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we consider continuous (r, Q) re-ordering policies for single item inventory systems with 

stochastic demand and recycling. We solve for the re-ordering policy and safety stock for two 

models. The first model assumes that the recovery of items is outsourced to a supplier, where 
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proposed mathematical frameworks consider an infinite time horizon where demand and the 

amount recovered are stochastic. The objective of this work is to focus on developing 
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trade-off between recovering (recycling) items in-house and outsourcing them. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

  Population increase has been a widely discussed topic in the previous decades, 

where the environmental hazards that accompany its uncontrolled growth are well 

established in the literature (Ehrlich & Holdren, 1971). The world population is 

projected to reach 8.6, 9.8, and 11.2 billion by 2030, 2050, and 2100, respectively 

(Department of Economic and Social Affairs, 2017). This increase in population, 

accompanied by an increasing trend in market consumption, will result in a significant 

increase in waste generation. Existing supply chain systems have become a prime 

source of pollution, which calls for a serious re-evaluation of the manufacturing process. 

The challenge for such manufacturing systems is to reduce the number of items that end 

up in landfill sites while satisfying increases in market demand. Furthermore, the 

world’s finite resources may not be able to keep up with the alarming demand increase 

(Bonney and Jaber, 2011). For example, global plastic production has reached 335 

million tons in 2017, which is 4% higher compared to 2016 (Plastics Europe, 2017). 

The marine environment is severely affected by the plentiful plastic fragments from 

packaging material that ends up dumped in the seas (Zbyszewski and Corcoran, 2011). 

Furthermore, high-density plastics take more than two years to degrade in marine 

environments, while lower density ones disintegrate after 12 months (Tosin et al., 

2012). In a traditional landfill situation, plastics need more than 50 years to fully 

degrade, which is more than the useful lifetime of a landfill site (Agamuthu and Faizura, 

2005), needless to mention the harmful chemicals, from dissolved plastics, that, 
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potentially, affecting soil and water tables (Bonney and Jaber, 2011). This mismatch 

between the time to degrade and the rate of disposing plastics creates a new problem 

due to the limited number of landfill sites and the environmental hazards that a 

traditional landfill has on its surroundings.  

Over the last few decades, governments, industries, and communities have been trying 

hard to reduce the amount of solid waste that goes to landfill sites. The implementation 

of recycling, remanufacturing, and reusing has been growing at different levels from 

households to large companies. According to the United States Environmental 

Protection Agency, the recycling rate improved from 6% of municipal solid waste in 

1960 to slightly above 25% in 2015. The reported recycling and composting rate of 

some products are as follows: 29.9% for PET bottles and jars, 33.2% for glass 

containers, 39.8% for selected consumer electronics, and 54.9% for aluminum beer and 

soda cans (EPA, 2015). At the industrial level, several companies came up with 

solutions through implementing collection, recycling, and reuse of materials and 

products. This advance is not only encouraged by regulations from the government and 

increasing sense of responsibility towards the environment; companies have realized 

valuable commercial opportunities in collecting, recycling, and reusing materials and 

products. For example, John Deere & Co. invested $20 million in a returnable container 

program with its suppliers of assembly parts and Herman Miller Inc., claims to have 

saved over $600,000 in two years using returnable packaging material for steel shelves 

(Kroon and Vrijens, 1995). The majority of classical inventory models do not address 

recycling and do not account for the environmental consequences of the corresponding 

ordering policies. This limitation motivates developing inventory models that balance 

reductions in operational costs and increases in those of protecting the environment 
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(Bonney and Jaber, 2011). Such models created a new term known as the mixed 

manufacturing/remanufacturing systems, where returned assets could be reused or 

recovered and sold back to the market (Alinovi et al., 2011). The models of this paper 

could be applied to any end-of-life product recovery activity, such as remanufacturing 

and repair. We capture the stochastic behavior of the recovery process and quantify the 

effects of this added uncertainty on the performance of the inventory system. Our 

models integrate two sources of uncertainty, the demand and recovery processes, and 

develop an iterative, but computationally efficient, approach  that solves for the 

reordering policy. We refer to King et al. (2006) for a clear differentiation of end-of life 

product recovery strategies, which include repairing, reconditioning, remanufacturing, 

or recycling. 

 

1.2 Organization of the thesis 

  The organization of the thesis is summarized in Figure 1. Chapter 2 provides a 

research background on the topics covered in this study on inventory systems with 

reverse logistics. It is divided into two sections covering the literature about 

deterministic and stochastic models. Chapter 3 considers the model formulation and 

assumptions. Chapters 4 and 5 provide a detailed description of the mathematical model 

formulation and solution procedure for two systems, (1) remanufacture in-house and (2) 

outsource remanufacturing. Chapter 6 presents an analysis and discussion on a 

numerical example that illustrates the efficiency of the proposed solution procedure in 

comparing in-house product recovery with outsourcing for different system parameters.  

Finally, Chapter 7 concludes the research work, highlights its limitation, and provides 

recommendations for future works. 
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Figure 1 – Organization of the thesis 
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CHAPTER 2 

BACKGROUND RESEARCH 

 

  We present a review of inventory systems with product recovery and re-use, by 

way of remanufacturing and/or recycling processes. Section 2.1 considers the related 

deterministic models, and Section 2.2 extends the review to account for the stochastic 

models. We conclude the chapter with a literature summary table, which serves to 

highlight our contribution to the literature. 

2.1 Deterministic Models 

  Inventory management with reverse logistics can be traced back to Schrady 

(1967), who developed a deterministic EOQ-based model for a single item inventory 

system with no backorders. The model assumed that products could be returned for 

repair, with those unrepairable scrapped. Schrady (1967) noted that an item designated 

reparable (as opposed to consumable) is presumably more economical to repair, than to 

dispose of or replace.  Another work along this line of research is that of Nahmiasj and 

Rivera (1979), which extended the work of Schrady (1967) by assuming a finite repair 

rate and limited storage. The resulting model also considered the interaction between 

procurement and repair. Mabini et al. (1992) presented a similar model to that of 

Schrady (1967), but allowed for backordering.   

With the rise of environmental issues in the 1990s, this research line took a new turn 

with the work of Richter (1996), who developed an EOQ model with product collection 

and disposal. Richter (1996) considered a system of two shops. The first shop stocked 

newly produced and recovered items, while the second shop stocked 

collected/returned/used items. The model in Richter (1996) assumed that non-
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recoverable items are disposed of at a cost and solved for the optimal disposal rate. The 

work in Teunter (2001) studied a deterministic EOQ model with recoverable 

(repaired/refurbished remanufactured/recovered) items with different holding costs. 

Teunter (2001) accounted for the disposal of used items by categorizing the stock as a 

manufacturing batch or a recovery batch and obtained a simple EOQ for each stock 

category over an infinite-time planning horizon. Koh et al. (2002) considered joint EPQ 

and EOQ models with stationary demand, where items are either newly purchased or 

recovered. Dobos and Richter (2004) examined a production and recycling system with 

a predetermined production-inventory policy and assumed that recovered items are as 

good as new. Their results showed that a bang-bang (recycle or produce all) not a mixed 

strategy is optimal.  However, Dobos and Richter (2004) concluded that despite what 

their results showed, such pure strategies are, probably, not technologically feasible, 

where relying solely on recycled items entails buying back all sold and used items. In a 

follow-up paper, Dobos and Richter (2006) considered the quality of collected items 

and showed that for such an assumption, a mixed strategy of production and recycling is 

optimal. Singh and Saxena (2012) considered a similar model, which allowed for 

shortages and backordering. The authors assumed time-dependent rates and investigated 

coordinating the manufacturing and remanufacturing processes. Other related works 

include but are not limited to Hui Oh and Hwang (2006) and Matar et al. (2014). The 

latter being the closest in scope to this paper, where the authors discussed 

production/recycling/reuse of plastic bottles that are either sold to produce low-grade 

plastics or disposed of in landfills. Two novel ideas were brought forth in the work of 

Matar et al. (2014), which are (i) using biodegradable plastics to minimize the 

environmental impact of disposing of bottles and (ii) the rehabilitation of landfill sites. 
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2.2 Stochastic Models  

  Stochastic inventory models include Alinovi et al. (2011), who formulated a 

stochastic EOQ-based inventory control model for a mixed 

manufacturing/remanufacturing system. The authors utilized Monte-Carlo simulation to 

estimate the optimal return policy while accounting for the uncertainty in demand, 

returned quantity, and return delay.  Fleischmann et al. (2002) proposed a basic 

inventory control model with stochastic returns. They adopted Poisson distributions to 

model the number demanded and returned.  Shi et al. (2010) formulated a mathematical 

model to maximize the overall profit by optimizing the production and recycling 

processes, subject to uncertain demand and return rates. The authors adopted a 

Lagrangian relaxation and a sub-gradient heuristic. Hsueh (2011) investigated time-

dependent inventory-control policies in a manufacturing/ remanufacturing system with 

normally distributed demand and return processes. For different points in time, closed-

form solutions were obtained for the optimal production lot size, reorder point, and 

safety stock. 

Benedito & Corominas (2013) integrated Markov decision processes with reverse 

logistics models to obtain the optimal manufacturing policy. The authors assumed that 

the quantity returned to be stochastic and dependent on sales. The system developed in 

Benedito & Corominas (2013) considered a company that recovers, produces, and sells 

the product.  Serrato et al. (2007) considered a Markov decision model where reverse 

logistics was either performed internally or outsourced. The authors based their model 

on a reward function that accounted for the capacity and operating costs. They 

concluded that as the return fraction increased, the outsourcing threshold was more 

likely to be crossed, and thus internal reverse logistics would become more favorable 
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(Serrato, Ryan, & Gaytán, 2007). Our work also analyzes the outsourcing vs. in-house 

recycling decision while integrating the stochastic aspect of demand and return in a 

modified continuous (r, Q) inventory-control system. The closest to our work is that of 

Teunter (2002), who considered an inventory system with stochastic demand and return 

and a discounted cost.  Unlike our work, Teunter (2002) resorted to simulation to 

determine the best possible (not optimal) values of the decision variables relating to the 

economic and manufacturing order quantity systems.  Our work also considers 

stochastic demand return, but for a continuous (r, Q) inventory-control system.  We 

present an iterative analytical approach to solve for the best possible cost per unit of 

time, which is a computationally efficient alternative to simulation.  

The above-surveyed work shows that stochastic inventory models for reverse logistics 

systems are still not that many, despite the importance of the topic. This paper, 

therefore, contributes to this line of research by formulating models that build on an 

approach proposed in Silver et al. (2016), which calculated the reorder point and 

quantity for fast-moving items.  They developed a procedure to find the optimal solution 

by iterating between two values, the EOQ and the reorder point. We implement a 

similar approach in our model to compute the ordering policy by integrating the 

remanufacturing/recycling process. 



 

9 

Table 1 Background Research Summary 

Author 
Stochastic 
Demand 

Stochastic Returns In-house Supplier Decision Variables Solution Procedure 

Schrady (1967) - - X - (r, Q) Closed form solution 

Nahmiasj and Rivera (1979) - - X - (r, Q) Closed form solution 

Mabini et al. (1992) - - X - (r, Q) Closed form solution 

Richter (1996) - - - X (r, Q) Closed form solution 

Teunter (2001) - - X - Manufacturing and recovery batch size Closed form solution 

Koh et al. (2002) - - X - 
Quantity of newly produced items, inventory level of 

recoverable items, number of orders 
Search heuristic 

Dobos and Richter (2004) - - X - 
Marginal use and buyback rates, number and size of 

recycling lots, number and size of production lots 
Closed form solution 

Dobos and Richter (2006) - - X - 
Marginal use and buyback rates, number and size of 

recycling lots, number and size of production lots 
Closed form solution 

Singh and Saxena (2012) - - X - 
Acceptable returned quantity for used items, maximum 
inventory level from production and remanufacturing 

Closed form solution 

Hui Oh and Hwang (2006) - - X - 
Number of production setups, number of raw material orders, 

production lot size, order size of raw material, cycle time 
Closed form solution 

Matar et al. (2014) - - X - Cycle time Closed form solution 

Teunter (2002) X X X - 
Economic order quantity for manufacturing and 

remanufacturing 
Approximations and testing via 

simulation 

Hsueh (2011) X X X - 
Number of production activities and safety stock 

for every stage of the product life cycle (finite time horizon) 

Closed form solution for every 

life every stage 

Benedito & Corominas (2013) X X X - Number of products to be manufactured 
MOLP adapted to the 

approximated Markov model 

Silver et al. (2016) X - X - (r,Q) 

Solution obtained 

via iterative algorithmic 
approach 

Alinovi et al. (2011) X X X - Size of the manufacturing purchasing order Simulation 

Fleischmann et al. (2002) X X X - (s,Q) Simulation 

Shi et al. (2010) X X X - Stocking, manufacturing and remanufacturing quantities Lagrangian based Heuristic 

This Work X X X X (r,Q) 
Solution obtained 

via iterative algorithmic 

approach 
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Table 1 presents a concise summary of the relevant literature and shows that the existing 

inventory models that accounted for the uncertainty in the demand or recovery 

processes, based their analysis on heuristics or simulations that solved for near-optimal 

solutions. Our work considers the (r, Q) policy over an infinite time horizon, and we 

show that the cost per unit time is convex (for outsourcing and in-house recycling 

models). The convexity of both models allows us to develop an iterative algorithm that 

solves for the solution parameters. 
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CHAPTER 3 

MODEL FORMULATION AND PARAMETERS 

 

3.1 Model Formulation  

  We consider a continuous review inventory system with recoverable (e.g., 

recyclable) items over an infinite time horizon, where a manufacturer procures new 

items (raw material) from an external supplier. Each mathematical model calculates the 

total cost, which is the performance measure, of the inventory system for a continuous 

re-ordering policy, denoting the re-order point by 𝑟, and the order quantity by 𝑄. Two 

recycling models: The first model outsources recycling activities to a supplier (Model 

1), while the second performs them in-house (Model 2). Model 1 accounts for the case 

where the manufacturer is offered an outsource option for the recycling process from 

the supplier. Model 2 investigates the option of investing in a recycling process at the 

manufacturer’s end. The stochastic components of the inventory system include the 

demand process over the lead-time as well as the number of recovered items. The 

number of recovered items is related to the demand process through parameters 𝛾 and 𝜃, 

which denotes the proportion of demand that is collected and the proportion of collected 

items that are recoverable. 

We assume that recovered items and newly manufactured items have the same selling 

price, and accordingly the same holding cost (Teunter, 2001). Both models assume that 

there are never two or more outstanding orders. The stockout cost of both inventory 

systems is 𝑝 (in $/unit).  
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3.2 Model Parameters 

  The following summarizes the notations used in the mathematical models: 

Monetary Parameters: 

𝑐𝑄: purchase cost of newly manufactured item ($ /unit) 

𝑐𝑅𝑇
: purchase cost of a returned item ($ /unit) 

ℎ: holding cost ($ /unit / unit-time) 

𝑝: stockout cost ($ /unit) 

𝐾: ordering cost ($ / production cycle) 

System Parameters: 

𝑑: demand rate (unit /unit-time) 

𝑑𝑒: effective demand rate (unit / unit-time) 

𝑟𝑒: recovery rate (unit / unit-time) 

𝐿: lead-time (unit-time) 

𝑇: cycle time - time to consume inventory (unit-time) –random variable 

𝛾: proportion of demand collected,  0 ≤  𝛾 ≤ 1 

𝜃: proportion of collected demand that is recoverable, 0 ≤  𝜃 ≤  1  

𝑟: reorder point (units) – decision variable  

𝑄: order quantity (units) – decision variable 

𝐷𝐿: demand over lead-time (unit) – random variable 

𝑅𝑇: number of returned items during a cycle (unit) – random variable 

𝑛(𝑟): expected shortage per cycle (unit) 

𝑐𝑣(𝑅𝑇): coefficient of variation of recovered items during a cycle 

𝑐𝑣(𝐷𝐿): coefficient of variation of demand during lead time 

𝑐𝑣(𝑅𝑇): coefficient of variation of recovered items during lead time 
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CHAPTER 4 

MODEL 1: OUTSOURCE 

 

4.1 Model 1 Mathematical Formulation  

  Figure 2 illustrates the behavior of the manufacturer’s inventory when 

recovering activities are outsourced. The supplier requires a fixed lead-time, 𝐿, to 

deliver an order. An order of size 𝑄 and a random number of recovered items 𝑅𝑇 are 

received at the beginning of each cycle/period. The supplier is responsible for the 

collection of used items from the market, disposing of those unrecoverable, and 

recovering and delivering those that are to the manufacturer.  

 

Figure 2 – Behavior of inventory for Model 1 

We assume that the inventory system of Figure 2 follows a renewal process, where the 

time between replenishments, T, represents a renewal cycle. The demand process is 

assumed to be stochastic, where the time between arrival epochs follows a general 

distribution and is iid.  Let 𝑋𝑖 denote the time between the (𝑖 − 1)𝑠𝑡 and the 𝑖𝑡ℎ demand 
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arrival epochs. Therefore, E[𝑋𝑖] is the expected inter-arrival time of a demand item and 

the demand rate, 𝑑, is expressed as follows, 

 𝑑 =
1

E[𝑋𝑖]
 (1) 

, i.e., the manufacturer’s inventory is consumed at a rate of 𝑑 items per unit of time.  

Furthermore, the duration of the inventory renewal cycle, as denoted by 𝑇, is expressed 

as follows,  

 𝑇 = ∑ 𝑋𝑖

𝑄+𝑅𝑇

𝑖=1

 , (2) 

where 𝑅𝑇 is the number of recovered items received in a cycle of duration 𝑇, and 𝑄 is 

the quantity of ordered items received at the beginning of the cycle. Since 𝑋1, … , 𝑋𝑄+𝑅𝑇
 

is a sequence of independent and identically distributed observations, then Wald’s 

equation (Ross, 1996) is used to calculate the expected value of the cycle time, 

 𝐸[𝑇] =
𝑄 + 𝐸[𝑅𝑇]

𝑑
 . (3) 

Throughout a cycle, the portion of items that are collected from consumers is 𝛾. Since 

not all collected items can be used, 𝜃 is defined as the potion of collected items that can 

be recovered. Therefore, the rate at which the market generates usable recovered items 

is 𝑟𝑒 = 𝛾 𝜃 𝑑 items per unit time. Consequently, the expected number of items 

recovered over a cycle of duration 𝑇 is expressed as follows,  

 𝐸[𝑅𝑇] = 𝑟𝑒 𝐸[𝑇] = 𝛾 𝜃 𝑑 𝐸[𝑇] =  𝛾 𝜃 (𝑄 + 𝐸[𝑅𝑇]), (4) 

 
 ⇒ 𝐸[𝑅𝑇] =

𝛾 𝜃

1 − 𝛾 𝜃
 𝑄. 

 

(5) 
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We consider the demand over lead time, 𝐷𝐿, as a random variable with a coefficient of 

variation, 𝑐𝑣(𝐷𝐿). Accordingly, 

 𝐸[𝐷𝐿] = 𝑑 𝐿 (6) 

 𝑉𝑎𝑟[𝐷𝐿] = 𝑐𝑣(𝐷𝐿)
2𝐸[𝐷𝐿]

2 (7) 

To capture the variability of the number of recovered items delivered to the supplier 

during an inventory cycle and over the lead time, we define 𝑐𝑣𝑅𝑇
 and 𝑐𝑣𝑅𝐿

 to be the 

coefficient of variations of the number of recovered items during intervals of duration 𝑇 

and 𝐿, respectively. We related 𝑐𝑣𝑅𝑇
 and 𝑐𝑣𝑅𝐿

by the following equation, 

 𝑐𝑣(𝑅𝑇)2 × 𝐸[𝑇] ≈ 𝑐𝑣(𝑅𝐿)
2 × 𝐿, (8) 

 ⇒ 𝑐𝑣(𝑅𝑇) ≈
√

𝑐𝑣(𝑅𝐿)2 ×
𝐿

𝑄 + 𝐸[𝑅𝑇]
𝐸[𝑑]

= 𝑐𝑣(𝑅𝐿) √
𝐿 𝐸[𝑑]

𝑄 + 𝐸[𝑅𝑇]
 . (9) 

Notice that the approximation in Equations (8) and (9) is exact if the demand process is 

Poisson (time between arrivals follows an exponential distribution). Furthermore, the 

assumption in Equations (8) and (9) is accurate if the inter-arrival epochs are renewal, 

and the accuracy improves for long lead times where the error is o(1) (Whitt, 1982; Nasr 

et al. 2018). Accordingly, Equation (9) relates the variability of the number of recovered 

items during a cycle and over the lead-time. 

Therefore, the variance of the number of recovered items over the cycle time is  

 𝑉𝑎𝑟[𝑅𝑇] = cv(𝑅𝑇)2 × 𝐸[𝑅𝑇]2. (10) 

We define the safety stock, 𝑆𝑆, as the lowest inventory level realized by the system, i.e., 

the inventory just before the order is received. The safety stock is a random variable and 

is expressed as follows,  

 𝑆𝑆 = 𝑟 − 𝐷𝐿. (11) 
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4.2 Performance Measures/System Costs – Model 1 

  In this section, we calculate the system cost per cycle (𝐶𝑃𝐶) of Model 1, which 

includes the purchasing, holding, ordering, and shortage costs. The manufacturer 

purchases newly manufactured items for 𝑐𝑄 each. The supplier provides the recovered 

items for a discounted price of 𝑐𝑅𝑇
 for each. Therefore, the expected purchase cost per 

cycle is calculated as follows 

 𝑃𝑃𝐶1 =  𝑐𝑄 𝑄 + 𝑐𝑅𝑇
 𝐸[𝑅𝑇] (12) 

Recovered items delivered to the manufacturer, along with the purchased items, are 

assumed to be of the same quality. Consequently, purchased and recovered items have 

the same holding cost, ℎ. The expected inventory level, 𝐸𝐼𝐿1, held per cycle is 

calculated as,  

 𝐸𝐼𝐿1 =
𝑄 + 𝐸[𝑅𝑇]

2
+  E[𝑆𝑆] , (13) 

which is the average value of the ordered quantity (𝑄 + 𝐸[𝑅𝑇])/2 plus the expected 

safety stock 𝐸[𝑆𝑆]. Accordingly, the expected holding cost per cycle 𝐻𝑃𝐶1is, 

 𝐻𝑃𝐶1 = ℎ (
𝑄 + 𝑅𝑇

2
+ 𝑆𝑆) ∑ 𝑋𝑖

𝑄+𝑅𝑇

𝑖=1

.  (14) 

Let 𝐾 be the fixed ordering cost per cycle, and 𝑝 be the stockout cost per unit incurred 

by the manufacturer. A shortage is present when the demand over the lead-time is more 

than the reorder point inventory.  Let 𝑓𝐷𝐿
(𝑥) be the density function of the number of 

demanded items over the lead-time. Therefore, the expected shortage per cycle in this 

model is 

 𝑛(𝑟) = ∫ (𝑥 − 𝑟)𝑓𝐷𝐿
(𝑥)𝑑𝑥 = ∫ (𝑥 − 𝑟)𝑓𝐷𝐿

(𝑥)𝑑𝑥 =
∞

𝑟

𝜎𝐷𝐿
× 𝐿(𝑧𝛼(𝑟)),

∞

𝑟

  (15) 
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where 𝑧𝛼(𝑟) is the standard normal value satisfying a service level of 𝛼(𝑟) and 𝐿(𝑧𝛼(𝑟)) is 

the corresponding standard loss function, i.e., the expected number of lost sales as a 

fraction of the standard deviation 𝜎𝐷𝐿
. The loss function is the expected quantity by 

which demand exceeds a determined threshold value. This threshold value corresponds 

to the reorder point, 𝑟. If the demand exceeds 𝑟, a shortage cost per item, 𝑝, is incurred.   

 

4.3 Computing the Re-Ordering Policy – Model 1 

The cost per cycle equation is expressed as a function of the holding, ordering, and 

shortage costs as follows,  

 

𝐶𝑃𝐶1 =  𝑐𝑄 𝑄 +  𝑐𝑅𝑇
 𝐸[𝑅𝑇] +  ℎ (

𝑄 + 𝑅𝑇

2
+ 𝑆𝑆) ∑ 𝑋𝑖

𝑄+𝑅𝑇

𝑖=1

+ 𝐾 + 𝑝 × 𝑛(𝑟). (16) 

The expected cost per cycle is then calculated by the following equation,  

 

𝐸[𝐶𝑃𝐶1] =  𝑐𝑄  𝑄 + 𝑐𝑅𝑇
 𝐸[𝑅𝑇]  

+ ℎ × ((
𝑄

2
+ 𝐸[𝑆𝑆]) 

𝑄 + 𝐸[𝑅𝑇]

𝑑
+

𝐸[𝑅𝑇
2]

2𝑑
+ 𝑄 

𝐸[𝑅𝑇]

2𝑑
)

+ 𝐾 + 𝑝 × 𝑛(𝑟) 

(17) 

Since the behavior of the inventory system of Model 1 is a renewal process with a cycle 

time of duration T, the cost per unit time of Model 1 (CPUT1) is calculated as the 

expected cost per cycle 𝐸[𝐶𝑃𝑈𝑇1] divided by the expected cycle time, 𝐸[𝑇],   

 𝐸[𝐶𝑃𝑈𝑇1] =
𝐸[𝐶𝑃𝐶1]

𝐸[𝑇]
. (18) 

This results in the following equation, 



 

18 

 

𝐸[𝐶𝑃𝑈𝑇1] =  
( 𝑐𝑄  𝑄 + 𝑐𝑅𝑇

 𝐸[𝑅𝑇] )𝑑

𝑄 + 𝐸[𝑅𝑇]

+  ℎ ×
𝑑

𝑄 + 𝐸[𝑅𝑇]

× ((
𝑄

2
+ 𝐸[𝑆𝑆]) ×

𝑄 + 𝐸[𝑅𝑇]

𝑑
+

𝐸[𝑅𝑇
2]

2 𝑑
+ 𝑄 ×

𝐸[𝑅𝑇]

2 𝑑
)

+ 𝐾 ×
𝑑

𝑄 + 𝐸[𝑅𝑇]
+ 𝑝 ×

𝑑

𝑄 + 𝐸[𝑅𝑇]
× 𝑛(𝑟) 

(19) 

The cost function of Equation (19) can be shown to be convex as a function of the order 

quantity 𝑄. To prove convexity, the Hessian for 𝐸[𝐶𝑃𝑈𝑇1] is calculated as, 

 𝐻(𝑄, 𝑟)1 =

[
 
 
 
 
 

2(1 − 𝜃)(𝑝 𝑛(𝑟) + 𝐾)𝑑

𝑄3

(1 − 𝜃) 𝑝 (1 − 𝐹(𝑟)) 𝑑

𝑄2

𝑝 𝑑 (1 − 𝐹(𝑟)) (1 +
𝜃

1 − 𝜃)

(𝑄 + 𝑄
𝜃

1 − 𝜃)
2

𝑝 𝑑 𝑓(𝑟)

𝑄 + 𝑄
𝜃

1 − 𝜃 
]
 
 
 
 
 

. (20) 

The resulting semidefinite for 𝐸[𝐶𝑃𝑈𝑇1], 

 
(1 − 𝜃)(2 𝑧1

2 𝑑 (𝑝 𝑛(𝑟) + 𝐾) + 2 𝑧1 𝑧2 𝑄 𝑑 𝑝 (1 − 𝐹(𝑠)) + 𝑧2
2 𝑄2 𝑑 𝑝 𝑓(𝑠))

𝑄3
, (21) 

is positive for all positive values of 𝑄 and 𝑟, and, hence, completes the proof of 

convexity of 𝐸[𝐶𝑃𝑈𝑇1]. Thus, the equation for the order quantity 𝑄 is obtained by 

taking the derivative of the expected total cost per unit time, as expressed in Equation 

(19), with respect to 𝑄,  

 𝑄∗ =
(1 − 𝜃)√2 ℎ 𝑑 (𝑝 𝑛(𝑟) + 𝐾)

ℎ
 . (22) 

Furthermore, the equation for the reorder point 𝑠 is calculated by considering the 

derivative of 𝐸[𝐶𝑃𝑈𝑇1],  Equation (19), with respect to 𝑟,  

 𝐹(𝑟∗) = 1 −
(𝑄 + 𝐸[𝑅𝑇]) ℎ

𝑝 𝑑
 . (23) 
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Accordingly, Equations (22) and (23) are solved iteratively to calculate 𝑄∗ and 𝑟∗.  

 

4.4 Iterative Procedure – Model 1 

  Silver et al. (2016) discussed the simultaneous determination of 𝑄 and 𝑟. We 

describe a similar iterative procedure to find the ordering policy. Let 𝑄𝑖and 𝑟𝑖 denote the 

order size and reorder point for the ith iteration, respectively. 

Step 1: Calculate 𝑄𝑖 using the basic EOQ re-ordering quantity, 

 𝑄𝑖 = √
2𝐾𝑑

ℎ
. (24) 

Step 2: Calculate 𝐹(𝑟𝑖) according to Equation (23),  

𝐹(𝑟𝑖) = 1 −
 ℎ(𝑄𝑖 + 𝐸[𝑅𝑇])

𝑝 𝑑
. 

Step 3: Calculate the relevant 𝑧𝛼(𝑟𝑖)
 from 𝐹(𝑟𝑖), the inverse of the cumulative 

distribution of the standard Normal. 

Step 4: Calculate 𝑟𝑖 using the value 𝑧𝛼(𝑟𝑖)
 (as calculated in Step 3), corresponding to a 

safety level 𝛼(𝑟𝑖),  

 𝑟𝑖  = 𝜎𝐷𝐿
𝑧𝛼(𝑟𝑖)

+ 𝐸[𝐷𝐿] . (25) 

Step 5: Calculate 𝑛(𝑟𝑖) using Equation (15), 

𝑛(𝑟𝑖) = 𝜎𝐷𝐿
× 𝐿(𝑧𝛼(𝑟𝑖)

). 

Step 6: Calculate 𝑄𝑖+1 according to Equation (22), 

𝑄𝑖+1 =
(1 − 𝜃)√2 ℎ 𝑑 (𝑝 𝑛(𝑟𝑖) + 𝐾)

ℎ
. 

Step 7: If |𝑄𝑖+1 − 𝑄𝑖| ≤ 𝜀 then stop the procedure and set the solution as (𝑄𝑖+1, 𝑟𝑖). 

Otherwise, set 𝑄𝑖 = 𝑄𝑖+1 and repeat Step 2 to Step 4. 
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Step 8: If |𝑟𝑖+1 − 𝑟𝑖| ≤ 𝜀 then stop the procedure and set the solution as (𝑄𝑖+1, 𝑟𝑖+1). 

Otherwise set 𝑟𝑖 = 𝑟𝑖+1 and repeat Step 5 to Step 6. 

Step 9: Set 𝑄𝑖 = 𝑄𝑖+1, and restart algorithm from Step 2. 

 

Figure 3 – Model 1 Solution Algorithm 

  



 

21 

CHAPTER 5 

MODEL 2: IN-HOUSE 

 

5.1 Model 2 Mathematical Formulation 

  Figure 4 illustrates the stochastic behavior of the manufacturer’s inventory when 

returned items are recovered in-house (Model 2). A period defines the time between 

replenishments. The supplier requires a fixed lead time 𝐿 to deliver an 

order/replenishment. The model assumes that the recovered items are added to the 

inventory as they arrive throughout the cycle at a rate of 𝑟𝑒 items per unit time.  

Accordingly, the inventory of returned items is consumed by the demand process at a 

rate of d and partially replenished at a rate of 𝑟𝑒. Thus, we define the effective demand 

rate as the difference between the rates of demand, d, and manufacturer recovers 

collected used items is 𝑟𝑒, respectively. This results in a lower effective demand rate, 

 𝑑𝑒 = 𝑑 − 𝑟𝑒. (26) 

 

Figure 4 – Behavior of inventory for Model 2 
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 The number of effectively demanded items over the lead time is a random 

variable, 𝐷𝑒𝐿,  with an expected value and variance of,  

 𝐸[𝐷𝑒𝐿] = 𝐸[𝐷𝐿] − 𝐸[𝑅𝐿], (27) 

 𝑉𝑎𝑟[𝐷𝑒𝐿] = 𝑐𝑣(𝐷𝐿)
2 × 𝐸[𝐷𝐿]

2 + 𝑐𝑣(𝑅𝐿)
2 × 𝐸[𝑅𝐿]

2, (28) 

where 𝑐𝑣(𝐷𝐿) and 𝑐𝑣(𝑅𝐿) are the coefficients of variation of the number of demanded 

items and returned items over the lead time respectively. The cycle time as illustrated in 

Figure 4 becomes,  

 𝑇 = 𝑄/𝑑𝑒 . (29) 

Similar to Model 1, the manufacturer in this model adopts a safety stock policy to 

decrease the number of random stock outs 𝑛(𝑟) to accommodate for the variation over 

the lead-time,  

 𝑆𝑆 = 𝑟 − 𝐷𝐿𝑒. (30) 

5.2 Performance Measures/System Costs – Model 2 

  In this section, we calculate the system cost per cycle (𝐶𝑃𝐶) of Model 2, which 

includes the purchasing, holding, ordering, and shortage costs. The recycling cost is 

discussed in detail in section 3.2.2. Like Model 1, the manufacturer purchases newly 

manufactured items for 𝑐𝑄 each. Therefore, the expected purchase cost per cycle is 

calculated as follows 

 𝑃𝑃𝐶2 = 𝑐𝑄 𝑄 (31) 

Since the quality and price of the recovered items are assumed in the literature to be “as-

new” (e.g., Richter, 1996; Teunter, 2001), we use the same holding cost assumptions 

adopted in Model 1. Consequently, purchased and recovered items have the same 

holding cost, ℎ. The expected inventory level, 𝐸𝐼𝐿2, held per cycle is calculated as 

follows,  
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 𝐸𝐼𝐿2 =
𝑄

2
+  𝐸[𝑆𝑆] (32) 

which is the average value of the ordered quantity 𝑄/2 plus the expected safety stock 

𝐸[𝑆𝑆]. Accordingly, the holding cost per cycle 𝐻𝑃𝐶2 is 

 𝐻𝑃𝐶2 = ℎ (
𝑄

2
+ 𝑆𝑆)∑(𝑋𝑖 − 𝑍𝑖)

𝑄

𝑖=1

. (33) 

The manufacturer incurs a fixed cost when it places an order. The shortage cost in this 

model is calculated by a similar expression to Model 1, but utilizes the standard 

deviation of the effective demanded items when calculating the expected number of 

shortages per cycle, 

 𝑛(𝑟) =  𝜎𝐷𝑒𝐿 × 𝐿(𝑧𝛼(𝑟)). (34) 

 

5.3 In-house Recycling Cost – Model 2 

  In addition to the inventory-related costs (holding, ordering, and shortage costs), 

Model 2 incurs additional costs due to the in-house recycling process. In this section, 

we describe the in-house recovery process, which consists of three components, and 

define its corresponding costs. The first sub-process is the collection process, where we 

assume 𝛾 to be the collection rate of items, (0 ≤ 𝛾 ≤ 1). Let 𝑐1 be the collection cost of 

one item ($ / item).  The collection cost per unit time is 

 𝐶𝐶2 = 𝑐1 𝛾 𝑑. (35) 

The second sub-process is for dispensing of items that do not pass inspection, which 

involves screening the screening and testing the collected items and labeling them as 

unusable. The second sub-process is for dispensing of items that do not pass inspection, 

which involves screening the screening and testing the collected items and labeling 

them as unusable; i.e., not repairable/recoverable. 
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Let 𝑐2 be the cost of dispensing of the unusable items ($ / item). The dispensing cost per 

unit time is 

 𝐷𝐶2 = 𝑐2 (1 − 𝜃) 𝛾 𝑑. (36) 

The third sub-process is the recycling process where the cost to recycle one item is 𝑐3. 

The recycling cost per unit time is 

 𝑅𝐶2 = 𝑐3 𝛾 𝜃 𝑑. (37) 

We summarize the notation for the in-house recycling process, 

𝑐1 : unit collection cost ($ / item) 

𝑐2 : unit cost disposal cost ($ / item) 

𝑐3 : cost of recovery one item ($ / item)  

𝛾 : proportion of demand collected (0 ≤ 𝛾 ≤ 1). 

The total cost per unit time of the in-house recovery process is denoted by 𝑇𝑅𝐶2 and 

calculated as follows, 

 𝑇𝑅𝐶2 = 𝑐1 𝛾 𝑑 + 𝑐2 (1 − 𝜃)  𝛾 𝑑 + 𝑐3 𝛾 𝜃 𝑑 (38) 

 

5.4 Computing the Re-ordering Policy – Model 2 

The cost per cycle equation for Model 2 (𝐶𝑃𝐶2) is now expressed as follows,  

 𝐶𝑃𝐶2 = 𝑐𝑄 𝑄 + ℎ (
𝑄

2
+ 𝑆𝑆)∑(𝑋𝑖 − 𝑍𝑖)

𝑄

𝑖=1

+ 𝐾 + 𝑝 𝑛(𝑟) (39) 

The expected cost per cycle is then calculated as, 

 

𝐸[𝐶𝑃𝐶2] = ℎ × 𝐸 [(
𝑄

2
+ 𝑆𝑆) ∑(𝑋𝑖 − 𝑍𝑖)

𝑄

𝑖=1

] + 𝐾 + 𝑝 𝑛(𝑟) 

= ℎ × ((
𝑄

2
+ 𝐸[𝑆𝑆]) 

𝑄

𝑑𝑒
) + 𝐾 + 𝑝 𝑛(𝑟). 

(40) 
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Since the inventory system of Model 2 is also a renewal process, the cost per cycle is 

divided by the cycle time 𝐸[𝑇] to obtain the cost per unit time for Model 2, (𝐶𝑃𝑈𝑇2). 

This results in the following equation for Model 2, 

 

𝐸[𝐶𝑃𝑈𝑇2] =

(𝑐𝑄 𝑄 +
ℎ 𝑄 (

𝑄
2 + 𝐸[𝑆𝑆])

𝑑𝑒
+ 𝐾 + 𝑝 𝑛(𝑟)) 𝑑𝑒

𝑄
+ 𝑇𝑅𝐶2. 

(41) 

To prove convexity, the Hessian for 𝐸[𝐶𝑃𝑈𝑇2] is calculated as, 

 
𝐻(𝑄, 𝑟)2 =

[
 
 
 
 
2 𝑑𝑒 (𝑝 𝑛(𝑟)  + 𝐾)

𝑄3

𝑝(1 − 𝐹(𝑟))  𝑑𝑒

𝑄2

𝑝(1 − 𝐹(𝑟))  𝑑𝑒

𝑄2

𝑝 𝑑𝑒𝑓(𝑟)

𝑄  ]
 
 
 
 

 . (42) 

The resulting semidefinite for 𝐸[𝐶𝑃𝑈𝑇2], 

 
  𝑧1

2 𝑑𝑒(2 𝐾 + 𝑝 𝑛(𝑟)) + 2 𝑧1 𝑧2 𝑄 𝑝 𝑑𝑒(1 − 𝐹(𝑟)) + 𝑧2
2 𝑝 𝑑𝑒 𝑄

2 𝑓(𝑟)

𝑄3
 , (43) 

which is positive for all positive values of 𝑄 and 𝑠 then 𝐶𝑃𝑈𝑇2 is convex. Thus, the 

equation for the order quantity 𝑄 is calculated by taking the derivative of the expected 

total cost per unit time with respect to 𝑄,  

 𝑄∗ =
√2 ℎ 𝑑𝑒 (𝑝 𝑛(𝑟) + 𝐾)

ℎ
 . (44) 

The equation for the reorder point 𝑠 is calculated by deriving the expected total cost per 

unit time with respect to   

 𝐹(𝑟∗) = 1 −
𝑄 ℎ

𝑝 𝑑𝑒
 (45) 

Accordingly, Equations (44) and (45) are solved iteratively to calculate 𝑄∗ and 𝑟∗.  

 

5.5 Iterative Procedure – Model 2 

Step 1: Calculate 𝑄𝑖 using the basic EOQ re-ordering quantity: 
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 𝑄𝑖 = √
2𝐾𝑑𝑒

ℎ
 (46) 

Step 2: Calculate 𝐹(𝑠𝑖) according to Equation (45),  

𝐹(𝑟𝑖) = 1 −
𝑄𝑖 ℎ

𝑝 𝑑𝑒
. 

Step 3: Calculate the relevant 𝑧𝛼(𝑟𝑖)
 from 𝐹(𝑟𝑖), the inverse of the cumulative 

distribution of the standard Normal. 

Step 4: Calculate 𝑟𝑖 using the value 𝑧𝛼(𝑟𝑖)
 (as calculated in Step 3), corresponding to a 

safety level 𝛼(𝑟𝑖),  

  𝑟𝑖 = 𝜎𝐷𝑒𝐿
× 𝑧𝛼 + 𝐸[𝐷𝑒𝐿]. (47) 

Step 5: Calculate 𝑛(𝑟𝑖) using Equation (34) 

𝑛(𝑟𝑖) = 𝜎𝐷𝑒𝐿 × 𝐿(𝑧𝛼(𝑟)) 

Step 6: Calculate 𝑄𝑖+1 according to Equation (44),  

𝑄𝑖+1 =
√2 ℎ 𝑑𝑒  (𝑝 𝑛(𝑟𝑖) + 𝐾)

ℎ
. 

Step 7: If |𝑄𝑖+1 − 𝑄𝑖| ≤ 𝜀 then stop the procedure and set the solution as (𝑄𝑖+1, 𝑟𝑖). 

Otherwise, set 𝑄𝑖 = 𝑄𝑖+1 and repeat Step 2 to Step 4. 

Step 8: If |𝑟𝑖+1 − 𝑟𝑖| ≤ 𝜀 then stop the procedure and set the solution as (𝑄𝑖+1, 𝑟𝑖+1). 

Otherwise set 𝑟𝑖 = 𝑟𝑖+1 and repeat Step 5 to Step 6 

Step 9: Set 𝑄𝑖 = 𝑄𝑖+1, and restart algorithm from Step 2.   
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Figure 5 – Model 2 Solution Algorithm 
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CHAPTER 6 

ANALYSIS AND DISCUSSION OF RESULTS 

 

6.1 Numerical Analysis 

  This section provides numerical examples and sensitivity analysis to illustrate 

the behavior and the flexibility of our mathematical framework in comparing in-house 

recycling vs. outsourcing. Consider the following base case for both models with input 

parameters shown in Table 2, where we assume that items (plastic bottles) are recovered 

via recycling. 

Table 2 Input Parameters for Base Case 

Parameter Value Unit 

𝑑 50,000 bottles/month 

𝛾 0.5 - 

𝜃 0.5 - 

𝐿 0.2 months 

𝑐𝑣𝐷𝐿
 0.3 - 

𝑐𝑣𝑅𝐿
 0.1 - 

𝑐𝑄 0.1 $/bottle 

𝑐𝑅𝑇
 0.08 $/bottle 

𝑐1 0.002 $/bottle 

𝑐2 0.001 $/bottle 

𝑐3 0.002 $/bottle 

ℎ 0.02 $/bottle/month 

𝑝 0.25 $/bottle 

𝐾 30 $ 
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The percent savings of Model 2 (in-house recycling) compared to Model 1 (outsourcing 

the recycling process) is denoted by Δ, and is calculated as follows, 

Δ =
𝐸[𝐶𝑃𝑈𝑇1] − 𝐸[𝐶𝑃𝑈𝑇2]

𝐸[𝐶𝑃𝑈𝑇1]
  × 100. 

Define ∆ as a measure of the cost-efficiency of choosing to recycle in-house instead of 

outsourcing the recycling process. The ordering policy is calculated in Table 3, along 

with the expected cost per unit time. 

Table 3 Base Case Results 

Example Model 1 Model 2 Δ 

(#) 𝑄∗ 𝑟∗ 𝐸[𝐶𝑃𝑈𝑇1] 𝑄∗ 𝑟∗ 𝐸[𝐶𝑃𝑈𝑇2] % 

1 10,057 16,074 $ 5279.7 11,806 13,391 $ 4191.4 20.61% 

 

The cost-efficiency of in-house recycling is Δ= 20.61%, where the results in Table 3 

show that Model 1 (outsourcing) results in a lower order quantity yet a higher reorder 

point. A breakdown of the savings of Model 2 over Model 1 by cost type shows a 

saving of 40% in holding cost, a saving of 15% in ordering cost, and 21% saving in 

purchase cost.  

 

6.2 Sensitivity Analysis 

  We perform a one-way sensitivity analysis by varying the demand rate, 

recovered proportion, lead-time, coefficients of variation of the demanded new and 

recovered items over the lead-time, purchase costs, holding cost, shortage cost, and 

ordering cost.  
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Table 4 Sensitivity Analysis - Demand 

Example Variable Model 1 Model 2 Comparison 

(#) 𝒅 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟏] 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟐] 𝚫 

1 1,000 1,322 265 $134.35 1,531 209 $108.57 19.19% 

2 10,000 4,298 3,012 $1,112.85 5,005 2,472 $887.01 20.29% 

3 100,000 14,693 32,916 $10,430.25 17,348 27,557 $8,273.11 20.68% 

4 1,000,000 58,090 350,046 $102,351.24 71,237 296,164 $81,098.01 20.76% 

 

Table 4 presents the results of the sensitivity analysis for 𝑑 where the demand rate is 

varied from 1,000 to 1,000,000 in multiples of 10. Model 2 results in better cost savings 

compared to all the demand values considered. As the demand rate increases, the 

percent saving of using Model 2 is maintained at around 20% (Δ ranges between 

19.19% and 20.76% in Table 4). The overall saving value Δ is mainly attributed to the 

savings in holding, order, and purchase costs that Model 2 provides. For example, at 𝑑 = 

1,000,000, the savings reached 45% in holding cost, 18% in ordering cost, and 21% in 

purchase cost.  

Table 5 Sensitivity Analysis - Recycling Proportion 

Example Variable Model 1 Model 2 Comparison 

(#) 𝜸𝜽  𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟏] 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟐] 𝚫 

6 0.05 12,739 16,074 $5,479.65 13,105 15,539 $5,230.37 4.55% 

7 0.125 11,733 16,074 $5,404.67 12,634 14,736 $4,841.14 10.43% 

8 0.25 10,057 16,074 $5,279.71 11,806 13,391 $4,191.43 20.61% 

9 0.375 8,381 16,074 $5,154.79 10,722 11,756 $3,540.09 31.32% 

10 0.5 6,705 16,074 $5,029.90 9,929 10,643 $2,886.42 42.61% 

 

Next, we conduct a one-way sensitivity analysis on the recycling proportion (𝛾 𝜃).  We 

increase (𝛾 𝜃) from 0.05 to 0.5, by increasing 𝜃 and fixing 𝛾. These recycling 

parameters are dependent on societal recycling behaviors and can improve by 

implementing governmental regulations. As (𝛾 𝜃) increases, Model 2 becomes more 
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cost-efficient, as Table 5 indicates. The order quantity 𝑄∗ decreases as the number of 

recovered items in both models increases, which is mainly due to the continuous 

utilization of recovered items in supplying the demand in Model 2. However, the 

reorder point 𝑟∗ does not vary in Model 1 since it is not directly dependent on (𝛾 𝜃), 

Equation (23). Furthermore, by comparing the total expected cost behavior of Model 1 

and Model 2, one notices that as 𝛾 𝜃 increases, the cost per unit time decreases at a 

faster rate in Model 2. Looking at the behavior of cost components, one can see that the 

holding and order costs in Model 1 are insensitive to variations in 𝛾 𝜃. The main 

parameter behind the decrease in the total expected cost in Model 1 is the purchase cost 

since the manufacturer acquires more recovered items for a lower unit cost. On the other 

hand, the holding, order, and purchase costs decrease in Model 2, resulting in 42.61% 

cost savings. By analyzing the reorder point, one notices that decreases in Model 2 have 

to do with more items are being recovered by the manufacturer throughout the inventory 

cycle. 

Table 6 Sensitivity Analysis - Lead-time 

Example Variable Model 1 Model 2 Comparison 

(#) 𝑳 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟏] 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟐] 𝚫 

11 0.4 11,026 31,915 $5,562.46 13,165 26,499 $4,330.77 22.14% 

12 0.6 12,097 47,517 $5,843.12 14,694 39,310 $4,467.58 23.54% 

13 0.8 13,273 62,874 $6,121.66 16,393 51,823 $4,601.82 24.83% 

14 1 14,553 77,985 $6,398.08 18,262 64,036 $4,733.46 26.02% 

 

We conducted a one-way sensitivity on the lead-time by increasing 𝐿 from 0.2 months 

(base case) to 1 month in increments of 0.2-month. The results presented in Table 6 

indicate that although the total cost per unit time for both models increases with lead-

time, Model 2 becomes more efficient. Specifically, the holding and shortage costs in 

both models increase with longer lead-times. However, order cost decreases while the 
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order quantity 𝑄∗ and reorder point 𝑟∗ increase in both models since the manufacturer 

prefers to hold more inventory to decrease the probability of stockouts in longer lead-

times. By comparing the reorder point of Model 2 to the reorder point in Model 1, at  

𝐿 of 1 month, one notices that it is lower by 18%, which indicates that Model 2 is more 

resilient to longer lead-times.  

Table 7 Sensitivity Analysis - Holding Cost 

Example Variable Model 1 Model 2 Comparison 

(#) 𝒉 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟏] 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟐] 𝚫 

15 0.04 7,432 15,569 $5,649.26 8,800 12,858 $4,403.82 22.05% 

16 0.08 5,621 14,995 $6,309.38 6,744 12,244 $4,756.53 24.61% 

17 0.16 4,409 14,314 $7,501.20 5,406 11,495 $5,341.61 28.79% 

18 0.2 4,123 14,060 $8,062.19 5,105 11,210 $5,600.48 30.53% 

 

We also conducted a one-way sensitivity analysis for holding cost ℎ, where we increase 

the base case ℎ from $0.02/bottle/month to $0.2 in multiples of two. The savings of 

Model 2 increases to reach 30.53% with higher holding costs, as presented in Table 7. 

The detailed results showed that as we increase ℎ to $ 0.2, Model 2 resulted in 55% less 

holding cost than Model 1. At that ℎ, the holding cost in Model 2 constitutes 22% of the 

total cost compared to 34% in Model 1, which indicates that Model 2 is less sensitive to 

increases in holding costs. Furthermore, the number of ordered items 𝑄∗ and reorder 

point 𝑟∗ decrease in both models since the solution equations are inversely proportional 

to ℎ. This behavior would mimic the natural response of the manufacturer to adapt to 

any increase in the holding cost from its side.  
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Table 8 Sensitivity analysis - 𝒄𝒗(𝑫𝑳) 

Example Variable Model 1 Model 2 Comparison 

(#) 𝒄𝒗(𝑫𝑳) 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟏] 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟐] 𝚫 

19 0.1 9,465 12,050 $5,223.47 11,000 9,548 $4,098.46 21.54% 

20 0.2 9,756 14,074 $5,251.71 11,392 11,475 $4,144.84 21.08% 

21 0.4 10,369 18,047 $5,307.51 12,238 15,281 $4,237.88 20.15% 

22 0.5 10,692 19,994 $5,335.07 12,689 17,141 $4,284.10 19.70% 

23 0.75 11,549 24,747 $5,402.96 13,898 21,653 $4,398.51 18.59% 

24 1 12,477 29,330 $5,469.39 15,224 25,962 $4,511.21 17.52% 

25 1.25 13,479 33,743 $5,534.35 16,668 30,064 $4,622.15 16.48% 

26 1.5 14,553 37,985 $5,597.83 18,230 33,959 $4,731.30 15.48% 

 

Results show that 𝐸[𝐶𝑃𝑈𝑇2] is more sensitive to changes in 𝑐𝑣(𝐷𝐿) than 𝐸[𝐶𝑃𝑈𝑇1]. As 

it increases from 0.1 to 1.5, 𝐸[𝐶𝑃𝑈𝑇2] increases by about 15% compared to 𝐸[𝐶𝑃𝑈𝑇1], 

which increases by 7%. The uncertainty/variability in the number of demanded items 

over the lead-time is captured by 𝑐𝑣(𝐷𝐿), the coefficient of variation of the demand 

counts over lead time. As variability increases, the manufacturer is interested in holding 

inventory to decrease the probability of stockouts. Both models recommend that the 

manufacturer makes larger orders (higher 𝑄∗) at a higher reorder point 𝑟∗. The results of 

a detailed analysis showed, as expected, that increases in holding and shortage costs 

negatively affect the total cost.  As we further analyze the savings at the holding cost 

level, we observe that Model 2 provides a 57% saving in holding cost for a 𝑐𝑣(𝐷𝐿) of 

0.1. At a 𝑐𝑣(𝐷𝐿) value of 1.25, Model 1 outperforms Model 2 in terms of holding cost 

by 2% savings in holding costs, reaching 9% for a 𝑐𝑣(𝐷𝐿) of 1.5. From a managerial 

perspective, holding more inventory (as proposed by Model 1) is a better solution in a 

market with highly variable demand process. 
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Table 9 Sensitivity Analysis - Order Cost 

Example Variable Model 1 Model 2 Comparison 

(#) 𝑲 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟏] 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟐] 𝚫 

27 10 6,147 16,668 $5,187.35 7,289 13,990 $4,113.07 20.71% 

28 20 8,359 16,302 $5,239.00 9,843 13,622 $4,156.80 20.66% 

29 40 11,488 15,905 $5,314.53 13,461 13,220 $4,221.11 20.57% 

30 50 12,749 15,771 $5,345.47 14,919 13,083 $4,247.54 20.54% 

31 60 13,889 15,659 $5,373.62 16,237 12,969 $4,271.61 20.51% 

32 70 14,937 15,562 $5,399.64 17,449 12,870 $4,293.88 20.48% 

33 80 15,913 15,477 $5,423.95 18,576 12,783 $4,314.69 20.45% 

 

As we increase the order cost 𝐾 from 10 dollars to 80 dollars in steps of 10, both models 

propose that the manufacturer increases the order quantity 𝑄∗ and lowers the reorder 

point 𝑟∗, which leads to a higher total cost per unit time in both models. Even though 

the efficiency of Model 2 decreases slightly with the increase of 𝐾, Model 2 remains 

more efficient than Model 1 in our analysis. The slight change in Δ indicates that both 

models are influenced equally by the variation of 𝐾. 

Table 10 Sensitivity Analysis - Newly Manufactured Items Purchase Cost 

Example Variable Model 1 Model 2 Comparison 

(#) 𝒄𝑸 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟏] 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟐] 𝚫 

34 0.15 10,057 16,074 $7,154.72 11,806 13,991 $6,066.44 15.21% 

35 0.2 10,057 16,074 $9,029.72 11,806 13,991 $7,941.44 12.05% 

36 0.25 10,057 16,074 $10,904.72 11,806 13,991 $9,816.44 9.98% 

37 0.3 10,057 16,074 $12,779.72 11,806 13,991 $11,691.44 8.52% 

 

We also performed a one-way sensitivity analysis for the purchase cost of newly 

manufactured items where we varied 𝑐𝑄 from $0.15/unit to $0.3/unit. The results show 

that contrary to the total costs (𝐸[𝐶𝑃𝑈𝑇1] and 𝐸[𝐶𝑃𝑈𝑇2] increased by about 79% and 

93%, respectively), 𝑄* and 𝑟* values are insensitive to changes in 𝑐𝑄 for both models. 

The difference in expected total costs between Model 1 and 2 decreased from 15.21% to 

8.52%. The results suggest that there is a 𝑐𝑄 value for which both models become 
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indifferent. The only parameter that is influenced by this variation is the purchase cost 

in both models. One could justify the effect of  𝑐𝑄 by analyzing the source of bottles in 

both models, where, in Model 1, it is the sum of the purchase cost of newly 

manufactured items and the recovered items provided by the supplier. On the other 

hand, Model 2 depends on purchasing newly manufactured items and recycling 

collected items. 

Table 11 Sensitivity Analysis - Recovered Items Purchase Cost 

Example Variable Model 1 Model 2 Comparison 

(#) 𝒄𝑹𝑻
 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟏] 𝑸∗ 𝒓∗ 𝑬[𝑪𝑷𝑼𝑻𝟐] 𝚫 

38 0.02 10,057 16,074 $4529.71 11,806 13,991 $4191.43 7.47% 

39 0.04 10,057 16,074 $4779.72 11,806 13,991 $4191.43 12.31% 

40 0.06 10,057 16,074 $5029.72 11,806 13,991 $4191.43 16.67% 

41 0.1 10,057 16,074 $5529.72 11,806 13,991 $4191.43 24.20% 

 

Next, we conduct a sensitivity analysis concerning the purchase cost of recovered items 

𝑐𝑅𝑇
. As 𝑐𝑅𝑇

 increases from $0.02/unit to $0.1/unit, the efficiency of Model 2 increases 

from 7.47% to 24.2%, indicating that adopting in-house recycling is favored when the 

purchase cost of recovered items high. This situation appears when the supplier has a 

high cost of collection and recycling and could not provide the recovered item to the 

manufacturer at a competitive price.  

The results of the one-way sensitivity analysis show the coefficient of variation, 𝑐𝑣(𝑅𝐿), 

does not affect the number of recovered items over the lead-time. As we increase  

𝑐𝑣(𝑅𝐿) from 0.1 to 0.5 in steps of 0.1, the solution given by Model 1 remains the same, 

and thus the total cost is not affected. This is mainly due to the outsourcing assumption 

in Model 1, where it decreases the effect of variability on the manufacturer’s inventory 

and incurs it on the suppliers. Furthermore, another justification is that the base case 

adopts a short lead-time, which decreases the effect of 𝑐𝑣(𝑅𝐿) on the models. The 
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results show a slight increase (by about 1%) in the total cost per unit time in Model 2. 

Varying the shortage cost from $0.15/unit to $0.35/unit in steps of 0.05 produced 

similar results. The results showed a decrease in the shortage cost component of the 

total cost per unit time, where both models recommend the use of a higher reorder point 

𝑟∗ to reduce the cost of probable stockouts. 

 

6.3 Summary of Findings 

  The numerical examples quantify the improvement of in-house recycling over 

outsourcing by Δ. We summarize the findings of our numerical results as they related to 

Δ. 

1- Fast moving items: The cost-efficiency of recycling in-house, as calculated by ∆, 

remained almost unchanged as the demand rate increased from 1,000 (∆ = 

19.19%) to 1,000,000 (Δ = 20.76%). This finding shows that the cost efficiency 

of in-house recycling is not sensitive to an increase in the demand rate.  

2- High recycling proportion: The numerical results of Table 5 show that for high 

recycling proportions, in-house recycling is more financially lucrative (cost 

efficiency improved from 4.55% to 42.61% when the proportion recovered 

increased from 0.05 to 0.5 ).  

3- Long lead-time: When the system is subjected to longer lead-times by the 

supplier, our results illustrate that the cost-efficiency of in-house recycling 

improves (Δ increased from 22.14% to 26.02% as lead time increased from 0.4 

to 1-time unit).  

4- High holding cost: Higher holding costs also favor in-house recycling ( Δ 

increased from 22.05% to 30.53% as holding cost increased from 0.04 to 0.2). 
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5- Low demand variability over lead-time: For highly variable demand, the cost-

efficiency of in-house recycling is reduced (Δ decreased from 21.54% to 15.48% 

as the coefficient of variation of demand over lead time increased from 0.1 to 

1.5). 

6- Ordering cost: The cost-efficiency of recycling in-house is not sensitive to 

changes in the ordering cost (Δ  decreased from 20.71% to 20.45% as the 

ordering cost increased from 10 to 80). 
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CHAPTER 7 

CONCLUTION AND RECOMMENDATIONS 

 

  The well-established environmental benefits of product recovery (e.g., recycling, 

repair, remanufacturing) motivated this work, especially in an era where industries are 

seeking a balance between environmentally friendly processes and managing an 

economically efficient supply chain system. Furthermore, the effects of uncertainty on 

the operation of inventory systems, in a wide range of industries, are well established in 

practice and thoroughly investigated in the inventory-control literature. Calculating the 

re-ordering levels to manage and offset the effects of uncertainty becomes a key 

challenge for supply chain managers. Accordingly, this work addressed the operational 

side of a stochastic inventory system recyclable items and aimed at providing 

economical re-ordering policies. The first model investigates outsourcing the recycling 

process to an external supplier while the second model considers in-house recycling. 

Both models consider demand and the number of recovered items as the stochastic 

components of the system and have a continuous re-ordering policy with deterministic 

lead-times. 

Although this work is motivated by the plastic-bottle industry, it can be extended to 

other industries with recyclable items (Abdulrahman et al., 2015; Ordoobadi, 

2009).  This work provides a quantitative economic tool that accounts for stochastic 

demand that could be used by practitioners to make outsourcing decisions and setting 

inventory re-ordering levels. Numerical and simulation analysis helped in illustrating 

the behavior of the two mathematical models and compare their economic performance 

for different system parameters. We adopted percent savings as a measure to compare 
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the results from both models, which serves to quantify the monetary 

advantages/disadvantages of recycling in-house vs. outsourcing. The numerical results 

illustrate that in-house recycling becomes significantly more favorable when the 

proportion of recovered items is high. The numerical study also indicates that the 

profitability of in-house recycling improves for higher holding costs and for longer lead 

times, whereas this profitability decreases when the variability of the demand over lead-

time increases. 

A limitation of this work is that it did not investigate the operational complexity or 

feasibility of recycling in-house. Future work would address this limitation and account 

for investing machinery, workers, transportation, among other operational aspects of in-

house manufacturing. Another extension worth exploring is analyzing the stochastic 

nature of demand and recovery (repair/refurbish/remanufacture/recycle). Using real data 

to determine the distributions of demand and the returns (collected used items) will 

surely help in better positioning the models of this paper or those viewed as extensions. 

With respect to the solution convergence of the proposed heuristic to an optimal point, 

further research is required. The cost functions of both models will have to tested to find 

if they are not necessarily convex, but could admit a single local minimum. 
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