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An Abstract of the Thesis of

Amir Nasir Hussein for Master of Engineering
Major: Electrical and Computer Engineering

Title: Domain Adaptation Neural Networks for Time Series Classification

In this thesis, we solve two problems related to time-series prediction and
domain adaptation (DA). For the first problem, we focus on investigating ro-
bust models for time-series prediction with application to epilepsy. Epilepsy is
a chronic medical condition that involves abnormal brain activity causing pa-
tients to lose control of awareness or motor activity. As a result, detection of
pre-ictal states, before the onset of a seizure, can be life-saving. The problem is
challenging since it is difficult to discern between EEG signals in pre-ictal states
versus signals in normal inter-ictal states. There are three key challenges that
have not been previously addressed:(1) the inconsistent performance of prediction
models across patients, (2) the lack of perfect prediction to protect patients from
any episode, and (3) the limited amount of pre-ictal labeled data for advancing
machine learning (ML) methods. The first part of the thesis addresses these lim-
itations through a novel approach that uses adversarial examples with optimized
tuning of a combined Convolution Neural Network (CNN) with Gated Recurrent
Unit (GRU). Experiments showed that our new proposed solution achieved state
of the art. Compared to previous state of the art, the results showed an im-
provement of 3x in model robustness as measured in reduced variations with area
under the curve (AUC) and superior AUC accuracy with an average increase of
6.7%.

In the second part of the thesis, we build on the success of the hybrid CNN-
GRU model and investigate the problem of adapting models that have been
trained for one source domain to a new target domain. When developing machine
learning (ML) algorithms, it is commonly assumed that the training and testing
data follow the same probability distribution. However, in real-world scenarios,
non-stationary environments are more typical in applications such as Internet of
Things (IoT) and wearables where the contexts frequently change over time. The
problem can be formulated as domain adaptation (DA), where the settings of the
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training labeled data represent the source domain, and the unlabeled test data
represent the target domain. The goal of DA is to develop a model that can pre-
dict the labels for data in the target domain. The idea is to have one model for
source domain and another target domain model that can learn from the source.
There has been extensive research on DA for learning domain invariant features.
However, those methods remained limited in several aspects when considering
advances for time series. Learning between source and target has relied on ei-
ther using hard parameter sharing limiting the source and target models to be
identical or using separate models but making an assumption of a linear relation
between source and target parameters. The second open challenge is the model’s
limited ability to generalize to unseen data for both source and target. The third
challenge is ensuring the proper choice of loss function for time-series DA. To
address these challenges, we propose a soft sharing DA architecture with squared
Maximum Mean Discrepancy (MMD) loss function. The source and target have
a similar architecture, consisting of the hybrid CNN-GRU used for epilepsy, but
their parameters are modeled with a non-linear relation. For generalization, we
augmented the DA architecture with representation learning. We conducted a
comprehensive set of experiments for DA with different scenarios of data shifts
between source and target domains and showed where hard parameter sharing
approach fails. We evaluated the solutions with three cases of DA in the context
of activity recognition (AR). The input to the prediction model is multivariate
time series data from wearable sensors on a smartphone and a smartwatch. The
output is a particular user activity. The first adaptation case captures the sce-
nario where the source domain consists of labeled activities for a group of users,
and the target domain is a new user. The second scenario consists of the case
where the source domain consists of labeled activities with data collected from
one set of devices, and the target domain is a subset of the devices. The third
scenario combines the first two cases, and the target domain has a new user and a
new set of devices. Compared to the state-of-the-art, the results showed superior
improvements up to 8% on average measured in weighted F1-score and reduction
in variations of 3.5x on average.
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Chapter 1

Introduction

Recently, advancements in the internet of things (IOT) and smart wearable tech-
nologies have received enormous attention due to their major role in applications
such as health care, assessment of treatment efficacy and rehabilitation [2, 3, 4, 5].
By 2022, it is estimated that the number of connected smart wearable devices will
be around 1.1 billion worldwide [6]. With a massive amount of time series data
streamed by IoT (e.g., smart-watches, smart-phones), there is more demand for
sophisticated machine learning algorithms to improve predictive analytics and
treatment. This thesis aims at addressing two problems related to time series
prediction and domain adaptation.

1.1 Challenges and Proposal for Epilepsy Ro-

bust Learning

Several studies investigated the relationship between seizures and brainwave syn-
chronization patterns, highlighting the possibility of distinguishing epileptic pa-
tient’s states [7]. However, seizure prediction from electroencephalogram (EEG)
signals is a challenging task since EEG data varies from one patient to another
with the presence of high uncertainty in the seizure onset. Each patient has
different patterns and different time schedules for the seizures. In addition, the
EEG signals are extremely noisy and affected by other normal brain activities
[8].

Many researchers have proposed automatic seizure prediction methods using
machine learning techniques. One set of methods rely on statistical methods to
extract meaningful features from EEG signals [9, 10, 11]. These methods involve
numerous manual intensive steps for feature extraction and differ from one patient
to another. Although these methods achieved very high sensitivity and low false
prediction rate for a particular dataset, they remain limited in their ability to
generalize the performance when tested with new datasets. Recently, another set
of methods have relied on Deep Learning (DL) which provide automatic feature
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extraction that could reliably identify periods of increased probability of seizure
occurrence from EEG signals by [12].

Despite the significant progress in espilepsy analysis, analysis of EEG contin-
ues to be faced with several challenges and complexities. The first challenge arises
from the complexity of interpreting EEG signals. The task of discerning between
pre-ictal, the state before the onset of a seizure, and inter-ictal, normal brain ac-
tivity, states of different patients poses itself as a difficult task, even for medical
experts, due to high inter-patient variability. Moreover, the task of discerning
between pre-ictal and inter-ictal states for a given patient is challenging due to
high intra-patient variability. The second open challenge is lack of prior meth-
ods that achieve robust performance on seizure prediction. In fact, prior state
of the art [1] showed high variation in performance across patients. While the
performance was perfect for some patients with an area under the curve (AUC)
score of 1.0, the performance for other patients reached a low AUC score of 0.3.
Such variation renders models unreliable to use for all patients. Third, prediction
accuracies still do not meet ideal criteria of 100% accurate prediction. Ideally,
we want seizure prediction models to achieve perfect scores of 1.0 AUC across
all patients. Missing an opportunity to predict a seizure onset can have severe
impacts including limitations on normal daily activities or even the potential of
life-threatening scenarios. Best accuracy achieved to date remains at around an
AUC score of 0.85 [1]. Finally, due to the nature of seizure disorders, historic
patient data with labeled pre-ictal data is not easily available leading to a lim-
ited availability of pre-ictal training data for machine learning. This limitation,
consequently, impacts the potential accuracy and generalizability that machine
learning models can achieve.

Figure 1.1: The input and the output of the proposed approach. The input is
multivariate EEG signals and the output is model classification of pre-ictal or
inter-ictal states.

We explore the adversarial learning for robust seizure prediction to address
the aforementioned challenges and introduce several contributions:

• The use of adversarial examples (AE) augmentation with EEG time se-
ries data for seizure prediction. The approach helps ensure robustness as
models get trained with data variations. The approach also helps overcome
limitation of training data as more training data becomes available.
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• Optimization of the hybrid convolutional neural networks (CNN) and gated
recurrent unit (GRU) for seizure prediction.

• The proposed method achieves state of the art performances on two bench-
mark datasets as measured by AUC, false positive rate per hour (FPR/h),
and sensitivity as highlighted next. The comparison to prior state of the
art [1], which was based on spectral analysis, indicate the superiority of
temporal-based processing.

In terms of robustness of epilepsy prediction, the results showed significant
reduction in variations across patients for two benchmark datasets Freiburg [13]
and CHB-MIT [10]. The robustness was manifested in the reduction in average
standard deviation of AUC across patients with 2x and 2.5x for each data set,
a reduction in average standard deviation in sensitivity by a factor of 2x, and a
reduction the range of AUC (difference between the maximum and minimum AUC
values across patients) with 2.5x and 3x for each data set. In terms of accuracy
of pre-ictal prediction, the results showed an average AUC improvement of 2.8%
and 6.7% for each dataset respectively. The sensitivity improved by an average of
4% and 1.8% for each dataset respectively. The FPR/h showed an improvement
of 8% and 62.5% for each data set respectively.

1.2 Challenges and Proposal for Domain Adap-

tation

One of the major limitations in the existing approaches to time series predic-
tion is that these algorithms are developed in controlled environments and don’t
consider the potential shifts in data distribution, called covariate shifts [14], and
caused by the dynamic changes in the real world environment [15]. One of the
important fields for wearable devices is activity recognition (AR) [16] and its
related applications such as industrial assistant [17], fitness [18], and monitor-
ing of elderly people [19]. Shifts in data distribution are very common in AR
applications due to variations in the activity patterns among people [16, 20], or
heterogeneities of wearable devices such as sensor sensitivity, calibration biases
and sampling rate [21].

Domain Adaptation (DA) [22], has been proposed to overcome the problem of
covariate shifts in the data distribution. DA approaches facilitate semi-supervised
learning to adapt to new similar domains with unlabeled data [22]. Earlier DA
methods for AR focused on extracting features that are not sensitive to shifts in
data distribution [23, 24]. Their major limitations were in the features extracted
that differed from one dataset to another and required domain knowledge [16, 25].
To overcome the limitations of feature-based approaches, deep learning DA tech-
niques were introduced [26, 27], but the proposed architectures were limited to
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hard parameter sharing, which enforces a common network for source and target
domains. Recently, two seminal works in the field of computer vision (CV) were
introduced to address the limitation of predefined shared architecture. In [28],
the authors introduced a DA architecture that consists of four components in-
cluding: one component to learn similarities between source and target domains,
two components to learn differences between source and target domain represen-
tations and the fourth component to reconstruct the input data from the learned
representation. In addition, researches in [29] presented a less complicated archi-
tecture that consists of only two separate models, one for the source and one for
the target domains, and assumed a linear relationship between the parameters of
the two domains.

Figure 1.2: Illustration of the high level proposed approach

Despite these DA advances, previous work remains limited in several aspects
that we address in this paper: 1) Relying on hard parameter sharing between
source and target models forcing them to be identical 2) Relying on separate
models for source and target but assuming a linear relation between the models’
parameters 3) Poor generalization with DA methods used for time series predic-
tion. To address these challenges, we propose soft parameter sharing architecture
that includes representation learning for generalization and squared MMD as the
domain discrepancy loss. The general description of the proposed approach is
illustrated in Fig. 1.2 where the model is developed using source data on activity
recognition collected from one participant, and the knowledge is then transferred
to the target domain to another participant with a different data distribution.
The proposed DASH approach is able to successfully make predictions in the
presence of covariate shifts by learning domain specific and shared characteris-
tics. We conducted a study of different data shift scenarios between source and
target domains and showed success and failure cases. We also evaluated the
proposed DA solution for different domain shift scenarios with AR data.

• Cross user domain adaptation: In this case, the source data is from one
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user and the target data is from another user with same wearable device.
The source of shift in data distribution is the differences in data for the
same activity but coming from a different user.

• Cross device domain adaptation: In this case, the source data is from a
smartphone and the target data is for the same user but using different
smartphone. The source of shift in data distribution is in different specifi-
cations of the target device.

• Cross user and cross device domain adaptation: This is a more challenging
and realistic scenario where there are two sources of shifts in data distribu-
tion: a new device and a new user. In this case, the source data is from one
user with their own smartphone and the target data is from another user
and another smartphone.

In summary the key contributions of our work include:

1. A soft parameter sharing DA architecture with nonlinear modeling of rela-
tion between source and target model parameters for time series data.

2. Improved DA generalizibility by integrating representation learning.

1.3 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 presents proposed ro-
bust learning approach for seizure prediction. Chapter 3 covers proposed domain
adaptation approach for time series prediction. Chapter 4 summarizes the find-
ings from both works and concludes the thesis.
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Chapter 2

Robust Learning for Epilepsy
Prediction

2.1 Related Work

Related work on the use of machine learning techniques for epilepsy classification
can be categorized into feature-based and deep learning approaches. Within each
category, researchers have examined two different problems of seizure detection
and prediction but often examined similar features in the signal. These methods
are further detailed here.

2.1.1 Feature-based Approaches

Seizure Detection:

Feature engineering techniques that are tailored for seizure detection for specific
patients have successfully achieved very high sensitivity 89.66% with FPs/h value
of 0.49 were obtained for 21 patients [30] and (100%) with very low false positive
rate on the same patients [31, 32]. In [10] authors developed a machine learning
framework that is capable of identifying the features critical for seizure detection.
They used support vector machine to construct patient-specific models while
considering sensitivity, specificity and latency as performance metrics. This work
provided a new approach for EEG epilepsy data preprocessing as well as feature
extraction and evaluation methodology. Although these methods achieved very
high sensitivity, they are heavily biased to their specific dataset. Moreover, they
are used only for seizure detection rather than prediction.

For generalizability of epileptic seizure detection using MTL, a feature-based
patient-specific MTL-SVM model was proposed in [33]. The extracted features
were obtained by filtering the EEG signal of each channel using four filter-banks
with frequencies ranging from 0.5 to 25 Hz and then calculating the energy falling
within each band similarly to the work done in [10]. Moreover, the proposed
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model was developed to learn a general representation of the various patient-
specific seizures in order to generalize better to all the different types of patient-
specific seizures. Although this work targeted the problem of increasing the
model’s generalizability, the model’s features were not sufficient for seizure pre-
diction as they only consist of the energy features from the filter bank bands
which are not sufficient to detect changes in the EEG signal representative of
pre-ictal states.

Seizure Prediction:

Seizure prediction mainly targets detecting a transitional period between the
inter-ictal and ictal states called the pre-ictal state [34]. Different signal pro-
cessing techniques were explored in previous work for seizure prediction using
machine learning approaches. For example, in [35], the plausibility of a combi-
nation of frequency and time domain features was explored for epilepsy seizure
prediction. The proposed feature-vector included auto-regressive fitting error,
decorrelation time, energy, Hjorth mobility and complexity, spectral power in the
delta, theta, alpha, beta, and gamma bands, spectral edge (power, frequency),
the four moments (mean, variance, skewness, kurtosis), energy wavelet coeffi-
cients for six decomposition levels. The proposed approach was tested for 216
patients and achieved 38.47% sensitivity and 0.2 FPR/h on average for all pa-
tients while achieving statistical significance for only 24 patients. In [11], EEG
signal segments were filtered to obtain four frequency bands which are the delta,
theta, alpha, beta, and gamma. From each band the following features were
extracted: 1) normalized spectral power features 2) the four moments 3) Hjorth
activity, mobility, and complexity features 4) the accumulated energy of signal
5) the auto-regressive (AR) error resulting from fitting an order 10 AR model
6) decorrelation time 7) spectral edge power 8) wavelet coefficients. In addi-
tion, the experiments included deciding the optimal combination of the pre-ictal
time, normalization methods, smoothing and outlier removal. It was found that
smoothing, outlier removal, and normalizing by the maximum value of each fea-
ture provided the best results for most of the patients. The proposed method
achieved an average sensitivity of 73.9%, with an FPR/h of 0.15 on average
over 10 patients. The previous methods mainly depended on univariate features
rather than multivariate features- features that are extracted from a combination
of multiple channels. For example, in [36], Bivariate spectral band power features
were suggested for seizure prediction. The proposed features achieved an average
sensitivity of 75.8% and FPR/h of 0.1 over 24 patients. In [7], the use of non-
linear bivariate features such as wavelet synchrony was explored. Furthermore,
the proposed features achieved an average sensitivity of 71%, with zero FPR/h
on average over 15 patients.

Although different recommended set of features can be found in the literature
for feature-based seizure prediction, no specific set of features has been proven
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as the best set for predicting seizures [37]. In addition, the proposed methods
require domain knowledge, and may not perform similarly for different patients
or different datasets.

2.1.2 Deep Learning Approaches

Deep Neural Networks (DNN) models like Convolutional Neural Networks CNNs
and Recurrent Neural Nets (RNNs) have proven to be very effective in auto-
matically extracting features from time-series sequences and learning temporal
dynamics [38, 39]. In [40] researchers introduced an automatic seizure detection
approach that is robust against noise in real-life conditions. They used Long
Short Term Memory (LSTM) with time distributed dense layer to automatically
extract robust features from EEG signals. In a study of model performances for
predicting epileptic seizures, a comprehensive comparison was conducted by [41].
It was noted that a model consisting of a CNN followed by a Long Short-Term
Memory (LSTM) outperformed (Hidden Markov Model (HMM), HMM-Stacked
denoising Autoencoder (SdA), HMM-LSTM, Incremental Principal Components
Analysis (IPCA) -LSTM, CNN Multiple layer perceptron) in terms of sensitivity
and false alarm rate.

For seizure prediction, the authors of [42] used 1D-CNN consisting of 5 con-
volution layers for automated seizure prediction from raw EEG signals. This
approach was tested only on FB dataset [13]. In [43], authors proposed the use of
wavelet transform (CWT) for EEG signals as a preprocessing step before feeding
the data to CNN model. In [12], a deep learning model that can run on a low
powered device was proposed for performing real-time seizure prediction using
intracranial EEG signals that are obtained from the surface of the brain. The
proposed model can be retrained automatically using the users’ data during the
usage period, where after each month the model can be fine tuned using the new
recorded data from the patient. The model also can be run on a smart watch, and
provide predictions that are better than a random predictor by 42% achieving a
mean sensitivity of 69%. The provided model is user-specific, requires recording
data from users for 2 months before starting the prediction, and is not reliable
enough for real-world usage as it has only been tested for 15 patients and one
dataset. In addition, all of the foregoing approaches were not evaluated in the
case of keeping entire pre-ictal state for testing while training on the rest of the
data to ensure generalization. In [1], researchers provided a generalized approach
for seizure prediction where they used 2D CNN with only three layers to avoid
overfitting. The EEG signals were converted to image like data using Short-Time
Fourier Transform (STFT) to make it suitable for 2D CNN. However, the main
weakness of this method is that it does not model the signal’s temporal dynamics
and long term dependencies.
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2.1.3 Generalization Approaches

It has been shown by researches that studying how deep networks fail and hard-
ening them against adversarial attacks would help in better understanding how
DNNs work and improve their generalization ability [44, 45, 46, 47]. It was sug-
gested by [48] that the AEs have different statistical distributions compared to
the original data from which they were generated. This showed that AEs are
statistically different from the dataset they were generated from. In [49], authors
proposed augmenting training data with AEs to improve network robustness.
Additionally, [50] introduced training with an adversarial objective function that
behaved as a better regularizer in comparison to dropout and achieved better
generalization. As a result, training on AEs was used by [51] to increase the ro-
bustness of deep neural network for speech recognition against noise and channel
variations.

In summary, none of the existing methods address the model robustness to
noise from other brain activities and the variation across patients for seizure
prediction

2.2 Proposed Machine Learning Models

The objective of this work is to develop an approach suitable for automatic feature
extraction from raw EEG signals, accurately detect pre-ictal seizure states and
robust against the noise in EEG signals. One of the main challenges in seizure
prediction is that some of the inter-ictal states resembles pre-ictal states as shown
in Figure 2.1. It can be seen that sometimes, what seems a pre-ictal signal for one
patient may seem to be an inter-ictal signal for another patient and vice versa.

Another more challenging situation is that the inter-ictal state might resemble
pre-ictal states for the same patient as shown in Figure 2.2.

The high level solution for proposed adversarial examples (AEs) is shown in
Figure 2.3. Figure 4 describes the high level steps of learning with (AEs) where
the proposed model is first trained with the EEG signals and then the trained
model is used to generate AEs. The training data is then combined with AEs
to retrain the model on the augmented data. The input to the system consists
of EEG signals recorded from skin electrodes outside of the skull (scalp EEG),
and implantable electrodes on the surface of the brain, (intracranial EEG). The
output of the system is a seizure state prediction, inter-ictal or pre-ictal state.

2.2.1 Data Pre-processing

The EEG data was filtered using notch filter to remove the power line noise.
Freiburg dataset is contaminated with power frequency at 50 Hz, and CHB-MIT
dataset is contaminated with power frequency at 60 Hz. As a result, the compo-
nents at frequency range of 47–53 Hz and 97–103 Hz and 57–63 Hz and 117–123
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(a) (b)

Figure 2.1: EEG signals from CHB-MIT dataset. a) Patient(1) inter-ictal signals in
both frequency and time domains. b) Patient(3) pre-ictal signals in both frequency
and time domains. The ’X’ axis for each subfigure in frequency domain represents
frequency in Hertz and in time domain represents time in seconds. The ’Y’ axis for
both subfigures is the amplitude in micro-volts.

(a) (b)

Figure 2.2: EEG signals from CHB-MIT dataset. a) Patient(14) pre-ictal signals in
both frequency and time domains. b) Patient(14) inter-ictal signals in both frequency
and time domains. The ’X’ axis for each subfigure in frequency domain represents
frequency in Hz and in time domain represents time in seconds. The ’Y’ axis for both
subfigures is the magnitude in uVolts.

Hz are removed for Freiburg dataset and CHB-MIT dataset, respectively. After
that the data is normalized using z-score to ensure zero mean and unit variance
across all channels. After that EEG signals are segmented with sliding window of
length 30s and 50% overlapping to ensure stationarity. The stationarity of win-
dowed signals were checked using Augmented Dickey-Fuller (ADF) test which is
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Figure 2.3: High level block diagram for Learning with Adversarial Examples
approach

one of the unit root tests that uses an auto-regressive model and optimizes an
information criterion across multiple different lag values [52]. In the ADF test we
firstly define the null hypothesis which states that the signal can be represented
by a unit root which indicates time-dependent structure in the signal and hence
its non-stationarity. We specified the significance level to be 5%. After applying
this test method on the windowed signals, we found that the p-values of all of
the generated segments were significantly lower than 5%. Hence we reject the
null hypothesis, and conclude that there is sufficient evidence that the generated
segments are stationary.

2.2.2 CNN-GRU Model

The proposed model is shown in Figure 2.4 with shorthand descriptions as follows:
C(f, k, s): representing a convolution layer with ′f ′ number of filters, ′k′ size of
the kernel and ′s′ number of strides. The model consists of convolution layers for
feature extraction by stacking several operators to create a hierarchy of abstract
features. To process the EEG time series, 1D convolution operation is used to
model temporal sequences information. Each convolution kernel acts as a filter,
that filters out the time series data and detect relative patterns. In addition, the
convolution kernels performs depth-wise filtering of the multivariate signal where
weights corresponding to each channel are learned during the training phase and
hence result in the best integration of signals through channels.

The recurrent layer is composed of Gated Recurrent Units (GRUs) to model
the time dependencies in the EEG signals. GRUs are special kind of recurrent
units that have update and reset gates allowing the model to decide how much his-
torical information to keep. This property enables the proposed deep architecture
to model temporal dynamics of time series as well as the long term dependencies.
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Figure 2.4: CNN-GRU architecture where the batch size is 256 , the window
length of the EEG signal is 30 sec and the number of channels is 6 and 22 for the
FB and CHB-MIT datasets, respectively.

2.2.3 Adversarial Learning

Generally, a well trained machine learning model f(x; θ) capture the nonlinear
relation between the input xi and the output of the model yi, where θ represents
model parameters. To provide better generalization for the learning model, we
are proposing to use the idea of augmenting the training data with adversarial
examples which improve model robustness against adversarial examples as well
as the noise from real-life conditions that corrupts EEG signals: muscle artifacts
and eye blinking.

It has been shown in the literature that the state-of-the-art models can easily
misclassify examples that are slightly changed from the original data [50]. In ad-
dition, it has been shown that the classification decisions of the neural networks
are linear in higher dimensions and it only requires to know the direction of the
perturbation to cross that classification boundary and mislead the model predic-
tion. As a result, we expect that training with adversarial examples approach
will help the model to better differentiate between different EEG signals that
have high resemblance and reduce the false alarm rate caused by noise.

AEs are a special kind of data that are generated by adding noise to the
original input data that is optimized to mislead the model classification. The
added adversarial noise is not perceptible by humans. In this work, we assume a
white-box setting where we have access to the model parameters θ. In order to
generate an adversarial example x′ to the model f(x′; θ), a small amount of noise
σ is obtained by computing the gradient with respect to the input that leads the
network to wrong classification yt as shown in Eq. (3.12-2.4).

σ = (∇x′J(f(x′; θ), yt)) (2.1)

1.2
x′ = x+ σ (2.2)

so that:
f(x′; θ) 6= f(x; θ) (2.3)
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and

σ � x (2.4)

The process of generating AEs is further illustrated in Figure 2.5. The first
step is to train the model f(x; θ) on the actual data by minimizing the loss
function J(f(x; θ), y) with respect to the model parameters θ. The loss function
J(f(x; θ), y) is the average cross-entropy. In the second step, the model param-
eters are held constant and the required noise ′σ′ to be added to the input, that
makes the network mis-classify corresponding output, is obtained by calculating
the gradients with respect to the input. Generating AEs requires finding x′ where
x′ = x + σ, that minimizes the loss function of the corresponding chosen target
class yt, where yt 6= ytrue, ytrue is the true corresponding class for x, M is number
of classes, N is number of samples in the batch as presented in Eq (2.5, 2.6).

J(yt, ŷ) = − 1

N

N∑
n

M∑
m

ymt log(ŷm) (2.5)

min
x′

(J(yt, ŷ) + λ‖σ‖2) (2.6)

L2 norm regularization added to the loss J(yt, ŷ) in Eq. (2.5) is used to
penalize for large noise values during the optimization, where λ represents the
importance of minimizing the noise. The regularization ensures that the gener-
ated AEs are close to the original input.

Figure 2.5: Block diagram of adversarial examples generating approach. The
input is a three dimensional tensor [B, W, CH] where ’B’ represents the batch
size, ’W’ represents the window length of the EEG signal and ’CH’ is number
of channels which corresponds to the number of electrodes used for EEG signals
recording.
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2.3 Experiments & Results

The proposed approaches were assessed through the receiver operating character-
istic curve (ROC) that plots true positive rates versus false positive rates for all
classification thresholds. The area under the curve (AUC), sensitivity and false
positive rate per hour FPR/h were calculated to quantify each model’s perfor-
mance. To obtain FPR/h, k-of-n analysis was performed to maintain consistency
with [1] where for every n prediction, the alarm only raised if there are at least
k positive predictions. In [1], ‘k’ and ‘n’ values were chosen to be 8 and 10,
respectively. Since the data is segmented with window of 30 seconds, the model
produces a prediction every 30 seconds. If the alarm is raised it will be counted
as 1 alarm during 35 minutes.

In order to perform fair comparison with [1], leave-one-seizure-out cross val-
idation approach was used for each patient of the two datasets. At each fold if
the patient has N pre-ictal states one state was held for testing and N-1 pre-ictal
state were used for training. Inter-ictal states were randomly split into N parts
but each of the inter-ictal states is much longer than the pre-ictal state. The
training data was balanced such that the number of pre-ictal states is equal to
the number of inter-ictal states. Hence at each fold N-1 of inter-ictal and N-1
pre-ictal were used for training and one pre-ictal state with one intarictal state
were used for testing. Furthermore the training data is divided into 90% for
training and 10% for monitoring the learning process of the model at each epoch
as shown in Figure 2.6.

Figure 2.6: Illustration of leave-one-seizure-out cross validation approach

2.3.1 Dataset

To compare our results with those obtained by [1], same data preparation steps
were followed to extract pre-ictal and inter-ictal seizure states for each patient
for two datasets Freiburg Hospital dataset (FB) [13] and CHB-MIT dataset [10].
FB dataset contains intracranial EEG (iEEG) signals that were recorded from 21
patients using 6 channels and sampling rate of 256 Hz. However, only 13 patients
were chosen due to lack of availability of the full FB dataset. The CHB-MIT
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dataset consists of scalp EEG (sEEG) data from 23 patients. This data was
recorded using 22 channels for each patient for 844 hours at a sampling rate of
256 Hz.

In the work of [1] the inter-ictal state is defined as the period between at
least 4 hours before seizure onset and 4 hours after seizure end. Multiple seizures
may occur closely to each other, hence the pre-ictal state that occur less than
30 min from the previous one is considered as one pre-ictal state and then the
seizure prediction task became predicting the leading one. Furthermore, some
patients have seizures every 2 hours on average which is not adequate for the
seizure prediction. Thus, only patients with fewer than 10 seizures per day are
considered. With these definitions, only 13 patients from both CHB-MIT and
FB datasets were chosen. The pre-ictal state was considered to be 30 minutes
that ends 5 minutes before the seizure onset, to give the patient enough time to
act adequately.

2.3.2 Tuning Parameters for the CNN-GRU Model

To perform the hyper-parameter tuning for the CNN-GRU model, we followed
same approach as [1] where training and testing samples where selected from
different periods to avoid overfitting. Specifically the later 30% of both inter-
ictal and pre-ictal samples were selected for testing whereas the first 70% of the
data was used for training for both CHB-MIT and FB datasets. The choice of
the architecture size and complexity have been carefully examined to ensure that
the model is not too complex to overfit the data not too shallow to underfit. We
used AUC metric as an indicator of balancing between true positive and false
positive. Convolution layers were varied from (1-6) layers with number of kernels
that were chosen from (32, 64, 128, 256). The kernel size and the number of
strides were chosen such that the filter will overlap by at least 30% each time a
stride is performed. The size of kernels were sampled from (3, 5, 7, 9, 11) and the
corresponding strides for each kernel are (1, 2, 3, 4, 5). In addition, max-pooling
operation was performed after each convolution layer with size and stride of 2.
The number of layers that gave the best performance was found to be 4 layers as
shown in Figure 2.7.

The number of recurrent layers was changed from (1, 2, 3) and the number
of units were chosen from (32, 64, 128, 256). It was found that increasing the
number of layers beyond 1 layer as well as increasing the number of units beyond
128 did not improve the accuracy. Hence one layer of GRU with 128 units was
chosen.

2.3.3 Adversarial Learning

In order to generate adversarial examples, Eq. (2.5, 2.6) were used in the op-
timization process and the approach described in Figure 2.5 was followed. In
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Figure 2.7: CNN-GRU AUC performance for different number of layers

addition, l2 norm was used on the noise such that it did not exceed 1% of the l2
norm of the original EEG signal. The generated examples consisted of 50% inter-
ictal and 50% pre-ictal since signals with the inter-ictal state were down-sampled
as in [1] to make the data balanced. The best value for λ shown in Eq.(2.6)
was chosen 0.001, which ensured quick convergence (200 steps) and guaranteed
having valid EEG signal that cannot be distinguished from the original EEG
signal as shown in Figure 2.8. Only the training data was augmented with AEs
at each fold during the one-seizure-leave-out cross validation. This configuration
was chosen to measure the exact performance on the testing data after training
data augmentation.

To validate that the AE augmentation does not break stationarity of the
windows, we ran the Augmented Dickey-Fuller (ADF) test, which is commonly
used to check for stationarity. The ADF test showed that the p-values of all of AE
generated segments were significantly lower than 5%, ensuring that stationarity
is conserved.

Figure 2.8: Example of perturbing the classification of a pre-ictal EEG signal with
adversarial noise. The ’X’ axis time in seconds and the ’Y’ axis is the amplitude
in micro-volt.
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Table 2.1: Comparison of the results of CNN-GRU model with and without AEs
augmentation, training with the MTL approach, and the prior state-of-the-art
[1] approach on Freiburg Hospital inter-ictal EEG dataset. It can be seen that
training on data augmented with adversarial example reduces the false rates and
improves sensitivity.

Patients Training Samples Sensitivity (%) FPR/h Sensitivity (%) FPR/h Sensitivity (%) FPR/h Sensitivity (%) FPR/h
CNN-GRU without AEs augmentation CNN-GRU with AEs augmentation training with Multitask Learning Prior state-of-the-art [1]

1 765 75.78 0.00 76.22 0.00 74.21 0.12 100 0.00
3 1020 75.51 0.00 80.66 0.25 62.20 0.09 100 0.00
4 1020 92.12 0.00 92.53 0.00 91.97 0.00 100 0.00
5 1020 77.63 0.82 74.51 0.00 54.33 0.28 40 0.13
6 510 93.43 0.00 98.16 0.00 98.95 0.15 100 0.00
14 765 72.63 0.00 83.46 0.00 65.75 0.00 50 0.27
15 765 81.70 0.46 85.62 0.00 82.28 0.35 100 0.02
16 1020 82.04 0.00 92.53 0.46 70.87 0.09 80 0.17
17 1020 80.62 0.00 95.90 0.00 95.91 0.028 80 0.00
18 1020 81.62 0.00 75.07 0.00 62.20 0.09 100 0.00
19 765 70.50 0.00 73.82 0.00 78.35 0.12 50 0.16
20 1020 72.70 0.35 74.17 0.00 84.09 0.37 60 0.04
21 1020 74.65 0.57 78.70 0.52 81.10 0.46 100 0.00

Average 79.30 ±7.08 0.14 ±0.22 83.18 ±8.90 0.055 ±0.135 77.09 ±23.56 0.18 ±0.15 81.4 ±23.39 0.06 ±0.09

2.3.4 Discussion

Tables (2.1,2.2) summarize the results for CNN-GRU base model trained with and
without AEs augmentation on both FB and CHB-MIT datasets in comparison
to the MTL augmentation approach and the prior state of the art [1]. Further-
more, we compare our proposed augmentation with AEs to data augmentation
with Gaussian Noise (GN). The sensitivity, FPR/h and AUC was obtained by
averaging the results over the number of folds from one-seizure-leave-out cross
validation for each patient.

It can be seen that, our proposed model with AEs augmentation achieved
significantly high sensitivity 83.18% and 85.16% on average with low FPR/h of
0.055 and 0.06 for FB and CHB-MIT datasets respectively. Comparing our pro-
posed approach to the prior work of [1] we notice that it achieves 3.96% better
sensitivity and reduction in relative percentage of 62.2% FPR/h on average for
CHB-MIT dataset. On the other hand, for FB dataset our proposed approach
achieved 1.8% better sensitivity and reduction in relative percentage of 8% FPR/h
on average. In addition, the results show significant reduction in average stan-
dard deviation in the sensitivity by a factor of around 2X in both CHB-MIT
and FB datasets compared to state-of-the-art [1]. It also can be noted that the
proposed CNN-GRU model achieves a higher sensitivity on average and lower
FPR/h on CHB-MIT dataset compared to the FB datasets with and without
AEs augmentation. These results are reasonable since the CHB-MIT is richer
in data with 22 channels versus the FB dataset iEEG signals, which only had 6
channels.

We now further analyze and discuss the effect of training the CNN-GRU model
on data augmented with AEs on both FB and CHB-MIT datasets. At each fold,
only the training data was used to generate AEs as described in Section 2.2.3
while testing data kept untouched. One can notice that after augmenting the
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Table 2.2: Comparison of the results of CNN-GRU model with and without AEs
augmentation, training with the MTL approach, and the prior state-of-the-art [1]
approach on CHB-MIT dataset. It can be seen that training on data augmented
with adversarial example reduces the false rates and improves sensitivity.

Patients Training Samples Sensitivity (%) FPR/h Sensitivity (%) FPR/h Sensitivity (%) FPR/h Sensitivity (%) FPR/h
CNN-GRU without AEs augmentation CNN-GRU with AEs augmentation training with Multitask Learning Prior state-of-the-art [1]

1 1530 92.03 0.00 95.95 0.00 92.46 0.07 85.7 0.27
2 510 67.70 0.00 72.07 0.00 61.42 0.15 33.3 0.00
3 1275 71.44 0.17 75.27 0.00 45.67 0.23 100 0.18
5 1020 68.12 0.22 74.17 0.13 83.15 0.00 80 0.19
9 585 93.07 0.00 96.40 0.00 90.55 0.00 50 0.12
10 1277 64.69 0.00 66.17 0.00 46.33 0.12 33.3 0.00
13 1020 92.32 0.13 95.95 0.00 72.44 0.18 80 0.14
14 1020 66.29 0.54 64.80 0.46 61.73 0.09 100 0.40
18 1275 85.83 0.00 88.62 0.00 44.23 0.15 100 0.28
19 510 98.95 0.00 88.62 0.00 44.23 0.15 100 0.00
20 1020 99.37 0.25 99.64 0.18 95.91 0.09 100 0.35
21 765 80.11 0.14 81.70 0.00 61.22 0.23 100 0.23
23 610 96.85 0.00 97.37 0.00 46.73 0.00 100 0.33

Average 82.82 ±13.55 0.11 ±0.16 85.16 ±13.22 0.06 ±0.13 64.97 ±26.43 0.11 ±0.15 81.2 ±25.91 0.16 ±0.135

data with AEs the sensitivity improved for most of the patients and FPR/h
decreased for both datasets. Training on the adversarial examples works as a
regularizer that prevents the model from overfitting. It was noticed from AUC
results of patient 14, FB dataset, that jumped from 0.72 to 0.98 after augment-
ing the data with AEs. Similar results were observed for patients (2,3,5) from
CHB-MIT dataset and patients (5, 15,20) FB dataset. The improvements in the
augmented results can also be explained from the idea that training the model on
adversarial examples allows the model to draw more robust boundary decisions
for classification task since those examples were explicitly crafted to mislead the
model prediction and at the same time to be visually indistinguishable from the
original data. Further analysis was performed to investigate this idea by visual-
izing the embeddings of the base model trained on original data and embeddings
of the base model trained with AEs augmentation using t-distributed stochas-
tic neighbor embedding (t-SNE) [53] as shown in Figure 3.8. It is obvious that

(a) (b)

Figure 2.9: The 2D t-SNE visualization of patient 15 embeddings, FB dataset, for
pre-ictal and inter-ictal classes. a) The embeddings of proposed CNN-GRU approach
without AEs. b) The embeddings of of proposed CNN-GRU approach with AEs.
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the two classes have much better separations boundaries after training with AEs
augmentation. These results were noticed for other patients as well from both
datasets. Another advantage of augmenting the training data with AEs is that
this effectively increases the size of the training set without requiring new data.
The obtained results prove the effectiveness of augmenting the data with AEs
for EEG signals and suggests improvement in model generalizability. Finally, to
compare both sensitivity and the FPR/h for all thresholds, AUC results were
obtained for both FB and CHB-MIT datasets. Those results were obtained after
50 epochs using mini-batches of size 256. The averaged AUC across all patients
and its variance were used to compare our proposed CNN-GRU approach with
AEs augmentation and the work of [1], as shown in Figure 2.10. Overall our pro-

Figure 2.10: The comparison of AUC performance accross all patients between
our proposed CNN-GRU model with AEs augmentation and State-of-the-Art
spectrogram approach [1]. It can be seen that results of our proposed approach
achieves higher AUC on average with has less variance within each dataset and
across the two datasets.

posed approach achieved AUC of 90% and 89% on average on CHB-MIT and FB
dataset respectively which are significantly higher than the spectrogram approach
[1] with 83.3% and 86.2%. In addition, our AUC results show smaller variation
in the range (difference between maximum and minimum AUC values across pa-
tients) across patients within each dataset where the range of AUC reduced by
factor of 3X (from 0.7 to 0.23) and 2.5X (from 0.5 to 0.20) for CHB-MIT and FB
respectively. As a result, we notice a significant reduction in average standard
deviation of AUC across patients by a factor of 2X and 2.5X for CHB-MIT and
FB respectively illustrated in Figure 6. These results show the robustness of our
method where it achieves higher AUC with less variance. This is expected as
most of the previously proposed methods for seizure prediction are overfitting to
a particular dataset under the study and fail to maintain consistent results across
different datasets.
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Chapter 3

Domain Adaptation for Time
Series Prediction

3.1 Related Work

This section presents the prior work in transfer learning to address covariate
shifts in data distribution. Most of the previous work in the field can be grouped
into multitask learning (MTL), domain adaptation (DA) under feature-based
modeling techniques and DA under deep learning techniques.

3.1.1 Multitask learning approaches

Multitask learning (MTL) is the approach where the model learns multiple tasks
by simultaneously optimizing more than one loss. Researchers have showed that
MTL can address limitation with data availability, provide superior performance
and improve generalization [54, 55, 56]. A lot of work has been done for time-
series classification using MTL, like predicting the location of certain proteins
within a cell [57] and performing personalized human activity recognition [58].
In [59] authors used MTL deep network to make predictions on correlated time
series. They used Convolutional Neural Network CNN followed by Recurent
Neural Network RNN configuration, and they also added auto-encoder layer to
reconstruct the signal from representation encoded by the CNN. The major limi-
tation of MTL approaches is that they depend on predefined similarities between
the tasks. Often in situations when tasks are weakly related, the MTL approach
performance falls short in accuracy prediction for the target domain [22]. In ad-
dition, MTL requires labeled data in the new domain which could be expensive
and not always feasible [60].
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3.1.2 Domain Adaptation

Domain Adaptation is a subset of transfer learning where the aim is to transfer
knowledge from source domain to a related, but different, target domain in the
presence of shifts in data distribution [22]. Approaches introduced in the litera-
ture for time series classification tasks can be grouped into two main categories:
feature-based techniques and deep learning (DL) techniques.

Feature-based Domain Adaptation for Activity Recognition

Feature based DA heavily relies on manually extracting features that are robust
to covariate shifts [24]. In [61] authors proposed extracting robust features like
covariance between the axes and entropy to recognize activities in two scenarios:
1) Recognize complex activities with less number of sensors 2) Recognize com-
plex activities for different users that were not included in model training process.
They used random forest and SVM with RBF machine learning algorithms. In
the work of [62] expectation maximization was combined with conditional random
fields to recognize actions for different datasets. Furthermore in [63] unsupervised
adaptive classifier was proposed to adapt to the changes in data distribution that
result from sensor displacements or slippage. The proposed approach calibrates
itself using an online version of expectation–maximization algorithm called Lev-
enberg–Marquardt. The approach is mainly based on assumption that the main
change in the feature distribution corresponds to only a shift of an unknown but
related magnitude and direction. In [26] authors introduced stratified transfer
learning to transfer the knowledge from the source domain to the target domain.
They generated pseudo labels for target domain using majority voting with classi-
fiers trained on the source domain. After that [26] utilized the similarity between
the source and target domains with squared MMD to measure the distance be-
tween each class. These techniques showed low performance in the presence of
shifts in data distribution and did not generalize for other datasets. The main
reason of the low performance of feature based methods is that they heavily rely
on the custom choices of engineered features that differ from one covariate shift
to another.

Deep Learning Domain Adaptation for Computer Vision

Recent hype in deep learning (DL) motivated researches to incorporate domain
adaptation (DA) into DL to address the problem of covariate shits in data dis-
tribution. Most of the proposed DA with DA approaches in the literature are
developed for computer vision applications [64] and those ideas are then utilized
in other fields like Natural Language Processing (NLP) [65] and Activity recog-
nition [16]. Generally, proposed DA with DL approaches could be grouped into
hard parameter sharing architecture and soft parameter sharing architecture. In
hard parameter sharing all hidden layers share the same parameters between the
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classification task and the adaptation task. Whereas in soft parameter sharing
each task has its own model with separate parameters and the distance between
the parameters for corresponding layers is regularized to prevent them from di-
vergence [66]. One of the early DA with DL approaches is Domain Adaptation
Neural Network (DANN) [67] which is a hard parameter sharing architecture
that uses adversarial learning to generate domain invariant features. DANN net-
work performs two tasks simultaneously, in the first task it minimizes the source
domain classification loss and in the second task it maximizes the loss of the do-
main classifier. In [68] authors proposed architecture similar to DANN but with
squared Maximum Mean Discrepancy (MMD) [69] instead of domain classifier
approach to minimize the domain divergence. In addition, they used the squared
MMD loss at multiple layers instead of only the feature layer in [67]. The problem
with models that depends on hard parameter sharing architecture is that they
highly rely on the predefined shared architecture which limits models’ ability to
domain shared characteristics only. In order to facilitate learning both domain
shared and specific characteristics researches in [28] proposed Domain Separation
Network (DSN) approach that consists of four models. The two shared models
learn domain shared components and they share the same parameters as in hard
parameter architecture. On the other hand, the two private models learn domain
specific components. In addition, shared auto-encoder was added to ensure gen-
eralizability of generated features. While effective, the core of this approach relies
on hard parameter sharing architecture and it increases the number of parame-
ters by a factor of four which limits the applicability on small architectures. In
addition, DSN does not include modeling of the relation between the parameters
which is prone to overfit source domain data. On the other hand authors in [70]
proposed Soft Parameter Sharing Architecture with Linear modeling (SPSAL) to
overcome the limitations of predefined shared structure. The model consisted of
two streams, one for the source and one for the target domain and the relation
between the parameters of the corresponding layers of the two streams are lin-
early modeled to prevent them from divergence. However, the main limitation of
this approach is the assumption of linear relationship between the parameters of
the two domains. In addition, it is very difficult for this approach to generalize on
the target unlabeled data as it does not include robust representation learning.

Deep Learning domain adaptation for activity recognition

Although many works have been done in DA with DL for computer vision field
very limited work has been found that addresses covariate shifts for time series
applications. In [27] authors presented deep learning domain adaptation ap-
proach with hard parameter sharing to predict the activity of body parts with
missing sensors by utilizing signal information from other sensors on body. They
used unsupervised approach by combining ”A-distance”, which depends on the
domain classifier error, and cosine similarity distance to select the most similar
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source domain to the target domain. In [71] authors used DANN architecture and
compared different distance measures for domain adaptation including squared
MMD, Wasserstein Distance (WD) [72] and domain classifier approach. They
found that squared MMD achieved best results for AR applications. In [73] au-
thors proposed deep learning architecture composed of two cpies of the same
model, one for source and one for target that shared the same parameters. The
key difference of this work compared to the previous is that they used symmetric
Kullback-Leibler Divergence (KL) on multiple layers to minimizing the divergence
between the two domains. Their work considered two scenarios of domain adap-
tation, user diversity, where the model was tested on user activities that were not
included in the model training process. The second scenario was device diversity,
where the model was trained on data from smartphones and tested on data from
smartwatch with the same activities. All aforementioned approaches for AR are
based on hard parameter sharing architectures that suffer from the predefined
shared architecture and hence restricts learning domain shared characteristics
only.

3.2 Proposed Solution for Domain Adaptation

The objective of this work is to design a model that is able to autonomously make
predictions in situations where

the environment changes over time causing shifts in data distribution.

3.2.1 Problem Formulation

The problem can be formulated as having a source domain with labeled data
Ds = {xsn, ysn}Nn=1 and a target domain with unlabeled data Dt = {xtm}Mm=1. The
goal is to predict target labels yt for new domain. The model will adapt to target
data with probability distribution that is different from the source P (xs) 6= P (xt),
but the output conditional probability distribution given the input is assumed
to be the same for both source and target domains P (ys|xs) = P (yt|xt), which
means that the target activities for both domains are assumed to be the same.
In this paper, we will consider the case of activity recognition (AR), where the
domains consist of a particular user, a particular device, or both. The input to
the model is multivariate time series data from wearable sensors like smartphone
or smartwatch. The output is a particular user activity. The method should
adapt to a new domain with a different user, a different device, or both.

3.2.2 Source Domain with Robust Learning

Source and target domains use a similar architecture that needs to support pre-
diction for time series. The proposed method in this paper provides the step to
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adapt any source network, but for best performance results, the source domain
model architecture needs to be already effective at the target task. It has been
shown in the literature that using a hybrid network that combines convolution
layers (CNN) followed by a recurrent layer sequentially enhance automatically
feature extraction from raw signals data and model temporal dynamics [39]. We
propose to use a convolution layers (CNN) followed by a Gated Recurrent Unit
(GRU) architecture (CNN-GRU), but also augmenting it with denoising auto-
encoder (DAE). The proposed source model is shown in Figure. 3.1 where the
encoder consists of two 1D convolution layers (CNN) followed by a Gated Recur-
rent Unit (GRU) layer. The Convolution Neural Network CNN acts as feature

Figure 3.1: Source denoising auto-encoder. The encoder model consists of two
1D-CNN layers with max-pooling followed by a GRU layer. The decoder model
consists of a GRU followed by 1D-transposed convolution with upsampling to
reverse the operation of the encoder.

extractor, stacking several convolutional operators to create a hierarchy of more
abstract features. However, the main difference in time series applications is that
1D convolution operation can be used to extract sequential information and cap-
ture temporal dynamics of time series. In addition, if the input is multivariate
time series that composed of more than 1 channel, the 1D convolution performs
depth-wise integration of signal channels. The depth-wise integration operation
gives a weight to each axis, then each weight is learned during the training phase
and hence result in the best integration of signals through axes (x, y, z). On
the other hand, recurrent units are used to model the time dependencies of the
sequence , hence give a model the ability to capture the context of the sequence.
GRUs are special kind of recurrent units that have update and reset gates which
allow them to decide how much of information to keep through time. This prop-
erty enables the proposed deep architecture to model long term dependencies of
the time series data. It has been shown by [74],[75] that in some tasks GRUs
exhibit better performance than Long Short Term Memory (LSTM) on smaller
datasets. It is also less complex and hence computationally less expensive. The
decoder learns to reconstruct the input signal Xs and consists of a GRU followed
by 1D-transposed convolution (deconvolution) layers [76] with upsampling to
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reverse the operation of the encoder. The final reconstruction layer output is re-
constructed multivariate time series of the same shape X̂s. The main motivation
behind using DAE architecture is to address sparsity and improve generaliza-
tion. The DAE compresses the data into lower dimensional which useful features
representing the original signal and avoiding trivial solutions. The input to the
model is multivariate time series data from wearable sensors like smartphone or
smartwatch corrupted with Gaussian noise. The model learns two tasks: activity
classification and reconstruction of the original data from compressed noisy signal
as shown in Eq.3.1.

Lstage(1) = Ls(Y
s, Ŷ s) + µLrec s(X

s, X̂s) (3.1)

Lstage(1) is the total loss for source model model in the pre-adaptation stage, called
stage (1), Ls is the cross entropy source classification loss given by equation (2)

Ls(Y
s, Ŷ s) = −

Ns∑
i=0

ys
i · log ŷsi (3.2)

Lrec s is the loss of reconstructing the signal Xs from the noisy signal X̃s. µ
is a weighting factor that trades off the two losses.

3.2.3 Robust Learning with DAE

In order to produce robust data representation and avoid trivial solutions we
reconstruct the original input from noisy input after injecting Gaussian noise.
The noisy signal X̃ is propagated through the encoder E() to extract features
H = E(X̃) which are then fed into decoder D(E(X̃)) that tries to reconstruct the
input X̂ = D(H). The reconstruction loss Lrec used to minimize the difference
between the reconstructed input X̂ and the original input X is the scale-invariant
mean squared loss incorporated from work of [28].

Lrec s(X, X̂) =
1

k
‖X− X̂‖22 −

1

k2

(
[X− X̂] · 1k

)2
(3.3)

Where k is the number of samples in the time series input, 1k is a vector of ones
of length k and ‖.‖ is the L2-norm. The root mean squared loss is traditionally
used for reconstruction tasks which penalizes the predictions that are correct
up to a scaling term, however it has been shown in [77] that the scale-invariant
mean squared error results in better samples reconstruction because it penalizes
differences between pairs of element-wise samples irrespective of absolute global
scale.
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Figure 3.2: The proposed DASH approach initialized with the pretrained param-
eters obtained from stage (1) and adaptation objective. The encoder consists
of two streams one for the source domain and one for the target domain. Each
stream consists of the base CNN-GRU model illustrated in Figure 3.1. The
parameters of the two streams of the encoder are related through a nonlinear
transformation. The shared decoder learns to reconstruct the original data X
from input corrupted with Gaussian noise X̃.

3.2.4 Soft Parameter Sharing with Robust Learning

Our choice of soft parameter sharing architecture is motivated by the MTL lit-
erature [78, 79] where we expect that soft parameters sharing will give more
flexibility to learn domain specific as well as shared representations in domain
adaptation configuration compared to hard parameter sharing architecture. The
encoder for DA, shown in Figure 3.2, consists of two identical streams one for the
source domain and one for the target domain. The parameters of the source and
target models in the encoder are related through a nonlinear transformation. The
choice of non-linear relationship is explained in Sec. 3.2.5. The decoder parame-
ters are shared between the source and target domains since we want to extract
similar features from source and target domains. Eq. 3.4 illustrates total learning
loss during stage (2). Our proposed approach consists of first learning the source
domain model as described in the Sec. 3.2.2. In the second stage, called stage (2)
shown in Figure 3.2, we initialize both encoder and decoder with the pre-trained
parameters obtained from stage (1) and retrain the model on both source labeled
data and target unlabeled data with domain adaptation layer to minimize the
divergence between the two domains. Eq. 3.4 illustrates total learning loss during
stage 2.

Lstage2 = Ls + λ1Lrec−total + λ2Lda + λ3Ltr (3.4)

.
Where Lda is the domain adaptation loss described in Sec. 3.2.6 and Ltr is
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the nonlinear transformation loss between the parameters of each layer of source
and target models described in Sec. 3.2.5. The reconstruction loss Lrec−total is
applied for both domains as illustrated in Eq. 3.5. The weights λ1,λ2, λ3 controls
the interaction of each loss.

Lrec−total = Lrecs(X
s, X̂s) + Lrect(X

t, X̂ t) (3.5)

3.2.5 Modeling Covariate Shift Between the Domains

We assume that the learned parameters of the two models will be related, and
the shift can be assessed by L2 distance between parameters of the two domain
models as shown in Eq.(3.6).

d(θsl , θ
t
l) = ‖g(θsl )− θtl‖2 (3.6)

The d(θsl , θ
t
l) represents distance between source model parameter θsl and target

model parameter θtl of layer l. The g(θsl ) is the transformation from source model
parameters θsl to target model parameters θtl . In the work of [70] the relation
between the source and target model parameters was modeled as a linear relation
in Eq. (3.7).

θtl = alθ
s
l + bl (3.7)

Their approach was developed to model covariate shifts for image classification
applications and has not been tested on sequential data that involves temporal
changes with time.

In our work, we overcome the limitation of linear assumption and model
the relation between source model and target model parameters as a non linear
transformation.

θtl = θsl + ηr(θsl ) (3.8)

Further justification anecdotal derivation is provided in the Appendix to pro-
vide support for the non-linear relation and a specific choice of function r(). We
chose tanh() function to model the nonlinear relation between the parameters.

θt = θs + tanh(aθs + b) (3.9)

The final expression of the objective that we propose to model the relation be-
tween the source and target domain parameters is shown in Eq.3.10. The pa-
rameters ′a′ and ′b′ are trainable weights to learn the nonlinear relation between
source and target model parameters.

Ltr = ‖θt − θs − (tanh(aθs + b))‖2 (3.10)
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3.2.6 Domain Discrepancy Loss Function

In order to develop a model that generalizes well from one domain to another
and adapts to covariate shifts in non stationary environment it is essential to
reduce the discrepancy in the representation encoding layer that summarizes the
information of source and target domains. As a result the success of the domain
adaptation mainly relies on finding the invariant representations for both do-
mains. We propose to use squared Maximum Mean Discrepancy (MMD) which
represents distances between mean of the distributions of source and target en-
codings. Given n samples of the source features Hs and m samples of the target
features H t the squared MMD can be expressed mathematically as shown in
equation (3.11).

Lda = Lmmd(H
s, H t) =

∥∥∥∥∥
n∑

i=1

φ (hs
i )

n
−

m∑
j=1

φ
(
ht
j

)
m

∥∥∥∥∥
2

H

(3.11)

Where φ() represents mapping to Reproducing Kernel Hilbert Space (RKHS).
Usually, the mapping φ() is an unknown non linear mapping and a kernel like Ra-
dial Basis Function (RBF) is used K(p, q) = exp (−‖p− q‖2/σ) . After expanding
equation (3.11) each inner product that involves multiplication of φ(hs)φ(ht) is
replaced with the kernel K(hs, ht), and the final expression is shown in (3.12).

∑
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)
nm

+
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(
ht
j,h

t
j

)
(m)2

(3.12)

The characterization of this distance as the maximum mean discrepancy refers
to the fact that computing the squared MMD is equivalent to finding the RKHS
function that maximizes the difference in expectations between the two features
probability distributions.

3.3 Experimental setup

The proposed approach is evaluated with state-of-the-art approaches using weighted
F1 score. All models are implemented using Google’s deep learning Tensor-Flow
library. We ran our experiments on a PC equipped with an NVIDIA GTX 1080
GPU, and an Intel Core i7-7700 (3.60 GHz) CPU and 32 GB of RAM.

3.3.1 Datasets

To evaluate the applicability of our proposed DASH approach in real world con-
text, we chose two benchmark datasets collected in the wild: Position Activity
Recognition (PAR) [80] and Heterogeneity Activity Recognition (HAR) [21]. The
Position Activity Recognition (PAR) dataset was recorded using seven wearable
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commercial sensors (6 smart-phones and one smart-watch) from 15 participants
performing eight activities (running, walking, lying, sitting, standing, stairs up,
stairs down, and jumping). The devices were synchronized and the data was
recorded at a sampling rate of 50 Hz. This dataset was collected in the wild
to resemble their everyday life usage. On the other hand, HAR dataset was
collected from 9 participants performing 6 common activities recorded (Biking,
Sitting, Standing, Walking, Stair Up and Stair down) using 8 smartphones and 4
smartwatches from different manufactures. HAR dataset is also gathered in real
world scenarios, to reflect sensing heterogeneities expected in real deployments.
The smartphones used in HAR dataset and their sampling rate are summarized
in Table 3.1.

Table 3.1: HAR dataset smartphone devices with their corresponding sampling
rate (SR).

smartphone Nexus4 Samsung S3 Samsung S+ S3 mini
SR (Hz) 200 50 150 100

3.3.2 Data Pre-processing

To compare our results with those obtained in [73], we followed the same data
preparation steps. The accelerometer data was segmented through sliding window
of length 128-sample (2.5 sec) and 50% overlap between the successive frames.
The sampling rate was down sampled of each device in HAR dataset to 50 Hz.
Linear interpolation was selected to mitigate the frequency heterogeneity as was
suggested by [80]. Finally, the data from both datasets was normalized using stan-
dard scalar to ensure zero mean and unit variance across the three accelerometer
axes.

3.3.3 Prior State-of-the-art

We reproduced the most related state-of-the-art DA approaches (DANN [67],
DSN [28], SPSAL [70]) to examine their effectiveness on time series. In addition,
we compare our approach to the state-of-the-art work in AR [73] that we found
most related to the problem we are addressing. In order to transfer the state-
of-the-art models from images data to time series data we replaced 2D-CNN
layers with 1D-CNN layers for representation learning while maintaining the same
general architecture of each model. For fair comparison, we used the source
domain encoder CNN-GRU model architecture described in Sec.3.2.2 as feature
extractor for all CV-based DA models. All models were trained using Adam
Optimizer with learning rate of 0.001. The best value for reconstruction loss
weight (µ) Eq. 3.1 was chosen 0.01, and the best values for (λ1, λ2, λ3) Eq. 3.4

29



were chosen (0.001, 0.1, 0.5) respectively. The details of layers hyperparameters
obtained for the proposed DASH approach are shown in Table 3.2. All hyper
parameters were obtained using grid search. Note that only the source domain
data and was used for hyperparameter tuning.

Table 3.2: Values of hyperparameters obtained for DASH approach from grid
search.

Layers Hyperparameters
2*Input batch size: 128

Gaussian noise std: 0.2
2*1D-CNN 1st layer: 32 kernels of size 5

2nd layer: 64 kernels of size 3
GRU 64

2*1D-transposed convolution 1st layer: 64 kernels of size 3
2nd layer: 32 kernels of size 5

3.3.4 Proxy A-Distance

To quantify the distance between the source and target domain distributions, it is
common practice to use a metric called the A-distance introduced by [81]. Given
2 distributions Ds and Dt over A, the A-distance is defined as dA(Ds, Dt) =
2supA∈A|PrDs [A] − PrDt [A]|. This metric can be approximated by training a
linear SVM to discriminate between 2 domains: the error of this linear SVM
is called the generalization error η. Then the proxy A-distance (PAD) can be
calculated as d̂A = 2(1− 2η).

3.3.5 Domain adaptation scenarios

To examine the effectiveness of the proposed DASH approach we describe below
the three different real world situations: cross user domain adaptation, cross
device domain adaptation and cross user cross device domain adaptation. The
input in all three scenarios is 3-axes accelerometer data. All models are trained
on source domain labeled data and target domain unlabeled data. The unlabeled
target data is divided into 5 equal parts (5-folds), where at each fold 4 parts are
used for training in unsupervised configuration and the fifth is held for testing.
This approach is used to ensure that the model is not biased to a particular part
of the target domain data and hence avoid overfitting. The final F1 score is
obtained by averaging the results over the number of folds. The significance in
the difference between the performance of models was statistically tested using
modified t-test introduced by [82].

30



Cross User Domain Adaptation:

This is a situation where the source domain model was developed for a particular
set of users and the DA goal is to adapt the model to a new user. We picked a
group of users as source domain {5, 10, 3, 12, 13, 14, 15} from PAR dataset and
{a, b, c, d} from HAR dataset. As for target domain we chose {1, 4, 7, 8, 9, 11}
group from PAR dataset and {e, g, i, h} from HAR dataset. In this scenario the
source model is developed on source users and the model is adapted to one user
from target group at a time. In addition, cross user evaluation was performed
on two different devices: a smartwatch and smartphone. The smartphones were
fixed on participants waist position for both PAR and HAR datasets. As for the
smartphones, the data used was collected from Samsung Galaxy S4 and Samsung
S+ for PAR and HAR datasets respectively. In addition, LG smartwatch was
chosen from PAR dataset and Samsung smartwatch from HAR dataset.

Cross Device Domain Adaptation:

This is a situation where the source domain model was developed on one smart-
phone and the DA goal is to adapt the model to a different smartphone for the
same participant. The HAR dataset includes samples for each participant car-
rying different kind smartphones but at the same body position and orientation
(carried in a tight pouch around waist). As a result, HAR provided a suitable
dataset for cross device DA evaluation. For this case, accelerometer data was
collected from different smartphones carried by users around their waists. A
comprehensive comparison was performed for cases where one device was used
at a time as a source domain and the rest of the phones were used as the target
domain. Same user {a} used for both source and target domains.

Cross User Cross Device Domain Adaptation:

The goal of this experiment was to examine the effectiveness of our proposed
approach in a more common and more challenging real world scenario where we
have two sources of covariate shifts: a new user and a new device. In this scenario
the model is trained on labeled data from one smartphone for a set of users and
tested on unlabeled data from another different smartphone for a new user. Using
the HAR dataset, group of users {a, b, c, d} with {Samsung S+} were selected
as source domain and {e, h, g} with {Nexus, S3, S3mini} were picked as target
domain.

3.4 Results & Discussion

This part starts with providing guidelines for hard parameter sharing and its
limitations with toy data. After that the relationship between source and tar-
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get parameters of our proposed DASH model is evaluated. Next our proposed
model is evaluated on three DA situations in AR applications and the perfor-
mance is compared to state-of-the-art DA models. Finally, the effect of each part
of the proposed DASH model is examined visually with t-distributed stochastic
neighbor embedding (t-SNE) [53] and quantitatively using A-distance. Unlike
the existing work in field of AR, we propose a soft parameter sharing domain
adaptation DASH approach with flexibility to learn domain specific and shared
characteristics. This is achieved by modeling the relation between the source
and target parameters as a nonlinear transformation. The proposed DASH ar-
chitecture is designed for multivariate time series data taking into considerations
sequence temporal dynamics and long term dependencies.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.3: Different situations of shifts in data distribution using blobs toy data.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.4: Feature maps after Domain adaptation using DANN approach. Once
the two datasets start to have outer overlap Figure 3.3c the DANN approach
results in aligning of dissimilar classes from the two domains

(a) (b) (c) (d) (e) (f) (g)

Figure 3.5: Feature maps after Domain adaptation using DASH approach. DASH
approach adapts successfully to the target domain in all cases Figure 3.5a-3.5f
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3.4.1 Evaluation of DASH vs DANN under various shift
conditions

Recently, DA methods have shifted from simpler learning based on hard pa-
rameter sharing approaches to more complex soft parameter sharing approaches.
However, there was no study found that shows when complex learning is needed.
In this subsection we examine the limitations of state-of-the-art hard parame-
ter sharing DANN approach and show how our proposed DASH model based on
soft parameter sharing overcomes these limitations. We assume data from two
domains with two classes in each domain. We hypothesize that certain shifts
in data cause failure in hard parameter sharing. To demonstrate its success and
limitations, we create seven scenarios of data shifts, including: 1) Shift with same
orientation and no overlap, Figure 3.3a 2) Shift with same orientation and over-
lap between the classes within each domain (inner overlap), Figure 3.3b 3) Shift
with same orientation and overlap between dissimilar classes across the domains
( outer overlap) Figure 3.3c 4) Shift with same orientation and combination of
inner and outer overlap, Figure 3.3d 5) Figure 3.3e, 3.3f are extreme cases of
Figure 3.3d 6) Shift with flipped orientation, Figure 3.3g. The source domain
and target domain data consist of 1000 samples generated from Gaussian dis-
tribution with standard deviation of [0.35,0.3] and [0.3,0.4] respectively. It can
be seen from Figure 3.4a and Figure 3.4b that DANN approach works perfectly
when the shift is with same orientation and there is no outer overlap. However
once the two domains have outer overlap Figure 3.4c the ’x’ class from target
and ’o’ from source become much closer compared to the distance between ’x’
from target and ’x’ from source the DANN approach maps the closes classes to
similar representation in feature space and hence results in aligning of dissimilar
classes. As a result, the accuracy on the target domain is significantly dropped
to 53%. The performance drops to 40% as we combine both inner overlap to
outer overlap Figure 3.4d. The extreme case of Figure 3.4d is Figure 3.4e where
the performance drops even further to 16%. These experiments show the major
limitation of DA models based on hard parameter sharing architectures: as the
dissimilar categories of the two domains become much closer than the correspond-
ing similar categories, hard parameter sharing architectures fail in adapting the
similar categories of the two domains. This limitation is due to the fact that
hard parameter sharing architectures are able only to learn domain shared rep-
resentation and do not capture each domain specific characteristics and hence
map the nearest classes of the two domains to the same representation regardless
of their corresponding categories. On the other hand our proposed DASH ap-
proach utilizes soft parameter sharing architecture to learn domain specific and
shared information to overcome the limitations of hard parameter sharing. It can
be noticed that DASH approach adapts successfully to the target domain in all
aforementioned cases Figure 3.5a-3.5f with minimum performance of 88% on the
target domain. Finally, in the situation with flipped orientation Fig 3.3g both
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DANN and our proposed DASH approach fail. We leave solving this limitation
as a potential direction for future research.

3.4.2 Evaluation of Relationship Between Source and Tar-
get Parameters

To determine the true relationship between source and target model parameters,
we separately train source and target domain models of DASH with labeled data
from their respective domains with nonlinear modeling disabled. Using PAR
dataset, a group of users is chosen for source domain {5, 10, 3, 12, 13, 14, 15}
and user {6} is chosen along with the activity labels for target domain. The idea
is to derive the parameters for the target domain with an ideal situation when
labels are indeed available. The resulting relationship between source and target
for the ideal case was then compared to the proposed non-linear relationship for
DA case when target labels are not available. It can be seen from Figure 3.6a
that the relationship between the first layer parameters is almost linear , which
means that the parameters for both domains are almost similar. This makes

(a) (b) (c)

Figure 3.6: Visualization of the relation between the parameters of the source
and target domains for each layer and the estimated parameters using nonlinear
modeling with tanh() function. (a) Source weights vs target weights of the first
layer (b) Source weights vs target weights of the second layer (c) Source weights
vs target weights of the third layer.

sense since the source and target domain data are related and because the first
layers learn generic features from the data that are similar across domains. As the
layers become deeper shown in Figure (3.6b, 3.6c), the relation starts to become
more nonlinear. This analysis confirms that the relationship between parameters
seems to have a linear component and non-linearities. These results support the
proposed nonlinear relation in Eq.(3.8) from Sec.3.2.5. Finally, Figure3.6 shows
a comparison between the proposed tanh() non-linearity in Eq.(3.10) and the
relationship derived from the ideal case. It can be seen that the proposed non-
linearity covers a wide range of the relationship even in the early layers when the
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relationship is linear. While the tanh() non-linearity is not perfect, it does seem
to provide much stronger support than a linear relation.

3.4.3 Comparison to state-of-the-art

The results of all models on the three domain adaptation scenarios (cross user,
cross device and cross user cross device) are summarized in Tables (3.3,3.4,3.5)
respectively. The F1 score in each scenario was obtained by averaging the results
over the 5-folds.

Table 3.3: Cross user domain adaptation results of our proposed DASH model
compared to state-of-the-art approaches on the raw input of the PAR dataset.
The results were obtained by averaging F1 score over the 5-folds. It can be
noticed that the proposed DASH model outperforms all the other state-of-the-
art approaches.

DA Models
Dataset DANN HDCNN SPSAL DSN DASH
HAR(W) 53 57.2 80.3 59 83.5
PAR(W) 56.3 53 74 58.6 82
HAR(P) 71.7 58 82.3 69 86.6
PAR(P) 58 54.7 81.7 52.2 85.3

In the cross user scenario, the improvement in averaged F1 score of DASH is
up to 8% on PAR and 4.3% on HAR datasets. In addition, it is noticeable that
the results on HAR dataset are higher than PAR dataset because PAR datset
was collected in more realistic scenarios. It also can be seen that the results of
the smartphone are better than results of the smartwatches for both datasets.
We think that this could be due to the fact that the smartphones used in the
experiment are carried in a more generic body position (waist, pants pocket),
which helps capturing more generic body dynamics during the activities. In the
cross device scenario, and cross user cross device scenario the DASH model out-
performs the highest F1-score achieved by SPSAL by 5.7% and 7.2% on average
respectively.

Overall it can be seen that the averaged results of our proposed DASH model
outperforms all the other state-of-the-art approaches in the three domain adap-
tation scenarios. In addition, we can clearly see that the results of cross user
cross device are the lowest, because it includes two source of shifts in data distri-
bution, new user and new device. We performed modified t-test [82] to illustrate
that the results obtained by DASH are statistically significant. We compared
the results of DASH with the highest state-of-the-art results obtained by SPSAL.
We specified the significance level to be 5%. After applying this test method
on the 5-folds results of all approaches we found that the highest p-value was
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Table 3.4: Cross device domain adaptation results of our proposed DASH model
compared to state-of-the-art approaches on the raw input of HAR dataset. The
results were obtained by averaging F1 score over the 5-folds. It can be noticed that
the proposed DASH model outperforms all the other state-of-the-art approaches.

Source Target Source only DANN HDCNN SPSAL DSN DASH

Nexus S3mini 47 70 67 75 40 80
S3 37 52 48 71 62 73
SamsungS+ 34 71 52 67 44 82

S3 Nexus 33 37 56 71 62 88
S3mini 59 80 40 83 46 85
SamsungS+ 30 35 45 56 37 57

S3mini Nexus 32 70 54 72 71 80
S3 49 76 52 84 36 89
SamsungS+ 36 42 38 57 38 57

SamsungS+ Nexus 42 75 46 83 62 87
S3mini 46 84 48 80 72 86
S3 47 78 50 81 73 84

AVG 41 64.16 49.60 73.3 53.75 79

Table 3.5: Cross user cross device domain adaptation results of our proposed
DASH model compared to state-of-the-art approaches on the raw input of HAR
dataset. The results were obtained by averaging F1 score over the 5-folds.

Source Target Source only DANN HDCNN SPSAL DSN DASH

SamsungS+ Nexus (e) 32 60 40 70 55 77
S3 (e) 30 48 36 71 46 70
S3mini (e) 27 62 30 74 52 83

SamsungS+ Nexus (h) 32 56 40 72 57 80
S3 (h) 28 60 34 61 50 73
S3mini (h) 25 48 36 67 51 71

SamsungS+ Nexus (g) 30 55 40 58 48 62
S3 (g) 29 59 37 65 45 74
S3mini (g) 24 56 32 72 51 85

AVG 28.9 56 36 67.8 50.5 75

1.2% shown in Table 3.6, which is lower than the specified significance level 5%.
Hence we reject the null hypothesis, and conclude that there is sufficient evi-
dence that the results of DASH approach are significantly better compared to
other state-of-the-art approaches.
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Table 3.6: T-test showing the statistical significance of DASH superiority to
SPSAL in all three domain adaptation scenarios.

Cross user Cross device Cross user cross device
p-value 0.2% 1.2% 0.8%

DASH Ablation Analysis

In this section we examine the effect of each part of our proposed DASH approach
and their contribution to the final model performance. In this experiment we
used the results obtained from cross user scenario, PAR dataset as it showed the
clearest variation among each part of DASH approach. The results are illustrated
in Fig 3.7 using box plot.

Figure 3.7: Box plots of F1 performance on the target domain in cross user
scenario after adding each part of the proposed DASH approach. It can be
seen that each part of the proposed DASH approach contributes significantly in
improving the accuracy and reducing the variation of the results.

It can be seen that the main effect of non-linear modeling (SPSANL MMD)
is an increase by 3% and 6% on average compared to SPSAL MMD for smart-
watch and smartphone data respectively. However, both SPSAL and SPSANL
with squared MMD have high variation in their results. It can be noted that
adding auto-encoder (DASH MMD) achived 5% and 3% higher result compared
to SPSANL MMD with significantly lower variation where the standard devi-
ation was reduced by 2x for smartwatch and 3.5x for smartphone data. As a
result the main advantage of the using DAE is to enforce the model to generate
robust representations of the data, and hence result in more consistent results
and improve model generalization. It also can be noted that using DC approach
to minimize the domain divergence resulted in the worse performance and similar
results were observed in the other domain adaptation scenarios. Furthermore, we
visualize the representation embeddings of both DASH MMD and DASH DC us-
ing t-distributed stochastic neighbor embedding (t-SNE) projection [53] as shown

37



in Fig 3.8. Each activity class is represented by a different number while color

(a) (b)

Figure 3.8: T-SNE visualization of representation learned after domain adaptation us-
ing DASH with squared MMD and DC losses in cross user scenario, PAR dataset. Each
number on the plot represents activity. a) The embeddings of proposed DASH MMD
representation . b) The embeddings of DASH DC representation

coding the domains. It can be seen that representations of the two domains
classes produced by DASH DC are aligned to the wrong classes of the two do-
mains, where corresponding classes from the source domain are overlapped to
different classes from the target domains. On the other hand, the classes of each
activity of the DASH MMD approach are clearly separated and the similar classes
of the source and target domains are mostly aligned. This is due to the fact that
the squared MMD measures the maximum distance between the expectations
of the two domain distributions, whereas the domain classifier generate domain
invariant features by maximizing the loss on the domain classification task.

Evaluation of Domain Adaptation

The main goal of domain adaptation is to minimize the divergence between the
two domains for the corresponding target classes. In this part we quantify the
similarity between the two domains using the proxy A-distance (PAD) adopted
[81] shown in Figure 3.9. We trained denoising auto-encoder (DAE), SPSAL and
DASH on PAR dataset in cross user scenario for both smartphone and smartwatch
and computed the PAD between source and target domains features representa-
tion. The DAE representation was obtained after training on both source and
target unlabeled data. We note that both SPSAL and DASH contribute to reduc-
ing PAD distance between source and target domains. However, we can clearly
see that the PADs of DASH are much lower than SPSAL pushing downwards.
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Figure 3.9: Proxy A-distance computed for the 3 representations: denoising auto-
encoder, SPSAL and DASH representations of the data.

3.4.4 Effect of data size on DASH performance

To examine the effect of the size of the data we picked cross user scenario, smart-
phone data, PAR dataset with same configuration described in Sec.3.4.3. We
chose participant {11} as target as his dataset contains the largest number of ob-
servations (6788). We vary the size of the training data of both source and target
data from 500 observations to 5000 in step of 500. For each data size we train
both DASH and SPSAL. We held out 1500 observations, which we kept same for
all training size, to test the performance models performance. The performance
of both DASH and SPSAL for each data size is illustrated in Figure3.10. It is

Figure 3.10: F1 performance of DASH and SPSAL on the target domain versus
training datasize.

noticeable that the performance of DASH increases almost linearly with datasize
reaching F1 score up to 80%. This is expected as the auto-encoder base model
requires more data to produce better representation for both source and target
domains. On the other hand, SPSAL F1 score increases rapidly at the beginning
with higher variation, however, the performance saturates at around 70% and
do not increase with the increase of the data. We can also observe that DASH
outperformed SPSAL at all dataset sizes.
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Chapter 4

Conclusion

In this work, we examined the robust learning to environmental noise with ad-
versarial examples for seizure prediction. The proposed method aims to address
three main limitations in seizure prediction literature: (1) the high variations in
the signals between pre-ictal and normal activity of different patients and within
the same patient data, (2) prediction accuracies still do not meet the required
criteria in order to avoid life-threatening scenarios for impacted patients, and (3)
limited amount of labeled training data per patient for pre-ictal state samples.
The proposed method demonstrates significant improvements in comparison to
prior state-of-the-art [1] on two benchmark datasets, Boston Children’s Hospital
(CHB-MIT) and Freiburg Hospital (FB), in terms of sensitivity, false positive
rate per hour (FPR/h) and area under the curve (AUC). We show an improve-
ment of 3x in model robustness across patients and across datasets as measured
in AUC variations. Moreover, we show an increase of up to 6.7% in average AUC
on both datasets.

In addition, we presented a novel domain adaptation architecture, called
DASH, for multivariate time series data that is based on soft parameter shar-
ing architecture. The proposed DASH method aims to improve DA by learning
domain specific and shared characteristics of source and target domains. We
studied the limitations of previous approaches in domain adaptation that are
based on hard parameter sharing architecture and showed how our proposed soft
parameter sharing approach overcome these limitations. Furthermore, we showed
that squared MMD adaptation loss gives better results compared to DC loss for
time series data. The effectiveness of DASH approach was examined under com-
prehensive set of experiments on two benchmark AR datasets collected in the
wild, Heterogeneity Activity Recognition (HAR) and Position Activity Recogni-
tion (PAR). The proposed method showed significant improvements in three DA
scenarios compared to previous state-of-the-art approaches [29, 73]. We showed
an increase of up to 8% in the weighted F1 score on average on both benchmark
datasets with improvements of 3.5x on average in model robustness.

Future work, includes Examining DASH approach to other domain adaptation
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problems for time series data like speech recognition and epilepsy where we need
robustness to both noise in the signal and robustness to shifts in data distribution.
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Appendix A

Appendix

A.1 Derivation of Non-linear modeling

To illustrate the intuition behind our approach we first assume a simple system
of only one parameter and a non linear activation ”S” for both source and target
domains as shown in Fig.A.1. The θk is the trainable weight of the neuron at
iteration ’k’. The inputs to the source and target neurons are Xs and X t where
X t = f(Xs) and f() any linear or nonlinear function. We initialize the weights
of the two neurons with the same values θs0 = θt0. The update equations of the

Figure A.1: Simplified system for both source and target domains of one neuron
with a nonlinear activation ’S’.

two parameters (θsk ,θtk) during the training are as follows:

θsk+1 = θsk − η∇θskJ(Ŷ1, Y1) (A.1)

θtk+1 = θtk − η∇θtkJ(Ŷ2, Y2) (A.2)

The relationship between the updated weights θsk+1 and θtk+1 can be expressed
as follows:

θsk+1 − θtk+1 = θsk − θtk + η(∇θtkJ(Ŷ s, Y s)−∇θskJ(Ŷ t, Y t)) (A.3)
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And hence the relation between the parameters at each iteration ’k’ becomes as
follows:

θtk = θsk + η(g(θsk, θ
t
k)) (A.4)

Where g() is a non-linear function in θs, θt and involves gradients of nonlinear
activations. Since the two domains are related, and since we initialized the pa-
rameters to be equal, we expect that θsk to be related to θtk, hence g(θs, θt) could
be written as g(θs, F (θt)) which could be written in terms of θs only r(θs) , where
F () could be any linear or nonlinear mapping function and r() is a non linear
function. Now Eq.A.5 becomes as follows :

θtk = θsk + ηr(θsk) (A.5)

For deep neural network the exact expression of r() as a function of θs is very
complicated. However the function r() can be approximated in general using
a nonlinear function σ() with learnable weights. Since at the convergence, the
gradients become very small and since η is usually chosen to much less than
1, ηr(θs) is expected to be strictly in the range (-1, 1). We chose a non-linear
function tanh() because it is in the range of (-1,1) and also easy to update during
the back-propagation. The final expression that we propose to model the relation
between the parameters of source and target domains is shown in Eq.A.6. The
parameters ′a′ and ′b′ are trainable weights to learn the nonlinear relation between
source model parameters and target model parameters.

θt = θs + (tanh(aθs + b)) (A.6)

43



Bibliography

[1] N. D. Truong, A. D. Nguyen, L. Kuhlmann, M. R. Bonyadi, J. Yang, S. Ip-
polito, and O. Kavehei, “Convolutional neural networks for seizure predic-
tion using intracranial and scalp electroencephalogram,” Neural Networks,
vol. 105, pp. 104–111, 2018.

[2] J. Dahmen, A. La Fleur, G. Sprint, D. Cook, and D. L. Weeks, “Using wrist-
worn sensors to measure and compare physical activity changes for patients
undergoing rehabilitation,” pp. 667–672, 2017.

[3] J. Wen, J. Indulska, and M. Zhong, “Adaptive activity learning with dy-
namically available context,” pp. 1–11, 2016.

[4] M. Swan, “Sensor mania! the internet of things, wearable computing, ob-
jective metrics, and the quantified self 2.0,” Journal of Sensor and Actuator
networks, vol. 1, no. 3, pp. 217–253, 2012.

[5] A. R. Dargazany, P. Stegagno, and K. Mankodiya, “Wearabledl: Wearable
internet-of-things and deep learning for big data analytics—concept, litera-
ture, and future,” Mobile Information Systems, vol. 2018, 2018.

[6] S. Liu, “Connected wearable devices worldwide 2016-2022,” 2019.

[7] P. Mirowski, D. Madhavan, Y. LeCun, and R. Kuzniecky, “Classification of
patterns of eeg synchronization for seizure prediction,” Clinical neurophysi-
ology, vol. 120, no. 11, pp. 1927–1940, 2009.

[8] L. D. Iasemidis, “Seizure prediction and its applications,” Neurosurgery Clin-
ics, vol. 22, no. 4, pp. 489–506, 2011.

[9] S. M. Usman, M. Usman, and S. Fong, “Epileptic seizures prediction using
machine learning methods,” Computational and mathematical methods in
medicine, vol. 2017, 2017.

[10] A. H. Shoeb and J. V. Guttag, “Application of machine learning to epileptic
seizure detection,” in Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pp. 975–982, 2010.

44



[11] J. Rasekhi, M. R. K. Mollaei, M. Bandarabadi, C. A. Teixeira, and
A. Dourado, “Preprocessing effects of 22 linear univariate features on the
performance of seizure prediction methods,” Journal of neuroscience meth-
ods, vol. 217, no. 1-2, pp. 9–16, 2013.

[12] I. Kiral-Kornek, S. Roy, E. Nurse, B. Mashford, P. Karoly, T. Carroll,
D. Payne, S. Saha, S. Baldassano, T. O’Brien, et al., “Epileptic seizure
prediction using big data and deep learning: toward a mobile system,”
EBioMedicine, vol. 27, pp. 103–111, 2018.

[13] U. of Freiburg, “Seizure prediction project freiburg,” 2019.

[14] M. Sugiyama and M. Kawanabe, Machine learning in non-stationary envi-
ronments: Introduction to covariate shift adaptation. MIT press, 2012.

[15] D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat,
“An unsupervised approach for automatic activity recognition based on hid-
den markov model regression,” IEEE Transactions on automation science
and engineering, vol. 10, no. 3, pp. 829–835, 2013.

[16] S. Ramasamy Ramamurthy and N. Roy, “Recent trends in machine learning
for human activity recognition , survey,” Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, p. e1254, 2018.

[17] T. Maekawa, D. Nakai, K. Ohara, and Y. Namioka, “Toward practical fac-
tory activity recognition: unsupervised understanding of repetitive assembly
work in a factory,” in Proceedings of the 2016 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing, pp. 1088–1099, ACM, 2016.

[18] T. Fritz, E. M. Huang, G. C. Murphy, and T. Zimmermann, “Persuasive
technology in the real world: a study of long-term use of activity sensing de-
vices for fitness,” in Proceedings of the SIGCHI conference on human factors
in computing systems, pp. 487–496, ACM, 2014.

[19] J. K. Lee, S. N. Robinovitch, and E. J. Park, “Inertial sensing-based pre-
impact detection of falls involving near-fall scenarios,” IEEE transactions
on neural systems and rehabilitation engineering, vol. 23, no. 2, pp. 258–266,
2014.

[20] D. Cook, K. D. Feuz, and N. C. Krishnan, “Transfer learning for activity
recognition: A survey,” Knowledge and information systems, vol. 36, no. 3,
pp. 537–556, 2013.

[21] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard,
A. Dey, T. Sonne, and M. M. Jensen, “Smart devices are different: Assessing
and mitigatingmobile sensing heterogeneities for activity recognition,” in

45



Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems, pp. 127–140, ACM, 2015.

[22] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[23] R. Chavarriaga, H. Bayati, and J. D. Millán, “Unsupervised adaptation for
acceleration-based activity recognition: robustness to sensor displacement
and rotation,” Personal and Ubiquitous Computing, vol. 17, no. 3, pp. 479–
490, 2013.

[24] M. A. A. H. Khan and N. Roy, “Transact: Transfer learning enabled activity
recognition,” pp. 545–550, 2017.

[25] R. Ding, X. Li, L. Nie, J. Li, X. Si, D. Chu, G. Liu, and D. Zhan, “Em-
pirical study and improvement on deep transfer learning for human activity
recognition,” Sensors, vol. 19, no. 1, p. 57, 2019.

[26] J. Wang, Y. Chen, L. Hu, X. Peng, and S. Y. Philip, “Stratified transfer
learning for cross-domain activity recognition,” pp. 1–10, 2018.

[27] J. Wang, V. W. Zheng, Y. Chen, and M. Huang, “Deep transfer learning for
cross-domain activity recognition,” in Proceedings of the 3rd International
Conference on Crowd Science and Engineering, p. 16, ACM, 2018.

[28] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,
“Domain separation networks,” in Advances in neural information processing
systems, pp. 343–351, 2016.

[29] A. Rozantsev, M. Salzmann, and P. Fua, “Beyond sharing weights for deep
domain adaptation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018.
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