

SeLI 1.0 0.3 1.3 1.1 <.0001 0.69 0.32 

Tobacco 

EVI2 0.009 0.002 367.0 0.0 0.0004 0.40 0.43 

SAVI 0.009 0.002 347.7 0.0 0.001 0.43 0.37 

NDVI 0.009 0.002 302.0 0.0 <.0001 0.37 0.50 

SeLI 0.009 0.002 369.9 0.0 0.006 0.35 0.39 

Vegetables 

EVI2 0.04 0.006 96.2 0.0 <.0001 0.86 0.33 

SAVI 0.02 0.003 176.9 0.0 <.0001 0.88 0.30 

NDVI 0.1 0.03 22.7 0.0 <.0001 0.91 0.26 

SeLI 0.003 0.001 865.3 0.0 0.0001 0.90 0.32 

Combined 

Crops 

EVI2 2.9 0.8 0.012 5.5 <.0001 1.00 0.58 

SAVI 3.2 0.7 0.003 7.9 <.0001 1.01 0.56 

NDVI 1.0 1.1 0.013 5.7 <.0001 1.03 0.55 

SeLI 1.1 0.0 4.9 -0.6 <.0001 1.00 0.31 

 

 

 

C. Using VIs to monitor crop development in the Bekaa Valley 

1. Using LAI and VI to infer plant growth variables 

VIs are among the oldest tools in remote sensing used to estimate a wide variety 

of plant growth variables. We here studied how good the studied vegetation indices 
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(SeLI, SAVI, NDVI, and EVI2), modeled LAI (from two best performing models, 

Models  7,9 and 10), and the observed LAI are correlated to the observed height and 

above-ground biomass of the four crop groups: Potato, Wheat, Cannabis, and Tobacco.  

Results show that the observed LAI for potato can be identified as the best indicator for 

the crop height. Model 7 (EVI2, row crops) is a better indicator of potato crop height 

than EVI2 itself. As for wheat, crop height is better correlated to the measured LAI and 

LAI from Model 9 (EVI2, Wheat) than EVI2. The same results were seen for both 

Tobacco and Cannabis, Model 10 (SeLI, overall crops) was a better indicator of crop 

height than SeLI. The observed LAI was the best indicant of the measured above-

ground and fresh weight of the potato crop. Model 7 and Model 10 had a better 

correlation with the above-ground fresh and dry weight, than EVI2 and SeLI, 

respectively (Fig. 11). 
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Fig 8. A Correlation heat map between LAI and VI and the plant growth variables  

 

 

We here proceed to report on the relationships that are most significant for each 

crop group. Leaf area index can be generated from various vegetation parameters such 

as the plant height. LAI vs. height relationships are unique to specific crop types due to 

the vast diversity of canopy structure among crop types. However, simple LAI-height 

based functions are possible for most of the agricultural types of crops. The major 

limitation encountered here is the diversity of the crop height – LAI equations that exist 

in literature. Due to the lack of the universal equation of crop height – LAI, we created 

the equations for each crop under the local conditions. The utility of basing LAI on crop 

height is that crop height is a relatively easy parameter to obtain or recollect. In this 

study, a linear regression was conducted to obtain the relationship between the crop 

height, the measured LAI, and the best performing models for potato, cannabis, and 
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tobacco. Figs 12, 13, and 14 indicate that an increase in leaf area is associated with an 

increased height due to leaf extension as the crop develops. Our analysis shows that the 

relation between the ground measured LAI and the measured height of the potato crop is 

essentially linear with an R2 value  0.818 greater than that obtained when regressing the 

crop height to LAI obtained from Model 7 (EVI2, row crops) (R2:0.48) (Fig. 12). 

Similar crop height-LAI linear relationship was obtained for the wheat crop against 

measured LAI, with a higher R2 when regressed to the Model 9 (EVI2, Wheat) (Fig.13). 

Also, A good relationship exists between the measured height and the measured LAI for 

the cannabis and tobacco crops with R2: 0.489 and 0.495, and between the modeled LAI 

(model 10 derived from SeLI) with R2: 0.384 and 0.494 for both cannabis and tobacco, 

respectively (Fig. 14).  

 

  
Fig 9. Crop height (h (m)) as a function of Measured LAI (m2/m2) and LAI derived 

from Model 7 (EVI2, row crops) for potato crop studied during the 2019 growing 

season  
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Fig 10. Crop height (h (m)) as a function of Measured LAI (m2/m2) for wheat crop 

studied during the 2019 growing season, separated by satellite, L30 observations in blue 

and S30 observations in red  
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Fig 11. Crop height (h (m)) as a function of measured LAI (m2/m2) and LAI derived 

from Model 10 (SeLI, overall agricultural crops) for Cannabis and Tobacco crops 

studied during the 2018 growing season  

 

 

Above-ground dry and fresh weight of the potato crop studied in 2019 was 

regressed against the measured LAI, LAI obtained from Model 7 (EVI2, row crops), 

and the measured height. The relationship between above-ground fresh and dry weights 

as a function of both the measured LAI and modeled LAI shows that an increase in the 

leaf area index is associated with an increase in biomass (Fig.14). No saturation in the 

measurement of biomass from LAI was noticed. The ability of the linear regression to 

estimate the fresh and dry above-ground biomass of potato from the measured LAI was 

with a reasonable accuracy level (R2: app. 0.7) and with a moderate accuracy level (R2: 

app. 0.4) for biomass obtained from modeled LAI.  
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On the other hand, the regression of above-ground dry and fresh biomass of 

potato against crop height showed that an increase in the above-ground fresh and dry 

weight of the potato crop is associated with an increase in the crop height (Fig.15). The 

ability of the linear regression to estimate the fresh and dry above-ground biomass of 

potato from crop height was with a good accuracy level (R2: app. 0.6). 
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Fig 12. Above-ground fresh and dry weight as a function of LAI derived from Model 7 (EVI2, row crops), Measured LAI, 

and height (h(m)) for potato fields combined during the 2019 growing season, separated by satellite type, L30 

observations in blue, and S30 observations in red 
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2. Seasonal co-variability in observed and modeled biophysical variables 

Potato crop development was monitored regularly during the 2019 growing 

season, where crop height, LAI, and biomass were measured whereas wheat biophysical 

parameters measurements were held at the end of the growing season. In this section, 

we further perform an additional analysis by constructing wheat and potato measured 

and modeled biophysical parameters (LAI, crop height, and biomass) time-series for the 

2019 growing season (Figs 16 and 17). We picked the best relationships for wheat and 

potato obtained previously in section 3.2, to develop remotely sensed h, LAI, and 

biomass curves for 2019. For this purpose, we downloaded all L30 and S30 for 2019 

during the growing season. The remotely sensed biophysical parameters were derived 

from EVI2 being reported as the best performing index in this study. The EVI2 

evolution of both wheat and potato can be seen in Figs 16 and 17. EVI2 peaks at the 

mid of season for both wheat and potato then it decreases towards the end of the season.  

The phenological differences between both potato and wheat were captured for 

three potato and wheat farms. Typically, the potato had a higher peak of both modeled 

and measured LAI during the mid of the growing season, where the average maximum 

measured LAI for all studied potato fields was found to be 6-8 m2/m2 in the mid-season 

stage (DOY 180).  The average minimum measured potato LAI was about 2-3 m2/m2 

during the beginning of the growing season (DOY 140). Similar modeled LAI evolution 

was observed for the three potato farms. On the other hand, the measured wheat LAI 

ranged between 2 and 3 m2/m2. Lower wheat LAI values were observed since wheat 

was monitored during the end of the season, where LAI tends to decrease.  
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The measured crop height increases as the crop develop. The average minimum 

measured potato crop height was about 0.4 m during the beginning of the growing 

season (DOY 140). The maximum average crop height for all studied potato fields was 

found to be around 0.6 m in the mid-season stage (DOY 180). The measured wheat crop 

height was found to be approximately 1 m during the end of the season (DOY 135-140). 

Similar modeled crop height evolution was observed for the three wheat farms. 

Similarly, the above-ground fresh and dry biomass increase with crop growth. 

The aboveground biomass was the lowest during the beginning of the growing season, 

and it increases to reach its maximum during the mid of the growing season with a value 

of 2 Kg/m2 and 0.2 Kg/m2 for the aboveground fresh and dry biomass, respectively. 

Different crop types and their different management practices have given rise to 

different temporal LAI, crop height, and biomass dynamics. Different observed and 

measured biophysical variables values of the same crop types but different fields were 

noticed. These differences can be attributed to the different conditions among the farms 

within the same crop type due to different agronomic and management practices.  
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Fig 13. A combined L30–S30 derived and measured biophysical parameters (EVI2, h, 

and LAI) time-series of wheat for three farms during the 2019 growing season, modeled 

biophysical parameter and S30 observations in black, measured crop biophysical 

parameter in red, and L30 observations in blue 
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Fig 14. A combined L30–S30 derived and measured biophysical parameters (EVI2, 

fresh aboveground biomass (AGFB), aboveground dry biomass (AGDB), height (h), 

and Leaf Area Index (LAI) time-series of potato for three farms during the 2019 

growing season, modeled biophysical parameter and S30 observations in black, the 

measured biophysical parameter in red, and L30 observations in blue 
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CHAPTER V 

DISCUSSION 

 

A. Uncertainties in VI-LAI relationships 

To further assess the performance of the studied LAI models against the measured 

LAI, the measured LAI ranges were arbitrarily divided into the following order: low (0-

2 m2/m2) (labeled in green, Fig 8&9), medium (2-4 m2/m2), and high (>4 m2/m2) 

(labeled in red, Fig 8&9) LAI ranges. Our analysis shows an apparent underestimation 

of LAI in all tested models for a measured LAI value above 4 m2/m2 in all the studied 

crops, except for tobacco. The underestimation was not noticed in the latter since the 

measured LAI measurements of tobacco did not exceed 4 m2/m2. However, Models 3 

and 8 overestimated LAI for potato in the measured LAI range (>4 m2/m2).  

Uncertainties in LAI-VIs can be grouped into two categories: VIs susceptibility to 

saturation and errors in LAI observation techniques. LAI models existing in literature 

are derived from vegetation indices (VIs), which have shown to have little sensitivity to 

high LAI values, resulting in severe saturation issues. This shows that LAI values that 

are greater than 4 m2/m2 are beyond the prediction power of the studied vegetation 

indices (Liu et al. 2012; Nguy-Robertson et al. 2014; Viña et al. 2011a). Saturation 

problems were also identified in all indices when defining the empirical LAI-VI 

relationship, specifically in tobacco and grains crop groups. Thus, issues with VIs 

saturation over dense canopies remain a thoughtful challenge (Huete et al. 2002; Kang 

et al. 2016)  

Regarding errors in the LAI measurement method, the underestimation of LAI in the 

high range of measured LAI can be attributed to the SS1 limitations under high 
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vegetation cover (LAI range > 4 m2/m-2). SS1 does not correct for canopy clumping 

effects; thus, underestimation appears (Jones 2013). Generally, when the canopy is 

clumped, the leaves hide each other, leaving a gap in between, and thus allowing for 

more light to reach the ground as compared to randomly distributed leaves. Therefore, 

the LAI that is calculated using the light transmission theory, such as the SS1 method, 

becomes underestimated. The underestimation of LAI with SS1 was also observed in 

previous studies due to the lack of clumping correction (Gower et al. 1999; Wilhelm et 

al. 2000). Another type of error that falls in the second uncertainty category is that the 

leaf angle distribution (ELADP) is a fixed constant that is pre-defined by the user 

according to the crop. However, the chosen ELADP values may not be accurate all over 

the growing season since the canopy leaves change throughout the entire season (Fang 

2015). Moreover, row spacing, crop height, and time of measurement can affect the LAI 

values.  

Based on the produced results, a shift towards improved hemispherical  LAI 

estimation techniques that can provide information on the canopy clumping and leaf 

angle inclination, measure the LAI at different heights and differentiate between leaves 

and woody parts through the integration of the infrared techniques is recommended 

(Jonckheere et al. 2004; Schaefer et al. 2015). As Well, the use of other vegetation 

indices to improve the saturation problems is yet to be tested. 

 

B. The utility of multi-satellite surface reflectance time-series for monitoring 

crops in the Bekaa Valley 
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Multi-satellite data normalization is crucial, and this was addressed through crop 

biophysical variables time-series generated for monitoring wheat and potato crops in the 

Bekaa Valley. Time series of crop growth parameters is essential for detecting changes 

in crop cover, and the combination of data from different ongoing satellite missions 

provides this opportunity. This study confirms the limited ability of the L30 as a single 

sensor to capture the full time-series at the farm level. L30 potentially missed 

biophysical observations at critical growth stages due to its smaller number of images 

available. Few L30 images were used due to its long revisit time and cloud coverage.  

Our results also demonstrate the importance of higher observation frequency 

achieved with the combination of Landsat-8 and Sentinel-2A satellites comparing to the 

single use of L30 in crop monitoring. Therefore, LAI and other crop growth variables 

are appropriately monitored and modeled in this work, especially during fast-developing 

phenomena, using near-daily and medium resolution (30 m) HLS normalized satellite 

imageries. 

C. Inter-comparison between the evaluated LAI Models  

The used HLS VIs Models are very simple to use. Even though these models have 

shown to be specific to the type of vegetation, site, and sensor (Colombo et al. 2003), 

our study has shown LAI models: Models 7, 8, and 9 developed initially for row crops, 

maize, and wheat respectively, were the best performing models for the all crop samples 

in the study area. 

LAI derived from SNAP software performed the poorest among the other LAI 

Models. LAI retrieval from SNAP is based on neural networks that are trained using 

radiation transfer models (RTMs). Although the inversion of RTMs proved to be useful 
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in predicting the LAI biophysical parameter for different types of vegetations (Du et al. 

2004; Meroni et al. 2004), however, the inversion of RTMs also has the problem of  

“ill-posed process” (Combal et al. 2003)which can result in having the similar solution 

to completely different vegetation structures.  To reduce the inaccuracy of the inversion 

methods, additional information is needed: 1) Ancillary data from another sensor or 

measured on-site, 2) Canopy architecture, 3) distribution of canopy biophysical 

variables. The SNAP LAI in this study is underestimated, and this might be since the 

SNAP biophysical processor lacks the specific ancillary information from which some 

vegetation architecture features could be derived. The absence of reliable and regularly 

updated land cover maps at a spatial resolution like that of S2 prevents from tailoring 

specific algorithms for each of the land cover classes. Consequently, the algorithm may 

provide reasonably good estimates over all the cases, but undoubtedly unsatisfactory 

performances as compared to algorithm specific to a given surface type. 
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CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

 

In this paper, we focused on the estimation of the Leaf Area Index at a farm 

level in the Bekaa Valley of Lebanon, using the combined Landsat 8 and Sentinel-2 data 

at a 30-m spatial resolution. We validated the usefulness of normalizing satellite data in 

crop leaf area index estimation and empirical LAI based equations determination. 

Unlike most existing approaches utilizing vegetation indices derived from non-

normalized satellite data in order to estimate LAI, we derived the vegetation indices 

using the red and NIR surface reflectance of the harmonized HLS product. The ground 

measured leaf area index was regressed against the derived vegetation. The best results 

were achieved for the EVI2 index exhibiting a quadratic fitting for the combined crops. 

We also validated LAI models existing in the literature and found that HLS EVI2 based 

models were the best model for the studied crops combined. This study also shows that 

LAI derived from the artificial neural network through ESA’s SNAP biophysical 

processor is underestimated. 

A shift towards improved hemispherical  LAI estimation techniques that can 

provide information on the canopy clumping and leaf angle inclination, measure the 

LAI at different heights and differentiate between leaves and woody parts through the 

integration of the infrared techniques is recommended (Jonckheere et al. 2004; Schaefer 

et al. 2015). The use of other vegetation indices to improve the saturation problems is 

yet to be tested. 
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APPENDIX 

 

Appendix Tables 

 

 

Table A1. Statistics obtained with linear, polynomial 2nd order logarithmic, square root, and exponential for each of the studied index for 

the combined crops. The best-fitting is boldfaced.  

Index 

Linear Fitting  Polynomial Fitting, 2nd order  Logarithmic Fitting  Square root Fitting  Exponential Fitting  

R2  RMSE P-value R2  RMSE P-value R2  RMSE P-value R2  RMSE P-value R2  RMSE 
P-

value 

EVI2 

(n=432) 

  

0.52 1.06 <0.0001 0.6 1.02 <0.0001 0.43 1.16 <0.0001 0.48 1.1 <0.0001 0.54 1.03 <0.001 

6.23EVI2-0.075 
5.45EVI2+9.4 (EVI2-0.41)2-

0.06 
4.58+2.12log (EVI2) 7.55 Sqrt (EVI2)-2.24 4.01Exp (EVI2)-3.67 

NDVI 

(n=432)  

0.39 1.2 <0.0001 0.5 1.15 <0.0001 0.33 1.25 <0.0001 0.36 1.22 <0.0001 0.42 1.17 <0.001 

5.17NDVI-0.45 
5.48NDVI+9.86(NDVI-0.56)2-

0.96 
3.93+2.29 log (NDVI) 7.07 Sqrt (NDVI)-2.76 3.04Exp (NDVI)-2.96 

SAVI 

(n=432)  

0.48 1.09 <0.0001 0.5 1.04 <0.0001 0.4 1.18 <0.0001 0.45 1.13 <0.0001 0.51 1.07 <0.001 

5.17SAVI-0.45 
6.3SAVI+13.5(SAVI-0.4)2-

0.38 
4.75+2.29 log (SAVI) 8.23 Sqrt (SAVI)-2.63 3.6Exp (SAVI)-4.5 

SeLI 

(n=315)  

0.2 1.1 <0.0001 0.21 1.08 <0.0001 0.21 1.09 <0.0001 0.21 1.09 <0.0001 0.19 1.11 <0.001 

3.55SeLI+0.75 
3.65SeLI+5.14(SeLI-

0.4)2+0.84 
3.4+1.24 log (SeLI) 4.39 Sqrt (SeLI)-0.54 2.23 Exp (SeLI)-1.19 
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Table A2. Statistics obtained with linear, polynomial 2nd order logarithmic, square root, and exponential for each of the studied index 

divided by the crop ground and satellite.  The best-fitting is boldfaced.  

Crop 

Group  
Index Satellite 

 

Linear Fitting   

 

Polynomial Fitting, 2nd order   

 

Logarithmic Fitting 

  

 

Square root Fitting   

 

Exponential Fitting   

R2  RMSE 
P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 

Wheat & 

Barley 

EVI2 

  

HLS-L30  

(n=21) 

0.47 0.61 0.0006 0.76 0.39 <0.0001 0.66 0.48 <0.0001 0.56 0.55 <0.0001 0.4 0.64 0.0018 

3.7EVI2+0.99 
3.3EVI2+19.3 (EVI2-0.4)2 

+1.6 
3.96+1.5log (EVI2) 4.9Sqrt (EVI2)-0.56 2.3Exp (EVI2)-0.95 

HLS-S30  

(n=16) 

0.35 0.77 0.0157 0.41 0.75 0.03 0.42 0.73 <0.0001 0.39 0.74 0.0099 0.32 0.78 0.02 

4.96EVI2-0.33 
3.6EVI2+13.6(EVI2-

0.4)2+1.06 
3.94+1.7log (EVI2) 5.96 Sqrt (EVI2)-1.4 3.3Exp (EVI2)-2.6 

Combined 

(n=37)  

0.39 0.67 <0.0001 0.57 0.57 <0.0001 0.53 0.59 <0.0001 0.46 0.63 <0.0001 0.36 0.69 <0.0001 

4.03EVI2+0.7 
3.3EVI2+16.04(EVI2-

0.41)2+1.36 
3.9+1.55log (EVI2) 5.17 Sqrt (EVI2)-0.8 2.5Exp (EVI2)-1.4 

NDVI 

HLS-L30  

(n=21) 

0.46 0.61 0.0007 0.73 0.44 <0.0001 0.61 0.52 <0.0001 0.53 0.57 0.0002 0.3 0.65 0.0022 

2.9NDVI+0.8 
2.72NDVI+11.8(NDVI-

0.58)2+1.33 
3.55+1.7 log (NDVI) 4.6Sqrt (NDVI)-0.94 1.5Exp (NDVI)-0.23 

HLS-S30  

(n=16) 

0.32 0.78 0.02 0.39 0.77 0.0422 0.39 0.74 0.01 0.35 0.77 0.0142 0.29 0.8 0.0286 

3.63NDVI+0.29 
2.63NDVI+7.64(NDVI-

0.57)2+1.02 
3.43+1.77log (NDVI) 5.22 Sqrt (NDVI)-1.54 2.04Exp (NDVI)-1.2 

Combined 

(n=37)  

0.39 0.67 <0.0001 0.53 0.59 <0.0001 0.5 0.614 <0.0001 0.44 0.64 <0.0001 0.34 0.7 0.0001 

3.14NDVI+0.6 
2.66NDVI+9.36(NDVI-

0.58)2+1.17 
3.49+1.74log (NDVI) 4.8 Sqrt (NDVI)-1.15 1.66Exp (NDVI)-0.5 

SAVI 

HLS-L30  

(n=21) 

0.49 0.59 0.0004 0.8 0.37 <0.001 0.67 0.48 <0.001 0.58 0.54 <0.001 0.43 0.62 0.0011 

4.16SAVI+0.8 
3.4SAVI+22.8(SAVI-0.4) 

2+1.5 
4.1+1.66 log (SAVI) 5.41Sqrt (SAVI)-0.89 2.62Exp (SAVI)-1.48 

HLS-S30  

(n=16) 

0.32 0.76 0.0135 0.42 0.75 <0.0001 0.42 0.72 0.0065 0.39 0.74 0.009 0.34 0.78 0.0177 

5.44SAVI+0.11 
3.82SAVI+14.77(SAVI-0.4) 

2+0.95 
4.07+1.81 log (SAVI) 6.48 Sqrt (SAVI)-1.79 3.64Exp (SAVI)-3.14 
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Crop 

Group  
Index Satellite 

 

Linear Fitting   

 

Polynomial Fitting, 2nd order   

 

Logarithmic Fitting 

  

 

Square root Fitting   

 

Exponential Fitting   

R2  RMSE 
P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 

Combined 

(n=37)  

0.41 0.66 <0.0001 0.58 0.56 <0.0001 0.53 0.59 <0.0001 0.48 0.62 <0.0001 0.37 0.68 <0.0001 

4.5SAVI+0.6 
3.44SAVI+18.66(SAVI-0.4) 

2+1.3 
4.06+1.69log (SAVI) 5.7 Sqrt (SAVI)-1.15 2.9Exp (SAVI)-1.9 

SeLI 
S-2 

(n=18) 

0.44 0.85 0.0026 0.55 0.78 0.0023 0.54 0.77 0.0005 0.49 0.81 0.001 0.4 0.88 0.0045 

4.52SeLI+0.33 
4.27SeLI+13.74(SeLI-0.4) 

2+0.75 
3.8+1.66 log (SeLI) 5.67 Sqrt (SeLI)-1.36 2.88Exp (SeLI)-2.21 

Vegetables 

EVI2 

HLS-L30 

(n=20)  

0.72 0.61 <0.0001 0.8 0.53 <0.0001 0.55 0.77 0.0002 0.64 0.69 <0.0001 0.76 0.56 <0.0001 

6.48EVI2-0.23 
4.82EVI2+10.6 (EVI2-0.27) 2-

5.9e-5 
3.79+1.57log (EVI2) 6.7Sqrt (EVI2)-1.85 4.6Exp (EVI2)-4.57 

HLS-S30 

(n=54)  

0.13 0.902 0.0065 0.23 0.85 <0.0001 0.18 0.87 0.0015 0.15 0.89 0.003 0.11 0.91 0.0124 

2.45EVI2+1.27 
1.72EVI2+13.57 (EVI2-0.427) 

2+1.86 
3.22+0.97log (EVI2) 3.204 Sqrt (EVI2) +0.26 1.5Exp (EVI2) +0.0009 

Combined 

(n=74) 

0.33 0.87 <0.0001 0.36 0.85 <0.0001 0.35 0.85 <0.0001 0.35 0.86 <0.0001 0.31 0.88 <0.0001 

3.85EVI2+0.63 
3.77EVI2+6.9 (EVI2-0.38) 

2+0.83 
3.46+1.26log (EVI2) 4.59 Sqrt (EVI2)-0.66 2.5Exp (EVI2)-1.65 

NDVI 

HLS-L30 

(n=20)  

0.63 0.73 <0.0001 0.73 0.63 <0.0001 0.5 0.85 0.0009 0.57 0.79 0.0003 0.68 0.68 <0.0001 

5.53NDVI-0.76 
4.8NDVI+10.4(NDVI-0.43) 2-

0.75 
3.43+1.97 log (NDVI) 6.8Sqrt (NDVI)-2.76 3.54Exp (NDVI)-3.19 

HLS-S30 

(n=54)  

0.12 0.9 0.0089 0.17 0.89 0.0077 0.15 0.89 0.0041 0.14 0.9 0.0058 0.11 0.91 0.0147 

2NDVI-1.1 
1.26NDVI+6.9(NDVI-0.59) 

2+0.76 
2.93+1.06log (NDVI) 2.99 Sqrt (NDVI)-0.04 1.07Exp (NDVI)-0.34 

Combined 

(n=74) 

0.28 0.899 <0.0001 0.3 0.895 <0.0001 0.29 0.89 <0.0001 0.29 0.89 <0.0001 0.26 0.9 <0.0001 

3.07NDVI+0.44 
2.8NDVI+3.96(NDVI-0.55) 

2+0.717 
3.1+1.45log (NDVI) 4.34Sqrt (NDVI)-1.03 1.74Exp (NDVI)-0.93 

SAVI 

HLS-L30 

(n=20)  

0.69 0.64 <0.0001 0.797 0.54 <0.0001 0.53 0.79 0.0002 0.61 0.72 <0.0001 0.74 0.59 <0.0001 

6.9SAVI-0.3 
5.21SAVI+5.2(SAVI-028)2-

0.177 
3.88+1.67 log (SAVI) 7.08Sqrt (SAVI)-2.09 5.03Exp (SAVI)-5.16 

HLS-S30 0.1 0.9 0.0177 0.216 0.867 0.002 0.144 0.9 0.0046 0.12 0.91 0.0089 0.08 0.92 0.0291 
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Crop 

Group  
Index Satellite 

 

Linear Fitting   

 

Polynomial Fitting, 2nd order   

 

Logarithmic Fitting 

  

 

Square root Fitting   

 

Exponential Fitting   

R2  RMSE 
P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 

(n=54)  
2.38SAVI-1.32 

1.2SAVI-17.64(SAVI-0.41) 

2+2.1 
3.2+0.95 log (SAVI) 3.11Sqrt (SAVI)+0.336 1.48Exp (SAVI)+0.052 

Combined 

(n=74) 

0.3 0.89 <0.0001 0.33 0.87 <0.0001 0.32 0.876 <0.0001 31 0.88 <0.0001 0.285 0.9 <0.0001 

4.02SAVI-0.58 
3.76SAVI-8.9(SAVI-

0.38)2+0.86 
3.5+1.32 log (SAVI) 4.76Sqrt (SAVI)-0.764 2.68Exp (SAVI)-1.86 

SeLI 
S-2 

(n=72) 

0.27 0.93 <0.0001 0.32 0.89 <0.0001 0.31 0.9 <0.0001 0.29 0.91 <0.0001 0.3 0.96 <0.0001 

2.96SeLI+0.77 
3.14SeLI+6.03(SeLI-

0.43)2+0.91 
3.15+1.14log (SeLI) 3.89 Sqrt (SeLI)-0.43 1.72 Exp (SeLI)-0.63 

Cannabis 

EVI2 

HLS-L30  

(n=40) 

0.28 0.69 0.0003 0.3 0.68 0.0008 0.25 0.71 0.001 0.27 0.7 0.0006 0.29 0.68 0.0003 

5.76EVI2-0.06 
5.88EVI2+19.5 (EVI2-0.56) 2-

0.2 
3.24+1.29log (EVI2) 5.58Sqrt (EVI2)-1.37 4.46Exp (EVI2)-4.37 

HLS-S30  

(n=96) 

0.31 0.69 <0.0001 0.34 0.68 <0.0001 0.26 0.72 <0.001 0.3 0.7 <0.0001 0.32 0.689 <0.001 

5.11EVI2+0.46 
4.73EVI2+11.8 (EVI2-0.28) 

2+0.47 
3.57+1.26log (EVI2) 5.2 Sqrt (EVI2)-0.82 3.81Exp (EVI2)-3.17 

Combined 

(n=136)  

0.31 0.7 <0.001 0.33 0.69 <0.0001 0.26 0.73 <0.0001 0.29 0.72 <0.0001 0.32 0.7 <0.0001 

5.4EVI2+0.27 
5.05EVI2+13.06 (EVI2-0.28) 

2+0.27 
3.52+1.3log (EVI2) 5.4 Sqrt (EVI2)-1.05 4.07Exp (EVI2)-3.61 

NDVI 

HLS-L30  

(n=40) 

0.22 0.72 0.0019 0.23 0.72 0.0065 0.2 0.73 0.0034 0.217 0.72 0.0024 0.23 0.72 0.0016 

3.363NDVI-0.04 
3.86NDVI+6.68(NDVI-0.42) 

2-0.2 
2.65+1.29log (NDVI) 4.4Sqrt (NDVI)-1.34 2.43Exp (NDVI)-2.24 

HLS-S30  

(n=96) 

0.27 0.71 <0.0001 0.3 0.7 <0.0001 0.22 0.74 <0.0001 0.25 0.72 <0.0001 0.28 0.71 <0.0001 

3.22NDVI-0.51 
3.29NDVI+6.86(NDVI-0.43) 

2+0.35 
2.92+1.13log (NDVI) 3.91 Sqrt (NDVI)-0.62 2.11Exp (NDVI)-1.38 

Combined 

(n=136)  

0.25 0.73 <0.0001 0.29 0.72 <0.0001 0.211 0.75 <0.0001 0.23 0.75 <0.0001 0.27 0.72 <0.0001 

3.38NDVI+0.33 
3.47NDVI+7.79(NDVI-0.43) 

2+0.16 
2.84+1.18log (NDVI) 4.09Sqrt (NDVI)-0.86 2.24Exp (NDVI)-1.68 

SAVI 
HLS-L30  

(n=40) 

0.28 0.69 0.0004 0.31 0.69 0.001 0.24 0.71 0.0012 0.26 0.7 0.0007 0.29 0.69 0.0003 

5.9SAVI-0.15 
6.19SAVI+21.25(SAVI-0.27) 

2-0.3 
3.29+1.37 log (SAVI) 5.8Sqrt (SAVI)-1.54 3.84Exp (SAVI)-3.66 
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Crop 

Group  
Index Satellite 

 

Linear Fitting   

 

Polynomial Fitting, 2nd order   

 

Logarithmic Fitting 

  

 

Square root Fitting   

 

Exponential Fitting   

R2  RMSE 
P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 

HLS-S30  

(n=96) 

0.2 0.75 <0.0001 0.2 0.75 <0.0001 0.19 0.759 <0.0001 0.2 0.75 <0.0001 0.2 0.75 <0.0001 

4.717SAVI+0.56 
4.74SAVI+4.88(SAVI-0.288) 

2+0.52 
3.44+1.17 log (SAVI) 4.8Sqrt (SAVI)-0.62 3.54Exp (SAVI)-2.8 

Combined 

(n=136)  

0.22 0.45 <0.0001 0.22 0.75 <0.0001 0.19 0.76 <0.0001 0.21 0.75 <0.0001 0.22 0.75 <0.0001 

5.15SAVI+0.32 
5.21SAVI+9.33(SAVI-0.228) 

2+0.25 
3.43+1.26 log (SAVI) 5.19Sqrt (SAVI)-0.95 3.9Exp (SAVI)-3.4 

SeLI 
S-2 

(n=121) 

0.33 0.72 <0.0001 0.34 0.72 <0.0001 0.29 0.74 <0.0001 0.31 0.73 <0.0001 0.34 0.72 <0.0001 

4.2SeLI+0.5 
3.65SeLI+5.14(SeLI-0.4) 

2+0.84 
3.29+1.16 log (SeLI) 4.58 Sqrt (SeLI)-0.67 3.03 Exp (SeLI)-2.33 

Tobacco  

EVI2 

HLS-L30 

(n=9)  

0.59 0.51 0.0154 0.77 0.41 0.011 0.7 0.43 0.0046 0.65 0.47 0.0084 0.55 0.54 0.0228 

4.12EVI2-0.36 
7.07EVI2+16.9(EVI2-0.308)2-

0.24 
3.6+1.57log (EVI2) 5.22Sqrt (EVI2)-1.2 2.64Exp (EVI2)-1.99 

HLS-S30 

(n=16)  

0.3 0.34 0.0235 0.32 0.36 0.08 0.32 0.34 0.02 0.318 1.35 0.0229 0.31 0.34 0.0236 

3.08EVI2+0.91 
3.09EVI2+0.59 (EVI2-

0.22)2+0.911 
2.606+0.647log (EVI2) 2.87 Sqrt (EVI2)+0.25 2.43Exp (EVI2)-1.45 

Combined 

(n=25) 

0.43 0.42 0.0004 0.44 0.42 0.0015 0.42 0.72 0.0004 0.43 0.41 0.0003 0.41 0.42 0.0005 

3.2EVI2+0.78 
3.8EVI2+3.17 (EVI2-

0.25)2+0.68 
2.9+0.89log (EVI2) 3.57Sqrt (EVI2)-0.15 2.25Exp (EVI2)-1.3 

NDVI 

HLS-L30 

(n=9)  

0.67 0.46 0.007 0.78 0.41 0.0114 0.74 0.4 0.0028 0.71 0.43 0.0043 0.62 0.56 0.0115 

3.5NDVI-0.12 
4.88NDVI+8.48(NDVI-

0.433)2-24 
3.18+1.71log (NDVI) 5Sqrt (NDVI)-1.6 1.99Exp (NDVI)-1.48 

HLS-S30 

(n=16)  

0.35 0.33 0.015 0.36 0.35 0.0552 0.4 0.35 0.0951 0.36 0.34 0.0139 0.34 0.34 0.016 

2.22NDVI+0.831 
2.27NDVI+2.39(NDVI-

0.34)2+0.84 
2.4+0.722log (NDVI) 2.58 Sqrt (NDVI)+0.1 1.54Exp (NDVI)-0.59 

Combined 

(n=25) 

0.49 0.39 <0.0001 0.5 0.4 0.0005 0.48 0.39 0.0001 0.49 0.39 <0.0001 0.48 0.4 0.0001 

2.7NDVI+0.5 
2.9NDVI+1.23(NDVI-

0.37)2+0.5 
2.6+1.03log (NDVI) 3.46 Sqrt (NDVI)-0.47 1.67Exp (NDVI)-0.85 

SAVI HLS-L30 0.62 0.49 0.0123 0.77 0.41 0.0118 0.71 0.43 0.0042 0.66 0.46 0.0071 0.57 0.52 0.0178 
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Crop 

Group  
Index Satellite 

 

Linear Fitting   

 

Polynomial Fitting, 2nd order   

 

Logarithmic Fitting 

  

 

Square root Fitting   

 

Exponential Fitting   

R2  RMSE 
P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 

(n=9)  
4.65SAVI-0.19 

7.3SAVI+18.9(SAVI-0.311) 2-

0.38 
3.7+1.72 log (SAVI) 5.7Sqrt (SAVI)-1.5 3.04Exp (SAVI)-2.55 

HLS-S30 

(n=16)  

0.18 0.38 0.106 0.19 0.39 0.002 0.19 0.377 0.083 0.19 0.38 0.093 0.16 0.38 0.114 

1.81SAVI+1.12 
1.93SAVI-6.69(SAVI-

0.25)2+1.14 
2.24+0.46 log (SAVI) 1.87Sqrt (SAVI)+0.65 1.36Exp (SAVI)-0.179 

Combined 

(n=25) 

0.37 0.43 0.0012 0.37 0.45 0.0057 0.35 0.44 0.0017 0.369 0.44 0.0013 0.369 0.44 0.0013 

3.08SAVI+0.75 
3.13SAVI-0.58(SAVI-

0.276)2+0.74 
2.73+0.82 log (SAVI) 3.3Sqrt (SAVI)-0.099 2.19Exp (SAVI)-1.3 

SeLI 
S-2 

(n=19) 

0.16 0.466 0.0837 0.18 0.47 0.2022 0.14 0.47 0.1164 0.15 0.46 0.09 0.17 0.46 0.0793 

2.25SeLI+1.11 
2.12SeLI+7.26(SeLI-

0.24)2+1.09 
2.35+0.46 log (SeLI) 2.09 Sqrt (SeLI)+0.65 1.76 Exp (SeLI)-0.59 

Potato 

EVI2 

HLS-L30  

(n=55) 

0.4 1.2 <0.0001 0.5 1.144 <0.0001 0.34 1.3 <0.0001 0.37 1.2 <0.0001 0.43 1.2 <0.0001 

6.47EVI2-0.86 
7.07EVI2+20.8(EVI2-0.51) 2-

1.66 
4.41+2.71log (EVI2) 8.53Sqrt (EVI2)-3.5 4.01Exp (EVI2)-4.33 

HLS-S30  

(n=105) 

0.56 1.34 <0.0001 0.6 1.27 <0.0001 0.49 1.43 <0.0001 0.53 1.37 <0.0001 0.58 1.3 <0.0001 

9.17EVI2-1.39 
9.19EVI2+15.25 (EVI2-

0.55)2-1.8 
6.48+4.36log (EVI2) 12.9 Sqrt (EVI2)-5.82 5.29Exp (EVI2)-5.644 

Combined 

(n=160) 

0.5 1.37 <0.0001 0.56 1.28 <0.0001 0.43 1.47 <0.0001 0.47 1.42 <0.0001 0.53 1.33 <0.0001 

8.64EVI2-1.4 
8.77EVI2+18.08 (EVI2-

0.54)2-1.9 
5.88+3.933log (EVI2) 11.9 Sqrt (EVI2)-5.37 5.11Exp (EVI2)-5.6 

NDVI 

HLS-L30  

(n=55) 

0.28 1.35 <0.0001 0.4 1.25 <0.0001 0.24 1.38 0.0001 0.26 1.36 <0.001 0.31 1.32 <0.0001 

6.2NDVI-1.7 
9.25NDVI+29.6(NDVI-

0.67)2-4.33 
3.88+3.43log (NDVI) 9.32Sqrt (NDVI)-5.16 3.42Exp (NDVI)-4.33 

HLS-S30  

(n=105) 

0.38 1.57 <0.0001 0.49 1.43 <0.0001 0.32 1.66 <0.0001 0.36 1.6 <0.0001 0.42 1.53 <0.0001 

9.7NDVI-3.15 
12.88NDVI+31.87(NDVI-

0.708) 2-5.9 
5.7+5.58log (NDVI) 14.9 Sqrt (NDVI)-8.78 3.84Exp (NDVI)-3.66 

Combined 

(n=160) 

0.35 1.57 <0.0001 0.46 1.44 <0.0001 0.29 1.64 <0.0001 0.32 1.6 <0.0001 0.37 1.54 <0.0001 

8.82NDVI-2.87 
12.16NDVI+32.67(NDVI-

0.69) 2-5.7 
5.19+5.0058log (NDVI) 13.45Sqrt (NDVI)-7.8 4.7Exp (NDVI)-6.3 
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Crop 

Group  
Index Satellite 

 

Linear Fitting   

 

Polynomial Fitting, 2nd order   

 

Logarithmic Fitting 

  

 

Square root Fitting   

 

Exponential Fitting   

R2  RMSE 
P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 
R2  RMSE 

P- 

value 

SAVI 

HLS-L30  

(n=55) 

0.4 1.23 <0.0001 0.5 1.13 <0.0001 0.34 1.29 <0.0001 0.37 1.26 <0.0001 0.42 1.21 <0.0001 

7.5SAVI-1.2 
8.65SAVI+29.92(SAVI-

0.48)2-2.29 
4.76+3.04 log (SAVI) 9.68Sqrt (SAVI)-4.2 4.78Exp (SAVI)-5.4 

HLS-S30  

(n=105) 

0.54 1.35 <0.0001 0.59 1.2 <0.0001 0.47 1.45 <0.0001 0.51 1.4 <0.0001 0.56 1.32 <0.0001 

11.05SAVI-2.13 
11.57SAVI+24.7(SAVI-

0.52)2-2.8 
7.07+4.99 log (SAVI) 15.13Sqrt (SAVI)-7.19 6.65Exp (SAVI)-7.67 

Combined 

(n=160) 

0.49 1.39 <0.0001 0.56 1.28 <0.0001 0.42 1.48 <0.0001 0.46 1.43 <0.0001 0.52 1.35 <0.0001 

10.27SAVI-2.009 
11SAVI+27.6(SAVI-0.52)2-

2.87 
6.4+4.45 log (SAVI) 13.7Sqrt (SAVI)-6.49 6.3Exp (SAVI)-7.3 

SeLI 
S-2 

(n=85)  

0.02 1.66 0.194 0.02 1.66 0.36 0.023 1.65 0.162 0.02 1.65 0.1776 0.01 1.66 0.2089 

2.28SeLI+1.6 
1.92SeLI+7.02(SeLI-

0.5)2+1.86 
3.5+1.2107 log (SeLI) 3.22 Sqrt (SeLI)+0.477 1.35 Exp (SeLI)+0.5 
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