
AMERICAN UNIVERSITY OF BEIRUT

Cross-document Analysis for Automatic
Understanding of Electronic Medical

Records

by

Batoul Masoumah Hussein Sharafeddin

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Graduate Program in Computational Science

of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
June 2020

USER
Pencil

USER
Pencil

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Sharafeddin Batoul Masoumah
Student Name:

Last First Middle

X�� �� �� �� �� ��Master’s Thesis Master’s Project Doctoral Disserta-
tion

2 I authorize the American University of Beirut to: (a) reproduce hard or electronic
copies of my thesis, dissertation, or project; (b) include such copies in the archives and dig-
ital repositories of the University; and (c) make freely available such copies to third parties
for research or educational purposes.

X2 I authorize the American University of Beirut, to: (a) reproduce hard or electronic
copies of it; (b) include such copies in the archives and digital repositories of the University;
and (c) make freely available such copies to third parties for research or educational purposes
after: One X___ year from the date of submission of my thesis, dissertation or project.

Two ___ years from the date of submission of my thesis , dissertation or project.
Three ___ years from the date of submission of my thesis , dissertation or project.

July 2 2020

Signature Date

This form is signed when submitting the thesis, dissertation, or project to the University
Libraries

Acknowledgements

Firstly, lastly, and forever more praise and thanks to Allah swt, and the
fourteen stars he sent to guide and guard me.

To my parents and to my grandparents for being a huge inspiration in so
many dimensions of life.

To my advisor Professor Fadi Zaraket, for his brilliance, patience, aid, and
for everything he taught me.

To the Professors on my committee, Professor Nabil Nassif and Abbas
Alhakim for their time and support.

To my siblings for making me want to be a better person.

Finally, to my fiancé and his family for being such an encouragement, and
for always being on my side.

v

An Abstract of the Thesis of

Batoul Masoumah Sharafeddin for Master of Science
Major: Computational Science

Title: Cross-document Analysis for Automatic Understanding of Electronic Medical Records

Electronic medical records contain both structured entities such as diagno-
sis codes and results, and unstructured entities such as textual notes typed by
health care providers to record patient information during encounters. They
play an integral role in assisting health care providers to manage the diag-
noses and treatment plans of individual patients. Automated understanding
aims at extracting entities and relational entities from the notes, which can act
as diagnosis indicators.

Existing research proposed to annotate and extract information with the
lowest possible error, and surveys have been published to discuss existing
work done in this field. Commercial HIS systems also exist. EPIC is an in-
dustrial system that supports automated understanding. Health Information
Technology for Economic and Clinical Health is also commercial and has less
support for automated understanding. The methods are often expensive and
always lack support to records from developing countries.

In this thesis, we aim at improving automated understanding of electronic
medical records for differential diagnosis analysis.

Differential diagnosis analysis considers several diagnostic algorithms from
clinical diagnostic medical textbooks and relates them to the case at hand.
For our computational model, we constructed several Bayesian networks that
reflect the structure of the diagnostic algorithms. Then we devised a cross-
document analysis method to learn the probabilistic parameters of these net-
works.

The cross-document analysis method performed cross-reference equiva-
lence of the terms in the notes with (i) more rigorous English text with a
similar distribution collected from United States Medical Licensing Exami-
nation questions, (ii) an expert based map of abbreviations, and (iii) a cor-

vi

pora of medical publications extracted from Pubmed. For that we devised
cross-reference equivalence metrics that augmented each term with equiv-
alent terms. Then we estimated the truth of a Bayesian network node by
estimating the existence of its terms from the diagnostic algorithms in the
electronic medical record in question.

We applied our method to a corpora of 151,930 clinical notes of which
3,616 are annotated. The corpora is collected from American University of
Beirut Medical Center and Rafic Hariri University Hospital. The annotations
are organized in a tree of diagnoses and clinical differential analysis terms.

After computing the Bayesian network parameters, we queried each Bayesian
network with its diagnostic decision node as an explanation and with the elec-
tronic medical note as evidence. We considered the networks with highest
scores candidates for differential analysis.

Our method successfully identified the correct diagnosis among the top
two diagnostic algorithms with an average recall of 93%, and a precision of
99%. When considering prediction of correct diagnosis, the average preci-
sion is 64%. The analysis often included prevailing diagnoses such as fatigue,
headache, and joint sprain which health care providers refer to after eliminat-
ing more serious diagnoses.

The thesis work also presents a tool we developed for semi-automatic
annotation of electronic medical records with diagnostic graphs, and use of
other techniques such as Neural Networks and Hidden Markov Models that
showed lower performance.

Contents

Acknowledgements v

Abstract vi

1 Introduction 1
1.1 Data . 3
1.2 Annotation Tools . 3
1.3 Distributional Similarity . 4
1.4 Model . 4
1.5 Augmentations . 4
1.6 Method . 5
1.7 Results . 6

2 Background 7
2.1 Electronic Medical Records . 8
2.2 Annotations . 8
2.3 USMLE Exams . 9
2.4 Diagnosis Graphs . 9

3 Literature Review 12
3.1 Data . 13
3.2 Techniques . 13
3.3 Systems . 15

4 Bayesian Networks 25
4.1 BNs . 26
4.2 Diagnostic Algorithms to Bayesian Networks 27

5 Distributional Similarity 32
5.1 Similarity metrics: Distributional similarity 33
5.2 Sources of Distributional Similarity Thesauruses 33
5.3 DISCO . 34

viii

5.4 Distance Value Matrix . 34

6 Cross-Document Analysis Methodology 36
6.1 Core word vector extraction . 38
6.2 Diagnostic graph enrichment . 38
6.3 Classification Boosted with Diagnostic Graphs 39
6.4 Augmentation Mechanisms . 39
6.5 EMR Similarity Score . 41
6.6 Vowel Based Variations . 41
6.7 Dictionary Based Augmentation of Symptoms 42
6.8 Word Similarity Score Calculation using Augmentations Algo-

rithm . 42
6.9 Score Matrix . 43
6.10 Calculations . 44
6.11 Diagnostic Algorithms . 44
6.12 Score Aggregation . 47
6.13 Learning BN Parameters . 48

7 Automatic Annotation Tool Code 49
7.1 Constructors . 49
7.2 Dictionary Synonyms . 50
7.3 Co-occurrence Frequency Calculation 50

7.3.1 EMR . 50
7.3.2 USMLE . 53

7.4 DescendingProbabilityComparator 53
7.5 Finding Top K similarly distributed Words 54
7.6 Automatic Annotations . 55
7.7 Objects . 56
7.8 Methods for Automatic Annotations 57

7.8.1 Bagging . 57
7.9 Methods . 58

7.9.1 normedTopK contains w 62
7.9.2 normedTopK does not contain w 62
7.9.3 End of Method . 63
7.9.4 Pubmed version of Method using DISCO 63
7.9.5 End of Method . 64

7.10 Saving the Automatically Annotated Notes 64

8 Website Implementation 66
8.1 Website Layout (Using HTML) 66
8.2 Displaying Automatically Annotated EMR Notes 66

8.3 Automatically Annotating User Input 68
8.4 Displaying Automatically Annotated EMR Notes 68
8.5 Automatically Annotating User Input 71
8.6 Pending Work . 72

9 Other Work 73

10 Results 75
10.1 Discussion . 86

11 Conclusion 88

A Abbreviations 90

List of Figures

1.1 Example EMR with clinical text 1

2.1 The structured and the unstructured components of the EMR. . 9

4.1 A BN for symptoms of smokers 27
4.2 Beginning of the diagnostic algorithm 29
4.3 The first few BN nodes for the BN structure. 29
4.4 Full diagnostic algorithm. 30
4.5 Full BN structure with abbreviated nodes. 31

6.1 Flow chart for BN conditional probability learning procedure . 40

10.1 Precision and Recall [1] . 76
10.2 Anemia Notes Scores . 77
10.3 Anxiety Notes Scores . 78
10.4 Diabetes Notes Scores . 78
10.5 Fatigue Notes Scores . 79
10.6 Headache Notes Scores . 80
10.7 Hemoptysis Notes Scores . 81
10.8 Joint Sprain Notes Scores . 81
10.9 Kidney Disease Notes Scores . 82
10.10Pruritus Notes Scores . 83
10.11Tinnitus Notes Scores . 84

xi

List of Tables

2.1 Description of annotation scheme. N/A: Not applicable. Text
within ” and ” indicates text within the same record/sentence.
Bolded text denotes annotation labels. 10

2.1 Description of annotation scheme – continued from Table 2.1 . 11

6.1 Reference for notations . 44
6.2 This table shows the matrix we store of the scores of each word

augmentation of a single word in a given EMR with each word
augmentation of a single word in a given node of a given BN . 45

6.3 This table shows the matrix we store of the scores of each word
in a given EMR with each word in a given node of a given BN 45

10.1 Anemia Precision and Recall . 77
10.2 Anxiety Precision and Recall . 77
10.3 Diabetes Precision and Recall . 79
10.4 Fatigue Precision and Recall . 79
10.5 Headache Precision and Recall 80
10.6 Hemoptysis Precision and Recall 80
10.7 Joint Sprain Precision and Recall 82
10.8 Kidney Disease Precision and Recall 82
10.9 Pruritus Precision and Recall . 83
10.10Tinnitus Precision and Recall . 83

xii

Chapter 1

Introduction

Electronic medical records (EMR) are usually written during encounters with
patients. They store structured entities alongside additional information the
health care provider (HCP) finds important that may include symptoms, test
results, family history, and possible treatment plans [2].

They assist HCPs in managing cases and diagnosing patients. Automating
the process of finding the suitable diagnosis pertaining to these unstructured
notes improves the work efficiency of the health care provider and helps ex-
tract potentially valuable information stored therein.

Tools that perform entity extraction from formal English exist [2]. How-
ever, EMR notes are far from formal English. Take for example the note in
Figure 1.1.

It is clear in the figure 1.1 that the text information is not articulated prop-
erly. There is no proper grammar or punctuation. There are several abbrevi-
ations and spelling mistakes.

In addition, the notes often contain proprietary terminology and may in-

Figure 1.1: Example EMR with clinical text

1

clude transliterated local Arabic words, arbitrary on the fly abbreviations,
spelling mistakes, and other ambiguous information. This may be due to fac-
tors such as the responsibility of the HCP to maintain eye contact with the
patient while typing.

Health care practitioners use health information management systems (HIS)
to enter these notes. Examples of these systems are GNU Health[3] and Clini-
cal Text Analysis and Knowledge Extraction System [4]. GNU Health is open-
source and does not support automated understanding of unstructured enti-
ties. Clinical Text Analysis and Knowledge Extraction System is open-source
and has limited support for automated understanding. It is based on data
collected from developed countries.

Commercial HIS systems also exist. EPIC is an industrial system that
supports automated understanding [5]. Health Information Technology for
Economic and Clinical Health is also commercial and has less support for
automated understanding [6]. Many techniques and methods have been pro-
posed to annotate and extract information with the lowest possible error, and
surveys have been published to discuss existing work done in this field [7],
[8], [9]. The use of Natural Language Processing (NLP) in the field of medical
information extraction has been successfully adopted by many researchers,
however the methods are often expensive and always lack support to records
from developing countries.

This thesis focuses on automating differential analysis of EMR notes using
Bayesian networks (BNs).

Differential analysis involves discovering the two or three most related
diagnostic algorithms to the complaint of the patient by analyze the relation
the EMR has with the algorithms. This will enable us to come up with a
relevant diagnostic.

To do that, it leverages EMR corpora, clinical diagnostic algorithms ex-
tracted from medical books and a subset of the notes annotated with a tree of
diagnoses and clinical differential analysis terms.

We constructed the BNs corresponding to EMR corpora from the diagnos-
tic algorithms manually. Each node in the BNs is associated with the text of
each node in the diagnostic algorithm.

We also augment the text from EMR notes and BN nodes with statistically
equivalent phrases extracted from the following

• An expert based map of abbreviations

• Our EMR notes

• United States Medical Licensing Examination questions

2

• A corpora of medical publications extracted from Pubmed

After computing the BN parameters we predicted diagnosis using BN ex-
planation queries given some evidence.

We estimate the existence of each BN nodes in all EMR texts. This exis-
tence data enables us to learn the BN conditional probability functions which
are the BN parameters. As a final step the BNs are queried for the most
likely explanation of all the EMR notes, thus leading us to the most relevant
diagnosis for every note queried.

Our results show that BNs successfully identify the relevant differential
analysis by predicting the top two or three diagnostic algorithms as explana-
tions of the EMR note.

In the following we will go over each of these briefly in the introduction
and will explore in coming chapters.

1.1 Data

Our work builds on EMR corpora collected from American University of
Beirut Medical Center and Rafic Hariri University Hospital to aid the au-
tomation of the diagnosis process. The corpora consists of 151,930 total med-
ical notes, 3,616 of which are annotated [10]. We use all the annotated notes
and a subset of the unannotated notes pertaining to ten diagnoses we would
like to study. The diagnoses are anemia, anxiety, diabetes, fatigue, headache,
hemoptysis, joint sprain, kidney disease, pruritus, and tinnitus.

We also have available one hundred and fifteen diagnosis graphs from
medical books that represent clinical diagnostic algorithms extracted from
clinical textbooks [11]. We leverage ten diagnostic graphs extracted from the
clinical books pertaining to the mentioned ten diagnoses. The diagnostic
graphs represent clinical diagnostic algorithms extracted from clinical text-
books.

We also leverage a set of USMLE exam questions that are very similar to
our EMR data but adhere to the rules of proper English.

1.2 Annotation Tools

The manual annotations of a subset of the EMRs are provided by health
care practitioners. These help identify terms relevant to one another through
their classification. They are classified into twenty nine categories; SignsByDr,
Medications, MedDose, EntityDescription, PreviousSurgeries, Labs, Imaging,
ChiefComplaint, MissedNames, HistoryOther, Plan, LabResults, TimeWords,

3

Symptoms, PreviousDx, Differential, SocialHx, Radiology, CurrentDx, Fre-
quency, Vitals, Negation, Surgeries, FamilyHx, Diet, Physical, Procedures,
Site, Age.

These annotations help in creating automatic annotations as words that
are similarly distributed to the annotated words may be labeled with the
same annotation.

1.3 Distributional Similarity

To find relations between words in medical notes we calculate the distribution
of the EMR note words and USMLE note words to find sets of most similarly
distibuted words for each word.

This type of automated understanding aims at extracting diagnosis indi-
cators from the notes using natural language processing and computational
linguistics.

We will also be using a Java library DISCO [12]. This package allows us to
retrieve the semantic similarity between arbitrary words and phrases based
on the statistical analysis of large text collections. Distance similarities are
based on the statistical analysis of very large text collections from PubMed.

1.4 Model

We propose cross-referencing medical entities from different sources and es-
tablishing relations among them. We intend to identify matches between the
words in the EMR notes and the words in the diagnostic graphs.

To do this, we manually translate the ten diagnostic algorithm graphs into
BN structures following guidelines from [13]. To learn the parameters of the
BNs, we estimated the truth value of each BN node relative to each EMR note.
We developed a cross-document analysis approach for that purpose.

The method augments the EMR text and the text associated with BN nodes
with equivalent text from different sources to provide vectors of similar words
for each EMR note and BN node.

1.5 Augmentations

We create vectors of similar words for every word in the EMR notes and the
diagnostic graphs using five augmentation sources.

4

• The first is the manual annotations of EMRs we have. These help iden-
tify terms relevant to one another through their classification. Anno-
tated words within the same note are related.

• The second is vowel-based variations of a word. So if a note word can
pass as a vowel based variation of an annotated word we will include it
in the vector of similar words.

• The third is based on sets of similarly distributed words from EMR.

• The fourth is based on sets of similarly distributed words from USMLE

• The fifth is based on sets of similarly distributed words from Pubmed
corpora.

These Augmentation mechanisms are key in facilitating the communica-
tion between the diagnostic graphs and EMR analysis.

1.6 Method

Our method involves the followings steps:

• In the first phase, our method pre-processes the EMRs to remove irrele-
vant entities (noise) using JAVA code.

• We calculate the distributional similarities of words in the EMR and
USMLE corpora using JAVA code.

• Our computational model enriches the annotations with the diagnostic
graphs. We manually translate the diagnostic graphs to BN form. We
input these structures into Python code.

• We use the augmentation methods to find matches of entities in the
EMR notes to entities in the BN nodes using JAVA code. We fine tuned
an aggregate metric to compute the score.

• The BNs are then trained using every entity’s existence or non-existence
in a note of the corresponding diagnosis for the conditional probability
tables using Python package pomegranate.

• We then find the entity existence data of all the EMR notes with all the
BNs using JAVA code.

• We then can find the BNs most relevant to an EMR based on its score
with the BN models using Python package pomegranate.

5

• By querying the BNs for the likelihood of a note pertaining to different
diagnoses, after finding its match data with each BN, we will be able to
answer the question of which top three possible diagnoses best explains
the note at hand.

1.7 Results

Our results show that BNs successfully identify the relevant differential anal-
ysis by predicting the top two or three diagnostic algorithms as explanations
of the EMR note. The analysis often included prevailing diagnoses such as
fatigue, headache, and joint sprain which are underlying symptoms to other
more serious diagnoses.

The average recall is 0.93. The differential analysis based precision was 1
for all the models when we consider the precision according to whether the
model appears in the top two models with the notes pertaining to them. If we
weigh every single algorithm on its own, the average precision for the models
is 0.18 when compared to all the other models, and 0.64 when compared to
one other model. This may be due to a lack of data and a lot of missing
information.

The rest of the thesis is structured as follows.
In Chapter 2 we present some background information for out work.
In Chapter 3 we present a literature review of work done in this field.
In Chapter 4 we present some information on BNs and how we turned

our diagnostic algorithms into BN structures.
In Chapter 5 we discuss the word distributional similarity approach.
In Chapter 6 we discuss our cross-document analysis methodology.
In Chapter 7 we go over our code implementation.
In Chapter 8 we discuss the interactive website developed to display our

work and the features it includes.
In Chapter 9 we discuss other work we completed along the process of

searching for the best approach for our purpose.
In Chapter 10 we present the results of our chosen cross-document analy-

sis methodology.
In Chapter ?? we discuss our results and analyze the work.
Finally, we conclude and discuss future work in Chapter11.

6

Chapter 2

Background

7

Our work builds on existing EMR corpora collected from American Uni-
versity of Beirut Medical Center (AUBMC) and Rafic Hariri University Hos-
pital (RHUH).

We will be cross-referencing the free-text notes in them with diagnosis
graphs from medical books that represent clinical diagnostic algorithms ex-
tracted from clinical textbooks.

2.1 Electronic Medical Records

The corpora consists of 151,930 total EMRs. The notes in the EMRs are in the
form of free text, and 3,616 of them contain annotated notes while 148,314
contain unannotated notes. The EMRs that contain annotated notes also con-
tain structured information.

This structured information includes the patient record ID, the case code,
a number encoding the patient’s first and last name, the date of the visit, the
age group and sex of the patient, and codes representing the identity of the
doctor following up the case.

The EMRs that contain the unannotated notes only contain this one form
of information. This sample of an EMR note is taken from A. Alawieh, Z.
Sabra, A. Jaber, H. Hayek, F. Zaraket, and G. Hamadeh’s work in the paper
MENA-AMTC: Middle East and North Africa Annotated Medical Text Cor-
pora. They used the same data-set we will be using.

The image 2.1 displays both the structured and the unstructured compo-
nents of the EMR. The EMR begins with nine structured components in the
form of numbers coding private patient information, they are separated by
field delimiters in the form "||".

When the unstructured free text component begins, the paragraph delim-
iters as symbolized by "
" to avoid mistaking the EMR note for ending. Once a field delimiter is seen
again, the end of the note is signaled and the rest of the structured compo-
nents follow.

2.2 Annotations

In the annotated notes, the relevant words in the EMRs are annotated by
health care providers according to an annotation schema containing 31 anno-
tation labels.

Table 1 thoroughly explains the annotations made by health care prac-
titioners available in the EMRs. Similarly, this table was adopted from the

8

Figure 2.1: The structured and the unstructured components of the EMR.

paper MENA-AMTC: Middle East and North Africa Annotated Medical Text
Corpora.

It displays the full set of annotations made by health care practitioners,
alongside a description of each annotation and an example.

The labels in bold are the main annotation labels, and the labels not in
bold are annotations that correspond to the last previous bold label.

2.3 USMLE Exams

We leverage a set of USMLE exam questions that are very similar to our EMR
data but adhere to the rules of proper English.

2.4 Diagnosis Graphs

Our model leverages 115 diagnostic graphs that represent clinical diagnostic
algorithms extracted from the 2012 clinical textbooks "An Evidence-Based Ap-
proach to Differential Diagnosis New York". Each graph has a corresponding
image manifesting the information stored in sheets.

The sheets store this information in sets of nodes and edges. The nodes
contain id numbers, entity label, entity type, and the color of the box con-
taining the entity. The edges contain the id of the source entity, the id of the
label entity, and the command to go from the source to the label depending
on whether or not the target id condition is satisfied.

9

Table 2.1: Description of annotation scheme. N/A: Not applicable. Text within ” and ”
indicates text within the same record/sentence. Bolded text denotes annotation labels.

Label Description Examples
Age the age of the patient including

number descriptions
22 years oldAge, youngAge, and el-
derlyAge

ArabicWords labels the terms that are translit-
erated Arabic words

argilehArabicWords

Differential labels the physician’s differential
diagnoses once present individu-
ally

orthostatic dizziness

CurrentDx labels the diagnosis that the
physician writes during the visit

Mr. 6532 5698 has essential hyper-
tensionCurrentDx

EntityDescription labels an added feature describ-
ing a term

Location labels the body site at which the
pain is or where a procedure is
performed

bilateralLocation lower extremity
pain Symptoms

Frequency labels the terms related to the fre-
quency of pain, medication intake
or treatment,

dailyFrequency

MedDose labels the terms that describe the
dose of medication

MetforminMedications 500 mgMed-
Dose.

FamilyHx labels terms describing diseases,
conditions, symptoms present in
the family

hypertension in motherFamilyHx,
heart disease in familyFamilyHx

HistoryOther labels all components in the his-
tory

he always come with his momHis-
toryOther

Allergies labels the patient’s allergies allergic to penicillinAllergies
Diet terms referring to diet habits on low carb dietDiet
Physical terms describing the physical ac-

tivity of patient
walks one hour dailyPhysical,
sedentary lifestylePhysical

ImagingProc labels all radiology tests includ-
ing X-ray, ultrasound, MRI, etc.

Imaging all imaging-type diagnostic tests
for the patient

X-rayImaging

Procedures all procedures performed on the
patient

DialysisProcedures

Labs labels the lab tests that the patient
performed or that are prescribed.

CBCLabs, lipid panelLabs

Missed Names labels all names for physicians,
patients, or others that may be
missed

N/A

10

Table 2.1: Description of annotation scheme – continued from Table 2.1

Label Description Examples
Medications medications patient is on

or had
lipitor, losartan,

Negation words that indicate nega-
tion

no, nor, absent

Plan physicians plan for the pa-
tient

ObservationPlan

PreviousDx previous diagnoses that
the patient had

diabetic

SignsByDr physical exam results scar of back surgery
Vitals labels the vital signs of the

patient
ESR: normal

LabResults labels the results of labora-
tories experiments

Stable Hct

SocialHx labels social history terms nonsmoker
Surgeries labels the previous surg-

eries of patient
patient had open heart
surgery

Symptoms the symptoms associated
with the patient’s current
illness

headache, dry cough

Negating a list If a negation term is la-
beled negation indepen-
dent of the symptom

No cough, fever, or chills

ChiefComplaint the prominent symptom Noisy breathing
TemporalWords terms and phrases that re-

fer to time description
in 2005, yesterday

11

Chapter 3

Literature Review

12

Many efforts have been made to derive a meaningful use of EMRs.
NLP in this field uses the enormous and rich data found in EMRs to extract

and annotate useful information. This chapter will discuss related work in
terms of data I leverage, systems, and then techniques.

3.1 Data

EMRs contain both structured information, known as clinical text, and un-
structured data, known as free text. Clinical text is the most abundant data
type but is also the most difficult to analyze computationally since it is highly
heterogeneous, whereas free text allows flexibility [14].

The use of NLP in the field of medical information extraction has been
widely adopted by many researchers.

NLP can be utilized for information retrieval, information retraction, and
recognizing biological entities in text as discussed in [15].

3.2 Techniques

Many techniques and methods have been proposed to annotate and extract
information with the lowest possible error, and surveys have been published
to discuss existing work done in this field [7], [8], [9].

Epic Systems Corporation, or Epic, is a privately held health-care software
company. According to the company, hospitals that use its software hold
EMRs of 64 percent of patients in the United States and 2.5 percent of patients
worldwide [5]

GNU Health is a Free project for health practitioners, health institutions
and governments. It provides the functionality of EMRs, Hospital Manage-
ment (HMIS) and Health Information System (HIS) [3] .

Health Information Text Extraction (HITEx) is a clinical NLP system from
Brigham and Women’s Hospital and Harvard Medical School incorporated
within the Informatics for Integrating Biology and the Bedside (i2b2) toolset.

It Manipulates text reports to extract specific terms and knowledge from
them. HITEx is an open-source software application. The software is built
on top of Gate framework and uses Gate as a platform. It consists of the
collection of Gate plug-ins that were developed to solve problems in medical
domain and works by assembling these plug-ins into pipeline applications,
along with other standard NLP plug-ins. It is less successful with the sparsity
of our data and data from developing countries in general. [16]

13

IBM developed a biomedical-domain NLP system by collaborating on the
development of a prototype system for text analysis, search, and text-mining
methods to support problem solving in life science. The system is called
“BioTeKS” (“Biological Text Knowledge Services”), and it integrates research
technologies from multiple IBM Research labs.

BioTeKS is also the first major application of the UIMA (Unstructured In-
formation Management Architecture) initiative also emerging from IBM Re-
search.

BioTeKS is intended to analyze biomedical text such as MEDLINETM ab-
stracts, medical records, and patents; text is analyzed by automatically identi-
fying terms or names corresponding to key biomedical entities (e.g., “genes,”
“proteins,” “compounds,” or “drugs”) and concepts or facts related to them.
They describe the value of text analysis in biomedical research, the develop-
ment of the BioTeKS system, and applications which demonstrate its func-
tions. [17] It is not open source and not trained for success with data from
developing countries.

IBM also created a system, MedTAS/P which automatically instantiates
the knowledge representation model from free-text pathology reports. Med-
TAS/P is based on an open-source framework and its components use NLP
principles, machine learning and rules to discover and populate elements of
the model.

To validate the model and measure the accuracy of MedTAS/P, they devel-
oped a gold-standard corpus of manually annotated colon cancer pathology
reports. MedTAS/P achieves F1-scores of 0.97-1.0 for instantiating classes in
the knowledge representation model such as histologies or anatomical sites,
and F1-scores of 0.82-0.93 for primary tumors or lymph nodes, which require
the extractions of relations. An F1-score of 0.65 is reported for metastatic tu-
mors, a lower score predominantly due to a very small number of instances
in the training and test sets.

It is also not open source and not tailored for success with data from
developing countries [18].

The HITECH Act (Health Information Technology for Economic and Clin-
ical Health Act) is a US federal law encouraging the adoption of EMRs [19].
It uses financial incentives to encourage practicing HCPs to adopt certified
EMRs; through the increased use of these EMRs they hope to achieve a na-
tional health information network that results in improved quality of care,
patient safety, and lower costs. It has made available billions in federal fund-
ing to encourage hospitals and health care providers (HCPs) to adopt EMRs
[20].

The rationale behind this push was improving patient care by reducing

14

errors, encouraging better coordination of care, and allowing patients to take
greater control over their own health care decisions.

Apache Clinical Text Analysis and Knowledge Extraction System (cTAKES)
was released open-source and builds on existing open-source technologies.
The OpenNLP NLP toolkit aims to build and evaluate an open-source NLP
system for information extraction from EMR clinical free-text [4].

The cTAKES algorithm consists of a sequence of steps which uses a dic-
tionary for the Named entity recognition (NER) annotator and the status and
negation annotators.

They aim to build and evaluate an open-source NLP system for informa-
tion extraction from EMR clinical free-text. The cTAKES annotations are the
foundation for methods and modules for higher-level semantic processing of
clinical free-text.

However, not all complex medical terms could be found in a regular En-
glish dictionary. The system is not trained for success in developing countries.
[21]

3.3 Systems

In 2012, John Caroll and his team tried using distributional similarity to ac-
quire lexical information from notes typed by physicians. They created a
distributional thesaurus by calculating the similarity of contexts of every pair
of words and limited to the words occurring at least N times.

The thesaurus has for each word included an entry of size k consisting of
the k most similar words to it. This method produce highly accurate results
for high-frequency words; yet less accuracy for less frequent words [10].

Columbia University’s proprietary Medical Language Extraction and En-
coding System (MedLEE) was designed to process radiology reports was later
extended to other domains. It was tested for transferability to another insti-
tution, and proved able to discover clinical concepts along with a set of mod-
ifiers. It is an open-source NLP system used to extract and encode medical
information from patient medical reports. It was found to have high precision
but a low tolerance for grammatical and spelling mistakes.

Association rules and distributional similarity approaches use correlation
between entities in free text to identify keywords. One of the main advantages
of this system is that the order of words is not of importance to the model
making it more tolerable to grammatical mistakes.

In paper [22], distributional similarity and co-occurrence relations were
used by utilizing the KeyGraph method. This technique identifies keywords
by highlighting frequently co-occurring words and links them together. This

15

method has shown high accuracy in determining co-occurrences between
items in a data set.

In paper [23], distributional similarity measurements were studied to find
the best ones for semantic similarity prediction. It was observed that weight-
ing features by point-wise mutual information appears to be the most benefi-
cial. The intuition behind this is that the occurrence of a less common feature
is more important in characterizing a word than a more common feature.

Paper [24], described an investigation into the automatic estimation of
the incidence of symptoms using coded and free text information in medical
records. The algorithm consists of three steps performed in sequence.

First, locating an occurrence of textual description of read code in the text.
Second, checking whether there is evidence of negation. Third, determining
whether the located textual description is within the scope of the negation.

Paper [25] proposes the use of recurrent neural networks to capture se-
quential patterns present in data and the use of word embedding to capture
semantic similarity of words and their study showed the effectiveness of the
model.

In 2014, [26] used NLP and BN classifiers to evaluated factors affecting
performance of influenza detection.

Their dataset consisted of 124 influenza patients and 87 non-influenza
(shigellosis) patients.

They measured the overall accuracy, recall, and precision of Topaz and
MedLEE parsers for 31 influenza-related findings against a reference standard
established by three physician reviewers to assess NLP finding-extraction per-
formance.

To quantify the relative contribution of NLP and BN classifier to classifi-
cation performance, they compared the discriminative ability of nine combi-
nations of finding-extraction methods (expert, Topaz, and MedLEE) and clas-
sifiers (one human-parameterized BN and two machine-parameterized BNs).

Classifiers using human-annotated findings were superior to classifiers
using Topaz/MedLEE-extracted findings.

They also found that the machine-parameterized classifiers were superior
to the human-parameterized classifier.

The classifiers using the 17 ‘most influential’ findings were more accurate
than classifiers using all 31 subject-matter expert-identified findings.

They commented that to improve results researchers should improve NLP
accuracys.

In 2008, [27] described a NLP technique called Extracting Association
Rules from Text (EART). This technique aims to automatically extract rules
of association from a corpora of textual documents. EART depends on key-

16

word features that function as the document labels, whilst ignoring the order
in which the words may occur.

Instead of placing emphasis on the word order, importance is placed on
the words’ distributions in these documents. ALong with this statistical
aproach, they used XML with a Information Retrieval scheme (TFIDF) for
entity selection. An entity may be a keyword or a feature. This, along with
Data Mining techniques, were the main pathways to find rules of association.

They employed three steps in their work. The first involved a text process-
ing phase. They processed the text with stemming, indexing, and filtering the
documents. The second step was a association rule mining (ARM) phase that
applies the algorithm that uses a weighting scheme to generate association
rules, and a visualization phase to display the results [27].

They experimented to evaluate their results using web-pages of news doc-
uments covering the outbreak of a disease, namely the bird flu. Their method
was successful in describing the informative news, and the performance of
their system, EART, did well.

In 2015, Luis et al. also recognised the challenge that comes with the pur-
suit of analyzing medical records. Their corpora had specific characteristics
such as plain text, very specific technical vocabulary, and the unstructured
layout characteristic our corpora had as well. [28].

Since medical record analysis is an interdisciplinary pursuit, it inevitably
would need co-operation from experts from several fields. Yet this work is
very important and such an analysis can potentially help achieve many goals,
including helping in making clinical decisions, classifying and organizing dif-
ferent procedures in medicine, and providing evidence based support for hos-
pital management decisions to name a few.

This paper delves into the concepts involved, the relevant existent related
work and the primary issues still prevalent and need to be tackled in future
research within the field of analyzing EMRs, relying mostly on data mining
techniques with NLP and text analysis [28].

In 2018, Li et al. proposed a workflow to extract prospecting information
by NLP based on convolutional neural networks (CNNs) [29]. Their aim was
to classify the text data and extract the prospecting information automatically.
They used CNN while classifying the geo-science text data. They chose four
classes to do this: "geology, geophysics, geochemistry, and remote sensing"
[28].

Each of these classes have three types of text scales pertaining to them; one
for words, the second for sentences, and the last for paragraphs. The word
frequency statistics was calculated for the word type, the co-occurrence matrix
statistics was calculated for the sentence type, and the term frequency–inverse

17

document frequency (TF-IDF) statistics was calculated for the paragraph type.
Through this they were able to derive from their content the most important
and telling nodes and links. They also used word clouds, knowledge graphs,
and TF-IDF statistical graphs to visualize their work.

In the test case, the prospecting information was extracted successfully.
In 2017, Luo et al. proposed models classifying relations from clinical

notes based on recurrent neural networks [25]. They used Long Short-Term
Memory - LSTM recurrent neural networks and tested the models on the
i2b2/VA relation classification challenge dataset [25] .

One of their models, the segment LSTM model had only word embedding
feature and no manual feature engineering. This model was able to achieve
a highly averaged a 0.661 f-measure in performance for classifying medical
problem-treatment relations. It also achieved a 0.800 f-measure while testing
medical problem relations, and 0.683 f-measure for medical problem-medical
problem relations.

They compared this model with the sentence LSTM model, and explored
the difference between concept text and context text, and between different
contextual parts in the sentence.

They explored the influence word embedding had on the LSTM models’
performance, proving that medical domain word embedding help improve
the relation classification.

In 2016, Luo et al. attempted to tackle the issue of efficiency when stor-
ing certain types of annotations. Specifically, the efficiency of storing them
during a NLP attempt on free-writing clinical notes in EMRs (EMRs). This
approach also aims to efficiently retrieve such annotations "that satisfy posi-
tion constraints" [30].

They tested the interval query problem by performing a time complexity
analysis on the basic interval tree query algorithm. They proved its imperfec-
tion when being applied to a collection of 13 query types from Allen’s interval
algebra [30].

Their proposed algorithm achieved logarithmic time and solved the stabbing-
interval query tasks on Allen’s relations in logarithmic time [30].

They also discussed interval management in external memory models and
higher dimensions [30].

In 2017, Metskera et al. developed algorithms for the proper interpreta-
tion of medical records using a NLP approach that relies on specific patterns
identified while studying medical databases in collaboration with a medical
assistant [31]. Their aim was to be able to accurately reflect the medical pro-
cesses for through their data.

Their method was developed during the study of actual Russian language

18

medical data of Acute coronary syndrome (ACS) patients from the specialized
medical center. They demonstrated the efficiency of their method with a
correlation analysis of comorbidities on the treatment duration of ACS.

They also did this in the case of extracted data to develop process models
with complexity metrics at the control-flow perspective of process mining
techniques [31].

Henriksson et al. also noted that the prediction of diagnosis codes is typ-
ically based on free-text entries in clinical documents[32]. They approached
this by attempting to build a word space model based on a corpus of coded
patient records, associating co-occurrences of words and ICD-10 codes.

Their method used random indexing, a computationally efficient imple-
mentation of the word space model. By using random indexing, they hoped to
be able to reach an effective way of assigning diagnosis codes. Their method
was evaluated for feasibility by a medical doctor at a qualitative standard.
The test was performed on clinical records from two Swedish clinics. Initially
the proposed code was among the top 10 generated suggestions in 20% of
the cases, but a partial match in 77% proved the method could lead to more
telling results if employed properly[32].

In 2012 Kushim et al. decided to extract useful information from nursing
records within EMRs by employing a text data mining technique [33].

They determined the information with regards to the condition and treat-
ment of patients by this technique that works by identifying the relations
between prominent entities seen in past chronic hepatitis in-patient records
gathered from the University of Miyazaki Hospital’s EMRs [33]. They dis-
covered entities relating to proper treatment methods, and were able to sum-
marize the information in the records. They also could successfully identify
important entities that characterize each nursing and passage record were
also revealed.

In 2014, A. Thomas et al. performed a study to assess the validity of
an NLP program. This program aimed to accurately identify patients with
prostate cancer and to retrieve pertinent pathologic information from the cor-
responding EMR [34].

This program was being used to identify patients with prostate biop-
sies that were positive for prostatic adenocarcinoma unanimously across all
pathology reports within this time span of the implementation [34] .

The program was then used for the processing of 100 consecutive patients
with prostate adenocarcinoma to identify and return 10 important associated
entities from their pathology reports [34]. To evaluate their work, they used
the program to process 18,453 pathology reports. The program proved able
to properly detect 117 out of 118 patients (99.1%) with prostatic adenocarci-

19

noma after TRUS-guided prostate biopsy [34]. The program had a positive
predictive value of 99.1% with a 99.1% sensitivity and a 99.9% specificity to
correctly identify patients with prostatic adenocarcinoma after biopsy [34].
The overall ability of the NLP application to accurately extract variables from
the pathology reports was 97.6% [34].

In 2016, a study examined whether incorporating information from text
into case-detection algorithms can improve research quality [35]. They did a
systematic search that returned 9659 papers. 67 of these papers expanded on
the retrieval of relevant information from the free text subset of EMRs with
the in order to identify cases of a specific mentioned condition [35].

They also reviewed different methods for extracting information from text
and the studied the accuracy of these case-detection processes. They found
that the studies mainly used US hospital-based EMRs, and retrieved informa-
tion from texts corresponding to 41 conditions by using highly relevant and
related word searches, rule-based algorithms, and machine learning meth-
ods [35]. In their findings there was no difference between rule-based and
machine learning methods of retrieval in the correct identification of the cor-
responding cases. When specific entities from the text were used in the search
a significant improvement in algorithm sensitivity was observed [35].

In 2019, B. Helgheim et al. developed a framework process for the inte-
gration of data from different sources to increase its usability potential [36].

They used data from an private hospital database, non-private data, as
well as structured data extracted from NLP (NPL) that was applied to EMRs
[36]. They used a process named extract-transform and load (ETL) in order to
merge different data sources into a single one [36]. This contributed to more
efficient use of the available resources.

In 2019, a Zitkus et al. presented a method for coreference resolution in
Lithuanian language and its application for processing e-health records from
a hospital reception [37]. Their method processes coreferences with minimal
linguistic resources, which is important in linguistic applications for rare and
endangered languages.

The experimental results show that coreference resolution is applicable to
the development of NLP-powered online healthcare services in Lithuania [37].

In 2019, Assale et al. demonstrated the potential of NLP data extractions
techniques, and discuss challenges still being faced that the technical commu-
nities of IT and medical practitioners should cooperate on understanding and
solving. In this way they can work towards making full use of the unexplored
resources unstructured content has to offer [38].

They gave a comprehensive literature review of the most recent and rele-
vant contributions to leverage the application of NLP techniques to the free-

20

text content electronic patient records. Of the application fields they focused
on four: data quality, information extraction, sentiment analysis and predic-
tive models, and automated patient cohort selection [38]. Then, they pre-
sented a few empirical studies that were undertook at a major teaching hos-
pital specializing in musculoskeletal diseases [38]. They thus proved the pos-
sibility of reaching very high performance levels with a non-English dataset,
that would meet academic and practical needs, taking a step further towards
using the note data at our disposal [38].

In 2020, Lee et al. proposed a method to convert HLA genotype informa-
tion stored in an unstructured format into a reusable structured format by
extracting serotype/allele information [39].

They queried HLA electronic reports from the data-set of Seoul National
University Hospital (SUPPREME). They did this over a time span of 18 years,
from 2000 to 2018 as a rule-development data set (64,024 reports). In addition,
from the 2018 reports they used 6,181 as a test set [39]. They used a rule-
based NLP approach using a Python regex method to retrieve three main
variables. Firstly the number of patients involved in the report, secondly
medical informative traits such as information regarding the HLA testing,
and finally specific HLA genotypes [39].

The performance of the rules and codes were tested through a comparison
made between the retrieval results from the test set and a control test set
manually performed [39].

They found that from an original 11,287 reports as a training set and 1,107
reports working as the test set, the method they employed successfully devel-
oped 124 extracting rules and 8 cleaning rules for HLA genotypes [39]. The
application of these rules was able to retrieve HLA genotypes with 0.892-0.999
precision and 0.795-0.998 recall for the five HLA genes [39].

The precision and recall of the extracting rules for the number of patients
in a report were 0.997 and 0.994 and those for the clinical variable extraction
were 0.997 and 0.992, respectively. All extracted HLA alleles and serotypes
were transformed according to formal HLA nomenclature by the cleaning
rules [39].

In 2019, Koleck et al. searched 1964 records from PubMed and EMBASE
was narrowed to 27 eligible articles to find data related to the NLP methods
[40]. For each study, they looked at free-text corpus, patients, symptoms, NLP
methodology, evaluation metrics, and quality indicators [40].

They found that symptom-related information was presented as a primary
outcome in 14 studies [40]. EHM free-text represented many different types
of patient data, including but not limited to general, cardiology, and mental
health. These mentioned three had a pattern of being observed more than

21

other patient data. Studies included a large selection of symptoms, many of
which happen to be shortness of breath, pain, nausea, dizziness, disturbed
sleep, constipation, and depressed mood [40].

Their NLP method made use of previously developed NLP tools, classifi-
cation methods, and manually curated rule-based processing [40].

Only one-third (n = 9) of studies reported patient demographic character-
istics [40].

In 2019, Green EP and Whitcomb A and Kahumbura C and et al.. ap-
plied a NLP approach to characterize the ways that Kenyan men and women
communicated with the first iterations of askNivi, a free reproductive health
information service [41].

They divided into entities and further processes over 179,000 anonymous
messages that users exchanged with live agents [41]. As a follow-up, they per-
formed two manual coding exercises. The first involved classifying the intent
of 3,834 user messages in a training data-set [41]. The second involved cod-
ing all conversations between a random subset of 100 users whose chats were
longer than was more common. They found that between September 2017
and January 2019, 28,021 users (mean age 22.5 years, 63% female) sent 87,180
messages to askNivi, and 18 agents sent 92,429 replies [41]. They observed
different patterns of discussing family planning methods, contraception, side
effects, pregnancy, menstruation, and sex. They found that good difference
predictors happened to be sex and age [41]. User intents largely reflected
the marketing focus on reproductive health, seeking factual information [41].
They also found that requests for advice and symptom reports were common
[41].

In 2018, Xing et al.. introduced parallel processing on a supercomputer
[42].

They developed paraBTM, a runnable framework that enables parallel
NLP on the Tianhe-2 supercomputer [42].

It employs a low-cost yet effective load balancing strategy to maximize the
efficiency of parallel processing. They evaluated its performance on several
datasets, utilizing three types of named entity recognition tasks as demon-
stration [42].

Their results indicate in most instances that the processing efficiency can
be greatly improved with parallel processing, and the proposed load balanc-
ing strategy is simple and effective [42].

In 2018, Wencheng et al. expanded on the process of EMR processing
and emphatically analyzed the key techniques. They also make an extensive
study on the programs developed based on NLP together with the current
remaining challenges and research issues for future work [43].

22

They explain how since the EMR system has been recognized as a valuable
resource for large-scale analysis, it must be utilized despite the hindrances
that come with the EMR characteristics of diversity, incompleteness, redun-
dancy, and privacy. Although these make it difficult to carry out data mining
and analysis directly, an appropriate solution can be implemented by pro-
cessing the source data in order to improve data quality and improve the
data mining results [43].

They recognized that different processing methods perform best with dif-
ferent types of data. Most structured data commonly needs classic processing
methods, including data cleansing, data integration, data transformation, and
data reduction [43].

For semistructured or unstructured data, such as medical text, containing
more health information, it requires more complex and challenging process-
ing methods [43].

The task of information extraction for medical texts mainly includes NER
(named-entity recognition) and RE (relation extraction)[43].

In 2013, Cohen et al. used text-mining methods for phenotype extraction
since such methods can help disease modeling by mapping named-entities
to terminologies and clustering semantically related terms [44]. They used
EMR corpora and made use of the fact that health care practitioners typically
copy and paste information from previous notes when documenting a current
patient encounter [44].

They aimed to explore the problem of redundancy quantification whilst
handling in large-scale text corpora. They also explore the problem of their
observed EHR redundancy affecting NLP despite the large qaulity of their
corpora that is believed to be boosting to results. They suspected that this
may develop a bias that confuses accomplished models. They also question
whether the redundancy is potentially benefitial as it emphasizes the most
telling part of the data-set. They also aimed to tackle controlling the roll and
impact of redundancy has in textual analysis. [44]

After analyzing large-scale EHR corpus and quantifying redundancy both
in terms of word and semantic concept repetition, they observe redundancy
levels of about 30% and non-standard distribution of both words and concepts
[44].

They evaluated redundancy on two basic text-mining applications: col-
location identification and topic modeling [44]. These methods performed
on synthetic data were compared with controlled levels of redundancy and
significant performance variation was observed [44]. To avoid redundancy-
induced bias they compared two controlling strategies, namely a baseline
strategy, keeping only the last note for each patient in the corpus; and a dele-

23

tion strategy that employed a fingerprinting based algorithm [44].
For NLP, preprocessing the EHR corpus with fingerprinting yields signif-

icantly better results [44].
They thus found that fingerprinting enables text-mining techniques to

leverage available data in the EHR corpus, while avoiding the bias introduced
by redundancy [44].

In 2016, Lv et al. proposed a method using entity dictionaries and de-
pendency parser as the feature to do the classification of short texts in EMR
[45].

It used NLP to preprocess the texts first including sentence segmentation,
word segmentation, part of speech and entity extraction [45].

Then several entity dictionaries were built according to the result of thier
performed NLP. After that the TF-IDF and LSA were deployed to select the
vocabulary feature. After that, using the entity information relevant to the
EMRs, dependency parser was done to the texts and triple dependency re-
lation features would be used as the expanding feature for text classification
[45].

Their results proved that even if a classification process depends solely on
NLP techniques which make use of vocabulary features, the performance of
classifier can be substantially improved by the performed methods.

This was proven using recall, precision, and F-value standards [45].

24

Chapter 4

Bayesian Networks

25

In this chapter will explain what BNs are, and introduce diagnostic algo-
rithms. We will then give an example of how a diagnostic graph turned into
a BN.

4.1 BNs

BNs provide a systematic method for structuring probabilistic information
about a situation into a coherent whole.

It is a compact representation of a probability distribution that is usually
too large to be handled using traditional specifications from probability and
statistics such as tables and equations.[13]. They help automate the derivation
of useful implications within the data to form conclusions and decisions about
the corresponding issue at hand. BNs are a type of graphical model that
encode the conditional probability between different learning variables in a
directed acyclic graph.

There are benefits to using BNs compared to other unsupervised machine
learning techniques.

It is easy to exploit expert knowledge in BN models. BN models have been
found to be very robust in the presence of

• Noisy data

• Missing data

• Sparse data.

Unlike many machine learning models (including Artificial Neural Net-
work), which usually appear as a “black box,” all the parameters in BNs have
an understandable semantic interpretation.

Every BN has two components: a directed acyclic graph (called a struc-
ture), and a set of conditional probability tables (CPTs). The nodes of a struc-
ture correspond to the variables of interest, and its edges have a formal inter-
pretation in terms of probabilistic independence.

The network edges usually signify direct causal influences. A BN must
include a CPT for each variable. The CPT of a variable v holds the probability
of each possible value of the given values of other variables [46] In a BN, the
CPT only needs to quantify the relationship between every variable and its
parents,as the probability is only reliant on the parent nodes.

The figure ?? illustrates a BN for symptoms of smokers. An example of
what we can query the BN is the probability of shortness of breath in a human
given they do not have lung disease. We can also query for the probability of
a cough symptom given the subject has a cold.

26

]
[47]

Figure 4.1: A BN for symptoms of smokers

4.2 Diagnostic Algorithms to Bayesian Networks

In clinical textbooks, students learn diagnostic algorithms that represent meth-
ods health care practitioners use for making a diagnosis. These algorithms are
represented by graphs that involve a combination of symptoms, signs, or test
results [11]. We took clinical diagnostic algorithms from the book The Pa-
tient History: An Evidence-Based Approach to Differential Diagnosis [11].
We coded them into graphs and used those graphs to build BN structures.

The structure of the BNs was found by a manual interpretation of the diag-
nosis algorithms. Since the diagnosis graphs can start with either a diagnosis
or a symptom, the graphs we used changes the placement of the first node to
the last node of each direction the BN path could follow.

An example of how the beginning of the diagnostic algorithm is turned
into the first few BN nodes for the BN structure is displayed in the figures.
Figure 4.2 shows the beginning of the diagnostic algorithm, figure 4.3 that
shows the first few nodes of the BN, figure 4.4 shows the full diagnostic
algorithm, and figure 4.5 shows the full abbreviated BN.

27

We learn the BN parameters by passing training data from EMRs we know
to be relevant to the diagnosis at hand. We use an explanation query on our
BN models the probability of each BN model explaining the note at hand.

28

Figure 4.2: Beginning of the diagnostic algorithm

HgbA1c at goal

Lifestyle modificationLifestyle modification, start metformin

HgbA1c at goal on tolerated metformin

continue metformin, reassessAdd second medication, Sulfonylurea or...

Figure 4.3: The first few BN nodes for the BN structure.

29

Figure 4.4: Full diagnostic algorithm.

30

HgbA1c at goal

Lifestyle modification

Lifestyle modification, start metformin

HgbA1c at goal on tolerated metformin

continue, reassess

Add Insulin or alternative

HgbA1c at goal on tolerated metformin

continue, reassessAdd a third medication

Type 2 DM diagnosed

Figure 4.5: Full BN structure with abbreviated nodes.

31

Chapter 5

Distributional Similarity

32

5.1 Similarity metrics: Distributional similarity

The distributional similarity of a pair of words is computed based on the
shared contexts of the two words. Distributional similarity scores between
words using a specific distance measure. These scores enable us to create a
distributional thesaurus, in which each word is associated with a list of other
words with the highest distributional similarity scores.

Every word w will be associated with a set of features having specific
frequencies. Each feature is a pair
〉r; x〈 consisting of a relation name r and a word x that is related to word

w via r.
To create the full distributional thesaurus, similarity of contexts for every

pair of words are calculated and limited to those words that have a total
feature frequency of at least N. A thesaurus entry of size k for some word w
consists of the k most similar words to w. [2]

5.2 Sources of Distributional Similarity Thesauruses

For our distributional similarity thesauruses, we will be using three sources.

• The first is based on the distributional analysis of our EMR notes.

• The second is based on the distributional analysis of the USMLE test
texts.

• The third the distributional analysis of phrases in Pubmed corpora based
on the statistical analysis of large text collections and the creators offer
181 million token word space specifically for terminology used in the
medical field [12]

To calculate the distributional similarity of word vectors, Lin’s measure is
used. Lin’s measure builds on the concepts following. It is an information
theory metric that provides a semantic distance. This is what we are looking
for.[2]

Let w1 and w2 be the two words to be compared, and r be the position
with respect to each other in the context at hand. Since we are working with
a window size ±3 , r could be -3, -2, -1, 1, 2, or 3. Let f be the frequency of oc-
currence of the described state in the this equation describing Lin’s measure.
The asterisk * stands for multiplication.

log
(f (w1, r, w2)− 0.95)(f (∗, r, ∗))

f (w1, r, ∗) f (∗, r, w2)

33

(5.1)

[2]
We also supplement this measure with the Euclidean distance measure

where faced with a lack of information.
The formula for the Euclidean distance is as follows:√

∑n
i=1 (w1i − w2i)

2 [48]

5.3 DISCO

DISCO package is a Java library that allows us to retrieve the semantic sim-
ilarity between arbitrary words and phrases based on the statistical analysis
of large text collections.

The metric is useful for retrieving the semantically most similar words
for an input word, the value of the semantic similarity between two input
words, collocations for an input word, and the semantic similarity between
short texts.

The creators offer 181 million token word space specifically for terminol-
ogy used in the medical field [12]. The corpus was taken from PubMed and
tokenized, and highly frequent function words were eliminated.

They used a simple context window of size 3 words for counting co-
occurrences.

The features that describe a word’s distribution are ordered pairs of word
and window position, and relies neither on part of speech tagging nor on
lemmatization.

5.4 Distance Value Matrix

Let W be a vector of words of interest. An individual word distance (iwd)
similarity vector has n elements where vector iwds(i) for word w is its distri-
butional similarity with the ith word. For any given word w, this index pro-
vides us with its distributional similarity score with all the other core words,
creating a very large distance value matrix.

This distance value matrix is used by the following two functions.
a) Function similarlyDist(w, k) provides the top k closest words to w.
b) Function distScore(w1, w2) provides a distance score between w1 and

w2.

34

We did the same for USMLE and constructed a USMLE based index. We
have a set of 5,904 USMLE exam questions to enrich the relevant entity ex-
traction and classification process. These exam questions are very similar to
the EMR notes we have but instead follow the rules of proper English.

We also supplement this measure with the Euclidean distance measure
where faced with lack of information.

The similarity of two words to one another is one minus their distance.

35

Chapter 6

Cross-Document Analysis
Methodology

Cross-document analysis methodology aims at extracting entities and rela-
tional entities from unstructured information in EMRs, and relating them to
diagnosis charts. It leverages diagnostic graphs and annotations made by
health care providers (HCPs) to extract information from the EMRs. The
EMRs will be processed by distributional similarity measurements[2] to iden-
tify words of importance in the EMRs.

To enrich the EMR notes with the diagnosis graphs, we will start with
a simple string matching technique, and improve the results using a variety
of word distance methods, such as the Levenshtein distance [49], Euclidean
distance[48], Jaccard Similarity [50], the Jaro metric [51], and the distance
metric DISCO [12].

The DISCO distance metric calculates semantic similarities between words
and phrases based on the statistical analysis of large text collections and the
creators offer 181 million token word space specifically for terminology used
in the medical field [12].

The following metric is used to determine semantic similarity. We consider
a EMR text t, made of words t1, t2, ..., tm, and diagnostic algorithm node u
made of words u1, u2, ..., un.

For each word ti in t, we select p words most similar to it, using our cross
DISCO/USMLE/EMR/Dictionary method. Thus, ti has a corresponding set
Ai of most similar words where Ai = a1

i , a2
i , ..., ap

i . The union of the Ais lies in
set A, where A =< A1, A2, ..., Am >.

Similarly, for each word ui in u, we select p words most similar to it,
using our cross DISCO/USMLE/EMR/Dictionary method. Thus, ui has a
corresponding set Wi of most similar words where Wi =< w1

i , w2
i , ..., wp

i >.

36

The union of the Wis lies in set W, where W =< W1, W2, ..., Wn >.

We denote the intersection of sets A and W with D. The intersection and

union of sets A and W are described in the equations following.

A ∩W = D =< d1, d2, ..., dk > (6.1)

A ∪W =< d1, d2, ..., dk, A− D, W − D > (6.2)

Where D has k elements, A - D has ka elements, and W - D has kw elements.

To calculate the similarity between EMR text t and algorithm node d, we
first consider the similarity measures of each word in D.

We consider the similarity measure of each word in D as occurring in
the EMR text and as occurring in the diagnostic algorithm node. These are
denoted in the following equations.

sa =< sa
d1

, sa
d2

, ...sa
dk
> (6.3)

sw =< sw
d1

, sw
d2

, ...sw
dk
> (6.4)

We then calculate the difference of the context metrics.

Di f f erence =< sa
d1
− sw

d1
, sa

d2
− sw

d2
, ..., sa

dk
− sw

dk
> (6.5)

Next, we consider the context metric of each word in A - D (ad) as oc-
curring in the EMR text and in W - D (wd) as occurring in the diagnostic
algorithm node.

37

pa =< pad1 , pad2 , ...pwdka
> (6.6)

pw =< pwd1 , pwd2 , ...pwdkw
> (6.7)

To arrive at a word’s distributionally similar words the next step is to
compare every word vector with all other word vectors.

If the distances are relatively small and subsequently the similarity mea-
sures are large as determined by a certain threshold, the EMR note and the
algorithm are taken to be similar, and pertaining to the same diagnosis.

We will build word lists from existing data, and add to it the results of the
natural language processing techniques implemented. We intend to optimize
our results with a reasonable trade-off between precision and recall. Leverag-
ing diagnostic graphs by EMR notes enriched by annotations is a simple task.
Understanding the notes in EMRs is more complicated. By projecting the
diagnostic graphs on the annotated EMR notes, we hope our task to extract
relevant and relational entities from the notes will be made easier.

6.1 Core word vector extraction

The annotated words are our core focus in our relational analysis. The in-
formational vectors corresponding to these words will be extracted and used
to compare with new data in order to find patterns and begin the automatic
annotation of entities that are classified as symptoms and diagnosis.

6.2 Diagnostic graph enrichment

The diagnostic graphs will be processed through our algorithm after training
in order to extract annotations found within it. Our goal is to enrich our
annotations with relevant entities found in the graphs.

We then aim to translate the diagnostic graphs to a BN structure to be
trained for its parameters (conditional probability tables).

38

6.3 Classification Boosted with Diagnostic Graphs

We discuss the implemented algorithm for the BN used to identify the most
likely diagnosis of a given EMR 6.1.

We discuss the Augmentation Mechanisms in providing vectors of similar
words for each word in the EMR and the BN nodes, as well as the respective
scores of similarity for each word-to-word match.

We expand on the implemented algorithm for the how the augmentation
results are saved, processed, and how we build information based on the
initial results.

We then discuss how we calculated EMR-to-node and then EMR-to-BN
scores based on an optimum threshold discovered by our initial results.

Next, we discuss how the information was organized and saved to be used
in the training process for the BN.

We discuss the results the BN has been trained to derive; its conditional
probabilities, to then be able to deduce the top most-likely BNs for a given
EMR according to the similarity scores of then EMR at hand and the BNs it
could correspond to.

The sources of our augmentations in order of importance are:
1) Our Manual Annotations of EMRs
2) Vowel-Based variations
3) EMR Distributional Similarity corpora
4) USMLE Distributional Similarity corpora
5) Pubmed corpora

6.4 Augmentation Mechanisms

These Augmentation mechanisms are key in facilitating the communication
between the diagnostic BNs and EMR analysis.

The manual annotations of EMRs are searched for a match within the BN
nodes that would clearly indicate when a match is identified. In such a case,
as with the case of an exact string match, the word score match would be the
highest it could; 1.

We also used the EMR distribution we calculated to find the most similarly
distributed words to the particular word being searched for, and we add that
to its vector of similar words.

The distribution we calculated and inferred word groups from also stored
the similarity score between any two matches, that will come of use we decid-
ing the similarity score threshold when it comes to deciding whether or not a

39

(1) Abbreviations
and Manually Anno-
tated EMRs (2)EMR

word distribution
(3)USMLE word dis-
tribution (4)PubMed

word distribution

Note

Augment Per Term

Augmented Note

Match Augmented
Note with Aug-

mented BN Nodes

Obtain Note and
BN Node Scores

Learn BN Condi-
tional Probabilities

Manual BN
Algorithm from

Medical Textbook

Identify BN
Node Words

Augment BN
Node Words

Figure 6.1: Flow chart for BN conditional probability learning procedure

40

word in an EMR, and potentially consequently the entire EMR, matched with
a BN node.

We also check for word abbreviations; or vowel-based variations of our
annotated EMRs. If a word is a vowel-based variation of a word we have
information on, we use that word’s information.

Similarly, we used the USMLE distribution we calculated to find the most
similarly distributed words to the particular word being searched for, based
on that corpora. We add that information to its vector of similar words.

The distribution we calculated based on the USMLE corpora that we then
inferred word groups from also stored the similarity score between any two
matches in that context. That score plays an indirect role in deciding the
similarity score threshold when it comes to deciding whether or not a word
in an EMR, and potentially consequently the entire EMR, matched with a BN
node.

We also use the distribution based on PubMed corpora stored in the
DISCO tool. This works in a similar way to our EMR and USMLE distribution-
based methods, however this tool was developed prior to our work and we
are using it along with the rest of our augmentation mechanisms.

The online synonym dictionaries are useful for string matching, but not
always accurate, so they are given the smallest priority in the augmentation
process. If this is the only source of a positive augmentation match between
an EMR word and a BN word this is given a score of 0.8, which is lower than
high match scores.

These scores will be combined into a score tailored for the purpose of our
cross-document analysis. The supplementary dictionaries were built to assist
the correction of typing errors and group words with similar meanings.

6.5 EMR Similarity Score

A distributional similarity score based on our corpora was created. This was
done by finding the distributional similarity of the annotated words. The
euclidean distance between them was evaluated to produce a similarity score.

Our findings were stored and we use the function distScoreEMR() to ob-
tain a distance score for any word pair.

6.6 Vowel Based Variations

The final similarity score is based on a series of variations of the annotated
words, produced automatically by removing the vowels in a given word.

41

A JAVA structure (HashMap) was built mapping every symptom to all the
words that are a variation of it and represent the same word (vowel version
and abbreviations). The scores of the closeness of the word variations to the
original word were calculated using DISCO.

We built a function variation() which takes a variation and returns the
original word along with the DISCO similarity score.

6.7 Dictionary Based Augmentation of Symptoms

The International Statistical Classification of Diseases and Related Health
Problems was used to extract a dictionary of symptoms [52] [53].

Our implementation confirmed that all words annotated as symptoms in
our corpora were included in this dictionary.

Using this dictionary, we produced a function isDictionarySymptom() that
returns a Boolean specifying whether a word is classified as a symptom.
We also use Roget’s 21st Century Thesaurus [54] to relate symptoms to syn-
onyms. We produced a function Synonym() that returns a list of synonyms
accommodating all symptoms. This work can be applied to other interesting
classes such as diagnoses, tests, etc.

The third dictionary is a list of common medical abbreviations that are
found online [55]. We developed function abbreviation() that takes a word w
and returns suggested medical terms such that w may be an abbreviation of
each medical term m in the set of medical terms mt.

These dictionaries were combined and used for string matching and symp-
tom identification.

6.8 Word Similarity Score Calculation using Aug-
mentations Algorithm

The algorithm to calculate and store all the word similarity scores using the
augmentation starts with a loop over the EMRs we want to augment words
for and find respective scores for.

Inside the loops, we retrieve the EMR text, and then loop through the
nodes of the BN we would like to compare the text to and find the scores
with.

For each node of the BN, we loops through it’s individual node words.
If the word of a given node is not a stop-word that does not give any

information, we continue with the loop.

42

We derive the augmentation vector (augNW) for the BN node word at
hand using the augmentation sources we have.

We then loop through every word in the EMR note, and find the augmen-
tation vector (augEMRW) for the EMR note word at hand using the augmen-
tation sources we have.

If the augmentation vectors augEMRw and augNW have one or more
identical terms, we store them in an ArrayList and treat them as matches.

We loop through these matches and find the scores of the match word
with the original EMR notes word and the BN node word.

Whichever score is higher is taken to be the matched score of that matched
word with the EMR word and BN Node word.

The way the augmentation vectors and there scores are stored is using two
new constructor classes, bnConnections and augConnections.

augConnections has three objects; two are exactly the same; they are the
two match strings that are identical matches from the EMR word augmenta-
tion vector and the BN node word augmentation vector.

The third one is for the score of this augmentation match. It is the higher
of the two scores of the EMR word score with the augmentation match and
the BN node word score with the augmentation match.

bnConnections has four objects. It has two strings, one for the EMR word
being compared against a BN node word, and the other for the BN node
word.

The third object is the score of that match, which was calculated after
finding the match scores of the two augmentation vectors and their match
scores.

The final object is an array list of augConnections which stores all the
values of the matched augmentations of the two augmentation vectors and
their match scores.

We added to the original Note constructor has an object for an array list
of bnConnections for each of the non-stop words in that EMR note.

6.9 Score Matrix

We built a matrix of all the scores of every vector of augmentations for each
BN node word and EMR word. Table 6.1 is a reference for the notations we
will be using to explain our algorithm. We will define every term as we go
through the thesis. The matching augmentation scores were calculated as
follows; if augmentation nWAi pertains to nWj with a score 0.7, and nWAi is
an exact match to eWAk that pertains to eWn with a score 0.8, we match nWj

43

Term Represents
BNi BN index i
ni BN Node index i
Ei EMR index i

nWi BN Node Word index i
ni Node index i

eWi EMR Word index i
nWAi BN Node Word Augmentation index i
eWAi EMR Word Augmentation index i

s(E, n) Score of EMR and Node
S(wX, wY) Score of word x and word y

Table 6.1: Reference for notations

to eWn with the higher of the two scores, namely 0.8 in this case. The scores
stored as shown in the tables.

6.10 Calculations

We have the entire matrix of word augmentation scores with EMR words and
BN node words.

Once the code is done running, we need to determine the following.

• Whether a word augmentation scores high enough to match the EMR
word and BN node word (EMR-word to node-word match).

• Whether a BN node has enough words that score high enough to match
with an EMR (EMR to node match).

• Whether the EMR note matches the BN (EMR to BN match).

We will now be discussing how we are going to decide how to determine
these, and how we need to display the word augmentation matrix of scores
so that we can look at them and decide the thresholds.

6.11 Diagnostic Algorithms

The structure of the BNs was found by a manual interpretation of the diag-
nosis algorithms. Since the diagnosis graphs can start with either a diagnosis
or a symptom, the graphs we used changes the placement of the first node to
the last node of each direction the BN path could follow.

44

nW1 nW2 ...
nWA1 nWA2

...
nWA1 nWA2

...
eWA1 s(eWA1, nWA1)

s(eWA1, nWA2) ...
s(eWA1, nWA1) ...

eWA2 s(eWA2, nWA1)
s(eWA2, nWA2) ...

s(eWA2, nWA1) ...

eWA3 s(eWA3, nWA1)
s(eWA3, nWA2) ...

s(eWA3, nWA1) ...

.

.

.

Table 6.2: This table shows the matrix we store of the scores of each word
augmentation of a single word in a given EMR with each word augmentation
of a single word in a given node of a given BN

n1 n2
...

nW1 nW2 ... nW1 nW2 ...
...
eW1 s(eW1, nW1) s(eW1, nW2)

...
s(eW1, nW1) s(eW1, nW2)
...

...
eW2 s(eW2, nW1) s(eW2, nW2)

...
s(eW2, nW1) s(eW2, nW2)
...

...
eW3 s(eW3, nW1) s(eW3, nW2)

...
s(eW3, nW1) s(eW3, nW2)
...

...

.

.

.

Table 6.3: This table shows the matrix we store of the scores of each word in
a given EMR with each word in a given node of a given BN

45

In this way, each BN graph is defined by a set of vertices and directed
edges.

The function augment() takes a word and returns a vector of words using
one of the augmentation mechanisms, or a combination of more than one.

Training the BNs:
Each state of our BN represents a node in the BN graph.
Since we already have the structure of our BN, all we need is to learn the

conditional probabilities of this BN.
The data that was given to the BN for training was based on the matrix

that represents the score of an EMR with each node discussed earlier.
The BN works by calculating a probability of the existence of a state Y

given the existence or non-existence of state X. Therefore, probabilistic data
cannot be fed as is. If we were to, would not be giving the BN model the
existence information, but the probability of a state existence.

Since the score numbers cannot be states since they are not patterns of
true/false, we translate the score numbers into states so that the BN packages
can make sense of them.

A state existing will be represented by "true" and it not existing will be
represented by "false". In each array of data their is as many states as their
are nodes, keeping the number of columns in each row consistent with the
number of nodes of the BN at hand.

We removed the words pertaining to the BN that scored very high in any
medical record.

This is either due to (1) it being an highly common word used in medicine
or (2) it having too many relations to words.

We are left only with words that are more specific to the BN at hand. We
made BNs for ten different diagnosis: Anemia, Anxiety, Diabetes, Fatigue,
Headache, Hemoptysis, Joint Sprain, Kidney Disease, Pruritus, and Tinnitus.
The words retained from each diagnostic algorithm in the corresponding BN
are displayed below.

Words retained for the Anemia BN:
anemia, WBC, iron, tibc, ferritin, normocytic, myeloma, Sickle, hemolytic,

mcv, marrow, b12, thrombocytopenia, macrocytic
Words retained for the Anxiety BN:
anxiety, phobia, agrophobia, trauma, ocdapprehension, ptsd, uneasiness,

fear, impairment, attack, panic, trigger
Words retained for the Diabetes BN:
diabetes, mellitus, Lifestyle, metformin, comorbidities, Sulfonylurea, DPP—4,

inhibitor, GLP-I, receptor, basal, Insulin, agonist, mealtime, HgbA1c
Words retained for the Fatigue BN:

46

fatigue, depression, anxiety
Words retained for the Headache BN:
headache, seizure, throbbing, migraine, meningitis, triggers, cough, sex-

ual, tumor, cns, neuroimaging
Words retained for the Hemoptysis BN:
hemoptysis, airway, chest, bleeding, parenchymal, respiratory, pseudohe-

moptysis, hematemesis, gastrointestinal
Words retained for the Joint Sprain BN:
joint, periarticular, monoarticular, inflammatory, inflammation, gout, arthropa-

thy, arthritis, rheumatologic
Words retained for the Kidney Disease BN:
kidney, nephrotoxic, hydronephrosis, toxin, nephritic, renal, glomerulonephri-

tis, hypoperfusion, rehydration, creatinine
Words retained for the Pruritis BN:
pruritis, menstrual, menopause, polyuria, thyroid, hiv, parasitic, weight,

fever, jaundice, malignancy
Words retained for the Tinnitus BN:
tinnitus, ostosclerosis, neuroma, meniere, spasm, sound, pulsatile, cardiac,

hyperthyroidism, vascular, intracranial, cerumen, malformation
The second thing we did was stabilize the thresholds of similarity for all

the word augmentation sources at 0.4 and test different the thresholds (0.6,
0.65, 0.7, 0.75, 0.8, 0.9) to identify a match to see if the results are closer to
what we expect.

This showed results as expected. For higher thresholds the matches be-
came little to none in the non-related notes while score matches are being
found for the notes that are related. For lower thresholds the matches were ex-
istent in both related and non-related notes, while the percentage of matches
are usually higher in notes that are related.

6.12 Score Aggregation

We decided to aggregate the EMR word - BN node word score to include the
highest three scores of their augmentation vector string match. It is calculated
by adding the maximum string match score to 10% of the second to maximum
string match score and 5% of the third to maximum string match score. If this
is higher than 1 the score becomes 1.

The we translated the augmentation scores to a form the BN program can
understand (true/false).

47

6.13 Learning BN Parameters

We used the python package pomegranate to learn the parameters of the BN
network for which the structure has been previously identified.

The network structure is passed as a tuple of tuples, along with the sam-
ples from the data to the from_structure api.

Pomegranate takes the desired structure, and calculates the parameters of
the BN network model in accordance to the data.

Once the parameters are calculated, the BN network is complete and ready
to be queried.

We use predict_proba to compute the missing probabilities when we present
evidence.

It is also very useful for computing conditional probabilities of the values
of certain nodes, given others.

The command predict gives us missing values in terms of the structure.
For each set of notes corresponding to a diagnosis, we calculated it’s score

with all ten available BNs at seven different thresholds (0.6, 0.65, 0.7, 0.75, 0.8,
0.85, 0.9).

We did this by finding the match data, translating it to the correct form
corresponding to each BN to query the likelihood it corresponds to this BN.

In this way, we can find the top BNs capable of explaining a note at hand
according to our work.

The results are displayed in the results section (Section 10).

48

Chapter 7

Automatic Annotation Tool Code

This section discusses the automatic annotation tool code.

7.1 Constructors

We created a constructor to define an Annotation; Annotation.java.
Each annotation has a label classifying it, the text that was classified, and

the index of the first letter’s positioning in the note text.
We created a constructor to define a Note; Note.java.
Each note has saves the patient’s record ID, case code, doctor identification

code, two numbers representing the patient’s first and last names, the date
of the visits, the note text to be analyzed, the patient’s age group, gender,
the number of diagnoses associated to the patients, a code representing the
diagnosis and a list of those diagnoses.

We added a feature that allows us to save the number of annotations for
this note text and a list of the annotations manually made by real doctors for
the annotated notes. This is used for annotated notes and left empty for the
non-annotated notes. We automatically annotate these later on in our work.

A Node is a constructor used to store a node in a BN. It contains the node’s
ID, its Label, its Type, its Color, and its Chart availability.

The node’s ID is a number attributed to each node in the BN.
Its Label is the actual text of Node.
Its Type classifies the Label, it is similar to the label of the annotated notes.
Its Color is the color of the node in the visual version of the BN.
Its chart availability indicates whether this node is present in the visual

version of the BN.
An Edge is a constructor used to store the structure of the BN. Each edge

contains a SourceID, a TargetID, and a Command.
The SourceID represents the node ID of the origin of the BN path.

49

The TargetID represents the node ID of the destination of the BN path.
The Command is either "yes" or "no". The code checks for status the of the

condition described in the label that pertains to the node with ID SourceID.
Depending on the existence of this condition; "yes" or "no", the ID of the next
Node to check for (TargetID) is specified.

A graph is a constructor used to store BNs. It contains an array of Nodes
(Node[]), an array of edges (Edge[]), and a HashMap of integers (that
pertain to Node IDs) that point to a list of edges to summarize the structure
of the BNs and simplify the process of handling any future queries.

7.2 Dictionary Synonyms

The method synonymsOnline creates the dictionary word vector for any rele-
vant word. A word of importance (w) is passed to it and it returns an Ar-
rayList of the words that are identified as synonyms to this word by the online
dictionary. The dictionary used is found online at https://www.thesaurus.com.

The code accesses the internet and queries for w. It then parses the results
and extracts each word identified as synonyms to w. It does this by first using
a while loop to ensure the entire text of the page of results read. Once it saves
the results, it searches for the definition of w and the first 10 synonyms in the
page text. It adds these to the ArrayList of synonyms (wvector) as soon as
they are found.

7.3 Co-occurrence Frequency Calculation

7.3.1 EMR

The method buildallNotes takes an String with the address of an xml file and
builds a public array list (allNotes) of the notes in the file. The function does
this by reading the passed xml file that contains notes and processing them.
It reads the lines of the file in order to identify each note and its attributes.

It then uses the note constructor to define and save each note. Once the
note is constructed and all the information it hold is saved, the note is added
to the array list allNotes. Once all the lines of the xml file are read we are left
with the final version of allNotes that holds a comprehensive list of notes that
were processed.

The notes can now be easily accessed at any point in the code.
Two versions exist for this code. One is for the annotated notes and the

other is for the non-annotated notes. This is because the content of the files

50

that contain the annotated notes differ slightly from the the files that contain
the non-annotated notes and this minimizes the chance of error.

The method clean takes a word and removes any punctuation marks with
spaces and removes highly frequent and repetitive words that are not likely
to benefit the analysis process. This method is called by buildallNotes in the
stage of reading and saving the note text.

To build the co-occurrence matrix, we create a public nested HashMap
coreDist that is prone to alteration in all methods, and undergoes alteration
in a specific sequence as specified by the main method.

coreDist is a HashMap with keys that are words (w1(i)) of type String
that point to HashMaps containing keys that are co-occurring words (w2(j)
) of type String that point to the frequency f12(i − j) of the co-occurrence
ofw1(i) and w2(j) of type Double.

The method getOrMakeRow takes a word and returns the HashMap in
coreDist corresponding to the passed word. It does this by first checking if
coreDist has a key that matches that word.

If it does, it returns the HashMaps containing keys that are co-occurring
words with the passed word that point to the respective co-occurrence fre-
quencies.

If it does not, it creates a new HashMap with the corresponding structure
of String keys pointing to objects of type Double and assigns it to the word
passed.

The method The method addPairToCorehandleW2 takes a HashMap of
words to frequencies (an object of one of the keys in coreDist) and a word (
w2(j)) that should be included as a key in this HashMap.

It alters the HashMap by locating the object f12(i− j) of the word (w2(j)
) if it exists and adding one to it, or creating a f12(i− j) = 1 for (w2(j)) and
adding it to the HashMap.

The method addPairToCore takes two words that have co-occurred, word1
and word2 , and updates coreDist accordingly.

It does this by first retrieving the HashMap (w1Row) that stores the words
and respective frequencies that word1 co-occurs with. To do this, it calls
getOrMakeRow and passes word1 to it.

It then updates this HashMap by passing w1Row and word2 to
addPairToCorehandleW2 .
To calculate the frequency of occurrence of word1 in general, at this point

the code also passes w1Row and "*" to addPairToCorehandleW2 .
In this way, to determine the frequency of occurrence of word1 we can get

the object in w1Row stored with key "*" after we are done processing all the
notes. The code then updates coreDist by pointing word1 to w1Row.

51

The method buildAnntoRand takes the array list of notes and builds the
coreDist .

It does this through looping through all the notes in allNotes and accessing
the note text for each note. The size of this loop is the number of notes in
allNotes.

Once the text is accessed, the words are separated into an array of words
(words[]).

Another loop of the same size as words[] goes through each word in the
text. In this loop, the word at index i in words[] (words[i]) is treated as
word1 , and the method addPairToCore needs to be called with all the words
that count as word2 to word1 .

In other words, we will be passing word1 to addPairToCore along with
each of the words co-occurring with it. The words co-occurring with it are
defined as words either receding or preceding word1 , and for our code we
use an index window to capture a certain number of words both immediately
after and immediately before word1 .

Our window was taken to be 3, which means the three preceding words
and the three receding words are treated as co-occurring words. These six
words thus need to each be passed through a loop to addPairToCore as word2
.

This is done through two nested loops. The first loop size depends of the
index i of word1 (words[i]) and on the size of words[].

So for example if i=0, i-3 = -3 which is not a valid index. The first word
cannot co-occur with what is before it as there is nothing before it. To tend to
this issue, we define kminus and kplus. kminus is either zero or i - window.

It is zero is i - window is less than zero and it is i - window otherwise.
kplus is either the length of words[] -1 or i+window. If i + window is less
than length of words[] kplus is i + window and kplus is length of words[] -1 (
the index of the last word in words[]) otherwise.

The first loop thus goes from cursor = kminustocursor = kplus, and we
increment by adding 1 and skipping i itself in this range, so the loop size is
kplus - kminus - 1. Inside this loop, i is skipped using an if statement; if cursor
is equal to i, continue to the next increment of cursor and ignore the rest of
the commands in the loop.

We then use the second loop to pass word1 and word2 to addPairToCore.
The second loop size depends on the co-occurrence distance between word1

and word2 . This is because our window will include words immediately pre-
ceding word1 and words immediately receding word1 as co-occurring with a
window of 1, 2, 3, and all higher numbers.

Similarly, our window will include words preceding word1 by two words

52

and words receding word1 by two words as co-occurring with a window of 2,
3, and all higher numbers.

Therefore, with a window of 3, words immediately receding and preced-
ing word1 will be counted as co-occurring three times (with a window of 1, 2,
and 3), words immediately receding and preceding word1 by two words will
be counted as co-occurring two times (with a window of 2 and 3), and words
immediately receding and preceding word1 by three words will be counted
as co-occurring one time (with a window of 3).

The size of this loop is the difference between absolute difference between
the cursor and i (called width) and the window size + 1. In other words, the
size of the loop is width + 1 - |cursor - i|. So if window = 3 and |cursor - i|
= 3, the loop will run 3 + 1 - 3 times (once). This will happen when word2 is
preceding or receding word1 by three words.

If word2 immediately precedes or recedes word1 , |cursor - i| will be 1, so
the loop will run 3 + 1 - 1 times (thrice). Inside the loop, word1 and word2
are finally passed to addPairToCore.

7.3.2 USMLE

A similar method to finding the co-occurrence frequencies of the EMR note
texts was implemented here.

The main difference was the processing of the USMLE test texts.
The method buildallTests read the text file containing the USMLE test texts

and processing them, adding each test text to the Array of texts allTests. The
method clean defined previously is called by buildallTests as well to remove
irrelevant information from the test texts before adding them to allTests.

The methods getOrMakeRow, addPairToCorehandleW2, and addPairToCore
remain the exact same.

The method buildAnntoRand only differs in that the outermost loop loops
over allTests and is of the same size as allTests. For each test text in allTests
it splits the words to words[] and continues in an identical manner to that
found in the EMR co-occurrence frequency calculation process.

7.4 DescendingProbabilityComparator

The class DescendingProbabilityComparator is a manual comparator that com-
pares pairs that contain words and numbers of type double and returns the
sorted version in a descending order.

53

7.5 Finding Top K similarly distributed Words

The kTopSimilarWords f orW method aims to identify the K most similarly
distributed words to the word queried. This method words for both EMR
and USMLE data as we pass it the name of the file it needs to load depending
on which of the two sets of data.

This file contains all the co-occurrence frequencies in the corpus and it
works the same from there. A the end our code saves the results to a file that
we specify a name for depending on which of the two sets of data.

kTopSimilarWords f orW takes as input the word in question (called w),
the distribution map of the corpus - either USMLE, DISCO, EMR - (called
map), the distance metric the distributions will be measured against each
other by (called metric), and the number of most similarly distributed words
we would like to retrieve (called K).

It returns an ordered Array List of size K (called topK) containing pairs
of words and distances (the format is ArrayList<Pair<String,Double»).

The words in topK are the most similarly distributed ones to w, and the
distances are the difference between the distribution of each of the words in
topK and w.

It does this by defining the DescendingProbabilityComparator dpc and
defining topK. It then retrieves the distribution of w from map (called f orW
).

It loops over the Strings in f orW, calling each w2 and checks if map con-
tains a distribution for w2. If it does (it should), we retrieve the distribution
of w2 (called f orW2) and calculate the distance between w and w2.

The distance metric used depends on the metric passed to

kTopSimilarWords f orW. Once the specific distance method is called and
saved as distance, we create a new Pair (called p) of a string and a double,
saving w2 and distance in this pair. We then add p to topK.

After doing this for all the words w2 in f orW, we sort topK using dpc, and
then keep the first K entries in topK, erasing the rest. topK is then returned.

F The kTopSimilarWords method calculates the K most similarly distributed
words to all the words in the distribution map of the corpus (Used for EMR
notes and USMLE texts).

kTopSimilarWords takes the distribution map (called map), the distance
metric the distributions will be measured against each other by (called metric
), and the number of most similarly distributed words we would like to re-
trieve (called K).

It returns a HashMap called kSimilarWordsMap. kSimilarWordsMap con-
sists of words that point to an ArrayList of size K containing pairs of Strings

54

(the top relevant words) and doubles (their distances from the key words).
It does this by loading the saved map, and looping over all the words in the

map (we call each word w). Inside the loop, we pass w to kTopSimilarWords f orW
along with map, metric, and k.

It thus retrieves wk, the ArrayList of K pairs relevant to w.
Then we add w and wK to kSimilarWordsMap.
Once the loop is completed, the method returns kSimilarWordsMap.
The method resultsToHashmap is passed kSimilarWordsMap and returns

a HashMap that points the words in the map to a HashMap of the top K co-
occurring words and the respective frequency of co-occurrence. This is easier
to save to a file for later use.

7.6 Automatic Annotations

The method annotate aims to automatically annotate non-annotated notes
using different approaches in attempt to achieve the most accurate automatic
annotation method.

In the first attempt, we start by retrieving the BNs for each of the EMRs
diagnosed as diabetes and anemia. We process the file containing all the
manually annotated notes, and proceed to extract the manually annotated
notes diagnosed as diabetes and the manually annotated notes diagnosed as
anemia.

We store all the words that are manually annotations for the notes diag-
nosed as diabetes and in a separate object we store all the words that are
manually annotations for the notes diagnosed as anemia.

We use a method that checks whether a word could be an abbreviation
of a word that should be annotated to supplement the automatic annotation
results.

Then we make use of the manually annotated notes, word abbreviations,
and BNs to automatically annotate non-annotated notes diagnosed as dia-
betes and anemia.

So for the first trial if the BN words are included in the non-annotated
notes, they get annotated. If the annotated words in a specific diagnosis are
included in the non-annotated notes for the same diagnosis, they get anno-
tated.

If the an abbreviated version of any of the above words are included in the
non-annotated notes, they get annotated.

In future methods we will be using USMLE disco, pubmed disco, dictio-
naries for this purpose as well. The details of the described attempt above are
found below.

55

7.7 Objects

map is a HashMap that points the name of the file that contains a BN to the
graph it becomes after being processed.

dwBNbag is a HashMap of ArrayLists of words as keys pointing to a word.
Each node in the diabetes BN is split into the individual words that constitute
it, and these fill the ArrayList key.

The word the ArrayList points to is the type of the node, which serves as
an annotation. In this way the diabetes BN words are bagged.

awBNbag is a HashMap of ArrayLists of words as keys pointing to a word.
Each node in the the anemia BN is split into the individual words that consti-
tute it, and these fill the ArrayList key.

The word the ArrayList points to is the type of the node, which serves as
an annotation. In this way the anemia BN words are bagged.

anotWords is an ArrayList of all the annotated words. It has only the
specific annotation text and not their respective labels.

anotDiabetesWords is an ArrayList of all the annotated words in diabetes
notes. It has both the specific annotation texts and their respective labels.

anotAnemiaWords is an ArrayList of all the annotated words in anemia
notes. It has both the specific annotation texts and their respective labels.

VOWELS is a string of the vowels; "aeiouy". It is split and used for the
method that checks if a word can count as an abbreviated version of a longer
word of significance.

annotatedNotes is an ArrayList of all the annotated Notes.

anDiabNotes is an ArrayList of the Notes annotated for the diabetes diag-
nosis.

anAnemNotes is an ArrayList of the Notes annotated for the anemia diag-
nosis.

nonAnDiabNotes is an ArrayList of the Notes non-annotated for the dia-
betes diagnosis.

nonAnAnemNotes is an ArrayList of the Notes non-annotated for the ane-
mia diagnosis.

autoNonAnDiabNotes is an ArrayList of the Notes non-annotated for the
diabetes diagnosis automatically annotated.

autoNonAnAnemNotes is an ArrayList of the Notes non-annotated for the
anemia diagnosis automatically annotated.

56

7.8 Methods for Automatic Annotations

7.8.1 Bagging

For our annotation process, and for the purpose of relating EMRs with their
corresponding BNs, we need to bag words of a common function in the nat-
ural language processing method. Different word corpora will bag words in
accordance to the information available in that source.

We have BN word bags, abbreviations, annotation word bags, USMLE
word bags, Pubmed word bags, and Dictionary word bags from the separate
corpora.

The BN word bags are words in each of the nodes of the diabetes and
anemia BNs respectively and their annotation types. It therefore bags the
words in the same node and associates them with their annotation.

The abbreviation word bags are based on a vowel-based variation of the
full version of any given word. These bags aim to identify no-vowel tokens
that are variations of longer words with vowels, and bag them together.

The annotation word bags come from the manual annotations holders of
medical degrees made to help with the EMR NLP work.

The USMLE word bags are extracted from the USMLE word vector Kmost-
SimilarUSMLE. The words with the closest distributional similarity scores are
bagged in the same context.

The Pubmed corpora provides word bags we extract from DISCO. DISCO
also provides the similarilty and distance scores that we need.

The Dictionary word bags consist of the dictionary word vector for any
relevant word. These are built through the method that extracts synonyms
for words of relevance from an online thesaurus.

These will be compared with the EMR vectors to match words of rele-
vance.

In this section, we will automatically annotate non-annotated notes using
BN word bags, abbreviations, and annotation word bags.

In future sections, we still use non-annotated notes using BN word bags,
abbreviations, and annotation word bags along with USMLE word bags.

Another section will involve non-annotated notes using BN word bags,
abbreviations, annotation word bags, and Pubmed word bags.

The following section will have non-annotated notes using BN word bags,
abbreviations, annotation word bags, and Dictionary word bags.

The final sections will incorporate all our findings into one main method.

57

7.9 Methods

The method processWorkbook processes the files that contain the BNs. It
does this by loading the file, and using our method findCol to read column
by column the contents of the file. Each column represents either a node or
an edge attribute.

We have the format of the files so they are organised as expected and
simple to process. This method builds the object map (the HashMap that
points the name of the file that contains a BN to the graph it becomes after
being processed).

In this way, the BNs for the diabetes and anemia diagnosis are saved.
The method fillBNwordBag fills in the objects dwBNbag and awBNbag

with the words in each of the nodes of the diabetes and anemia BN graphs
respectively and their annotation types.

It therefore bags the words in the same node and associates them with
their annotation.

It does this by locating the graphs of the requested diagnosis and looping
through the nodes, splitting each node to the words constituting it.

Once it removes redundant and irrelevant words, it saves the individual
words of significance and bags them.

The method abbreviationCheck is passed two words, the original word (
w1) and the word that needs to be checked (w2). w2 is being checked for
whether or not it can be considered an abbreviation of w1.

This is done by firstly splitting the string VOWELS into characters. The
next step is creating an ArrayList (named vars) of all the versions of w1
altered by removing vowels. It creates an ArrayList removing vowels from the
beginning of the word to the end, adding each alteration as it goes. It skips
the first letter in case it is a vowel as usually the first letter is not removed in
abbreviations.

It then does the same backwards, removing vowels from the end of the
word to the beginning of it, adding each alteration as it goes.

The last step is to check if vars contains the w2. The method returns a
Boolean; true is w2 can be considered an abbreviation of w1, and false if not.

The method BuildAnNotes processes the file that contains the annotated
notes and fills the object annotatedNotes. It has been described before as a
version of buildallNotes that accounts for the annotations in the annotated
notes.

The difference between the files that contain the annotated notes and the
file that contain the non-annotated notes are a string of lines for each note
describing the annotated text, the position of the annotated text in the note
text, and the label of this particular annotation word / annotation phrase.

58

The annotated notes therefore fill the ArrayList of Annotations in the note
constructor while the non-annotated notes does not fill it in.

The method specificNotes is passed the name of a particular diagnosis and
returns an ArrayList of the Notes annotated for that specific diagnosis.

It is called to fill anDiabNotes and anAnemNotes with the annotated notes
for the diabetes diagnosis and the anemia diagnosis respectively. It disregards
any notes that are diagnosed irrelevantly to the particular diagnosis queried
for.

The method buildUnAnNotes processes the file that contains the non-
annotated notes and fills both the objects nonAnDiabNotes and nonAnAnem-
Notes. It is identical to previously described buildallNotes.

The name was altered in this class for simpler differentiation purposes.
The method diagSpecificAnnotations is passed the ArrayList of notes an-

notated for a specific diagnosis and returns the HashMap of the specific an-
notations found exclusively in those notes that point to the label that those
annotations pertain to.

This method was passed anDiabNotes and anAnemNotes built anotDia-
betesWords and anotAnemiaWords for the specific annotations labels for the
diabetes diagnosis and the anemia diagnosis respectively. It therefore disre-
gards any annotations made in notes that are diagnosed irrelevantly to the
particular diagnosis queried for.

The method returnLowestDistanceScoreAnn takes an ArrayList of Anno-
tations and returns the Annotation with the lowest distance score.

This method is designed to select the most likely annotation for a non-
annotated word from a set of possible annotations that carry a distance score
from the non-annotated word on hand.

We will be using this returned annotation, the closest annotated word to
the non-annotated one, to determine the label under which the automatic
annotation method will classify it.

public static Annotation. This method returns the annotation by initiating
a double variable, named low, at a high distance. It proceeds to iterate over
the list of Annotations, switching its value to an Annotation distance score if
it is less than it.

In this iterative way it is able to find the smallest distance score. Once the
smallest distance score it identified, the code loops to find the corresponding
annotation. The final step returns this annotation.

The method annotate automatically annotates the non-annotated notes.
We use several methods as a first step to automatically annotate these

notes. We thus use several versions of the method "annotate" as a first step to
automatically annotate these notes.

59

The first method involves comparing the non-annotated note words to the
word distributions according to their occurrence in the EMR notes. If a word
distribution for the note word at hand is found within those distributions,
either through a direct string match or if the note word can pass for an ab-
breviation of a word that has a distribution according to its occurrence in the
EMR notes, we proceed.

The next step is to retrieve this word’s top K (K is taken to be 10) words
similarly distributed to it as occurring in the EMR notes. This forms a bag of
words that we then compare to:

a) The annotations for the specific diagnosis and the top K (K is taken to
be 10) words similarly distributed to every annotation word.

b) The BN graph words and respective word bags of the co-occurring
tokens in each node.

The second method involves comparing the non-annotated note words to
the word distributions according to their occurrence in the USMLE texts. If a
word distribution for the note word at hand is found within those distribu-
tions, either through a direct string match or if the note word can pass for an
abbreviation of a word that has a distribution according to its occurrence in
the USMLE texts, we proceed.

The next step is to retrieve this word’s top K (K is taken to be 10) words
similarly distributed to it as occurring in the USMLE texts. This forms a bag
of words that we then compare to:

a) The annotations for the specific diagnosis and the top K (K is taken to
be 10) words similarly distributed to every annotation word

b) The BN graph words and respective word bags of the co-occurring
tokens in each node

The third method involves comparing the non-annotated note words to the
word distributions according to their occurrence in the Pubmed texts using
DISCO.

If a word distribution for the note word at hand is found within those
distributions through a direct string match we proceed. The next step is to
retrieve this word’s top K (K is taken to be 10) words similarly distributed to
it as occurring in the Pubmed texts. This forms a bag of words that we then
compare to:

a) The annotations for the specific diagnosis and the top K (K is taken to
be 10) words similarly distributed to every annotation word.

b) The BN graph words and respective word bags of the co-occurring
tokens in each node.

Since the implementation of the first two methods is identical save the dif-
ferent files containing the word distributions according to their occurrence in

60

the EMR notes as opposed to word distributions according to their occurrence
in the USMLE texts, we will explain this version implementation first.

The version for the Pubmed texts only involves a slight alteration pertain-
ing to the fact that the Pubmed text distribution was not built by us but by
DISCO and therefore has its own implications that will be discussed after this
implementation is thoroughly studied.

The first two versions of the method annotate automatically annotate the
non-annotated notes by passing the ArrayList of non-annotated notes, along
with the HashMap specific to the diagnosis at hand of the annotations point-
ing to the labels, and the HashMap of an ArrayList of words included in each
node of the respective BN pointing to their labels.

For the diabetes case, we pass nonAnDiabNotes as the ArrayList of non-
annotated notes, anotDiabetesWords as the HashMap specific to the diagnosis
at hand of the annotations pointing to the labels, and dwBNbag the HashMap
of an ArrayList of words included in each node of the respective BN pointing
to their labels.

For the anemia case, we pass nonAnAnemNotes as the ArrayList of non-
annotated notes, anotAnemiaWords as the HashMap specific to the diagnosis
at hand of the annotations pointing to the labels, and awBNbag the HashMap
of an ArrayList of words included in each node of the respective BN pointing
to their labels.

The method returns an ArrayList of notes that are automatically anno-
tated. It therefore builds autoNonAnDiabNotes (EMR version) and then
builds

autoNonAnDiabNoteswithUSMLE (USMLE version) for the diabetes case
and autoNonAnAnemNotes (EMR version)

autoNonAnAnemNoteswithUSMLE (USMLE version) for the anemia case.
The method begins by defining the ArrayList of automatically annotated

notes.
It proceeds to loop through the non-annotated notes, retrieving the note

text and splitting the words. Each word is called w.
This outer loop has two sets of instructions.
a) A set that is followed if the vector of EMR words (or USMLE words

) with their top K matches contains w. The HashMap normedTopK contains
the EMR words (or USMLE words) and points to a HashMap of the top K
word matches pointing to their match scores.

It is loaded from the code kTopSimilarWords that built it under the name
kSimilarWordsMap.

b) A set if normedTopK does not contain w.

61

7.9.1 normedTopK contains w

If normedTopK contains w, we retrieve the corresponding HashMap (called
tTopK) of the top K similar words pointing to the distance scores.

The next inner loops goes through the keys of the HashMap specific to the
diagnosis at hand of the annotations pointing to the labels called specificAn-
nWords. The keys are called w2, and we check if normedTopK has a key with
the same identity as w2.

If so, we retrieve its HashMap, called sAnnTopK, and calculate the Eu-
clidean distance between tTopK and sAnnTopK.

If the distance is less than a specific threshold THRESH we add w to the
ArrayList of annotations in the note, including the label (from the object of
speci f icAnnWords at w) and position of w in the text.

Then this annotation is added to the ArrayList of annotations for the note
at hand (called autoAnnotation).

Once the loop over speci f icAnnWords ends, we loop over the BN node
words.

We use this with two loops, one looping over the keys of the HashMap
with ArrayLists of BN node words pointing to their labels (called wBNbag),
and an inner loop looping over each ArrayList (called bag) of words in an
individual BN node.

Each of these individual words is w2.
If normedTopK has a distribution for w2, we retrieve the corresponding

HashMap and name it bagTopK.
We then calculate the Euclidean distance between tTopK and bagTopK.
If the distance is less than a specific threshold THRESH we add w to the

ArrayList of annotations in the note, including the label (from the object of
wBNbag at bag) and position of w in the text.

Then this annotation is added to autoAnnotation .

7.9.2 normedTopK does not contain w

If normedTopK does not contain w, we loop through the words that normed-
TopK does contain (called st). Our method abbreviationCheck is called to
know whether w can pass for an abbreviation of st.

If abbreviationCheck confirms that w can pass for an abbreviation of st, we
retrieve the distribution HashMap corresponding to st (and thus w), tTopK,
and then proceed to go through the same set of loops the previous set of
instructions described (speci f icAnnWords loop followed by wBNbag loop).

62

7.9.3 End of Method

In the outermost loop, once these commands are executed, we add to the note
n the ArrayList of automatic annotations. We then add n to the ArrayList of
automatically annotated notes, autoAnned.

Once this outermost loop is concluded, and we have looped over all the
non-annotated notes and automatically annotated them, we return autoAnned.

This method builds the ArrayList of automatically annotated note objects
autoNonAnDiabNotes and autoNonAnAnemNotes for the EMR note words
case, and autoNonAnDiabNoteswithUSMLE and

autoNonAnAnemNoteswithUSMLE for the USMLE text words case.

7.9.4 Pubmed version of Method using DISCO

The third Pubmed version of the method annotate automatically annotate the
non-annotated notes also by passing the ArrayList of non-annotated notes,
along with the HashMap specific to the diagnosis at hand of the annotations
pointing to the labels, and the HashMap of an ArrayList of words included
in each node of the respective BN pointing to their labels.

For the diabetes case, we pass nonAnDiabNotes as the ArrayList of non-
annotated notes, anotDiabetesWords as the HashMap specific to the diagnosis
at hand of the annotations pointing to the labels, and dwBNbag the HashMap
of an ArrayList of words included in each node of the respective BN pointing
to their labels.

For the anemia case, we pass nonAnAnemNotes as the ArrayList of non-
annotated notes, anotAnemiaWords as the HashMap specific to the diagnosis
at hand of the annotations pointing to the labels, and awBNbag the HashMap
of an ArrayList of words included in each node of the respective BN pointing
to their labels.

The method returns an ArrayList of notes that are automatically anno-
tated. It therefore builds autoNonAnDiabNoteswithDISCO for the diabetes
case and autoNonAnAnemNoteswithDISCO for the anemia case.

The method begins by defining the ArrayList of automatically annotated
notes. It proceeds to loop through the non-annotated notes, retrieving the
note text and splitting the words. Each word is called w.

If the Pubmed corpora contains a distribution for w, we retrieve the corre-
sponding top K similar words and their distance scores. We call this simResult.
We next loop through the simResult bag of words, namely w and its top K
similar words.

We first check if speci f icAnnWords (the HashMap specific to the diagnosis
at hand of the annotations pointing to the labels) contains a key (called w2

63

) for a word in the simResult bag. If so, we retrieve its label, and add w
to the ArrayList of annotations in the note, including the label (from the
object of speci f icAnnWords at w) and position of w in the text. Then this
annotation is added to the ArrayList of annotations for the note at hand (
called autoAnnotation).

We then check if the BN node words HashMap (called wBNbag) contains
a key (called w2) for a word in the simResult bag. If so, we retrieve its label,
and add w to the ArrayList of annotations in the note, including the label (
from the object of speci f icAnnWords at w) and position of w in the text. Then
this annotation is added to autoAnnotation .

7.9.5 End of Method

In the outermost loop, once these commands are executed, we add to the note
n the ArrayList of automatic annotations. We then add n to the ArrayList of
automatically annotated notes, autoAnned.

Once this outermost loop is concluded, and we have looped over all the
non-annotated notes and automatically annotated them, we return autoAnned.

This method builds the ArrayList of automatically annotated note objects
autoNonAnDiabNoteswithDISCO and autoNonAnAnemNoteswithDISCO.

7.10 Saving the Automatically Annotated Notes

To save the results of annotate, namely autoNonAnDiabNotes and
autoNonAnAnemNotes, we need to create an object compatible with the way
Java saves objects.

Since Java does not save an ArrayList of our Note constructor, we fill two
HashMap objects of Strings as keys pointing to an ArrayList of Strings as
objects.

The keys will be filled with the automatically annotated text, and the Ar-
rayList of Strings will be filled with the annotations in that text alongside
their labels.

We therefore define and fill autoAnnDiab and autoAnnAnem through two
loops, one looping through autoNonAnDiabNotes and the other looping through
autoNonAnAnemNotes.

We then call the method that saves objects in Java to a file, by passing
autoNonAnDiabNotes and autoNonAnAnemNotes to it, along with the names
of the files we would like them saved to.

For the EMR case, we saved autoNonAnDiabNotes to
autoAnnotatedNonAnDiabNotes,

64

and autoNonAnAnemNotes to autoAnnotatedNonAnAnemNotes.
For the USMLE case, we saved autoNonAnDiabNotes to

autoAnnotatedNonAnDiabNoteswithUSMLE, and
autoNonAnAnemNotes to autoAnnotatedNonAnAnemNoteswithUSMLE.

For the DISCO case, we saved autoNonAnDiabNotes to
autoAnnotatedNonAnDiabNoteswithDISCO, and
autoNonAnAnemNotes to autoAnnotatedNonAnAnemNotes with DISCO.

65

Chapter 8

Website Implementation

The website implementation that contains my work is written in HTML and
JavaScript. The website communicates with python and then java to provide
feedback, correct annotations, and automatically annotate new texts.

8.1 Website Layout (Using HTML)

The site title is EMR Annotation Tool.
The page title is "Electronic Medical Record Automatic Annotation Tool".
Once the user enters the page they can choose to display the automati-

cally annotated EMR notes and they can input their own medical notes for
automatic annotation.

If they choose to display the automatically annotated EMR notes they can
also add a missing annotation or correct an incorrect annotation displayed.

8.2 Displaying Automatically Annotated EMR Notes

To display the automatically annotated EMR notes, they can choose using
training with either USMLE texts and EMR manual annotations, PubMed
DISCO index and EMR manual annotations, or EMR manual annotations on
their own.

The website then asks the user to specify a diagnosis for the automatically
annotated notes to display; either Diabetes Mellitus, or Anemia.

The website highlights the annotations in every note displayed according
to a color-label legend displayed above the text box where the current note is
being displayed.

The web-page has four buttons to begin displaying the notes.

66

The fist button is named "Display Note" and will display the note with
index 1 each time it is pressed.

The button "Previous" will display the note with the index directly pre-
ceding the index of the current note being displayed.

The button "Next" will display the note with the index directly succeeding
the index of the current note being displayed.

The button "Go To" comes with a text box that it will read and then display
the note with the corresponding index.

Once any of these buttons are clicked, the legend table as well as the note
at hand are displayed.

In addition, two tables containing characteristics of the automatic annota-
tion at hand are displayed.

The first table is named the labels table. It contains:

• the labels that correspond to words automatically annotated in the note
text

• the words in the note text annotated with that label

• the automatically annotated words intersecting with the manually an-
notated words in our corpora

• the automatically annotated words not intersecting with the manually
annotated words in our corpora

• the missed words that were not automatically annotated but were in-
cluded in the manual annotations in our corpora

• the precision measurement for this particular note text (number of in-
tersecting annotations divided by the sum of the number of intersecting
annotations and the number of non-intersecting annotations)

• the recall measurement for this particular note text (number of inter-
secting annotations divided by the sum of the number of intersecting
annotations and the number of annotations not included - missed)

The second table is named the total table. It contains:

• all the labels

• the total precision measurement for each label in the entire training
method specified by the user (the number of all the intersecting an-
notations in this method divided by the sum of the number of all the
intersecting annotations and the number of all the non-intersecting an-
notations in this method)

67

• the total recall measurement for each label in the entire training method
specified by the user (the number of all the intersecting annotations in
this method divided by the sum of the number of all the intersecting
annotations and the number of all the annotations not included - missed
in this method)

The user can also add a missing annotation or correct an incorrect anno-
tation displayed

To add a missing annotation or correct an incorrect annotation displayed,
the user double-clicks on a word in the EMR text displayed, then proceeds to
right-click. On the user’s right-click, a window pops up asking the user what
the annotation label is of the word they double-clicked on.

The user must input an annotation label from the list of labels available on
the page in the text-box inside the pop-up. This pop-up is case-sensitive.

If the user enters an incorrect label, they will be asked to input an an-
notation label from the list of labels available on the page and they will be
informed that the input is case-sensitive.

If the user does not enter anything another pop-up will inform the user
that they have cancelled the annotation.

If the user input a valid annotation label it alters the annotation on the
page and sends the new annotation to JavaScript to update the annotation
information.

8.3 Automatically Annotating User Input

At the bottom of the page the website asks the user to enter a text to be
annotated automatically and specify the training method.

The user can pick for their input to be annotated using any combination
of the folowing: USMLE exam questions Notes, PubMed DISCO index, and
EMR manual annotations.

The user then inputs their text and presses the submit button.

8.4 Displaying Automatically Annotated EMR Notes

The automatically annotated EMR notes are generated by the Java codes and
stored in xml files in a readable way. There is a Java code that takes all the
automatically annotated EMR notes trained with different methods and prints
them in a readable way to xml files. This is because JavaScript reads xml
files using a built in method (getElementById().childNodes), so this choice of

68

storage was the most convenient and made the JavaScript end of the process
simple.

JavaScript receives the request from the user to display a specific set of
those notes, depending on what they were trained with and what diagnosis
they want displayed. Then JavaScript reads the respective files and organises
them into a table for displaying purposes.

We implemented a highlight method that we call during the process of
reading the files and organizing each unit of the table content to be displayed.
This method allows JavaScript to highlight the annotations in every note dis-
played according to a color-label legend displayed above the text box where
the current note is being displayed.

The notes in the xml files are read by JavaScript per index. We do this
by passing to the JavaScript function that reads the xml files an index i of
childNodes to specify. The button "Display Note" and will pass index 1 to
JavaScript. The button "Previous" will pass 1 minus the current index to
JavaScript, while the button "Next" will pass 1 plus the current index. The
button "Go To" comes with a text box that it will read and then pass the input
index to the JavaScript method.

The default index is 1, and so if the user presses "Display Note" first, they
will be viewing the note with index 1 first, if they press previous first, they
will be viewing the note with index 0 first, and so on.

Once the initial button is pressed (any of "Display Note", "Previous", "Next",
and "Go To"), JavaScript then changes the display of the website by commu-
nicating to HTML getElementById().innerHTML to set the element indicates
between brackets to the table created of the automatically annotated EMR
note at hand. Once any of these buttons are clicked, the legend table as well
as the note at hand are displayed.

JavaScript also organises the labels table for each note in the same method
that organises the table displaying the note. It reads the

• the labels that correspond to words automatically annotated in the note
text

• the words in the note text annotated with that label

• the automatically annotated words intersecting with the manually an-
notated words in our corpora

• the automatically annotated words not intersecting with the manually
annotated words in our corpora

• the missed words that were not automatically annotated but were in-
cluded in the manual annotations in our corpora

69

• the precision measurement for this particular note text (number of in-
tersecting annotations divided by the sum of the number of intersecting
annotations and the number of non-intersecting annotations)

• the recall measurement for this particular note text (number of inter-
secting annotations divided by the sum of the number of intersecting
annotations and the number of annotations not included - missed)

from the same xml file it uses for the note and the highlights within each note.
Since the total table does not vary with the individual notes in every file,

a separate xml file contains the information necessary for this table, depend-
ing on the training method and diagnosis selected. Consequently, JavaScript
organises this table in a separate method than it does the notes and labels
tables. The information read from JavaScript, as previously stated, includes

• all the labels found in this training method and diagnosis analyzed

• the total precision measurement for each label in the entire training
method specified by the user (the number of all the intersecting an-
notations in this method divided by the sum of the number of all the
intersecting annotations and the number of all the non-intersecting an-
notations in this method)

• the total recall measurement for each label in the entire training method
specified by the user (the number of all the intersecting annotations in
this method divided by the sum of the number of all the intersecting
annotations and the number of all the annotations not included - missed
in this method)

The user can also add a missing annotation or correct an incorrect anno-
tation displayed.

To add a missing annotation or correct an incorrect annotation displayed,
JavaScript has a double-click listener for when the user double-clicks on a
word in the EMR text displayed. It also has a right-click listener so when the
user then proceeds to right-click it can use the alert() function to communicate
to the user with a window pop-up. JavaScript adds a script to the alert box
asking the user what the annotation label is of the word they double-clicked
on.

The user must input an annotation label from the list of labels available on
the page in the text-box inside the pop-up. This pop-up is case-sensitive.

JavaScript stores a string of all the words that are correct label for a given
word to be annotated as, separated with white spaces. A JavaScript function
we implemented called contains() is passed two strings to check if the first

70

string is included in the second. Using this method we can tell if the user
enters an incorrect label by passing it to the contains method along with the
string that contains the correct labels. If the user had indeed entered an
incorrect method, JavaScript will use the alert() function prompting the user
to input an annotation label from the list of labels available on the page. It
also informs them that the input is case-sensitive.

If the user does not enter anything another alert() function will be used by
JavaScript to send the user a pop-up informing them that they have cancelled
the annotation.

If the user input a valid annotation label it alters the annotation on the
page and sends the new annotation to JavaScript to update the annotation
information.

Once JavaScript receives the valid annotation label, it sends it along with
the word that it detected the double-click take place on to the code that cor-
rects inaccurate annotations and adds new ones.

This method uses The Common Gateway Interface, or CGI to communi-
cate to python. CGI is a set of standards that define how information is ex-
changed between the web server and a custom script. In this way, JavaScript
communicates to python to write to an xml file a line containing the word
to be annotated along with its valid annotation label, separated by a white
space.

The Java code in turn reads this file, and updates the structure that has all
the words annotated linked to their correct annotation labels.

It then updates all the xml files containing the automatic annotations or-
ganized by training method and diagnosis to include the correct annotation
for each occurrence of the word in any note.

In this way, when JavaScript reads the xml file at hand it reads from the
updated version that includes the annotation(s) provided by the user.

8.5 Automatically Annotating User Input

At the bottom of the page the website asks the user to enter a text to be
annotated automatically and specify the training method.

The user can pick for their input to be annotated using any combination
of the following: USMLE exam questions Notes, PubMed DISCO index, and
EMR manual annotations.

The user then inputs their text and presses the submit button.
Once the submit button is pressed, JavaScript stores the training methods

selected in a string form along with the text to be annotated.
Then two JavaScript functions are called.

71

The first function uses CGI to communicate with python. It is passed the
training methods selected in a string form along with the text to be annotated,
and sends then to a python class. This python class prints two lines to a file,
the first line containing the training method(s) specified by the users, and the
second containing the text to be annotated.

The second function uses CGI to communicate with another python class.
This python class runs a Java code. This Java code reads the file containing
the training method(s) specified by the users and the text to be annotated.
It then accordingly implements the methods corresponding to the training
techniques selected by the user to automatically annotate the user’s medical
text.

Once this is completed, the Java code proceeds to print the text along with
the annotations in an xml form to an xml file. The python code that ran
java then prints every line of the last xml file to be easily sent to JavaScript.
JavaScript then reads the annotations, and displays the automatically anno-
tated user text on the web-page. The annotations are shown in ghlights along
with the annotation to highlight legend.

8.6 Pending Work

We are working on adding a feature to the website where the user’s medical
text can be processed for the top three or four likely diagnoses pertaining to
the input. This is based on the entity analysis of the existence of the words in
the BNs corresponding to diagnostic algorithms as discussed in the previous
sections.

72

Chapter 9

Other Work

Some previous work was done in regards to automation of understanding
the unstructured notes stored within the EMR notes. A simple distributional
similarity algorithm was deployed to identify the symptoms in any given
EMR.

Using Java, distribution matrices were built using the annotated set of
EMR notes.

A distribution matrix of all the words in a traning set of the annotated
data was calculated according to the order in which they show up in the text,
with respect to the word immediately receding and preceding it.

Another distribution matrix followed the same formula but took into con-
sideration two preceding and succeeding words per single entity instead of
one in both directions. These was obtained by running through the annotated
texts once, and using a nested hashmap to record the probability of one word
occurring next to another.

To evaluate the success of the distributions in predicting whether or not
any given word is a symptom, the two centers of gravity of the distribution
of the symptoms was calculated, and the distance between the distribution of
a word and the symptom center of gravity was calculated.

The same process was repeated by comparing the distribution of a word
with the mean distribution of the symptoms. Different distance metrics were
used, including Euclidean, Jacobian, Manhattan, Binary, Canberra, Minkowski,
and Maximum.

For both the first and the second matrices, comparing a word distribution
with the center of gravity had better precision and accuracy levels than com-
paring with the mean distribution. The distance metric with the best precision
and accuracy scores was the Euclidean distance.

For the first matrix, accounting for one word directions, the precision was
0.159 and the recall was 0.87 at a threshold of 0.28. For the second matrix,

73

accounting for two words in both directions, the precision was 332/(332+26) =
0.919668 and the recall was 332/333 = 0.997 at a threshold of 0.177. Therefore
it is most useful to take a wider locus into consideration during distributional
similarity testing.

Hidden Markov Models were explored as well, by substituting words in
notes with random numbers. Running the algorithm as is produced no fea-
sible results. We then tried altering the original text notes and adding the
annotation label after the annotated word to identify the distributions of high
interest. This not only should increase the chances of the model to detect
words, of high interest, but should also improve accuracy, seeing as a word
annotated in one text is not necessarily annotated underneath the same label
in another. After the alteration, and no result improvement, we have decided
to further explore the method to discover the optimal way to utilize the algo-
rithm, by representing words by numbers according to a different metric than
the random one being used thus far.

The diagnostic graphs have been built through an algorithm that reads
and interprets the files, and a visualization joining the EMR notes has been
produced. The relation linking the EMR notes and the most relevant diagnos-
tic graph has not yet been made.

74

Chapter 10

Results

Our results show that Bayesian networks successfully identify the relevant
differential analysis by predicting the top two or three diagnostic algorithms
as explanations of the EMR note.

The analysis often included prevailing diagnoses such as fatigue, headache,
and joint sprain which are underlying symptoms to other more serious diag-
noses.

The average recall is 0.93. The differential analysis based precision was 1
for all the models when we consider the precision according to whether the
model appears in the top two models with the notes pertaining to them. If we
weigh every single algorithm on its own, the average precision for the models
is 0.18 when compared to all the other models, and 0.64 when compared to
one other model. This may be due to a lack of data and a lot of missing
information.

After all the graphs are displayed, a discussion of the results will follow.
Each set of EMR notes has three corresponding graphs relating how the

ten different BN models explain the notes at the seven thresholds 0.6, 0.65,
0.7, 0.75, 0.8, 0.85, 0.9.

One graph for the score of the BN model with the EMR notes, one for the
precision of the BN model with the EMR notes, and one for the recall the BN
model with the EMR notes.

To evaluate the effectiveness of our method, we use precision and recall
as illustrated in Figure 10.1. The purpose of precision and recall is to see
how well our models work. The precision metric answers the question; “How
many selected items are relevant?”. Therefore, it is the number of true posi-
tives divided by the sum of true and false positives. Recall answers the ques-
tion; “How many relevant items are selected?”. Therefore, it is the number of
true positives divided by the sum of true positives and false negatives.

These models trained on yes/no data, not attempting to higher the score

75

Figure 10.1: Precision and Recall [1]

of a match that surpasses a high threshold.
In the following graphs, the following abbreviations are used for the fol-

lowing diagnoses:
Anemia = A1, Anxiety = A2, Diabetes = D1, Fatigue = F1, Headache =

H1, Hemoptysis = H2, Joint Sprain = J1, Kidney Disease = K1, Pruritus = P1,
Tinnitus =T1.

Dif Precision represents the differential precision.
Precision 1 represents the precision of the model when the correct data is

measured against the data from all the other sets of diagnosis notes.
Precision 2 represents the average precision of the model when the correct

data is measured against the data from one other set of diagnosis notes.
To choose the other set we paired the notes into sets of two that would be

measured against each other. The sets were paired depending on how many
notes we had in their corpora. The closest two in note number were paired,
in ascending order. So the two diagnoses we had the most notes for, diabetes
(3,280 notes) and anemia (1,211 notes), were paired together. Similarly, anxi-
ety (709 notes) was paired with headache (555 notes), joint sprain (429 notes)
was paired with fatigue (253 notes), kidney disease (55 notes) was paired
with pruritus (50 notes), and tinnitus (39 notes) was paired with hemoptysis
(4 notes).

The following graphs show the results of our work. Throughout the
graphs, a prevailing presence of the fatigue, headache, and joint sprain di-
agnoses is notable, and this is to be expected. As we mentioned, these are
underlying symptoms to other more serious diagnoses and we therefore will
include them in our score graphs and our precision 1 and when needed pre-
cision 2 calculations, but not for the differential precision purposes.

76

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Figure 10.2: Anemia Notes Scores

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.2 0.67 1
0.65 1 0.2 0.67 0.99
0.7 1 0.2 0.67 0.99
0.75 1 0.2 0.67 0.99
0.8 1 0.2 0.67 0.99
0.85 1 0.2 0.67 0.99
0.9 1 0.21 0.68 0.95

Table 10.1: Anemia Precision and Recall

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.1 0.5 0.72
0.65 1 0.1 0.5 0.72
0.7 1 0.1 0.5 0.72
0.75 1 0.1 0.5 0.72
0.8 1 0.1 0.5 0.72
0.85 1 0.13 0.57 0.7
0.9 1 0.14 0.58 0.7

Table 10.2: Anxiety Precision and Recall

77

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Figure 10.3: Anxiety Notes Scores

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Figure 10.4: Diabetes Notes Scores

78

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.19 0.66 0.99
0.65 1 0.19 0.66 0.99
0.7 1 0.19 0.66 0.98
0.75 1 0.19 0.63 0.97
0.8 1 0.2 0.67 0.96
0.85 1 0.22 0.69 0.91
0.9 1 0.24 0.71 0.88

Table 10.3: Diabetes Precision and Recall

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Figure 10.5: Fatigue Notes Scores

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.17 0.63 1
0.65 1 0.18 0.64 1
0.7 1 0.18 0.64 1
0.75 1 0.18 0.64 1
0.8 1 0.19 0.66 1
0.85 1 0.21 0.68 1
0.9 1 0.23 0.7 0.99

Table 10.4: Fatigue Precision and Recall

79

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Figure 10.6: Headache Notes Scores

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.17 0.63 0.98
0.65 1 0.17 0.63 0.97
0.7 1 0.18 0.64 0.97
0.75 1 0.18 0.64 0.97
0.8 1 0.19 0.66 0.96
0.85 1 0.2 0.67 0.96
0.9 1 0.21 0.68 0.92

Table 10.5: Headache Precision and Recall

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.14 0.58 1
0.65 1 0.14 0.58 1
0.7 1 0.14 0.58 1
0.75 1 0.14 0.58 1
0.8 1 0.14 0.58 1
0.85 1 0.14 0.58 0.9
0.9 1 0.14 0.58 0.9

Table 10.6: Hemoptysis Precision and Recall

80

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Figure 10.7: Hemoptysis Notes Scores

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Figure 10.8: Joint Sprain Notes Scores

81

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.17 0.63 0.97
0.65 1 0.17 0.63 0.97
0.7 1 0.17 0.63 0.97
0.75 1 0.17 0.63 0.97
0.8 1 0.17 0.63 0.97
0.85 1 0.19 0.66 0.97
0.9 1 0.2 0.67 0.95

Table 10.7: Joint Sprain Precision and Recall

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Figure 10.9: Kidney Disease Notes Scores

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.16 0.62 1
0.65 1 0.16 0.62 1
0.7 1 0.16 0.62 0.99
0.75 1 0.16 0.62 0.8
0.8 1 0.16 0.62 0.7
0.85 1 0.16 0.62 0.7
0.9 1 0.16 0.62 0.63

Table 10.8: Kidney Disease Precision and Recall

82

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Figure 10.10: Pruritus Notes Scores

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.12 0.55 0.74
0.65 1 0.12 0.55 0.74
0.7 1 0.12 0.55 0.74
0.75 1 0.12 0.55 0.74
0.8 1 0.12 0.55 0.74
0.85 1 0.14 0.58 0.74
0.9 1 0.2 0.67 0.74

Table 10.9: Pruritus Precision and Recall

Similarity
threshold

Dif Preci-
sion

Precision
1

Precision
2

Recall

0.6 1 0.14 0.58 0.93
0.65 1 0.14 0.58 0.93
0.7 1 0.15 0.6 0.93
0.75 1 0.15 0.6 0.93
0.8 1 0.17 0.63 0.93
0.85 1 0.17 0.63 0.93
0.9 1 0.18 0.64 0.93

Table 10.10: Tinnitus Precision and Recall

83

A1 A2 D1 F1 H1 H2 J1 K1 P1 T1

0

0.2

0.4

0.6

0.8

1

BN

Sc
or

e

Figure 10.11: Tinnitus Notes Scores

As we can see, in the Anemia score figure 10.2 Anemia scores the highest
out of the non-common diagnoses. When we compare the scores we will not
be taking into account the prevailing diagnoses fatigue, headache, and joint
sprain. Therefore Anemia has the top position in it’s score table.

In the Anemia Precision and Recall table 10.1 the differential precision
is consistently 1 throughout the similarity thresholds, since it is the highest
explaining model when we don’t take into account fatigue, headache, and
joint sprain. Precision 1, 2, and recall remain consistent at around 0.2, 0.67,
and 0.99 respectively.

In the Anxiety score figure 10.3 anxiety scores the second-highest out of
the non-common diagnoses. It is second to the diabetes diagnosis.

In the Anxiety Precision and Recall table 10.2 the differential precision is
consistently 1 throughout the similarity thresholds, since it is the still in the
top two highest explaining models when we don’t take into account fatigue,
headache, and joint sprain. Precision 1, 2, and recall remain consistent at
around 0.1, 0.5, and 0.7 respectively.

As we can see, in the Diabetes score figure 10.4 diabetes scores the highest
out of the non-common diagnoses.

In the Diabetes Precision and Recall table 10.3 the differential precision
is consistently 1 throughout the similarity thresholds, since it is the highest
explaining model. Precision 1, 2, and recall remain consistent at around 0.2,
0.66, and 0.98 respectively. However, at the higher thresholds, the precision
metrics 1 and 2 do rise to 0.24 and 0.71, while the recall drops notably to 0.88
at the highest threshold.

In the Fatigue score figure 10.5 fatigue scores the highest out of all the

84

diagnoses.
In the Fatigue Precision and Recall table 10.4 the differential precision

is consistently 1 throughout the similarity thresholds, since it is the highest
explaining model. Precision 1, 2, and recall remain consistent at around 0.18,
0.64, and 1 respectively. However, at the higher thresholds, the precision
metrics 1 and 2 do rise to 0.23 and 0.7, while the recall drops slightly to 0.99
at the highest threshold.

As we can see, in the Headache score figure 10.6 headache scores the
highest out of the other non-common diagnoses.

In the Headache Precision and Recall table 10.5 the differential precision
is consistently 1 throughout the similarity thresholds, since it is the highest
explaining model. Precision 1, 2, and recall remain consistent at around 0.18,
0.66, and 0.97 respectively. However, at the higher thresholds, the precision
metrics 1 and 2 do rise to 0.21 and 0.68, while the recall drops notably to 0.92
at the highest threshold.

In the Hemoptysis score figure 10.7 hemoptysis scores the highest out of
all diagnoses, common diagnoses included.

In the Hemoptysis Precision and Recall table 10.6 the differential precision
is consistently 1 throughout the similarity thresholds, since it is the highest
explaining model. Precision 1, 2, and recall remain consistent at around 0.14,
0.58, and 1 respectively. However, at the higher thresholds, the the recall
drops notably to 0.9 at the two highest thresholds.

As we can see, in the Joint Sprain score figure 10.8 joint sprain scores the
highest out of the other non-common diagnoses.

In the Joint Sprain Precision and Recall table 10.7 the differential precision
is consistently 1 throughout the similarity thresholds, since it is the highest
explaining model. Precision 1, 2, and recall remain consistent at around 0.17,
0.63, and 0.97 respectively. However, at the higher thresholds, the precision
metrics 1 and 2 do rise to 0.2 and 0.67, while the recall drops slightly to 0.95
at the highest threshold.

In the Kidney Disease score figure 10.9 kidney disease scores the highest
out of the non-common diagnoses.

In the Kidney Disease Precision and Recall table 10.8 the differential preci-
sion is consistently 1 throughout the similarity thresholds, since it is the high-
est explaining model. Precision 1, 2, and recall remain consistent at around
0.16, 0.62, and 1 respectively. However, as the thresholds get higher, the recall
drops first to 0.99 at the threshold 0.7, then to 0.8 at the 0.75 threshold, then
down to 0.7 at thresholds 0.8 and 0.85, to finally drop to 0.63 at the highest
threshold.

As we can see, in the Pruritus score figure 10.10 pruritus scores second-

85

highest out of the non-common diagnoses. It is second to the diabetes diag-
nosis

In the Pruritus Precision and Recall table 10.9 the differential precision is
consistently 1 throughout the similarity thresholds, since it is the second-
highest explaining model. Precision 1, 2, and recall remain consistent at
around 0.12, 0.63, and 0.74 respectively. However, at the higher thresholds,
the precision metrics 1 and 2 do rise to 0.2 and 0.67.

Finally, in the Tinnitus score figure 10.11 tinnitus scores the highest out of
the non-common diagnoses.

In the Tinnitus Precision and Recall table 10.10 the differential precision
is consistently 1 throughout the similarity thresholds, since it is the highest
explaining model. Precision 1, 2, and recall remain consistent at around 0.14,
0.6, and 0.93 respectively. However, at the higher thresholds, the precision
metrics 1 and 2 do rise to 0.18 and 0.64.

10.1 Discussion

Every single BN scored the highest and did the best with the notes corre-
sponding to it. That is, for all the notes, the BN model scores the highest with
the notes pertaining to it, and is most likely to identify notes pertaining to it.
This is true for all BN models on all three fronts; score, precision, and recall
(accuracy).

However, not all notes, were necessarily best explained by the BNs per-
taining to the same diagnosis.

So for example, a Pruritis note most likely would score the highest with
the fatigue BN, but the Pruritis BN will identify a Pruritis note with a much
higher likelihood that it will identify a note corresponding to any other diag-
nosis. This is evident in the precision and recall data.

Therefore is important to note that precision and recall are the most im-
portant factors in determining what BN is most likely to explain a note. While
the score of a BN may be higher, it may not consistently be able to identify a
note with that diagnosis to begin with.

Another important factor to note about these results is that the BN models
that are explaining notes (score, precision, and recall wise) with a higher like-
lihood than they should are made up of extremely common entities that have
many links and relations with words that can come up in a typical medical
note.

For example, the fatigue BN words "fatigue", "depression", and "anxiety"
have high scoring matches with almost all notes.

86

This is not necessarily inaccurate, as fatigue can be a side-effect of the
original diagnosis we would like to obtain.

The headache BN contains many words (such as headache, throbbing,
triggers, cough, tumor, seizure, sinusitis, ...) that are commonly found in EMR
notes. This is due to the fact that the diagnostic algorithm for the headache
diagnosis check for many possible diagnoses of which headache may be a
common symptom.

Again, this is not necessarily inaccurate, as headache is likely to be a side-
effect of the original diagnosis we would like to obtain.

The word "joint" corresponding to the joint sprain BN matches with an
extreme amount of words and therefore the BN is more likely to score high
with an irrelevant EMR note.

This is problematic, and is to be looked into further.
The entities relevant to the diabetes BN are also very common. For exam-

ple, words such as lifestyle, sedentary, and obese and are related to a large
selection of medical problems and thus medically significant words.

This is problematic as well, and is to be looked into further.
One suggestion to resolve these issues is by finding more diagnosis specific

diagnostic algorithms and placing more importance on finding words that
relate exclusively to the disease at hand.

Our results support that our BNs are successful to a degree in identifying
the top matches for a note.

87

Chapter 11

Conclusion

EMR notes assist HCPs in managing cases and diagnosing patients.
The automation of understanding the unstructured notes stored therein

improves health-care quality. Therefore, applying natural language process-
ing methods on EMR notes improves a HCP’s ability to diagnose patients and
extract useful information. We utilized automated understanding to predict
diagnoses from the notes by querying a set of BNs for the likelihood of their
relevance to it.

We utilize a cross-document analysis method of EMR notes that pertain
to the diagnoses diabetes mellitus and anemia. This method identifies closely
related entities in the data. It establishes a score to rate the percentage of their
similarity. We did this with distributional similarity measurements based on
HCP annotations, such as abbreviations and words of particular importance
to the diagnosis at hand, and vowel based variations of words, and three
distributional similarities, the first based on EMR note texts, the first based
on USMLE exam texts, and the third based on Pubmed corpora.

We enriched our annotations by diagnosis graphs and to help deduce a
suitable diagnosis for the note in a faster and more efficient way.

The diagnostic algorithms from medical textbooks allowed us to build
BNs structures for the diagnosis of ten diagnoses: anemia, anxiety, diabetes,
headache, hemoptysis, fatigue, joint sprain, kidney disease, pruritis, and tin-
nitus.

Each structured model was trained with yes/no data based on the exis-
tence of a node match in the EMR notes pertaining to its diagnosis.

The existence of a node is determined by whether or not a word vector
to word vector match score surpasses a threshold. The thresholds used are
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9. This therefore generates a BN model for each
threshold.

Once the BN parameters are found, all the notes of all the diagnoses are

88

processed to find their match data with all the BNs at all the thresholds.
We did this to identify the top three BNs that could explain each set of

notes pertaining to different diagnoses.
We used off the shelf tools Java and Python to stimulate our final results.
We validated our results and have found the optimal BN models for the

ten diagnoses given our data.
The models yielded good results, however, some diagnoses (fatigue, headache,

joint sprain, and sometimes diabetes) were more common in irrelevant notes
that is favorable.

This could perhaps be due to the fact that the entities relevant to the cor-
responding BNs are very common.

This may be resolved by finding more diagnosis specific entities to add to
the BN structure. This could place more importance on finding words that
relate exclusively to the disease we are trying to identify.

Our BN models help to speed up the diagnosis process of these diseases,
improve organization of sparse medical data, and improve meaningful use of
available information.

Analyzing the EMRs and relating them with the diagnosis graphs could
be very helpful in detecting diagnoses early on.

89

Appendix A

Abbreviations

BN Bayesian Networks
EMR Electronic Medical Record
HCP Health Care Practitioner
A1 Anemia
A2 Anxiety
D Diabetes
F Fatigue
H1 Headache
H2 Hemoptysis
J Joint Sprain
K Kidney Disease
P Pruritus
T Tinnitus

90

Bibliography

[1] C. Riggio, “"what’s the deal with accuracy, precision, recall and f1?",”

[2] J. A. Carroll, R. Koeling, and S. Puri, “Lexical acquisition for clinical text
mining using distributional similarity,” in Computational Linguistics and
Intelligent Text Processing, p. 232 to 246, 2012.

[3] L. Falcon, “Gnu health: Health and hospital information system,”

[4] G. K. Savova, J. J. Masanz, P. V. Ogren, J. Zheng, S. Sohn, K. K. Schuler,
and C. G. Chute, “Mayo clinical text analysis and knowledge extraction
system (ctakes): architecture, component evaluation and applications,”
vol. 17 5, pp. 507–13, 2010.

[5] Glaze and Jeff, “Epic systems draws on literature greats for its next ex-
pansion,” 2015.

[6] “The benefits of ehrs department of health and human services office of
the national coordinator for health information technology,”

[7] Rijo, Rui, Martinho, Ricardo, and C. Pereira, Silva, “Text mining applied
to electronic medical records: A literature review,” vol. 6, pp. 1–18, July
2015.

[8] S. M. Meystre, K. S. Guergana, C. K.-S. Karin, and F. H. John, “Extract-
ing information from textual documents in the electronic health record,”
2008.

[9] W. Sun, Z. Cai, Y. Li, F. Liu, and S. Fang, “Data processing and text
mining technologies on electronic medical records: A review,” in Journal
of healthcare engineering, 2018.

[10] “"mena-mtc: Middle east and north africa medical text corpora",”

[11] H. MC, T. LM, Jr., and S. GW, “The patient history: An evidence-based
approach to differential diagnosis,” NY: McGraw-Hill.

91

[12] P. Kolb, “Disco: A multilingual database of distributionally similar
words,” in In Proceedings of KONVENS.

[13] A. Darwiche, “What are bayesian networks and why are their applica-
tions growing across all fields ?,” 2010.

[14] P. B. Jensen, L. J. Jensen, and S. Brunak, “Mining electronic health
records: towards better research applications and clinical care,” 2012.

[15] D. B. K. S. Ananiadou and J. i. Tsujii, “Text mining and its potential
applications in systems biology,” 2006.

[16] W. S. e. a. Zeng Q, Goryachev S, “Extracting principal diagnosis, comor-
bidity, and smoking status for asthma research: evaluation of a natural
language processing system.,” 2006.

[17] S. A. e. a. Mack R, Mukherjea S, “Text analytics for life science using the
unstructured information management architecture.,” 2004.

[18] S. I. T. M. M. J. S. K. C. J. G. W. d. G. P. Coden A, Savova G, “Automati-
cally extracting cancer disease characteristics from pathology reports into
a disease knowledge representation model,” 2009.

[19] “Health information technology for economic and clinical health act title
xiii american recovery and reinvestment act of 2009,”

[20] B. Shilling, “The federal government has put billions into promoting elec-
tronic health record use: How is it going?,” 2011.

[21] O. P. e. a. Savova GK, Masanz JJ, “Mayo clinical text analysis and knowl-
edge extraction system (ctakes): architecture, component evaluation and
applications.,” 2009.

[22] Kushima, Muneo, Araki, Kenji, Suzuki, Muneou, and Araki, “Text data
mining of the electronic medical record of the chronic hepatitis patient,”
vol. 2195, pp. 569–573, 03 2012.

[23] J. Weeds and D. Weir, “Co-occurrence retrieval: A flexible framework for
lexical distributional similarity,” vol. 31, pp. 439–475, 2005.

[24] Koeling, Rob, Tate, A. Rosemary, Carroll, and J. A., “Automatically es-
timating the incidence of symptoms recorded in gp free text notes,” in
Proceedings of the First International Workshop on Managing Interoperability
and Complexity in Health Systems, MIXHS ’11, 2011.

92

[25] Y. Luo, “Recurrent neural networks for classifying relations in clinical
notes,” vol. 72, pp. 85–95, 2017.

[26] Y. Ye, F. Tsui, M. Wagner, J. U. Espino, and Q. Li, “"influenza detection
from emergency department reports using natural language processing
and bayesian network classifiers",” vol. 21, pp. 815–823, 01 2014.

[27] H. Mahgoub, D. Rösner, N. Ismail, and F. Torkey, “A text mining tech-
nique using association rules extraction,”

[28] P. Luis, R. Rui, S. Catarina, and M. Ricardo, “Text mining applied to
electronic medical records: A literature review,” 2015.

[29] S. Li, C. Jianping, and X. Jie, “Prospecting information extraction by text
mining based on convolutional neural networks—a case study of the lala
copper deposit, china,” 2018.

[30] Y. Luo and P. Szolovits, “Efficient queries of stand-off annotations for
natural language processing on electronic medical records,” vol. 8, 2016.

[31] O. Metskera, E. Bolgova, A. Yakovleva, A. Funknera, and S. Kovalchuk,
“Pattern-based mining in electronic health records for complex clinical
process analysis,” vol. 119, 2017.

[32] A. Henriksson, M. Hassel, and M. Kvist, “Diagnosis code assignment
support using random indexing of patient records–a qualitative feasibil-
ity study,” p. 348 to 352.

[33] M. Kushim, K. Araki, M. Suzuki, S. Araki, and T. Nikama, “Text data
mining of the electronic medical record of the chronic hepatitis patient,”
vol. 1, 2012.

[34] A. A. Thomas, C. Zheng, H. J. A. Chang, B. Kim, J. Gelfond, J. Slezak,
K. Porter, S. J. Jacobsen, and G. W. Chien, “Extracting data from elec-
tronic medical records: validation of a natural language processing pro-
gram to assess prostate biopsy results,” vol. 32, 2014.

[35] F. E, C. JA, S. HE, S. D, and C. JA, “Extracting information from the
text of electronic medical records to improve case detection: a systematic
review.,” in J Am Med Inform Assoc, 2016.

[36] H. BI, M. R, F. JC, and M. AL., “Merging data diversity of clinical medical
records to improve effectiveness,” in Int J Environ Res Public Health, 2019.

93

[37] Z. V, B. R, B. R, M. R, D. R, and W. M., “Minimalistic approach to corefer-
ence resolution in lithuanian medical records,” in Comput Math Methods
Med, 2019.

[38] A. M, D. LG, C. A, S. A, and C. F, “The revival of the notes field: Lever-
aging the unstructured content in electronic health records,” in Comput
Math Methods Med, 2019.

[39] L. KH, K. HJ, K. YJ, K. JH, and S. EY, “Extracting structured genotype
information from free-text hla reports using a rule-based approach,” in J
Korean Med Sci, 2020.

[40] K. TA, D. C, B. PE, and B. S, “Natural language processing of symp-
toms documented in free-text narratives of electronic health records: a
systematic review,” 2019.

[41] G. EP, W. A, K. C, and et al., “"what is the best method of family planning
for me?": a text mining analysis of messages between users and agents
of a digital health service in kenya.,” 2019.

[42] X. Y, W. C, Y. X, W. W, Z. E, and Y. J, “Parabtm: A parallel processing
framework for biomedical text mining on supercomputers,” 2018.

[43] W. Sun, Z. Cai, Y. Li, F. Liu, S. Fang, and G. Wang, “Data processing and
text mining technologies on electronic medical records: A review,” 2018.

[44] C. R, E. M, and E. N, “Redundancy in electronic health record corpora:
analysis, impact on text mining performance and mitigation strategies,”
2013.

[45] L. Y, D. Y, L. M, C. Y, and L. Q, “Zhongguo yi liao qi xie za zhi,” 2016.

[46] K. Murphy, “"machine learning: a probabilistic perspective",”

[47] Stats and Bots, “"probabilistic-graphical-models-tutorial",”

[48] W. contributors, “"euclidean distance",” Wikipedia, The Free Encyclope-
dia.

[49] Yujian, Li, Bo, and Liu, “A normalized levenshtein distance metric,”
vol. 29, p. 1091 to 1095, June 2007.

[50] Vorontsov, I. Kulakovskiy, and I. Makeev, “Algorithms molecular biol-
ogy,”

94

[51] J. Feigenbaum, “Jarowinkler: Stata module to calculate the jaro-winkler
distance between strings,”

[52] ICD=10, “" international statistical classification of diseases and related
health problems",”

[53] ICD-9, “" international statistical classification of diseases and related
health problems",”

[54] SynonymThesaurus, “"free online thesaurus",”

[55] M. Net, “" common medical abbreviations list (acronyms and definitions)
center",”

95

